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ABSTRACT 
 
 
 

FATIGUE RELIABILITY AND POST-FRACTURE RESIDUAL CAPACITY OF A TWO- 

GIRDER STEEL BRIDGE 

 
 

Due to the immense and always increasing traffic volume, bridges are permanently 

subjected to repetitive loadings. These high numbers of cyclic loads can cause initiation of fatigue 

cracks. If these flaws remain undetected they may become through-thickness cracks and further 

propagate, if left unrepaired, until they eventually arrest when entering a high compression zone 

or further propagate to fracture of the entire member. The criticality of a full member fracture is 

not well defined nor agreed upon. Previous failure cases have demonstrated the ability of two- 

girder steel bridges to withstand full girder fracture of one of the two girders without structural 

collapse. Other cases, however, have shown the criticality of a complete girder failure on complete 

system collapse. Due to uncertainties in bridge redundancy and the ability to develop alternative 

load path, the American Association of State Highway and Transportation Officials (AASHTO) 

attempts to prevent fracture or collapse by classifying bridges with respect to their redundancy into 

fracture critical bridges (FCB) and decreasing their inspection periods. However, this leads to 

higher construction and maintenance costs for the owners of FCBs. The level of uncertainty in 

bridge performance when one of its two girders suffer complete fracture should be represented in 

a probabilistic manner to evaluate the probability of fatigue crack growth and the potential for 

system collapse. To that end, in this thesis probabilistic analysis is used to assess the crack 

propagation behavior in a girder of a two-girder steel bridge by conducting finite element Monte 

Carlo simulations. The simulations account for the scatter in the load and the resistance by treating 
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those uncertainties as random variables with predefined statistical distributions. The results of the 

analysis are presented in terms of probability of failure versus inspection intervals for various 

levels of material fracture toughness. The results provide an illustration on the use of the proposed 

methodology to devise inspection intervals based on desired probability of failures. Additionally, 

the post-fracture redundancy is evaluated by comparing the resulting equivalent plastic strain to 

the failure strain of steel. The results show that the bridge provides sufficient redundancy to 

redistribute the load after full depth fracture of a FC member. 

3  



ACKNOWLEDGEMENTS 
 
 
 

I would like to thank my advisor Dr. Hussam Mahmoud for his continuous and valuable 

support throughout the work on this thesis. I would also like to thank my committee members Dr. 

Rebecca Atadero and Dr. Kelly Strong for their effort and the time they spent on reviewing my 

work. Furthermore, I want to thank my classmates and friends Dr. Mehrdad Memari, Hassan 

Masoomi and Akshat Chulahwat who helped me with coding and the finite element analysis. 

Finally, I want to thank my family and my closest friends for their continuous support. Without their 

support I would not be where I am today. 

4  



TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ...................................................................................................................... viii 

INTRODUCTION .......................................................................................................................... 1 

1.1 Motivation ............................................................................................................. 1 
1.2 Objectives and Scope of Thesis ............................................................................ 2 
1.3 Organization of Thesis .......................................................................................... 3 

BACKGROUND AND LITERATURE REVIEW ........................................................................ 5 

2.1 Introduction and historical background ................................................................. 5 
2.2 S-N Curves and Fatigue Categories .................................................................... 11 
2.3 Linear Elastic Fracture Mechanics ...................................................................... 14 
2.4 Stress Concentration at the Crack Tip ................................................................. 16 
2.5 Energy Balance and Energy Release Rate ........................................................... 17 
2.6 Stress Intensity Factor ......................................................................................... 20 
2.7 Fatigue Crack Growth ......................................................................................... 23 
2.8 Paris’ Law ........................................................................................................... 24 
2.9 Probabilistic Analysis .......................................................................................... 25 

2.9.1 Monte Carlo Simulation .............................................................................. 25 
2.9.2 Latin Hypercube Sampling ......................................................................... 26 
2.9.3 Definition of Failure .................................................................................... 28 

BRIDGE MODEL ........................................................................................................................ 29 

3.1 Bridge Description .............................................................................................. 29 
3.2 Crack location ..................................................................................................... 32 
3.3 Numerical Bridge Model ..................................................................................... 33 

3.3.1 Geometry..................................................................................................... 34 
3.3.2 Material ....................................................................................................... 35 
3.3.3 Model Mesh ................................................................................................ 36 
3.3.4 Boundary Conditions .................................................................................. 37 
3.3.5 Connections................................................................................................. 37 
3.3.6 Residual stresses ......................................................................................... 39 
3.3.7 Loading ....................................................................................................... 40 
3.3.8 Crack ........................................................................................................... 43 

SIMULATION METHODOLOGY ............................................................................................. 46 

4.1 Finite Element Analysis ...................................................................................... 46 
4.2 Monte Carlo simulation ...................................................................................... 47 

4.2.1 Random Variables ....................................................................................... 47 
4.2.2 MATLAB Program ..................................................................................... 49 
4.2.3 Number of Iterations for Monte Carlo simulation ....................................... 50 

5  



4.2.4 Statistical Computation of K ....................................................................... 50 
4.2.5 Statistical Computation of the Number of Cycles ....................................... 51 
4.2.6 Probability of failure ................................................................................... 52 

RESULTS 54 

5.1 Global System Response ..................................................................................... 54 
5.2 Statistical evaluation of stress σ11 ..................................................................... 59 
5.3 Statistical evaluation of the stress intensity factor .............................................. 61 
5.4 Statistical evaluation of the remaining fatigue life.............................................. 64 
5.5 Bridge Redundancy and Potential for Collapse .................................................. 72 
5.6 Conclusion .......................................................................................................... 83 

REFERENCES ............................................................................................................................. 86 

6 
 



LIST OF TABLES 
 
 
 
Table 1 Detail category constants after (AASHTO, 2012) ........................................................... 13 
Table 2 Material Properties defined in the numerical model ........................................................ 36 
Table 3 Load amplification factors for maximum design load ..................................................... 42 
Table 4 Statistical distributions used in Monte Carlo simulation for Young’s Modulus and 

dynamic amplification factor ....................................................................................... 49 
Table 5 Statistical distributions used in Monte Carlo simulation for the Paris’ Law parameters 52 
Table 6 Results of statistical stress evaluation .............................................................................. 60 
Table 7 Stress intensity factors in compression zones .................................................................. 62 
Table 8 Temperature zones and corresponding crack arrest toughnesses Ka .............................. 68 
Table 9 K values and equivalent plastic strain for various crack length ....................................... 73 

vii  



LIST OF FIGURES 

Figure 1 Fatigue life for the eight detail categories defined in AASHTO (Fisher et al., 1998) ... 13 
Figure 2 Flat plate with elliptical flaw .......................................................................................... 16 
Figure 3 Through thickness crack in an infinite plate subjected to tensile stress ............................ 20 
Figure 4 The three modes of loading ............................................................................................. 20 
Figure 5 Stresses near the crack tip in an elastic material .............................................................. 22 
Figure 6 Latin Hypercube sampling for two independent random (X1, X2) variable with 5 

realizations ................................................................................................................... 27 
Figure 7 Overall Plan and Elevation of the Betzwood Bridge ....................................................... 29 
Figure 8 Elevation of girder ......................................................................................................... 30 
Figure 9 Plan view of superstructure below deck .......................................................................... 31 
Figure 10 Bridge structure ............................................................................................................. 31 
Figure 11 Connection of bottom lateral to grider flange ............................................................... 33 
Figure 12 Bridge structure ............................................................................................................. 35 
Figure 13 Bridge structure with bracing system (left) and isolated bracing system and beam 

profiles (right) .............................................................................................................. 37 
Figure 14 Bolted connection connecting floor beam to girder....................................................... 38 
Figure 15 Residual stresses resulting from welding ...................................................................... 39 
Figure 16 AASHTO design truck .................................................................................................. 40 
Figure 17 Footprint of the fatigue design truck ............................................................................. 41 
Figure 18 Implementation of truck load in the numerical model ................................................... 41 
Figure 19 Maximum Design Load ................................................................................................ 43 
Figure 20 Visualization of a contour integral ................................................................................ 44 
Figure 21 Crack definition in ABAQUS ....................................................................................... 45 
Figure 22 Sequence in reliability analysis ..................................................................................... 50 
Figure 23 Process of reliability assessment of the bridge .............................................................. 53 
Figure 24 Global deformation in vertical direction of uncracked bridge (amplified by 300) ........... 55 
Figure 25 Uncracked bridge - Von Mises stresses (amplified by 300) .......................................... 56 
Figure 26 Global deformation in vertical direction of cracked bridge (amplified by 300) .............. 57 
Figure 27 Von Mises Stresses in the Cracked Girder showing Localized Stress Concentration 

around the Crack Tip .................................................................................................... 58 
Figure 28 Scatter plot of tensile stresses σ11 at bottom flange of girder ......................................... 60 
Figure 29 Schematic sketch of residual stresses along girder ........................................................ 62 
Figure 30 Root mean square of stress intensity factors and its variation........................................ 63 
Figure 31 Original stress intensity factor curve and fitting curve using a second-degree 

polynomial .................................................................................................................... 64 
Figure 32 Crack length versus number of cycles ........................................................................... 66 
Figure 33 Probability of occurrence for KIC = 45MPa(m)1/2 ........................................................ 66 
Figure 34 Probability of occurrence for KIC = 65MPa(m)1/2 ........................................................ 67 
Figure 35 Probability of occurrence for KIC = 75MPa(m)1/2 ........................................................ 67 
Figure 36 Probability of failure versus inspection interval Ni without accounting for crack arrest 

......................................................................................................................................      70 
Figure 37 Reliability index versus inspection interval Ni without accounting for crack arrest ... 71 

8  



Figure 38 Probability of failure versus inspection interval Ni when accounting for crack arrest 71 
Figure 39 Reliability index versus inspection interval Ni when accounting for crack arrest........... 72 
Figure 40 Bridge structure identifying locations of plastifiaction for a crack length of 2.555m . 75 
Figure 41 Plastification at connection C1 for a crack length of 2.555m ........................................ 75 
Figure 42 Plastification at connection C2 for a crack length of 2.555m ........................................ 76 
Figure 43 Plastification at connection C3 for a crack length of 2.555m ........................................ 76 
Figure 44 Plastification at the crack tip for a crack length of 2.555m ............................................ 77 
Figure 45 Equivalent plastic strain for connection C1, C2, C3 and the crack tip CT ...................... 77 
Figure 46 Bridge structure identifying locations of plastifiaction at full depth fracture ................. 78 
Figure 47 Plastification at connection C1 at full depth fracture ..................................................... 79 
Figure 48 Plastification at connection C2 at full depth fracture ..................................................... 79 
Figure 49 Plastification at connection C3 at full depth fracture ..................................................... 80 
Figure 50 Plastification at connection O1 at full depth fracture .................................................... 80 
Figure 51 Plastification at connection O2 at full depth fracture .................................................... 81 
Figure 52 Plastification at connection O3 at full depth fracture .................................................... 81 
Figure 53 Equivalent plastic strain for bracing C1, C2, C3, O1, O2, O3 at full depth fracture ... 82 
Figure 54 Equivalent plastic strain for bracing B1, B2, B3, B4 at full depth fracture .................... 83 

9  



INTRODUCTION 
 
 
 
1.1 Motivation 

 
 

In the first half of the 20th century several bridge failures caused a nationwide concern over 

vulnerability of steel bridges. One famous example is the collapse of the Point Pleasant Bridge 

over the Ohio River in 1967. The collapse was one of the deadliest accidents in the history of 

bridge failures with the death of 46 persons. Examinations of the failure have shown that the brittle 

fracture of a single eyebar, which was part of the supporting system of the main span, caused the 

whole structure to collapse (NTSB, 1967). The reason for the complete failure was attributed to 

the lack of redundancy in the bridge. As a consequence of the Point Pleasant Bridge collapse and 

other bridge failures, the American Association of State Highway and Transportation Officials, 

AASHTO, started to classify bridges more strictly so that bridges vulnerable to complete collapse 

can be identified. A new category for fracture critical bridges (FCB) was introduced. A FCB is 

defined as a bridge with at least one fracture critical member (FCM). Whereas a FCM is defined 

as a “component in tension whose failure is expected to result in the collapse of the bridge or the 

inability of the bridge to perform its function” (AASHTO, 2012). This implicated that from this 

point on, two-girder steel bridges were classified as nonredundant and fracture critical (FC). 

In reference to the National Cooperative Highway Research Program (NCHRP) Synthesis 

354, about 11% of all steel bridges in the United States are classified as FC and 83% of those 

bridges are two girder bridges (Connor, Dexter, & Mahmoud, 2005). Following the National 

Bridge Inspection Standards (NBIS) 2012, FCBs require biannual hands on field inspections. The 

term hands on implies the inspection with the human eye, where the distance between the inspected 

object and the human eye is not larger than one human arm length. Since the inspection has to be 
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conducted by highly qualified professionals, the inspections are highly cost intensive and is usually 

two to five times higher for bridges with FCMs than for bridges without FCMs (Connor et al., 

2005). 

Even though AASHTO considers FCBs as nonredundant, there are several examples, which 

have shown that the fracture of one member does not always cause the whole structure to fail. 

Other structural components such as the deck, floor beams and stringers are often able to carry the 

sudden additional load (Connor, 2005). 

It is obvious that the classification of bridges with respect to their redundancy is not simple. 

The justification for FCB is qualitative rather than based on a coherent quantitative strategy. The 

conservative approach in the past considered load path redundancy as the only form of redundancy 

when classifying bridges as fracture critical. However, research has shown that these bridges can 

still provide structural redundancy that can prevent collapse in the case that one of the main 

supporting members fails (Lwin, 2012). As a consequence of this, FCB are generally defined as 

nonredundant, although the inherent structural redundancy in them can be at an acceptable level. 

While classifying a bridge as fracture critical does lower the probability of complete collapse, this 

classification can lead to shorter bridge inspection intervals than actually necessary. A closer 

investigation resulting in a better understanding of the post-fracture redundancy of two-girder steel 

bridges could therefore save bridge owners and tax payers significant amount of money. 

 
1.2 Objectives and Scope of Thesis 

 
 

The overall objective of this study is to propose a methodology for determining inspection 

intervals for fracture critical bridges that is based on probabilistic fracture mechanics. This would 

allow departments of transportations and bridge owners to devise risk-informed inspection plans 
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to ultimately save substantial amount of funds and resources. The thesis can be subdivided into 

following scopes: 

□ Create a 3D numerical finite element model of a two-girder steel bridge. 
 

□ Implementing fatigue loading in the model in accordance with the design requirements 

specified in AASHTO. 

□ Conduct Monte Carlo simulations using Latin Hypercube Sampling in which the Young’s 

modulus and the dynamic amplification factor are treated as random variables in the finite 

element model. 

□ Introduce a crack in the model, representing fatigue cracking, to compute the stress intensity 

factor at the crack tip for incremental crack growth. 

□ Utilize the Paris Law to determine the number of cycles versus crack length while treating the 

Paris law constants, C and m, as random variables. 

□ Estimate the critical crack length and the number of cycles to failure for various material 

toughness values. 

□ Compute the probability of failure and the corresponding reliability index for different 

inspection intervals. 

□ Evaluate the reserve capacity of the bridge as function crack length by comparing the 

equivalent plastic strain to the failure strain of the steel. 

 
1.3 Organization of Thesis 

 
 

The thesis is structured in 5 chapters. The first chapter presents the motivation for this work, 

defines the individual objectives and outlines the organization of the work. Chapter 2 consists of 

a literature review to provide a better understanding on the topics of fatigue and fracture and 
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reliability analysis. The chapter introduces the topic, a historical background, as well as an 

overview of previous studies. It also covers the fatigue requirements in the AASHTO LRFD 

Bridge Design Specification (AASHTO, 2012) and the theory of Linear Elastic Fracture 

Mechanics (LEFM) including the energy release rate and the stress intensity factor. The Paris’ 

Law is explained to make a connection between the applied load and the remaining fatigue life. In 

addition, Chapter 2 provides an introduction to reliability analysis including the definition of 

failure, Monte Carlo simulation and Latin Hypercube Sampling. Chapter 3 describes the numerical 

3D finite element model of the bridge. The section contains details about bridge geometry, loading, 

and assumptions and simplifications made realize the study. The model is outlined with the focus 

placed on the implementation of the crack and crack propagation in the model. Chapter 4 

summarizes the probabilistic simulation methodology. It provides the individual steps necessary 

to proceed from the results of the Finite Element Analysis (FEA) to the probability of failure, the 

reliability index, and the redundancy assessment. The results of this thesis are presented in Chapter 

5. Explanations and discussions of the findings are provided and supported by figures and tables 

for visualization purposes. Chapter 6 summarizes the main findings of this study and an overall 

conclusion is drawn. 

4  



BACKGROUND AND LITERATURE REVIEW 
 
 
 
2.1 Introduction and historical background 

 
 

Fatigue is the process of crack formation and crack propagation in materials subjected to 

cyclic loading. One of the most common structures in civil engineering exposed to repetitive 

loading are bridges (Fisher, Kulak, & Smith, 1998). Due to the immense traffic volume, bridges 

experience high numbers of repetitive loads. These high numbers of cycles can cause existing weld 

flaws to become through-thickness cracks and further propagate, leading to reduction of the 

uncracked cross-section of the member. Failure occurs when the reduced cross-section is no longer 

able to carry the internal forces and the crack propagates in an unstable manner (Fisher, 1998). 

Fatigue cracking can occur at stress ranges that are way below stresses related to failure under 

static loading conditions. The fatigue performance of steel structure is highly dependent on the 

presence of pre-existing cracks or crack-like discontinuities. A consequence of this is that only a 

small part of the total fatigue life is spent on crack initiation (Fisher et al., 1998). 

The phenomenon of fatigue crack growth has already been observed more than 100 years 

ago. Wöhler (1870) conducted one of the first studies on the topic of fatigue in the late 19th century. 

In his study on a railway rolling stock, Wöhler found that high stress concentrations caused failure 

although the measured stresses were far below the yield strength of the material (Wöhler, 1870). 

Before the 1950’s, when welding was not yet a popular fabrication method, most steel 

bridges were designed using mechanical fasteners (FHWA, 2015). The change from mechanical 

fasteners to welding confronted engineers with new challenges since the welding process induces 

residual stresses and flaws into the steel and the structure’s susceptibility to fatigue cracking 

increases. Thus, fatigue design specifications were developed to provide engineers with design 

5  



guidelines to avoid fatigue failure. The first fatigue design specifications in North America were 

based on examinations of welded steel details conducted in the 1930’s and after World War II 

(Fisher et al., 1998). However, the specifications were based on a limited amount of test data and 

small specimens. In 1968 the fatigue test program sponsored by the National Cooperative Highway 

Research Program was established at Lehigh University (Fisher et al., 1998). This program 

allowed the examination of fatigue cracks and their behavior on a larger scale. The results showed 

that the design rules used until that point were incorrect for numerous bridge details and also gives 

an explanation as to why many bridges designed before 1975 failed in fatigue (Fisher et al., 1998). 

One example of a brittle bridge collapse is the Mianus River Bridge on I-95 in Connecticut 

in 1983. Poor maintenance was responsible for a clogged drain, which resulted in packout 

corrosion in a pin and hanger assembly, which caused one of the plates to slip off the pin leading 

to the collapse. It is obvious that the pin and hanger assembly was a FCM since its failure caused 

a complete system collapse (Failla, 1985). 

Another example is the collapse of the Point Pleasant Bridge over the Ohio River in 1967. 

The failure investigation has shown that the brittle fracture of a single eyebar, which was part of 

the supporting system of the main span, caused the whole structure to collapse (NTSB, 1967). 

Both catastrophes occurred because the bridges did not provide sufficient redundancy to 

redistribute the load after failure. 

Despite the noted complete bridge collapse cases, there are several events where brittle 

fracture occurred but luckily did not result in a collapse of the whole structure. The US-52 bridge 

in St. Paul, Minnesota survived a full depth fracture without collapse (Connor et al., 2005). The 

bridge dropped 6.5 in but remained stable. Another example of a bridge failure that did not end in 

a collapse is the I-79 bridge in Pittsburg, Pennsylvania (Connor et al., 2005). The bridge also 
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experienced a full-depth fracture, yet there was no noticeable deformation. In those two cases, 

other structural components were able to support the additional load after the development of a 

full depth crack. Both bridges were two-girder steel bridges and classified as FCB. These examples 

show that the classification of bridges by only considering load path redundancy is not sufficient. 

Following the Point Pleasant Bridge failure in 1967, much research was conducted regarding 

post-fracture redundancy, fracture toughness of steel, bridge inspection and maintenance. It was 

well known that material properties are an important aspect in brittle fracture and therefore there 

was great interest in increasing the understanding of fracture toughness of steel. The U.S. 

Department of Transportation FHWA sponsored a study at Lehigh University with the goal to 

establish a common measurement for the fracture toughness along with a measuring method and 

to assess the fracture toughness of commonly used bridge steel (Robert, Irwin, Krishna, & Yen, 

1974). One of the results of this research was a database with fracture toughness values for several 

steel types. 

Another research on fracture toughness of steel was conducted by Barsom (1975). The study 

showed that fracture toughness of bridge steel is affected by temperature and strain range. The 

results were used to propose an equation to compute the critical fracture toughness of bridge steel 

using measured Charpy V-notch values. A reasonable minimum fracture toughness requirements 

were suggested, which were adopted by FHWA and AASHTO. The introduction of minimum 

Charpy V-notch (CVN) toughness requirements for welds and base metals was supposed to ensure 

sufficient resistance to fracture since materials with higher fracture toughness can tolerate longer 

cracks without failing. The CVN requirements in today’s specifications for non FCM are basically 

the same as the original ones form 1974 (Connor et al., 2005). 
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A further result of the Point Pleasant Bridge failure was the establishment of the National 

Bridge Inspection Standards (NBIS) through the FHWA, which came into effect in 1971. The 

NBIS document specifies the procedures and the frequency for inspections, minimum 

qualifications for the bridge inspectors and new reporting and documentation requirements. 

Another regulation to increase safety that was developed as a consequence of severe bridge 

failures, is the fracture control plan (FCP). Research has shown that fracture toughness is only one 

component out of many that may cause brittle fracture. The need for a specification that covers all 

aspects of brittle fracture was recognized and the FCP was introduced in the 1970’s. The document 

regulates design, fabrication, materials, inspection, and service conditions. Case studies showed 

that if this FCP would have been in operation earlier several bridge failures would not have 

occurred (Rolfe & Barsom, 1999). 

All the above listed requirements are necessary to ensure safety in the design and 

maintenance of FCBs. However, those regulations led to a significant cost increase for bridge 

owners. Therefore, it is essential that those regulations are only applied if necessary. Currently, 

the AASHTO bridge design specification determines which of the above regulations have to be 

met, depending on the redundancy of the bridge. Because of this, much research has been published 

with the focus on post-fracture redundancy of FCBs. A detailed annotated literature review is 

provided by Connor et al. (2005). The researchers were interested in the load redistribution and 

the potential for collapse. Hartley and Ressler (1989) reviewed numerous articles with this topic 

and concluded that no coinciding definition of redundancy existed because redundancy is a 

measurement that is not easy to quantify. 

Cha et al. (2014) published a paper discussing the postfracture redundancy of a simple span 

truss bridge. This study assessed the redundancy of a full-scale bridge by conducting controlled 
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fracture tests. Furthermore, a numerical model of the bridge was used to determine the postfracture 

behavior. The results showed that the structure had significant internal and load path redundancy 

although it was categorized as a fracture critical bridge (FCB). It was suggested to reconsider the 

categorization of FCB or at least the required inspection interval. 

Daniels et al. (1989) proposed design instructions and suggested rating criteria for redundant 

bracing systems for two-girder steel bridges. They conducted research on the post-fracture 

redundancy of single span steel two-girder highway bridges. An analytical model with a close to 

full-depth fracture on one of the girders was used to conduct the study. The results proved that 

bracing can provide sufficient redundancy if designed accurately. It was concluded that a new 

rating system for redundancy is needed. 

Besterfield et al. (1991) applied probabilistic finite element method to examine the fatigue 

crack growth reliability of an unstiffened plate with a through thickness single edge crack. In their 

study the initial and final crack lengths, initial crack angle and position, material properties, crack 

growth law, crack direction law and loading are treated as random variables. The output of this 

study was the probability of fatigue failure of the plate. 

More research on fatigue reliability was conducted by Feng, Garbatov, & Guedes Soares 

(2012). In their study the finite element method is used to define the correlation between multiple 

cracks by calculating the stress intensity factors. The statistical evaluation of the crack propagation 

rate was done by Monte Carlo simulation. Subsequently, First Order Reliability Method (FORM) 

was utilized to compute the probability of failure. The analysis also accounted for residual stresses. 

The study examines parameters related to manufacturing, inspections, inspection interval, load 

level and target reliability acceptance. 
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Another study conducted by Mahmoud and Riveros (2014) examines the fatigue reliability 

of a single stiffened ship hull panel. The study focuses on investigating the crack propagation rate 

while accounting for the large scatter in loading, residual stresses, and material resistance. Finite 

element Monte Carlo simulation was used to conduct probability analysis in which the load and 

material properties are treated as random variables. Finally, Mahmoud and Riveros (2014) 

computed the probability of failure for a specific inspection interval. The result can be used to 

choose an inspection interval for a desired reliability index. The presented analysis framework in 

this thesis draws from the work conducted by Mahmoud and Riveros but for complete 3D two- 

girder steel bridges. 

The literature review has shown that much research has been conducted on the post-fracture 

behavior of FCBs. The structural reliability was determined using experimental, numerical and 

analytical tools or combinations of such. The research conducted on bridges agrees on the fact that 

bridges, which are originally classified as non-redundant fracture critical, may still have sufficient 

level of redundancy to prevent complete system collapse when one girder is fully fractured. None 

of the researchers was able to propose a quantifying measurement of redundancy that became 

widely accepted but instead agreed that new, common definition of redundancy is needed. 

Research has also been conducted on crack propagation rate of stiffened and unstiffened panels. 

Probabilistic analysis was used to determine the fatigue reliability of the studied steel panels. The 

study by Mahmoud and Riveros (2014) provided precise tool to make decisions about increasing 

the inspection interval for structures susceptible to fatigue, whereby the maintenance costs can be 

decreased. 

The research presented in this work not only provides new insight on post-fracture behavior 

of two-girder steel bridges but also provides results that can be used to develop a new bridge 
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inspection plan. In this study, numerical simulation and probabilistic analysis are used together. 

This enables to investigate the crack propagation while considering variation in the material 

properties and the load. The probability analysis is conducted using Monte Carlo simulation in 

which the load and the material properties are described by statistical distributions. Various results 

will be presented including contours of global deformations and stress concentrations, values of 

stress intensity factors as function of crack length, and plots of the probability of failure with 

respect to the inspection interval. The following sections provide the theoretical background 

needed to accomplish the study. 

 
2.2 S-N Curves and Fatigue Categories 

 
 

Early fatigue tests were conducted in the 19th century by Wöhler (1870) and as a result S-N 

curves were traditionally referred to as Wöhler curves. S-N curves are straight-line plots of stress 

range versus number of cycles to failure, represented on a log-log scale, for various bridge details. 

Failure as it pertains to S-N curves is defined by the development of a through-thickness crack. A 

typical S-N curve is plotted using data collected through applying cyclic loading in the laboratory 

to the detail in question. The test is repeated for a large number of stress ranges so that the all the 

failure points display as a line on the log-log scale. Typically, the first specimen is tested at a very 

high stress for which failure occurs at a low number of cycles. The stress range is then slowly 

decreased for every further specimen until one or two the specimens do not fail. The stress at which 

the specimen does not fail is called the fatigue threshold. 

The relationship between the number of cycles and the stress range used in the AASHTO 

LRFD design specification for load induced fatigue is described by 

N= n
 

II 

 
(2.1) 
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Where N is the number of cycles, A is the detail category constant and S is the difference between 

the maximum and the minimum applied stress. The values for the detail category constant are 

shown in Table 1 for units in MPa. 

Researchers have studied the fatigue behavior of common bolted and welded connections 

typically used in bridges. In a bolted connection, the presence of a hole can be viewed as an initial 

flaw, from which crack initiation in the base metal could start. In welded connections, 

discontinuities resulting from the welding process can be the source of crack initiation. The 

AASHTO design specification classifies the details in eight fatigue categories: A, B, B’, C, C’, D, 

E and E’, of which category A is the least susceptible to fatigue and category E’ the most. The 

fatigue life curves for each detail category are shown in Figure 1. The horizontal lines in the plot 

mark the constant amplitude fatigue limit (CAFL), which is a threshold value below which fatigue 

damage would not be expected (i.e. infinite fatigue life). 

It is important to mention that when one uses the S-N curves to determine the fatigue life 

the stress range that needs to be used results from the applied loads only since the stress 

concentration for the detail are already considered in the category. 

12  



Table 1 Detail category constants after (AASHTO, 2012) 
Detail Category Constant, A 

(MPa)3 

Threshold Stress 
(MPa) 

A 82.0x1011 165 

B 39.3x1011 110 

B’ 20.0x1011 82.7 

C 14.4x1011 69.0 

C’ 14.4x1011 82.7 

D 7.21x1011 48.3 

E 3.61x1011 31.0 

E’ 1.28x1011 17.9 
 
 
 

 
 

Figure 1 Fatigue life for the eight detail categories defined in AASHTO (Fisher et al., 1998) 
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Much research has been done on the fatigue life of different details and it is well agreed upon that 

the live load stress range is the controlling stress parameter when determining the fatigue life rather 

than the maximum absolute applied stress. Furthermore, the grade of steel does not have a 

significant influence on fatigue life. 

 
2.3 Linear Elastic Fracture Mechanics 

 
 

The theory of linear elastic fracture mechanics (LEFM) is a fracture analysis method 

applicable to materials following the Hooke’s law, which means the overall structural behavior is 

linear elastic. LEFM is used to examine the behavior of the crack tip. The two most common 

approaches used to describe fracture in a linear elastic material are the energy approach developed 

by Griffith (1920) and the stress intensity approach proposed by Irwin (1956) (Anderson, 2005). 

The theory of LEFM studies the displacement, stress and strain at the tip of a crack in a linear 

elastic body as well as the rate of change in potential energy with the crack area. LEFM is applied 

where there is only minimal plastic deformation in the area around the crack tip. The theory of 

LEFM is always an approximation since even the most brittle materials experience some plastic 

deformation at the crack tip. However, the method is often used for nonlinear materials for which 

the plastic zone is considered negligible. 

On an atomic level, fracture occurs when the applied stresses are sufficient enough to break 

the atomic bond. The cohesive strength σc of a material can be defined as (Anderson, 2005): 

    = II 

    

 
(2.2) 

 

 
 

Where E is the Young’s modulus, λ is the distance between two atoms and xo is the atom spacing 

at equilibrium. If λ is assumed to be approximately equal to xo equation (2.2) can be simplified to 
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    ≈ I (2.3) 
  

 
 
Equation (2.3) defines the cohesive strength for perfect materials without flaws. However, perfect 

materials do not exist and the actual fracture strength for brittle material is typically three to four 

times below the value resulting from equation (2.3) (Anderson, 2005). Flaws in the material cause 

stress concentrations, which amplify the stress locally and thereby decrease the material strength. 

The cohesive strength that needs to be overcome for fracture can be estimated as follows 

 

    =  I  
 

   

(2.4) 

 
 
 

Where ϒs is the surface energy per unit area 
 
 

I I 

In = I I1     sin I I 1     = 
(2.5) 

 
 
The energy at which the material fractures is twice the surface energy since during fracture two 

surfaces are created. 
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n   

2.4 Stress Concentration at the Crack Tip 
 
 

Inglis (1913) was the first who conducted research on the effect of local stress concentration. 

For that purpose, he studied the stress field at the crack tip of an elliptical flaw in a flat plate. The 

geometry is shown in Figure 2. 

 
 

Figure 2 Flat plate with elliptical flaw (Anderson, 2005) 
 
 
 
The radius ρ It the crack tip A is given as follows 

 
 

i = I (2.6) 
 
 
 

Inglis suggested the stress at A to be 
 
 

 n =   I1 + 
I 1 (2.7) 
I 

Using the definition of the crack tip radius equation (2.7) changes to 
 
 

    =     1 + 2 (2.8) 
 
 
For a sharp crack tip a >> b and the crack tip radius ρ approaches zero. 

 
 

  
 n = 2 (2.9) 
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Inglis (1913) was able to prove that equation (2.9) provides adequate description of the stress 

concentration caused by a crack that is not elliptical when excluding the crack tip. Equation (2.9) 

results in an infinite stress at the crack tip, where ρ equals zero. However, since the minimum crack 

tip radius cannot fall below the radius of an atom, ρ can be replaced by xo. If one sets equation 

(2.9) equal to equation (2.4) the nominal stress at failure can be described by 

 
    =  I (2.10) 

   
 
 
 

For any radius 
 
 

    =  
I   

 

     

(2.11) 

 
 
 
2.5 Energy Balance and Energy Release Rate 

 
 

An energy approach as a criterion for crack propagation was first developed by Griffith 

(1920). According to Griffith, a crack propagates when the external energy, resulting from applied 

loads, exceeds the internal energy, which is equivalent to the material resistance. The general idea 

behind Griffith’s energy approach is that if a crack grows the contiguous material of the free 

surface is unloaded and thus its strain energy released. Based on this idea Griffith was able to 

formulate an equation for a plate with plane stress condition and a width >> the crack length 

(Figure 3). He expressed the total internal energy U of a cracked plate as 

  =     −     + (2.12) 
Where Uo is the elastic energy of the uncracked plate, Ua is the decrease in elastic energy due to 

the crack and Uϒ is the increase in elastic surface energy due to the formation of the crack surface. 

Griffith applied the first law of thermodynamics and found that at instability, when the crack starts 
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to propagate and the crack surface area increases about dA, the variation in internal energy has to 

be zero. 

     = 0 (2.13) 
 n 

 
 
The elastic energy of the uncracked plate is a constant value and is therefore negligible in the 

derivation. The elastic energy due to the crack, Ua, and the surface energy, Uϒ, can be expressed 

as 

 
    = 

 
 

     
      (2I  ) (2.14) 
I 

 
 
 

    = 2(2I  In) (2.15) 
 
 
After deriving equation (2.13) and solving for the stress at fracture the stress at failure can be 

obtained as 

 
    =  II (2.16) 

   
 
 
 

In 1957, Irwin (Irwin, 1957) proposed a modified version of Giffith’s energy approach for fracture 

that is more applicable to engineering problems. Irwin defined an equation for the rate of change 

in potential energy with the crack area. The so called energy release rate is defined as (Anderson, 

2005) 

  =       
I 

 
(2.17) 

18  



     1 

Where σ is the applied stress, a is half of the crack length and E is the Young’s modulus. (Anderson, 

2005). At fracture, the energy release rate is equal to the critical energy release rate Gc, which is a 

measurement for the fracture toughness of the material. 

 
    = 

 
  
  (2.18) 
I 

 
 
Equation (2.18) describes the important relationship between the material (Gc), the applied stress 

σf, and the critical crack length ac at failure. Equation (2.18 can be written in a more convenient 

form 

      =       I (2.19) 
 
 
It is important to notice that equation(2.19) can also be obtained by expressing the surface energy 

2ϒs at fracture with the fracture toughness Gc in equation (2.16).This shows that Griffith’s and 

Irwin’s approaches lead to the same result. 

Another important aspect is that the energy release rate is the force causing fracture, while Gc is 

the material’s ability to resist fracture (Anderson, 2005). A fundamental assumption made in 

fracture mechanics is that the fracture toughness, here Gc, is a size independent material constant. 

This assumption holds true as long as the material behaves mainly linear elastic (Anderson, 2005). 
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Figure 3 Through thickness crack in an infinite plate subjected to tensile stress (Anderson, 2005) 
 
 
 
 
2.6 Stress Intensity Factor 

 
 

Irwin’s crack intensity approach is an equivalent method to the energy approach developed 

by Griffith. Irwin managed to characterize the stress field at the tip of a crack with a single 

parameter, the stress intensity factor. The stress intensity factor is a constant and its subscript 

identifies the loading modes it is associated with, KI, KII, and KIII. A crack tip can be loaded with 

either of the three loading modes shown in Figure 4 or a combination of them. Mode 1 is a tensile 

mode that results in an opening of the crack. Mode 2 and Mode 3 are in-plane and out-of-plane 

shearing modes, which cause sliding of the crack surfaces relative to each other. 

 
 

Figure 4 The three modes of loading (Anderson, 2005) 
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Equations (2.20) through (2.25) describe the stress field for a linear elastic cracked body subjected 

to mode 1 loading. The equations consist of a leading term and higher order terms. As it can be 

seen from the equations below if the radius, r, approaches zero the stresses approach infinity, 

therefore the equations describe a stress singularity. In this region the higher order terms (H.O.T.) 

become negligible when compared with the leading term. 

  = 
In cos  

 
 

√2 2 

  
  11 − sin   

2 
3  

□ sin   
2 

 
 n + I    + I. I. I. (2.20) 

  =  In   cos I  
√I I 

1 11 + sin I  
I 

1 sin II 
 

I 
1l+H.O.T. (2.21) 

In 3  
     =  cos   

√2 2 
□ sin   

2 
□ cos     + I. I. I. (2.22) 

2 
     =        +      (plane strain) (2.23) 

     = 0 (plane stress approximation) (2.24) 
 
 

Where 
 
r and θ are defined in Figure 5 

 
σij = stress tensor 

 
KI = Stress intensity factor in mode 1 

 
Toxx = T-stress, a constant value that can vary with loading and geometry 

 
H.O.T. = Higher order terms 

 
Figure 5 shows the polar coordinate system with its origin at the crack tip that was used for 

equation (2.20)through (2.25) 
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Figure 5 Stresses near the crack tip in an elastic material (Anderson, 2005) 
 
 
 
On the crack tip plane where θ = 0 and the shear stresses are zero equation (2.20) and (2.21) 

become 

  = =  In  
 

√I   

 
(2.25) 

 
 
Equation (2.25) is only applicable to the area close to the crack tip, where the leading term 

dominates. Closed-form solutions for some simple solutions have been derived, however for 

complex problems needs to be solved either numerically or experimentally. 

One example for a closed form solution is the through thickness crack in an infinite plate under 

loading mode I. K is given by 

In =  √  I (2.26) 
 
 
It is important to notice the similarities between equation (2.26) and equation (2.19). Comparing 

these two equation gives the relationship between the energy release rate and the stress intensity 

factor. 

In = √ (2.27) 
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This relationship suggests that K can also be used to define fracture and fracture occurs when K = 

KIC, the fracture toughness of a material. 

 
2.7 Fatigue Crack Growth 

 
 

As mentioned previously, fatigue is the process of crack formation and crack propagation in 

materials subjected to cyclic loading. Crack initiation takes up only a fraction of the total fatigue 

life; therefore, it is important to incorporate the crack propagation phase when calculating the total 

fatigue life. Crack propagation is a mechanical process that occurs in a stable manner under service 

load. The final stage of crack propagation, when the crack is very long, is however unstable. The 

two most common mechanisms that cause crack growth are fatigue due to cyclic loading and stress 

corrosion due to sustained loading (Broek, 1989). Following the mechanical process due to fatigue 

is explained, since this is the one relevant for this thesis. 

In fatigue the component is subjected to cyclic loading caused by the subsequent loading 

and unloading of a structure. During the loading phase the crack is subjected to tension and opens. 

The opening occurs due to local plastic deformation at the crack tip. The loading is followed by 

unloading or compression and the crack tip becomes sharp again. In other words, crack growth is 

a process of repetitive blunting and sharpening of the crack tip. During each loading zone the crack 

extends about Δa. The crack increment about which the crack opens during each cycle is only in 

the order of 25 nanometers to 2.5 micrometers (Broek, 1989). However, for structures that are 

subjected to several millions of load cycles during their life time, such as bridges, Δa easily reaches 

values that can cause severe damage. 
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2.8 Paris’ Law 
 
 

In 1963 Paris and Erdogan (Paris & Erdogan, 1963)proposed a model to predict fatigue crack 

growth. They anticipated that the fatigue crack growth is dictated by the stress intensity range ΔK. 

The model has the form of a power law, which relates the crack growth rate da/dN to the stress 

intensity range ΔK. The model is also called the Paris Law and is as follow 

     =   (∆I) (2.28) 
 I 

 
 
Where a is half the crack length., N is the number of cycles, C is an experimentally determined 

coefficient, ΔK is the stress intensity range and m is a material constant. When plotting the Paris 

Law on a log-log scale it represents a straight line. However, experimental results of da/dN verses 

ΔK usually do not display in a straight line but have a sigmoid shape on a log-log scale. This is 

due to the fact that cracks do not propagate for values below ΔK threshold. Therefore, the Paris 

Law is only applicable to the linear part of the curve. 

The accurate prediction of fatigue crack growth using fracture mechanics is a complex task 

due to a scatter up to a factor of 20 in experimental data for da/dN (H. N. Mahmoud & Dexter, 

2005). A lot of the scatter is caused by errors in the experiment but also irregularities in the crack 

growth rate, especially in the region near ΔK threshold. 

It has been shown that the crack growth rate depends on the load ratio, R. 
 

 

R= 111 
 1   

(2.29) 
 
 
However, the Paris Law does not account for this dependence. Several equations exist taking the 

effect of the load ratio into account. In this study the load effect is accounted for by replacing ΔK 

by an effective ΔKeff in equation (2.28). Thereby, only the part of ΔK that contributes to the crack 
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propagation is considered. The basic idea behind this method is that the crack growth model is 

defined for load ratios greater than 0.7 for which the crack closure can be neglected. If the load 

ratio is lower than 0.5 or negative, only the part of the load cycle during which the crack is open 

is accounted for (Mahmoud & Dexter, 2005). The effective stress intensity range is computed by 

superposition of Kmax, Kmin and Kres. Where Kmax is the amplitude of the stress intensity factor 

associated with the maximum applied load for a certain crack length, Kmin is the amplitude of the 

stress intensity factor associated with the minimum applied load for a certain crack length and Kres 

is the amplitude of the stress intensity factor associated with the effect residual stresses for a certain 

crack length. To apply this method to this study it is assumed that the Paris Law is defined for a 

load ratio greater than 0.8. 

 
2.9 Probabilistic Analysis 

 
 

In this study, numerical finite element simulations and probabilistic analysis are combined 

to account for uncertainties influencing fatigue life. When dealing with engineering problems the 

engineer is always confronted with numerous unknowns as for example variation in the 

manufacturing process of the materials, differences in the workmanship, uncertainties in the 

loading or a combination of all of these. All these uncertainties make it very difficult to accurately 

predict the behavior of a structure or a structural component in a specific event. Therefore, 

probabilistic analysis is commonly used to all eventualities in engineering in support of risk- 

informed decisions. 

 
2.9.1 Monte Carlo Simulation 

 
 

When predicting the behavior of a structural component or a structure under certain 

conditions, assumptions are typically made on loading or material properties and are then used in 
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a deterministic analysis. Those values are usually based on experimental data, experiences or 

expert knowledge. When conducting probabilistic analysis, uncertainties are accounted for in the 

simulations so that probabilities of failures can be calculated and decisions are devised based on 

probabilistic analysis. 

Monte Carlo simulation is a computerized mathematical technique that is used in a variety 

of disciplines such as financing, project management, engineering and research. The method is a 

popular tool for decision making since it allows the user to determine the probability of failure. A 

Monte Carlo simulation provides not only a variety of possible outcomes but also the probabilities 

they will occur. 

In a Monte Carlo simulation, each random variable is represented by a probability 

distribution. In each iteration of the simulation the variable is replaced by a value that is sampled 

at random from the specified distribution. Using this random value the result is computed and 

recorded. If this process is repeated a large number (e.g. 1000) of times the output is also a large 

number of separate and independent results, of which each represents a possible future event. The 

assembly of all these individual future events represents a probability distribution of possible 

outcome. The sampling method in a Monte Carlo simulation is entirely random. that means if the 

input distribution shall be represented accurately a high number of iterations is required since the 

sampled value can be anywhere within the boundaries of the input distribution. 

 
2.9.2 Latin Hypercube Sampling 

 
 

Latin Hypercube sampling is a modified sampling method that allows the user to decrease 

the sampling size compared to that required in a typical Monte Carlo method. Instead of using 

entirely random samples as in  Monte Carlo  simulation,  the Latin  Hypercube method  uses 

controlled sampling. The basic idea is to have the sample point distribution to approach the input 
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probability distribution as close as possible with the least amount of samples. This is realized by 

evenly partitioning the sample space into N regions and picking one sample from each region. The 

sample in each region is random. If N is the number of realization and K is the number of random 

variables the sample space is K-dimensional and results in a N x K matrix. For a two-dimensional 

sampling space with five realizations this would result in the sample space shown in Figure 6. The 

sample space is created by generating a one-dimensional Latin Hypercube samples for the 

variables X1 and X2. Afterwards, the samples are randomly combined to two-dimensional pairs. It 

is important to notice here that the random variables X1 and X2 must be independent. 

 
 

Figure 6 Latin Hypercube sampling for two independent random (X1, X2) variable with 5 realizations 
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2.9.3 Definition of Failure 
 
 

Structural reliability deals with the ability of structures to withstand loading. There is no 

uniformly defined quantity that can be used as a measurement of structural reliability, since it 

depends on the requirements that must be satisfied. There are a lot of different kinds of required 

performance objectives, depending on the structure type and loading conditions. Those 

requirements are called limit sates and may be safety against collapse, limitations on damage, or 

deflections and other criteria (Melchers, 1999). Failure is defined by limit state function, which 

may be collapse. In Monte Carlo simulation each random variable Xi is sampled at random to give 

a sample value x̂ i. A limit state function G(x̂ ) 

    =  (   ≤  ) =   (   −   ≤ 0) (2.30) 
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BRIDGE MODEL 
 
 
 
3.1 Bridge Description 

 
 

The original Betzwood bridge in Montgomery County, Pennsylvania was built in 1964. The 

Betzwood Bridge is an eight span continuous two-girder steel bridge carrying two lanes of traffic. 

All spans have an approximate length of 27m and the roadway width is approximately 10m. The 

superstructure was built with A36 steel and the traffic is carried by a 0.2m reinforced concrete 

deck. An overall plan and elevation of the Betzwood Bridge is shown in Figure 7 (Daniels et al. 

1987). 

 
 

Figure 7 Overall Plan and Elevation of the Betzwood Bridge (Daniels et al., 1987) 
 
 
 

For this thesis, span 8 of the original Betzwood Bridge is used to create a numerical simply 

supported single span two-girder steel bridge model. The span length of the bridge is 27.18m. The 
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bridge deck is supported by two transversely and longitudinally stiffened girders that are placed 

with a distance of 5.64m from each other. A detailed view of the girder is shown in Figure 8. The 

girder is a built up member and its web has a depth of 2.34m with a thickness from 0.01m. The 

flanges are 0.43m wide and their thickness varies along the girder from 0.05m to 0.04m. The 

transverse stiffeners have a thickness of 0.01m and are equally spaced at 1.36m (Daniels et al., 

1987). 

A view of the superstructure below the deck is shown in Figure 9. The deck overhang is 

supported by the outriggers which are connected to the stringer and the girder. The stringers are 

wide flange W18x45 sections and are spaced at 1.87m. The floor beams are wide flange W24x84 

section. The floor beams, the outriggers and the cross bracing are uniformly spaced at a distance 

of 5.43m. The bottom laterals are C7x14.75 channels, and the cross bracing are 6x3 1/2x3/8 angles 

(Daniels et al., 1987). 

 
 

Figure 8 Elevation of girder (after Daniels et al., 1987) 
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Figure 9 Plan view of superstructure below deck (after Daniels et al., 1987) 
 
 
 

The bridge deck has a thickness of 0.2m and is designed of concrete with an ultimate strength 

of f’c = 24.13MPa. The flexural strength of the deck is provided by #5 reinforcing bars in the 

transverse direction. The longitudinal reinforcement is of #4 and #5 bars. 

 
 
 

 
 

Figure 10 Bridge structure (after Daniels et al., 1987) 
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3.2 Crack location 
 
 

As described in the background section in Chapter 2 the number one initiator for cracks are 

crack-like discontinuities such as bolted and welded connections. As every other bridge, the simple 

span bridge studied in this thesis has numerous of these crack initiators. The connections between 

the stringer and the outriggers, the stringers and the girders, the outrigger and the girders and the 

floor beams are all bolted connections. These mechanical connections are not very susceptible to 

fatigue. However, the girders are built up members and their flanges and the web are welded. 

Furthermore, the longitudinal and transverse stiffeners are welded to the girder web. These welded 

connections influence the fatigue behavior due to residual stresses and flaws. The connection of 

the bracing system-to-the girder is a combination of riveting and welding. The bottom laterals are 

riveted to a connection plate that is welded to the bottom flange of the girder. The connection plate 

detail of the bottom lateral is shown in Figure 11. 

The welding of the connection plate and flaws in the weld induce residual stresses and local 

stress concentrations. Tensile residual stresses are located near the weld and the magnitude usually 

approaches the yield stress of the material. Since the longitudinal weld is in the direction of the 

nominal tensile load due to traffic, this detail is very susceptible to fatigue. In the AASHTO manual 

(AASHTO, 2012) this connection type is defined as a category E’ detail and the fatigue threshold 

is 18MPa. Category E’ has the least resistance to fatigue loading and therefore the chance that a 

crack initiates at the toe of one of the longitudinal welds of the connection plates is very high. Due 

to that fact, the crack location for this study was chosen to be at cross bracing 3-4 shown in Figure 

10. 
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Figure 11 Connection of bottom lateral to grider flange (Daniels et al., 1987) 
 
 
 
 
3.3 Numerical Bridge Model 

 
 

In this study, a 3D numerical model of a single span two-girder steel bridge is created using 

the finite element analysis (FEA) software ABAQUS (Abaqus/CAE User’s Guide, 2014). 

ABAQUS is a multipurpose finite element software, which is used in a variety of engineering 

disciplines. In this study the FEA software is used to run static analyses of stress intensity factors 

to determine the crack propagation rate. Therefore, the K values are calculated for various crack 

lengths and compared to the critical value KIC and the crack arrest toughness KA. KIC is the critical 

value at which a crack starts propagating in an unstable manner but does not take into account the 

opportunity that the crack could get arrested due to changing conditions such as the transition into 

the compression zones. The crack arrest toughness KA, however, is a dynamic property taking into 

account the crack propagation velocity and the momentum. If the dynamic toughness is exceeded 

the crack will not be arrested but propagate all the way through the girder until fracture. 
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The numerical model is created based on the original Betzwood Bridge described in the 

previous sections. At first a model without a crack was created. This model was then used as the 

basis for all further models. In total 34 input decks were created, one without a crack and 33 models 

with an increasing crack lengths in increments of 0.08m until fracture. Those input decks are the 

basis for the following reliability analysis. In finite element analyses the computational time 

depends on the computer power as well as on the model size. Since for the reliability study a high 

number of analyses had to be run, the difficulty was to keep the model as simple as possible without 

losing too much accuracy. The overall model setup and the simplifications made for the numerical 

model are explained in the following paragraphs. 

 
3.3.1 Geometry 

 
 

The geometry and the dimensions are obtained from the descriptions and drawings provided 

in the work by Daniel et al. (1987). For organizational purposes each bridge element was first 

modeled as an individual part in ABAQUS, so that the designer can assign different section 

properties such as thickness and material to each part. Afterwards the individual parts, e.g. flange 

and web, were assembled to one component, e.g. the girder. Using this technique, the whole bridge 

model finally consisted only of seven assemblies (deck, girders, floor beams, stringers, outriggers, 

lateral bracing and cross bracing). A view of the bridge structure is shown in Figure 12. 

As described previously, the traffic is carried by a reinforced concrete deck. Modelling the 

concrete deck and the embedded reinforcing bars realistically would be very time consuming, since 

it is complicated to simulate the interaction between the individual components in contact. For this 

reason, the reinforced concrete deck is simplified as a simple two-dimensional plate with a certain 

thickness and the properties of the steel and the concrete are combined in the material definition. 
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Figure 12 Bridge structure 
 
 
 
 

3.3.2 Material 
 
 

ABAQUS provides an extensive material library that allows the user to model most 

engineering materials. In this study only two different materials need to be defined, steel and 

reinforced concrete. Since linear elastic fracture mechanics is conducted, only the linear elastic 

part of the material curve needs to be defined for the analyses. The material card for elastic 

materials available in ABAQUS requires entries for the Young’s modulus and the poisson’s ratio. 

The material parameters defined in the numerical model are listed in Table 2. As mentioned above 

the reinforced concrete deck is simplified and the steel reinforcement is not modeled. Hence for 

the material of the deck an effective Young’s modulus for the steel and concrete. The effective 

Young’s modulus for the reinforced concrete is calculated based on the work by (Norita, 1985) 
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  Table 2 Material Properties defined in the numerical model   
Material Young’s modulus Poisson’s ratio 

Steel 200MPa 0.3 

Reinforced concrete 25.6558MPa 0.3 
 

 
 
 

3.3.3 Model Mesh 
 
 

The three-dimensional model of the bridge consists of 2D shell elements and 1D beam 

elements. The main structural components (bridge deck, girders, floor beams, outriggers and 

stringers) are modeled using four and three nodes shell elements. The element types specified in 

ABAQUS are S4R and S3R, respectively. Where the S stand for shell, the number corresponds to 

the number of nodes and the R stands for reduced integration. The reduced integration element 

type was chosen to save computation time. In FEA numerical integration is used to compute the 

element stiffness and mass. ABAQUS uses the Gaussian integration method to calculate the 

element matrices. Using elements with a reduced integration method safes time because less 

integration points are used when computing the element matrices. 

The bottom laterals, the cross bracings, and the shear studs are model with 1D beam elements. 

The approximation of a 3D structure with a 1D element is possible because the cross-section is 

small compared to its longitudinal dimensions. In ABAQUS beams are modeled by line elements. 

The cross-section is then defined by a profile which is assigned to the part in the section module. 

A section of the meshed bridge model, the beam profiles and the bracing system is shown in Figure 

13. 
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Figure 13 Bridge structure with bracing system (left) and isolated bracing system and beam profiles (right) 
 
 
 
 

3.3.4 Boundary Conditions 
 
 

The original Betzwood Bridge is an eight span  continuous two-girder steel bridge. 

However, in this thesis only a single span of the structure is considered, which means that the 

boundary condition changes. The single span is simply supported by a pin on one end and a roller 

on the other end. These boundary conditions are implemented in the ABAQUS model by locking 

the desired degree of freedom (DOF). The orientation of the bridge model can be seen in Figure 

12. The roller is defined by locking all DOF except the translation along the x-axis and the rotation 

about the z-axis. The pin is defined by locking all DOF except the rotation about the z-axis. 

 
3.3.5 Connections 

 
 

The bridge has three different types of connections, bolted, riveted and welded. These 

connections are implemented in the numerical model by tie constraints. A tie constraint is defined 

by a master and a slave set that will be tied together during the simulation. The sets can either be 
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defined based on geometry such as surfaces and edges or based on the mesh. In this work the 

master surface was chosen to be the component with the coarser mesh and the slave surface was 

chosen to be the surface with the finer mesh. This is a typical method to avoid conflicts in the 

algorithm that searches for the slave nodes in a predefined distance to the master node and ties 

them together. 

Using a tie contact to model a bolted or riveted connection, instead of modeling the actual 

bolt or rivet, simplifies the interaction between the connected components drastically. However, 

this is acceptable since the focus in this study is on the fatigue behavior which is not directly 

influenced by this simplification. Nevertheless, the connections influence the load transfer and 

therefore the connected area was limited to the area representing the bolt. For this reason, circular 

sections with the diameter of the bolt hole were partitioned and only these areas were part of the 

contact definition. Figure 14 shows the bolted connection between the girder (black) and the floor 

beam (blue). 

 
 

Figure 14 Bolted connection connecting floor beam to girder 
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3.3.6 Residual stresses 
 
 

As mentioned in Section 3.2 the crack location for this study was chosen at a connection 

detail with fatigue category E’. One of the major reason, that this connection is a fatigue category 

E’ detail are the residual stresses due to welding. The influence of residual stress on the fatigue 

behavior is not negligible and therefore it has to be considered in the FEA. ABAQUS offers an 

option to define so called predefined stress fields. This option is used to implement residual stresses 

in the finite element model. 

The size of the tension area next to the toe of the weld is computed in accordance with the 

Faulkner model. Faulkner (1975) suggests a region for the tensile stresses of η*tplate. Where t is the 

thickness and η is a value between 3.5 and 6. Here a value of 4 was chosen for η. Figure 15 shows 

the separated area on the flange and the web, where the residual stresses were applied. The stresses 

are only in the region where they have an influence on the crack propagation. The stresses have a 

magnitude of 248MPa, which is equal to the yield stress of the material and are applied in the σ11 

direction. 

 
 

Figure 15 Residual stresses resulting from welding 
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3.3.7 Loading 
 
 

The loading for the fatigue limit state is defined in the AASHTO LRFD Bridge Design 

Specification (AASHTO, 2012). For fatigue a single design truck, equivalent to variable amplitude 

loading, with a fixed rear axle spacing of 9.144m (30ft) is placed along the bridge to produce the 

worst case scenario. The steering axle weight is 55.16MPa and the first and second rear axle group 

weight is 220.63MPs. The weight and axle spacing in units of ft and kips, as specified in AASHTO, 

is shown in Figure 16. 

The axle weight is uniformly distributed over the tire contact area of two tires for the steering 

axle and four tires for the rear axles, respectively. The exact tire dimensions and placement is as 

shown in Figure 17. The truck is located at the center of the traffic lane directly over the crack 

location to simulate the worst case scenario. In ABAQUS the tire contact areas are modeled as 

plates meshed with shell elements. The axle weight is converted to a pressure and applied to the 

plates representing the tires. A general contact defined between the reinforced concrete deck and 

the tires is used to allow the load to be transferred. 

 
 

Figure 16 AASHTO design truck (AASHTO, 2012) 
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Figure 17 Footprint of the fatigue design truck (AASHTO, 2012) 
 
 
 
The implementation of the truck load in the numerical model is shown in Figure 18. 

 
 
 
 

 
 

Figure 18 Implementation of truck load in the numerical model 
 
 
 

Besides the design truck, AASHTO also defines a Dynamic Load Allowance (IM). The IM 

is given in percentages and an amplification factor has to be calculated by 1+(IM/100) (AASHTO, 

2012). This amplification factor is then applied to the design truck to increase the static load effects. 

By applying the IM to the fatigue truck, dynamic effects caused by the impact from moving 
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vehicles are taken into account. These dynamic effects are caused by the dynamic response of the 

bridge to the moving vehicles and by hammering effects, which is the dynamic response of the 

wheel assembly to discontinuities in the road. In bridges those could be deck joints, potholes, 

cracks or delamination (AASHTO, 2012). The IM is not directly applied in the ABAQUS model 

but is later considered as a random variable when conducting the Monte Carlo simulation. 

For evaluating the redundancy, the bridge is subjected to the maximum design load as defined 

in AASHTO (2012). The maximum design load includes the lane load plus the design truck and 

the applicable amplification factors. The number of design lanes that need to be applied is 

computed by dividing the clear roadway width by12ft. For the Betzwood Bridge this results in two 

lane loads of each 3.1kPa applied in a 3.05m design lane. The design truck for the maximum design 

load is the same as for the fatigue load case, however, the rear axle spacing is variable between 

4.3m and 9m. The axle spacing chosen must present the critical load effect. For a simple span 

bridge, the critical load effect is caused by a rear axle spacing of 4.3m. The amplification factors 

applicable for the loading scenario in this study are the load factor for live load and dead load, the 

multiple presence factor and the dynamic load allowance. The values used for this study are listed 

in Table 3 and the implementation in the numerical model is shown in Figure 19 

 
 

     Table 3 Load amplification factors for maximum design load   
Amplification factor value 

Live load 1.75 

Dead load 1.5 

Multiple presence factor 1 

Dynamic load allowance 1.13 
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Figure 19 Maximum Design Load 
 
 
 
 

3.3.8 Crack 
 
 

ABAQUS provides several methods to calculate cracks (Abaqus/CAE User’s Guide, 2014). 

The extended finite element method (XFEM) is the most complex of the methods. It allows the 

user to simulate crack initiation and propagation along an arbitrary, solution-dependent path 

without remeshing. Another method is the virtual crack closure technique (VCCT). This method 

enables the user to study crack initiation and propagation along a predefined surface. The third 

method and the one used in this study is the contour integral estimate. This option allows to study 

the beginning of cracking in quasi-static problems. 

The contour integral is an output quantity and does not have any influence on the results 

(Abaqus/CAE User’s Guide, 2014). The contour integral option in ABAQUS can be used to 

compute several output variables relevant in fracture mechanics, e.g. the J-Integral, the crack 
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propagation direction or the stress intensity factor. In this study the contour integral is used to 

compute the stress intensity factors for various crack lengths. A contour is a ring of elements 

completely surrounding the crack tip from one crack face to the other. ABAQUS automatically 

finds these elements during the analysis but the user can choose the number of contours (rings of 

elements) that should be evaluated. Since a contour is a ring of elements, the mesh at the crack tip 

has to be relatively detailed for an accurate evaluation. Also the crack tip and the crack extension 

direction have to be defined for the calculation of the contour integral. A visualization of the 

contour integral at the crack tip can be seen in Figure 20. 

 
 

Figure 20 Visualization of a contour integral (Abaqus/CAE User’s Guide, 2014) 
 
 
 

The contour integral method does not provide the option to predict crack propagation. 

Hence the crack path was predefined and the crack was opened manually. The crack was 

propagated in increments of 0.08m starting at the bottom flange, growing into the web all the way 

up to the top flange. Since the crack is imbedded in the flange and web surfaces the crack had to 

be defined as a seam crack. For this reason, the girder flange and web were partitioned into 0.08m 

long increments at the location where the crack is propagated. A seam could then be defined for 

each individual crack length. When meshing a part containing a seam, ABAQUS creates two 

independent overlapping nodes along the seam that can move apart when the crack opens during 
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the analysis. Figure 21 shows the crack location, the crack definition and the crack opening after 

the analysis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 21 Crack definition in ABAQUS 
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SIMULATION METHODOLOGY 
 
 

The input files, which are text files, created by ABAQUS serve as the basis for the reliability 

analysis and the redundancy evaluation. The reliability analysis was conducted using MATLAB 

as a programming tool. A program was written to automatize the process of modifying the input 

file and running the ABAQUS simulations. This is very convenient because MATLAB provides a 

built in function that sends a command to ABAQUS to run the input file. In the next sections the 

individual steps of the reliability analysis are outlined. An overview of the reliability assessment 

process of the bridge is presented in Figure 23, which builds off the work conducted by Mahmoud 

and Riveros (2014). 

 
4.1 Finite Element Analysis 

 
 

In the previous chapter the setup of the numerical bridge model was described. This model 

is the basis for all further FEA. For the study of the fatigue behavior of the bridge three different 

simulations were conducted. 

□ At first, the intact bridge model, without a crack, subjected to fatigue loading was 

simulated. The stress in σ11 direction is evaluated at the location, at which in subsequent 

simulations the crack will be initiated. 

□ Afterwards the model was used to calculate the stress intensity factor for each crack 

length that it takes for the crack to travel through the girder in 0.08m increments until 

fracture. In each analysis the output of five contour integrals was requested. The K value 

was computed by averaging the second through the fifth contour integral. The value 

closest to the crack tip was neglected since it is not very accurate due to the singularities 
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at the crack tip. The output of these analyses correspond to the applied stress intensity 

factor, Kapplied. 

□ Finally, the influence of residual stresses on the stress intensity factor was examined. For 

this reason, the fatigue crack was removed and the residual stresses of the magnitude of 

σyield were applied. Again, the stress intensity factor for each crack length that it takes 

for the crack to travel through the girder in 0.08m increments until fracture, was 

calculated. The output of these analyses was Kres. 

Overall ABAQUS was used to create 67 input files for the reliability analysis. One input file for 

the analysis of the stress in σ11 direction. Thirty-three models of the bridge subjected to fatigue 

loading of which each contains a crack of different crack length and 33 models of the bridge with 

residual stresses of which each contains a crack of different crack length. 

Subsequent, to the reliability analysis the structure’s redundancy is evaluated. For this 

purpose, a separate bridge model subjected to the maximum design load, which is described in the 

previous chapter was utilized. After the FEA the stresses and the equivalent plastic strain are 

evaluated and compare to the yield strength and the failure strain for grade A36 steel. 

 
4.2 Monte Carlo simulation 

 
 
4.2.1   Random Variables 

 
 

The first step in the Monte Carlo simulation is to define the random variables to be varied 

during the FEA. It is essential to pick the varying parameter so that they affect the output variable 

of interest. The final output variable considered after the FEA was the stress intensity factor K. As 

explained in chapter 2 the stress intensity factor is defined as 

In =  √I (4.1) 
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Considering equation (4.1) it is obvious that the crack length and the stress are the two variables 

directly influencing K. For this study it was decided that the stress should be the varying quantity. 

The direct correlation between the stress and the Young’s modulus by 

  = (4.2) 
 
 
and the stress and the applied load by 

 
 

  =    
n 

(4.3) 
 
 
Those correlations ((4.2) and (4.3)) suggest to use E and M as random variables. The random 

variables in a Monte Carlo simulation are described by statistical distributions. Various previous 

studies incorporating statistical distribution of steel properties have utilized a Gaussian normal 

distribution with a mean of 1.05Fy and a coefficient of variation of 0.1 for the Young’s modulus 

based on the work by Galambos & Ravindra (1978). The fatigue load defined in the AASHTO 

design specification is a combination of the fatigue truck and the dynamic load allowance (IM). 

Since the IM can be converted into an amplification factor it is convenient to choose it as the 

varying quantity for the load. The distribution is Gaussian normal with a mean of 1.13 and a 

coefficient of variation of 0.1. The statistical distribution was chosen in accordance with Nowak 

(1995). A summary of the statistical distribution used for Young’s modulus and dynamic 

amplification factor are listed in Table 4. 

The random variables are changed for every single stress intensity factor simulation. 

Thereby it is ensured that the created data can represent any bridge, in any condition, at any 

location. This is important so that the final results are representative for all two-girder steel bridges 

and at the same time it ensures the applicability of the results to any two-girder steel in bridge. 
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Table 4 Statistical distributions used in Monte Carlo simulation for Young’s Modulus and dynamic 
amplification factor 

Random 

Variable Distribution Mean 
COV Reference 

 
Young’s 

modulus normal 1.05Fy 

0.1  (Galambos & 
Ravindra, 1978) 

 

Dynamic 
amplification 

 
normal 1.13 0.1 (Nowak, 1995) 

  factor   
 
 
 
 
 

4.2.2 MATLAB Program 
 
 

After the statistical distributions for the random variables were defined, a MATLAB 

program was written to automatize the process of modifying the input file and running the 

ABAQUS simulations. MATLAB was used to create random numbers with Gaussian normal 

distribution for the load and the Young’s modulus. Afterwards MATLAB opens and reads the 

ABAQUS input file and copies the information into a new input file while changing the load and 

the Young’s modulus using the random variables created before. This new ABAQUS input file 

was then used to run the finite element analysis with the modified load and Young’s modulus. At 

the end of each analysis ABAQUS writes the requested output into a *.dat file, which then can be 

read again by MATLAB. This process was coded in a loop and can be repeated as often as desired. 

The sequence of these steps is visualized in Figure 22. 
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Figure 22 Sequence in reliability analysis (phimeca, 2016) 
 

 
 
4.2.3 Number of Iterations for Monte Carlo simulation 

 
 

The next step was to determine the number of iterations for the Monte Carlo simulation. 

As explained in Chapter 2 Latin Hypercube Sampling allows to decrease the required number of 

iterations by using controlled sampling for the random variables. The minimum required number 

of iterations for accurate results was found by running the above described MATLAB code 3 times 

with 30, 50 and 75 iterations. The requested output variable were the σ11 stresses. ABAQUS 

computes those in each of the iterations. Afterwards the mean values were calculated for the 30, 

50 and 70 values of σ11, respectively and compared with each other. If the mean values for two 

Monte Carlo simulations are within a small tolerance, the smaller number of iteration is sufficient 

for accurate results. 

 
4.2.4 Statistical Computation of K 

 
 

The previously described MATLAB code was modified to run statistical analyses of the 

stress intensity factor. The sequence of the individual steps remains the same however the output 
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variable was changed to the stress intensity factor, K. The code was modified so that MATLAB 

reads the five contour integrals computed during the simulation from the ABAQUS output file. 

The average of the values is calculated and the results are written into an Excel document. Using 

the same statistical distributions and random variables as before 50 K values for each crack length 

are calculated. In total, the analysis is conducted for 33 crack lengths, which resulted in 1,650 K 

values. The same code is used to determine the stress intensity factor for the third numerical model 

containing the residual stress. The final output is as well an Excel document containing 50 K values 

for each crack lengths. 

 
4.2.5 Statistical Computation of the Number of Cycles 

 
 

After the stress intensity factors were evaluated the Paris’ Law was applied to calculate the 

number of cycles needed to propagate the crack an increment da. As explained in Chapter 2, the 

stress intensity factor range ΔK in the Paris’ Law, equation (2.28), is replaced by ΔKeff, to account 

for the effect of load ratio. ΔKeff is obtained by superposition of Kmin, Kmax and Kres, which 

were obtained by running each load case separately. Since the bridge is simply supported, Kmin 

was taken as zero since the minimum load of zero is represented with the complete passage of the 

truck over the bridge. The number of cycles were calculated using the results for K evaluated in 

the FEA in which the load and the Young’s modulus were varied. Additionally, statistical crack 

propagation parameters for the material constant m and the coefficient C were used. In reference 

to British Standards (1997) a Gaussian normal distribution with a mean of 16.5e-12 MPa(m)1/2 

and a coefficient of variation of 0.06 was used for C. Similarly, a Gaussian normal distribution 

with a mean of 3 and a coefficient of variation of 0.03 was applied for m. An overview of the 

statistical distributions used in this study is given in Table 5. The number of iterations for the 
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Monte Carlo simulation was 10,000. That means for each of the 1,650 stress intensity factors 

10,000 corresponding number of cycles were calculate. 

 
 

Table 5 Statistical distributions used in Monte Carlo simulation for the Paris’ Law parameters 
Random 

Variable Distribution Mean COV 
 

coefficient, C normal 9.0e-12  0.06 
 

Material 

constant, m normal 3.0 

 
0.01 

 
 
 
 

4.2.6 Probability of failure 
 
 

The overall goal of this study is to provide the probability of failure with respect to the 

inspection interval, on the basis of which a sufficient inspection interval can be chosen for a desired 

probability of failure. Therefore, the number of cycles calculated with the Paris Law are compared 

to the number of cycles in which the bridge is inspected. If the calculated number of cycles to 

failure exceeds the number of cycles per inspection interval the bridge fails. The probability of 

failure is calculated using 

    =       < 0 (4.4) 
 
 
Where g(x) is the objective function and p[g<0] is the probability of the g(x) being less than zero. 

The objective function is defined as 

 ( ) =     − (4.5) 
 
 
Where Nf is the number of cycles to failure and is evaluated using the Paris’ Law 

 
 

    = I  
          

1  1         ∆I     (4.6) 
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K  K 

T 

Where Ni is the selected inspection interval, ai and af are the initial and the final crack length, m is 

a material constant and C is a coefficient which is determined experimentally. A schematic 

presentation of the reliability assessment process of the bridge is shown in Figure 23 (Mahmoud 

and Riveros, 2014). 
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No 
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PF = P [NF – NI ] < 0 

 
Decision Process for Target Reliability 

- Propose Inspection Intervals for maintenance of existing hulls 
- Modify design for new hulls 

 
 

Fig. 6 Flow chart for assessing the reliability of the panel 
 
 
 

Figure 23 Process of reliability assessment of the bridge (Mahmoud and Riveros 2014) 
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RESULTS 
 
 
 
5.1 Global System Response 

 
 

The global system response of the bridge subjected to the fatigue truck loading, which is 

placed in the center of the right traffic lane directly over the detail in question, is shown in Figure 

24 through Figure 27. The plots are all amplified with a factor of 300 for better visualization. 

Figure 24 displays three different views of the uncracked bridge displacement in the 

vertical direction. It can be seen that the girder directly underneath the fatigue truck bends more 

than the girder that is not directly under the applied load. This was expected due to the asymmetric 

loading. Furthermore, the asymmetric loading leads to a rotation of the structure about the x-axis, 

which results in distortion (Figure 24). This distortion causes the girder to move out of the xy- 

plane and leads to local stress concentrations at the bolted connections of the floor beams to the 

girders. The von Mises stress distribution for the bridge without crack loaded with the fatigue truck 

is displayed in Figure 25. The maximum resulting stress is 54.21 MPa occurring at the pin support 

closest to the fatigue category E’ detail (front right in Figure 25). The stresses in the region close 

to the critical location are about 18MPa. 
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Figure 24 Global deformation  in vertical direction of uncracked bridge (amplified by 300) 
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Figure 25 Uncracked bridge - Von Mises stresses (amplified by 300) 
 
 
 

Figure 27 shows the global system deformation of the cracked bridge. Comparing those 

deformations with the deformations of the uncracked bridge, confirms the expectations that the 

existence of a crack results in an amplification of the system’s deformation. For this specific 

example with a crack length of 2.27m, the vertical displacement in the negative y-direction 

increased from 0.0035m to 0.007m (Figure 24 and Figure 26), which represents an increase of 

50%. Also the distortion about the x – axis and the associated out-of-plane motion increased 

noticeably. However, the displacement is significantly smaller than the deformation measured after 

the failure of the US-52 bridge in St. Paul, Minnesota which was 0.17m. 

Figure 27 shows the von Mises stress distribution for the bridge with a crack of the length 

of 2.27m. The crack results in high local stresses at the crack tip of 147.6MPa. All other parts of 

the bridge are visualized almost consistently blue since their stresses are very low compared to the 

high stresses at the crack tip. 

56  



 
 

 
 

Figure 26 Global deformation in vertical direction of cracked bridge (amplified by 300) 
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Figure 27 Von Mises Stresses in the Cracked Girder showing Localized Stress Concentration around the 
Crack Tip 
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5.2 Statistical evaluation of stress σ11 
 
 

For the calculation of the stresses in σ11 direction the numerical model of the bridge without 

crack was used. The stresses were evaluated at the bottom flange of one of the girders at which in 

subsequent simulations the crack was located. The direction 11 is along the girder and the values 

for σ11 are tensile stresses due to the bending moment caused by the truck load. During the Monte 

Carlo simulation, the load amplification factor and the young’s modulus were treated as random 

variables. Both input variables were described by Gaussian normal distributions with means of 

1.05Fy and 1.13, respectively. The coefficient of variation was 0.1 for both distributions. 

The Monte Carlo simulation was conducted 3 times with 30, 50 and 75 iterations. The 

simulation results are shown in the scatter plot in Figure 28. The stresses vary between a maximum 

value of 31Mpa and a minimum value of 2.5 MPa. The maximum as well as the minimum value 

occurs for the simulation with 50 iterations. Figure 28 verifies the necessity of the probabilistic 

analysis. It appears that minor variations in the loading or the material properties can lead to a non- 

negligible increase of the stresses which can be crucial for determining the fatigue life. 

The detail examined in this study belongs to fatigue category E’ for which the fatigue 

threshold is 18MPa (AASHTO, 2012). That means if the stress at the location examined, exceeds 

18MPa a crack initiates. As it can be seen in Figure 28 the mean stresses are about 17MPa therefore 

only in certain cases a crack will initiate. The probabilities that a crack initiates are listed in Table 

4. This results show how important it is to consider all uncertainties in the determination of fatigue 

life. If only one analysis with deterministic values for the load and the material properties is 

conducted the chance for predicting crack initiation is about 45%, which is a high risk to take for 

the bridge owner. 
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Mean stress 

The results for σ11 are also used to determine the minimum number of iterations needed for 

accurate results in the probabilistic analysis. Therefore, the Monte Carlo simulation is conducted 

three times with 30, 50 and 70 iterations. For each of the simulation the mean of the tensile stresses 

is computed and compared. Table 6 lists the mean stresses and the percentage errors for the 

analyses. Assuming that the results are correct for 75 iterations, it can be seen that the accuracy 

decreases for lower number of iterations. Although a percentage error of 1.73 is still very small, 

the number of iterations for all further Monte Carlo simulations was chosen to be 50. 

 
 

Number of 
iterations 

Table 6 Results of statistical stress evaluation 

σ11, MPa Percentage error 

 
Probability of crack 

initiation 
 

75 17.12 - 45% 
 

50 17.19 0.41 46% 
 

30 17.42 1.73 47% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 Scatter plot of tensile stresses σ11 at bottom flange of girder 
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5.3 Statistical evaluation of the stress intensity factor 
 
 

The stress intensity factors are calculated using the finite element software ABAQUS. A 

crack is inserted and propagated through the flange and the web of the girder in increments of 

0.08m until full-depth fracture. For each crack length 50 stress intensity factors are generated. In 

the Monte Carlo simulation, the load and the Young’s modulus are treated as random variables 

with Gaussian normal distribution. The use of LEFM was proven to appropriate since the stresses 

measured in the region near the crack tip are below the material’s yield strength of 250MPa for all 

simulations. For example, a crack length of 2.27m resulted in stresses near the crack tip of 

147.6MPa (Figure 27). 

Furthermore, the stress intensity factors are evaluated for the model including residual 

stresses. The residual stresses with a magnitude of 250MPa, which is equal to the yield strength of 

the material, are applied in the tension zone surrounding the welds. For this purpose Faulkner’s 

model (1975) is utilized to compute the width of the tension zone which is equal to tplate * η , where 

η equals 4. During the finite element analysis, a compression zone is calculated to balance the 

tensile stresses and to satisfy equilibrium. A schematic sketch of the residual stresses along the 

girder is shown in Figure 29. Previous research has shown that this compression zone can slow 

down or even stop crack growth due to the stresses acting in the opposite direction (H. Mahmoud 

& Riveros, 2014). Therefore, an effective stress intensity factor ΔKeff is used to assure that only 

the part of the stress intensity factor that contributes to crack growth is considered when computing 

the remaining fatigue life. ΔKeff is computed by superposition of Kmin, Kmax and Kres. 

Kres is evaluated in the compression zones on the bottom flange and the web, and where the 

longitudinal stiffener is welded to the girder (Figure 29). The resultant K values from the ABAQUS 

simulation are exclusively positive and it is found that the compression zones do not affect the 
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crack propagation rate (Table 7). Due to this, ΔKeff is equal to Kmax resulting from the applied load 

and the residual stresses are neglected. 

 
 

Figure 29 Schematic sketch of residual stresses along girder 
 
 
 

  Table 7 Stress intensity factors in compression zones   
 

Crack length, m K, Mpa(m)1/2 

0.16 22.8 

0.31 89.8 

2.00 24.3 

2.20 53.0 

 
 

Figure 30 shows the stress intensity factors and its variation with respect to the crack length. 

The values for K are clearly varying due to the randomness in the input data. For clarity, the plot 

shows the root mean square of all 50 stress intensity factor curves and its deviations. It can be seen 
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that the stress intensity values increase consistently during the first crack intervals. However, after 

a crack length of 0.47m it stagnates and then only increases with a small slope. That means the 

influence of the crack length on the stress intensity factor decreases with increasing crack length. 

This is due to the shift in the neutral axis of the cross section as the crack propagates and load 

shedding which causes the stresses to redistribute around the cracked region. At a crack length of 

1.43m the stress intensity factor reaches its maximum value. The change in the slope occurs due 

to the transition from the tension to the compression zone. The compression works against the 

crack opening and therefore slows down the crack propagation rate and results in a decrease of K. 

The K values decrease until it reaches the longitudinal stiffener at 2.09m which leads to a short 

increase of K. Afterwards the value decreases until full depth fracture at 2.5m. 

 
 

Figure 30 Root mean square of stress intensity factors and its variation 
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For further processing of the data each of the 50 K – curves were smoothened by a second- 

degree polynomial. Figure 31 shows the fitting of the highly varying stress intensity curve from 

the ABAQUS simulation with a second-degree polynomial. 

 
 

Figure 31 Original stress intensity factor curve and fitting curve using a second-degree polynomial 
 
 
 
 
5.4 Statistical evaluation of the remaining fatigue life 

 
 

For the statistical evaluation of the remaining fatigue life the results from the previous 

analysis of the stress intensity factors where the load and the material properties are treated as 

random variables are used. The Paris Law (Paris & Erdogan, 1963) was utilized to calculate the 

number of cycles until failure. Failure occurs when the maximum stress intensity K exceeds KIC, 

which is taken as 45MPa(m)1/2 , 65MPa(m)1/2, 75MPa(m)1/2 and 95MPa(m)1/2. Since the material 

toughness KIC only indicates the point at which a crack starts to propagate in an unstable manner 

but does not provide information about the possibility of the crack getting arrested due to changing 
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condition such as the transition into a compression zone, K is also compared to the crack arrest 

toughness Ka. If K exceeds Ka the crack velocity and the crack’s momentum are sufficient enough 

so that the crack travels through the girder without getting arrested. 

The crack propagation parameters C and m in the Paris Law were assigned a Gaussian 

normal distribution with a mean of 3 for m and a mean of 9.0*10-12 for C, respectively. The COV 

are taken as 3.0 and 0.25*10-12 as recommended by British Standards (1997). A plot of the crack 

length versus the number of cycles is displayed in Figure 32. It is apparent that the statistical 

variation of C and m has immense influence on the crack growth behavior and therefore on the 

crack propagation rate. It is noticeable that there is an enormous scatter in the number of cycles 

needed to propagate the crack through the whole girder. This shows the need for a statistical 

evaluation to enhance the understanding for the scatter in fatigue data. Figure 33 through Figure 

35 show the crack length at failure for material toughness of 45MPa(m)1/2 , 65MPa(m)1/2.and 

75MPa(m)1/2. The crack length at failure is not plotted for 95MPa(m)1/2 since K is always smaller 

than this value. The plots show that for higher material toughness the crack length that the girder 

can tolerate before the crack starts to propagate in an unstable manner is significantly higher. For 

a material toughness of 75MPa(m)1/2, the crack does not exceed the crack arrest toughness in 74% 

of the cases. 
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Figure 32 Crack length versus number of cycles 
 
 
 

 
 

Figure 33 Probability of occurrence for KIC = 45MPa(m)1/2 
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Figure 34 Probability of occurrence for KIC = 65MPa(m)1/2 
 
 
 

 
 

Figure 35 Probability of occurrence for KIC = 75MPa(m)1/2 
 
 
 

The probability of failure and the corresponding reliability index  are calculated for 

different inspection intervals. Failure is defined to occur when the number of cycles per inspection 

interval exceeds the number of cycles to failure. For the evaluation of this study the inspection 

intervals are chosen to be in a maximum interval of 7 million cycles. The probability of failure and 
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the  corresponding  reliability  index  are  calculated  for  critical  fracture  toughness  values  of 

45MPa(m)1/2 65MPa(m)1/2, 75MPa(m)1/2 and 95MPa(m)1/2. Comparing the stress intensity factor 

to the material toughness KIC  provides the engineer with a general idea about the structure’s 

susceptibility to failure. However, it does not consider the possibility that the crack might be 

arrested when entering the compression zone. To take crack arrest into account it is necessary to 

compare K to the crack arrest toughness Ka, since this value considers dynamic effects such as the 

crack propagation velocity. Therefore, the probability of failure and the corresponding reliability 

index are also computed for crack arrest toughness of 55MPa(m)1/2, 60MPa(m)1/2 and 70MPa(m)1/2. 

These values are the results of research conducted by Ripling and Crosley (1982). The values are 

chosen in accordance with the temperature zones defined by AASHTO (2012). The temperatures 

and the corresponding crack arrest toughnesses are listed in Table 8. 

 
 

Table 8 Temperature zones and corresponding crack arrest toughnesses Ka 

Temperature zone Lowest anticipated Ka 

service temperature 
1 --18oC and above 70 at --18oC 

 

2 -18 to -34oC 60 at --35oC 
 

3 -35 to -51 oC 55 at --51oC 
 
 
 
 

The probability of failure curve and the corresponding reliability index are shown in Figure 

36 through Figure 39. The plots confirm the assumption that for a higher material toughness the 

probability of failure is smaller. Furthermore, it can be seen that for a lower number of cycles per 

inspection interval the probability of failure is smaller. This is reasonable since if a structure is 

inspected more frequently the chance that the structure fails between two inspections is smaller. 

However, a higher reliability index is associated with more safety and therefore the reliability 
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index with respect to the number of cycles per inspection interval shows an inverse correlation. 

With increasing inspection intervals, the chances that cracks remain undetected increases and thus 

the probability of failure increases and the reliability index decreases. 

The results also show the influence of higher material strength on the structure’s ability to 

resist cracks. When the material toughness is increased from 45MPa(m)1/2  to 65MPa(m)1/2 , 

75MPa(m)1/2 and 90MPa(m)1/2 a tremendous decrease in the probability of failure occurs. For a 

fracture toughness of 45MPa(m)1/2 a probability of failure of 20% occurs for an inspection interval 

of 700,000 cycles. For the same probability of failure the inspection interval can be increased to 

3,4 million cycles for a material toughness of 75MPa(m)1/2. 

The maximum reliability index that can be achieved is 3.8 for material toughness of 

65MPa(m)1/2 and 95MPa(m)1/2. For all material toughness the reliability index steadily decreases 

with increasing inspection interval until it reaches its final value. The tougher the material the 

faster it approaches its final value. These results show that by only increasing the fracture 

toughness slightly a tremendous increase in the fatigue life can be achieved. 

The probability of failure and the corresponding reliability index when considering crack 

arrest are shown in Figure 38 and Figure 39. The probability that a crack zips through the girder 

without being arrested is with a minimum of 46% at a temperature of -18oC very high. However, 

Ka increases with increasing temperature that mean in an area with higher average temperature the 

probability of failure decreases. The reliability index is computed for Ka values of 55MPa(m)1/2, 

60MPa(m)1/2 and 70MPa(m)1/2. The maximum achievable reliability index is 2.5 for an inspection 

interval of 150,000 cycles for Ka =60MPa(m)1/2. It is important to point out that the probability of 

failures or reliability indices reflect a crack growing through the full depth of the girder not a bridge 

collapse. Figure 38 and figure 39 provide an illustration on how inspection intervals can be 
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determined for a desired probability of failure for a given fracture toughness. In other words a 

bridge owner can conduct a similar analysis on the bridge in question then extract steel samples 

from the actual bridge to determine the fracture toughness the construct a similar plot to show the 

probability of failure versus inspection interval so that a proper inspection cycle can be determined. 

 
 
 

 
 

Figure 36 Probability of failure versus inspection interval Ni without accounting for crack arrest 
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Figure 37 Reliability index versus inspection interval Ni without accounting for crack arrest 
 
 
 

 
 

Figure 38 Probability of failure versus inspection interval Ni when accounting for crack arrest 
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Figure 39 Reliability index versus inspection interval Ni when accounting for crack arrest 
 
 
 
 
5.5 Bridge Redundancy and Potential for Collapse 

 
 

As discussed in previous chapters, several bridge failures with full depth fracture of a main 

supporting member, classified as fracture critical, occurred without resulting in collapse of the 

complete structure. This identifies that the classification of bridges in the category fracture critical 

is not sufficient to predict collapse. To certainly identify collapse, redundancy needs to be 

considered and assessed. At this point, there is no consistent and generally applicable definition of 

redundancy. However, effort has been made to come up with a formulation describing redundancy 

for multiple bridge types. For example, Frangopol & Curley (1987), developed a redundant factor 

R using the overall collapse load of the damaged structure and of the intact structure. Another 

description of redundancy was proposed by Furuta, Shinozukam, & Yao (1985). They described 

redundancy as a function of member properties, reduction in the members’ geometry and a 
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Crack length in m K in Mpa(m)1/2 

0.215 56.472 

0.475 362.545 

1.355 406.26 

2.555 33.261 

2.77 0 

 

constant representing the members’ original geometrical properties. In this thesis the redundancy 

of the bridge is investigated by comparing the equivalent plastic strain εpl to the failure strain of 

steel εf for various bridge elements for several crack lengths. Utilizing the equivalent plastic strain, 

allows for the strain to be defined for a completely arbitrary stress states caused by arbitrary 

deformations. Setting this value in relationship to the failure strain gives a criterion that can be 

used to define failure 

     < 1 no failure (5.1) 
   

      ≥ 1 failure (5.2) 
   

 
 
 

The equivalent plastic strain is computed for the maximum design load as defined in AASHTO 

( 2012) (Chapter 3). The maximum design load contains the lane load plus the truck load and the 

applicable amplification factors. Table 9 lists the stress intensity factors and the equivalent plastic 

strains for five different crack length. 

 
 

  Table 9 K values and equivalent plastic strain for various crack length   
εpl 

 
 
 

3.78e-3 
 

- 
 

- 
 

6.75e-3 
 

1.44e-1 
 
 
 
 

For a crack length of 0.215m, which is equivalent to a cracked flange, the KIC value is 56.472 

73  



Mpa(m)1/2. Assuming a KIC value greater than this, means that the crack is growing in a stable 

manner and the stresses and strains at this condition can be evaluated. The ABAQUS simulation 

shows that the yield stress is only locally exceeded and the bridge only locally plastifies at the 

crack tip. 

For a crack length of 0.475m and 1.355m the stress intensity factor K exceeds the material 

toughness, which means that the crack would have already started to grow in an unstable manner 

for a shorter crack length. Thus, this condition is not realistic and cannot be evaluated. The next 

crack length that results in a stress intensity factor of less than KIC is 2.555m, which is equivalent 

to a crack through the bottom flange, through the web all the way up to the top flange. At this point, 

the crack tip is in the compression zone. The compressive forces due to the girder bending slowed 

down the crack propagation and led to the decreased K value Table 9. The damage of the girder 

results in local stresses equal to the yield stress of the material at the connections of the floor beam 

to the girder of bay four and bay six (Figure 40). These two locations are stressed the most due to 

the sagging of the bridge. The load is redistributed along the system and additional moments are 

induced into these connection points due to the rotation of the bridge about the x-axis. Detailed 

views of the local plastification is shown in Figure 41 through Figure 44. An increase of the stresses 

above the yield strength leads to permanent deformation and plastification. The equivalent plastic 

strain measured for a completely cracked web is with a maximum value of 6.75e-3 at connection 

C3, which is much smaller than the equivalent plastic strain εf=0.2 and therefore the connection 

will not fracture 
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Figure 40 Bridge structure identifying locations of plastification for a crack length of 2.555m 
 
 
 

 
 

Figure 41 Plastification at connection C1 for a crack length of 2.555m 
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Figure 42 Plastification at connection C2 for a crack length of 2.555m 
 
 
 

 
 

Figure 43 Plastification at connection C3 for a crack length of 2.555m 
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Figure 44 Plastification at the crack tip for a crack length of 2.555m 
 
 
 

 
 

Figure 45 Equivalent plastic strain for connection C1, C2, C3 and the crack tip CT 
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Since the K value for a completely cracked web is smaller than KIC the crack keeps growing in a 

stable manner until fracture. At this point the girder is separated into two pieces and the stress 

intensity factor is zero. The sudden fracture of the whole girder leads to a sudden increase of the 

forces acting on the remaining intact members. The extreme loading results in plastification at the 

locations identified in Figure 46. Plastification occurs mainly at the connections of the outrigger 

to the girder and the floor beam to the girder but also in the bracing Figure 46. Detailed views of 

the local plastification is shown in Figure 47 through Figure 52. 

 
 

Figure 46 Bridge structure identifying locations of plastification at full depth fracture 
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Figure 47 Plastification at connection C1 at full depth fracture 
 
 
 

 
 

Figure 48 Plastification at connection C2 at full depth fracture 
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Figure 49 Plastification at connection C3 at full depth fracture 
 
 
 

 
 

Figure 50 Plastification at connection O1 at full depth fracture 
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Figure 51 Plastification at connection O2 at full depth fracture 
 
 
 

 
 

Figure 52 Plastification at connection O3 at full depth fracture 
 
 
 

The values of the equivalent plastic strain vary between 1.5e-2 at bracing B3 and 0.144 at 

outrigger 1. The maximum equivalent plastic strain reached for this bridge at full depth fracture is 
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about 70% of the tolerable strain of the steel which means that the equivalent plastic strain does 

not exceed the failure strain of the steel (εf =0.2) for any given crack condition. Therefore, one can 

conclude that none of the structural members fail even though a member classified as FC is clearly 

yielded. This means that the bridge has significant redundancy and provides alternative load paths 

in the case of failure of one of the main supporting members. In other words, the classification of 

the Betzwood Bridge as a FCB is very conservative. The implication of such is that biannual hands 

on field inspection by highly qualified professional bridge inspectors is needed. This increases the 

inspection cost for the bridge owner. These results show that a reconsideration of the classification 

of bridges as FCB would be a reasonable step to decrease maintenance cost of existing bridges. 

 
 
 

 
 

Figure 53 Equivalent plastic strain for bracing C1, C2, C3, O1, O2, O3 at full depth fracture 
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Figure 54 Equivalent plastic strain for bracing B1, B2, B3, B4 at full depth fracture 
 
 
 
 
5.6 Conclusion 

 
 

In this study fatigue reliability and redundancy of a two-girder steel bridge was examined. 
 
The finite element software ABAQUS was used to generate four different numerical models: 

 
□ A bridge model without crack subjected to the fatigue truck was used to determine 

the stresses at the location, at which in subsequent simulations the crack was initiated. 

□ A bridge model subjected to the fatigue truck with increasing crack length was used 

to compute the stress intensity factor for each crack length until full-depth fracture. 

□ A bridge model including residual stresses due to welding at the bottom flange and 

the longitudinal stiffener was used to evaluate the stress intensity factors in the 

compression zones. 
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□ A bridge model subjected to the maximum design load was used to determine the 

equivalent plastic strain and compared to the failure strain of steel to evaluate the 

redundancy. 

The finite element analysis was combined with Monte Carlo simulation to account for variation in 

the loading and the material properties. A simulation with 50 iterations was conducted to evaluate 

the stress at the future crack location. Furthermore, the stress intensity factor was evaluated with 

randomly varying load and young’s modulus for each crack length that it takes for the crack to 

travel through the girder in 0.08m increments until fracture. The results are 50 independent stress 

intensity factors for each crack length. 

The Paris Law is utilized to determine the number of cycles required for the crack to open 

one increment while treating the crack propagation parameters C and m as random variables. The 

critical crack length and the number of cycles to failure are estimated for material toughnesses of 

50MPa(m)1/2 and 75MPa(m)1/2. For each of the previously determined stress intensity factors the 

simulation was conducted 10,000 times. Afterwards, different inspection intervals are used to 

compute the probability of failure and the corresponding reliability index. Finally, the redundancy 

of the bridge was assessed by comparing the equivalent plastic strain at failure to the failure strain 

of the steel. The outcome of this study is as follow: 

1. The variation in loading and young’s modulus resulted in a large scatter in the applied 

stresses. 

2. The probability that the stresses at the bottom flange exceed the fatigue threshold of 

18MPa(m)1/2 and a crack initiates at the weld connecting the bottom lateral to the girder 

is about 45%. 
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3. The tension and compression zones due to residual stresses do not significantly influence 

the crack propagation and therefore the effective stress intensity range ∆Keff equals Kmax 

from the applied load. 

4. Treating the crack propagation parameters C and m as random variables in the Paris Law 

resulted in a very large scatter in the crack propagation rate. 

5. Increasing the material toughness from 45MPa(m)1/2 to 65MPa(m)1/2 , 75MPa(m)1/2 and 

95MPa(m)1/2 led to a significant decrease of the probability of failure for the same 

inspection interval. 

6. The probability index decreases with increasing number of cycles per inspection interval. 
 

7. The maximum achievable reliability index is 4 for an inspection interval of 200,000. 
 

8. Probabilistic analysis is necessary for determining the fatigue life of a structure due to 

the large scatter in the fatigue data. 

9. The reliability analysis and the presented results provide a framework for decision 

making for specifying inspection intervals. 

10. The equivalent plastic strain never exceeds the failure strain of A36 and therefore the 

structure has sufficient residual capacity. 
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