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ABSTRACT 
 
 
 

INTEGRATION OF AN UNMANNED AIRCRAFT SYSTEM AND GROUND-BASED 

REMOTE SENSING TO ESTIMATE SPATIALLY DISTRIBUTED CROP 

EVAPOTRANSPIRATION AND SOIL WATER DEFICIT THROUGHOUT THE 

VEGETATION SOIL ROOT ZONE 

 

Irrigation is the largest consumer of fresh water and produces over 40% of the world’s 

food and fiber supply.  As the world’s population continues to grow rapidly, the increased 

demands on fresh water will force the agricultural community to improve the efficiency and 

productivity of irrigation systems, while reducing overall water usage. In order to address the 

requirements of increased efficiency and productivity in agricultural water use, the agricultural 

community has begun to focus on the development of precision agriculture (PA) irrigation 

management systems for use with irrigated agriculture.  Remote sensing (RS) is at the forefront 

of the PA movement, allowing the estimation of spatially distributed crop water requirements on 

a large-scale basis.  Techniques using ground, aerial and space-borne RS platforms have been 

developed to estimate actual crop evapotranspiration (ETa) and soil water deficit (SWD) for use 

in PA irrigation management systems.  The ability to monitor the ETa and SWD allows irrigators 

to manage their irrigation to increase efficiency and decrease overall water use while maintaining 

crop yields goals.  Historically, remote sensing data, such as spectral reflectance and thermal 

infrared (TIR) imagery, were provided by ground or space-borne RS platforms, like σASA’s 

Landsat 8 satellites.   Though these methods are effective at estimating ETa over large areas, 

their lack of spatial and temporal resolution limit their effectiveness for application in PA 
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irrigation management systems.  In order to address the required spatial and temporal resolutions 

required for PA systems, Colorado State University (CSU) developed an unmanned aircraft 

system (UAS) RS platform capable of collecting high spatial and temporal resolution data in the 

TIR, near-infrared (NIR), red and green bands of the electromagnetic spectrum.  During the 

summer of 2015, CSU conducted four flights over corn at the Agriculture Research Development 

and Education Center (ARDEC), near Fort Collins, CO, with the Tempest UAS RS platform in 

order to collect thermal and multispectral imagery.  The RS data collected over the ARDEC test 

location were used in three studies.  The first was the comparison of the raw RS data to the 

ground-based RS data collected during the RS overpasses.  The second study used the Tempest 

RS data to estimate the ETa using four methods:  two methods based on the surface energy 

balance (Two-Source Energy Balance (TSEB) and the Surface Aerodynamic Temperature 

(SAT)), one method based on the TIR imagery (Crop Water Stress Index (CWSI)), and one 

method based on the spectral reflectance imagery (reflectance-based crop coefficients (kcbrf)) and 

reference ET.  Remote sensing derived ETa estimates were compared to ETa derived using 

neutron probe soil moisture sensors.  The third study utilized the RS derived ETa and the Hybrid 

Soil Water Balance method to estimate the SWD for comparison with the neutron probe derived 

SWD.  Results showed that the Tempest RS data was in good agreement with the ground-based 

data as demonstrate by the low RMSE of the raw data, ETa and SWD calculations (TIR = 5.68 

oC, NIR = 5.26 % reflectance, red = 3.51 % reflectance, green = 7.31 % reflectance, TSEB ETa = 

0.89 mm/d, Hybrid SWD = 16.19 mm/m).  The accuracy of the results of the Tempest UAS RS 

platform suggests that UAS RS platforms have the potential to increase the accuracy of ETa and 

SWD estimation for use in the application of a PA irrigation management system. 
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CHAPTER 1: INTRODUCTION 
 
 
 

1.1. Water Requirements – Overview 

The world’s fresh water supply is a limited natural resource that is at the center of 

competition between agricultural, domestic, industrial, recreational and environmental demands.  

At the end of 2015, the world’s population was approximately 7.3 billion people with an 

estimated growth rate of 1.18% annually (United Nations, 2015).  By 2025, industrial and 

domestic consumption will increase by 150% and 180% respectively (Shiklomanov, 1993).  The 

water demand caused by the global population growth is compounded by the ever-decreasing 

ground water availability and water quality, increasing environmental regulations, degradation of 

agricultural land associated with poor management practices, and domestic and industrial 

development (Evans et al., 2013).   

In addition to the increase in global fresh water demands, changing global weather 

patterns associated with climate change have the capability to decrease the overall water 

availability through changing precipitation patterns, increased surface temperatures and long-

term droughts (Walthall et al., 2012).  In order to meet the increasing agricultural demand, as 

well as the rapidly increasing non-agricultural consumption, the agricultural community is under 

pressure to develop and implement irrigation systems, and crop water requirement estimation 

technology that increase production, while decreasing overall land and water use (Evans et al., 

2013).  
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1.2. Irrigation Requirements 

Irrigation is the world’s largest consumer of fresh water, accounting for 67% of the total 

freshwater withdrawal and 86% of consumptive use (UNEP, 2008).  By 2025, using current 

practices, agricultural water use will increase by 130% (Shiklomanov, 1993).   Currently, 

approximately 17% of the worlds cultivated farmland is irrigated.  That irrigated land un-

proportionally produces 40% of the world’s food and fiber supply [Postel, 1999].  As the demand 

on fresh water and agricultural land continues to rapidly increase, the percentage of irrigated 

farmland must increase, as well as the efficiency and productivity of the irrigation technology 

and systems [Postel 1999; Evans et al., 2013].  Irrigation will continue, even grow in importance, 

to be a critical aspect of the global agricultural system.  In order to address the requirements of 

increased efficiency and productivity in agriculture water use, the agricultural community has 

begun to focus on the development of Precision Agriculture (PA) systems for use with irrigated 

agriculture. 

1.3. Precision Agriculture (PA) 

Precision Agriculture, as defined by the United States Department of Agriculture 

(USDA), Natural Resources Conservations Service (NRCS) is: 

“A management system that is information and technology based, is site specific 

and uses one or more of the following sources of data: soils, crops, nutrients, pest, 

moisture or yield for optimum profitability, sustainability and protection of the 

environment [McLoud et al., 2007].” 

The overall goal of PA is the optimization of inputs for agricultural production according 

to the capability of the land and available resources.  This means using a systematic approach to 
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develop an agricultural system that optimizes output, i.e. efficiency and productivity, by taking 

into account the physical, social, environmental and economic aspects of the overall system 

[McLoud et al., 2007].  

Five basic components make up a PA system: Background data, a record keeping system, 

analysis and decision (AD) making process, required equipment, and an evaluation and revision 

process [McLoud et al., 2007].     

Background data consists of geo-referenced, spatially distributed data about the 

agricultural location.  These data include information about soil properties, water table location, 

water quality and historical environmental conditions [McLoud et al., 2007].   

The record keeping systems consist of a well-organized record of all actions, both natural 

and man-made, that affect the agricultural system, such as precipitation, applied irrigation and 

agro-chemicals.  Keeping a soil water balance for a growing season is an example of the required 

record keeping associated with a PA system.  The record keeping system is important to the 

overall PA system because records become background data for future system development 

[McLoud et al., 2007].  

The analysis and decision making process is the critical step in PA.  The first duty of the 

AD process is data collection through remote sensing (RS) or physical measurements.  Examples 

of the types of data are multispectral imagery from RS platforms and root zone soil water content 

(SWC) derived from soil water sensors (SWS).  The purpose of data analysis is to provide inputs, 

such as SWD and crop water stress, to the decision making process [McLoud et al., 2007].  The 

decision making process, taking into account all of the inputs and factors, determines 

recommendations for system applications to achieve the goals of optimized inputs and outputs of 
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the system [McLoud et al., 2007].  An example of the AD system is conducting SWC monitoring 

with RS for input into Site-Specific Variable Rate Irrigation (SS-VRI) systems.  

PA systems require specialized equipment to implement the recommendations developed 

using the AD system.  The specialized equipment includes infrastructure, personnel and software 

required to implement the recommendations [McLoud et al., 2007]. For example, a SS-VRI 

requires an irrigation system capable of spatially varying irrigation depths, software capable of 

controlling the irrigation system based on the inputs from the AD process, and operators trained 

in the operation of the equipment and software.  If there is a deficit in any aspect of the 

infrastructure, personnel or software, the PA system will not operate at the desired level 

[McLoud et al., 2007].   

The final aspect of the PA system is continual evaluation and revision of the overall 

system.  Continual evaluation of the PA systems inputs and outputs allow further revision of the 

system to increase efficiency and productivity [McLoud et al., 2007]. 

Implementing PA systems are a critical step towards addressing the increasing demand 

on our fresh water resources.  The site-specific aspects of PA, such as using SS-VRI technology 

to spatially and temporally optimize irrigation applications based on the crop water requirements, 

provides for increases in water use efficiency and productivity while maintaining crop yield 

goals [Evans et al., 2013].  

1.4. Site Specific Variable Rate Irrigation (SS-VRI) 

Site-Specific Variable Rate Irrigation is an integral part of implementing a PA system on 

irrigated farmland.  It is possible to obtain upwards of a 26% reduction in overall water usage 

using PA and SS-VRI [Evans et al., 2012].  The main goal of SS-VRI systems is the ability to 
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spatially and temporally vary water application depths across a field to address specific soil, crop 

and/ or other conditions [Evans et al., 2013].   The systems use spatially distributed crop water 

requirement data to spatially and temporally vary water application across an agricultural field.  

The spatially distributed crop water requirements are derived using either ground-based 

measurements or remote sensing, which will be discussed later in the paper [Evans et al., 2013].    

The most common SS-VRI systems are based on self-propelled, pressurized center pivot 

(CP) and linear move (LM) sprinkler irrigation systems.  The CP and LM systems are easily 

adapted to SS-VRI systems due to their current high level of automation, their easily controllable 

water delivery devices, and cover a large area with a single lateral pipe.  SS-VRI systems operate 

using either speed (sector) controlled application or management zones application [Evans et al., 

2013]. 

Speed controlled SS-VRI systems vary irrigation application depths based on the travel 

speed of the irrigation system, as demonstrated by Figure 1.1.  The rate of application remains 

constant along the entire system, while the speed is adjusted to achieve the desired water 

application depth [Evans et al., 2013].  Beginning in the 1λ80’s, irrigation system manufacturers 

began to introduce systems that would allow the operators to control the speed of CPs.  Recent 

developments of CP systems allow the pivot travel speed to be adjusted in 1o
 – 10o intervals, 

greatly increasing the efficiency of the speed controlled SS-VRI systems [Evans et al., 2013].  

The benefit to using speed controlled SS-VRI is the lower costs associated with the 

infrastructure, operation, and data input requirements.  The drawback to using a speed control 

SS-VRI is the lower overall efficiency due to the lower controllability of the system when 

compared to the zone controlled SS-VRI.  The lower level of efficiency is based on that a 

majority of fields do not vary linearly, with respect to SWC, across the effective range of the 
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system.  Even with the drawbacks associated with the systems, the speed controlled SS-VRI is 

the most common SS-VRI system in use today due to the associated costs ($25-$125/ha) and the 

availability of the technology [Evan et al., 2013]. 

 

 Figure 1.1.  Speed Controlled SS-VRI Prescription using Valley VRI Speed Control Software 
[Valley VRI Speed Control Prescription, Valley Irrigation, Omaha, NE] 

Zone management controlled SS-VRI systems vary irrigation application depths based on 

spatially distributed irrigation management zones, as seen in Figure 1.2.  The application rates of 

individual or groups of sprinkler heads are varied to achieve the necessary application amount 

[Evans et al., 2013].  A vast majority of the zone control SS-VRI systems utilize pulse 

modulation to vary the application rate based on the management zones specifications.  The zone 

controlled SS-VRI systems are more efficient and allow for greater productivity, due to their 

ability to precisely apply water based on the spatially distributed crop water requirements.  The 

drawbacks to using a zone controlled SS-VRI system are the associated costs of the system 

($215-$570/ha) and the lack of readily available commercial equipment and training [Evans et 

al., 2013].  
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Figure 1.2. Zone Controlled SS-VRI Prescription using Valley VRI Speed Control Software 
[Valley VRI Speed Control Prescription, Valley Irrigation, Omaha, NE] 

1.5. Spatially Distributed Soil Water Content (SWC) 

Precision Agriculture and SS-VRI systems require site specific, spatially distributed root 

zone (Rz) SWC information as an input into the analysis and decision making process 

[Petetropoulos, 2014].  In the context of this paper, SWC is the water contained in the soil root 

zone that can be utilized for evapotranspiration (ET).  SWC originates from rainfall 

(precipitation), irrigation, and/or capillary rise from ground water.  The SWC can be further 

characterized as surface SWC (0-5 cm) and root zone SWC (5 cm to maximum depth of water 

extraction by roots) [Hillel 1998, Seneviratne et al., 2010].  The highly variable, spatially 

distributed nature of SWC is a result of multiple intertwined systems including soil 

characteristics, topography, plant biophysical properties, meteorological and irrigation 

conditions. In order to develop the required SWC data, one of three general processes are utilized 

[Petetropoulos, 2014]. 

1.5.1. Physically Based Soil Water Content 

The first method utilizes physical measurements of the in-situ root zone SWC.  The SWC 

is measured using the Gravimetric Soil Water Content Method (accepted standard of 

measurement), and soil water sensors, such as the Neutron Scattering (NP), Frequency Domain 
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Reflectometry / Capacitance (FDR), Time Domain Reflectometry (TDR), Resistance and 

Tensiometers [Petetropoulos, 2014].  The physically based methods are the most accurate, but 

have multiple drawbacks associated with their use.  The area of most concern is the lack of 

spatially distributed SWC data.  This is due to the time consuming and labor intensive nature of 

physically based SWC estimation [Finn, 2011].  The physically derived SWC are point 

measurements that are used to interpolate the spatially distributed SWC based on known physical 

and environmental conditions.  The vertical and horizontal variability of soils and crop 

characteristics make it difficult to interpolate the point measurements across an entire field 

[Hoffman et al., 2007]. 

The Gravimetric, NP and FDR will be discussed in detail in a Chapter 2.  For the general 

discussion in this section, the gravimetric SWC is the ratio of the mass (kg) of water present in a 

soil (Mw) sample to the dry mass (kg) of the soil sample (Ms) [Black, 1965]: 

   (1.1) 

The θm is then converted to the volumetric SWC (θv, m m-1) using the soil bulk density 

(ρb, g cm-3) and water density (ρw, g cm-3) [Black, 1965]: 

                         (1.2) 

1.5.2. Meteorological and Crop Coefficient based Soil Water Content 

The second method utilizes a root zone soil water balance, such as the Food and 

Agriculture Organization (FAO) Irrigation and Drainage Paper Number 56 Soil Water Balance 

Approach [Allen et al., 1998] to track SWC and depletion in the root zone [Neale et al., 2012].  
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The FAO 56 SWB will be addressed in detail in Chapter 2.  The losses or crop water usage, are 

estimated by using the American Society of Civil Engineers (ASCE) Environmental and Water 

Resources (EWRI) standardized evapotranspiration (ETref) and crop coefficients (kc), to derive 

the actual crop ET (ETa). Evapotranspiration is the loss of water from the surface to the 

atmosphere by the combined process of evaporation from any surface or bare soil, and 

transpiration from vegetation [Allen et al., 1998].  ET varies both spatially and seasonally, based 

on vegetative characteristics, soil water status and meteorological conditions [Allen et al., 1998].  

ET is affected by factors including solar radiation, wind speed, vapor pressure deficit, and air 

temperature [Li et al., 2009]. The crop coefficients are crop specific and vary with climate, water 

availability, and crop characteristics.  Crop coefficients (kc) are defined as the ratio of the crop 

ET to the ASCE-EWRI ETref [ASCE-EWRI, 2005]. 

   (1.3) 

There are two forms of crop coefficients, the mean kc and the dual kc.  The mean kc is 

calculated, including surface wetting events (e.g. irrigation), as the long-term average of the crop 

ET to the ETref.  The dual kc is estimated using the mean basal kcb, the stress coefficient (ks) and 

the soil evaporation coefficient (ke) [Neale et al., 2012].  The mean kc is used for long term 

planning, while the dual kc is used for irrigation scheduling [Hoffman et al., 2007].  The actual 

crop evapotranspiration (ETa) is calculated using the dual crop coefficient (kc), weather data, 

crop information and the reference evapotranspiration (ETref): 

 ( )ET k k k ETa cb s e ref      (1.4) 
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 where the ETref (mm d-1) is calculated using the ASCE-EWRI approach [Allen et al., 

1998 or ASCE-EWRI, 2005; respectively].   

   (1.5) 

ETref is the reference evapotranspiration, ( mm d-1 or mm h-1); Rn is the net radiation, (MJ 

m-2 d-1 or MJ m-2 h-1); G is the soil heat flux, (MJ m-2 d-1 or MJ m- 2 h-1); (es - ea) represents the 

vapor pressure deficit of the air, (kPa); es is saturation vapor pressure of the air, (kPa); ea is the 

actual vapor pressure of the air, (kPa); ∆ is the slope of the saturation vapor pressure temperature 

relationship, (kPa oC-1); γ is the psychrometric constant, (kPa oC-1); u2 is the wind speed at 2 m 

height (m s-1); T is the mean daily air temperature at 2 m height (oC)[ASCE-EWRI, 2005]. 

The FAO-56 SWB approach starts with a given soil water profile at field capacity (θFC,         

mm m-1).  Field capacity is generally defined as the amount of water held in the soil after excess 

water has drained away and the rate of downward drainage has decreased.  Once the SWB 

begins, the daily allowable depletion (or SWD), and root zone SWC are tracked by accounting 

for the losses (ETa, surface runoff (SRO), and deep percolation (DP)) and the gains of the system 

(net irrigation (In), net precipitation (Pn) and ground water capillary rise (GW)) [Hoffmann et al., 

2007].  The FAO 56 SWB will be describe in detail in Chapter 2. 

While using the FAO 56 SWB is an effective, cost efficient method for estimating crop 

soil water requirements, there are several factors that affect the accuracy of the results 

[Petetropoulos, 2014].  The first factor is the requirement of high quality meteorological data for 

the calculation of the reference ET at the field location.  The second factor is the uncertainty of 

the calculations of the crop coefficients for the site specific conditions related to soil water 
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availability, crop biophysical characteristics (homogenous canopy cover, etc.), environmental 

conditions, and other non-water related stresses [Hoffmann et al., 2007]. 

1.5.3. Remote Sensing of Soil Water Content 

The third method of estimating root zone SWC is through the use of remote sensing 

[Gowda et al., 2009a].  Remote sensing is the art and science of identifying, observing and 

measuring the radiation of different electromagnetic wavelengths reflected or emitted from an 

object without coming into direct contact [Petetropoulos, 2014].  While high resolution 

multispectral remote sensing is a relatively new field, remote sensing has been utilized for over 

160 years.  Beginning with primitive cameras tethered to balloons during the 1840’s to today’s 

satellite-based, high resolution, multispectral platforms, remote sensing has been used to 

document and explain the world around us [NASA Landsat].  The theory of remote sensing is 

based on comparing the wavelength specific reflective properties of different surfaces, and the 

emitted thermal radiation of all objects [Petetropoulos, 2014].   

1.5.3.1 Electromagnetic Spectrum 

Recently, RS has focused on using space-borne, aerial and ground-based multispectral 

imaging to map land cover and attributes [Petetropoulos, 2014].  RS focuses primarily on 

estimating ETa and crop vegetation indices (VI) [Finn, 2014].  The primary bands of the 

electromagnetic spectrum that have been studied, in regards to SWC, are the visible (VIS) (blue: 

0.45-0.49 µm, green: 0.49 – 0.57 µm, red: 0.62-0.75 µm), and near-infrared (NIR: 0.75-0.90 µm) 

to derive vegetation indices and spectral reflectance-based crop coefficients; and thermal infrared 

(TIR: 3.5-20 µm) to derive surface temperatures and surface energy fluxes [Petetropoulos, 2014].   
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1.5.3.2. Satellite Remote Sensing Platforms 

Historically, the focus of remote sensing research revolved around the use of satellite-

based platforms.  There are multiple satellite-based remote sensing platforms in earth’s orbit, 

such as the σational Aeronautics and Space Administration’s (σASA) Advanced Space-borne 

Thermal Emissions and Reflection Radiometer (ASTER), Moderate Resolution Imaging 

Spectroradiometer (MODIS), and the National Oceanic and Atmospheric Administration 

(NOAA) Advanced Very High Resolution Radiometer (AVHRR).  The most commonly used 

satellite-based remote sensing platform is the NASA Landsat series satellites [Petropoulos, 

2014].  The Landsat satellites have maintained continuous multispectral and thermal imagery 

coverage of the earth’s surface since July 1λ78 [NASA Landsat].  

 Satellite remote sensing platforms form the basis for many of the current SWC 

algorithms, due to their inexpensive, free in the case of Landsat, spatially distributed and readily 

available multispectral imagery [Petetropoulos, 2014].  However, there are major drawbacks to 

using satellite remote sensing data for precision agriculture applications.  The spatial resolution 

of the Landsat series satellites (Table 1.1) is approximately 30 m for the VIS and NIR bands 

while approximately 100 m for the TIR bands [NASA Landsat].  The relatively low spatial 

resolution of the data prohibits the development of management zones of less than 30 m by 30 m 

for use in SS-VRI systems.  The optimal spatial resolution for use in a zone management SS-VRI 

system is based on the area of influence for the individual sprinklers in order to develop efficient 

zones for each sprinkler head [Evans et al., 2013].  The lack of ability to produce more accurate 

management zones greatly reduces the effectiveness of a zone management SS-VRI system 

utilizing satellite-based RS.  All of the SWC algorithms require imagery under clear sky 

conditions (no cloud cover) for accurate estimation of SWC [Petetropoulos, 2014].  Satellite 
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platforms have a fixed overpass temporal resolution, 16 days for Landsat, which can cause 

multiple issues due to spatially and temporally variable meteorological conditions.  With the 

fixed overpass temporal resolution, weather condition, such as cloud cover or atmospheric haze, 

can render the data unsuitable for use with SWC algorithms [Petetropoulos, 2014].  In order to 

use the satellite-based remote sensing in SWC algorithms, the actual ET between overpasses 

must be interpolated from the RS data of the current and previous overpasses [Li et al., 2009].  In 

semi-arid (or arid) environments, or limited irrigation systems, the large temporal resolution does 

not allow the required accuracy to independently manage a precision irrigation system.  In the 

case of changing meteorological conditions between overpasses, the errors associated with 

interpolating SWC between overpasses greatly increases [Neale et al., 2012].  Additionally, 

satellite remote sensing data must be corrected for the atmospheric conditions (water content, 

particulate concentration, etc.) during the overpass [Hadjimitsis et al., 2004].   The drawbacks of 

the satellite platforms led researchers and the agricultural community to develop airborne 

multispectral remote sensing platforms that are more responsive to meteorological conditions 

and irrigation manager’s needs [Petetropoulos, 2014]. 
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Table 1.1. NASA Landsat 8 Characteristics [NASA Landsat, 2015] 
Remote Sensing Satellites 

Platform Band Wavelength 
(Micrometers) 

Spatial 
Resolution 
(Meters) 

Temporal 
Resolution 

(Days) 

LANDSAT 8 

1 - Costal Aerosol 0.43-0.45 30 

16 

2 - Blue 0.45-0.51 30 

3 - Green 0.53-0.59 30 
4 - Red 0.64-0.67 30 

5 - NIR 0.85-0.88 30 

6 - SWIR 1 1.57-1.65 30 

7 - SWIR 2 2.11-2.29 30 
8 - Panchromatic 0.50-0.68 15 

9 - Cirrus 1.36-1.38 30 

10 - TIR 1 10.60-11.19 100 (30) 

11 - TIR 2 11.50-12.51 100 (30) 

ASTER 

1 -Green1 0.52-0.60 15 

16 

2 - Red 2 0.63-0.69 15 

3 - NIR 3 0.76-0.86 15 
4 - SWIR 1 1.60-1.70 30 

5 - SWIR 2 2.145-2.185 30 

6 - SWIR 3 2.1858-2.225 30 

7 - SWIR 4 2.235-2.285 30 
8 - SWIR 5 2.295-2.365 30 

9 - SWIR 6 2.360-2.430 30 

10 - TIR 1 8.125-8.475 90 

11 - TIR 2 8.475-8.825 90 
12 - TIR 3 8.925-9.275 90 

13 - TIR 4 10.25-10.95 90 

14 - TIR 5 10.95-11.65 90 

1.5.3.3. Airborne Remote Sensing Platforms 

The development of airborne remote sensing platforms were primarily driven by their 

inherent payload and operational flexibility.  Airborne remote sensing platforms range in design 

from small Unmanned Aircraft Systems (sUAS) to multi-engine jets capable of high altitude 
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flights.  The flexibility of airborne remote sensing platform’s payloads afford operators the 

ability to customize the data collected to fit the analytical needs of the end user.  For SWC 

estimation, airborne remote sensing platforms attempt to mimic the Landsat multispectral 

collection capabilities of red, NIR and TIR bands [Chávez et al., 2009].    Colorado State 

University (CSU) and Utah State University (USU) are currently conducting research with sUAS 

and manned aircraft remote sensing platforms that collect optical imagery of the red, and green 

bands, as well as in the NIR and TIR bands of the electromagnetic spectrum.  The CSU Tempest 

and USU manned aircraft have a spatial (pixel) resolution of approximately 0.06/0.12 m 

(Tempest – VIS NIR / TIR) and 0.5/1.8 m (USU– VIS NIR / TIR) respectively [Chávez et al., 

2012].   The operational flexibility of airborne remote sensing platforms allow the rapid 

deployment of the platforms in response to changing weather conditions and/or data 

requirements.  The ability to adjust the timing and frequency of overpasses with the airborne 

systems are a significant advantage over the satellite remote sensing platforms.  Not only can 

data collection occur when the opportunity presents itself on cloudy days, but also the ability to 

fly more frequently allows for greater SWC estimation accuracy when using RS algorithms and 

SWBs.  The ability to vary flight characteristics of an airborne remote sensing platform are 

another benefit over satellite platforms.  By adjusting the flight parameters (e.g., flight speed and 

altitude), the spatial resolution of the imagery can be adjusted to meet the information 

requirements of precision agricultural irrigation system.  Additionally, based on the lower 

operating altitude of the aerial platforms, the amount of atmospheric correction is reduced. 

Therefore, reducing the error associated with the atmospheric corrections with the use of the 

multispectral imagery [Chávez et al., 2008]. 
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 The airborne remote sensing platforms are not without drawbacks.  Like satellite 

platforms, airborne systems must collect data during clear sky conditions.  Even though their 

flight schedules are adaptable, this is still a requirement for most of the algorithms.  Processing 

data from airborne remote sensing platforms is time consuming and requires in-depth technical 

knowledge by the operators [Gowda et al., 2008].  Satellite platforms cover large areas with a 

single image, 33,300 km2 (185 km swath) for the Landsat [NASA Landsat, 2015], while the 

airborne platforms cover much smaller areas, 0.0049 km2 (78 m swath) for the CSU Tempest 

UAS operating at 121 m AGL.  The smaller image footprint requires a greater amount of image 

pre-processing, calibration, and a significant increase in the amount of required digital storage.  

One of the largest drawbacks to airborne remote sensing platforms are the costs associated with 

their operation.  While there is an abundant amount of free data from satellite remote sensing 

platforms, vast majorities of airborne remotes sensing platforms are commercially purchased 

products or the equipment must be purchased by the operators [Petropoulos, 2014].  For 

example, the USU remote sensing aircraft cost approximately $3,666.67 per flight during the 

CSU Summer 2015 campaign and the overall purchase and development cost of the CSU 

Tempest is over $100,000.  The price of the airborne systems will decrease as the technology 

becomes more wide spread, but there will still be a significant investment for their operations. 

1.5.3.4. Ground-based Remote Sensing 

Ground-based remote sensing, with regards to SWC, have two main goals, estimation of 

SWC, and the validation and calibration of the aerial and space-borne remote sensing platforms’ 

raw data [Petropoulos, 2014].  Ground-based remote sensing platforms are deployed in a variety 

of methods, such as installation at fixed locations, hand-held or equipment (e.g. tractors) 

mounted sensors.  The sensors are used to collect point data, such as an infrared thermometer or 
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a multispectral radiometer (multi-band), or can collect spectral imagery with equipment similar 

to the aerial systems [Petropoulos, 2014].  The advantage of using ground-based remote sensing 

platforms are their capability to continuously collect data for use in the estimation of SWC.  

Another advantage to using ground remote sensing systems are their use in validating and 

calibrating data collected using aerial platforms.  By calibrating the aerial data with the ground 

data, a site-specific calibration can be developed for the aerial system, greatly reducing the 

amount of error from the aerial system [Chávez et al., 2012]. 

As with the other RS systems, ground-based systems have their own drawbacks.  The 

largest issue is that the data are not spatially distributed.  This requires interpolation from known 

points throughout the field, similarly to the physical methods of estimating SWC.  The collection 

of ground-based remote sensing data are very labor and knowledge intensive, as well as, time 

consuming due to the installation and operating requirements [Petropoulos, 2014]. 

There are multiple ways to acquire remote sensing data, all of which have their strengths 

and weaknesses.  The advantage of remote sensing is the ability to combine data from multiple 

sources, both physical and remote sensing, to develop the most accurate estimation of spatially 

distributed SWC [Petetropoulos, 2014].   

1.5.3.5. Remote Sensing SWC Algorithms 

The ability to derive the SWC for the entire root zone profile is still in its infancy, 

beginning in earnest in the 1λ70’s with the launch of the Landsat 1 satellite [Petropoulos, 2014].  

There are many different models that estimate the surface SWC and then extrapolate the SWC 

for the remainder of the root zone soil profile [Li et al., 2009].   A majority of the RS SWC 

models derive the SWC based on the estimation of intermediate processes, such as the 
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instantaneous ETa. The RS derived instantaneous ETa is calculated using one of multiple 

available algorithms based on the surface energy balance (SEB) methods, reflectance-based crop 

coefficient methods, thermal-based Crop Water Stress Index (CWSI) or many other methods 

[Gonzalez-Bugo et al., 2009].  A description of the SEBAL, METRIC and Triangle Methods can 

be found in Appendix 2.  Though effective, in order to exclusively use these models for irrigation 

scheduling in a precision agriculture system, the RS data would have to be available on nearly a 

daily basis [Neale et al., 2005].  For this reason, the most applicable derivation of SWC for PA 

utilizes a hybrid ET model, originally proposed by Neale et al.  The model for estimating SWC 

proposed by Neale et al. (2012) integrates RS derived ETa and reflectance-based crop 

coefficients with the FAO-56 SWB approach [Neale et al., 2012].  The Hybrid SWC model uses 

the SWB approach to continuously estimate the SWC between RS overpasses.  Data collected 

from RS overpasses are then used to develop the reflectance-based crop coefficients, as well as 

RS derived ETa.  They hybrid model was designed using the TSEB, but other, parameter 

appropriate RS algorithms for ETa can be used.  The RS derived ETa is assimilated into the FAO 

56 SWB ETa, which yields a more accurate estimation of the ETa [Neale et al., 2012].  The 

reflectance-based crop coefficient and updated ETa are then used to update the SWD and finally 

SWC in the crop root zone [Neale et al., 2005].   The hybrid model is based on the assumption 

that reflectance-based crop coefficients and ET derived through RS methods, are more accurate 

than traditional methods of estimating ET and tabulated basal crop coefficients [Neale et al., 

2012].  The hybrid model increases the accuracy of the FAO-56 SWB in two ways.  The first 

way is by updating the spatially distributed SWD in the soil water balance.  The second 

advantage is the adjustment of the spatially distributed crop coefficients based on actual growth 

and crop health conditions, used in the SWB [Neale et al., 2012].   
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1.5.3.5.1. Surface Energy Balance (SEB) Estimation of actual ET 

The SEB methods are the most commonly used methods of estimating ETa with RS data.  

The SEBs has its origins in the early work of Sone and Horton (1974) and Verma (1976) and 

their work with the Landsat RS data.  The SEB operate under the principle of the conservation of 

energy and calculate the latent heat flux (LE) as the residual of the surface energy balance 

(Figure 1.3) [Petropoulos, 2014].   

 
Figure 1.3. Surface Energy Balance (adapted from Petropoulos, 2014) 

The derivation of the spatially distributed (each pixel of the RS image) ETa uses the 

spatially distributed radiometric surface temperature and multispectral RS imagery, by 

calculating the LE as the residual of the surface energy balance equation: 
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   (1.6) 

where LE is the latent heat flux (W m-2), Rn is the net radiation (W m-2), G is the soil heat 

flux (W m-2), and H is the sensible heat flux (W m-2) [Moran et al., 1994; Kustas and Norman, 

1996; Gillies et al.,1997; Bastiaanssen et al., 1998].  In SEB methods, the Rn and G are 

accurately estimated using the SEBs models, while the H is calculated using multiple methods 

[Chávez et al., 2010].  The Rn is calculated as the sum of the incoming and outgoing long and 

short wave radiation budget, with inputs from remote sensing derived VIS, NIR and TIR, and 

physical/meteorological variables. [Monteith, 1973].  The G is calculated as a function of Rn, 

TIR RS data and VI’s [Bastiaanssen et al., 1998].   

In all of the SEB models the methods of calculating H are different, but all revolve 

around a measure of the difference (dT) in aerodynamic surface temperature (To, K) (or 

radiometric surface temperature (Tsfc, K)) and air temperature (Ta, K), and the aerodynamic 

resistance to heat transfer (rah, s m-1) [Gowda et al,. 2007].  

The main advantage of using the SEB methods is that by using the thermal RS imagery, 

ETa can be calculated without prior knowledge of the soil profile characteristics [Neale et al., 

2012].  The SEB methods can calculate the components as a single source (soil and canopy 

combined) or as a two-source (soil and canopy partition into separate components) energy 

balance [Li et al., 2009]. 

The main drawback of the SEB methods of estimating ETa is the requirement of high 

resolution physical and RS data.  For application in a precision agriculture system, RS data must 

have the spatial resolution to derive SWC that matches the PA capabilities.  Additionally, the 

SEB methods require high quality meteorological data for the site [Gonzalez-Dugo, 2008]. 

LE Rn G H  
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1.5.3.5.1.1. Single Source Energy Balance Methods 

The single source energy balance methods are based on the difference of the To (or Tsfc as 

an estimation of To) and Ta or between the temperatures of the dry and wet limits derived from 

ground-based meteorological and RS data [Li et al, 2009].  The direct temperature-based single 

source SEBs calculate H as a function of the To (or Tsfc) and the Ta.  While the dry and wet limit 

based single source methods assume ET boundary condition based on the model’s definition of 

maximum (“hot or dry”) and minimum (“cold or wet”) surface temperatures.  The minimum 

temperature is correlated with the maximum potential ET (ETp) and the maximum temperature is 

correlated with low or 0 ET [Li et al., 2009].  The wet and dry boundary conditions are based on 

individual pixels from the RS imagery.  The Surface Energy Balance Index (SEBI) developed by 

Menenti and Choudury, was the predecessor to the current single source models such as the 

Surface Energy Balance for Land (SEBAL) (see Appendix 2 for a description of the SEBAL 

method), Mapping Evapotranspiration at High Resolution with Internal Calibration (METRIC) 

(see Appendix 2 for a description of the METRIC method) and the Surface Aerodynamic 

Temperature (SAT) models.  The major differences between the models are how each calculate 

the sensible heat flux (H) and how they define the “hot” and “cold” boundary conditions or 

pixels.  The single source models are suited for locations with homogenous canopy covers, but 

lose accuracy over non-homogenous canopy covers due to calculating the components of the 

SEB as the combination of both the soil and canopy contributions [Li et al., 2009, Normal et al., 

1995]. 

The SAT method is a single source SEB model, but unlike the SEBAL or METRIC 

models, it does not use a linear relationship (dT) of the boundary conditions to calculate the 

difference in aerodynamic surface (To) and air temperatures (Ta).  Instead, the aerodynamic 
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temperature is calculated, pixel by pixel, as a function of the radiometric surface temperature 

(Tsfc), air temperature, Leaf Area Index (LAI) and wind speed (u) [Chávez et al., 2010].  For 

precision agriculture application, the SAT method is suited to high resolution, aerial-based RS 

data.  The SAT model produces spatially distributed ETa that are not limited by artificially 

enforced boundary conditions.  The SAT model was developed to address the overestimation of 

H when using the radiometric surface temperature (Tsfc) rather than the aerodynamic surface 

temperature (To) [Chávez et al., 2010].  Over homogeneous surfaces, Ts and To are generally 

equal, but over heterogeneous surfaces the values vary [Wenbin et al., 2004].  The over 

estimation of H is due to Tsfc generally being greater than To for unstable atmospheric conditions, 

and variance of the values over heterogeneous surfaces.   The over estimation of H lead to an 

under estimation of LE and consequently ETa [Chávez et al., 2010]. 

The SAT model is best suited for crop specific applications with UAS based remote 

sensing.  Chávez et al. (2005), as well as others (Mahrt and Vickers (2004), etc.) have developed 

crop specific estimations of To.  In order for more wide spread application of the SAT method, a 

generalized model of To needs to be developed [Chávez et al., 2010].  Additionally, crops under 

significant stress present a challenge to the SAT model due to the large variance between the To 

and Ts [Chávez et al., 2010].  The SAT Model will be discussed in detail in Chapter 2 utilizing 

data from the CSU Tempest UAS RS platform. 

1.5.3.5.1.2. Two Source Energy Balance (TSEB) 

 In order to address the issues of the single source SEB methods when dealing with 

heterogeneous canopy covers and elevated crop stress levels, the TSEB was developed by 

Norman et al. 1995.  The TSEB method [Norman et al., 1995] approaches the SEB by estimating 

the fluxes for the vegetation and soil background separately.  Depending on the model, the 
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resistances are either modelled in parallel or series.  The TSEB parallel resistances methods 

assume that the contribution of the canopy and the soil layers to the total sensible heat fluxes (H) 

depend on the difference in temperature of each of the layers (Tsfc) and the atmosphere (Ta).  

This is helpful when deriving ETa over heterogeneous surfaces because it does not require site-

specific calibration to account for varying biophysical conditions.  This allows for a more 

accurate estimation of the overall systems sensible heat flux (H), based on the composite canopy 

and soil values. [Hipps and Kustas, 2001].  The vegetation is separated from the soil using 

vegetation fractional cover (fc), which is derived from vegetation indices and LAI.  The TSEB 

model utilizes RS derived radiometric surface temperature (Tsfc), and multispectral imagery 

(NIR, red, green, and blue), as well as ground measured metrological data.  Of the SEB models, 

the TSEB is one of the most data intensive and technically complicated models and requires high 

resolution spatially distributed RS and meteorological data.  Since the development of the TSEB 

methods, it has been the subject of many studies utilizing airborne and satellite-based remote 

sensing [Sellers et al., 1992; Kustas et al., 2012; Chávez et al., 2009; etc.].  The current TSEB 

research focuses on using aerial-based remote sensing platforms, which have high spatial and 

temporal resolutions, for use with PA systems.  The TSEB Model will be discussed in detail in 

Chapter 2 utilizing data from the CSU Tempest UAS RS platform. 

1.5.3.5.2. Reflectance-based Crop Coefficients (kcbrf) 

The reflectance-based crop coefficient methods are based on the meteorological and crop 

coefficient based method discussed previously.  They differ in the method of ascertaining the 

crop coefficient (kcb).  The reflectance-based crop coefficients (kcbrf) are calculated using RS data 

of two or more bands of the electromagnetic spectrum, such as red and NIR [Neale et al., 1989].  

The multispectral imagery are used to calculate vegetation indices, such as the Normalized 
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Difference Vegetation Index (NDVI).  The NDVI is the ratio of the NIR and red bands.  The VI 

is then linearly related to the reflectance-based crop coefficient [Gonzalez-Dugo and Mateos, 

2008].  To estimate the other components (ke) of the dual crop coefficient, a soil water balance is 

utilized.   The reflectance-based crop coefficient is then used to calculate the ETa using a form of 

Eq. (1.3).  The reflectance-based crop coefficient method allows for the adjustment of the crop 

coefficients based on the spatial variation of soil characteristics, crop health, growths stage and 

water availability (i.e. water stress), instead of using the idealized conditions based on the growth 

stage and ETref [Neale et al., 2012].  The method only requires the NIR and red RS images and is 

a simple empirical model.  The benefit of the model is that it provides for an easy application for 

site-specific modeling of ETa and SWC over a spatially distributed area for use in precision 

agriculture irrigation management programs [Neale et al., 2012].  The Reflectance-based Crop 

Coefficient Model will be discussed in detail in Chapter 2 utilizing data from the CSU Tempest 

UAS RS platform. 

1.5.3.5.3. Thermal-based Crop Water Stress Index Method (CWSI) 

The CWSI method [Idso et al., 1981] is similar to the reflectance-based crop coefficient 

model, in that the CWSI is used to derive ETa from the reference ET.  The CWSI varies from 0 

(no stress) to 1 (maximum stress).  The difference between the two models is that the CWSI 

utilizes the RS thermal imagery instead of the multispectral (red, NIR) imagery.  The CWSI is 

derived from relating the difference (dT) in radiometric surface temperature (Tsfc) to the air 

temperature (Ta), similar to the SEBAL and METRIC models [Idso et al., 1981].  The method is 

based on the assumption that if there is sufficient water in the root zone, all available energy will 

be used by the plant for transpiration. Once all the water which the crop can easily extract 

(RAW) has been depleted from the root zone soil profile, available energy will cause heating of 
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the canopy (Maes and Steppe, 2012).   The CWSI is calculated as a ratio of the difference of dT 

and the lower limit boundary surface temperature (dTll) and the difference between the upper 

(dTul) and lower boundary surface temperature.  Where dTll is the lower boundary surface 

temperature (non-water stress condition, atmospheric controlled ET) and is a function vapor 

pressure difference (VPD).  The dTul is the upper boundary surface temperature (non-transpiring 

condition) and is a function of the vapor pressure gradient (VPG).  The spatially distributed ETa 

is calculated using the CWSI as a reduction coefficient for the potential ET (ETp), calculated 

from the reference ET and the basal crop coefficient [Idso et al., 1981]. 

The CWSI method shows promise for use in UAS-based RS PA irrigation systems 

because of its potential to detect stress sooner than the reflectance-based crop coefficients [Idso 

et al., 1981].  The drawbacks to the model are that empirical models must be developed for 

specific crops, its inability to estimate bare soil ETa, and the data requires collection after solar 

noon to be used without correction [Chávez et al., 2012, DeJonge et al., 2015].  The CWSI 

Model will be discussed in detail in Chapter 2 utilizing data from the CSU Tempest UAS RS 

platform. 

1.5.3.6. Instantaneous LE to daily ETa 

 The output of the SEB models are spatially distributed instantaneous LE, which are of very little 

use when implementing a precision agriculture irrigation management system.  When using a 

SEB model to calculate ETa, the instantaneous LE are converted to the instantaneous ETa and 

extrapolated to the daily ETa.  The instantaneous ETa is calculated using the following equation: 

   (1.7) 
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 where Ȝv is the latent heat of vaporization (J kg-1), ρw is the density of water 

(approximately 1,000 kg m-3) and ETa is the actual hourly ET (mm h-1) [Allen et al., 2007].  The 

extrapolation from the hourly ETa to daily ETa is accomplished using one of several methods.  

The two most common methods utilize the Evaporative Fraction (EF) or the Reference ET 

Fraction (ETrF) [Allen et al., 2007]. 

1.5.3.6.1. Evaporative Fraction (EF) 

The EF is calculated as the ratio of the energy fluxes at the time of the overpass.  The EF 

method is based on the self-preservation theory of daytime fluxes, which states that the ratio 

between the LE and the available energy remains constant throughout the day [Bastiaanssen, 

1998a, Shuttleworth et al., 1989]. 

   (1.8) 

where EFi is the instantaneous EF, and EFd is the daily EF.  The daily ETa is then 

calculated using the EF and the assumption that G tends to 0 for the entire day [Bastiaanssen, 

1998]: 

 86,400
EF RndETad v w 

    (1.9) 

The major drawback to the method is its dependence of all terms on the remote sensing 

data and preforms poorly in advective or arid environments [Allen et al., 2007].  To address this 

issue, the ETrF method was developed using both RS derived ETa and the ASCE- EWRI (2005) 

standardized reference ET. 

 

i d
n i

LE
EF EF

R G

     



27 

 

1.5.3.6.2. Reference ET Fraction (ETrF) 

The ETrF method estimates the pixel-by-pixel, daily actual ET of a RS image.  It utilizes 

both the RS derived hourly ETa and the ASCE-EWRI reference ET (ETref) to extrapolate the 

hourly ETa to the daily ETa [Allen et al., 2007].  The ETrF is calculated using the following 

equation: 

 
ETaiET Fr ETrefi

  (1.10) 

And the daily ETa is calculated utilizing the ETrF as a crop coefficient and the daily 

ASCE-EWRI reference ET (ETref): 

 ET ET F ETa r refd d   (1.11) 

As with the EF method, the ETrF is assumed as constant throughout the day [Allen et al., 
2007]. 

1.6. Objectives 

To meet the increasing demands on the global fresh water supply, all aspects of society 

must become more efficient in their water use.  In the agricultural sector, the technology, ranging 

from SS-VRI systems to frequent, economical, high resolution, and spatially distributed RS 

derived irrigation planning models, have the potential to greatly reduce the overall water usage, 

while expanding the overall output to meet the increasing needs.  The focus of the agricultural 

community, both operations and research, must focus on developing economical, applicable 

technology and systems that will provide incentive for large-scale implementation of the 

precision agriculture systems.  The development of the SS-VRI, and other efficient PA systems, 

has created a need for high temporal and spatial resolution crop water requirement data.  Ground-
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based measurements of crop water requirements are accurate, but are not an economically viable 

method for implementation in a spatially distributed PA system.  On the other hand, the space-

borne RS platforms are economically feasible, but lack the temporal and spatial (pixel) resolution 

required to independently provide the required inputs to a PA system.  Development of airborne 

RS platforms, both manned and UAS, is prompted by the need to create a systematic approach 

that utilizes ground, aerial and space-borne data collection for implementation in PA systems.  

The systematic approach will create high resolution spatial and temporal SWD information for 

input into the PA systems.  This will involve tracking the daily SWB (FAO-56 SWB) using 

ground measurements and ET models.  The SWB will be updated using aerial RS.  The 

systematic approach will provide responsive, efficient and economical, spatially distributed 

SWD information for the implementation of a PA system at the field level. 

The overall goal of the study was to integrate an UAS and ground-based RS to estimate 

ETa and SWD through the vegetation soil root zone over variable vegetation cover densities, in 

order to develop sustainable land management at the field level.  The overall goal will be 

accomplished by comparing the performance of the Colorado State University (CSU), 

Department of Civil and Environmental Engineering (CEE) Tempest RS UAS platform vs. 

ground-based remote sensing data and physically measured SWD.  The specific objectives are: 

1. Evaluate the quality and relevance of data collected by the Tempest UAS RS platform 

when compared to data collected by ground-based methods. 

2. Evaluate four RS ETa algorithms (TSEB, SAT, CWSI, Kcb) using data collected by the 

Tempest UAS during the Summer 2015 RS campaigns at the primary test location, 

Agricultural Research Development and Education Center (ARDEC).  The accuracy of 

each method will be computed using the mean biased error (MBE) and root mean squared 
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error (RSME) when compared with the physically measured ETa calculated by a neutron 

probe (NP) soil water sensors.  Identify the most appropriate ETa algorithm for use in the 

SWD estimation. 

3. Estimate the spatially distributed SWD of the test locations utilizing the most appropriate 

RS derived ETa.  The SWD will be estimated using the Hybrid SWB model develop by 

Neale et al. (2012). 

4. Development and approval of the licensing, technology, and methodology associated with 

the CSU Tempest UAS. 

5. Provide suggestions and recommendations for future CSU RS for agricultural research. 

At the completion of the study, a practical procedure will be developed to provide 

estimates of the distributed SWD through the use of multispectral sensors integrated with the 

Tempest UAS.  The ability to accurately and efficiently estimate the distributed SWD and ETa 

will allow the increase of the overall efficiency at the end user level by providing timely data for 

site specific irrigation (i.e., water management), land management, in the form of trafficability 

(machinery transit), and the application of agro-chemicals as part of an integrated precision 

agricultural management program.  Additionally, Colorado State University (CSU) will develop 

and implement a comprehensive UAS program that encompasses the operational approval 

process, flight crew certification, and operational planning at both the Department and University 

level.  With an established UAS program, and loosening Federal Aviation Administration (FAA) 

regulations, Departments that are not historically focused on aeronautical research will be able to 

conduct research with UAS’s. 
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CHAPTER 2: METHODS 
 
 
 

The study focused on the evaluation of the Tempest UAS’s ability to provide quality and 

relevant data as inputs for the RS models used to estimate ETa and SWD at the field scale.  

Multispectral and thermal RS imagery and ground-based thermal and multispectral data were 

collected at the primary test location during the summer of 2015.  The spatially distributed RS 

data was used to derive the spatially distributed ETa and SWD of the test location.  The ETa and 

SWD were then evaluated using the measured NP and FAO-56 SWB derived ETa and SWD.  

The primary test location, during the summer 2015 RS campaign, was the CSU Agricultural 

Research Development and Education Center (ARDEC – Fort Collins, CO).   

The study was conducted over four phases.  During the first phase (Phase 1 – 

UAS/Sensor Integration and Certification), the sensors were integrated with the UAS platform, 

and the certifications for UAS research operations at the test location was submitted and 

approved.  The second phase (Phase 2 – Ground-based SWD Measurement) consisted of the 

ground-based data collection of the SWD and multispectral data at the test location.  The 

collection of the RS data over ARDEC field 1070 occurred during the third phase (Phase 3 – 

Remote Sensing Campaign) of the study.  Phases two and three occurred simultaneously in order 

to allow both spatial and temporal comparison of the data acquired from the test location.  The 

fourth phase (Phase 4 – Data Analysis and Comparison) consisted of the analysis and 

comparisons of the data collected during phases two and three.   

The following sections provide an overview of the study’s details and experimental 

design.  The first section describes the RS instrumentation and the development of the CSU 

Tempest UAS RS platform.  The second section describes the test location, ground-based 
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instrumentation and data collection.  The third section discusses the CSU Tempest and the USU 

RS campaign, and the description of the RS data.  The final section contains the methodology of 

the individual models utilized in deriving the ETa and SWD, and the statistical analysis used in 

the evaluation and performance comparison. 

2.1. UAS/Sensor Integration and Certification 

The first phase of the study focused on the development and integration of the sensors 

with the Tempest, the pilot certification process and the approval of the flight authorizations for 

the Tempest.  These tasks were completed by simultaneously focusing on two lines of effort 

(LOE).  The first LOE focused on the preparation of the Tempest UAS for the RS campaign.  

The second LOE addressed the legal requirements of flying the Tempest in US national airspace. 

2.1.1. Tempest UAS 

The Tempest UAS (UASUSA, Inc., Longmont, CO, USA) (Figure 2.1) is a commercially 

purchased UAS platform based on a long range, fixed-wing, radio control (R/C) aircraft that was 

originally designed for flight operations in tornado-prone thunderstorms.  The system is fully 

autonomous, with all flight and RS operations controlled through an on-board autopilot.  The 

autonomous controls provide the stable platform required to collect high-resolution RS data. 

 
Figure 2.1. Colorado State Universities Tempest UAS (Photo by CPT Jeffrey Hathaway) 
 

The Tempest was a logical choice for adaptation into a high-resolution RS platform due 

to the inherent stability and efficiency of the design.  The adaptability of the platform provides 
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the required flexibility to adjust sensor payloads and flight parameters to meet the data collection 

needs.  The specifications of the Tempest UAS are depicted in Table 2.1. 

Table 2.1. Tempest UAS Performance Specifications [UASUSA, 2015] 

Specifications 

Wingspan 127" (251 mm)  

Wing Area 1016 sq in (0.65 sq m) 

Empty Weight 10 lbs (4.54 kg) 

Nominal GTOW 11 lbs (5 kg) 
Maximum 
GTOW 20 lbs (9.07 kg) 

Wing Loading 20.6 oz/sq ft 

Length 61.375" (1524 mm) 

Airfoil MH-32 
Center of 
Gravity 

3.5" from leading edge of the wing 
(89mm) 

Stall Speed 20 mph 

Cruise Speed 50 mph 

Max Speed 100 mph 

Max Range 60 mi (52.14 NM) 

Radio Range 10 mi (8.69 NM) 

Flight Time 1.5 HR 
 

The Tempest initially was integrated with five commercially available sensors, which 

was narrowed to three sensors based on the ability of the sensors to successfully integrate with 

the autopilot.  The sensors were selected for their ability to collected multispectral and thermal 

imagery over the same bands as ground-based RS systems and the Landsat satellites.  The 

specifications for the sensors’ spectral and temporal resolution are described in Table 2.2 and 

Appendix 1.  The final payload for the Tempest UAS included a multispectral (NIR, red, and 

green) camera [ADC SNAP, Tetracam Inc., Chatsworth, CA], a thermal infrared (TIR) camera 

[Tau 2 640, FLIR, Wilsonville, OR], and a digital camera (red, green, and blue) [SRL A6000 
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digital camera, Sony Global, Tokyo, Japan].  The CSU Tempest UAS is described in detail in 

Appendix 1. 

Table 2.2. Tempest UAS Sensor Performance Specifications 

Sensor nm µm Wavelength 130 m (AGL) 
Resolution 

FLIR TAU 2 7500 13,500 7.5 13.5 Thermal 11.76 cm 
Tetracam SNAP 

ADC 
520 920 0.52 0.92 green, red, NIR 6.5 cm 

Sony A6000 390 780 0.39 0.78 Visible (RBG) 9.5 cm 
 

2.1.2. CSU UAS Certification 

The operation of the Tempest in the United States National Airspace (NAS) is tightly 

controlled by the Federal Aviation Administration (FAA).  The authorizations required to 

conduct research are separated into two main categories: Pilot Certification and Aircraft 

Certification. 

The CSU Tempest pilot certification programs are described in Appendix 1.  The 

certification processes of the Tempest pilots are in accordance with FAA Notice 8900.1 and Title 

14 of the Code of Federal Regulations (14 CFR).  The certification process involves both formal 

and informal flight training, liability insurance, and a FAA Class 2 medical exam.  The purpose 

of the CSU pilot certification program is to ensure the safety of the public and equipment 

associated with CSU UAS research operations. The flight training program, in preparation for 

the data collection flights, is a multi-staged program.  The first stages of flight training are 

conducted using small scale R/C aircraft to develop the fundamental flight skills required to 

successfully fly the Tempest.  The CSU program uses the Radian Parkzone R/C Aircraft [Radian 

PNP, Parkzone Inc., Champaign, IL] during the first stage of flight training and for refresher 

training during periods of low flight densities.  The Radian uses throttle, rudder and elevators to 

provide basic flight controls.  Upon completion of stage one, CSU pilots transition to the Radian 
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Pro R/C aircraft [Radian Pro PNP, Parkzone Inc., Champaign, IL].  In addition to throttle, rudder 

and elevator, the Radian Pro utilizes ailerons and flaps to provide realistic simulation of the 

Tempest flight controls.  The specification and imagery for the Radian and Radian Pro are found 

in Table 2.3 and Figure 2.2.  Once the Radian Pro flight controls have been mastered, the final 

stage of flight training is conducted on the Tempest UAS.  The final stage includes training with 

the Tempest’s manual flight controls, takeoff and landing procedures, and the SwiftPilot 

Autopilot. 

Table 2.3. Radian and Radian Pro R/C Aircraft Specifications. 
Radian and Radian Pro Specification 

 Radian and Radian Pro 

Wingspan 78.5 in 

Length 45.0 in 

Flight Time 30 min 

Weight 34.6 oz 

 

 
Figure 2.2. Colorado State Universities Radian and Radian Pro R/C Aircraft [Parkzone.com] 

The aircraft certification for the Tempest UAS is based on the FAA’s Certificate of 

Approval or Waiver (COA).  The COA process allows public entities (Government, State 

Universities, etc.) to conduct flights in the NAS.  The COA is a process in which the FAA 
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approves UAS to fly in specified location [FAA Notice 8900.1; 14 CRF].  The COA is the 

process that certifies that an incident at the approved location has the minimal probability of 

damage to personnel or property.  To date, CSU has submitted three COAs, with five locations 

approved for flight operations.   

2.2. Ground-based SWC Measurements 

The second phase of the study focused on the collection of ground-based measurement of 

the SWC and RS data at the test location.  Data collection was conducted throughout the 2015 

growing season.  The ground-based measurements were used for the comparison and evaluation 

of the Tempest RS derived data. 

2.2.1. CSU ARDEC 

The primary test location for the study was the CSU Agricultural Research Development 

and Education Center (40o 39.293’ σ 104o 59.848’, Elevation – 1551 meters).  ARDEC is an off 

campus agriculture research center, approximately 4 miles north of Fort Collins, CO.  ARDEC is 

operated and maintained by the Colorado Agricultural Experiment Station and consists of 1,065 

acres dedicated to agricultural research. 

ARDEC field 1070 (Figure 2.3) consists of 2.79 acres irrigated with a pressurized lateral 

move sprinkler system.  The test location is divided into twelve plots (23 m x 27.43 m) and 144 

sub-plots (4.5 m x 4.5 m) as shown in Figure 2.3 and Figure 2.4.  
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Figure 2.3. CSU ARDEC Field 1070 layout during the summer 2015 Tempest UAS RS 
campaign. 
 

The plots are divided into three irrigation treatments, with four replication of each 

treatment, as shown in Figure 2.3.  The “Full” irrigation plots received one inch (In = 25.4 mm) 

of irrigation weekly to replicate the replacement of 100% of the ETa.  The “Limit” irrigation 

plots received one inch of irrigation weekly after the growth stage of the corn.  The “Drought” 

plots received no irrigation during the growing season.  Table 2.3 displays the irrigation schedule 

and amounts applied to the treatments during the 2015 growing season. 

The plots were further divide into four columns (4.5 m x 27.43 m) that received four 

treatments, replicated four times, of various varieties of corn (P9697AM, P8954AM, P9675AM 

and P9305AM (annotated on Figure. 2.4).  The sub-plots were subjected to five soil treatments 

(Control, Manure, Biochar and Manure, Biochar, and Null (bare soil)) replicated 12 times.  A 

summary of the key dates for ARDEC 1070 are found in Table 2.4.
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Figure 2.4. CSU ARDEC 2015 Treatments and Instrumentation 
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Table 2.4. ARDEC field 1070 2015 Key Dates  

Event Date 
Full Irrigation 

(mm) 

Limited 
Irrigation 

(mm) 

Drought 
(mm) 

Planting 15 May 2015 - - - 
Emergence 31 May 2015 - - - 

Tassel 21 July 2015 - - - 
Irrigation 1 16 July 2015 25.4 - 25.4 
Irrigation 2 23 July 2015 25.4 - - 
Irrigation 3 31 July 2015 25.4 25.4 - 
Irrigation 4 06 August 2015 25.4 25.4 - 
Irrigation 5 14 August 2015 25.4 25.4 - 
Irrigation 6 20 August 2015 25.4 25.4 - 
Irrigation 7 28 August 2015 25.4 25.4 - 
Irrigation 8 03 September 2015 25.4 25.4 - 
Irrigation 9 11 September 2015 25.4 25.4 - 
Irrigation 10 18 September 2015 25.4 25.4 - 

 
2.2.2. Instrumentation and Data Collection 

During the summer 2015 growing season, the physical conditions at ARDEC 1070 were 

monitored utilizing soil water sensors, gravimetric sampling, Colorado Agricultural 

Meteorological Network (COAGMET) weather station and ground-based RS.  The ground-based 

data collected from ARDEC field 1070 were used in comparison with the Tempest UAS derived 

RS raw data, ETa and SWD. 

2.2.2.1. SWC and SWD Data Collection 

The SWC was primarily measured throughout the season using the following sensors: 

neutron moisture meter (NP) (503DR AM-241, CPNInstrotek, Concord, CA) and a Capacitance 

(5ET, Decagon Devices Inc., Pullman, WA) SWS.  The SWC from the SWSs were used to track 

the SWB of the irrigation treatment on the daily and seasonal basis.  In order to increase the 

accuracy of the SWS, site specific calibration of the SWS were developed using the gravimetric 

SWC as described in Chapter 1. 
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Weekly SWC was measured using forty-eight NP access tubes dispersed throughout the 

twelve plots.  In each plot, NP access tubes were place in four of the control subplots.  The NP 

layout of ARDEC 1070 is shown in Figure 2.4.  NP measurements were taken to a depth of 152 

cm at an interval of 30.48 cm.  For this study, the maximum root zone depth was assumed to be 

152 cm.  According to Huisman et al. (2003), the accuracy range for NPs are typically between 

0.01 and 0.024 mm/m when calibrated using gravimetric SWC [Huisman et al., 2003].  The NP 

data collection corresponded with aerial RS campaign dates.  The SWC was used to estimate the 

SWD used in the comparisons with the Tempest derived SWD. 

Hourly SWC was measured using forty Decagon 5TE capacitance SWSs.  The 5TE 

SWSs were installed in twenty locations throughout the ARDEC 1070 study site (as shown in 

Figure 2.4).  The sensors were installed in pairs, at depths of fifteen and forty-five cm.  The 5TE 

SWS measured the SWC at one hour intervals throughout the growing season.  The published 

accuracy range of the 5TE is between 0.01 and 0.03 mm/m when calibrated using the gravimetric 

SWC [5TE Manual].  

Site-specific calibrations for the NP and 5TE SWS were developed using the Gravimetric 

SWC method as described by Varble et al. (2011).  The gravimetric sampling was conducted 

twice during the 2015 growing season [Varble et al., 2011].  During each sampling session, six 

samples were taken to a depth of 150 cm.  Half of the samples were taken in the fully irrigated 

treatments and the other half were taken in the drought treatments.  The gravimetric method has 

an accuracy between 0.01 and 0.024 mm/m (approximately 0.3% of volumetric SWC) [Topp et 

al., 2002]. 

The meteorological data, used for the FAO-56 SWB was obtained from the on-site 

COAGMET weather station (CSU ARDEC – FTCO3, 105o N 40.6525o W, Elevation 1551 m, 



40 

 

www.coagmet.com).  The COAGMET Station is approximately 288 meters to the south east of 

ARDEC 1070 and provides hourly meteorological data for the ARDEC complex.  The available 

ground-based data for ARDEC field 1070 are described in Table 2.5.   

Table 2.5. ARDEC 1070 Ground Data Collection Dates for comparison with Tempest UAS RS 
 

Date 
 

Multispectral 
 

Thermal 
 

Neutron 
Probe 

 
Gravimetric 
Sampling 

 
5TE 

22 Jul 2015 X X X  X 

27 Jul 2015   X X X 

30 Jul 2015 X X X  X 

13 Aug 2015 X X X X X 

19 Aug 2015 X X   X 

20 Aug 2015   X  X 

10 Sep 15 X X X  X 

 

2.2.2.2. Remote Sensing Data Collections 

Ground-based RS data collection at ARDEC 1070 were conducted utilizing the following 

sensors: multispectral sensor (MSR5, CROPSCAN Inc., Rochester, MN) and an infrared 

thermometer (IRT) (SI-212, Apogee Instruments Inc., Santa Monica, CA).  The spectral 

reflectance (%) was measured using the MSR5, while the surface temperature (Tsfc) was 

calculated using the IRT (oC). 
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The MSR5 is a Landsat equivalent, hand held radiometer (multispectral) that measures 

the incoming and reflected irradiance flux of the blue (450-520 nm), green (520-600 nm), red 

(630-690 nm), NIR (760-900 nm) and TIR (1550-1750 nm) bands of the electromagnetic 

spectrum [MSR 5 Manual].  The IRT is a hand-held infrared thermometer that is integrated with 

the MSR5 system (nadir looking) and collects over the TIR (800-1400 nm) band [IRT Manual].  

The spectral reflectance and surface temperature measurements were taken weekly, under mostly 

clear sky conditions, corresponding with the Tempest UAS and USU RS campaigns. 

Data collection with the MSR5 and IRT occurred over multiple surfaces for comparison 

with the aerial RS data.  The first surface was the white lambertian reference target (Spectralon 

24” x 24” White Target, Labsphere, North Sutton, NH).  The second reference target was a black 

surface, comprised of flat black paint and plywood.  Additionally, data collection occurred over 

at least 10 selected sub-plots and bare soil during every RS overpass for further comparison with 

the aerial RS data.  The ground-based RS data collected throughout the sub-plots were taken over 

the NP access tube locations.  Appendix 1 depicts the RS references targets. 

2.2.2.3. ARDEC Survey 

All measurement and site layout locations were verified using Real Time Kinematic 

(RTK) Global Positioning System (GPS) surveying methods.  The RTK GPS Survey ensures that 

all locations are geo-referenced to an accuracy of 1 to 2 cm [Rydlund, 2012].  The study required 

the survey to ensure the correct locations of all measurements used in the comparison of the 

ground data and aerial RS data. 

2.3. Aerial Remote Sensing Campaign 

During the summer 2015 aerial RS campaign, CSU, in coordination with USU, 

conducted three manned RS flights and seven Tempest UAS RS flights over the primary and 
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alternate test locations.  The aerial RS flights were multi-disciplinary operations that involved 

ground and aerial activities.  All aerial RS operations were conducted concurrently with ground-

based data collection operations.  The CSU Tempest conducted five RS flights at CSU ARDEC, 

one at CSU AVRC (18 September 2015) and one at NWCG (23 September 2015).  The USU 

manned aircraft conducted three flights covering CSU ARDEC, USDA-ARS LIRF and NWCG.  

The USU flights were conducted in conjunction with the CSU Tempest for the ARDEC flights.  

The available data from the 2015 RS campaign are described in Table 2.6.   

Table 2.6. CSU and USU Aerial Remote Sensing Flights and Data Available 

  

The primary flight location was the ARDEC field 1070.  The RS campaign included 

ground collection operations and flight operations.  The flight team consisted of the primary and 

alternate pilots, who were responsible for the flight, airspace control and aerial RS data 

collection.  The primary launch and recovery location was located on an alfalfa field 

approximately 800 meters to the west of ARDEC 1070.  During the 2015 RS campaign, the CSU 

Tempest maintained a flight level of between 91 and 121 m and a flight speed between 17 and 19 

meters per second (m s-1) to ensure safe operations and maintain a spatial resolution of 12 cm or 

less.  The USU manned aircraft maintained a flight level of 365 meters and maintained a spatial 

resolution of 0.5 meters (1.8 m for the TIR).  Appendix 4 contains the Tempest and USU data.  

Date Location Multispectral Thermal Multispectral Thermal

22-Jul-15 ARDEC X - - -
30-Jul-15 ARDEC X - X X
13-Aug-15 ARDEC X X - -
19-Aug-15 ARDEC - X X X
10-Sep-15 ARDEC X X X X
18-Sep-15 AVRC X X - -
23-Sep-15 NR X X - -

Tempest

Available Remote Sensing Data - CSU ARDEC Field 1070

USU

Data used in study
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In order to collect pertinent data, all flights occurred between 1000 and 1300 Mountain Standard 

Time (MST) and under mostly clear sky conditions.   

The CSU Tempest UAS collected high resolution, spatially distributed multispectral 

imagery of the test location.  The multispectral imagery (NIR, red and green) have a spatial 

(pixel) resolution of approximately 6.5 cm.  The multispectral imagery was processed using the 

factory provided software (Pixelwrench2, Tetracam Inc., Chatsworth, CA) and was reported as 

spectral reflectance (%).  The multispectral imagery are provided as a geo-referenced, false color 

image (RGB) of the NIR, red and green bands (red – NIR, green – red, blue – green) (Figure 

2.5).  The thermal (TIR) imagery have a spatial (pixel) resolution of approximately 11.76 cm.  

The thermal imagery were processed using the factory provided software (Thermalviewer, TeAx 

Technology UG, Wilnsdorf, Germany) and were reported as oC.  The thermal imagery were 

provided as a geo-referenced, monochromatic images scaled between the maximum and 

minimum scene temperatures (Figure 2.6).  The VIS (red, green, and blue) imagery have a 

spatial (pixel) resolution of approximately 9.5 cm.  The VIS imagery were provided as a geo-

referenced RGB image (Figure 2.7).  All RS imagery were geo-referenced and processed using 

ERDAS Imagine 2015 geographic information system (GIS) software [ERDAS Imagine 2015, 

Hexagon Geospatial, Cape Town, South Africa].  The pre-preprocessed data were geo-rectified 

using the RTK surveyed ground control points and the ERDAS Imagine GIS software.  At least 

ten ground reference points for each RS image in order to ensure proper alignment of all RS 

imagery and ground-based data.  Mosaicking of the geo-rectified using the ERDAS Imagine GIS 

software.  During the CSU Tempest RS overpasses, data collection occurred with approximately 

70% image overlap, both horizontally and vertically, to ensure acceptable data was obtained of 

field 1070.   
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The USU manned aircraft acquired high resolution images in the VIS, NIR, and TIR 

bands of the electromagnetic spectrum.  The USU RS payload consisted of three Kodak 

Megaplus digital frame cameras (green: 545-560 nm; red 665-680 nm; NIR: 795-809) (Eastman 

Kodak Company, Rochester, NY) and a thermal infrared camera (TIR: 800-1200 nm) 

(Inframetrics 760, Inframeterics, N. Billerica, MA). The VIS and NIR has a spatial (pixel) 

resolution of 0.5 m (Figure 2.8) and the TIR has a resolution of 1.8 m (Figure 2.9) at the 395 m 

AGL flight level [Chávez et al., 2012].  The USU data were processed using the ERDAS 

Imagine 2015 software.  The USU data supplemented data missing from the Tempest UAS and 

to provide aerial RS imagery over the LIRF-ATM. 
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Figure 2.5. 10 September 2015 CSU Tempest false color multispectral (NIR, red, green) imagery 
(121 m AGL with a spatial resolution of 6.5 cm) of ARDEC Field 1070 using the Tetracam Snap 
ADC multispectral sensor. 



46 

 

 
Figure 2.6. 10 September 2015 CSU Tempest false color TIR imagery (121 m AGL with a 
spatial resolution of 11.76 cm) of ARDEC field 1070 using the FLIR Tau 2 640 thermal sensor. 
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Figure 2.7. 13 August 2015 CSU Tempest visual (RGB) imagery (121 m AGL with a resolution 
of 9.5 cm) of ARDEC field 1070 using the Sony A600 SRL digital camera. The shadow is a 
result of non-optically calibrated data. 
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Figure 2.8. 30 July 2015 USU false color multispectral imagery (365 m AGL with a spatial 
resolution of 50 cm) of ARDEC Field 1070 using the Kodak Megaplus digital frame cameras. 
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Figure 2.9. 10SEP15 2015 USU false color TIR Imagery (365 m AGL with a spatial resolution 
of 1.8 m) of ARDEC field 1070 using the Inframetrics 760 thermal sensor. 
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2.4. Data Analysis and Comparison Methodology 

The data analysis and comparison of the study consists of two parts. The first analysis 

was between the raw multispectral and thermal data collected through the ground (MSR5 and 

IRT) RS and aerial (Tempest UAS) based remote sensing.  The second part consisted of the 

comparison of the four aerial RS derived ETa methods and Hybrid derived SWD to the NP and 

FAO-56 SWB derived ETa and SWD.  The RS derived SWD were derived using the most 

appropriate ETa method utilizing the Hybrid model developed by Neale et al. 2012. 

2.4.1. CSU Tempest UAS Raw RS Data 

The Tempest raw RS data were directly compared to the data collected on the ground 

with the MSR5 multispectral scanner.  During the overpasses, the ground team collected multiple 

data sets from each treatment, the white and black references, bare soil, grass and water.  Due to 

the settings of the internal calibration of the sensors on the Tempest, the water, white and black 

references were not used for the evaluation.  A minimum of ten locations, spread throughout the 

test site, were selected for use in the evaluation against the Tempest RS data. 

2.4.2. ETa Models 

The study focused on deriving ETa from aerial RS imagery (NIR, red, green and TIR).  

The multispectral (NIR, red and green) and thermal (TIR) imagery collected from the Tempest 

and USU manned aircraft were used to derive spatially distributed ETa using four methods.  The 

methods include both single and two-sourced surface energy balance models as well as 

reflectance and thermal-based models.  All of the methods were developed for vegetative 

surfaces and do not accurately depict the ET of bare soil.  The four methods of calculating ETa 

are as follows: 
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1) Two-Source Energy Balance Method.  

2) Surface Aerodynamic Temperature Method. 

3) Crop Water Stress Index. 

4) Reflectance-based Crop Coefficients. 

The hourly ETa (mm/h) calculated using each method were extrapolated to the daily ETa 

(mm/d) using Eq. (1.10) and Eq. (1.11).  The extrapolation method, ETrF, remained constant 

across the methods to prevent additional error while comparing the methods.  All of the models 

were processed using the ERDAS Imagine 2015 GIS software and models created in the Spatial 

Model Builder program. 

2.4.2.1. Surface Energy Balance Methods 

In the SEB methods (TSEB and SAT), the Rn are calculated as the sum of the incoming 

and outgoing long and short wave radiation, with inputs from VIS, NIR and TIR RS data, as well 

as physical and meteorological variables. [Monteith, 1973].  

  (2.1) 

where α is the surface albedo, Rs is the incoming short wave radiation (W m-2), εa is the 

emissivity of the air, ı is the Stefan-Boltzmann constant (5.67xE-08, W m-2 K-4), Ta is the air 

temperature (K), εs is the surface emissivity, and Tsfc is the radiometric surface temperature (K). 

 The G is calculated as a function of Rn, TIR RS data and VI’s [Bastiaanssen et al., 1λλ8].  

A common method of estimating G utilizing RS is described in Chávez et al., 2005. 

   (2.2) 

4 4(1 )R R T Tn s a a s sfc       

(((0.3324 ( 0.024 )) (0.8155 ( 0.3032ln( )))) )nG LAI LAI R      
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where LAI is the leaf area index (m2 m-2) and is calculated using the NIR and red RS 

spectral reflectance data [Anderson et al., 2005]: 

  (2.3) 

where OSAVI is the Optimized Soil Adjusted Vegetation Index [Rondeaux et al., 1996]: 

  (2.4) 

In all of the SEB models, the methods of calculating H are different, but all revolve 

around a measure of the difference (dT, K) in aerodynamic temperature (To, K) (or radiometric 

surface temperature (Tsfc, K)) and air temperature (Ta, K), and the aerodynamic resistance to heat 

transfer (rah, s m-1).   

  (2.5) 

where ρa is the moist air density (kg m-3), Cpa is specific heat of dry air (J kg-1 K-1).  The 

rah is dependent on the crop characteristics and atmospheric conditions.  The rah are corrected for 

atmospheric stability conditions utilizing the Monin-Obukhov similarity theory [Monteith and 

Unsworth, 1990].  The atmospheric stability correction follows the iterative process outline by 

Chávez et al. (2005). 

   (2.6) 

where Zm is the height of the wind speed measurement (m), d is the zero-plane 

displacement height (m), Zoh is the roughness length for heat transfer (m), ψh is the stability 

6 15.64(4 0.8) (1 4.73 10 )OSAVILAI OSAVI e       

(1 )( )L NIR RED
OSAVI

NIR RED L
   

( )Cp dTa aH
rah

  

ln( ) ( ) ( )

*

Z d Z d Zm m oh
h hZ L Loh mo morah u k

   

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correction factor for atmospheric heat transfer, Lmo is the Monin-Obukhov atmospheric stability 

length scale (m), u* is the friction velocity (m s-1) and k is the von Karman constant (0.41).  The 

Zm, d, and Zoh are a function of the canopy height, which can be estimated using RS or based on 

physical measurements. 

2.4.2.1.1. Two-Source Energy Balance Model (TSEB) 

The TSEB [Neale et al., 2012], as discussed previously, computes the components of the 

surface energy balance, net radiation (Rn), soil heat flux (G), and sensible heat flux (H), 

separately for the canopy and the soil components of a RS image.  The fluxes are computed 

using the high spatial (pixel) resolution aerial RS imagery (NIR, red, green and TIR). The TSEB 

is an iterative method that calculates the initial fluxes and then corrects H and the aerodynamic 

resistance to heat transfer (rah). The TSEB requires the NIR, red, green, blue and TIR bands (Post 

et al., 2000) to estimate the instantaneous LE.  In order to separate the soil component from the 

canopy, OSAVI is used calculate the LAI [Rondeaux et al., 1996; Chávez et al., 2005].  The 

vegetation fractional cover (fc), which is the fraction of the pixel that is vegetation, is then 

calculated as a function of LAI and the clumping factor (Ω) [Kusta and Norman, 2000]: 

  (2.7) 

The fc is used to calculate the soil and the canopy components of the Rn.  The Rn is 

calculated as the sum of the shortwave and long wave radiation budget using Eq. (2.1) [Monteith, 

1973]: 

The Rn is separated into the canopy component of Rn using the fc, and then used to 

calculate the sensible heat flux for the soil (Hc, W m-2).  The Hc, and Monin-Obukhov similarity 

theory adjusted rah [Foken, 2006] are used to calculate the canopy temperature (Tc ,oC): 

0.51 LAIf ec
   
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    (2.8) 

The Tc is then used to estimate the temperature of the soil (Ts, oC) as a function of the 

Tsfc, Tc, and fc [Norman et al., 1995]. 

  (2.9) 

The Tc, Ts, α, air emissivity (εa), surface emissivity (εs), and LAI are then used to update 

the net radiation for the soil (Rn_s, W m-2) and the canopy (Rn_c, W m-2) [Kustas and Norman, 

2000].  The canopy (Hc, W m-2) and soil (Hs, W m-2) components of the sensible heat flux (H) are 

then calculated: 

  (2.10) 

    (2.11) 

where fg is the fraction of vegetation that is green, Δ is the slope of the Saturation Vapor 

Pressure versus temperate curve, and rs (s m-1) is the resistance to heat flow just above the soil 

[Norman, 1995].  The G (W m-2) is calculated as a function of the Rn and the LAI using Eq. (2.3) 

[Chávez et al., 2005]: 

The total sensible heat flux (Ht, W m-2) is calculated as the sum of the Hc and Hs: 

   (2.12) 
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The total instantaneous LE (LEt, W m-2) is calculated using Eq. (1.6).  The contribution of 

the soil (LEs, W m-2) and canopy (LEs, W m-2) are calculated as a function of their respective 

energy fluxes: 

   (2.13) 

  (2.14) 

The hourly ETa (ETa_h, mm h-1) are calculated using Eq. (1.7), and the daily ETa (ETa_d, 

mm d-1) are calculated using Eq. (1.10) and Eq. (1.11).  The final spatial resolution of the TSEB 

ETa was determined utilizing the TIR imagery’s resolution (11.76 cm).  The TSEB process is 

described in detail in Appendix 3. 

2.4.2.1.2. Surface Aerodynamic Temperature Model (SAT) 

The SAT Model is a single source SEB method that models the spatially distributed 

aerodynamic temperature (To, K) as a function of Ts, Ta, LAI, wind speed (u, m s-1) and rah 

[Chávez et al., 2005].  The SAT requires the same RS data as the TSEB model.  The sensible 

heat flux (H), corrected for atmospheric stability, is calculated using the To: 

   (2.15) 

where To is modeled as [Chávez et al., 2005]: 

   (2.16) 

The Rn is calculated using Eq. (2.1) and the G is calculated using Eq. (2.2).  The 

instantaneous LE (LE, W m-2) is calculated as the residual of the surface energy balance 

equation: 

   (2.17) 

_LE R H Gs n s s  
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The hourly and daily ETa are calculated using Eq. (1.7) and Eq. (1.10) thru Eq. (1.11).  

The final spatial resolution of the SAT ETa were determined utilizing the TIR imagery’s spatial 

resolution (11.76 cm). The SAT process is described in detail in Appendix 3. 

2.4.2.3. Crop Water Stress Index Model (CWSI) 

The CWSI model [Idso et al., 1981] utilizes the spatially distributed TIR imagery and 

meteorological data to derive a crop coefficient used in scaling the ASCE-EWRI reference ET.  

The CWSI is calculated using the following equation: 

   (2.18) 

where dT (K) is the difference between the individual pixel Tc (K) and the Ta (K) from 

the RS TIR imagery and weather station data.  In this study, the procedure for calculating dT 

differed from the method describe by Idso et al., 1981.  The CWSI model was originally 

developed using hand held infrared thermometers (ground-based RS) measuring Tc 

perpendicular to the crop in order to avoid any soil background temperature effects.  While using 

the UAS data the radiometric surface temperature (Tsfc) were used instead of Tc in order to 

produce the spatially distributed ETa utilizing the TIR RS Imagery alone. 

   (2.19) 

where dTll  (K)  is a function of the site specific coefficients and the VPD: 

   (2.20) 

where a is -1.97 and b is 3.11 for semi-arid corn [Idso et al., 1982] and the VPD is 

calculated as the difference between the saturation vapor pressure of air (es kPa) and the actual 

vapor pressure of the air (ea, kPa) [Idso et al., 1982]: 

   (2.21) 

dT dTllCWSI
dT dTul ll

 

dT T Tsfc a 

( )dT a VPD bll  
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dTul (K)  is a function of the site specific coefficients and the vapor pressure gradient 

(VPG) [Idso et al., 1982]: 

   (2.22) 

where the VPG is the difference between the vapor pressure at air temperature and at a 

higher temperature of Ta plus the coefficient b [Idso et al., 1982]: 

   (2.23) 

The spatially distributed ETa are calculated using the CWSI as a reduction coefficient and 

the potential ET (ETp, mm h-1), or crop non-water stressed ET, with the following equation [Idso 

et al., 1982]: 

   (2.24) 

 where ETp calculated from the reference ET and the basal crop coefficient: 

 ET k ETp cb ref    (2.25) 

The CWSI method is depicted in Figure 2.10.  The horizontal line is the dTul (max stress) 

and the lower line is the dTll (min stress) [Idso et al., 1982]. The hourly ETa (mm h-1) is 

calculated using the CWSI, and the ETp from Eq. (1.10) and Eq. (1.11).  The final spatial 

resolution of the CWSI ETa were determined utilizing the TIR imagery’s spatial resolution 

(11.76 cm).  The CWSI process is described in detail in Appendix 3. 

( )dT a VPG bup  

( ) ( )VPG e T e T bs a s a  

(1 )ET CWSI ETa p  
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Figure 2.10. Graphically depicted CWSI [Idso et al., 1982] 

2.4.2.4. Reflectance-based Crop Coefficients Model (kcbrf) 

The reflectance-based crop coefficients model [Neale et al., 1989; Bausch, 1993] utilize 

the spatially distributed Tempest UAS RS NIR and red imagery.  The kcbrf describes the 

relationship between the ASCE-EWRI reference ET and the crop ETa: 

   (2.26) 

The reflectance-based crop coefficient method assumes a linear relationship between the 

RS derived VI’s and kcbrf.   Two methods of deriving kcbrf were used in this study.  The first 

method used the relationship, developed by Neale et al. (1989), for corn in Greeley, CO.  This 

method utilizes the RS derived NDVI: 

   (2.27) 

   (2.28) 

The second method derives the kcbrf using the RS derived fc [Trout et al. 2008; Johnson 

and Trout, 2012]. 

   (2.29) 

ET k ETa cbrf ref 
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The methodology used for calculating the fc in the study differs from the Johnson and 

Trout (2012) method.  Instead of using the linear relationship between NDVI and fc, the fc were 

derived using Eq. (2.7).  The deviation was to limit the error associated with calculating similar 

terms differently throughout the models.  The daily ETa are calculated using (1.10) and Eq. 

(1.11).  The final spatial resolution of the reflectance-based ETa were determined utilizing the 

Tetracam ADC SσAP imagery’s spatial resolution (6.λ cm).  The kcbrf process is described in 

detail in Appendix 3. 

2.4.3. Hybrid Soil Water Content Model 

In order to estimate the root zone SWD, the Hybrid SWC model [Neale et al., 2012], was 

implemented using the NDVI derived kcbrf and the most accurate ETa derived from the four 

models described.  The Hybrid SWD model tracks the growing season SWD by using the FAO 

56 SWB method, with the SWD and kcb updated periodically with the Tempest UAS RS derived 

ETa and kcbrf.  The procedure of the Hybrid SWC is located in Appendix 3. 

The FAO-56 SWB is used in multiple processes of the hybrid model.  The first use is the 

tracking of the daily SWD for use with a PA irrigation system [Neale et al., 2012].  The FAO-56 

SWB approach starts with a given soil profile at field capacity (θFC, mm m-1) or measured 

volumetric SWC [Allen et al., 1995].  Field capacity is generally defined as the amount of water 

held in the soil after excess water has drained away and the rate of downward drainage has 

decreased.  Once the SWB begins, the root zone SWDs are tracked using the following equation 

[Allen et al., 1995]: 

   (2.30) 

Where Di (mm) is the soil water depletion at the end of day i, Di-1 is the soil water 

depletion at the end of day i-1 (mm), ETa is the actual crop evapotranspiration (mm), P (mm) is 

( )1D D ET P SRO I DP GWi i a n      
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the gross precipitation, SRO (mm) is the surface runoff, In (mm) is the net irrigation on day i, DP 

(mm) is the deep percolation on day i, and GW (mm) is the ground water capillary contribution 

from the water table on day i [Hoffmann et al., 2007].  The initial SWD for ARDEC field 1070 

was estimated using the NP SWS on 29JUN2015.  The SWD is defined as the difference 

between the θfc and the SWC at day i (θi) [Neale et al., 2012]: 

   (2.31) 

The second use is the estimation of the SWB ET (ETWB) and the components of the dual 

crop coefficient, ks and ke.  The components of the dual crop coefficient are calculated based on 

the soil characteristics and water status [Neale et al., 2012].  The stress coefficient, ks, according 

to Allen et al. (1995) is calculated as: 

   (2.32) 

where TAW is the total available water (mm), Dr is the root zone depletion (mm), and 

RAW is the readily available water (mm).  The TAW is calculated as the water available 

between the θFC and the θWP.  The RAW is the portion of the TAW that a crop can extract from 

the soil root zone without experiencing stress.  The TAW, Dr and RAW are depicted in Figure 

2.10.  When Dr  < RAW, ks is 1 and there is no water stress.  When TAW > Dr > RAW, ks ranges 

from 0 (maximum water stress) to 1 [Allen et al., 1995]. 

( )SWD RDi FC i z   

TAW Drks TAW RAW

 
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Figure 2.11. Available soil water adapted from Steele et al. (2010). 

The shallow soil water evaporation coefficient, ke, is calculated using the following 

equation: 

   (2.33) 

where, kr is the evaporation reduction coefficient, kc max is the maximum value of kc 

following a wetting event, and few is the fraction of soil that receives sunlight, and water during 

the wetting event [Allen et al., 1995]. An in-depth discussion of the application of the FAO 56 

SWB can be found in Appendix 3. 

The RS derived ETa and kcbrf are assimilated into the FAO 56 SWB by updating the ks 

[Neale et al., 2012].   In order to update the SWD, is used to calculate the updated stress 

coefficient, ks : 

   (2.34) 
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The updated ks is used to estimate the actual SWD (Di, mm) by using the linear 

relationship between the ks, readily available water (RAW, mm) and total available water (TAW, 

mm) as shown in Figure 2.11.  If the Hybrid model derived ks = 1, Di < RAW.  If ks < 1, then the 

Di is a function of the linear relationship between RAW (Ks = 1) and TAW (ks = 0) [Allen et al., 

1995].  In the terms of a PA irrigation system, if the Di<RAW, irrigation is not required.  If Di > 

RAW, irrigation is required [Allen et al., 1995]. 

 
Figure 2.12. Relationship between ks, RAW and TAW [Allen et al., 1995] 

The actual SWC (θi mm) is updated using the Di, θFC and Rz: 

 ( )D Ri FC i z     (2.35) 

  (2.36)  

The kcbrf is then used to adjust the kcb in the SWB between RS overpasses.  By adjusting 

kcb based on the actual crop characteristics, ETWB will more accurately estimate ETa [Neale et al., 

2012].  Figure 2.12 depicts the use of the kcbrf when compared to kcb.  Under ideal conditions the 

kcbrf will closely approximate kcb.  Crops that are under non-standard conditions will generally 
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fall below the kcb [Neale et al., 2012].  The final spatial resolution of the Hybrid SWD were 

determined utilizing the TIR imagery’s spatial resolution (11.76 cm). 

 
Figure 2.13. Full irrigation treatment kcbrf vs. kcb vs. the tabulated kcb over the growing season at 
ARDEC field 1070 during the 2015 RS campaign.  

2.4.4. Comparison 

Two comparisons were conducted using the data collected during the study.  The first 

comparison evaluated the raw Tempest multispectral and thermal imagery versus the ground-

based remote sensing data.  The purpose of the first comparison was to evaluate quality and 

suitability of the Tempest RS derived imagery and provide recommendations for future 

applications of the system.  The second comparison evaluated the Tempest UAS RS derived ETa 

and SWD against the ETa and SWD calculated by the NP and the FAO 56 SWB.  The purpose of 

the second comparison was to evaluate the most appropriate RS derived ETa method for use with 

the hybrid model, and evaluate the accuracy of the Tempest RS derived SWD.  The objective of 

the comparisons were to provide recommendations for the application of the Tempest UAS RS 

data in PA irrigation management systems.  All of the comparisons were conducted for each 

individual overpass and over campaign (all RS overpasses) time frame. 

The optical multispectral (red, and green), NIR and TIR imagery collected with the 

Tempest and USU RS platform were directly compared to the multispectral (NIR, red, green) 
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and thermal (TIR) data collected on the ground over the spatially distributed crop and soil 

locations. 

The four Tempest RS derived ETa algorithms (TSEB, SAT, CWSI, Kcb) and the resulting 

RS adjusted SWB ETa were evaluated with the ETa derived from the NP and the FAO 56 SWB.  

The Tempest derived SWD, using the most accurate of the RS derived ETa, was evaluated with 

the SWD measured using the NP and the FAO-56 SWB estimates. 

The evaluations were conducted using the Mean Bias Error (MBE), the Root Mean 

Square Error (RMSE), Student T-Test (t) and the Nash-Sutcliffe Model Efficiency Coefficient 

(NSCE) (Nash et al., 1970).  The MBE, RMSE, Student T-Test and NSCE were calculated as 

follows: 

    (2.36) 

   (2.37) 

   (2.38) 
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where N is the number of observations (RS), P is the RS model prediction, O is the 

ground observation, O  is observed mean,  is the RS mean, ȝ is the ground-measured mean 

and s is the standard deviation of the RS data.  The MBE describes the models systematic bias 

error.  A positive MBE (MBE>0) suggest a model overestimation, while a negative MBE 

(MBE<0) suggests a model underestimation.  The RMSE is the sample standard deviation of the 
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differences (residuals) between the observed and the predicated.  The RSME is a measure of 

accuracy when comparing multiple models. The NSCE is used to quantitatively describe the 

predictive accuracy of the models compared to the observed data. A positive E (E>0) suggest 

that the predicted value more closely approximates the observed data then the mean of the 

observed data.  The Student T-Test is an assessment of the statistical significances of the 

variance of the sample means (RS data) and the population means (ground data).  The T-Test 

used a significance level (α) of 0.05 to denote statistical significance of the test.  The study used 

a two tailed T-Test that will test whether or not the mean value of the sample (RS) is statistically 

the same as the mean value of the control (MSR5 or NP).  The analysis was conducted using the 

following equation for a two-tailed paired T-Test: 

   (2.40) 

There is significant statistical evidence that the means are statistically the same if the 

probability is greater than the established α. 
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CHAPTER 3: RESULTS AND ANALYSIS 
 
 
 

The results of the summer 2015 ARDEC field 1070 Tempest UAS remote sensing 

campaign and the error statistics are discussed in this chapter.  The evaluations of all the methods 

are presented for the individual RS overpasses and the 2015 RS campaign.  The accuracy, of the 

raw RS data, are evaluated using the MBE, RMSE and NSCE.  The most appropriate RS ETa 

model is identified for the use of the ET method with the CSU Tempest RS platform data.  The 

Hybrid model derived SWDs were evaluated for ARDEC field 1070.  A summary of the data and 

statistics are found in Appendix 4. 

 3.1 Raw data results and analysis 

The 2015 RS campaign was a preliminary study to evaluate the feasibility of using the 

CSU Tempest UAS to collect RS data for use in estimating the ETa and SWD of agricultural 

fields.  In order to utilize the Tempest UAS derived RS data in the estimation of the ETa and 

SWD, the quality of the raw RS data (NIR, red, green and TIR) were evaluated with the ARDEC 

field 1070 ground-based MSR5 data multispectral and thermal data.  The raw RS data used in 

this study were only calibrated using the individual sensor’s internal factory calibrations. During 

the 2015 campaign, the multispectral sensor (TETRACAM ADC SNAP) malfunctioned causing 

errors to the internal calibration and magnitude of recorded data.  The malfunctioning of the 

multispectral sensor was caused by two coding errors.  The first malfunction of the Tetracam 

resulted from an error in the code responsible for the writing of the data on the storage media.  

The second malfunction was caused by a coding error that recorded the maximum spectral 

reflectance instead of the average for a pixel.  During the 22JUL15 flight, the multispectral 

sensor began to intermittently malfunction causing the calibration and the data recording process 
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to produce largely inflated and inconsistent data.  The malfunction was responsible for the high 

spectral reflectance MBE (4.14%) and RMSE (6.98%) of the 22JUL15 overpass. During the two 

subsequent flights (30JUL15 and 13AUG15) the malfunction only affected the internal 

calibration of the multispectral sensor.  While the ratios of the bands remained same throughout 

the image, the reported values were of a much greater magnitude than expected (UAS NIR = 

77.8 % vs MSR5 NIR= 38.84%).  On 19AUG15, the multispectral sensor was inoperable due to 

the malfunction, and required reprograming by the sensor manufacturer.  The final overpass with 

the Tempest provided adequate accuracy, but had higher levels of error due to the need to update 

the internal calibration of the sensor. Due to the malfunction with the multispectral sensor, the 

NIR, red and green imagery for the RS overpasses on 30JUL15 and 13AUG15 were scaled to 

adjust the magnitude of the data, as depicted in Figure 3.1.  The corrections for both overpasses 

are described in Table 3.1. 

 
Figure 3.1. Scaling of the Tempest UAS RS NIR data due to the malfunction of the multispectral 
sensor. 
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Table 3.1. Scalar value used to correct the Tempest UAS RS NIR, red and green imagery for 
30JULY and 13AUG15. 

 

3.1.1. Thermal Infrared (TIR)  

During the 2015 RS campaign, the CSU Tempest RS derived thermal imagery had a 

MBE, RMSE, and NSCE of -1.36 oC, 5.68 oC and 0.66, respectively, when compared to the 

ground-based MSR5 data.  As the study progressed throughout the campaign, the accuracy of the 

thermal imagery increased until the final flight on 10SEP15, with a MBE, RMSE and NSCE of 

1.20 oC, 2.40 oC and 0.92, respectively.  The increased accuracy of the thermal sensor was the 

result of refining the collection and operational procedures associated with the sensor throughout 

the campaign.  The overall analyses of the Tempest RS TIR Tsfc are inconclusive due to the low 

number of successful flights and the changing operational procedures throughout the campaign.  

With further testing and refinement of the sensor and collection procedures, the accuracy of the 

data are expected to increase to an acceptable level.  Figure 3.2 depicts the direct comparison of 

the Tempest TIR imagery with the MSR5 TIR data during the 2015 ARDEC field 1070 RS 

campaign.     

 

 

Date NIR Red Green
30-Jul-15 0.7572 0.3975 0.2526
13-Aug-15 0.5017 0.261 0.1735
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Figure 3.2. 2015 ARDEC 1070 RS Campaign Thermal RS vs MSR5 data comparison. 

3.1.2. Multispectral (NIR, red and green) 

The NIR, red and green Tempest RS data collected during the 2015 campaign showed a 

greater degree of accuracy than the thermal data.  Figure 3.3 depicts the RMSE (% reflectance or 

oC) of the TIR, NIR, red and green Tempest RS imagery during the 2015 ARDEC field 1070 RS 

campaign. 
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Figure 3.3. RMSE (% reflectance or oC) of the NIR, red, green and TIR imagery from the 2015 
CSU Tempest RS campaign at ARDEC field 1070. 

The most accurate band of the Tempest UAS multispectral sensor over the campaign was 

the red band, with a slight overestimation of the red reflectance with a MBE, RMSE NSCE of 

0.81%, 3.51% and 0.91, respectively.  Figure 3.4 depicts the strong relationship between 

Tempest RS red imagery vs MSR5 data.  The NIR preformed less accurately, with a RMSE of 

5.26%, an overall underestimation with a MBE of -1.17% and NSCE of 0.83.  Figure 3.5 depicts 

the strong relationship between Tempest NIR imagery vs MSR5 data.  The least accurate band of 

the multispectral sensor was the green band with campaign values of MBE=5.06 %, RMSE=7.31 

% and NSCE of 0.51.  Since all of the studies ETa algorithms mainly rely on the NIR and red 

bands, the effects of the errors associated with the green band will be limited.  The lone 

exception is the TSEB, which utilizes the green band to estimate the soil albedo (Eq. A.3.2.42).  

The expected error are low since the NIR is the predominate factor in the equation.  Figure 3.6 
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shows the less favorable agreement of the campaign RS green vs MSR5 data.  Table 3.2, 3.3 and 

3.4 provides summaries of the NIR, red, green and TIR data for the 2015 campaign. 

 
Figure 3.4. 2015 ARDEC 1070 RS Campaign red RS vs MSR5 data comparison. 

 

 
Figure 3.5. 2015 ARDEC 1070 RS Campaign NIR RS vs MSR5 data comparison. 
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Figure 3.6. 2015 ARDEC 1070 RS Campaign green RS vs MSR5 data comparison 

Table 3.2. MBE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data 
comparisons  

 

 

 

 

 

 

 

 

 

Flight Date
Thermal (C) Green (% Reflection) Red (% Reflection) NIR (% Reflection)

Season* -1.36 5.06 0.81 -1.17
22-Jul-15 - 10.09 3.22 -0.88

30-Jul-15 - 0.08 0.05 0.14
13-Aug-15 -8.02 0.14 0.04 0.19

10-Sep-15 1.20 3.28 -0.55 -1.51

No data due to equipment malfunction

Data linearly corrected due to eqipment malfunction
Uncorrected data

MBE
2015 Tempest UAS Raw Data vs MSR5 Data MBE Results
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Table 3.3. RMSE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data 
comparisons.  

 

Table 3.4. Student-T Test Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data 
comparisons.  

 

The study focused primarily on the NIR and red bands of the Tempest RS imagery due to 

their importance in the calculation of the RS VIs (OSAVI and NDVI) required in the estimation 

of the ETa and SWD.  The accuracy to the NIR and red bands are shown by the campaign MBE 

and RMSE of the OSAVI and NDVI, with values of MBE =-0.024 and RMSE=0.21.  The close 

agreement between the Tempest and the MSR5 suggests that the values of the NIR and red bands 

of the multispectral sensor are adequate for use in the RS ETa and SWD models.   

The statistical analysis of the raw Tempest UAS data, using ∝=0.05, suggest that there is 

significant statistical evidence that the mean campaign reflectance for the TIR (0.12), Red (0.05) 

Flight Date
Thermal (C) Green (% Reflection) Red (% Reflection) NIR (% Reflection)

Season* 5.68 7.31 3.51 5.26
22-Jul-15 - 10.76 4.03 6.16

30-Jul-15 - 1.41 1.55 2.80
13-Aug-15 9.62 1.64 2.06 5.33

10-Sep-15 2.40 6.06 3.74 5.38

RMSE

Data linearly corrected due to eqipment malfunction
Uncorrected data

No data due to equipment malfunction

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results

Flight Date
Thermal Green Red NIR

Season* 0.12 0.00 0.05 0.06
22-Jul-15 0.00 0.10 0.58 0.82

30-Jul-15 0.00 0.81 0.91 0.93
13-Aug-15 0.00 0.79 0.95 0.93

10-Sep-15 0.45 0.29 0.98 0.71

T_Test

Data linearly corrected due to eqipment malfunction
Uncorrected data

No data due to equipment malfunction

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results
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and NIR (0.06) are the same as the mean reflectance from the MSR5.  The green (0.00) for the 

campaign does not have statistical significant evidence that the mean reflectance is the same as 

the MSR5 for the entire campaign.  All of the band showed statistical significant evidence that 

the mean reflectance is the same as the MSR5 reflectance for the individual RS overpasses.  The 

discrepancy between the campaign and RS overpasses stems from the low sample size from the 

summer of 2015 RS campaign.  In order to increase the power and accuracy of the T-test, 

additional ground data collection must be conducted to increase the sample size of the individual 

and campaign overpasses.  Even with the low sample size, the raw Tempest RS data accurately 

describes the actual conditions on the ground. 

The NSCE analysis of the raw Tempest RS data shows the wellness of fit between the 

Tempest raw data and data collected with the MSR5 multispectral sensor.  All of the bands had 

seasonal NSCE values greater than 0, which shows that the variance between the ground and 

Tempest data is less than the variance between the observed and mean ground measurements.  

This suggests that using the spatially distributed RS data is more accurate than using the mean 

ground-based remote sensing data.  Table 3.5 and Figure 3.7. describe the NSCE results for the 

raw RS data. 
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Table 3.5. NSCE analysis of the Raw Tempest UAS RS data. 

 

 
Figure 3.7. Raw data NSCE comparison for the 2015 Tempest RS campaign. 

Errors, not associated with the individual sensor’s operational capabilities, were induced 

into the UAS RS and ground RS systems from multiple sources including variation in data 

collection procedures on the ground and the Tempest UAS, environmental conditions (changing 

conditions or non-ideal conditions during the flights) and the uncertainty of the exact location of 

the footprint/field of view of the ground data. The UAS data were collected over a period of five 

minutes (essentially a single point in time), while the ground data were collected over thirty to 

forty-five minutes.  The longer sample time for the ground-based RS were a result of having to 

move the equipment throughout the test location, during which time the meteorological 

Thermal Green RED NIR
Season 0.66 0.51 0.91 0.83

22-Jul-15 N/A -215.82 -12.40 -1.14
30-Jul-15 N/A -0.58 -0.18 0.35
13-Aug-15 -9.16 -0.53 -0.17 0.33
10-Sep-15 0.92 0.70 0.94 0.94

Raw Data Nash-Sutcliffe Coefficient of Efficiency

-15.00

-13.00

-11.00

-9.00

-7.00

-5.00

-3.00

-1.00

1.00

Thermal Green RED NIR

Raw Data Nash-Sutcliffe Coefficient of Efficiency

Season 22-Jul-15 30-Jul-15 13-Aug-15 10-Sep-15
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conditions were continually changing.  These introduced errors contributed to variation between 

the ground and UAS data.  However, when working with vegetation indices a good deal of the 

environmental conditions are normalized. An additional source of error most probably was 

caused by the data processing procedures in ERDAS Imagine.  The raw Tempest data were not 

geometrically or optically corrected prior to the analysis.  The error associated with the lack of 

geometric and optical correction are unknown and will be addressed in future studies.  The errors 

associated with the lack of correction are evident in Figure 3.8. By addressing the errors induced 

by the data collection and processing procedures, the accuracy of the Tempest UAS RS platform 

will increase when compared to the ground collected data.  

 
Figure 3.8.  Depiction of the raw data processing errors of the multispectral imagery. 
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3.2. Daily ETa Results and analysis 

All five RS methods used to calculate daily ETa utilized the raw data collected with the 

Tempest UAS (supplemented with the USU data if required), meteorological data from the 

ARDEC CoAgMet weather station and ERDAS Imagine GIS software.  The RS derived daily 

ETa were compared to the daily ETa values estimated using the weekly NP data and two FAO-56 

SWB models.  The FAO-56 SWBs were calculated using varying soil root zones depths and crop 

coefficients.  The two SWBs were calculated using root zone depths of 1.5 m and 1 m.  The 

analysis of the multiple root zone depths was required due to insufficient irrigation throughout 

the growing season causing the root zone to reach non-standard depths (Rz ≥1 m).  The summary 

of the results of the 2015 Tempest UAS RS ETa campaign are described in Table. 3.6. The RS, 

FAO-56 and NP derived daily ETa values for the ARDEC 1070 NP locations are provided in 

Appendix 4. 
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Table 3.6. Summary of the statistics from the daily ETa derived from the 2015 Tempest UAS RS 
campaign. 

 

The most accurate Tempest RS derived daily ETa from the study was from the TSEB 

method. The TSEB had promising agreement with the NP derived ETa, with a campaign slight 

overestimation MBE of 0.29 mm/day, RMSE of 0.89 mm/day and NSCE of 0.67.  The TSEB 

derived ETa were selected for further evaluation with the Hybrid SWD model.  The TSEB 

performed better, with an average reduction of MBE of 0.65 mm/day and RMSE of 0.33 

mm/day, than the most accurate FAO 56 SWB method using Rz=1 m (MBE of -0.94 mm/day 

and RMSE of 1.22 mm/day) at estimating the daily ETa.  Figure 3.9 depicts the relationship 

between the TSEB and SWB derived ETa and the NP derived ETa during the 2015 ARDEC field 

1070 RS campaign.   The FAO-56 SWB consistently underestimated the ETa while TSEB 

Method Statistic Season 22-Jul-15 30-Jul-15 13-Aug-15 10-Sep-15
MBE (mm/d) 0.29 N/A 0.23 0.06 0.58
RMSE (mm/d) 0.89 N/A 1.10 0.54 0.93

2*P[T<=t] 0.00 N/A 0.15 0.47 0.00
MBE (mm/d) 0.49 N/A -0.89 0.03 0.96
RMSE (mm/d) 1.21 N/A 1.56 0.95 1.47

2*P[T<=t] 0.00 N/A 0.00 0.83 0.00
MBE (mm/d) 0.79 0.14 1.27 0.49 1.28
RMSE (mm/d) 1.43 0.91 1.83 1.00 1.74

2*P[T<=t] 0.00 0.29 0.00 0.00 0.00
MBE (mm/d) -0.94 -1.17 -0.96 -1.27 -0.36
RMSE (mm/d) 1.22 1.46 1.23 1.36 0.82

2*P[T<=t] 0.00 0.39 0.00 0.14 0.83
MBE (mm/d) 1.44 -0.73 0.52 1.97 1.20
RMSE (mm/d) 1.64 1.11 0.86 2.17 1.49

2*P[T<=t] 0.00 0.39 0.00 0.00 0.00
MBE (mm/d) 1.58 N/A 0.52 -0.55 0.01
RMSE (mm/d) 1.86 N/A 0.86 0.74 0.75

2*P[T<=t] 0.00 N/A 0.00 0.01 0.00
MBE (mm/d) 1.88 1.08 2.65 1.25 1.92
RMSE (mm/d) 2.30 1.44 2.96 1.85 2.23

2*P[T<=t] 0.00 0.00 0.00 0.00 0.00
FC

TSEB

SAT

NDVI

FAO-56 SWB Rz=1 m

FAO-56 SWB Rz=1.5 m

CWSI
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overestimated the lower values (ETa < 3.20 mm/d) of ETa and closely approximates ETa values 

over 3.20 mm/d.   

Figure 3.9. Comparison of the TSEB and RS Adjusted SWB and FAO 56 SWB derived daily 
ETa vs the NP derived daily ETa. 

Of the five RS daily ETa models tested, the TSEB and SAT models (both SEB based) 

performed better than or comparable to the most accurate FAO 56 SWB estimations with 

average decrease of RMSE of 0.33 mm/day and 0.01 mm/d, respectively, when compared with 

the FAO-56 SWB RMSE.  Figure 3.10 depicts the comparison of the methods RMSE of the RS 

and SWB derived daily ETa to the NP derived daily ETa, showing the level of performance of the 

various methods.   
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Figure 3.10. Comparison of the daily ETa RMSE (mm/d) at ARDEC 1070 during the 2015 
growing.  

The NSCE analysis of the most accurate ETa models are described in Table 3.7 and 

Figure 3.11.  The NSCE of the TSEB (0.67) suggest that there is significant agreement between 

the method and the ground observation over the RS campaign and for the individual RS 

overpasses.  The ETa NSCEs increased throughout the season, it is unknown whether the 

increase was caused by the capabilities of the Tempest RS data or were a result of the refinement 

of the collection procedures throughout the RS campaign.   
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Table 3.7. NSCE analysis of the RS derived ETa models (TSEB and SAT). 

  

 
Figure 3.11. NSCE comparison of the TSEB and SAT RS ETa methods utilizing the Tempest 
UAS remote sensing data. 

The available data suggests that the RS models, the TSEB in particular, have the ability 

to more accurately estimate the spatially distributed daily ETa than using the FAO-56 SWB 

method alone.  For application in a PA irrigation management system, the spatially distributed 

ETa data are more beneficial than the field-average (point) FAO-56 SWB ETa, due to the 

inherent variability of the ETa throughout a field.  The spatial variability of ARDEC field 1070 

of the FAO-56 SWB and the TSEB derived ETa is shown in Figure 3.12.  Figure 3.12 is the 

spatially distributed variability of the FAO-56 SWB and RS derived ETa (RS ETa – SWB ETa).   

The capability of modeling the spatial variability of a field’s crop water requirement is critical to 

accurately developing an efficient PA irrigation management system.  Figure 3.12 highlights the 

TSEB SAT
Season 0.67 0.19

30-Jul-15 0.35 0.06
13-Aug-15 0.66 -0.04
10-Sep-15 0.73 0.43

ETa Nash-Sutcliffe Coefficient of Efficiency
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advantage of at least occasionally estimating ETa with RS techniques.  Three FAO-56 SWB, one 

for each irrigation treatment, were utilized to estimate the ETa, and a large spatial variability is 

present in the treatments.  

 
Figure 3.12. Spatial variability of the difference between the TSEB and FAO-56 SWB ETa 
estimates. 
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The CWSI and the fc (reflectance) methods performed worse than the best FAO-56 SWB 

during the 2015 campaign.  The fc reflectance method performed the worst of the RS models 

tested with a campaign MBE of 1.88 mm/day and RMSE of 2.30 mm/day when compared to the 

NP derived daily ETa.  The increased error associated with the fc (reflectance) based ETa model 

were associated with the spatial variability of the meteorological, physical (wetted soil) and 

biophysical conditions of the test location, as well soil background interference resulting from 

treatments depicting low LAI and fc.  The fc method only accounts for the transpiration based on 

the amount of vegetative cover.  The drought treatments showed the largest amount of error since 

the method bases the ETa estimation on the amount of fc and not the level of stress experienced 

by the crop.  Even though the drought treatments were experiencing stress (ks<1) at a higher 

level than the other treatment, the fc of the treatments remained relatively the same.  To increase 

the accuracy of the reflectance-based models, site-specific calibrations that take into account the 

local meteorological and biophysical properties of the location are required.  A possible source 

of the increased error associated with using the CWSI method are the evolution of the collection 

methods and procedures associated with the thermal sensor throughout the 2015 RS campaign.  

As shown in Table 3.2, the RMSE of the thermal imagery reduced from 9.62oC to 2.40oC from 

the 13AUG15 flight to the 10SEP15 flight.  The reduction in the thermal RMSE caused the 

RMSE of the CWSI daily ETa to go from 2.17 mm/day on 13AUG15 to 1.49 mm/day on 

10SEP15, which was similar to the SAT overpass RMSE of 1.47 mm/day.  The accuracy of the 

CWSI will continue to increase as the procedures for the thermal sensor are refined and less soil 

background are seen by the sensors.  The CWSI method was developed for use with data 

collected after solar noon in order to allow the crop to develop the increased canopy temperature 

associated with higher levels of stress.  Since the RS data were collected before solar noon, the 
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canopy was not allowed to heat to show the true level of stress, resulting in an increased ETd. 

The error with the thermal sensor also affected the RMSE of the TSEB and SAT models as well.  

The overall increase of error of the SAT and TSEB models were less than with the CWSI due to 

the integration of the thermal and multispectral data.   Additionally, the CWSI ETa were 

estimated utilizing Tsfc in lieu of Tc in order to provide a model based on the TIR imagery alone.  

This introduced error to the CWSI derived ETa due to the variation between the canopy and the 

surface radiometric temperatures.  In order to increase the accuracy of the CWSI method, the Tc 

should be calculated as described in the TSEB method.       

During the summer 2015 ARDEC field 1070 RS campaign, all of the methods had 

significant statistical evidence that their mean ETa differed from the mean NP derived ETa.  

During individual RS overpasses, the NDVI (22JUL15: 0.29), TSEB (30JUL15: 0.15, and 

13AUG15: 0.47) and SAT (13AUG15: 0.83) methods had 2*P[T≤t]>α=0.05, showing 

statistically significant evidence that their mean ETa were the same as the mean NP derived ETa.  

A source of error while conducting the Student T-test can be attributed to the mechanical and 

procedural deviations between the RS overpasses.  Further testing is required to analyze the 

statistical significance of the RS ETa methods. 

Due to the low number of RS overpasses and variations in the RS data used for the RS 

derived comparisons, and the variation of the individual RS overpasses, the analysis of the RS 

models are inconclusive.  Additional data collection overpasses are required to fully analyze the 

capability of the RS models.    

The final product of the RS ETa model is a spatially distributed daily ETa map for the use 

with a PA irrigation system.  Figure 3.13 is the spatially distributed daily ETa map for ARDEC 

field 1070 on 10SEP15.  The daily ETa map ranges from light green (6.61 mm/d) to red (0 



85 

 

mm/d).  As shown by the map, the full and limited irrigation treatments have a higher level of 

ETa than the drought treatments.  The daily ETa map is used to calculate the SWD in a PA 

irrigation management system. 
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Figure 3.13. Spatially distributed daily ETa map for ARDEC field 1070 on 10SEP15. 
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3.3. Mapping Soil Water Content using the Soil Water Balance 

The RS derived soil water balances were calculated using the TSEB estimated ETa and 

the hybrid soil water balance method.  The spatially distributed SWD, calculated using the 

hybrid soil water balance method, were compared to the daily FAO-56 SWD and the weekly NP 

derived SWD.  All values of SWD are reported in mm m-1 to allow comparison over multiple Rz 

depths.  The comparison of the SWDs occurred for the flights conducted on 30JUL15, 13AUG15 

and 10SEP15 in order to ensure that the crop was experiencing stress conditions (ks<1) and the 

availability of the required data.  This was a requirement to estimate the SWD (Di) using the 

hybrid method due to the relationship between ks and Di, illustrated in Figure 2.9.  The summary 

of the statistics for comparison of the Hybrid, FAO-56 (UAS adjusted, Rz=1 m and Rz=1.5 m) 

and NP derived SWD for ARDEC field 1070 as a whole, over the campaign and individual RS 

overpasses, are described in Table 3.8 and 3.9.  Appendix 4 provides the SWD (NP, Hybrid and 

FAO-56 SWB) by NP access tube location for the individual overpasses. 
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Table 3.8. Summary of the RS flight day soil water deficit statistics for the ARDED field 1070 summer 2015 RS campaign. 

 

 

Table 3.9. Summary of the RS Campaign soil water deficit statistics for the ARDED field 1070 summer 2015 RS campaign. 

 

Date MBE (mm) RMSE (mm) T-Test
30-Jul-15 6.32 19.74 0.03

13-Aug-15 -9.92 21.94 0.00
10-Sep-15 -3.76 18.78 0.25
30-Jul-15 -29.55 59.09 0.00
31-Jul-15 -14.16 23.83 0.00
1-Aug-15 -25.16 31.90 0.00
30-Jul-15 46.69 53.16 0.00

13-Aug-15 39.50 48.20 0.00
10-Sep-15 46.57 54.94 0.00

ARDEC 1070 RS Overpass Soil Water Deficit Summary

Hybrid

Rz=1 m FAO-56

Rz= 1.5 m FAO-56

MBE (mm/m) RMSE (mm/m) T-Test
ARDEC 1070 RS Campaign Soil Water Deficit Summary

Hybrid -2.45 20.20 0.24 Campaign

Rz=1 m FAO-56 -22.96 33.59 0.00 Campaign

Rz= 1.5 m FAO-56 29.68 42.60 0.00 Campaign
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The hybrid method produced the most accurate estimation of the spatially distributed 

SWD (mm/m) of all the methods with a MBE of -3.55 mm/m, a RMSE of 21.60 mm/m and 

NSCE of 0.86.   The hybrid data analysis did not include the 10SEP15 NP from the drought 

treatments 409, 410 or 411 due to abnormally low SWD (25 mm/m decrease) of those locations. 

Utilizing the 5TE SWS in the 410 treatment, the actual SWD are consistent with the hybrid and 

SWB estimates.  The low NP SWD calculations were attributed to the dry conditions of the soil.  

The soil experienced cracking and established preferential water infiltration paths to the NP 

access tubes, resulting in lower SWD estimation.  In future research, NP as well as 5TE SWS 

should be used to calculate the actual SWD.  The hybrid method RMSE was 13.40 mm/m less 

than the most accurate FAO-56 SWB (Rz=1 m) RMSE with an average underestimation (MBE 

of -23.13 mm/m) of the SWD, RMSE of 33.68 mm/m and NSCE of 0.37.  The comparisons of 

the RMSE for all of the methods are shown in Figure 3.14.  Figure 3.15 shows the direct 

comparison of the hybrid SWD to all forty-eight NP locations for ARDEC field 1070. 
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Figure 3.14.  Seasonal and Daily comparison of the RMSE (mm/m) of the Hybrid and FAO-56 
SWB SWDs.  

 
Figure 3.15.  Seasonal comparison of the Hybrid soil water deficits.  

Figure 3.14 shows that the hybrid method is the most accurate methods over the 2015 

campaign, but it also suggests that the accuracy of the FAO-56 SWB method depends on the 

assumed Rz of the model.  According to the FAO-56, the Rz for field corn is between 1.0 and 1.7 

m.  Under conditions of no water stress (ks=1), the Rz remains around 1.0 m.  While, under 
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conditions of water stress (ks<1), the Rz increases as the crop attempts to access the required 

water at deeper layers if available.  During the summer of 2015, there were insufficient irrigation 

in all irrigation treatments throughout the growing season.  As a result of the unintended water 

stress, the Rz of all the treatments were larger than anticipated and the Rz of the plots spatially 

varied with treatment and time.  The fact that the MBEs of the FAO-56 SWBs for the Rz=1m 

and Rz=1.5m go from an average underestimation (MBE=-23.13 mm/m) to an average 

overestimation (MBE=29.68) suggest that the actual Rz were between the 1m and 1.5m that were 

tested. The relationship between the treatments and the spatially and temporally distributed Rz is 

shown in Figure 3.16.   

 
Figure 3.16.  Seasonal and Daily comparison of the RMSE (mm/m) of the Hybrid and FAO-56 
SWB soil water deficits for the three irrigation treatments and Rz depths.  
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Table 3.10. Hybrid and FAO-56 SWB NSCE analysis. 

 

 
Figure 3.17. NSCE comparison of the irrigation treatment Hybrid and FAO-56 SWD model for 
the RS campaign and RS overpasses. 

The NSCE analysis of the Hybrid and the FAO-56 SWD suggests that the Hybrid method 

is superior at estimating the spatially distributed SWD.  The accuracy of the Hybrid method is 

the greatest in conditions of larger SWD and crop water stress.  The increased accuracy under 

higher SWD levels is depicted in Figure 3.17. 

There is evidence to suggest that there is a statistical significance (α=0.05) that both the 

hybrid (2*P[T≤t]=0.44) and the UAS adjusted FAO-56 SWB (2*P[T≤t]=0.23) have a seasonal 

mean soil water deficit that are the same as the seasonal mean of the NP derived SWD.  With the 

low MBE, RMSE, NSCE approaching 1 and statistical significant evidence that the seasonal 

Full Limited Drought Full Limited Drought
Season 0.37 0.86 0.90338 0.34431 0.82626 0.94026 0.8531 0.92252

30-Jul-15 0.6803 0.83338 0.71198 0.71268 0.45105 0.66606 0.90648 0.84806
13-Aug-15 0.91126 0.98665 0.92344 -0.4234 0.81925 0.95404 -0.1521 0.82199
10-Sep-15 -1.5249 0.89301 0.77299 -11.614 0.81799 0.91528 -0.143 0.87014

FAO Hybrid
HybridFAO

SWD Nash-Sutcliffe Coefficient of Efficiency

-4

-3

-2

-1

0

1

Full Limited Drought Full Limited Drought

FAO Hybrid FAO Hybrid

SWD Nash-Sutcliffe Coefficient of Efficiency

Season 30-Jul-15 13-Aug-15 10-Sep-15
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mean are the same, the hybrid method, using the TSEB derived ETa, is a valid method of 

estimating the spatially distributed SWD.  

The assimilation of the RS derived SWD into the FAO-56 SWB increased the accuracy 

of the FAO-56 SWB by an average reduction of RMSE by 7.37 mm/m over the growing season.  

The increased accuracy RS adjusted SWB resulted in an increase of required irrigation by 

approximately 36%.  The increased water requirement were caused by the insufficient irrigation 

as discussed previously.  Figure 3.18 shows the comparison of the UAS adjusted SWB and the 

FAO-56 SWB derived SWD.  The figure shows the increased accuracy of the UAS adjusted 

SWB.  The accuracy is affected by the underestimated hybrid SWD on 13AUG15.  Possible 

sources of error for the UAS adjusted and FAO-56 SWB are inaccurate effective irrigation and 

precipitation amounts, as well as in accurate Rz depths as discussed previously.  Inaccurate 

effective irrigation and precipitation would account for the underestimation of SWD from 

13AUG15 until 10SEP15.  During this time frame, there was an estimated 81.28 mm of effective 

irrigation and 11.43 mm of effective precipitation.  The effective irrigation is assumed to be an 

accurate representation when using an efficiency of 90% using a lateral move irrigation system.  

The error is more than likely associated with the assumed effective precipitation at ARDEC 

1070.   The low average amount of precipitation (0.97 mm/event) from 30JUL15 to 10SEP15, 

along with high wind speeds (average daytime wind speed, u=2.31 m/s) and other meteoroligcal 

conditions suggest that the effective precipitiaton at ARDEC 1070, for events less than 3 mm 

was 0 mm.  This is shown by the “Pn=0” in Figure 3.18.  Additional research on the effects of the 

small wetting events on the estimation of the SWD is required. 
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 Figure 3.18.  Seasonal comparison of the SWD (mm/m) of the UAS adjusted SWB and FAO-56 
SWB SWDs for the full irrigation treatments.  

The adjusted SWB is a FAO-56 SWB adjusted with the hybrid derived SWD when RS 

data are available, and the kcbrf are used to adjust the kc.  On average, the adjusted kcb was 

17.52% lower than the FAO-56 derived kcb.  The relationship between the kcb and the adjust kcb 

are shown in Figure 3.19.  Figure 3.18 depicts the FAO-56 SWB and the Hybrid models 

estimation of kcb the when compared to the NP data.   As the number of RS overpasses increase, 

the extrapolation of the kcbrf will become more accurate due to the shorter intervals of the 

calculations.  Figure 3.20 shows the spatially distributed kcbrf on 10SEP15. 
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Figure 3.19.  Comparison of the full irrigation treatment FAO-56 kcb and the hybrid kcbrf during 
the summer 2015 ARDEC 1070 RS campaign.  
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Figure 3.20. Spatially distributed kcbrf map for ARDEC field 1070 on 10SEP15. 
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As the number of RS overpasses assimilated increases, the accuracy of the UAS adjusted 

FAO-56 SWB will continue to increase.  This allows for greater control of irrigation scheduling 

in a precision agriculture irrigation program.  The end state of the study was the production of a 

spatially distributed SWD map for use in a PA irrigation program.  Figure 3.21 is the ARDEC 

field 1070 10SEP2015 irrigation map for use in a PA irrigation system.  The blocks represent the 

control zones of a Zone-Controlled SS-VRI System.  The colors ranging from blue (85 mm) to 

red (155 mm) represent the required application amount to return the soil profile to the threshold 

where ks=1 (θt mm/m).  In a PA irrigation system, the acceptable stress level of a crop is the 

driving factor for irrigation.  Using the Hybrid method and UAS adjusted FAO-56 SWB, an 

irrigation planner can accurately track the actual spatially distributed crop water requirements, 

increasing the efficiency of the irrigation system.  The 10SEP15 – ARDEC 1070 SWD inset of 

Figure 3.21 shows the spatially distributed SWD from the soils field capacity (θFC). 
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Figure 3.21. 10SEP15 ARDEC field 1070 irrigation requirement map based on the Hybrid SWB 
Method. 

Map of Required 
Irrigation Amounts 

(mm)
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CHAPTER 4: CONCLUSION 
 
 
 

Data from the summer 2015 CSU Tempest RS campaign at the CSU ARDEC field 1070 

were presented to evaluate the performance of the CSU Tempest UAS RS platforms ability to 

accurately estimate the spatially distributed spectral reflectance (NIR, red and green), 

radiometric surface temperature (Tsfc), daily evapotranspiration (ETa) and the root zone SWD.  

The primary evaluation of the Tempest RS data were divided into three sections.  The first 

section compared the raw RS derived thermal and optical imagery against ground-based 

measurements using the MRS5 multispectral sensor.   The second section compared four method 

of RS derived ETa (TSEB, SAT, CWSI and kcbrf) to NP and FAO-56 SWB derived ETa.  The 

final section evaluated the hybrid method for estimating root zone SWD utilizing the TSEB 

derived ETa against the NP and FAO-56 SWB derived SWD.  The results and analysis from the 

study are summarized in accordance with the objectives listed in the introduction. 

4.1. Results and Analysis Overview 

1. Raw data analysis:  The raw thermal, NIR and optical imagery collected during the 2015 

CSU Tempest RS campaign agreed well with the data collected using the ground-based 

multispectral sensor.  The RS TIR data had a MBE of -0.52 oC, RMSE of 5.68oC and 

NCSE of 0.66 during the campaign due to variations in the operations procedures 

associated with the thermal sensor. During the last flight of the 2015 campaign, 10SEP15, 

the TIR RMSE and NSCE were reduced to 2.4oC and 0.92, respectively.  The RS derived 

multispectral imagery (NIR, red, and green), correlated with the ground-based 

multispectral sensor with RMSE of 5.26%, 3.51% and 7.31%, respectively.  The red and 

NIR RS data strongly agreed with the ground based data with season NSCE of 0.91 and 
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0.83, respectively.  Errors associated with the raw data may be correlated with the low 

number of ground-based samples, mechanical and procedural malfunctions throughout 

the campaign, as well as changing and/or non-ideal meteorological and biophysical 

conditions during the data collection.  The accuracy of the raw data will continue to 

improve as the number overpasses increases and the procedural process are further 

refined.  

2. RS ETa model evaluation: Of the four RS derived ETa estimation models evaluated during 

the study, the TSEB showed the best agreement with the NP derived ETa, with a MBE of 

0.29 mm/d, RMSE of 0.89 mm/d and NSCE of 0.67 over the 2015 campaign period 

considered.  The TSEB and SAT (MBE of 0.49 mm/d, RMSE of 1.21 mm/d and NSCE 

of 0.19) methods performed better at estimating the daily ETa than the FAO-56 SWB 

method (MBE of 0.91 mm/d, RMSE of 1.22 mm/d and NSCE of 0.41).  The remote 

sensing adjusted SWB performed better than the FAO-56 SWB with a MBE of 0.77 

mm/d, RMSE of 1.20 mm/d and NSCE of 0.51; showing that even without daily RS 

overpass the assimilation of RS data into ETa estimates has the capability of increasing 

the accuracy of the FAO-56 SWB for use in a PA irrigation system.   Errors may be 

attributed to non-ideal meteorological (i.e., wet soil surface from morning dew), and 

biophysical (root zone depth, plants that are not actively ETing, etc.) variations at the test 

location, as well as the errors associated with the raw RS data. 

3. SWD estimation:  Utilizing the TSEB derived ETa and the Hybrid SWD model produced 

promising agreement with the NP derived SWD estimates.  The hybrid method had a 

MBE of -2.45 mm/m, RMSE of 20.20 mm/m and NSCE = 0.86 throughout the campaign 

with a correlation using the T-Test with a probability of 0.24 when using α=0.05.  The RS 
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adjusted SWB also had strong agreement with the NP with a RMSE of 26.22 mm/m and 

a probability 0.23. The FAO-56 SWB had less agreement with the NP with a MBE of -

22.96 mm/m, RMSE value of 33.59 mm/d and NSCE of 0.37.  The errors associated with 

the hybrid model SWD are attributed to the errors of the raw RS data and ETa 

calculations, as well as the physical characteristics of the study site.  The errors caused by 

the physical characteristic are apparent in the drought treatments, where the NP SWC 

levels were artificially high due to the preferential water infiltration paths associated with 

the dry soil cracking and NP access tubes.   The degree of agreement of the RS derived 

ETa shows that utilizing the RS data to adjust the SWB is a viable procedure for use in 

PA irrigation management systems. 

4. CSU Tempest operations:  Throughout the study, the operational and approval procedures 

of conducting research with the CSU Tempest have continually evolved.  The COA 

application process has been implemented by two additional departments at CSU.  The 

Tempest RS platform is prepared to conduct weekly RS overpasses at the ARDEC and 

other alternative test locations during the summer of 2016.  Currently, the Tempest has 

two approved COAs, with one pending approval, in western and southern Colorado for 

the 2016 campaign. 

4.2. Recommendations for future research 

Future studies should focus on several area of research with the Tempest UAS.  The first 

area of focus are the operational and collection procedures of the Tempest UAS RS platform.  As 

a preliminary study of the Tempest UAS RS platform, the operational and collection procedures 

were continually refined throughout the campaign as malfunctions occurred with the systems.  

Due to the high number of malfunctions during the summer of 2015, there is room for 
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improvement of the data collection process.  The second area of focus is the data processing of 

the raw Tempest data.  During the study, the raw Tempest data were not spectrally, geometrically 

or optically corrected, which caused both spectral and geometric distortions that contributed to 

the overall error of the system.  The sensors on the Tempest UAS have factory spectral 

calibration, but refined, site specific calibrations are required to increase accuracy of the system.  

Additionally, the geo-rectification of the raw data were accomplished using manual ground 

reference points (GRP) in the GIS software.  Due to the small size of the ARDEC field 1070 test 

location, manual geo-rectification was possible.  With the ability of the Tempest to collect data 

over 1,000 acres an hour, the geo-rectification process requires automation. The final area of 

focus is the application of the techniques over various crops and environmental conditions.  A 

source of error for the RS derived ETa and SWD are the uncertainty of the crop biophysical 

characteristics.  Further research should focus on more accurately modeling plant characteristics 

(Rz, crop height, etc.).  The study was limited to data collected over a single crop at ARDEC 

1070 due to regulatory restraints, available SWD information, equipment malfunctions and 

weather constraints.  One of the strengths of the Tempest is the flexibility to collect data when 

the opportunity presents itself.  During the 2015 campaign, multiple flights occurred under non-

standard conditions (i.e. not within two hours or solar noon, high winds, soil surface wet from 

dew and ke=0, etc.).   Results comparing the data over various crops and environmental 

conditions will allow refinement of the methods based on the actual conditions, increasing the 

effectiveness of the UAS platforms in provide frequent data for use in PA.  
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APPENDIX 1: CSU TEMPEST UAS 
 
 

 
1.1. Tempest UAS 

The Tempest is a commercial off-the-shelf R/C model aircraft manufactured by 

UASUSA, based out of Boulder Colorado.  It has been modified by the manufacturer to be an 

unmanned aircraft using a BlackSwift autopilot and integrating three sensors.  There are 

currently 65+ approved CτA’s for the Tempest UAS.  It is defined as a miniature unmanned 

aircraft with a gross take-off weight of 11 lbs, based on ASTM F2395-7 Standard Terminology 

for Unmanned Aircraft Systems.  The very small size and low speed flight of the Tempest UA 

adds additional safety to the operation of the Tempest UAS since this aircraft has a small kinetic 

energy and therefore possess very little danger to any structure and significantly reduces the 

chance of serious injury to any personal on the ground in the event of an accident.  In addition, 

since the UA propulsion is electrically powered, there is no on-board fuel that may contaminate 

the environment or pose as an accelerant for a fire in an accident. 

1.1.1. Airframe Modifications 

Modification have been performed on the Tempest UAS by the manufacturer to include 

the installation of the BlackSwift Autopilot and the addition of remote sensors to collect 

environmental data. The payload compartment is a modular system designed and tested by the 

manufacturer.  Modifications are such that the aircraft meets the appropriate air worthiness 

requirements laid out in MIL-HDB-516A. 
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1.1.2. Tempest UAS Specifications 

 
Figure A.1.1.1. Colorado State Universities Tempest UAS (Photo by CPT Jeffrey Hathaway) 

Table A.1.1.1. Tempest UAS Performance Specifications [UASUSA, 2015] 

Specifications 

Wingspan 127" (251 mm)  

Wing Area 1016 sq in (0.65 sq m) 

Empty Weight 10 lbs (4.54 kg) 
Nominal 
GTOW 11 lbs (5 kg) 
Maximum 
GTOW 20 lbs (9.07 kg) 

Wing Loading 20.6 oz/sq ft 

Length 61.375" (1524 mm) 

Airfoil MH-32 
Center of 
Gravity 

3.5" from leading edge of the wing 
(89mm) 

Stall Speed 20 mph 

Cruise Speed 50 mph 

Max Speed 100 mph 

Max Range 60 mi (52.14 NM) 

Radio Range 10 mi (8.69 NM) 

Flight Time 1.5 HR 
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1.1.3. Tempest Sensors 

Table A.1.1.2. Tempest UAS Sensor Performance Specifications 

Sensor nm µm Wavelength 130 m (AGL) 
Resolution 

FLIR TAU 2 7500 13,500 7.5 13.5 Thermal 11.76 cm 
Tetracam SNAP 

ADC 
520 920 0.52 0.92 green, red, NIR 6.5 cm 

Sony A6000 390 780 0.39 0.78 Visible (RBG) 9.5 cm 
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Table A.1.1.3. Tempest UAS Sensor Field of View Specifications for Operations Flight. 

Tempest Sensor Field of View 

Sensor   Alt 150 ft / 45.72 m 200ft / 60.96 m 300 ft / 91.44 m 400 ft / 121.92 m 

  
o 

(deg) Rad 150 200 300 400 

Tetra ACD SNAP (4:3)             

HFOV 37.67 0.657465529 102.33 136.44 204.67 272.89 

VFOV 28.75 0.50178216 76.89 102.52 153.77 205.03 

HPixel Size (1280) N/A N/A  0.08 0.11 0.16 0.21 

VPixel Size (1024) N/A N/A 0.06 0.08 0.12 0.16 

FLIR TAU 2             

HFOV- 19 32 0.558505361 86.02 114.70 172.05 229.40 

VFOV 26 0.453785606 69.26 92.35 138.52 184.69 

HPixel Size (640) N/A N/A 0.13 0.18 0.27 0.36 

VPixel Size (480) N/A N/A 0.14 0.19 0.29 0.38 

MSR5             

FOV 11.6 0.202458193 30.47 40.63 81.26 81.26 

IRT             

FOV 11 0.191986218 28.89 38.52 77.03 57.77 

A6000             

FOV 44 0.767944871 121.21 161.61 242.42 323.22 

Pixel Size (1040) N/A N/A 0.12 0.16 0.23 0.31 
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Table A.1.1.4. Tempest UAS Sensor Pixel Specifications for Operations Flight. 

Tempest Sensor Pixel Size 

Sensor 150 ft 200ft  300 ft 400 ft 

  mm cm mm cm mm cm mm cm 

Tetra ACD SNAP (4:3)                 
HPixel Size (1280) 24.37 2.44 32.49 3.25 48.74 4.87 64.98 6.50 

VPixel Size (1024) 18.31 1.83 24.41 2.44 36.62 3.66 48.82 4.88 

FLIR TAU 2                 
HPixel Size (640) 40.97 4.10 54.62 5.46 81.94 8.19 109.25 10.92 

VPixel Size (480) 43.98 4.40 58.64 5.86 87.96 8.80 117.28 11.73 

A6000                 

Pixel Size (1040) 35.52 3.55 47.36 4.74 71.05 7.10 94.73 9.47 
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1.1.3.1. FLIR TAU 2 

 
Figure A.1.1.2. FLIR TAU 2 640 Thermal Sensor 

http://www.flir.com/cvs/cores/view/?id=54717 

Spectral Bands: 7.5-13.5 ȝm  

Dimensions: 1.75x1.75x1.18 IN 

Weight: 90 grams 

1.1.3.2. Tetracam ADC SNAP 

 
Figure A.1.1.3. Tetracam ADC SNAP Multispectral Sensor 

http://www.tetracam.com/Products-orig.htm 

Spectral Bands: 520-920 nm (red, green, NIR) 

Dimensions: 75x59x33 mm 

Weight: 90 grams 

  

http://www.flir.com/cvs/cores/view/?id=54717
http://www.tetracam.com/Products-orig.htm
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1.1.3.3. Sony A6000 

 
Figure A.1.1.4. Sony A600 SLR Digital Camera. 

http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000//cat-
27-catid-All-Alpha-a6000-
Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQ
aDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008 

Lens: 30 mm fixed 

Spectral Bands: 520-920 nm (red, green, blue) 

Dimensions: 120x67x45 mm 

Weight: 344 grams 

1.1.4 Communications and Data Link 

The SwiftPilot includes a datalink that is built on the Digi Xtend Frequency Hopping, 

Spread Spectrum (FHSS) radio modem from Digi International.  The datalink has up to 115.2 

Kbps throughput and is used for command and control, autopilot telemetry and features a user-

configurable retry and acknowledgement error handling scheme.  The Digi Xtend operates in the 

902-928 MHz ISM frequency band with a maximum 1 Watt output power. 

The system is expected to have a communication range of 12 miles line-of-sight with the 

vertically installed quarter-wave antenna used on the Tempest, and the Ground Control Station 

(GCS) antenna located at the launch/recovery site.  The radio provides security, reliability and 

high tolerance to interference. 

http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
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The ground control station consists of the SwiftStation provided by Black Swift 

Technologies, a pilot console, and an Android Tablet running the SwiftPilot User Interface. The 

following is an overview of these components containing excerpts from the “SwiftPilot User's 

Guide.” (httpμ//www.blackswifttech.com) 

The SwiftStation manages the communication link to the avionics systems, interfaces to 

Android Tablet, and provides a command and control stream to the UA. In addition, the 

SwiftStation includes a GPS receiver and antenna that locates the position of the ground station. 

The SwiftStation is powered through an external 12V DC source, provided by a 120 V 

AC power supply adapter. This provides power to run the ground station. The SwiftStation 

allows for a 12V battery connection as well for when no convenient AC source is available to 

power the unit. 

The SwiftStation connects to the tablet based user interface through a standard WiFi link. 

The ground station GPS antenna is connected to the external USB connector and the ground 

station UHF antenna is hooked up to through an SMA connector. 

The pilot's console is a standard R/C style handset that is used for manually piloting the 

UA through an on-board receiver. The pilot console can be operated without the use of the 

SwiftStation through an on board multiplexer that selects control between the pilot console and 

the autopilot. This on-board multiplexer between the autopilot and pilot console is an extra layer 

of redundancy. 

The Black Swift User Interface is a software application that runs on an Android Tablet 

and provides a command and control interface for the operator when the aircraft is in semi-

autonomous mode. All of the SwiftPilot system features are accessible from this interface. This 



118 

 

includes, but is not limited to, planning and loading waypoint flight plans, monitoring the health 

and status of the UA and the SwiftStation, and providing a graphical command and control touch 

interface for the operator. A screen shot is provided in Figure A.1.1.5. 

 
Figure A.1.1.5. Blackswift  SwiftStation. 

The main features of the user interface include a moving map display over geo-

referenced maps and satellite images, conveniently displayed health indicators in an aircraft 

status toolbar, an aircraft actions toolbar giving critical status information and control of the UA. 
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Figure A.1.1.6. Screen shot of Black Swift User Interface. 

1.2. Overview of the CSU Pilot Certification Program 

The CSU Tempest UAS Training Program is designed to train and certify CSU Pilots on 

the Tempest UAS until the FAA releases their improved UAS guidance in FY 2016 or FY 2017.  

The FAA Certifications will be the baseline licensing until the new UAS guidance is released.  

This will ensure that CSU remains within the FAA Regulations during the transition period. The 

Flight Training Program was developed with UASUSA, the manufacturer of the Tempest UAS.  

The CSU Flight Training Program can be found at the CSU website 

[http://www.engr.colostate.edu/faculty-staff/profiles.php?id=194. The Flight Training will occur 

over several phases.  Initial flight training will be conducted on a user-friendly foam R/C aircraft. 

This will ensure that any damage of the aircraft during training will be easily repairable and 

inexpensive.  Once the basic flight skills are mastered on the initial trainer, the Pilot-in-Training 
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(PIT) will advance to a foam R/C aircraft that mimics the flight controls of the Tempest UAS.  

The Final stage of the flight training will be on the Tempest aircraft as the assistant pilot and 

finally the Pilot-in-Charge (PIC).  The flight training schedule is based on the proficiency of the 

pilot at each stage of training.  The stated time requirements are the minimum required for each 

Phase.  Prior to moving onto the next phase of flight training, all PIT will demonstrate their 

proficiency with the current airframe.  The requirements for certification are as follows: 

 Completion of the flight training for pilot to be certified as a PIC  

 Completion of the Online Ground School 

 Certification of passing the Airman’s Written Knowledge Exam 

 FAA Class 2 Medical 

1.3. CSU ARDEC RS Reference Markers 

 
Figure A.1.1.7. Spectralon White Reflectance Target [Spectrolon 24 in x 24 in White Target, 
Labsphere, North Sutton, NH].  The white reflectance target sat at an elevation of 36 inches 
above ground level. 
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Figure A.1.1.8. Black Reflectance Target. 4’ x 4’ plywood painted black.  The black reflectance 
target sat at an elevation of 12 inches above the ground. 
 

 
Figure A.1.1.9. ARDEC 1070 Soil Target.  Located in the buffer of the field. 
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APPENDIX 2: REMOTE SENSING ALGORITHMS  
 
 
 

2.1. Surface Energy Balance for Land (SEBAL) 

The SEBAL model [Bastiaanssen et al., 1998a, 1998b] was developed to establish a pixel 

by pixel relationship between the surface and air temperature (dT) as a linear relationship 

between the hot and cold radiometric surface temperature pixel of a RS image.  The surface 

radiometric temperature is used instead of the aerodynamic temperature due to the difficulty in 

estimating the aerodynamic temperature, both with RS and physical measurements.  The hot 

pixel is define as a dry agricultural surface in the image, while the cold pixel is defined as a well-

watered, fully ETing agricultural field. At the cold pixel, the sensible heat flux (Hw) is assumed 

to be 0, the dTw=0 and the latent heat: 

   (A.2.1.1) 

 While at the hot pixel, the latent heat (LEd) is assumed to be 0, Hd: 

   (A.2.1.2) 

The dTd is calculated as a function of Hd: 

    (A.2.1.3) 

The linear relation of the radiometric surface temperature and the air temperature is 

calculated using the hot and cold anchor points and the linear relationship: 

   (A.2.1.4) 

nLE R G 

d nH R G 

d ah
d

p

H r
dT

C
 

sdT a b T  
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The pixel by pixel sensible heat flux (H) is then calculated based on the dT and the 

aerodynamic resistance (rah) corrected for atmospheric stability using Eq. (2.6): 

The SEBAL method is effective at estimating ETa over homogenous surfaces, and when 

there are clearly defined hot and cold pixels.  Recently, the SEBAL method has been adjusted for 

advective conditions in Mkhwanazi et al. (2015).  For actual conditions that do not have the 

stated conditions, SEBAL can experience large errors, upwards of 35% [Gowda et al., 2008].  

Due to the requirement of the extreme temperatures associated with the hot and cold pixel, the 

SEBAL method is most effective when used with satellite-based remote sensing data. 

2.2. Mapping Evapotranspiration at High Resolution with Internal Calibration (METRIC) 

The METRIC method [Allen et al,. 2007a , 2007b] is another SEB model that uses the dT 

to estimate ETa.  The METRIC models was developed using the SEBAL model and utilizes RS 

data covering the red, NIR and TIR bands of the electromagnetic spectrum, as well as ground-

based meteorological data.  The METRIC model was developed to address several of issues of 

the SEBAL method discussed previously.  The first difference is that METRIC does not assume 

the same boundary conditions at the hot and cold pixels as SEBAL does.  At the cold pixel, H is 

not assumed to equal 0 or LE=Rn-G.  Instead, LEwet is set to: 

   (A.2.1.5) 

And Hw: 

   (A.2.1.6) 

At the hot pixel the LE is not assumed to equal 0, rather the hot pixel conditions are 

determined using a soil water balance method to estimate LE when a wetting event occurred 

1.05wet refLE ET 

wet n wetH R G LE  
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close to the remote sensing platform overpass.  The second major difference is the selection 

criteria for the hot and cold pixels.  The METRIC model requires the selection of the hot and 

cold pixels from an agricultural pixel with biophysical properties similar to the reference ET 

[Gowda et al., 2008].  With the changes in the boundary condition and selection criteria of the 

hot and cold pixels, the METRIC model can be applied to the aerial and satellite-based remote 

sensing data, due to the high probability of the hot and cold pixels being present in a single 

agricultural field [Allen, 2002].  Additionally, the METRIC model has an advantage over 

SEBAL in areas under advective condition [Chávez et al., 2009].  In addition, METRIC requires 

very good quality hourly weather data to properly scale the dT function. 

2.3. Other Methods – Triangle Method 

Empirically based methods that compare RS derive VI’s, Tsfc, albedo, and other, are also 

used to estimate surface SWC.  These methods are based on plotting the RS data and biophysical 

properties in a scatter plot and making inference based on the shape of the plot [Petropoulos et 

al., 2009a].  The most common of these methods is the Triangle method [Gillies and Carlson, 

1995] that compares the VI and the Ts to derive the surface SWC [Petropoulos et al., 2009a]. 

 The VI vs Ts creates a triangle (or trapezoid) if the scene has the full range of soil 

moisture values, as depicted in Figure A.2.1.  The right edge, known as the dry edge, represents 

the highest temperatures over the range of VI, which represents vegetation canopy cover from 

bare soil to full cover.  The left edge, or wet edge, represent the cold temperatures over the same 

range of VI values.  The bare soil and fully vegetative ET is then calculated using the Penmen-

Monteith, or similar, equation.  The location of the pixel on the scatter plot is developed into a 

crop water stress index, which is then directly related to the surface SWC and indirectly to the 

root zone SWC [Gillies et al., 2010, Carlson 2013].   



125 

 

 
Figure A.2.1. Triangle Method VI vs Ts scatter plot [Petropoulos et al., 2009a]. 

 
Figure A.2.2.  Surface SWC (M0) utilizing the triangle method [Gillies et al., 2010]. 
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 The triangle method is suited to aerial-based remote sensing platform due to the 

requirement for high spatial resolution multispectral and thermal optical imagery.  Additionally, 

the method shows promise for use over large areas without site-specific tuning.  The only ground 

data that is needed for the triangle method is the soil-water parameters of the imagery and air 

temperature.
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APPENDIX 3: DESCRIPTION OF MODELS USED 
 
 
 

3.1. Data Pre-Processing 

1.1. Geo-reference Images using ERDAS Imagine 2015 GIS Software [ERDAS Imagine 2015, 

Hexagon Geospatial, Cape Town, South Africa]. 

1.2. Mosaic Images using GIS Software utilizing ground reference points and known location 

data.  Attempt to utilize as few RS imagery as necessary to limit errors associated with pre-

processing data. 

1.3 Calibrate Imagery to reflectance and Tsfc using internal calibration.  Convert from 8-bit 

digital number (DN (0-255) to reflectance (% or fraction) or Tsfc (oC or K). 

   (A.3.1.1) 

   (A.3.1.2) 

3.2. Two-Source Energy Balance (TSEB) ETa Method 

 The following procedure is a description of the TSEB model and corresponding ERDAS 

Imagine Models.  The name of the ERDAS Imagine model is described using the following 

formatμ “Reference σumber Product.” (e.g. “1 τSAVI”).  The ERDAS Imagine Models are 

located at the CSU website [http://www.engr.colostate.edu/faculty-staff/profiles.php?id=194]. 

2.1. Calculate OSAVI: Rondeaux et al. (1996). Range [-1μ1]. “1 τSAVI”. 

                                (A.3.2.1) 

 where L=0.16 as the optimal value to minimize soil background effects. 

0.0039InternalCalibrationMS DN 

T a DN bsfc   

(1 ) ( )L NIR RED
NIR RED LOSAVI   

 
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2.2. Calculate the crop height (hcc, m): Chávez et al. (2005). Range [hcc൒0]. “2 Crops”. 

   (A.3.2.2) 

2.3. Calculate Leaf Area Index (LAI): Chávez et al. (2005). Range [0.5൑LAI≤5] “3 LAI_RS”. 

   (A.3.2.3) 

2.4. Calculate Fraction Vegetation Cover (fc). σormal et al. (1λλ5). Range [0μ1]. “4 f_c”. 

   (A.3.2.4) 

2.5. Calculate Local LAI (LAIL). Kustas and Norman (2000). Range [0.5൑LAI≤5]. “5 LAI_l”. 

   (A.3.2.5) 

2.6. Calculate the Fractional Soil Cover (fs).  Kustas and σorman (2000). Range [0μ1].  “6 f_s”. 

  (A.3.2.6) 

2.7. Calculate Clumping Factor (Ω). Kustas and σorman (2000).  Range [0μ1] “7 Clumping 

Factor”. 

   (A.3.2.7) 

2.8. Calculate “σew” (updated w/ Ω) Fractional Vegetative Cover (fc_new).  Kustas and Norman 

(2000). Range [0μ1].  “7 f_c_new”. 

   (A.3.2.8) 

7 (17.69 )(1.86 0.2) (1 4.8 10 )OSAVIh OSAVI ecc
       

6 15.64(4 0.8) (1 4.73 10 )OSAVILAI OSAVI e       

0.51 LAIf ec
  

LAIrsLAIL fc


0.5( ) (1 )LAILf f e fs c c
    

( )
0.5
LN fs

LAI
  

0.51_
LAIf ec new

   
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2.λ. Calculate Surface Albedo (αs).  Brest and Goward (1987). Range [0μ1].  “8 Surface Albedo”. 

   (A.3.2.9) 

2.10. Calculate the short wave radiation budget (Rsw, W m-2). Range [Rsw≥0].  Inputsμ α, Rs. “10 

R_sw”. 

   (A.3.2.10) 

 where Rsw is the incoming short wave solar radiation (W m-2) from weather station data. 

2.11. Calculate εsfc.  Brunsell and Gillies (2002). Range [0μ1].  “11 Surface Emissivity”. 

   (A.3.2.11) 

 where vegetation emissivity (εv=0.98), and soil emissivity (εs=0.955). 

2.12. Calculate the surface outgoing long wave radiation (RLW_out, W m-2). “12 R_lw_out”. 

   (A.3.2.12) 

where εsfc is the emissivity of the surface, and Where Ts is the air temperature of the surface (K). 

2.13. Calculate the long wave radiation budget (RLW, W m-2).  “13 R_lw”. 

   (A.3.2.13) 

2.14. Calculate the Atmospheric/air long wave incoming radiation (RLW_in, W m-2). Excel spread 

sheet. 

   (A.3.2.14) 

0.512 0.418RED NIRs    

(1 )R Rsw s  

(1 )f fsfc c v c s      

4
_R TLW out s s 

_ _R R RLW LW in LW out 

4
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 where Ta is the air temperature of the air (K), εa is the emissivity of the atmosphere, and ı 

is the Stefan-Boltzmann Constant (5.67E-08 W m-2) 

2.15. Calculate εa. Range [0:1]. Excel spread sheet. 

   (A.3.2.15) 

where ea is actual vapor pressure of the air (kPa) and Ta is the air temperature of the air 

(K). 

2.16. Calculate Net Radiation (Rn, W m-2).  Monteith (1λ73). “14 R_n”. 

   (A.3.2.16) 

2.17. Calculate the extinction coefficient for the canopy (K).  Campbell (1996), Campbell and 

Norman (1998). Excel spread sheet. 

   (A.3.2.17) 

 where, θz is the solar zenith angle (degrees) and π is 3.1416. 

2.18. Calculate the components of theoretical Clear Sky Short Wave Radiation (Rs), Direct Beam 

Solar Radiation (Rb) and Diffuse Solar Radiation (Rd).  Spokas and Forcella, 2006. 

   (A.3.2.18) 

2.18.1. Calculate the Optical Air Mass Number (m). Excel spread sheet. 

   (A.3.2.18.1) 

1
71.24( )

ea
a Ta
 

4 4(1 )R R T Tn s a a s s       
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2 ( )

180

K
COS z
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(101.3 ( )
180
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COS z
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 where P is the barometric pressure (kPa) from weather data. 

2.18.2. Calculate Rb. Excel spread sheet. 

   (A.3.2.18.2) 

 where Gsc is the solar constant (1360 W/m2) and Ĳatm_KB is the atmospheric transmittance 

calculated with REF-ET and Weather Station data [Allen, 1992]. 

2.18.3. Calculate Rd. Excel spread sheet. 

   (A.3.2.18.3) 

 where Ĳatm_KD is the atmospheric transmittance calculated with REF-ET and Weather 

Station data [Allen 1992]. 

2.19. Calculate the fraction (fb) of incident Photosynthetically Active Radiation (PAR) from Rb. 

Range [0:1].  Goudriaan (1977). Excel spread sheet. 

   (A.3.2.19) 

2.20. Calculate the solar transmittance in the canopy (Ĳc).  Range [0:1]. Norman and Jarvis 

(1λ74).  “15 Tau_c”. 

   (A.3.2.20) 

2.20.1. Where A is (Goudriaan (1988)). Excel spread sheet. 

   (A.3.2.20.1) 

_R Gb sc atm KB 

0.3 (1 ( ) ) ( )_ 180
mR G COSd atm KD sc z
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 where a=0.9. (DECAGON USERS MANUAL) 

2.21. Calculate the initial Canopy Net Radiation (dRn, W m-2).  Normal et al. (1995). Inputs: Rn 

and fc_new. “16 dR_n”. 

           (A.3.2.21) 

2.22. Calculate the Slope of the saturation vapor pressure versus temperature curve (Δ). Priestly 

and Taylor (1972).  Excel spread sheet. 

   (A.3.2.22) 

2.23. Calculate the psychrometric constant (γ).  Priestly and Taylor (1λ72). Excel spread sheet. 

  (A.3.2.23) 

2.24. Calculate the fraction of LAI that is green (fg). Range [0:1].  Based on ground observations 

or as a function of OSAVI. 

   (A.3.2.24) 

2.25. Calculate the initial Sensible Heat Flux for Canopy (Hc_int, W m-2).  Priestly and Taylor 

(1972). Inputs: dRn and fg. “18 dR_n”. 

   (A.3.2.25) 

2.26. Calculate the initial aerodynamic resistance to heat transfer (rahint s m-1). Norman et al. 

(1λλ5). “1λ r_ah_int” 
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   (A.3.2.26) 

 where, zm is the height of the wind speed measurement (m), d is the zero plane 

displacement (m), zom is the roughness length for momentum (m) and zoh is the roughness length 

for heat transfer (m). 

2.27. Calculate the friction velocity (U*, m s-1). σorman et al. (1λλ5). “20 iteration”. 

  (A.3.2.27) 

2.28. Calculate the initial canopy temperature (Tc_int, K). σorman et al. (1λλ5). “20 iteration”. 

  (A.3.2.28) 

2.29. Correct Hc_int for atmospheric stability using the Monin-Obukhov length Scale (Lmo, m).  This 

is an iterative process, until the change in Hc_int is less than 5%. Norman et al. (1λλ5). “20 

iteration”. 

  (A.3.2.29) 

  (A.3.2.30) 

 The friction velocity (U*), for non-neutral is derived using the stability correction for 

momentum and heat transfer (ψm, ψh).  The stability correction factor for atmospheric heat 

transfer and momentum transfer, for unstable conditions (��_�<0), can be determined by 
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Businger-Dyer formulations (Dyer and Hicks, 1970; Dyer, 1974; Businger, 1988; Sugita and 

Brutsaert, 1990) and explained in detail in Chávez et al. (2005). “20 iteration”. 

  (A.3.2.31) 

  (A.3.2.32) 

  (A.3.2.33) 

  (A.3.2.34) 

  (A.3.2.35) 

  (A.3.2.36) 

  (A.3.2.37) 

  (A.3.2.38) 

2.30. Calculate initial soil temperature (Ts_in, oC)).  σormal et al. (1λλ5). “21 T_s_in”. 
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  (A.3.2.39) 

2.31. Calculate the initial long wave radiation emitted by the canopy (Lc, W m-2).  Norman et al. 

(1λλ5). “22 L_c”. 

  (A.3.2.40) 

 where εc is the canopy emissivity and is set to 0.98 for healthy green vegetation. 

2.32. Calculate the initial long wave radiation emitted by the soil (Ls, W m-2).  Norman et al. 

(1λλ5) “23 L_s”. 

  (A.3.2.41) 

 where εs is the soil emissivity and is set to 0.92 for bare soil. 

2.33. Calculate Soil Albedo (αs).  Range [0μ1].  Post et al. (2000). “24 soil albedo”. 

  (A.3.2.42) 

where the blue is calculated as a function of the green band: 

    (A.3.2.42.1) 

The Tetracam SNAP ADC did not collect data over the blue band of the electromagnetic 

spectrum.  In order to develop the required blue band data for the study, a linear regression of the 

MSR5 blue vs the Tempest green bands.  The regression allowed the estimation of the blue band 

from the green bands.  The linear relationship is dependent on the spectral sensitivity and 

bandwidth associated with the multispectral sensor. 

4 4( 273.15) ( )_4_ 1 _

T f Tsfc c new cinTs in fc new

   

4
int

L Tc c c
   

4
int

L Ts s s
   

0.785 0.745 0.872 0.01NIR Blue Greens       

0.47Blue Green 
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2.34. Calculate the short wave radiation for soil (Sns, W m-1).  Kustas and σorman (2000). “25 

s_ns”. 

  (A.3.2.43) 

2.35. Calculate the long wave net radiation from the canopy (Lnc, W m-1). Kustas and Norman 

(2000). “26 l_nc”. 

  (A.3.2.44) 

 where K1 is the extinction coefficient set to 0.95. 

2.36. Calculate the long wave net radiation form the soil (Lns, W m-1). Kustas and Norman 

(2000). “27 l_ns”. 

   (A.3.2.45) 

2.38. Calculate the net radiation for the soil (Rns, W m-1). σorman et al. (1λλ5). “28 r_ns”. 

   (A.3.2.46) 

2.39. Calculate the net radiation for the canopy (Rnc, W m-1). σorman et al. (1λλ5). “2λ r_nc”. 

   (A.3.2.47) 

2.40. Estimate the sensible heat flux for the canopy using the Rnc. σorman et al. (1λλ5). “30 

h_c”. 

  (A.3.2.48) 

(1 )S Rns c s s    

1(1 ) ( 2 )k LAIrsL e R L Lnc lw s cin
     

1 1( ) ((1 ) )_
K LAI K LAIL R e e L Lns lw in c s

        

R S Lns ns ns 

R R Rnc n ns 

(1 (1.13 ))H R fc nc g      
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2.41. Using Eq. (A.3.2.48), updated the rah using the Monin-Obukhov iterative procedure 

outlined in section 2.2λ. “31 iteration 2”. 

2.42. Estimate the mean canopy leaf width (wc, m).  For corn, assume the wc is 0.09 m. Chávez 

et al. (2009). 

2.43. Calculate the extinction coefficient for the wind function (aext).  Range [0:1]. Norman et al. 

(1λλ5). “33 a_ext”. 

   (A.3.2.49) 

2.44. Calculate the wind speed at the top of the canopy (Uc, m s-1). σorman et al. (1λλ5). “34 

u_c”. 

   (A.3.2.50) 

2.45. Calculate the wind speed close to the soil surface (Us, m s-1). σorman et al. (1λλ5). “35 

u_s”. 

   (A.3.2.51) 

2.46. Calculate the resistance to heat flow above the soil surface (rso, s-1). Norman et al. (1995). 

“36 r_so”. 

   (A.3.2.52) 

2.47. Compute the soil heat flux (G, W m-2). Chávez et al. (2005). “38 G”. 

2 1 1
3 3 30.28 (( ) ) ( )a LAI h wcext cc
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*
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   (A.3.2.53) 

2.48. Estimate the updated canopy temperature (Tc, oC) based on updated Hc and rah. Norman et 

al. (1λλ5). “3λ t_c”. 

   (A.3.2.54) 

2.49. Estimate the updated soil temperature (Ts, oC) based on the updated Tc. Noman et al. 

(1λλ5). “40 t_s”. 

  (A.3.2.55) 

2.50. Calculate the sensible heat flux from the soil (Hs, W m-1). σorman et al. (1λλ5). “41 h_s”. 

  (A.3.2.56) 

2.51. Compute the total sensible heat flux (H, W m-1). σorman et al. (1λλ5). “42 h”. 

   (A.3.2.57) 

2.52. Estimate the latent heat flux for the soil (LEs, W m-1). σorman et al. (1λλ5). “43 le_s”. 

   (A.3.2.58) 

2.53. Verify that Ts and Tc are correct.  If LEs≥0, then the Ts and Tc are correct.  If LEs<0, then 

the soil is dry.  The LEs is set to 0 and Hs is recalculated as: 

   (A.3.2.59) 
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 Utilizing the new Hs, recalculate Ts and Tc by inverting Eq. (2.56) and then Eq. (2.55). 

Norman et al. (1995). “44 le_s is less than 0 (T_s and T_c)”. 

2.54. Calculate the final H based on results of section 2.53. “45 h_final”. 

2.55. Compute the total (soil and canopy) latent heat flux (LE, W m-2). “46 et_i et_d”. 

   (A.3.2.60) 

2.56. Compute the hourly actual ET (ETa, mm hr-1) from the LE.  Allen et al. (2007). “46 et_i 

et_d”. 

  (A.3.2.61) 

 where Ȝv is the latent heat of vaporization (J kg-1) and ρw is the density of water (~1,000 

kg m-3). 

2.57. Extrapolate the hourly ETa to the daily ETa (mm d-1) using the Reference ET Fraction 

(ETrF). “46 et_i et_d”. 

  (A.3.2.62) 

where ETr is the ASCE-EWRI reference ET. 

  (A.3.2.63) 

*Note: If the soil is dry, but there is surface moisture (dew during an early flight, ect.), 

the daily ETa must be adjusted according to FAO-56 SWB derived ke. 

  

LE R H Gn  

3600 1000LE
ETa
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3.3. Surface Aerodynamic Temperature (SAT) ETa Method 

 The following procedure is a description of the SAT model and corresponding ERDAS 

Imagine Models. 

3.1. Calculate OSAVI: Rondeaux et al. (1996). Range [-1μ1]. “1 τSAVI”. 

                                (A.3.3.1) 

 where L=0.16 as the optimal value to minimize soil background effects. 

3.2. Calculate the crop height (hcc, m): Chávez et al. (2005). Range [hcc൒0]. “2 Crops”. 

   (A.3.3.2) 

3.3. Calculate Leaf Area Index (LAI): Chávez et al. (2005). Range [0.5൑LAI≤5] “3 LAI_RS”. 

   (A.3.3.3) 

3.4. Calculate the initial aerodynamic resistance to heat transfer (rahint s m-1). Norman et al. 

(1λλ5). “4 r_ah_int” 

   (A.3.3.4) 

 where, zm is the height of the wind speed measurement (m), d is the zero plane 

displacement (m), zom is the roughness length for momentum (m) and zoh is the roughness length 

for heat transfer (m). 

3.5. Calculate the aerodynamic temperature (To, oC). Chávez et al. (2010). “5 t_o”. 
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       

6 15.64(4 0.8) (1 4.73 10 )OSAVILAI OSAVI e       
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    (A.3.3.5) 

3.6. Calculate the initial sensible heat flux (H, W m-2). σorman et al. (1λλ5). “6 H_int”. 

    (A.3.3.6) 

3.7. Calculate the friction velocity (U*, m s-1). σorman et al. (1λλ5). “7 Lmo”. 

  (A.3.3.7) 

3.8 Correct Hint for atmospheric stability using the Monin-Obukhov length Scale (Lmo, m).  This 

is an iterative process, until the change in Hc_int is less than 5%. Norman et al. (1λλ5). “7 Lmo”. 

  (A.3.3.8) 

 The velocity (U*, Eq. (A.3.3.16)), for non-neutral is derived using the stability correction 

for momentum and heat transfer (ψm, ψh).  The stability correction factor for atmospheric heat 

transfer and momentum transfer, for unstable conditions (��_�<0), can be determined by 

Businger-Dyer formulations (Dyer and Hicks, 1970; Dyer, 1974; Businger, 1988; Sugita and 

Brutsaert, 1990) and explained in detail in Chávez et al. (2005). “8 iteration”. 

  (A.3.3.10) 

  (A.3.3.11) 

0.534 0.39 0.224 0.192 1.67T T T LAI Uo sfc a        

( )Cpa T Ta o aH
rah

   

*

( )

U kU
Z dmLN
Zom

 

3
a a Pa

mo

u T C
L

g k H

    

1/4(1 16 )
Z dmxZm Lmo

  

1/4(1 16 )
Z dohxZoh Lmo

  



142 

 

  (A.3.3.12) 

  (A.3.3.13) 

  (A.3.3.14) 

  (A.3.3.15) 

  (A.3.3.16) 

  (A.3.3.17) 

3.9. Calculate Surface Albedo (αs).  Brest and Goward (1λ87). “9 Surface Albedo”. 

   (A.3.3.9) 

3.10. Calculate the short wave radiation budget (Rsw, W m-2). Inputsμ α, Rs. “10 R_sw”. 

   (A.3.3.10) 

 where Rsw is the incoming short wave solar radiation (W/m2) from weather station data. 
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3.11. Calculate εsfc.  Brunsell and Gillies (2002). “11 Surface Emissivity”. 

   (A.3.3.11) 

 where vegetation emissivity (εv=0.98), and soil emissivity (εs=0.955). 

3.12. Calculate the surface outgoing long wave radiation (RLW_out, W m-2). “12 R_lw_out”. 

   (A.3.3.12) 

where εsfc is the emissivity of the surface, and Where Ts is the air temperature of the 

surface (K). 

3.13. Calculate the long wave radiation budget (RLW, W m-2).  “13 R_lw”. 

   (A.3.3.13) 

3.14. Calculate the Atmospheric/air long wave incoming radiation (RLW_in, W m-2). Excel spread 

sheet. 

   (A.3.3.14) 

 where Ta is the air temperature of the air (K), εa is the emissivity of the atmosphere, and ı 

is the Stefan-Boltzmann Constant (5.67E-08 W m-2) 

 

3.15. Calculate εa. Range [0:1]. Excel spread sheet. 

   (A.3.3.15) 
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3.16. Calculate Net Radiation (Rn, W m-2).  Monteith (1λ73). “14 R_n”. 

   (A.3.3.16) 

3.17. Compute the soil heat flux (G, W m-2). Chávez et al. (2005). “15 G”. 

   (A.3.3.17) 

3.18. Compute the total (soil and canopy) latent heat flux (LE, W m-2). “16 et_i et_d”. 

   (A.3.3.18) 

3.19. Compute the hourly actual ET (ETa, mm hr-1) from the LE.  Allen et al. (2007). “16 et_i 

et_d”. 

  (A.3.3.19) 

 where Ȝv is the latent heat of vaporization (J kg-1) and ρw is the density of water (~1,000 

kg m-3). 

3.20. Extrapolate the hourly ETa to the daily ETa (mm d-1) using the Reference ET Fraction 

(ETrF). “16 et_i et_d”. 

  (A.3.3.20) 

where ETr is the ASCE-EWRI reference ET. 

  (A.3.3.21) 

4 4(1 )R R T Tn s a a s s       

(((0.3324 ( 0.024 )) (0.8155 ( 0.3032 ( )))) )G LAI LN LAI Rn        

LE R H Gn  

3600 1000LE
ETa

v w 
 

ETaiET Fr ETr


*_ _ET ET F ETa d r r d



145 

 

*Note: If the soil is dry, but there is surface moisture (dew during an early flight, ect.), 

the daily ETa must be adjusted according to ke. 

3.4. Crop Water Stress Index (CWSI) ETa Method 

 The following procedure is a description of the CWSI model and corresponding ERDAS 
Imagine Model “CWSI”. 

4.1. Calculate the dT (oC) of the canopy emissivity corrected Tc (oC) and the Ta (oC). Idso et al. 
(1982). 

    (A.3.4.1) 

 When utilizing the TIR imagery, the surface temperature (Tsfc, oC) is utilized instead of 
Tc.  If the multispectral imagery is available, the Tc can be estimated using the methods outlined 
in the TSEB model. 

4.2. Calculate the vapor pressure difference (VPD, kPa). Idso et al. (1982). 

     (A.3.4.2) 

4.3. Calculate the vapor pressure gradient (VPG, kPa). Idso et al. (1982). 

  (A.3.4.3) 

4.4. Compute dTll (oC). Idso et al. (1982). 

   (A.3.4.4) 

4.5. Compute dTul (oC). Idso et al. (1982). 

   (A.3.4.5) 

4.6. Compute the CWSI. Idso et al. (1982). 

   (A.3.4.6) 

4.7. Calculate the ETa (mm h-1). Idso et al. (1982). 

  (A.3.4.7) 

where ETp is the ETc for no stress conditions. 
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4.8. Extrapolate the hourly ETa to the daily ETa (mm d-1) using the Reference ET Fraction 
(ETrF).  

  (A.3.4.8) 

Where ETr is the ASCE-EWRI reference ET. 

  (A.3.4.9) 

3.5. Reflectance-based Crop Coefficients (kcbrf) ETa Method 

 The following procedure is a description of the kcbrf model and corresponding ERDAS 
Imagine Model (k_cbrf). 

5.1. Calculate the NDVI. 

   (A.3.5.1) 

5.2. Calculate the NDVI based kcbrf_NDVI. Range [-1:1]. Neale et al. (1989). 

    (A.3.5.2) 

5.3. Calculate OSAVI: Rondeaux et al. (1996). Range [-1:1].  

                                (A.3.5.3) 

 where L=0.16 for corn. 

5.4. Calculate Leaf Area Index (LAI): Anderson et al. (2004). Range [0.5≤LAI≤5] “3 LAI_RS”. 

   (A.3.5.4) 

5.5. Calculate Fraction Vegetation Cover (fc). σormal et al. (1λλ5). Range [0μ1]. “4 f_c”. 

   (A.3.5.5) 

5.6. Calculate the fc base kcbrf_fc. Johnson and Trout (2012). 

   (A.3.5.6) 

5.7. Calculate the hourly ETa (mm h-1). 

  (A.3.5.7) 

5.8. Extrapolate the hourly ETa to the daily ETa (mm d-1) using the Reference ET Fraction 
(ETrF).  
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  (A.3.5.8) 

Where ETr is the ASCE-EWRI reference ET. 

  (A.3.5.9) 

 3.6. Hybrid Soil Water Balance Method. 

 3.6.1 FAO-56 Soil Water Balance 

The FAO-56 SWB approach starts with a given soil profile at field capacity (θFC,              

mm m-1).  Field capacity is generally defined as the amount of water held in the soil after excess 

water has drained away and the rate of downward drainage has decreased.  Once the SWB 

begins, the daily allowable depletion, and root zone SWC are tracked using the following 

equation [Hoffmann et al., 2007]: 

   (A.3.6.1) 

Where Di (mm) is the soil water depletion at the end of day i, Di-1 is the soil water 

depletion at the end of day i-1 (mm), ETa is the actual crop evapotranspiration (mm), P (mm) is 

the gross precipitation infiltrated, Sro (mm) is the surface runoff, In (mm) is the net irrigation on 

day i, DP (mm) is the deep percolation on day i, and GW (mm) is the ground water capillary 

contribution from the water table on day i [Hoffmann et al., 2007]. 

The ETa is calculated using the dual basal crop coefficient method: 

  (A.3.6.2) 

Where the dual Kc is estimated using the mean basal kcb, the stress coefficient (ks) and the 

soil evaporation coefficient (ke) [Neale et al., 2012].  

ETaET Fr ETr


_ _ET ET F ETa d r r d 

1 ( )i i a ro nD D ET P S I DP GW      

( )ET k k k ET
a cb s e ref
   



148 

 

The mean basal crop coefficient can be obtained from published tabulated values in 

FAO-56.  The mid-season kcb values are adjusted for the appropriate climate conditions. The 

FAO-56 published Kcb values are for humid climates and therefore need to be adjusted to be used 

in arid and semi-arid regions with Eq. (A.3.6.3). 

   (A.3.6.3) 

where kcb_table can be found in Table 17 of FAO-56, u2 (m s-1) is the mean daily wind 

speed at 2 m height above grass during mid-season growth stage, RHmin (%) is the mean value 

for minimum relative humidity during mid-season growth stage, and h (m) is the mean value for 

plant height during mid-season. 

 The stress coefficient, ks, according to Allen et al. (1995) is calculated as: 

   (A.3.6.4) 

where TAW is the total available water (mm), Dr is the root zone depletion (mm), and 

RAW is the readily available water (mm). 

The shallow soil water evaporation coefficient, ke, is calculated using the following 

equation: 

   (A.3.6.5) 

where, kr, is the evaporation reduction coefficient, kc max is the maximum value of kc 

following a wetting event, and few is the fraction of soil that receives sunlight, and water during 

the wetting event [Allen et al., 1995]. 

  (A.3.6.6) 
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   (A.3.6.7) 

where Dr_s is the depletion of the soil surface layer (mm). 

   (A.3.6.8) 

where the fraction of the surface that is wetted by irrigation and rain (fw) depends on 

irrigation.  

 3.6.2. Remote Sensing Assimilation 

The RS derived ETa and kcbr are assimilated into the FAO 56 SWB using the ks.  In order 

to update the SWD, the RS derived ETa is used to calculate the updated stress coefficient, ks: 

   (A.3.6.9) 

The updated ks is used to estimate the actual soil water deficit (Di, mm) by using the 

linear relationship between the ks, readily available water (RAW, mm) and total available water 

(TAW, mm) as shown in Figure A.3.1.  If the hybrid model derived ks=1, θi>RAW.  If ks<1, then 

the Di is a function of the linear relationship between RAW (Ks=1) and TAW (ks=0) [Allen et 

al.,1995].  In the terms of a PA irrigation system, if the Di<RAW, irrigation is not required.  If 

Di>RAW, irrigation is required. 
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Figure A.3.1. Relationship between ks, RAW and TAW [Allen et al., 1995] 

The soil water content, is updated using the Di, θFC and Rz: 

   (A.3.6.10) 

The kcbrf is then used to adjust the kcb for use in the SWB between RS overpasses.  By 

adjusting kcb based on the actual crop characteristics, ETWB will more accurately estimate ETa.  

Figure A.3.2 depicts the use of the kcbrf when compared to kcb.  Under ideal condition, the kcbrf 

will closely approximate kcb, as with the LIRF fully irrigated crops.  Crops that are under non-

standard conditions, will generally fall below the kcb. 

( )D Ri FC i z   
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Figure A.3.2. kcbrf vs. kcb over the growing season [Neale et al., 2012] 
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APPENDIX 4: SUMMER 2015 ARDEC 1070 RS DATA 
 
 
 

4.1. 22JUL15

 
Figure A.4.1. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGL) – 22JUL15 
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Figure A.4.2. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGL) – 22JUL15 
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4.2. 30JUL15 

 
Figure A.4.3. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGL) – 30JUL15 
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Figure A.4.4. ARDEC 1070 USU Thermal Imagery (121 m AGL) – 30JUL15 
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Figure A.4.5. ARDEC 1070 Tempest UAS Daily ETa (121 m AGL) – 30JUL15 
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Figure A.4.6. ARDEC 1070 Tempest UAS SWD (121 m AGL) – 30JUL15 
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4.3. 13AUG15 

 
Figure A.4.7. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGL) – 13AUG5 
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Figure A.4.8. ARDEC 1070 Tempest UAS Thermal Imagery (121 m AGL) – 13AUG15 
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Figure A.4.9. ARDEC 1070 Tempest UAS Daily ETa (121 m AGL) – 13AUG15 
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Figure A.4.10. ARDEC 1070 Tempest UAS SWD (121 m AGL) – 13AUG15 
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4.4. 19AUG15 
 

 
Figure A.4.11. ARDEC 1070 Tempest UAS Thermal Imagery (121 m AGL) – 19AUG15 
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4.5. 10SEP15 

 
Figure A.4.12. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGL) – 10SEP15 
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Figure A.4.13. ARDEC 1070 Tempest UAS Thermal Imagery (121 m AGL) – 10SEP15 
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Figure A.4.14. ARDEC 1070 Tempest UAS Daily ETa (121 m AGL) – 10SEP15 
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Figure A.4.15. ARDEC 1070 Tempest UAS SWD (121 m AGL) – 10SEP15 
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4.6. Summary of Results 

4.6.1. Raw Data 

Table A.4.1. MBE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data 
comparisons.  

 

Table A.4.2. RMSE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data 
comparisons.  

 

 

 

 

 

 

 

  

Flight Date
Thermal (C) Green (% Reflection) Red (% Reflection) NIR (% Reflection)

Season* -1.36 5.06 0.81 -1.17
22-Jul-15 - 10.09 3.22 -0.88

30-Jul-15 - 0.08 0.05 0.14
13-Aug-15 -8.02 0.14 0.04 0.19

10-Sep-15 1.20 3.28 -0.55 -1.51

No data due to equipment malfunction

Data linearly corrected due to eqipment malfunction
Uncorrected data

MBE
2015 Tempest UAS Raw Data vs MSR5 Data MBE Results

Flight Date
Thermal (C) Green (% Reflection) Red (% Reflection) NIR (% Reflection)

Season* 5.68 7.31 3.51 5.26
22-Jul-15 - 10.76 4.03 6.16

30-Jul-15 - 1.41 1.55 2.80
13-Aug-15 9.62 1.64 2.06 5.33

10-Sep-15 2.40 6.06 3.74 5.38

RMSE

Data linearly corrected due to eqipment malfunction
Uncorrected data

No data due to equipment malfunction

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results
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Table A.4.3. Student-T Test Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 
data comparisons.  

 

Table A.4.4. Linear Regression Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 
data comparisons.  

2015 Tempest UAS Raw Data Linear Regression Coefficients 
 Thermal Green Red NIR 
a 0.74 0.92 0.89 0.75 
b 7.45 5.62 1.97 8.49 
R2 0.67 0.91 0.97 0.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flight Date
Thermal Green Red NIR

Season* 0.12 0.00 0.05 0.06
22-Jul-15 0.00 0.10 0.58 0.82

30-Jul-15 0.00 0.81 0.91 0.93
13-Aug-15 0.00 0.79 0.95 0.93

10-Sep-15 0.45 0.29 0.98 0.71

T_Test

Data linearly corrected due to eqipment malfunction
Uncorrected data

No data due to equipment malfunction

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results
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4.6.2. ETd 

Table A.4.5. Summary of the statistics from the daily ETa derived from the 2015 Tempest UAS 
RS campaign. 

 

Table A.4.6. Linear Regression Summary of the statistics from the daily ETa derived from the 
2015 Tempest UAS RS campaign. 

2015 Tempest UAS ETd Linear Regression Coefficients 

 TSEB SAT NDVI FAO-56 
(Rz=1 m) 

FAO-56 
(Rz=1.5m) 

CWSI Fc 

a 0.60 0.10 0.29 0.61 0.67 0.88 0.38 

b 1.55 2.85 3.16 0.36 0.92 1.90 3.78 

R2 0.71 0.12 0.29 0.77 0.63 0.62 0.27 

 

 

  

Method Statistic Season 22-Jul-15 30-Jul-15 13-Aug-15 10-Sep-15
MBE (mm/d) 0.29 0.23 0.06 0.58
RMSE (mm/d) 0.89 1.10 0.54 0.93

2*P[T<=t] 0.00 0.15 0.47 0.00
MBE (mm/d) 0.49 -0.89 0.03 0.96
RMSE (mm/d) 1.21 1.56 0.95 1.47

2*P[T<=t] 0.00 0.00 0.83 0.00
MBE (mm/d) 0.79 0.14 1.27 0.49 1.28
RMSE (mm/d) 1.43 0.91 1.83 1.00 1.74

2*P[T<=t] 0.00 0.29 0.00 0.00 0.00
MBE (mm/d) -0.94 -1.17 -0.96 -1.27 -0.36
RMSE (mm/d) 1.22 1.46 1.23 1.36 0.82

2*P[T<=t] 0.00 0.39 0.00 0.14 0.83
MBE (mm/d) 1.44 -0.73 0.52 1.97 1.20
RMSE (mm/d) 1.64 1.11 0.86 2.17 1.49

2*P[T<=t] 0.00 0.39 0.00 0.00 0.00
MBE (mm/d) 1.58 -0.73 0.52 -0.55 0.01
RMSE (mm/d) 1.86 1.11 0.86 0.74 0.75

2*P[T<=t] 0.00 0.39 0.00 0.01 0.00
MBE (mm/d) 1.88 1.08 2.65 1.25 1.92
RMSE (mm/d) 2.30 1.44 2.96 1.85 2.23

2*P[T<=t] 0.00 0.00 0.00 0.00 0.00
FC

TSEB

SAT

NDVI

FAO-56 SWB Rz=1 m

FAO-56 SWB Rz=1.5 m

CWSI
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Table A.4.7. Mean daily ETa derived from the 2015 Tempest UAS RS campaign - Full. 
2015 Mean Tempest UAS Mean ETd (mm d-1) Full Treatment 

 
TSEB SAT NDVI 

FAO-56 
(Rz=1 m) 

FAO-56 
(Rz=1.5m) 

CWSI Fc NP 

22-JUL N/A N/A 4.15 3.67 3.75 N/A 5.10 4.40 
30-JUL 4.72 3.26 5.28 4.06 5.81 N/A 6.69 5.68 
13-AUG 3.74 3.16 3.66 2.51 3.38 5.04 4.47 3.84 
10-SEP 3.87 3.78 4.02 2.85 3.28 5.05 4.75 3.70 

 

Table A.4.8. Mean daily ETa derived from the 2015 Tempest UAS RS campaign - Limited. 
2015 Mean Tempest UAS Mean ETd (mm d-1) Limited Treatment 

 
TSEB SAT NDVI 

FAO-56 
(Rz=1 m) 

FAO-56 
(Rz=1.5m) 

CWSI Fc NP 

22-JUL N/A N/A 3.95 2.25 2.78 N/A 4.82 3.82 
30-JUL 3.90 3.26 5.26 2.58 3.83 N/A 6.65 3.19 
13-AUG 3.58 3.07 3.57 2.11 2.62 5.07 4.32 3.41 
10-SEP 3.74 3.79 4.03 2.78 2.78 4.60 4.73 3.21 

 

Table A.4.9. Mean daily ETa derived from the 2015 Tempest UAS RS campaign - Drought. 
2015 Mean Tempest UAS Mean ETd (mm d-1) Drought Treatment 

 
TSEB SAT NDVI 

FAO-56 
(Rz=1 m) 

FAO-56 
(Rz=1.5m) 

CWSI Fc NP 

22-JUL N/A N/A 3.86 2.12 2.83 N/A 4.86 3.31 
30-JUL 4.05 3.01 5.20 2.45 3.91 N/A 6.53 3.12 
13-AUG 2.06 3.09 3.47 0.77 1.58 5.02 4.18 1.95 
10-SEP 1.18 3.74 2.84 0.33 0.77 0.97 3.35 0.12 
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Table A.4.10. 22JUL15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ETa.

 

 

 

 

 

Plot NDVI Fc SWB 1 m
SWB 1.5 

m
NP

101 4.12 4.956 3.67 3.75 1.99
4 3.96 4.73 3.67 3.75 3.81
8 4.11 4.95 3.67 3.75 3.77

104 4.00 4.87 3.67 3.75 4.39
105 3.96 4.68 2.25 2.78 4.36
106 3.95 4.715 2.25 2.78 3.82
12 3.96 4.68 2.25 2.78 3.61
16 3.87 4.6 2.25 2.78 2.36
109 3.88 4.6 2.12 2.83 4.77
20 3.82 4.54 2.12 2.83 3.29
24 3.68 4.3 2.12 2.83 3.17
112 3.73 4.49 2.12 2.83 4.56
28 4.15 5.04 3.67 3.75 4.1
202 4.23 4.99 3.67 3.75 3.62
204 4.11 4.92 3.67 3.75 5.08
36 4.06 4.88 2.25 2.78 2.34
206 4.01 4.79 2.25 2.78 3.96
207 3.99 4.78 2.25 2.78 3.67
40 4.08 4.72 2.25 2.78 4.39
210 3.95 4.7 2.12 2.83 3.68
48 3.94 4.65 2.12 2.83 3.33
212 3.86 4.6 2.12 2.83 3.1
301 4.21 5.27 2.25 2.78 3.82
52 4.31 5.1 2.25 2.78 3.98
56 4.37 5.24 2.25 2.78 3.82
304 4.26 5.31 2.25 2.78 3.98
60 4.28 5.26 3.67 3.75 3.93
306 4.24 5.18 3.67 3.75 5.03
64 4.21 5.2 3.67 3.75 6.26
308 3.92 4.99 3.67 3.75 5.13
68 4.18 5.04 2.12 2.83 3.33
310 4.22 5.09 2.12 2.83 3.43
72 4.05 4.84 2.12 2.83 3.78
312 4.08 5.03 2.12 2.83 2.95
76 2.88 4.36 2.25 2.78 4.42
80 3.42 4.38 2.25 2.78 4.56
403 3.73 4.54 2.25 2.78 4.58
404 4.10 5.07 2.25 2.78 3.37
405 4.31 5.35 3.67 3.75 5.76
406 4.13 5.08 3.67 3.75 4
84 4.41 5.55 3.67 3.75 5.39
88 4.07 5.49 3.67 3.75 3.77
409 4.23 5.25 2.12 2.83 2.74
410 4.22 5.26 2.12 2.83 3.04
92 3.16 5.36 2.12 2.83 2.69
96 2.89 5.18 2.12 2.83 1.8
Full 4.15 5.10 3.67 3.75 4.40

Limited 3.95 4.82 2.25 2.78 3.82
Drought 3.86 4.86 2.12 2.83 3.31

MBE 0.14 1.08 -1.17 -0.73
RMSE 0.91 1.44 1.46 1.11
T-Test 0.29 0.00 0.00 0.00

ET_d (mm/d)
22-Jul-15
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Table A.4.11. 30JUL15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ETa 

 

 

 

 

 

TSEB* SAT NDVI* Fc* SWB 1 m
SWB 1.5 

m
NP

4.61 3.48 5.36 6.88 4.06 5.81 5.84
4.79 2.27 5.37 6.9 4.06 5.81 5.41
4.85 3.74 5.39 6.93 4.06 5.81 5.41
4.29 3.94 5.27 6.71 4.06 5.81 5.28
3.79 3.24 5.23 6.58 2.58 3.83 3.27
3.74 2.87 5.17 6.48 2.58 3.83 2.72
4.1 3.01 5.26 6.6 2.58 3.83 2.99
3.9 3.49 5.2 6.5 2.58 3.83 4.13
4.23 2.89 5.14 6.43 2.45 3.91 3.07
4.1 3.04 5.2 6.48 2.45 3.91 3.32
4.12 3.02 5.19 6.55 2.45 3.91 2.87
4.07 2.93 5.13 6.44 2.45 3.91 2.24
4.5 3.54 5.33 6.88 4.06 5.81 4.74
4.48 3.24 5.3 6.72 4.06 5.81 4.73
4.28 3.21 5.3 6.75 4.06 5.81 4.49
3.53 2.79 5.15 6.45 2.58 3.83 3.09
3.67 2.88 5.3 6.72 2.58 3.83 3.07
3.75 2.88 5.27 6.66 2.58 3.83 3.15
3.39 2.65 5.19 6.53 2.58 3.83 2.78
3.86 2.77 5.14 6.73 2.45 3.91 3.29
4.09 3.02 5.29 6.53 2.45 3.91 3.37
3.04 2.45 5.27 6.71 2.45 3.91 4.24
4.04 3.01 5.29 6.79 2.58 3.83 3.1
4.01 3.04 5.32 6.84 2.58 3.83 3.08
3.98 3.01 5.27 6.74 2.58 3.83 3.1
3.89 2.94 5.28 6.58 2.58 3.83 3.55
5.01 3.5 5.38 6.62 4.06 5.81 6.36
4.79 3.15 5.3 6.68 4.06 5.81 5.82
5.06 3.5 5.36 6.79 4.06 5.81 5.88
5.58 2.28 5.28 6.63 4.06 5.81 6.07

4 3.15 5.25 6.62 2.45 3.91 3.37
3.84 3.26 5.21 6.56 2.45 3.91 2.84
4.29 3.12 5.28 6.7 2.45 3.91 2.71
3.92 2.89 5.18 6.35 2.45 3.91 3.96
4.32 3.29 5.45 6.9 2.58 3.83 2.29
4.17 3.15 5.27 6.67 2.58 3.83 2.86
4.22 3.08 5.32 6.74 2.58 3.83 3.49
3.96 2.89 5.26 6.62 2.58 3.83 4.42
4.65 3.29 5.18 6.53 4.06 5.81 6.37
4.61 3.26 5.11 6.43 4.06 5.81 7.21
5.1 3.5 5.2 6.54 4.06 5.81 6.24
4.16 3 5.14 6.42 4.06 5.81 5.41
4.66 3.29 5.19 6.48 2.45 3.91 4.27
4.21 3.1 5.22 6.56 2.45 3.91 2.71
4.48 3.25 5.11 6.41 2.45 3.91 2.6
3.78 2.95 5.15 6.46 2.45 3.91 1.92
4.72 3.26 5.28 6.69 4.06 5.81 5.68
3.90 3.01 5.26 6.65 2.58 3.83 3.19
4.05 3.01 5.20 6.53 2.45 3.91 3.12
0.23 -0.89 1.27 2.65 -0.96 0.52
1.10 1.56 1.83 2.96 1.23 0.86
0.15 0.00 0.00 0.00 0.00 0.03

ET_d (mm/d)
30-Jul-15
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Table A.4.12. 13AUG15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ETa 

 

 

 

 

 

Plot TSEB* SAT* CWSI* NDVI* Fc* SWB 1 m
SWB 1.5 

m
NP

101 3.86 3.32 5.07 3.86 4.82 2.51 3.38 3.86
4 3.96 3.37 5.08 3.88 4.86 2.51 3.38 3.63
8 4.17 3.43 5.08 3.92 4.93 2.51 3.38 3.9

104 4.02 3.31 5.05 3.77 4.53 2.51 3.38 4.04
105 4.16 3.38 5.08 3.61 4.55 2.11 2.62 2.88
106 3.89 2.29 5.08 3.63 4.52 2.11 2.62 4.31
12 3.8 3.27 5.08 3.69 4.17 2.11 2.62 3.68
16 3.74 3.25 5.08 3.67 4.48 2.11 2.62 1.74
109 2.07 3.1 5.04 3.52 3.96 0.77 1.58 1.56
20 2.3 3.25 5.08 3.59 4.52 0.77 1.58 1.95
24 2.32 3.27 5.08 3.45 4.41 0.77 1.58 2.54
112 1.95 3.06 4.875 3.44 4 0.77 1.58 2.06
28 3.37 2.94 4.53 3.15 4.36 2.51 3.38 3.84
202 3.6 3.06 5.07 3.7 4.5 2.51 3.38 3.84
204 3.96 3.2 5.08 3.67 4.24 2.51 3.38 3.35
36 3.57 3.11 5.08 3.3 4.5 2.11 2.62 2.02
206 3.48 3.08 5.08 3.55 4.29 2.11 2.62 3.74
207 3.62 3.13 5.08 3.52 4.24 2.11 2.62 4.07
40 3.98 3.31 5.08 3.59 4.3 2.11 2.62 4.11
210 2.06 3.02 4.98 3.58 4.31 0.77 1.58 1.46
48 2.08 3.05 5.02 3.56 4.24 0.77 1.58 2.08
212 1.94 2.94 4.99 3.48 4.15 0.77 1.58 1.81
301 3.12 2.96 4.91 3.5 4.2 2.11 2.62 3.75
52 3.37 3.08 5.08 3.59 4.3 2.11 2.62 4.05
56 3.4 3.07 5.08 3.55 4.32 2.11 2.62 3.75
304 3.31 3 5.07 3.55 4.28 2.11 2.62 3.33
60 3.49 3.07 5.08 3.54 4.31 2.51 3.38 3.69
306 3.73 3.12 5.08 3.64 4.42 2.51 3.38 3.66
64 3.77 3.17 5.08 3.7 4.23 2.51 3.38 4.27
308 3.81 3.12 5.08 3.6 4.36 2.51 3.38 4.07
68 1.76 3.11 5.08 3.38 4.13 0.77 1.58 2.08
310 1.86 3.02 4.94 3.39 4.03 0.77 1.58 1.5
72 2.08 3.16 5.08 3.48 4.15 0.77 1.58 2
312 2.17 3.06 4.99 3.45 4.1 0.77 1.58 1.93
76 3.62 3.14 5.08 3.63 4.4 2.11 2.62 2.78
80 3.44 3.08 5.08 3.62 4.04 2.11 2.62 3.31
403 3.42 3.02 5.08 3.53 4.24 2.11 2.62 3.6
404 3.31 2.96 5.08 3.52 4.23 2.11 2.62 3.42
405 3.41 3 5.08 3.54 4.26 2.51 3.38 4.18
406 3.52 3.04 5.08 3.61 4.36 2.51 3.38 3.64
84 3.75 3.16 5.08 3.73 4.45 2.51 3.38 3.76
88 3.62 3.08 5.08 3.63 4.39 2.51 3.38 3.9
409 2.12 3.05 5.08 3.19 3.78 0.77 1.58 2.1
410 2.06 3.02 5 3.55 4.28 0.77 1.58 2.05
92 2.04 3.07 5.08 3.53 4.28 0.77 1.58 1.9
96 2.04 3.13 5.05 3.52 4.39 0.77 1.58 2.28
Full 3.74 3.16 5.04 3.66 4.47 2.51 3.38 3.84

Limited 3.58 3.07 5.07 3.57 4.32 2.11 2.62 3.41
Drought 2.06 3.09 5.02 3.47 4.18 0.77 1.58 1.95

MBE 0.06 0.03 1.97 0.49 1.25 -1.27 -0.55
RMSE 0.54 0.95 2.17 1.00 1.85 1.36 0.74
T-Test 0.47 0.83 0.00 0.00 0.00 0.00 0.00

ET_d (mm/d)
13-Aug-15
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Table A.4.13. 10SEP1515 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ETa 

 

 

 

 

Plot TSEB SAT* CWSI NDVI Fc SWB 1 m
SWB 1.5 

m
NP

101 3.93 3.85 5.63 4.02 4.75 2.85 3.28 3.89
4 3.73 3.95 4.77 4.17 4.92 2.85 3.28 3.7
8 3.84 4.24 5.26 4.27 5.05 2.85 3.28 4.27

104 3.49 3.72 4.85 3.91 4.6 2.85 3.28 3.28
105 4.06 3.9 5.62 4.02 4.73 2.78 3.03 3.3
106 3.91 3.77 5.03 3.94 4.64 2.78 3.03 1.77
12 4.64 4.11 6.41 4.17 4.92 2.78 3.03 3.61
16 4.64 4.12 6.53 4.21 4.89 2.78 3.03 4.34
109 1.91 2.61 1.78 3 3.44 0.33 0.77 0
20 1.9 2.61 0.52 3.07 3.52 0.33 0.77 0
24 1.52 2.55 0.64 3.07 4.92 0.33 0.77 0
112 1.42 2.17 0.64 2.72 3.27 0.33 0.77 0.32
28 3.57 3.99 4.97 4.24 5.03 2.85 3.28 3.05
202 4.27 3.68 4.16 4.09 4.85 2.85 3.28 4.95
204 3.91 3.74 4.58 3.99 4.71 2.85 3.28 4.12
36 3.92 3.94 4.41 4.27 5.07 2.78 3.03 2.68
206 3.5 3.67 5.33 4.06 4.65 2.78 3.03 3.62
207 3.64 3.77 4.16 4.09 4.7 2.78 3.03 3.12
40 3.48 4.18 4.58 4.12 4.89 2.78 3.03 3.54
210 1.2 2.38 0.83 2.88 3.29 0.33 0.77 0.31
48 0.8 2.52 0.86 2.9 3.29 0.33 0.77 0.05
212 1.17 2.17 0.899 2.76 3.1 0.33 0.77 0
301 3.53 3.51 4.68 3.79 4.44 2.78 3.03 3.7
52 3.54 3.68 3.79 4 4.71 2.78 3.03 2.91
56 3.35 3.74 3.49 4.04 4.78 2.78 3.03 3.7
304 3.41 3.48 3.58 3.92 4.62 2.78 3.03 4.33
60 3.76 3.81 4.55 4.08 4.815 2.85 3.28 3.29
306 3.35 3.47 4.26 3.81 4.49 2.85 3.28 2.89
64 3.96 3.63 4.81 3.89 4.59 2.85 3.28 3.57
308 3.39 3.48 4.6 3.8 4.47 2.85 3.28 3.21
68 1.17 2.48 2.18 2.85 3.27 0.33 0.77 0.05
310 1.19 2.51 0.92 2.71 3.104 0.33 0.77 0
72 0.81 2.35 0.82 2.82 3.21 0.33 0.77 0
312 0.82 1.94 0.78 2.53 2.86 0.33 0.77 0.24
76 3.69 3.75 4.24 4.05 4.77 2.78 3.03 2.51
80 3.49 3.72 3.5 4 4.71 2.78 3.03 1.23
403 3.44 3.61 3.95 3.87 4.55 2.78 3.03 3.38
404 3.59 3.67 4.27 3.88 4.55 2.78 3.03 3.66
405 4.1 3.84 5.48 4.03 4.75 2.85 3.28 4.53
406 3.9 3.72 5.4 3.91 4.59 2.85 3.28 3.03
84 4.5 4.09 6.4 4.13 4.88 2.85 3.28 3.52
88 4.28 3.491 6.09 4.03 4.74 2.85 3.28 4.27
409 1.87 2.65 2.49 3.08 3.55 0.33 0.77 0.41
410 1.04 2.21 0.78 2.8 3.22 0.33 0.77 0
92 0.55 2.28 0.18 2.6 2.95 0.33 0.77 0.37
96 0.27 2.11 0.21 2.86 3.27 0.33 0.77 0
Full 3.87 3.78 5.05 4.02 4.75 2.85 3.28 3.70

Limited 3.74 3.79 4.60 4.03 4.73 2.78 3.03 3.21
Drought 1.18 2.37 0.97 2.84 3.35 0.33 0.77 0.12

MBE 0.58 0.96 1.20 1.28 1.92 -0.36 0.01
RMSE 0.93 1.47 1.49 1.74 2.23 0.82 0.75
T-Test 0.00 0.00 0.00 0.00 0.00 0.24 0.97

ET_d (mm/d)
10-Sep-15
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4.6.3. Soil Water Deficit 

Table A.4.14. Summary of the RS overpass soil water deficit statistics for the ARDED field 1070 summer 2015 RS campaign. 

 

Table A.4.15. Summary of the RS Campaign soil water deficit statistics for the ARDED field 1070 summer 2015 RS campaign. 

Date MBE (mm) RMSE (mm) T-Test
30-Jul-15 6.32 19.74 0.03

13-Aug-15 -9.92 21.94 0.00
10-Sep-15 -3.76 18.78 0.25
30-Jul-15 -29.55 59.09 0.00
31-Jul-15 -14.16 23.83 0.00
1-Aug-15 -25.16 31.90 0.00
30-Jul-15 46.69 53.16 0.00

13-Aug-15 39.50 48.20 0.00
10-Sep-15 46.57 54.94 0.00

ARDEC 1070 RS Overpass Soil Water Deficit Summary

Hybrid

Rz=1 m FAO-56

Rz= 1.5 m FAO-56

MBE (mm/m) RMSE (mm/m) T-Test
ARDEC 1070 RS Campaign Soil Water Deficit Summary

Hybrid -2.45 20.20 0.24 Campaign

Rz=1 m FAO-56 -22.96 33.59 0.00 Campaign

Rz= 1.5 m FAO-56 29.68 42.60 0.00 Campaign
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Table A.4.16. Mean SWD derived from the 2015 Tempest UAS RS campaign of the Full (F), 
Limited (L) and Drought (D) Irrigation Treatments. 

2015 Mean Tempest UAS Mean SWD (mm m-1)  
 

Hybrid FAO-56 
NP 

 F L D F L D F L D 
30-JUL 167.3 188.38 178.90 147.15 164.44 159.43 159.77 180.15 175.82 
13-AUG 152.32 163.93 194.88 154.86 161.08 182.26 165.83 185.11 188.88 
10-SEP 184.11 185.51 194.88 153.96 154.89 190.07 179.82 187.79 206.31 

 
Table A.4.17. Linear Regression Summary of the statistics from the SWD derived from the 2015 
Tempest UAS RS campaign. 

2015 Tempest UAS ETd Linear Regression Coefficients 
 Hybrid FAO-56 (Rz=1 m) FAO-56 (Rz=1.5m) 
a 0.46 0.29 0.41 

b 87.20 106.35 117.59 

R2 0.25 0.04 0.31 
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Table A.4.18. Overpass SWD for the ARDED field 1070 summer 2015 RS campaign (100 and 200 Plots). 

 

 

NP Location 101 102 103 104 105 106 107 108 109 110 111 112
NP-Deficit (mm) 138.22 135.43 N/A 140.08 176.79 164.69 172.61 180.97 179.95 181.89 184.61 182.35

FAO56 SWB (mm) 147.15 147.15 N/A 147.15 164.44 164.44 164.44 164.44 165.92 165.92 165.92 165.92
Hybrid Deficit (mm) 167.11 166.09 N/A 182.14 189.61 192.20 182.66 190.77 176.21 182.92 180.13 181.28

NP-Deficit (mm) 146.20 140.62 N/A 142.19 186.76 171.36 176.23 190.60 192.33 197.22 200.77 198.89
FAO56 SWB (mm) 154.86 154.86 N/A 154.86 161.08 161.08 161.08 161.08 182.26 182.26 182.26 182.26
Hybrid Deficit (mm) 141.25 132.49 N/A 133.93 168.35 164.06 162.21 162.06 194.88 194.88 194.88 194.88

NP-Deficit (mm) 158.70 153.17 N/A 154.24 191.69 176.56 173.89 186.30 209.72 212.24 217.00 219.52
FAO56 SWB (mm) 153.96 153.96 N/A 153.96 154.89 154.89 154.89 154.89 190.07 190.07 190.07 190.07
Hybrid Deficit (mm) 184.50 180.54 N/A 181.37 190.20 186.91 187.60 187.29 194.88 194.88 194.88 194.88

NP-Deficit (mm) 207.33 203.15 N/A 210.12 265.19 247.04 258.92 271.45 269.92 272.83 276.92 273.52
FAO56 SWB (mm) 189.69 189.69 N/A 189.69 222.59 222.59 222.59 222.59 221.10 221.10 221.10 221.10
Hybrid Deficit (mm) 250.67 249.14 N/A 273.21 284.41 288.30 273.98 286.15 264.31 274.38 270.20 271.92

NP-Deficit (mm) 219.30 210.94 N/A 213.28 280.14 257.04 264.35 285.90 288.50 295.82 301.16 298.33
FAO56 SWB (mm) 210.15 210.15 N/A 210.15 228.35 228.35 228.35 228.35 253.45 253.45 253.45 253.45
Hybrid Deficit (mm) 211.87 198.74 N/A 200.90 252.52 246.09 243.32 243.09 292.32 292.32 292.32 292.32

NP-Deficit (mm) 238.05 229.75 N/A 231.37 287.53 264.84 260.84 279.45 314.57 318.36 325.50 329.27
FAO56 SWB (mm) 220.11 220.11 N/A 220.11 225.61 225.61 225.61 225.61 275.89 275.89 275.89 275.89
Hybrid Deficit (mm) 276.75 270.81 N/A 272.06 285.30 280.37 281.40 280.94 292.31 292.31 292.31 292.31

NP Location 201 202 203 204 205 206 207 208 209 210 211 212
NP-Deficit (mm) 128.03 137.38 N/A 154.31 175.11 180.35 181.53 182.36 N/A 177.63 197.83 208.58

FAO56 SWB (mm) 147.15 147.15 N/A 147.15 164.44 164.44 164.44 164.44 N/A 133.48 133.48 133.48
Hybrid Deficit (mm) 174.40 173.24 N/A 182.09 197.57 195.32 192.15 203.70 N/A 189.03 180.21 185.26

NP-Deficit (mm) 128.02 143.80 N/A 156.94 182.42 184.44 182.39 192.14 N/A 186.63 209.36 220.12
FAO56 SWB (mm) 154.86 154.86 N/A 154.86 161.08 161.08 161.08 161.08 N/A 182.26 182.26 182.26
Hybrid Deficit (mm) 153.46 146.10 N/A 152.00 162.32 162.85 162.21 166.42 N/A 194.88 194.88 194.88

NP-Deficit (mm) 142.45 158.71 N/A 168.06 168.70 193.14 193.47 199.75 N/A 209.50 226.36 232.18
FAO56 SWB (mm) 153.96 153.96 N/A 153.96 154.89 154.89 154.89 154.89 N/A 190.07 190.07 190.07
Hybrid Deficit (mm) 177.43 186.40 N/A 177.92 184.31 182.18 182.76 183.57 N/A 194.88 194.88 194.88

NP-Deficit (mm) 192.05 206.08 N/A 231.46 262.66 270.52 272.29 273.55 N/A 266.44 296.75 312.87
FAO56 SWB (mm) 189.69 189.69 N/A 189.69 222.59 222.59 222.59 222.59 N/A 221.10 221.10 221.10
Hybrid Deficit (mm) 261.59 259.86 N/A 273.13 296.35 292.98 288.23 305.54 N/A 283.54 270.32 277.89

NP-Deficit (mm) 192.04 215.70 N/A 235.40 273.62 276.66 273.59 288.22 N/A 279.95 314.05 330.18
FAO56 SWB (mm) 210.15 210.15 N/A 210.15 228.35 228.35 228.35 228.35 N/A 253.45 253.45 253.45
Hybrid Deficit (mm) 230.19 219.14 N/A 228.00 243.47 244.28 243.32 249.64 N/A 292.32 292.32 292.32

NP-Deficit (mm) 213.68 238.07 N/A 252.09 253.06 289.71 290.21 299.62 N/A 314.25 339.54 348.27
FAO56 SWB (mm) 220.11 220.11 N/A 220.11 225.61 225.61 225.61 225.61 N/A 275.89 275.89 275.89
Hybrid Deficit (mm) 266.15 279.60 N/A 266.88 276.47 273.27 274.14 275.36 N/A 292.31 292.31 292.31

mm/m

30-Jul-15

13-Aug-15

10-Sep-15

1.5 m

30-Jul-15

13-Aug-15

10-Sep-15

mm/m

30-Jul-15

13-Aug-15

10-Sep-15

1.5 m

30-Jul-15

13-Aug-15

10-Sep-15
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Table A.4.19. Overpass SWD for the ARDED field 1070 summer 2015 RS campaign (300 and 400 Plots).

 

NP Location 301 302 303 304 305 306 307 308 309 310 311 312
NP-Deficit (mm) 178.57 184.44 175.90 180.96 181.10 172.97 181.85 172.54 189.00 176.03 184.91 192.59

FAO56 SWB (mm) 0.43 0.43 0.43 0.43 147.15 147.15 147.15 147.15 165.92 165.92 165.92 165.92
Hybrid Deficit (mm) 188.50 187.47 187.77 187.81 161.09 165.00 159.95 159.38 179.76 187.37 177.60 179.59

NP-Deficit (mm) 180.55 188.78 182.47 182.94 170.40 179.50 191.59 180.29 200.99 188.57 197.32 204.55
FAO56 SWB (mm) 161.08 161.08 161.08 161.08 154.86 154.86 154.86 154.86 182.26 182.26 182.26 182.26
Hybrid Deficit (mm) 170.09 164.07 162.07 165.97 162.20 152.60 165.40 167.38 194.88 194.88 194.88 194.88

NP-Deficit (mm) 187.28 190.45 189.87 182.58 207.82 187.55 208.51 189.78 220.41 202.99 214.95 217.71
FAO56 SWB (mm) 154.89 154.89 154.89 154.89 153.96 153.96 153.96 153.96 190.07 190.07 190.07 190.07
Hybrid Deficit (mm) 189.36 185.61 185.72 187.09 186.11 186.40 178.16 180.14 194.88 194.88 194.88 194.88

NP-Deficit (mm) 267.86 276.65 263.85 271.45 271.66 259.45 272.78 258.81 283.50 264.05 277.37 288.88
FAO56 SWB (mm) 222.59 222.59 222.59 222.59 189.69 189.69 189.69 189.69 221.10 221.10 221.10 221.10
Hybrid Deficit (mm) 282.75 281.21 281.66 281.72 241.64 247.49 239.93 239.07 269.64 281.06 266.39 269.39

NP-Deficit (mm) 270.83 283.17 273.71 274.40 255.60 269.25 287.38 270.43 301.48 282.86 295.97 306.82
FAO56 SWB (mm) 228.35 228.35 228.35 228.35 210.15 210.15 210.15 210.15 253.45 253.45 253.45 253.45
Hybrid Deficit (mm) 255.14 246.11 243.11 248.96 243.30 228.90 248.10 251.07 292.31 292.31 292.31 292.31

NP-Deficit (mm) 280.91 285.67 284.81 273.86 311.73 281.33 312.76 284.66 330.61 304.49 322.42 326.57
FAO56 SWB (mm) 225.61 225.61 225.61 225.61 220.11 220.11 220.11 220.11 275.89 275.89 275.89 275.89
Hybrid Deficit (mm) 284.04 278.42 278.58 280.64 279.17 279.60 267.24 270.21 292.31 292.31 292.31 292.31

401 402 403 404 405 406 407 408 409 410 411 412
NP-Deficit (mm) 174.10 187.45 187.72 198.81 179.86 174.82 173.06 167.09 157.78 152.72 149.72 121.65

FAO56 SWB (mm) 164.44 164.44 164.44 164.44 147.15 147.15 147.15 147.15 165.92 165.92 165.92 165.92
Hybrid Deficit (mm) 180.66 182.27 177.81 177.82 165.36 164.36 161.44 161.44 169.42 173.47 170.67 170.66

NP-Deficit (mm) 181.54 193.07 192.49 193.60 193.17 183.55 182.93 182.40 175.62 169.80 162.52 128.49
FAO56 SWB (mm) 161.08 161.08 161.08 161.08 154.86 154.86 154.86 154.86 182.26 182.26 182.26 182.26
Hybrid Deficit (mm) 159.62 162.42 163.22 165.00 156.03 152.70 153.48 163.52 194.88 194.88 194.88 194.88

NP-Deficit (mm) 179.29 187.16 197.03 207.53 206.73 194.59 192.40 194.77 197.09 189.25 182.91 142.78
FAO56 SWB (mm) 154.89 154.89 154.89 154.89 153.96 153.96 153.96 153.96 190.07 190.07 190.07 190.07
Hybrid Deficit (mm) 180.09 184.18 184.82 186.50 190.85 191.24 190.05 186.48 194.88 194.88 194.88 194.88

NP-Deficit (mm) 261.15 281.17 281.58 298.21 269.79 262.24 259.60 250.63 236.67 229.08 224.58 182.48
FAO56 SWB (mm) 222.59 222.59 222.59 222.59 189.69 189.69 189.69 189.69 221.10 221.10 221.10 221.10
Hybrid Deficit (mm) 270.98 273.40 266.72 266.72 248.04 246.54 242.16 242.16 254.12 260.21 256.00 255.99

NP-Deficit (mm) 272.31 289.61 288.73 290.40 289.76 275.32 274.40 273.59 263.43 254.70 243.79 192.73
FAO56 SWB (mm) 228.35 228.35 228.35 228.35 210.15 210.15 210.15 210.15 253.45 253.45 253.45 253.45
Hybrid Deficit (mm) 239.43 243.63 244.83 247.50 234.05 229.05 230.22 245.28 292.31 292.31 292.31 292.31

NP-Deficit (mm) 268.93 280.74 295.55 311.30 310.09 291.88 288.60 292.16 295.63 283.88 274.36 214.16
FAO56 SWB (mm) 225.61 225.61 225.61 225.61 220.11 220.11 220.11 220.11 275.89 275.89 275.89 275.89
Hybrid Deficit (mm) 270.14 276.27 277.23 279.75 286.28 286.86 285.08 279.72 292.31 292.31 292.31 292.31

mm/m

30-Jul-15

13-Aug-15

10-Sep-15

1.5 m

30-Jul-15

13-Aug-15

10-Sep-15

mm/m

30-Jul-15

13-Aug-15

10-Sep-15

1.5 m

30-Jul-15

13-Aug-15

10-Sep-15


