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ABSTRACT

INTEGRATION OF AN UNMANNED AIRCRAFT SYSTEMAND GROUND-BASED
REMOTE SENSING TO ESTIMATE SPATIALLY DISTRIBUTED CROP
EVAPOTRANSPIRATION AND SOIL WATER DEFICIT THROUGBUT THE

VEGETATION SOIL ROOT ZONE

Irrigation is the largest consumer of fresh water and produces over 40% of the world’s
food and fiber supply. As theorld’s population continues to grow rapidly, the increased
demands on fresh water will force the agricultural community to improve the efficiency and
productivity of irrigation systems, while reducing overall water usage. In order to address the
requirements of increased efficiency and productivity in agricalliuater use, the agricultura
community has begun to focus on the development of precision agriculture (PA) irrigation
management systems for use with irrigated agriculture. Remote sensing (RS) is afrthré fore
of the PA movement, allowing the estimation of spatially distributed crop water raguite on
alarge-scale basis. Techniques using ground, aerial and space-borne RS platforms have been
developed to estimate actual crop evapotranspiratiog) @t soil water deficit (SWD) for use
in PA irrigation management systeniBhe ability to monitor the EJand SWD allows irrigators
to manage their irrigation to increase efficiency and decrease overall watehilesenaintaining
crop yields goals. Historically, remote sensing data, such as spectral refieatdrtbermal
infrared (TIR) imagery, were provided by ground or space-borne RS platfakaNASA’s
Landsat 8 satellites. Though these methods are effective at estimBiiogeE large areas,

their lack of spatial and temporal resolution limit their effectiveness for applicati®A i



irrigation management systesmin order to address the required spatial and temporal resolutions
required for PA systems, Colorado State University (CSU) developed an unmanned aircraft
system (UAS) RS platform capable of collecting high spatial and temporal resalata in the

TIR, near-infrared (NIR), red and green bands of the electromagnetic spectrum. During the
summer of 2015, CSU conducted four flights over corn at the Agriculture Research Development
and Education Center (ARDEC), near Fort Collins, CO, with the Tempest UAS RS platform in
order to collect thermal and multispectral imagery. The RS data collected op&rDiEeC test
location were used in three studies. The first was the comparison of the raw RS data to the
ground-based RS data collected during the RS overpasses. The second study used the Tempest
RS data to estimate the Edsing four methods: two methods based on the surface energy
balance (Two-Source Energy Balance (TSEB) and the Surface Aerodynamic Temperature
(SAT)), one method based on the TIR imagery (Crop Water Stress Index (CWSI)), and one
method based on the spectral reflectance imagery (reflectance-basedetfio@ots (ko)) and
reference ET. Remote sensing derived &ftimates were compared to£iErived using

neutron probe soil moisture sensors. The third study utilized the RS deriyaddEthe Hybrid

Soil Water Balance method to estimate the SWD for comparison with the neutron probe derived
SWD. Results showed that the Tempest RS data was in good agreement gridliticebased

data as demonstrate by the low RMSE of the raw dataaid SWD calculations (TIR = 5.68

°C, NIR = 5.26 % reflectance, red = 3.51 % reflectance, green = 7.31 % reflectance, TSEB ET
0.89 mm/d, Hybrid SWD = 16.19 mm/m). The accuracy of the results of the Tempest UAS RS
platform suggests that UAS RS platforms have the potential to increase thenoflitd. and

SWD estimation for use in the application of a PA irrigation management system.
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CHAPTER 1: INTRODUCTION

1.1. Water RequirementsOverview

The world’s fresh water supply is a limited natural resource that is at the center of
competition between agricultural, domestic, industrial, recreational and envir@imemands.
At the end of 201%he world’s population was approximately 7.3 billion people with an
estimated growth rate of 1.18% annually (United Nations, 2015). By 2025, industrial and
domestic consumption will increase by 150% and 180% respectively (Shiklomanov, 1993). The
water demand caused by the global population growth is compounded by the ever-decreasing
ground water availability and water quality, increasing environmental regulatigraddéon of
agricultural land associated with poor management practices, and domestidwstidal

development (Evans et al., 2013).

In addition to the increase in global fresh water demands, changing global weather
patterns associated with climate change have the capability to dettreaserall water
availability through changing precipitation patterns, increased surface téunpsrand long-
term droughts (Walthall et al., 2012). In order to meet the increasing agriculturaldjeasa
well as the rapidly increasing non-agricultural consumption, the agricultural womnys under
pressure to develop and implement irrigation systems, and crop water requiremextiogstim
technology that increase production, while decreasing overall land and water use (Evans et al

2013).



1.2. Irrigation Requirements

Irrigation is the world’s largest consumer of fresh water, accounting for 67% of the total
freshwater withdrawal and 86% of consumptive use (UNEP, 2008). By 2025, using current
practices, agricultural water use will increase by 130% (Shiklomanov).199&rently,
approximately 17% of the worlds cultivated farmland is irrigated. That irrigated land un-
proportionally produces 40% of the woddood and fiber supply [Postel, 1999]. As the demand
on fresh water and agricultural land continues to rapidly increase, the percentagatefiirrig
farmland must increase, as well as the efficiency and productivity of theiorigathnology
and systems [Postel 1999; Evans et al., 2013]. Irrigation will continue, even grow in irapprtan
to be a critical aspect of the global agricultural system. In order to address the reqtsrein
increased efficiency and productivity in agriculture water use, the agricultural woityrhas
begun to focus on the development of Precision Agriculture (PA) systems for use with irrigated

agriculture.

1.3. Precision Agriculture (PA)

Precision Agriculture, as defined by the United States Department of Agriculture

(USDA), Natural Resources Conservations Service (NRCS) is:

“A management system that is information and technology based, is site specific
and uses one or more of the following sources of data: soils, crops, nutrients, pest,
moisture or yield for optimum profitability, sustainability and protection of the

environment [McLoud et al., 2007]

The overall goal of PA is the optimization of inputs for agricultural production according

to the capability of the land and available resources. This means using a sysippraach to



develop an agricultural system that optimizes output, i.e. efficiency and productniakibg
into account the physical, social, environmental and economic aspects of thesysteatl

[McLoud et al., 2007].

Five basic components make up a PA system: Background data, a record keeping system
analysis and decision (AD) making process, required equipment, and an evaluation and revision

process [McLoud et al., 2007].

Background data consists of geo-referenced, spatially distributed data about the
agricultural location. These data include information about soil properties, alaieetdcation,

water quality and historical environmental conditions [McLoud et al., 2007].

The record keeping systems consist of a well-organized record of all actions, both natural
andmanmade, that affect the agricultural system, such as precipitation, appligdidmi and
agro-chemicals. Keeping a soil water balance for a growing season is an exatin@leeqtiired
record keeping associated with a PA system. The record keeping system is impdnant to t
overall PA system because records become background data for future system development

[McLoud et al., 2007].

The analysis and decision making process is the critical step in PA. The first chey of t
AD process is data collection through remote sensing (RS) or physical measurememisle&xa
of the types of data are multispectral imagery fiR8platforms and root zone soil water content
(SWC) derived from soil water sensors (SWS). The purpose of data analysis is to provide inputs,
such as SWD and crop water stress, to the decision making process [McLoud et al., 2007]. The
decision making process, taking into account all of the inputs and factors, determines

recommendations for system applications to achieve the goals of optimized inputs arsladutput



the system [McLoud et al., 2007]. An example of the AD system is conducting SWC monitoring

with RS for input into Site-Specific Variable Rate Irrigation (SS-VRI) systems.

PA systems require specialized equipment to implement the recomnoesdigiveloped
using the AD system. The specialized equipment includes infrastructure, peeswhseftware
required to implement the recommendations [McLoud et al., 2007]. For example, a SS-VRI
requires an irrigation system capable of spatially varying irrigation depfit@ase capable of
controlling the irrigation system based on the inputs from the AD process, and operators trained
in the operation of the equipment and software. If there is a deficit in any aspect of the
infrastructure, personnel or software, the PA system will not operate at the dested lev

[McLoud et al., 2007].

The final aspect of the PA system is continual evaluation and revision of the overall
system. Continual evaluation of the PA systems inputs and outputs allow furthemrebigie

system to increase efficiency and productivity [McLoud et al., 2007].

Implementing PA systems are a critical step towards addressing theesingrdemand
on our fresh water resources. The site-specific aspects of PA, such as using 8&hn&lbgy
to spatially and temporally optimize irrigation applications based on the crop wateeneguis,
provides for increases in water use efficiency and productivity while maintainingietdp y

goals [Evans et al., 2013].

1.4. Site Specific Variable Rate IrrigaticB%VRI)

Site-Specific Variable Rate Irrigation is an integral part of implementing ayft&re on
irrigated farmland. It is possible to obtain upwards of a 26% reduction in overall water usag

using PA and SS-VRI [Evans et al., 2012]. The main goal of SS-VRI systems islitiye@bi



spatially and temporally vary water application depths across a field to adpeesfsc soil, crop
and/ or other conditions [Evans et al., 2013]. The systems use spatially distributed crop wate
requirement data to spatially and temporally vary water application acroga@uitaral field.

The spatially distributed crop water requirements are derived using either groedd-bas

measurements or remote sensing, which will be discussed later in the paper [EVa20£8].

The most common SS-VRI systems are based on self-propelled, pressurized center pivot
(CP) and linear move (LM) sprinkler irrigation systems. The CP and LM systems dye easi
adapted to SS-VRI systems due to their current high level of automation aigircentrollable
water delivery devices, and cover a large area with a single lateral pipeRIS$stems operate
using either speed (sector) controlled application or management zones applicatiendeEal.,

2013].

Speed controlled SS-VRI systems vary irrigation application depths basedtavéhe
speed of the irrigation system, as demonstrated by Figure 1.1. The rate of applicadios rem
constant along the entire system, while the speed is adjusted to achiearde dater
application depth [Evans et al., 2013eginning in the 1980’s, irrigation system manufacturers
began to introduce systems that would allow the operators to control the speed of CPs. Recent
developments of CP systems allow the pivot travel speed to be adjustedli@® intervals,
greatly increasing the efficiency of the speed controlled SS-VRI systems [&valns2013].

The benefit to using speed controlled SS-VRI is the lower costs associated with the
infrastructure, operation, and data input requirements. The drawback to using a speed control
SSVRI is the lower overall efficiency due to the lemcontrollability of the system when
compared to the zone controlled SS-VRI. The lower level of efficiency is based @n tha

majority of fields do not vary linearly, with respect to SWC, across the effective cdrige



system. Even with the drawbacks associated with the systems, the speeceddB8olRI is
the most common SS-VRI system in use today due to the associated costs ($25-&h25Hna

availability of the technology [Evan et al., 2013].

Figure 1.1. Speed Controlled SS-VRI Prescription using Valley VRI Speed Control Software
[Valley VRI Speed Control Prescription, Valley Irrigation, Omaha, NE]

Zone management controlled SS-VRI systems vary irrigation application deystd on
spatially distributed irrigation management zones, as seen in Figuretieapplication rates of
individual or groups of sprinkler heads are varied to achieve the necessary application amount
[Evans et al., 2013]. A vast majority of the zone control SS-VRI systems utilize pulse
modulation to vary the application rate based on the management zones spedficHti®rzONE
controlled SS-VRI systems are more efficient and allow for greater productivityp doeirt
ability to precisely apply water based on the spatially distributed crop water requiserii@ée
drawbacks to using a zone controlled SS-VRI system are the associated costsstéthe sy
($215%$570/ha) and the lack ceadily available commercial equipment and training [Evans et

al., 2013].



Figure 1.2. Zone Controlled SS-VRI Prescription using Valley VRI Speed Control Software
[Valley VRI Speed Control Prescription, Valley Irrigation, Omaha, NE]

1.5. Spatially Distributed Soil Water Content (SWC)

Precision Agriculture and SS-VRI systems require site specific, spatisilipdied root
zone (R) SWC information as an input into the analysis and decision making process
[Petetropoulos, 2014]. In the context of this paper, SWC is the water contained in the soil root
zone that can be utilized for evapotranspiration (ET). SWC originates from rainfall
(precipitation), irrigation, and/or capillary rise from ground water. The SWC can be further
characterized as surface 8/0-5 cm) and root zone SWC (5 cm to maximum depth of water
extraction by roots) [Hillel 1998, Seneviratne et al., 2010]. The highly variable, spatial
distributed nature of SWC is a result of multiple intertwined systems including soi
characteristics, topography, plant biophysical properties, meteorological antlonriga
conditions. In order to develop the required SWC data, one of three generalgsacessilized

[Petetropoulos, 2014].

1.5.1. Physically Based Soil Water Content

The first method utilizes physical measurements ofrirstu root zone SWC. The SWC
is measured using the Gravimetric Soil Water Content Method (accepted standard of

measurement), and soil water sensors, such as the Neutron Scattering (NP), Frequanty Dom



Reflectometry / Capacitance (FDR), Time Domain Reflectometry (TDR), Resshaac
Tensiometers [Petetropoulos, 2014]. The physically based methods are thecoragé abut

have multiple drawbacks associated with their use. The area of most conceradk tife |

spatialy distributed SWC data. This is due to the time consuming and labor intensive nature of
physically based SWC estimation [Finn, 2011]. The physically derived SWC are point
measurements that are used to interpolate the spatially distributed SWC basedroplysig

and environmental conditions. The vertical and horizontal variability of soils and crop
characteristics make it difficult to interpolate the point measureraentss an entire field

[Hoffman et al., 2007].

The Gravimetric, NP and FDR willaliscussed in detail in a Chapter 2. For the general
discussion in this section, the gravimetric SWC is the ratio of the mass (kg) of water jomes

soil (Mw) sample to the dry mass (kg) of the soil samplg) (Black, 1965

M

0 p—

W
=T : (1.1)

The 0m is then converted to the volumetric SWG, m n1t) using the soil bulk density

(pb, g cm?®) and water density (pw, g cnt®) [Black, 1965:
0 -0 xb (1.2)

1.5.2. Meteorological and Crop Coefficient based Soil Water Content

The second method utilizes a root zone soil water balance, such as the Food and
Agriculture Organization (FAO) Irrigation and Drainage Paper Number 56 Sadr\Balance

Approach [Allen et al., 1998] to track SWC and depletion in the root zone [Neale et a]., 2012

8



The FAO 56 SWB will be addressed in detail in Chaptefl& losses or crop water usage, are
estimated by using the American Society of Civil Engineers (ASCE) Environmedt&Vater
Resources (EWRI) standardized evapotranspiratiopdgEhd crop coefficientéc), to derive

the actual crop ET (&J. Evapotranspiration is the loss of water from the surface to the
atmosphere by the combined process of evaporation from any surface or bare soil, and
transpiration from vegetation [Allen et al., 1998]. ET varies both spatially and sdgsbasé¢d

on vegetative characteristics, soil water status and meteorological cosdlailen et al., 1998

ET is affected by factors including solar radiation, wind speed, vapor pressure deficit, and air
temperature [Li et al., 2009]. The crop coefficients are crop specific and varyliwidlie; water
availability, and crop characteristics. Crop coefficientsdke defined as the ratio of the crop

ET to the ASCEEWRI ETret [ASCE-EWRI, 2005

ET
k =—2 (1.3)

c
ETr o

There are two forms of crop coefficients, the meaank the dualk The mean kis
calculated, including surface wetting events (e.g. irrigation), as thedomgaverage of the crop
ET to the ETer. The dual kis estimated using the mean basal the stress coefficient {kand
the soil evaporation coefficientdl{Neale et al., 2072 The mean kis used for long term
planning, while the dualcks used for irrigation scheduling [Hoffman et al., 2007]. The actual
crop evapotranspiration (EJis calculated using the dual crop coefficien),(lveather data,

crop information and the reference evapotranspiratioRgET

ETa = (kg x ks +Ke) X ETygf (1.4)



where the E&; (mm d) is calculated using the ASCE-EWRI approach [Allen et al.,

1998 or ASCE-EWRI, 2005; respectively].

_ 900 _
ET = 0.408 Rn G)'L7/T+273u2 es ea)

ref A+y(L+0.341, )

(1.5)

ETtis the reference evapotranspiration, ( nitod mm hl); R, is the net radiation, (MJ
m? d? or MJ m? h}); G is the soil heat flux, (MJ ¥hd™ or MJ mi? hY); (es - &) represents the
vapor pressure deficit of the air, (kPa)jeesaturation vapor pressure of the air, (kPals the
actual vapor pressure of the air, (kP®a)s the slope of the saturation vapor pressure temperature
relationship, (KPAC?); v is the psychrometric constant, (kPa °CY); uz is the wind speed at 2 m

height (m &); T is the mean daily air temperature at 2 m heitff ASCE-EWRI, 200%.

The FAO-56 SWB approach starts with a given soil wadtefile at field capacity (Orc,
mm m?). Field capacity is generally defined as the amount of water held in the soil aftes ex
water has drained away and the rate of downward drainage has decreased. Once the SWB
begins, the daily allowable depletion (or SWD), and root zone SWC are tracked by accounting
for the losses (EJ surface runoff (SRO), and deep percolation (DP)) and the gains of the system
(net irrigation (h), net precipitation (F) and ground water capillary rise (GW)) [Hoffmann et al.,

2007]. The FAO 56 SWB will be describe in detail in Chapter 2.

While using the FAO 56 SWB is an effective, cost efficient method for estimabpg c
soil water requirements, there are several factors that affect the accutaeyesults
[Petetropoulos, 2014]. The first factor is the requirement of high quality meteorologe&bda
the calculation of the reference ET at the field location. The second factor is thaiahcef

the calculations of the crop coefficients for the site specific conditions relateill wager

10



availability, crop biophysical characteristics (homogenous canopy covey eetarpnmental

conditions, and other non-water related stresses [Hoffmann et al., 2007].

1.5.3. Remote Sensing of Soil Water Content

The third method of estimating root zone SWC is through the use of remote sensing
[Gowda et al., 2009a]. Remote sensing is the art and science of identifying, obsedving a
measuring the radiation of different electromagnetic wavelengths reflected tadefrdm an
object without coming into direct contact [Petetropoulos, 2014]. While high resolution
multispectral remote sensing is a relatively new field, remote sensing has ibeed fatr over
160 years. Beginningith primitive cameras tethered to balloons during the 1840’s to today’s
satellte-based, high resolution, multispectral platforms, remote sensing has been used to
document and explain the world around us [NASA Landsat]. The theory of remote sensing is
based on comparing the wavelength specific reflective properties of different suafadtéise

emitted thermal radiation of all objects [Petetropoulos, 2014].

1.5.3.1 Electromagnetic Spectrum

Recently, RS has focused on using space-borne, aerial and ground-based multispectral
imaging to map land cover and attributes [Petetropoulos, 2014]. RS focuses primarily on
estimatingE Taand crop vegetation indices (MFinn, 2014. The primary bands of the
electromagnetic spectrum that have been studied, in regards to SWC, are thé\iS)alelue:
0.45-0.49 pm, green: 0.490.57 um, red: 0.62-0.75 um), and near-infrared (NIR: 0.75-0.90 um)
to derive vegetation indices and spectral reflectance-based crop coeffieled thermal infrared

(TIR: 3.5-20 um) to derive surface temperatures and surface energy fluxes [Petetr@tidos

11



1.5.3.2. Satellite Remote Sensing Platforms

Historically, the focus of remote sensing research revolved around the use of satellite-
based platforms. There are multiple saliasedemote sensing platforms in earth’s orbit,
such ashe National Aeronautics and Space Administration’s (NASA) Advanced Space-borne
Thermal Emissions and Reflection Radiometer (ASTER), Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Natb@ceanic and Atmospheric Administration
(NOAA) Advanced Very High Resolution Radiometer (AVHRR). The most commonly used
satellite-based remote sensing platform is the NASA Landsat see#gesafPetropoulos,
2014]. The Landsat satellites have maintained continuous multispectral andl tineaugery

coverage of the earth’s surface since July 1978 [NASA Landsat].

Satllite remote sensing platforms form the basis for many of the current SWC
algorithms, due to their inexpensive, free in the case of Landsat, spatiallyutestrand readily
available multispectral imagery [Petetropoulos, 2014]. However, there are maybadka to
using satellite remote sensing data for precision agriculture applicationspafia i solution
of the Landsat series satellites (Table 1.1) is approximately 30 m for the VIS andidiR ba
while approximately 100 m for the TIR bands [NASA Lan{isathe relatively low spatial
resolution of the data prohibits the development of management zones of less than 3Dm by 3
for use in SS-VRI systems. The optimal spatial resolution for use in a zone manag&nrwiit
system is based on the area of influence for the individual sprinklers in order to develepteffici
zones for each sprinkler head [Evans et al., 2013]. The lack of ability to produce more accurate
management zones greatly reduces the effectiveness of a zone managemehs@s e
utilizing satellite-base®S. All of the SWC algorithms require imagery under clear sky

conditions (no cloud cover) for accurate estimation of SWC [Petetropoulos, 2014]. Satellite
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platforms have a fixed overpass temporal resolution, 16 days for Landsat, which can cause
multiple issues due to spatially and temporally variable meteorologicaltiooisd With the

fixed overpass temporal resolution, weather condition, such as cloud cover or atmospheric haze,
can render the data unsuitable for use with SWC algorithms [Petetropoulos, 2014]. In order to
use the satellite-based remote sensing in SWC algorithms, the actualhE€reverpass

must be interpolated from the RS data of the current and previous oesfhass al., 2009]. In
semi-arid (or arid) environments, or limited irrigation systems, the large tempsoétion does

not allow the required accuracy to independently manage a precision irrigatem.systthe

case of changing meteorological conditions between ovepdiss errors associated with
interpolating SWC between overpasses greatly increases [Neale et al., 201&pnAtigi

satellite remote sensing data must be corrected for the atmospheric conditions@niziat,
particulate concentratioefc) during the overpass [Hadjimitsis et al., 2004]. The drawbacks of
the satellite platforms led researchers and the agricultural communityeiop@borne
multispectral remote sensing platforms that are more responsive to meteoraogaitibns

and irrigation manager’s needs [Petetropoulos, 2014].
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Table 1.1. NASA Landsat 8 Characteristics [NASA Landsat, 2015]

Remote Sensing Satellites
Spatial Temporal
Platform Band (l\\jl\ilgr\i)erlnequtrr;) Respolution ResoFI)ution
(Meters) (Days)
1 - Costal Aerosol 0.43-0.45 30
2 - Blue 0.45-0.51 30
3 - Green 0.53-0.59 30
4 - Red 0.64-0.67 30
5-NIR 0.85-0.88 30
LANDSAT 8 6 -SWIR 1 1.57-1.65 30 16

7 -SWIR 2 2.11-2.29 30
8 - Panchromatic 0.50-0.68 15
9 - Cirrus 1.36-1.38 30

10-TIR1 10.60-11.19 100 (30)

11-TIR2 11.50-12.51 100 (30)
1 -Greenl 0.52-0.60 15
2-Red?2 0.63-0.69 15
3-NIR3 0.76-0.86 15
4-SWIR 1 1.60-1.70 30
5-SWIR 2 2.145-2.185 30
6 -SWIR 3 2.1858-2.225 30
7-SWIR 4 2.235-2.285 30

ASTER 8-SWIR 5 2.295-2.365 30 16

9-SWIR 6 2.360-2.430 30
10-TIR1 8.125-8.475 90
11-TIR2 8.475-8.825 90
12-TIR3 8.925-9.275 90
13-TIR4 10.25-10.95 90
14 -TIR5 10.95-11.65 90

1.5.3.3. Airborne Remote Sensing Platforms

The development of airborne remote sensing platforms were primarily driven by their
inherent payload and operational flexibility. Airborne remote sensing platformsiradgsign

from small Unmanned Aircraft Systems (SUAS) to multi-engine jets capable of higheal
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flights. The flexibility of airborne remote sensing platfosnpayloads afford operators the
ability to customize the data collected to fit the analytical needs of the endraseSWC
estimation, airborne remote sensing platforms attempt to mimic the Landkispectral

collection capabilities of red, NIR and TIR bands [Chéavez et al.,]20@Dblorado State
University (CSU) and Utah State University (USU) are currently conductingrebsedh sUAS
and manned aircraft remote sensing platforms that collect optical imageeyreict, and green
bands, as well as in the NIR and TIR bands of the electromagnetic spectrum. The CSkt Tempe
and USU manned aircraft have a spatial (pixel) resolution of approximately 0.08vY0.12
(Tempest- VIS NIR / TIR) and 0.BL..8 m (USU- VIS NIR / TIR) respectively [Chavez et al.,
2013. The operatioal flexibility of airborne remote sensing platforms allow the rapid
deployment of the platforms in response to changing weather conditions and/or data
requirements. The ability to adjust the timing and frequency of overpasses with the airborne
systems are a significant advantage over the satellite remote sendmgnaatNot only can

data collection occur when the opportunity presents itself on cloudy days, but alsoityéoabil
fly more frequently allowsor greater SWC estimation accuracy when using RS algorithms and
SWBs. The ability to vary flight characteristics of an airborne remote sepisitigrm are

another benefit over satellite platforms. By adjusting the flight parameters (glg.sfieed and
altitude), the spatial resolution of the imagery can be adjusted to meet timeaitibor
requirements of precision agricultural irrigation system. Additionally, based on the lowe
operating altitude of the aerial platforms, the amount of atmospheric correction istkeduce
Therefore, reducing the error associated with the atmospheric corrections with afi¢hese

multispectral imagery [Chavez et al., 2008].
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The airborne remote sensing platforms are not without drawbacks. Like satellite
platforms, airborne systems must collect data during clear sky conditions. Even though their
flight schedules are adaptable, this is still a requirement for most of thelatgariProcessing
data from airborne remote sensing platforms is time consuming and regtdegsth technical
knowledge by the operators [Gowda et al., 2008]. Satellite platforms cover large aheas wit
single image, 33,300 kh{185 km swath) for the Landsat [NASA Landsat, 2015], while the
airborne platforms cover much smaller areas, 0.0049(k&m swath) for the CSU Tempest
UAS operating at 121 m AGL. The smaller image footprint requires a greater ash@uage
pre-processing, calibration, and a significant increasiee amount of required digital storage.
One of the largest drawbacks to airborne remote sensing platforms are the cositedssabi
their operation. While there is an abundant amount of free data from satellite rensotg se
platforms, vast majorities of airborne remotes sensing platforms are commeruraliyased
products or the equipment must be purchased by the operators [Petropoulos, 2014]. For
example, the USU remote sensing aircraft cost approximately $3,666.67 per flight during the
CSU Summer 2015 campaign and the overall purchase and development cost of the CSU
Tempest is over $100,000. The price of the airborne systems will decrease as the technology

becomes more wide spread, but there will still be a significant investmehefooperations.
1.5.3.4. Ground-based Remote Sensing

Ground-based remote sensing, with regards to SWA@, thhe main goals, estimation of
SWC, and the validation and calibration of the aerial and space-borne remote set€ing$!|
raw data [Petropoulos, 2014]. Ground-based remote sensing platforms are deployed in a variety
of methods, such as installation at fixed locations, hand-held or equipment (e.g. tractors)

mounted sensors. The sensors are used to collect point data, such as an infrarecteonom
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a multispectral radiometer (multi-band), or can collect spectral imag#ryequipment similar

to the aerial systems [Petropoulos, 2014]. The advantage of using ground-based renngte sensi
platforms are their capability to continubusollect data for use in the estimation of SWC.
Another advantage to using ground remote sensing systems iangstha validating and

calibrating data collected using aerial platforms. By calibrating the aatawith the ground

data, a site-specific calibration can be developed for the aerial system, grdating the

amount of error from the aerial system [Chévez et al., 2012].

As with the other RS systems, ground-based systems have their own drawbacks. The
largest issue is that the data are not spatially distributed. This requemg®iation from known
points throughout the field, similarly to the physical methods of estimating SWCcollbetion
of ground-based remote sensing data are very labor and knowledge intensive, asimell as, t

consuming due to the installation and operating requirements [Petropoulos, 2014].

There are multiple ways to acquire remote sensing data, all of which have dregtisr
and weaknegs The advantage of remote sensing is the ability to combine data from multiple
sources, both physical and remote sensing, to develop the most accurate estimati@ilpf spat

distributed SWC [Petetropoulos, 2014].

1.5.3.5. Remote Sensing SWC Algorithms

The ability to derive the SWC for the entire root zone profile is still in its infancy
beginning in earnest in the 1970’s with the launch of the Landsat 1 satellite [ Petropoulos, 2014].
There are many different models that estimate the surface SWC and then extthp@aC
for the remainder of the root zone soil profile [Li et al., 2009]. A majority of the RS SWC

models derive the SWC based on the estimation of intermediate processes, such as the
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instantaneous EIThe RS derived instantaneousa:is calculated using one of multiple

available algorithms based on the surface energy balance (SEB) methods, ceflbatad crop
coefficient methods, thermal-based Crop Water Stress Index (CWSI) or many other methods
[Gonzalez-Bugo et al., 2009]. A description of the SEBAL, METRIC and Triangle Methods can
be found in Appendix 2. Though effective, in order to exclusively use these models for irrigation
scheduling in a precision agriculture system, the RS data would have to be availalsdyoa ne
daily basis [Neale et al., 2005]. For this reason, the most applicable derivation of SWC for P
utilizes a hybrid ET model, originally proposed by Neale et al. The model foradisiinsWC
proposed by Neale et al. (2012) integrates RS deBvednd reflectance-based crop

coefficients with the FAO-56 SWB approach [Neale et al., 2012]. The Hybrid SWC model uses
the SWB approach to continuously estimate the SWC between RS overpasses. Datd collect
from RS overpasses are then used to develop the reflectance-based crop coefficientssas wel
RS derived ET They hybrid model was designed using the TSEB, but other, parameter
appropriate RS algorithms for E€an be used. The RS derived is assimilated into the FAO

56 SWB ET, which yields a more accurate estimation of the [RlEale et al., 2012]. The
reflectance-based crop coefficient and updategddatd then used to update the SWD and finally
SWC in the crop root zone [Neale et al., 2005]. The hybrid model is based on the assumption
that reflectance-based crop coefficients and ET derived through RS methods, areconate a

than traditional methods of estimating ET and tabulated basal crop coefficieats g al.,

2012]. The hybrid model increases the accuracy of the FAO-56 SWB in two ways. The first
way is by updating the spatially distributed SWD in the soil water balance. ddmdse

advantage is the adjustment of the spatially distributed crop coefficients basedabigrstith

and crop health conditions, used in the SWB [Neale et al., 2012].
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1.5.3.5.1. Surface Energy Balance (SEB) Estimation of actual ET

The SEB methods are the most commonly used methods of estimatiwgHERS data.
The SEBs has its origins the early work of Sone and Horton (1974) and Verma (1976) and
their work with the Landsat RS data. The SEB operate under the principle of the conservation of
energy and calculate the latent heat flux (LE) as the residual of the surface ethengg b

(Figure 1.3) [Petropoulos, 2014].

A. Vegetated surface

Qp Ry LE H
Heat of Met Latent- Sensible-
precipitation radiation heat flux heat flux
0,

Canopy
storage

G
Soil-heat
flux
Figure 1.3. Surface Energy Balance (adapted from Petropoulos, 2014)
The derivation of the spatially distributed (each pixel of the RS intaga)ses the

spatially distributed radiometric surface temperature and multispectrahdfeny, by

calculating theLE asthe residual of the surface energy balance equation:
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LE=Rn—-G-H (1.6)

where LE is the latent heat flux (W ), R, is the net radiation (W 1), G is the soil heat
flux (W m?), and H is the sensible heat flux (W2fMoran et al., 1994; Kustas and Norman,
1996; Gillies et al.,1997; Bastiaanssen et al., L998SEB methods, thes/and G are
accurately estimated using the SEBs models, while the H is calculated wsipdenmethods
[Chavez et al., 2010]. The\i& calculated as the sum of the incoming and outgoing long and
short wave radiation budget, with inputs from remote sensing derived VIS, NIR and TIR, and
physical/meteorological variables. [Monteith, 1973]. The G is calculated astafuaf R,,

TIR RS data and VI’s [Bastiaanssen et al., 1998

In all of the SEB models the methods of calculating H are different, but all revolve
around a measure of the difference (tdifaerodynamic surface temperat(fe, K) (or
radiometric surface temperatures,IK)) and air temperatur@ ., K), and the aerodynamic

resistance to heat transfes, s m') [Gowda et al,. 2007].

The main advantage of using the SEB methodsatbthusing the thermal RS imagery,
ETa can be calculated without prior knowledge of the soil profile characteristics [Nedle et
2012]. The SEB methods can calculate the components as a single source (soil and canopy
combined) or as a two-source (soil and canopy partition into separate components) energy

balance [Li et al., 2009].

The main drawback of the SEB methods of estimatingi€ihe requirement of high
resolution physical and RS data. For application in a precision agriculture siSetata must
have the spatial resolution to derive SWC that matches the PA capab#itidgionally, the

SEB methods require high quality meteorological data for the site [Gonzalez-Duga, 2008]
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1.5.3.5.1.1. Single Source Energy Balance Methods

The single source energy balance methods are based on the difference, ¢bthierlas
an estimation of J) and T, or between the temperatures of the dry and wet limits derived from
ground-based meteorological and RS data [Li et al, 2009]. The direct temperaadeibgke
source SEBs calculate H as a function of théof Tsi) and the . While the dry and wet limit
based single source methods assume ET boundary condition based on thedwefiniébn of
maximum(“hot or dry”) and minimum(“cold or wet”) surface temperatures. The minimum
temperature is correlated with the maximum potential EToBid the maximum temperature is
correlated with low or O ET [Li et al., 2009]. The wet and dry boundary conditions are based on
individual pixels from the RS imagery. The Surface Energy Balance Index (SEBI) deveyoped b
Menenti and Choudury, was the predecessor to the current single source models such as the
Surface Energy Balance for Land (SEBAk¢eAppendix 2 for a description of the SEBAL
method), Mapping Evapotranspiration at High Resolution with Internal Calibration (METRIC)
(see Appendix 2 for a description of the METRIC method) and the Surface Aerodynamic
Temperature (SAT) models. The major differences between the models are hoal@aelec
the sensible heat flux (Hhd how they define the “hot” and “cold” boundary conditions or
pixels. The single source models are suited for locations with homogenous canopy covers, but
lose accuracy ovenorthomogenous canopy covers due to calculating the components of the
SEB as the combination of both the soil and canopy contributions [Li et al., 2009, Normal et al.,

1995].

The SAT method is a single source SEB model, but unlike the SEBAL or METRIC
models, it does not use a linear relationship (dT) of the boundary conditions to calculate the

difference in aerodynamic surfak,) and air temperatures T Instead, the aerodynamic
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temperature is calculated, pixel by pixel, as a function of the radiometric stefaperature

(Tsc), air temperature, Leaf Area Index (LAI) and wind sp&edChévez et al., 2010]. For

precision agriculture application, the SAT method is suited to high resolution, lzesed-RS

data. The SAT model produces spatially distribiE@gthat are not limited by artificially

enforced boundary conditions. The SAT model was developed to address the overestimation of
H when using the radiometric surface temperatuge) (Rther than the aerodynamic surface
temperature (J) [Chavez et al., 2010]. Over homogeneous surfacesnd T, are generally

equal, but over heterogeneous surfaces the values vary [Wenbin et al., 2004]. The over
estimation of H is due tost generally being greater thag fbr unstable atmospheric conditions,

and variance of the values over heterogeneous surfaces. The over estimation of H lead to an

under estimation of LE and consequentlysEThavez et al., 2010].

The SAT model is best suited for crop specific applications with UAS based remote
sensing. Chéavez et al. (2005), as well as others (Mahrt and Vickers (2004), etc.) haveedevelop
crop specific estimations of,T In order for more wide spread application of the SAT method, a
generalized model ofslheeds to be developed [Chavez et al., 2010]. Additionally, crops under
significant stress present a challenge to the SAT model due to the large vaetmeen the J
and Ts [Chavez et al., 2010]. The SAT Model will be discussed in detail in Chapter 2 utilizing

data from the CSU Tempest UAS RS platform.

1.5.3.5.1.2. Two Source Energy Balance (TSEB)

In order to address the issues of the single source SEB methods when dealing with
heterogeneous canopy covers and elevated crop stress levels, the TSEB was deyveloped b
Norman et al. 1995. The TSEB method [Norman et al., 1995] approaches the SEB by estimating

the fluxes for the vegetation and soil background separately. Depending on the model, the
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resistances are either modelled in parallel or series. The TSEB pasibéhinces methods
assume that the contribution of the canopy and the soil layers to the total seradibilexbe (H)
depend on the difference in temperature of each of the lI@y@)sand the atmosphe(&).

This is helpful when deriving Eslover heterogeneous surfaces because it does not require site-
specific calibration to account for varying biophysical conditions. Thosvalfor a more

accurate estimation of the overall systems sensible heat flux (H), based on plesitocanopy

and soil values. [Hipps and Kustas, 2001]. The vegetation is separated from tisengoil
vegetation fractional coverdff whichis derived from vegetation indices and LAI. The TSEB
model utilizes RS derived radiometric surface temperatugg,(@nd multispectral imagery

(NIR, red, green, and blue), as well as ground measured metrological data. Of the SEB models,
the TSEB is one of the most data intensive and technically complicated randeksquires high
resolution spatially distributeldS and meteorological data. Since the development of the TSEB
methods, it has been the subject of many studies utilizing airborne and dadeskiteremote
sensing [Sellers et al., 1992; Kustas et al., 2Ct#Avez et al., 20Q0@tc]. The current TSEB
research focweson using aerial-based remote sensing platforms, which have high spatial and
temporal resolutions, for use with PA systems. The TSEB Model will be discussediinnde

Chapter 2 utilizing data from the CSU Tempest UAS RS platform.

1.5.3.5.2. Reflectance-based Crop Coefficiékdisi)

The reflectance-based crop coefficient methods are based on the meteorologiogh and c
coefficient based method discussed previously. They differ in the method of ascertaining the
crop coefficient (k). The reflectance-based crop coefficientgfkare calculated using RS data
of two or more bands of the electromagnetic spectrum, such as red and NIR [Neale et al., 1989].

The multispectral imagery are used to calculate vegetation indicésastice Normalized
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Difference Vegetation Index (NDVI). The NDV5 the ratio of the NIR and red bands. The VI
is then linearly related to the reflectance-based crop coefficient [Gorizafgrand Mateos,
2008]. To estimate the other compondhts of the dual crop coefficient, a soil water balance is
utilized. The reflectance-based crop coefficient is then used toataltiie ET using a form of
Eq. (1.3). The reflectance-based crop coefficient method allows for the adjustrtientrop
coefficients based on the spatial variation of soil characteristics, crop healtthgstage and
water availability (i.e. water stress), instead of using the idealized conditised ba the growth
stage and Ei:[Neale et al., 2012]. The method only requires the NIR and red RS images and is
a simple empirical model. The benefit of the model is that it provides for anga®aaon for
site-specific modeling dETa and SWC over a spatially distributed area for use in precision
agriculture irrigation management programs [Neale et al., 2012]. The Reflebasedrop
Coefficient Model will be discussed in detail in Chapter 2 utilizing data from the C8ipdst

UAS RS platform.

1.5.3.5.3. Thermal-based Crop Water Stress Index Method (CWSI)

The CWSI method [Idso et al., 1981] is similar to the reflectance-based crop coefficient
model, in that the CWS$ used to deriv&Ta from the reference ET. The CWSI varies from 0
(no stress) to 1 (maximum stress). The difference between the two models is thaSihe CW
utilizes the RS thermal imagery instead of the multispectral (red, NIRemadhe CWSI is
derived from relating the difference (dT) in radiometric surface temper@i)eto the air
temperatur€Ts), similar to the SEBAL and METRIC models [Idso et al., 1981]. The method is
based on the assumption that if there is sufficient water in the root zone, ablavaiargy will
be used by the plant for transpiration. Once all the water which the crop can easily extra

(RAW) has been depleted from the root zone soil profile, available energy will cause heating of

24



the canopy (Maes and Steppe, 2012). The CWSI is calculated as a ratio of the difference of dT
and the lower limit boundary surface temperatdi& ) and the difference between the upper
(dTw) and lower boundary surface temperature. Whejagiihe lower boundary surface
temperature (non-water stress condition, atmospheric controlled ET) and is anfuapto
pressure difference (VPD). The @& the upper boundary surface temperature (non-transpiring
condition) and is a function of the vapor pressure gradient (VPG). The spatially distributed ET
is calculated using the CWSI as a reduction coefficient for the potenti# &), ¢alculated
from the reference ET and the basal crop coefficient [Idso et al., 1981].

The CWSI method shows promise for us&JiS-based RS PA irrigation systems
because of its potential to detect stress sooner than the reflectance-basedflioignts [Idso
et al., 1981]. The drawbacks to the model are that empirical models must be developed for
specific cropsits inability to estimate bare soil ETand the data requires collection after solar
noon to be used without correction [Chavez et al., 2012, DeJonge et a]., Z0@5CWSI
Model will be discussed in detail in Chapter 2 utilizing data from the CSU Temp&RSA
platform.

1.5.3.6. Instantaneous LE to daily £T

The output of the SEB models are spatially distributed instantaneous LE, whaftvarg little
use when implementing a precision agriculture irrigation management sydteen using a
SEB model to calculate ETthe instantaneous LE are converted to the instantaneaangT

extrapolated to the daily BT The instantaneous EIB calculated using the following equation:

7. - 3600< LEx 100C
APy,

(1.7)
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where Ay is the latent heat of vaporization (J%gpw is the density of water
(approximately 1,000 kg /) and ETis the actual hourly ET (mmi*[Allen et al., 2007]. The
extrapolation from the holyr ETa to daily ET. is accomplished using one of several methods.
The two most common methods utilize the Evaporative Fraction (EF) or the Reference ET

Fraction (ETF) [Allen et al., 2007].
1.5.3.6.1. Evaporative Fraction (EF)

The EF is calculated as the ratio of the energy fluxes at the time of the overphadsF
method is based on the self-preservation theory of daytime fluxes, which states it the
between the LE and the available energy remains constant throughout the dapafiBash,

1998a, Shuttleworth et al., 1989
EF =EF, = _LE (1.8)
R-G)
where EFis the instantaneous EF, andsis~the daily EF. The daily Els then

calculated usinghe EF and the assumption that G tends to O for the entire day [Bastiaanssen,

1998]:

EF x Rnd
ETad =86,400—— (1.9

AvPw

The major drawback to the method is its dependence of all terms on the remote sensing
data and preforms poorly in advective or arid environments [Allen et al., 2007]. To address this
issue, th&eT;F method was developed using both RS derivedaa@ the ASCE- EWRRO005)

standardized reference ET.
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1.5.3.6.2. Reference ET FractidaT(F)

The ETF method estimates the pidgy-pixel, daily actual ET of a RS image. It utilizes
both the RS derived hourlyTa and the ASCE-EWRI reference ET (&)lto extrapolate the
hourly ETa to the daily ET [Allen et al., 2007]. The EF is calculated using the following

equation:

ET,F = (1.10)

And the dailyETais calculated utilizing the EF as a crop coefficient and the daily

ASCE-EWRI reference ET (Ed):

As with the EF method, the EH'is assumed as constant throughout the day [Allen et al.,
2007].

1.6. Objectives

To meet the increasing demands on the global fresh water supply, all aspects of society
must become more efficient in their water use. In the agricultural sector, the teghmahging
from SS-VRI systems to frequent, economical, high resolution, and spatially distrib8te
derived irrigation planning models, have the potential to greatly reduce the oarllusage,
while expanding the overall output to meet the increasing needs. The focus of theuagticult
community, both operations and research, must focus on developing economical, applicable
technology and systems that will provide incentive for large-scale implenoentditine
precision agriculture systems. The development of the SS-VRI, and other efficisypstes,

has created a need for high temporal and spatialution crop water requirement data. Ground-
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based measurements of crop water requirements are accurate, but are not an ecowiaieall
method for implementation in a spatially distributed PA system. On the other Inassgace-

borne RS platforms are economically feasible, but lack the temporal and spatial (pdletjor
required to independently provide the required inputs to a PA system. Development of airborne
RS platforms, both manned and UAS, is prompted by the need to create a systematic approach
that utilizes ground, aerial and space-borne data collection for implementation int®Assys

The systematic approach will create high resolution spatial and ten§dEainformation for

input into the PA systems. This will involve tracking the daily SWB (FAO-56 pWéiBg

ground measurements and ET models. The SWB will be updated using aerial RS. The
systematic approach will provide responsive, efficient and economical, spatitilyutiesi

SWD information for the implementation of a PA system at the field level.

The overall goal of the study was to integratdJAS and ground-based RS to estimate
ETaand SWD through the vegetation soil root zone over variable vegetation cover geinsitie
order to develop sustainable land management at the field level. The overaliligoal
accomplished by comparing the performance of the Colorado State University (CSU),
Department of Civil and Environmental Engineering (CEE) Tempest RS UAS platform vs.

ground-based remote sensing data and physically measured SWD. The specifieslgest

1. Evaluate the quality and relevance of data collected by the Tempest UAS RS platform

when compared to data collected by ground-based methods.

2. Evaluate four RS Elgorithms (TSEB, SAT, CWSI, §) using data collected by the
Tempest UAS during the Summer 2015 RS campaigns at the primary test location,
Agricultural Research Development and Education Center (ARDEC). The accuracy of

each method will be computed using the mean biased error (MBE) and root mean squared
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error (RSME) when compared with the physically measureccBlEulated by a neutron
probe (NP) soil water sensors. Identify the most appropriai@lgdrithm for use in the

SWD edimation.

3. Estimate the spatially distributed SWD of the test locations utilinegnost appropriate
RS derived ET The SWD will be estimated using the Hybrid SWB model develop by

Neale et al. (2012).

4. Development and approval of the licensing, technology, and methodology associated with

the CSU Tempest UAS.

5. Provide suggestions and recommendations for future CSU RS for agricultural research.

At the completion of the study, a practical procedure will be developed to provide
estimates of the distributed SWD through the use of multispectral sensors integftatbe w
Tempest UAS. The ability to accurately and efficiently estimate the digtdt&MVD and EJ
will allow the increase of the overall efficiency at the end user level by providnadytidata for
site specific irrigation (i.e., water management), land management, in thefftwafficability
(machinery transit), and the application of agro-chemicals as part of an integestistbpr
agricultural management program. Additionally, Colorado State University (CS\ewnédlop
and implement a comprehensive UAS program that encompasses the opergtiaval ap
process, flight crew certification, and operational planning at both the DepartmemiaacsIty
level. With an established UAS program, and &gy Federal Aviation Administration (FAA)
regulations, Departments that are not historically focused on aeronautical resddrelahbie to

conduct research with UAS’s.
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CHAPTER 2: METHODS

The study focused on the evaluation of thenpest UAS’s ability to provide quality and
relevant data as inputs for tR&S models used to estimai . andSWD at the field scale.
Multispectral and therm@&Simagery and ground-based thermal and multispectral data were
collected at the primary test location during the summer of 2015. The spastilyuded RS
data was used to derive the spatially distriblE@gdandSWD of the test location. The E&nd
SWD were then evaluated using the measured NP and FAO-56 SWB defaaad SWD.

The primary test location, during the summer 2015 RS campaign, was the CSU Aglicultur
Research Development and Education Center (ARBEGrt Collins, CO).

The study was conducted over four phases. During the first phase (Phase 1
UAS/Sensor Integration and Certification), the sensors were integrated svithAt platform,
and the certificationfor UAS research operations at the test location was submitted and
approved. The second phase (Phas&2ound-based SWD Measurement) consisted of the
ground-based data collection of the SWD and multispectral data at tlec#tisn. The
collection of the RS data over ARDEC field 1070 occurred during the third phase (Phase 3
Remote Sensing Campaign) of the study. Phases two and three occurred simuwtamneodest
to allow both spatial and temporal comparison of the data acquired from the teshloThg
fourth phase (Phase-4Data Analysis and Comparison) consisted of the analysis and
comparisons of the data collected during phases two and three.

The following sections provide an overview of tedy’s details and experimental
design. The first section describes Rfginstrumentation and the development of the CSU

Tempest UAS RS platform. The second section describes the test location, ground-based
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instrumentation and data collection. The third section discusses the CSU Tanapés USU
RS campaign, and the description of the RS data. The final section containshiithéatogty of
the individual models utilized in deriving the E8nd SWD, and the statistical analysis used in
the evaluation and performance comparison.
2.1. UAS/Sensor Integration and Certification

The first phase of the study focused on the development and integration of the sensors
with the Tempest, the pilot certification procesd the approval of the flight authorizations for
the Tempest. These tasksrereompleted by simultaneously focusing on two lines of effort
(LOE). The first LOE focused on the preparation of the Tempest UAS for the RS campaign.
The second LOE addressed the legal requirements of flying the Tempest in US aaspaae.

2.1.1. Tempest UAS

The Tempest UAS (UASUSA, Inc., Longmont, CO, USA) (Figure 2.1) is a comritgrcia
purchased UAS platform based on a long range, fixed-wing, radio control (R/C) aircraft that was
originally designed for flight operations in tornado-prone thunderstorms. The system is fully
autonomous, with all flight and RS operations controlled through an on-board autopilot. The

autonomous controls provide the stable platform required to collect high-resolutionaRS dat

Figure 2.1. Colorado Stte Universities Tempest UAS (Photo by CPT Jeffrey Hgthawa
The Tempest was a logical choice for adaptation into a high-resolution fRR8rpldue
to the inherent stability and efficiency of the design. The adaptabilibegflatform provides
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the required flexibility to adjust sensor payloads and flight parameters to meet toellgatzon
needs. The specifications of the Tempest UAS are depicted in Table 2.1.

Table 2.1. Tempest UAS Performance Specifications [UASUSA, 2015]

Specifications
Wingspan 127" (251 mm)
Wing Area 1016 sq in (0.65 sq m)
Empty Weight 10 Ibs (4.54 kg)
Nominal GTOW [ 11 Ibs (5 kg)
Maximum
GTOW 20 Ibs (9.07 kg)
Wing Loading 20.6 oz/sq ft
Length 61.375" (1524 mm)
Airfoll MH-32
Center of 3.5" from leading edge of the wing
Gravity (89mm)
Stall Speed 20 mph
Cruise Speed 50 mph
Max Speed 100 mph
Max Range 60 mi (52.14 NM)
Radio Range 10 mi (8.69 NM)
Flight Time 1.5 HR

The Tempest initially was integrated with five commerciallyilabde sensors, which
was narrowed to three sensors based on the ability of the sensors to successfully imiigrat
the autopilot. The sensors were selected for their ability to collectedpaditral and thermal
imagery over the same bands as ground-based RS systems and the Laniisat sBibel
specifications for the sensors’ spectral and temporal resolution are described in Table 2.2 and
Appendix 1. The final payload for the Tempest UAS included a multispectral (NIR, red, and
green) camera [ADC SNAP, Tetracam Inc., Chatsworth, CA], a thermal infrared @riya

[Tau 2 640, FLIR, Wilsonville, OR], and a digital camera (red, green, and blue)46600
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digital camera, Sony Global, Tokyo, Japan]. The CSU Tempesti¥described in detail in

Appendix 1.
Table 2.2. Tempest UAS Sensor Performance Specifications
Sensor nm um Wavelength 130m (A.GL)
Resolution
FLIR TAU 2 7500 | 13,500 7.5 | 13.5 Thermal 11.76 cm
Te”acAaE)mCSNAP 520 | 920 | 052 | 0.92| green, red, NIR|  6.5cm
Sony A6000 390 780 | 0.39 | 0.78 | Visible (RBG) 9.5cm

2.1.2. CSU UAS Certification

The operation of the Tempest in the United States National Airspace (NA3itig tig
controlled by the Federal Aviation Administration (FAA). The authorizations required to
conduct research are separated into two main categories: Pilot Certificatidireraft
Certification.

The CSU Tempest pilot certification programs are described in Appendix 1. The
certification processof the Tempest pilots are in accordance with FAA Notice 8900.1 and Title
14 of the Code of Federal Regulations (14 CFRhe certification process involves both formal
and informal flight training, liability insurance, and a FAA Class 2 medicahexBhe purpose
of the CSU pilot certification program is to ensure the safety of the public and equipment
associated with CSU UAS research operations. The flight training program, in preparation for
the data collection flights, is a multi-staged program. The first stages of fligimdgare
conducted using small scale R/C aircraft to develop the fundamental flighteglised to
successfully fly the Tempest. The CSU program uses the Radian Parkzone R/C Aircraft [Radian
PNP, Parkzone Inc., Champaign, IL] during the first stage of flight training and for refresher
training during periods of low flight densities. The Radian uses throttle, rudder and elevators to

provide basic flight controls. Upon completion of stage one, CSU pilots transition to the Radia
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Pro R/C aircraft [Radian Pro PNP, Parkzone Inc., Champaign, IL]. In addition to throttle, rudder
and elevator, the Radian Pro utilizes ailerons and flaps to provide realistict®mafathe

Tempest flight controls. The specification and imagery for the Radian and Radian Pro are found
in Table 2.3 and Figure 2.2. Once the Radian Pro flight controls have been mastered, the final
stage of flight training is conducted on the Tempest UAS. The final stage includewtreaith

the Tempest’s manual flight controls, takeoff and landing procedures, and the SwiftPilot

Autopilot.

Table 2.3. Radian and Radian Pro R/C Aircraft Specifications.
Radian and Radian Pro Specification

Radian and Radian Prq
Wingspan 78.5in
Length 45.01in
Flight Time 30 min
Weight 34.6 oz

Figure 2.2. Colorado State Universities Radian and Radian Pro R/C Aircraft [Parkzone.com]

The aircraft certification for the Tempest UAS is based on the FAA’s Certificate of
Approval or Waiver (COA). The COA process allows public entities (Government, State

Universities,etc) to conduct flights in the NAS. The COA is a process in which the FAA
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approves UAS to fly in specified location [FAA Notice 8900.1; 14 CRF]. The 3tte
process that certifies that an incident at the approved location has the Inprabedility of
damage to personnel or properTo date, CSU has submitted three COAs, with five locations
approved for flight operations.
2.2. Ground-based SWC Measurements

The second phase of the study focused on the collection of ground-based measurement of
the SWC and RS data at the test location. Data collection was conducted thrdgl2iits
growing season. The ground-based measurements were used for the comparison armhevaluati
of the Tempest RS derived data.

2.2.1. CSU ARDEC

The primary test location for the study was the CSU Agricultural Researchopmazit
and Education Center (289.293 N 104 59.848, Elevation- 1551 meters). ARDEC is an off
campus agriculture research center, approximately 4 miles north of Fort Collins, CO.CARDE
operated and maintained by the Colorado Agricultural Experiment Station and consists of 1,065
acres dedicated to agricultural research.

ARDEC field 1070 (Figure 2.3) consists of 2.79 acres irrigated with a pressurized lateral
move sprinkler system. The test location is divided into twelve plots (23 m xr2y d3d 144

sub-plots (4.5 m x 4.5 m) as shown in Figure 2.3 and Figure 2.4.
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Figure 2.3. CSU ARDEC Field 1070 layout during the summer 2015 Tempest UAS RS
campaign.

The plots are divided into three irrigation treatments, ¥ath replication of each
treatment, as shown in Figure 2Bhe “Full” irrigation plots received one inch (In=25.4 mm)
of irrigation weekly to replicate the replacement of 100% of the Hhe “Limit” irrigation
plots received one inch of irrigation weekly after ghewth stage of the corn. The “Drought”
plots received no irrigation during the growing season. Table 2.3 displays the irrigationechedul
and amounts applied to the treatments during the 2015 growing season.

The plots were further divide into four columns (4.5 m x 27.43 m) that received four
treatments, replicated four times, of various varieties of corn (P9697AM, P8954AM, P9675AM
and P9305AM (annotated on Figure.)2.Zhe sub-plots were subjected to five soil treatments
(Control, Manure, Biochar and Manure, Biochar, and Null (bare soil)) replicated 12 thnes.
summary of the key dates for ARDEC 1070 are found in Table 2.4.
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Rep 1l

Plot 101 102 103 104 105 106 107 108 109| 110| 111 11p
Irrigation Drought
Hybrid P9697AM| P8954AM P9305AM P9697AN P9675AM P9697AM P9697AM P9697jAM P9697AM P930FAM P8954AM P96$7AM
N=Nul N N N N N
Sol M o158 [ 05B AN 0B [ 13B N e | - [
Ammend. 02 M 06 M 10 M 14 M 18M 22M
03 BM 11BM | 15BM :
Rep 2
Plot 201 202 203 204 205 206 207 208 209| 210| 211 21p
Irrigation Drought
Hybrid P8954AM| P9697AM P9305AM P9697AM P9697AM P9675AM P9697AM P9305AM P930AM P969VAM P8954AM P9697AM
N N N N N N
Soil 33 M 37T M _+
Ammend. 26 BM 30 BM 34 BM 38 BM 42 BM 46 BM
31B 47 B

Figure 2.4. CSU ARDEC 2015 Treatments and Instrumentation
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Rep 3
Plot 301 302 303 304 305 306 307 308 309 310) 311 31p
Irrigation Drought
Hybrid P9697AM| P8954AM P9305AM P9697AM P9305AM P9697AM P9697AM P9697jAM P9303AM P969YAM P8954AM P9697AM
N N N N
s |2 [N e —
Ammend. 50 M 70 M
51 BM : 71 BM
Rep 4
Plot 401 402 403 404 405 406 407 408 409| 410| 411 41}
Irrigation Drought
Hybrid P9305AM| P8954AM P9697AM P9697AM P9697AM P9675AM P9697AM P9697jAM P9697AM P969YAM P9305AM P89%4AM
N N N N N N
Soi 73 M 77 M N 51 M 85 M
Ammend. 74BM | 78BM 82BM | 86BM
75 B 79B 83B 87 B
Full Site Main Plots (Irrigation x Hybrid) Sub-Plots (Soil Amendment)
270'x450' (82 mx 137.16 m) (108 rows) 15'x90' (4.6 m x 27.43 m) (6 rows) 15'x15' (4.5 mx 4.5 m)
2.79 acres (1.13 ha) 0.031 acres (0.013 ha) 0.005 acres (0.002 ha)




Table 2.4. ARDEC field 1070 2015 Key Dates

N Limited
Event Date Full Irrigation Irrigation Drought

(mm) (mm) (mm)
Planting 15 May 2015 - - -
Emergence 31 May 2015 - - -
Tassel 21 July 2015 - - -

Irrigation 1 16 July 2015 25.4 - 25.4
Irrigation 2 23 July 2015 25.4 - -
Irrigation 3 31 July 2015 25.4 25.4 -
Irrigation 4 06 August 2015 25.4 25.4 -
Irrigation 5 14 August 2015 25.4 25.4 -
Irrigation 6 20 August 2015 25.4 25.4 -
Irrigation 7 28 August 2015 25.4 25.4 -
Irrigation 8 03 September 201! 25.4 25.4 -
Irrigation 9 11 September 201° 25.4 25.4 -
Irrigation 10 18 September 2011 25.4 25.4 -

2.2.2. Instrumentation and Data Collection

During the summer 2015 growing season, the physical conditions at ARDEC 1070 were
monitored utilizing soil water sensors, gravimetric sampling, Colorado Agricultural
Meteorological Network (COAGMET) weather station and ground-based RS. The groudd-base
data collected from ARDEC field 1070 were used in comparison with the TempesidJik&d
RSraw data, ETandSWD.

2.2.2.1. SWC and SWD Data Collection

The SWC was primarily measured throughout the season using the following sensors:
neutron moisture meter (NP) (503DR AM-241, CPNInstrotek, Concord, CA) and a Capacitance
(5ET, Decagon Devices Inc., Pullman, WA) SWS. The SWC from the SWSs were used{ to t
the SWB of the irrigation treatment on the daily and seasonal basis. In order to increase the
accuracy of the SWS, site specific calibration of the SWS were developed using theetgrav

SWC as described in Chapter 1.
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Weekly SWC was measured using forty-eight NP access tubes dispersed throughout the
twelve plots. In each plot, NP access tubes were place in four of the control subpld#? The
layout of ARDEC 1070 is shown in Figure 2.4. NP measurememtstaleen to a depth of 152
cm at an interval of 30.48 cm. For this study, the maximum root zone depth was assumed to be
152 cm. According to Huisman et al. (2003), the accuracy range for NPs are typically between
0.01 and 0.024 mm/m when calibrated using gravimetric SWC [Huisman et al., 2003]. The NP
data collection corresponded with aerial RS campaign dates. The SWC was estgddte the
SWD used in the comparisons with the Tempest derived SWD.

Hourly SWC was measured using forty Decagon 5TE capacitance SWSs. The 5TE
SWSs were installed in twenty locations throughout the ARDEC 1070 study site (as shown i
Figure 2.4). The sensors were installed in pairs, at depths of fifteen and forty-fivEnendTE
SWS measured the SWC at one hour intervals throughout the growing season. The published
accuracy range of the 5TE is between 0.01 and 0.03 mm/m when calibrated using the gravimetri
SWC [5TE Manual].

Site-specific calibrations for the NP and 5TE SWS were developed using the Gravimetric
SWC method as described by Varble et al. (2011). The gravimetric sampling was conducted
twice during the 2015 growing season [Varble et al., 2011]. During each sampling session, six
samples were taken to a depth of 150 cm. Half of the samples were taken in the fatldrrig
treatments and the other half were taken in the drought treatments. The gravirettod has
an accuracy between 0.01 and 0.024 mm/m (approximately 0.3% of volumetric SWCEgf{Topp
al., 2002].

The meteorological data, used for the FAO-56 SWB was obtained from the on-site

COAGMET weather station (CSU ARDECFTCO3, 108N 40.6528 W, Elevation 1551 m,
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www.coagmet.com). The COAGMET Station is approximately 288 meters to the south east
ARDEC 1070 and provides hourly meteorological data for the ARDEC complex. The available
ground-based data for ARDEC field 1070 are described in Table 2.5.

Table 2.5. ARDEC 1070 Ground Data Collection Dates for comparison with Tempest UAS RS

Date Multispectral Thermal Neutron Gravimetric 5TE
Probe Sampling
22 Jul 2015 X X X X
27 Jul 2015 X X X
30 Jul 2015 X X X X
13 Aug 2015 X X X X X
19 Aug 2015 X X X
20 Aug 2015 X X
10 Sep 15 X X X X

2.2.2.2. Remote Sensing Data Collections
Ground-based RS data collect@mARDEC 1070 were conducted utilizing the following
sensors: multispectral sensor (MSR5, CROPSCAN Inc., Rochester, MN) and an infrared
thermometer (IRT)%I-212, Apogee Instruments Inc., Santa Monica).CPhe spectral
reflectance (%) was measured using the MSR5, while the surface tempéFatuveas

calculated using the IRPQ).
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The MSR5 is a Landsat equivalent, hand held radiometer (multispecttat)g¢haures
the incoming and reflected irradiance flux of the blue (450-520 nm), green (520-600 nm), red
(630690 nm), NIR (760-900 nm) and TIR (1550-1750 nm) bands of the electromagnetic
spectrum [MSR 5 Manual]. The IRT is a hand-held infrared thermometer that is integtated w
the MR5 system (nadir looking) and collects over the TIR (800-1400 nm) band [IRT Manual].
The spectral reflectance and surface temperature measurements wewreetalklg, under mostly
clear sky conditions, corresponding with the Tempest UAS and USU RS campaigns.

Data collection with the MSR5 and IRT occurred over multiple surfaces for comparison
with the aerial RS data. The first surface was the white lambertian refézeget(Spectralon
24” x 24” White Target, Labsphere, North Sutton, NH). The second reference target was a black
surface, comprised of flat black paint and plywood. Additionally, data collection occurred over
at least 10 selected sub-plots and bare soil during every RS ovienpiasther comparison with
the aerial RS data. The ground-based RS data collected throughout the sub-pltakemeoger
the NP access tube locations. Appendix 1 depicts the RS references targets.

2.2.2.3. ARDEC Survey

All measurement and site layout locations were verified using Real Time Kiizem
(RTK) Global Positioning System (GPS) surveying methods. The RTK GPS Surveysehsiire
all locations are geo-referenced to an accuracy of 1 to 2 cm [Rydlund, 2012]. The stugygrequir
the survey to ensure the correct locations of all measurements used in the comparison of the
ground data and aerial RS data.

2.3. Aerial Remote Sensing Campaign
During the summer 2015 aerlRBE campaign, CSU, in coordination with USU,

conducted three manned RS flights and seven Tempest UAS RS flights over the primary and
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alternate test locations. The aerial RS flights were multi-discipliogeyations that involved
ground and aerial activities. All aerial RS operations were conducted concurrigmttyaund-
based data collection operations. The CSU Tempest conducted five RS flight$ ARDEC,

one at CSU AVRC (18 September 2015) and one at NWCG (23 September 2015). The USU
manned aircraft conducted three flights covering CSU ARDEC, USDA-ARS LIRF W®

The USU flights were conducted in conjunction with the CSU Tempest for the ARDEG flight
The available data from the 2015 RS campaign are described in Table 2.6.

Table 2.6. CSU and USU Aerial Remote Sensing Flights and Data Available
Available Remote Sensing Data - CSU ARDEC Field 1070

Tempest usu
Multispectral Therma] Multispeciral Therm

Date Location
22-Juk15|  ARDEC
30-Ju-15| ARDEC
13-Aug-15| ARDEC - -
19-Aug-15] ARDEC| - | x| X X
10-Sep-15| ARDEC X X
18-Sep-15
23-Sep-15

X

The primary flight location was the ARDEC field 1070. The RS campaign included
ground collection operations and flight operations. The flight team consisted of theyaida
alternate pilots, who were responsible for the flight, airspace control and aedat&kS
collection. The primary launch and recovery location was located on an alfalfa fiel
approximately 800 meters to the west of ARDEC 1070. During the 2015 RS campaign, the CSU
Tempest maintained a flight level of between 91 and 121 m and a flight speed hEfveaehl19
meters per second (rm)sto ensure safe operations and maintain a spatial resolution of 12 cm or
less. The USU manned aircraft main&dm flight level of 365 meters and maintained a spatial

resolution of 0.5 meters (1.8 m for the TIR). Appendix 4 contains the Tempest and USU data.
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In order to collect pertinent data, all flights occurred between 1000 and 1300 Mountain Standard
Time (MST) and under mostly clear sky conditions.

The CSU Tempest UAS collected high resolution, spatially distributed multidpectra
imagery of the test location. The multispectral imagery (NIR, red and greend Ispatial
(pixel) resolution of approximately 6.5 cm. The multispectral imagery was peatassg the
factory provided software (Pixelwrench2, Tetracam Inc., Chatswortha@@&was reported as
spectral reflectance (%). The multispectral imagery are provided as a gemeetk false color
image (RGB) of the NIR, red and green bands {r&dR, green- red, blue- green) (Figure
2.5). The thermal (TIR) imagery ¥ma spatial (pixel) resolution of approximately 11.76 cm.
The thermal imagery were processed using the factory provided software (Thewaalvie Ax
Technology UG, Wilnsdorf, Germany) and were reportetCasThe thermal imaggmwere
provided as a geo-referenced, monochromatic images scaled between the maximum and
minimum scene temperatures (Figure 2.6). The VIS (red, green, and blue)yimagea
spatial (pixel) resolution of approximately 9.5 cm. The VIS imagery were providedess a
referenced RGB image (Figure 2. All RS imagery were geo-referenced and processed using
ERDAS Imagine 2015 geographic information system (GIS) software [ERDAS Imagine 2015,
Hexagon Geospatial, Cape Town, South Affricéhe pre-preprocessed data were geo-rectified
using the RTK surveyed ground control points and the ERDAS Imagine GIS softwarestAt lea
ten ground reference points for each RS image in order to ensure proper alignment of all RS
imagery and ground-based data. Mosaicking of the geo-rectified using the ERDgi8d 1G4S
software. During the CSU Tempest RS overpasses, data collection occurred with applsoximate
70% image overlap, both horizontally and vertically, to ensure acceptable data waescdbtai

field 1070.
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The USU manned aircraft acquired high resolution images in the VIS, NIR, and TIR
bands of the electromagnetic spectrum. The USU RS payload consisted of three Kodak
Megaplus digital frame cameras (green: 545-560 nm; red 665-680 nm; NIR: 795-809) (Eastman
Kodak Company, Rochester, NY) and a thermal infrared camera (TIR: 800-1200 nm)
(Inframetrics 760, Inframeterics, N. Billerica, MA). The VIS and NIR has a spatial (pixel)
resolution of 0.5 m (Figure 2.8) and the TIR has a resolution of 1.8 m (Figure 2.9) at the 395 m
AGL flight level [Chavez et al., 2012]. The USU data were processed using the ERDAS
Imagine 2015 software. The USU data supplemented data missing from the Tempest UAS and

to provide aerial RS imagery over the LIRF-ATM.
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Figure 2.5. 10 Septeber 2015 CSU Tempest false color multispectral (NIR
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Flgure 2.6. 10 September 2015 CSU Tempest false color TIR imagery (1ZLmwith a
spatial resolution of 11.76 cm) of ARDEC field 1070 using the FLIR Tau 2 640 thermal sensor.
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Figure 2.7. 13 August 2015 CSU Tempest visual (RGB) imagery (121 m AGL with a resoluti
of 9.5 cm) of ARDEC field 1070 using the Sony A600 SRL digital camera. The shadow is a
result of non-optically calibrated data.
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Figure 2.8. 30 July 2015 USU false color multispectral imagery (365 m AGL withialspat
resolution of 50 cm) of ARDEC Field 1070 using the Kodak Megaplus digital frame cameras.
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Figure 2.9. 10SEP15 2015 USU false color TIR Imagery (365 m AGL with a spatial i@solut

of 1.8 m) of ARDEC field 1070 using the Inframetrics 760 thermal sensor.
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2.4. Data Analysis and Comparison Methodology

The data analysis and comparison of the study consists of two parts. The first analysis
was between the raw multispectral and thermal data collected through the ground (MSR5 and
IRT) RSand aerial (Tempest UAS) based remote sensing. The second part consisted of the
comparison of the four aerial RS derivedsEiethods and Hybrid derivegWD to theNP and
FAO-56 SWB deriveETaand SWD. The RS derived SWD were derived using the most
appropriate ETmethod utilizing the Hybrid model developed by Neale et al. 2012.

2.4.1. CSU Tempest UAS R&S Data

The Tempest raw RS data were directly compared to the data collected on the ground
with the MSR5 multispectral scanner. During the overpasses, the ground team colidtptel m
data sets from each treatment, the white and black references, bare soil, gragsanDweato
the settings of the internal calibration of the sensors on the Tempest, themh@geand black
references were not used for the evaluation. A minimum of ten locations, spread throughout the
test site, were selected for use in the evaluation against the TempsiaRS

2.4.2. EE Models

The study focused on deriving Effom aerial RS imagery (NIR, red, green and TIR).
The multispectral (NIR, red and green) and thermal JTitigery collected from the Tempest
and USU manned aircraft were used to derive spatially distrilitfgdsing four methods. The
methods include both single and two-sourced surface energy balance models as well as
reflectance and thermal-based models. All of the methods were developed foiwegetat
surfaces and do not accurately depict the ET of bare soil. The four methods of calculating ET

are as follows:
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1) Two-Source Energy Balance Method.

2) Surface Aerodynamic Temperature Method.

3) Crop Water Stress Index.

4) Reflectance-based Crop Coefficients.

The hourly ET (mm/h) calculated using each method were extrapolated to the daily ET
(mm/d) using Eq. (1.10) and Eq. (1.11). The extrapolation meHEGH, remained constant
across the methods to prevent additional error while comparing the methods. All of the model
were processed using the ERDAS Imagine 2015 GIS software and models created inghe Spat
Model Builder program.

2.4.2.1. Surface Energy Balance Methods

In the SEB methods (TSEB and SAT), thedre calculated as the sum of the incoming

and outgoing long and short wave radiation, with inputs from VIS, NIR and TIR RS data, as well

asphysical and meteorological variables. [Monteith, 1973].
_ 4 4
Rh=1-a)Rs+e50T3 —&50 T (2.1)

where a is the surface albedo, Rs is the incoming short wave radiation (WPnea is the
emissivity of the air, o is the Stefan-Boltzmann constant (5.67xE-08, WaK™), Ta is the air

temperature (K), &s iS the surface emissivity, andgis the radiometric surface temperature (K).

The G is calculated as a function of RIR RS data and VI’s [Bastiaanssen et al., 1998].

A common method of estimating G utilizing RS is described in Chavez et al., 2005.

G=(((0.3324+ ¢ 0.028A1 ) (0.8155 —( 0.3032I&l MR, (2.2)
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where LAl is the leaf area index ) and is calculated using the NIR and red RS

spectral reflectance data [Anderson et al., 2005

LAl = (4xOSAVI — 0.8)x (L+ 4.7% 100 xel®-6%0SAVI (2.3)
where OSAVI is the Optimized Soil Adjusted Vegetation Index [Rondeaux et al., 1996]:

(1+L)(NIR- RED)
NIR+ RED + L

OSAVI = (2.4)

In all of the SEB models, the methods of calculating H are different, but all revolve
around a measure of the diffecex{dT, K) in aerodynamic temperature,(K) (or radiometric
surface temperature 4, K)) and air temperature £TK), and the aerodynamic resistance to heat
transfer (g, s m?).

H= PaxCan(dT) (25)
fah

where pa is the moist air density (kg &), Cp is specific heat of dry air (J KgK™?). The
ranis dependent on the crop characteristics and atmospheric conditions., 8reecorrected for
atmospheric stability conditions utilizing the Monin-Obukhov similarity thebtgrjteith and
Unsworth, 1990]. The atmospheric stability correction follows the iterative process outline by

Chavez et al. (2005).

Zm-d Zm- Zoh
(25— = % +un N2
" (2.6)

fah =

where Zis the height of the wind speed measurement (m), d is the zero-plane

displacement height (m) odis the roughness length for heat transfer (m), yn is the stability
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correction factor for atmospheric heat transfef, is the Monin-Obukhov atmospheric stability
length scale (m),-Us the friction velocity (m$) and k is the von Karman constant (0.41). The
Zm, d, and 2, are a function of the canopy height, which can be estimated using RS or based on

physical measurements.
2.4.2.1.1. Two-Source Energy Balance Model (TSEB)

The TSEB [Neale et al., 2012], as discussed previously, computes the components of the
surface energy balance, net radiatior) (Roil heat flux (G), and sensible heat flux (H),
separately for the canopy and the soil components of a RS image. The fluxes are computed
using the high spatial (pixel) resolution aefs8 imagery (NIR, red, green and TIR). The TSEB
is an iterative method that calculates the initial fluxes and then correstd the aerodynamic
resistance to heat transfegyr The TSEB requires the NIR, red, green, blue and TIR bands (Post
et al., 2000) to estimate the instantaneous LE. In order to separate the soil cdrfipaonthe
canopy, OSAVI is used calculate the LAl [Rondeaux et al., 1996; Chavez et al., Z0@5].
vegetation fractional covercff which is the fraction of the pixel that is vegetation, is then
calculated as a function of LAI and the clumping factor (Q2) [Kusta and Norman, 2000

fo=1- e—0.5>< LAl xQ (2.7)

The t is used to calculate the soil and the canopy components oh.tHENR R is
calculated as the sum of the shortwave and long wave radiation budget using)Bdgtéith,

1973]:

The R is separated into the canopy componentafiging the § and then used to
calculate the sensible heat flux for the soil, (W m?). The H, and Monin-Obukhov similarity

theory adjustedas [Foken, 2006] are used to calculate the canopy temperatyfEXT
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PaxCpa

The Tc is then used to estimate the temperature of the spiQ¥as a function of the

Tste, Te, and £ [Norman et al., 1995].

(2.9)

The T, Ts, o, air emissivity(ea), surface emissivityes), and LAl are then used to update
the net radiation for the soil R W m?) and the canopy (R, W m?) [Kustas and Norman,
2000]. The canopy (HW m?) and soil (H, W mi?) components of the sensible heat flux &

then calculated:

_ 3 A v PaxCpax(Tc—Tg)
He = Ruox (1 (L3 g x 2 )= ” (2.10)

H = ,OaXCan(TS—Ta)

. (2.11)
ry+r

where f{ is the fraction of vegetation that is green, A is the slope of the Saturation Vapor
Pressure versus temperate curve, aifsiml) is the resistance to heat flow just above the soil
[Norman, 1995]. The G (W ) is calculated as a function of the &d the LAI using Eq. (2.3)

[Chavez et al., 2005]:
The total sensible heat flux {FW m?) is calculated as the sum of theahd H:

Ht =HC+HS (212)
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The total instantaneous LE (LBV n?) is calculated using Eq. (1.6). The contribution of
the soil (LE, W m?) and canopy (LE W m?) are calculated as a function of their respective

energy fluxes:

LEc=Ry ¢-Hc-G (2.14)

The hourly ET (ETa n, mm h?) are calculated using Eq. (1.7), and the daily BT, 4
mm d?) are calculated using Eqg. (1.10) and Eqg. (1.1he final spatial resolution of the TSEB
ETa was determined utilizing the TIR imagery’s resolution (11.76 cm). The TSEB process is

described in detail in Appendix 3.

2.4.2.1.2. Surface Aerodynamic Temperature Model (SAT)
The SAT Model is a single source SEB method that models the spatially distributed
aerodynamic temperatureqK) as a function of J T,, LAI, wind speed (u, mY and &n
[Chavez et al., 2005]. The SAT requires the same RS data as the TSEB model. ible sens

heat flux (H), corrected for atmospheric stability, is calculated usingsthe T

y — PaxCpax(To~Ta) (2.15)
fah

where T is modeled as [Chavez et al., 2005]:

To=(0.534Tgc }+ (0.3%T4 ) (0.224LAI 3 (0.194 ) 1. (2.16)

The R, is calculated using Eq. (2.1) and the G is calculated using Eq. (2.2). The
instantaneous LE (LE, W) is calculated as the residual of the surface energy balance
equation:

LE=R,-G-H (2.17)
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The hourly and daily Edare calculated using Eqg. (1.7) and Eqg. (1.10) thru Eq.)1.11
The final spatial resolution of the SAGTa were determined utilizing the TIR imagery’s spatial
resolution (11.76 cm). The SAT process is described in detail in Appendix 3.
2.4.2.3. Crop Water Stress Index Model (CWSI)
The CWSI model [Idso et al., 1981] utilizes the spatially distributed TIR inyaayed
meteorological data to derive a crop coefficient used in scaling the ASCE-EféiRince ET.

The CWSI is calculated using the following equation:

3 dT —dTj

CWS =
dTy —dTj)

(2.18)

where dT (K) is the difference between the individual pixglK) and the T (K) from
theRSTIR imagery and weather station data. In this study, the procedure for calculating dT
differed from the method describe by Idso et al., 1981. The CWSI model was originally
developed using hand held infrared thermometers (ground-based RS) measuring T
perpendicular to the crop in order to avoid any soil background temperature effects. Wbile usi
the UAS data the radiometric surface temperatuse (Vere used instead ot inh order to

produce the spatially distributed Etilizing the TIR RS Imagery alone.
dT =Tgc —Tg (2.19)
where dT (K) is a function of the site specific coefficients and the VPD:
dTj| =a(VPD) +b (2.20)
where a is -1.97 and b is 3.11 for semi-arid corn [Idso et al., 1982] and the VPD is
calculated as the difference between the saturation vapor pressure gkR# énd the actual
vapor pressure of the aira(&Pa) [Idso et al., 1982]:

VPD =e5—€5 (2.21)
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dTu (K) is a function of the site specific coefficients and the vapor pressure gradient

(VPG) [ldso et al., 1982]:
dTyp =a(VPG) +b (2.22)
where the VPG is the difference between the vapor pressure at air temperature and at a
higher temperature ofaPplus the coefficient b [Idso et al., 1982]:
VPG = e5(Ta) —es(Ta +b) (2.23)
The spatially distributed Elare calculated using the CWSI as a reduction coefficient and

the potential ET (EJ, mm h'), or crop non-water stressed ET, with the following equation [Idso

et al., 1982]:

ETy = (1-CWS )x ETp (2.24)
where ET calculated from the reference ET and the basal crop coefficient:

ETp =keh * ETres (2.29
The CWSI method is depicted in Figure 2.10. The horizontal line is thénddXx stress)
and the lower line is the dTmin stress) [Idso et al., 1982]. The hourly.&fm h?) is
calculated using the CWSI, and thepEbm Eg. (1.10) and Eq. (1.11The final spatial
resolution of the CWSET, were determined utilizing the TIR imagery’s spatial resolution

(11.76 cm). The CWSI process is described in detail in Appendix 3.
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CWSI =
YZ/XZ

Canopy - air temperature difference {C)
ra

Vapor pressure deficit (kPa)

Figure 2.10. Graphically depicted CWSI [Idso et al., 1982]
2.4.2.4. Reflectance-based Crop Coefficients ModgkXk
The reflectance-based crop coefficients model [Neale et al., 1989; Bausch, 1993] utilize
the spatially distributed Tempest UAS RS NIR and red imagery. &hédscribes the

relationship between the ASCE-EWRI reference ET and the crap ET

The reflectance-based crop coefficient method assumes a linear relationshim bleévee
RS derived Vis and kni.  Two methods of derivingel¢s were used in this study. The first
method used the relationship, developed by Neale et al. (1989), for corn in Greeley, CO. This

method utilizes the RS derived NDVI:

NDVI = NIR-RED (227)
NIR+ RED
Keprf =1.181NDVI )~ 0.02¢ (2.28)

The second method derives thefusing the RS derived [Trout et al. 2008; Johnson

and Trout, 2012].

Keprf =1.13x fo + 0.14 (2.29)
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The methodology used for calculating th@nfthe study differs from the Johnson and
Trout (2012) method. Instead of using the linear relationship between NDV{, tred{f were
derived using Eg. (2.7). The deviation was to limit the error associated with dalgslatilar
terms differently throughout the models. The daily Bfe calculated using (1.10) and Eqg.

(1.12). The final spatial resolution of the reflectance-bds€&gwere determined utilizing the
Tetracam ADC SNAP imagery’s spatial resolution (6.9 cm). The kut process is described in
detail in Appendix 3.

2.4.3. Hybrid Soil Water Content Model

In order to estimate the root zone SWD, the Hybrid SWC model [Neale et al., 2012], was
implemented using the NDVI derivedk and the most accurate Ederivedfrom the four
models described. The Hybrid SWD model tracks the growing season SWD by usiA@the F
56 SWB method, with the SWD anghkipdated periodically with the Tempest UAS RS derived
ETaand kor. The procedure of the Hybrid SWC is located in Appendix 3.

The FAO-56 SWB is used in multiple processes of the hybrid model. The first use is the
tracking of the daihEWD for use with a PA irrigation system [Neale et al., 2012]. The FAO-56
SWB approach starts with a given soil profile at field capacity (Orc, mm nit) or measured
volumetric SWC [Allen et al., 1995]. Field capacity is generally defined as the anfouater
held in the soil after excess water has drained away and the rate of downward drainage has
decreased. Once the SWB begins, the root zonesaié tracked using the following equation

[Allen et al., 1995]:
Dj =Dj_1+ETq - (P-SRO)— I, + DP-GW (2.30)

Where D (mm) is the soil water depletion at the end of day.i,iBthe soil water

depletion at the end of day i-1 (mm), &3 the actual crop evapotranspiration (mm), P (mm) is
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the gross precipitation, D (mm) is the surface runoff; (mm) is the net irrigation on day i, DP
(mm) is the deep percolation on day i, and GW (mm) is the ground water capillary contribution
from the water table on day i [Hoffmann et al., 2007]. The initial SWD for ARDEC field 1070
was estimated using the NP SWS on 29JUN2015. The SWD is defined as the difference

between the Orc and the SW@tday i(6i) [Neale et al., 2012]:
SWDp; = (GFc —&) xR, (2.31)

The second use is the estimation of the SWB Egrand the components of the dual
crop coefficient, kand k. The components of the dual crop coefficient are calculated based on
the soil characteristics and water status [Neale et al., 2012]. TrecisfBcient, k according
to Allen et al. (1995) is calculated as:

TAW -D
kg=— T (2.32)
TAW — RAW

where TAW is the total available water (mm),i®the root zone depletion (mm), and
RAW is the readily available water (mm). The TAW is calculated as ther @aailable
between the Orcand the 6wp. The RAW is the portion of the TAW that a crop can extract from
the soil root zone without experiencing stress. The TAW4Hd RAW are depicted in Figure
2.10. When P< RAW, ksis 1 and there is no water stress. When TAW > BAW, k ranges

from O (maximum water stress) to 1 [Allen et al., 1995].

60



Available Soil Water Total Soil Water
_[Gravitaﬁonal Water
100% (Saturation)
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RAW { Cr i S = Soil-Water Content
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TAW

____ SWhDcritical = Critical
Soil-Water Deficit

0% 100% 100% 100% | o iioq | W =Wilting Point

0% (Oven Dry)

Unavailable Soil Water

Figure 2.11. Available soil watadapted from Steele et al. (2010).
The shallow soil water evaporation coefficiery, ik calculated using the following

equation:
ke = kr (ke max—Keb) < few ke max (2.33)
where, kis the evaporation reduction coefficientxis the maximum value ofck
following a wetting event, and. is the fraction of soil that receives sunlight, and water during
the wetting event [Allen et al., 1995]. An in-depth discussion of the application of D&BEA
SWB can be found in Appendix 3.
The RS derived Efand knirare assimilated into the FAO 56 SWB by updating the k

[Neale et al., 2012]. In order to update the SVIAD, is used to calculate the updated stress

coefficient, k:

ETy

ET,
ke = ref (2.34)
Kebrf
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The updated dis used to estimate the actual S\, mm) by using the linear
relationship between the keadily available water (RAW, mm) and total available water (TAW,
mm) as shown in Figure 2.11. If the Hybrid model derived k, D < RAW. If ks< 1, then the
Di is a function of the linear relationship between RAW=K) and TAW (k= 0) [Allen et al.,
1995]. In the terms of a PA irrigation system, if the®RAW, irrigation is not required. If D>

RAW, irrigation is required [Allen et al., 1995].

0.80

0.60

0.40

0.20

0.00

Figure 2.12. Relationship betwees RAW and TAW [Allen et al., 1995]

The actual SWE6; mm)is updated using the;®rc and R:

Di =(0rc -4)xR; (2.35)
D.

0 =0 —— 2.36

. R (2.36)

The kot is then used to adjust the, kn the SWB between RS overpasses. By adjusting
keo based on the actual crop characteristicsydEWill more accurately eshateET, [Neale et al.,
2012]. Figure 2.12 depicts the use of thex kvhen compared tock Under ideal conditions the

keore Will closely approximate &. Crops that are under non-standard conditions will generally
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fall below the kp[Neale et al., 2012]. The final spatial resolution of the Hybrid SWD were

determined utilizing the TIR imagery’s spatial resolution (11.76 cm).

lempest UAS K ebrl vs FAQ-56 K_ch vs Table K _¢h

7 : ® FA0S6k cb

0.5 k_eb Table

0.3 / == Temmpesl TTAS k_chrl
e ——

0.1

-4,

0.1 g gl ) Gl Sl 14003 120

Growih Day

ch!k _chrl

k

Figure 2.13. Full irrigation treatmenépk vs. ko vS. the tabulatedckover the growing season at
ARDEC field 1070 during the 2015 RS campaign.

2.4.4. Comparison

Two comparisons were conducted using the data collected during the study. The first
comparison evaluated the raw Tempest multispectral and thermal invegeng the ground-
based remote sensing data. The purpose of the first comparison was to evalipi@ngual
suitability of the Tempest RS derived imagery and provide recommendations for future
applications of the system. The second comparison evaluated the Tempest dAS/BSET
and SWD against the E&nd SWD calculated by thdP and the FAO 56 SWB. The purpose of
the second comparison was to evaluate the most appropriate RS derivadtkdd for use with
the hybrid model, and evaluate the accuracy of the Tempest RS derived SWD. The difjective
the comparisons were to provide recommendationthe application of the Tempest UAS RS
data inPA irrigation management systems. All of the comparisons were conducted for each

individual overpass and over campaign Rl overpasses) time frame.

The optical multispectral (red, and green), NIR and TIR imagery collectadvet

Tempest and USU RS platform were directly compared to the multispectral (N]JRreen)
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and thermal (TIR) data collected on the ground over the spatially distributed crop and soll
locations.

The four Tempest RS derived Edlgorithms (TSEB, SAT, CWSI, §) and the resulting
RS adjusted SWB Ewere evaluated with the Ederived from the NP and the FAO 56 SWB.
The Tempest derived SWD, using the most accurate of the RS deriyeadsTevaluated with

the SWD measured using the NP andRA©-56 SWB estimates.

The evaluations were conducted using the Mean Bias Error (MBE), the Root Mean
Square Error (RMSE), Student T-Test (t) and the Nash-Sutcliffe Model Efficiency Geweffi

(NSCE) (Nash et al., 1970). The MBE, RMSE, Student T-Test and NSCE were calcslated a

follows:
N
MBE=N"1YR-q (2.36)
i=
RMSE:{leN:(Pi—oI) } (2.37)
_X-u
t= = (2.38)
JIN
2
E =1—Z(Oi—_':‘_)2 (2.39)
2.0 -0)

where N is the number of observations (RS), P iRBenodel prediction, O is the

ground observationO is observed meanX is tR& mean, p is the ground-measured mean
and s is the standard deviation of the RS data. The MBE describes the modeldisysizsna
error. A positive MBE (MBE>0) suggest a model overestimation, while a nedaBize

(MBE<0) suggests a model underestimation. The RMSE is the sample standardrdevithie
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differences (residuals) between the observed and the predicated. The RSME is a measure of
accuracy when comparing multiple models. The NSCE is used to quantitativelypedkeri
predictive accuracy of the models compared to the observed data. A positive E (E>0) suggest
that the predicted value more closely approximates the observed data thenrtlod tihea
observed data. The Student T-Test is an assessment of the statistifiteasies of the
variance of the sample means (RS data) and the population means (groundiuaie-Test
useda significance leve{a) of 0.05 to denote statistical significance of the test. The study used
a two tailed T-Test that will test whether or not the mean value of the samplis GSistically
the same as the mean value of the control (MSR5 or NP). The analysis was conductibe using
following equation for a two-tailed paired T-Test:
2xP[T<t]>« (2.40)
There is significant statistical evidence that the means argtistity the same if the

probability is greater than the establisloed
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CHAPTER 3: RESULTS AND ANALYSIS

The results of the summer 2015 ARDEC field 1070 Tempest UAS remote sensing
campaign and the error statistics are discussed in this chapter. The evaluatidhs ofiethods
are presented for the individual RS overpasses and the 2015 RS campaign. The accuracy, of the
raw RS data, are evaluated using the MBE, RMSE and NSCE. The most appropriate RS ET
model is identified for the use of the ET method with the CSU Tempest RS platf@mTde
Hybrid model derived SWDs were evaluated for ARDEC field 108@ummary of the data and

statistics are found in Appendix 4.

3.1 Raw data results and analysis

The 2015 RS campaign was a preliminary study to evaluate the feasibility othssing
CSU Tempest UAS to collect RS data for use in estimating thesI SWD of agricultural
fields. In order to utilize the Tempest UAS derived RS data in the estimationtf ilaad
SWD, the quality of the ralRS data (NIR, red, green and TIR) were evaluated with the ARDEC
field 1070 ground-based MSR5 data multispectral and thermal data. The raw RS data used i
this study were only calibrated using the individual sessaternal factory calibrations. During
the 2015 campaign, the multispectral sensor (TETRACAM ADC SNAP) malfunctienusthg
errors to the internal calibration and magnitude of recorded data. The malfunctioning of the
multispectral sensorascaused by two coding errors. The first malfunction of the Tetracam
resulted from an error in the code responsible for the writing of the data on the storage media.
The second malfunction was caused by a coding error that recorded the maximum spectral
reflectance instead of the average for a pixel. During the 22JUL15 flight, the muiaspect

sensor began to intermittently malfunction causing the calibration and the dathngeoocess
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to produce largely inflated and inconsistent data. The malfunction was responsibéefotht
spectral reflectance MBE (4.14%) and RMSE (6.98%) of the 22JUL15 overpass. During the two
subsequent flights (30JUL15 and 13AUG15) the malfunction only affected the internal
calibration of the multispectral sensor. While the ratios of the bands remainedhsaughout

the image, the reported values were of a much greater magnitude than expected (UAS NIR =
77.8 % vs MSR5 NIR= 38.84%). On 19AUG15, the multispectral sensor was inoperable due to
the malfunction, and required reprograming by the sensor manufacturer. The final ovetpass wit
the Tempest provided adequate accuracy, but had higher levels of error due to the need to update
the internal calibration of the sensor. Due to the malfunction with the multspsensor, the

NIR, red and green imagery for the RS overpasses on 30JUL15 and 13AUG15 were scaled to
adjust the magnitude of the data, as depicted in Figure 3.1. The corrections for both esverpass

are described in Table 3.1.

13AUGI1S - NIR Data Scaling
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Figure 3.1. Scaling of the Tempest UAS RS NIR data due to the malfunction of the mulilspec
sensor.
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Table 3.1. Scalar value used to correct the Tempest UAS RS NIR, red and gresy forag
30JULY and 13AUG15.

Date NIR Red Green
30-Jul-15] 0.7572| 0.3975] 0.252f
13-Aug-14 0.5017| 0.261| 0.173f

3.1.1. Thermal Infrared (TIR)

During the 2015 RS campaign, the CSU Tempest RS derived thermal imagery had a
MBE, RMSE, and NSCE of -1.3%&, 5.68°C and 0.66, respectively, when compared to the
ground-based MSR5 data. As the study progressed throughout the campaign, the accuracy of the
thermal imagery increased until the final flight on 10SEP15, with a MBE, RMSE aG& N6
1.20°C, 2.40°C and 0.92, respectively. The increased accuracy of the thermal sensor was the
result of refining the collection and operational procedures associated with the sensor throughout
the campaign. The overall analyses of the Tempest RS TIR Tsfc are inconclusivehdulw
number of successful flights and the changing operational procedures throughout the campaign.
With further testing and refinement of the sensor and collection procedures, the accuracy of the
data are expected to increase to an acceptable level. Figure 3.2 demloectimomparison of
the Tempest TIR imagery with the MSR5 TIR data during the 2015 ARDEC field 1070 RS

campaign.
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2015 ARDEC 1070 MSRS Thermal vs. Tempest UAS Thermal
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Figure 3.2. 2015 ARDEC 1070 RS Campaign Thermal RS vs MSR5 data comparison.

3.1.2. Multispectral (NIR, red and green)

The NIR, red and green Tempest RS data collected during the 2015 campaign showed a
greater degree of accuracy than the thermal data. Figure 3.3 depicts the RMSEc{&cefler

°C) of the TIR, NIR, red and green Tempest RS imagery during the 2015 ARDEC field 1070 RS

campaign.
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Summer 2015 ARDEC Field 1070 Raw Data RMSE Comparison
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Figure 3.3. RMSE (% reflectance @) of the NIR, red, green and TIR imagery from the 2015
CSU Tempest RS campaign at ARDEC field 1070.

The most accurate band of the Tempest UAS multispectral sensor over thegpangsa
the red band, with a slight overestimation of the red reflectance with a MBE, RMSE dfS
0.81%, 3.51% and 0.91, respectively. Figure 3.4 depicts the strong relationship between
TempesRSred imagery vs MSR5 data. The NIR preformed less accurately, with a RMSE of
5.26%, an overall underestimation with a MBE of -1.17% and NSCE of 0.83. Figure 3.5 depicts
the strong relationship between Tempest NIR imagery vs MSR5 data. Tieclmaste band of
the multispectral sensor was the green band with campaign values of MBE=5.06 %, RMSE=7.31
% and NSCE of 0.51. Since all of the studieg &gorithms mainly rely on the NIR and red
bands, the effects of the errors associated with the green band will be limited. The lone
exception is the TSEB, which utilizes the green band to estimate the sdo ¢l A.3.2.42).

The expected error are low since the NIR is the predominate factor in the equatime. 3Fg
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shows the less favorable agreement of the campaign RS green vs MSR5 data. TallaBd2

3.4 provides summaries of the NIR, red, green and TIR data for the 2015 campaign.

2015 ARDEC 1070 MSES Reflectance vs. UAS Reflectance - RED
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Figure 3.4. 2015 ARDEC 1070 RS Campaign red RS vs MSR5 data comparison.
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Figure 3.5. 2015 ARDEC 1070 RS Campaign NIR RS vs MSR5 data comparison.
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Figure 3.6. 2015 ARDEC 1070 RS Campaign green RS vs MSR5 data comparison
Table 3.2. MBE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data

comparisons

2015 Tempest UAS Raw Data vs MSR5 Data MBE Results

Flight Date MBE
Thermal (C) Green (% Reflection) | Red (% Reflection)| NIR (% Reflection)
Season* -1.36 5.06 0.81 -1.17
22-Jul-15 10.09 3.22 -0.88
30-Jul-1 0.08 0.05 0.14
13-Aug-15 -8.02 0.14 0.04 0.19
10-Sep-15 1.20 3.28 -0.55 -1.51

Data linearly corrected due to egipment malfunction

Uncorrected data

No data due to equipment malfunction
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Table 3.3. RMSE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data

comparisons.

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results

No data due to equipment malfunction

Table 3.4. Student-T Test Summary of the 2015 ARDEC 1070 RS Campaign RS vs M&R5 da

comparisons.

Flight Date RMSE
Thermal (C) | Green (% Reflection) | Red (% Reflection)| NIR (% Reflection)
Season* 5.68 7.31 3.51 5.26
Wl-wﬁ- 10.76 4.03 6.16
30-Jul-1 1.41 1.55 2.80
13-Aug-1§ 9.62 1.64 2.06 5.33
10-Sep-15 2.40 6.06 3.74 5.38
Data linearly corrected due to egipment malfunctior
Uncorrected data

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results

No data due to equipment malfunction

The study focused primarily on the NIR and red bands of the Tempest RS imagery due to

Flight Date T Test
Thermal Green Red NIR
Season* 0.12 0.00 0.05 0.06
22-Jul-15 0.10 0.58 0.82
13-Aug-15 0.00 0.79 0.95 0.93
10-Sep-15 0.45 0.29 0.98 0.71
Data linearly corrected due to egipment malfunctior
Uncorrected data

their importance in the calculation of the RS VIs (OSAVI and NDVI) requirederegimation

of the EL and SWD. The accuracy to the NIR and red bands are shown by the campaign MBE
and RMSE of the OSAVI and NDVI, with values of MBE =-0.024 and RMSE=0.21. The close

agreement between the Tempest and the MSR5 suggests that the values of tieersitRbands

of the multispectral sensor are adequate for use in the R&NEBWD models.

The statistical analysis of the raw Tempest UAS data, wsatij05, suggest that there is

significant statistical evidence that the mean campaign refleefar the TIR (0.12), Re@.05)
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and NIR (0.06) are the same as the mean reflectance from the MSR5. The green (0.00) for the
campaign does not have statistical significant evidence that the mesmarate is the same as

the MSR5 for the entire campaign. All of the band showed statistical significanhewitteat

the mean reflectance is the same as the MSR5 reflectance for the individual RS eserpass
discrepancy between the campaign and RS overpasses stems from the low sarfipla e
summer of 2015 RS campaign. In order to increase the power and accuracy of the T-test,
additional ground data collection must be conducted to increase the sample ls&zmdifvidual

and campaign overpasses. Even with the low sample size, the raw Tempestd&Sutataly

describes the actual conditions on the ground.

The NSCE analysis of the raw Tempest RS data shows the wellness of fit between the
Tempest raw data and data collected with the MSR5 multispectral sensor. All ofdsehiaa
seasonal NSCE values greater than 0, which shows that the variance between the ground and
Tempest data is less than the variance between the observed and mean ground nméssureme
This suggests that using the spatially distributed RS data is more accuraterthaheusiean
ground-based remote sensing data. Table 3.5 and Figure 3.7. describe the NSCE results for the

raw RS data.
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Table 3.5. NSCE analysis of the Raw Tempest UAS RS data.

Raw Data Nash-Sutcliffe Coefficient of Efficiency
Thermal Green RED NIR
Season 0.66 0.51 0.91 0.83
22-Jul-15 N/A -215.82 -12.40 -1.14
30-Jul-15 N/A -0.58 -0.18 0.35
13-Aug-15 -9.16 -0.53 -0.17 0.33
10-Sep-15 0.92 0.70 0.94 0.94
Raw Data Nash-Sutcliffe Coefficient of Efficiency
1.00 m N N N
-1.00 — Thermal Green RED NIR
-3.00
-5.00
-7.00
-9.00
-11.00
-13.00
-15.00

Season®m 22-Jul-15 = 30-Jul-15 = 13-Aug-15 ®m10-Sep-15
Figure 3.7. Raw data NSCE comparison for the 2015 Tempest RS campaign.

Errors, not associatedith the individual sensor’s operational capabilities, were induced
into the UAS RS and ground RS systems from multiple sources including variation in data
collection procedures on the ground and the Tempest UAS, environmental conditions (changing
conditions or non-ideal conditions during the flights) and the uncertainty of the exawiraxfat
the footprint/field of view of the ground data. The UAS data were collected over a period of five
minutes (essentially a single point in time), while the ground data were colatethirty to
forty-five minutes. The longer sample time for the ground-based RS were a result of baving t

move the equipment throughout the test location, during which time the meteorological
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conditions were continually changing. These introduced errors contributed to véetivaen

the ground and UAS data. However, when working with vegetation indices a good deal of the
environmental conditions are normalized. An additional source of error most probably was
caused by the data processing procedures in ERDAS Imagine. The raw Tempest data were not
geometrically or optically corrected prior to the analysis. The error associatetienvitick of
geometric and optical correction are unknown and will be addressed in future stutkestrors
associated with the lack of correction are evident in Figure 3.8. By addressargiisanduced

by the data collection and processing procedures, the accuracy of the Tempest UABRS pla

will increase when compared to the ground collected data.

30JUL15 - ARDEC 1070 Multispectral Imagery

105 0 10 Meters
= s

Figure 3.8. Depiction of the raw data processing errors of the multispectral imagery.
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3.2. Daily ETa Results and analysis

All five RSmethods used to calculate daily Aifilized the raw data collected with the
Tempest UAS (supplemented with the USU data if required), meteorological datdn&om
ARDEC CoAgMet weather station and ERDAS Imagine GIS software. The RSdid&ilg
ETawere compared to the daily EValues estimated using the weekllp data and two FAO-56
SWB models. The FAO-56 SWBs were calculated using varying soil root zonés degtcrop
coefficients. The two SWBs were calculated using root zone depths of 1.5 mand 1 m. The
analysis of the multiple root zone depths was required due to insufficient irrigation throughout
the growing season causing the root zone to reach non-standard(Bepthsn). The summary
of the results of the 2015 Tempest UAS RE campaign are described in Table. 3.6. The RS,
FAO-56 and NP derived daily EValues for the ARDEC 1070 NP locations are provided in

Appendix 4.
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Table 3.6. Summary of the statistics from the daily B&rived from the 2015 Tempest UAS RS
campaign.

Method Statistic Season| 22-Jul-1% 30-Jul-1p 13-Aug-J5 10-Sep|
MBE (mm/d)] 0.29 N/A 0.23 0.06 0.58
TSEB RMSE (mm/d) 0.89 N/A 1.10 0.54 0.93
2*P[T<=t] 0.00 N/A 0.15 0.47 0.00
MBE (mm/d)] 0.49 N/A -0.89 0.03 0.96
SAT RMSE (mm/d) 1.21 N/A 1.56 0.95 1.47
2*P[T<=t] 0.00 N/A 0.00 0.83 0.00
MBE (mmvd)] 0.79 0.14 1.27 0.49 1.28
NDVI RMSE (mm/d) 1.43 0.91 1.83 1.00 1.74
2*P[T<=t] 0.00 0.29 0.00 0.00 0.00
MBE (mnvd)| -0.94 -1.17 -0.96 -1.27 -0.36
FAO-56 SWB Rz=1 m| RMSE (mm/d 1.22 1.46 1.23 1.36 0.82
2*P[T<=t] 0.00 0.39 0.00 0.14 0.83
MBE (mmvd)| 1.44 -0.73 0.52 1.97 1.20
FAO-56 SWB Rz=1.5 n| RMSE (mm/d 1.64 1.11 0.86 2.17 1.49
2*P[T<=t] 0.00 0.39 0.00 0.00 0.00
MBE (mmvd)] 1.58 N/A 0.52 -0.55 0.01
CWsSI RMSE (mnv/d 1.86 N/A 0.86 0.74 0.75
2*P[T<=t] 0.00 N/A 0.00 0.01 0.00
MBE (mm/d)|] 1.88 1.08 2.65 1.25 1.92
FC RMSE (mm/d) 2.30 1.44 2.96 1.85 2.23
2*P[T<=] 0.00 0.00 0.00 0.00 0.00

The most accurate Tempest RS derived dailyfrom the study wakom the TSEB
method. The TSEB had promising agreement with the NP derivgdMifl a campaign slight
overestimation MBE of 0.29 mm/day, RMSE of 0.89 mm/day and NSCE of 0.67. The TSEB
derived ET were selected for further evaluation with the Hybrid SWD model. The TSEB
performed better, with an average reduction of MBE of 0.65 mm/day and RMSE of 0.33
mm/day, than the most accurate FAO 56 SWB method usi#R(MBE of -0.94 mm/day
and RMSE of 1.22 mm/day) at estimating the daily.EFigure 3.9 depicts the relationship
between the TSEB and SWB deriveda.hd the NP derived ETuring the 2015 ARDEC field

1070 RS campaign. The FAO-56 SWB consistently underestimated ilvehitd TSEB
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overestimated the lower valudsTa < 3.20 mm/d) of ETand closely approximates EValues

over 3.20 mm/d.

2015 TSEE Dailv ETa vs NP Daily ETa

x TSEB
+t FAO-36 SWB Rz=1m

RS Derved Ela (mmid)

5
[
[ )
Ll
b
Lin
o

NP Derived ETa (mum/d)

Figure 3.9. Comparison of the TSEB and RS Adjusted SWB and FAO 56 SWB derived daily
ETavs the NP derived daily &T

Of the five RS daily ETmodels tested, the TSEB and SAT models (both SEB based)
performed better than or comparable to the most accurate FAO 56 SWB estimations with
average decrease of RMSE of 0.33 mm/day and 0.01 mm/d, respectively, when compared with
the FAO-56 SWB RMSE. Figure 3.10 depicts the comparison of the methods RMSE of the RS
and SWB derived daily Eto the NP derived daily ETshowing the level of performance of the

various methods.
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Daily ET a RMSE Comparison
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Figure 3.10. Comparison of the daily BHMSE (mm/d) at ARDEC 1070 during the 2015
growing.

The NSCE analysis of the most accuiala models are described in Table 3.7 and
Figure 3.11. The NSCE of the TSEB (0.67) suggest that there is significant agreement between
the method and the ground observation over the RS campaign and for the individual RS
overpasses. The ENSCEs increased throughout the season, it is unknown whether the
increase was caused by the capabilities of the Tempest RS data or were a restéfioethent

of the collection procedures throughout the RS campaign.
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Table 3.7. NSCE analysis of the RS derived Eddels (TSEB and SAT).

ETa Nash-Sutcliffe Coefficient of Efficiency
TSEB SAT
Season 0.67 0.19
30-Jul-15 0.35 0.06
13-Aug-15 0.66 -0.04
10-Sep-15 0.73 0.43

ETa Nash-Suicliffe Coefficient of Efficiency

0.2
0.0

TSEB SAT
-0.2

Season 30-Jul-15 13-Aug-15 10-Sep-15

Figure 3.11. NSCE comparison of the TSEB and SAT Ronifthods utilizing the Tempest
UAS remote sensing data.

The available data suggests thatR&models, the TSEB in particular, have the ability
to more accurately estimate the spatially distributed dailytBan using the FAO-56 SWB
method alone. For application in a PA irrigation management system, the splisiaibuted
ETadata are more beneficial than the field-average (point) FAO-56 SWRIE# to the
inherent variability of the Edthroughout a field. The spatial variability of ARDEC field 1070
of the FAO-56 SWB and the TSEB derived£3 shown in Figure 3.12. Figure 3.12 is the
spatially distributed variability of the FAO-56 SWB and RS derived [R5 ET.— SWB ETy).
The capability of modeling the spatiairiability of a field’s crop water requirement is critical to

accurately developing an efficient PA irrigation management system. Figureighlighis the
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advantage of at least occasionally estimating\ith RS techniques. Three FAO-56 SWB, one

for each irrigation treatment, were utilized to estimate thg &Td a large spatial variability is

present in the treatments.

N

A

Legend

SWB - TSEB VARIABILITY

mm/d
gy Hich-0.50

B ) ow:-328

Figure 3.12. Spatial variability of the difference between the TSEB and FAO-56 SWB E
estimates.
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The CWSI and the:{reflectance) methods germed worse than the best FAO-56 SWB
during the 2015 campaign. Theréflectance method performed the worst of the RS models
tested with a campaign MBE of 1.88 mm/day and RMSE of 2.30 mm/day when compared to the
NP derived daily EZ The increased error associated with theefflectance) based Eodel
were associated with the spatial variability of the meteorological, @hygietted soil) and
biophysical conditions of the test location, as well soil background interferencéengefuolin
treatments depicting low LAl and.f The £ method only accounts for the transpiration based on
the amount of vegetative cover. The drought treatments showed the largest amoonsofce
the method bases the Edstimation on the amount qfdnd not the level of stress experienced
by the crop. Even though the drought treatments were experiencing sié3sala higher
level than the other treatment, thef the treatments remained relatively the same. To increase
the accuracy of the reflectance-based models, site-specific calibriduabriake into account the
local meteorological and biophysical properties of the location are required. A possiitie s
of the increased error associated with using the CWSI method are the evolution dktti®nol
methods and procedures associated with the thermal sensor throughout the 2015 RS campaign.
As shown in Table 3.2, the RMSE of the thermal imagery reduced froffCat62.40C from
the 13AUG15 flight to the 10SEP15 flight. The reduction in the thermal RMSE caused the
RMSE of the CWSI daily EJto go from 2.17 mm/day on 13AUG15 to 1.49 mm/day on
10SEP15, which was similar to the SAT overpass RMSE of 1.47 mm/day. The accuracy of the
CWSI will continue to increase as the procedures for the thermal sensor arearéiieds soil
background are seen by the sensors. The CWSI method was developed for use with data
collected after solar noon in order to allow the crop to develop the increased canopy temperat

associated with higher levels of stress. Since the RS data were collected befare@ulthe
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canopy was not allowed to heat to show the true level of stress, resulting in aseddEda

The error with the thermal sensor also affected the RMSE of the TSEB and SAT moddls as we
The overall increase of error of the SAT and TSEB models were less than with thelG&\SI

the integration of the thermal and multispectral data. Additionally, the CWSk&re

estimated utilizing i in lieu of T¢ in order to provide a model based on the TIR imagery alone.
This introduced error to the CWSI derived £ilie to the variation between the canopy and the
surface radiometric temperatures. In order to increase the accuracy of the CWl, rinet T

should be calculated as described in the TSEB method.

During the summer 2015 ARDEC field 1070 RS campaign, all of the methods had
significant statistical evidence that their mean Hiffered from the mean NP derived ET
During individual RS overpasses, the NDVI (22JUL15: 0.29), TSEB (30JUL15: 0.15, and
13AUG15: 0.47) and SAT (13AUG15: 0.88)thods had 2*P[T<t]>¢=0.05, showing
statistically significant evidence that their mearn, &€re the same as the mean NP derived ET
A source of error while conducting the Student T-test can be attributed to the mddnashica
procedural deviations between the RS overpasses. Further testing is required tdlaamalyze

statistical significance of the RS Efethods.

Due to the low number of RS overpasses and variations in the RS data used for the RS
derived comparisons, and the variation of the individual RS overpasses, the analysis of the RS
models are inconclusive. Additional data collection overpasses are requindigl analyze the

capability of the RS models.

The final product of the RS Emodel is a spatially distributed daily Efihap for the use
with a PA irrigation system. Figure 3.13 is the spatially distributed dailynt&p for ARDEC

field 1070 on 10SEP15. The daily Efap ranges from light green (6.61 mm/d) to red (O
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mm/d). As shown by the map, the full and limited irrigation treatments have a tegbkof
ETathan the drought treatments. The daily. B¥ap is used to calculate the SWD in a PA

irrigation management system.
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Figure 3.13. Spatially distributed daily Efap for ARDEC field 1070 on 10SEP15.
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3.3. Mapping Soil Water Content using the Soil Water Balance

The RS derived soil water balances were calculated using the TSEB ed&imaand
the hybrid soil water balance method. The spatially distributed SWD, cattuksitey the
hybrid soil water balance method, were compared to the BAB56 SWD and the weekMP
derived SWD. All values of SWD are reported in mm tm allow comparison over multiple,R
depths. The comparison of the SWDs occurred for the flights conducted on 30JUL15, 13AUG15
and 10SEP15 in order to ensure that the crop was experiencing stress conditirenik the
availability of the required data. ®was a requirement to estimate the SYIZL) using the
hybrid method due to the relationship betweearid D, illustrated in Figure 2.9. The summary
of the statistics for comparison of the Hybrid, FAO-56 (UAS adjufled, m and R=1.5 m)
and NP derived SWD for ARDEC field 1070 as a whole, over the campaign and individual RS
overpasses, are described in Table 3.8 and 3.9. Appendix 4 provides the SWD (NP, Hybrid and

FAO-56 SWB) by NP access tube location for the individual overpasses.
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Table 3.8. Summary of the RS flight day soil water deficit statistics for the ARi2HD1070 summer 2015 RS campaign.

ARDEC 1070 RS Overpass Soil Water Deficit Summary

Date MBE (mm) RMSE (mm) T-Test

30-Juk-15 6.32 19.74 0.03

Hybrid 13-Aug-15 -9.92 21.94 0.00
10-Sep-15 -3.76 18.78 0.25

30-Jul-15 -29.55 59.09 0.00

Rz=1 m FAO-56 31-Jul-15 -14.16 23.83 0.00
1-Aug-15 -25.16 31.90 0.00

30-Jul-15 46.69 53.16 0.00

Rz= 1.5 m FAO-56 13-Aug-15 39.50 48.20 0.00
10-Sep-15 46.57 54.94 0.00

Table 3.9. Summary of the RS Campaign soil water deficit statistics for the ARPHECLG70 summer 2015 RS campaign.

ARDEC 1070 RS Campaign Soil Water Deficit Summary
MBE (mm/m) RMSE (mm/m) T-Test
Hybrid -2.45 20.20 0.24 Campaign
Rz=1 m FAO-56 -22.96 33.59 0.00 Campaign
Rz= 1.5 m FAO-56 29.68 42.60 0.00 Campaign
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The hybrid method produced the most accurate estimation of the spatially distributed
SWD (mm/m) of all the methods with a MBE of -3.55 mm/m, a RMSE of 21.60 mm/m and
NSCE of 0.86. The hybrid data analysis did not include the 10SEP15 NP from the drought
treatments 409, 410 or 411 due to abnormally$WD (25 mm/m decrease) of those locations.
Utilizing the 5TE SWS in the 410 treatment, the actual SWD are consistent witybtin dnd
SWB estimates. The low NP SWD calculations were attributed to the dry oosdfithe soil.
The soil experienced cracking and established preferential water infiltrattetpahe NP
access tubes, resulting in lower SWD estimation. In future research, NH as WEE SWS
should be used to calculate the actual SWD. The hybrid method RMSE was 13.40 mm/m less
than the most accurate FAO-56 SWB+£Rm) RMSE with an average underestimation (MBE
of -23.13 mm/m) of the SWD, RMSE of 33.68 mmdml NSCE of 0.37. The comparisons of
the RMSE for all of the methods are shown in Figure 3.14. Figure 3.15 shows the direct

comparison of the hybrid SWD to all forty-eight NP locations for ARDEC field 1070.
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Summer 2015 ARDEC Field 1070 Daily Soil Water Deficit RMSE
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Figure 3.14. Seasonal and Daily comparison of the RMSE (mm/m) of the Hybrid and FAO-56
SWB SWDs.
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Figure 3.15. Seasonal comparison of the Hybrid soil water deficits.

Figure 3.14 shows that the hybrid method is the most accurate methods over the 2015
campaign, but it also suggests that the accuracy of the FAO-56 SWB method depends on the
assumed Rof the model. According to the FAO-56, thef® field corn is between 1.0 and 1.7

m. Under conditions of no water stress=®, the R remains around 1.0 m. While, under
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conditions of water stregk<<1), the R increases as the crop attempts to access the required
water at deeper layers if available. During the summer of 2015, there were iastffitgation

in all irrigation treatments throughout the growing season. As a result of thendadtwater
stress, the Rof all the treatments were larger than anticipated andtbétRe plots spatially
varied with treatment and time. The fact that the MBEs of the FAO-56 SWBs fBztiian

and Rz=1.5m go from an average underestimation (MBE=-23.13 mm/m) to an average
overestimation (MBE=29.68) suggest that the actual€te between the 1m and 1.5m that were
tested. The relationship between the treatments and the spatially and tBnasirdduted R is

shown in Figure 3.16.

Summer 2015 ARDEC Field 1070 Daily Soil Water Deficit RMSE

Comparison

Hvbrid Rz=1m Rz=15m Hvbrid Rz=1m Rz=15m Hvbrid Rz=1m Rz=135m
Full Limitied Drought
M Season M30-Jul ®m13-Aug ®10-Sep
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Figure 3.16. Seasonal and Daily comparison of the RMSE (mm/m) of the Hybrid and FAO-56
SWB soil water deficits for the three irrigation treatments andeRths.
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Table 3.10. Hybrid and FAO-56 SWB NSCE analysis.

SWD Nash-Sutcliffe Coefficient of Efficiency
. FAO Hybrid
FAO | Hybrid — —
ybn Full |Limited [Drought | Full [Limited Drought
Season 0.37 0.86 | 0.90338 0.34431 0.82626 0.94026 0.8531 0.9
30-Jul-15 | 0.6803] 0.83338 0.71198 0.712p8 0.45]05 0.66606 0.9p648 O.¢
13-Aug-15 [0.91126| 0.9866p 0.92344 -0.4284 0.81925 0.95404 -0.1521 0.8
10-Sep-15 | -1.5249] 0.8930]1 0.77299 -11.614 0.81799 0.91528 -0.143 0.§
SWD Nash-Sutcliffe Coefficient of Efficiency
1
0
Full  Limited Drought Full Limited Drought
1 FAQ Hybrid FAQ Hybrid
-2
-3
-4
Season ®m30-Jul-15 ®13-Aug-15 =10-Sep-15

Figure 3.17. NSCE comparison of the irrigation treatment Hybrid and FAO-56 SWD model for
the RS campaign and RS overpasses.

The NSCE analysis of the Hybrid and the FAO-56 SWD suggests that the Hybrid method
is superior at estimating the spatially distributed SWD. The accuracy of the Hydihddris
the greatest in conditions of larger SWD and crop water stress. The increased acwlgacy

higher SWD levels is depicted in Figure 3.17.

There is evidence to suggest that there is a statistical significance (a=0.05) that both the
hybrid (2*P[T<t]=0.44) and the UAS adjusted FAO-56 SWBP[T<t]=0.23) have a seasonal
mean soil water deficit that are the same as the seasonal mean of thevBidP SMD. With the

low MBE, RMSE, NSCE approaching 1 and statistical significant evidencenthaéasonal
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meanare the same, the hybrid method, using the TSEB derived€a valid method of

estimating the spatially distributed SWD.

The assimilation of the RS derived SWD into the FAO-56 SWB increased the@ccura
of theFAO-56 SWB by an average reduction of RMSE by 7.37 mm/m over the growing season.
The increased accuracy RS adguk$WB resulted in an increase of required irrigation by
approximately 36%. The increased water requirement were caused by the insufficidrdrirriga
as discussed previously. Figure 3.18 shows the comparison of the UAS adjusted SWB and the
FAO-56 SWB derived SWD. The figure shows the increased accuracy of the UAS adjusted
SWB. The accuracy is affected by the underestimated hybrid SWD on 13AUG15. Possible
sources of error for the UAS adjusted and FAO-56 SWB are inaccurate effective irrigation and
precipitation amounts, as well as in accuratel€ths as discussed previously. Inaccurate
effective irrigation and precipitation would account for the underestimation of SWD from
13AUG15 until 10SEP15. During this time frame, there was an estimated 81.28 mm of effective
irrigation and 11.43 mm of effective precipitation. The effective irrigation is asstionbe an
accurate representation when using an efficiency of 90% using a lateral move irrigstiom. sy
The error is more than likely associated with the assumed effective mtoipat ARDEC
1070. The low averagarmount of precipitation (0.97 mm/event) from 30JUL15 to 10SEP15,
along with high wind speeds (average daytime wind speed, u=2.31 m/s) and other meteoroligcal
conditions suggest that the effective precipitiaton at ARDEC 1070, for events less than 3 mm
was 0 mm This is shown by the “P,=0" in Figure 3.18. Additional research on the effects of the

small wetting events on the estimation of the SWD is required.
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Figure 3.18. Seasonal comparison of the SWD (mm/m) of the UAS adjusted SWB and FAO-56
SWB SWDs for the full irrigation treatments.

The adjusted SWB is a FAO-56 SWB adjusted with the hybrid derived SWD when RS
data are available, and thgdare used to adjust the. KOn average, the adjusteekvas
17.52% lower than the FAO-56 deriveg.kThe relationship between thg knd the adjustck
are shown in Figure 3.19. Figure 3.18 depicts the FAO-56 SWB and the Hybrid models
estimation of k, the when compared to the NP data. As the number of RS overpasses increase,
the extrapolation of thecls will become more accurate due to the shorter intervals of the

calculations. Figure 3.20 shows the spatially distributegdn 10SEP15.
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Figure 3.19. Comparison of the full irrigation treatment FAO-&@ikd the hybrid & during
the summer 2015 ARDEC 1070 RS campaign.
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Figure 3.20. Spatially distributedd¢ map for ARDEC field 1070 on 10SEP15.
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As the number of RS overpasses assimilated increases, the accuracy of the UA& adjuste
FAO-56 SWB will continue to increase. This allows for greater control of irrigation schgdul
in a precision agriculture irrigation program. The end state of the study was the production of a
spatially distributed SWD map for use in a PA irrigation program. Figure 3.21 is the ARDEC
field 1070 10SEP2015 irrigation map for use in a PA irrigation system. The blocks represent the
control zones of a Zone-Controlled SS-VRI System. The colors ranging from blue (85 mm) to
red (155 mm) represent the required application amount to return the soil profile to thelthres
where k=1 (6: mm/m). In a PA irrigation system, the acceptable stress level of a crop is the
driving factor for irrigation. Using the Hybrid method and UAS adjusted FAO-56 SWB, an
irrigation planner can accurately track the actual spatially distrilutgdwater requirements,
increasing the efficiency of the irrigation system. The 10SEPABDEC 1070 SWD inset of

Figure 3.21shows the spatially distributed SWD from the soils field capacity (0rc).
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Figure 3.21. 10SEP15 ARDEC field 1070 irrigation requirement map based on the Hybrid SWB
Method.
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CHAPTER 4: CONCLUSION

Data from the summer 2015 CSU Tempest RS campaign at the CSU ARDEC field 1070
were presented to evaluate the performance of the CSU Tempest UAS RS platformt® ability
accurately estimate the spatially distributed spectral reflectance (MIRndegreen),
radiometric surface temperatui®s), daily evapotranspiration (Efand theroot zone SWD.

The primary evaluation of the Tempest RS data were divided into three sectiong.siThe fi

section compared the raw RS derived thermal and optical imagery against gaseadd-b
measurements using the MRS5 multispectral sensor. The second section compared four method
of RS derived ET(TSEB, SAT, CWSI andd:) to NP and FAO-56 SWB derived ETThe

final section evaluated the hybrid method for estimating root zone SWD utilizingStEB T

derived ET& against the NP and FAO-56 SWB derived SWD. The results and analysis from the

study are summarized in accordance with the objectives listed in the intooducti

4.1. Results and Analysis Overview

1. Raw data analysis: The raw thermal, NIR and optical imagery collected deri2glth
CSU Tempest RS campaign agreed well with the data collected usingtmel-dgpased
multispectral sensor. The RS TIR data had a MBE of “@5RMSE of 5.68C and
NCSE of 0.66 during the campaign due to variations in the operations procedures
associated with the thermal sensor. During the last flight of the 2015 campaign, 10SEP15,
the TIR RMSE and NSCE were reduced t@.4nd 0.92, respectively. The RS derived
multispectral imagery (NIR, red, and green), correlated with the ground-based
multispectral sensor with RMSE of 5.26%, 3.51% and 7.31%, respectively. The red and

NIR RS data strongly agreed with the ground based data with season NSCE of 0.91 and
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0.83, respectively. Errors associated with the raw data may be correlated wotl the |
number of ground-based samples, mechanical and procedural malfunctions throughout
the campaign, as well as changing and/or non-ideal meteorological and biophysical
conditions during the data collection. The accuracy of the raw data will continue to
improve as the number overpasses increases and the procedural process are further

refined.

. RS ET model evaluation: Of the four RS derived EEtimation models evaluated during
the study, the TSEB showed the best agreement with the NP deriyeditila MBE of
0.29 mm/d, RMSE of 0.89 mm/d and NSCE of 0.67 over the 2015 campaign period
considered. The TSEB and SAT (MBE of 0.49 mmRMSE of 1.21 mm/d and NSCE
of 0.19) methods performed better at estimating the dailttah the FAO-56 SWB
method (MBE of 0.91 mm/d, RMSE of 1.22 mm/d and NSCE of)0.Zhe remote
sensing adjusted SWB performed better than the FAO-56 SWB with a MBE of 0.77
mm/d, RMSE of 1.20 mm/d and NSCE of 0.51; showing that even without daily RS
overpass the assimilation of RS data intg EStimates has the capability of increasing
the accuracy of the FAO-56 SWB for use in a PA irrigation system. Errors may be
attributed to non-ideal meteorological (i.e., wet soil surface from morning dew), and
biophysical (root zone depth, plants that are not actively E€teg,variations at the test

location, as well as the errors associated with the raw RS data.

. SWD estimation: Utilizing the TSEB derived £nd the Hybrid SWD model produced
promising agreement with the NP derived SWD estimates. The hybrid method had a
MBE of -2.45 mm/m, RMSE of 20.20 mm/m and NSCE = 0.86 throughout the campaign

with a correlation using the T-Test with a probability of Oa2¢n using a=0.05. The RS
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adjusted SWB also had strong agreement with the NP with a RMSE of 26.22 mm/m and
a probability 0.23. The FAO-56 SWB had less agreement with the NP with a MBE of -
22.96 mm/m, RMSE value of 33.59 mm/d and NSCE of 0.37. The errors associated with
the hybrid model SWD are attributed to the errors of the raw RS data and ET
calculations, as well as the physical characteristics of the study siteerrdhe caused by

the physical characteristic are apparent in the drought treatments, where thWéCNP S

levels were artificially high due to the preferential water infiltratiothpassociated with

the dry soil cracking and NP access tub@$ie degree of agreement of the RS derived

ETa shows that utilizing the RS data to adjust the SWB is a viable procedure for use in

PA irrigation management systems.

4. CSU Tempest operations: Throughout the study, the operational and approval procedures
of conducting research with the CSU Tempest have continually evolved. The COA
application process has been implemented by two additional departments at @SU. T
Tempest RS platform is prepared to conduct weekly RS overpasses at the ARDEC and
other alternative test locations during the summer of 2016. Currently, the Tempest has
two approved COAs, with one pending approval, in western and southern Colorado for

the 2016 campaign.

4.2. Recommendations for future research

Future studies should focus on several area of research with the Tempest UAS. The first
area of focus are the operational and collection procedures of the Tempest UAS RS platform.
a preliminary study of the Tempest UAS RS platform, the operational and collectiodyrnexe
were continually refined throughout the campaign as malfunctions occurred with thessystem

Due to the high number of malfunctions during the summer of 2015, there is room for
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improvement of the data collection process. The second area of focus is the datangrotessi
the raw Tempest data. During the study, the raw Tempest data were notlgpgewaietrically

or optically corrected, which caused both spectral and geometric distortions thisitedtto

the overall error of the system. The sensors on the Tempest UAS have factory spectral
calibration, but refined, site specific calibrations are required to incaeaseacy of the system.
Additionally, the geo-rectification of the raw data were accomplished usingahground
reference points (GRP) in the GIS software. Bu#e small size of the ARDEC field 1070 test
location, manual geo-rectification was possible. With the ability of the Tenwpesliect data

over 1,000 acres an hour, the geo-rectification process requires automation. The final area of
focus is the application of the techniques over various crops and environmental conditions.
source of error for the RS derived £Eand SWD are the uncertainty of the crop biophysical
characteristics. Further research should focus on more accurately modeling plant cétarscteri
(R,, crop height, etc.). The study was limited to data collected over a single crop BCARD
1070 due to regulatory restraints, availaZ®W®D information, equipment malfunctions and
weather constraints. One of the strengths of the Tempest is the flexibilitydot ctdta when

the opportunity presents itself. During the 2015 campaign, multiple flights occurred under non-
standard conditions (i.e. not within two hours or solar noon, high winds, soil surface wet from
dew and k=0, etc). Results comparing the data over various crops and environmental
conditions will allow refinement of the methods based on the actual conditions, ingréeesi

effectiveness of the UAS platforms in provide frequent data for use in PA.

102



REFERENCES

Allen, R. G. (1992). “Standard Reference Evapotranspiration Calculations: REFET.” ASCE
Irrigation and Drainage Proceedings, Water Forum. Page 140-145.

Allen, R. G, et al. (2007b). “Satellite-based energy balance for mapping Evapotranspiration with
internalized calibration (METRIC)} Applications.” J. Irrig. Drain. Eng., 133(4), 395406.

Allen, R. G., M. Tasumi, A. Morse, and R. Trezza. 2004. A Lardaaéd energy balance and
evapotranspiration model in western U.S. water rights regulation and planning. Irrig. amd Drai
Sys. 19(34): 251268.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines
for computing crop water requirements-FAO Irrigation and drainage papEA&6Rome, 300,
6541.

Allen, R. G., Tasumi, M., and Trezza, R. (2007a). “Satellite-based energy balance for mapping
evapotranspiration with internalized calibration (METRIG)edel.” J. Irrig. Drain. Eng.,
133(4), 386394.

Anderson, M.C., C.M.U. Neale, F. Li, J.M. Norman, W.P. Kustas, H. Jayanthi, J. Chavez. 2004.
Upscaling ground observations of vegetation water content, canopy height, and leaf area inde
during SMEXO02 using aircraft and Landsat imagery. Remote Sensing of Environment, 92:447-
464.

ASCEEWRI. (2005). “The ASCE standardized reference evapotranspiration equation.” Report
by the American Society of Civil Engineers Task Committee on Standardization of Referenc
Evapotranspiration, R. G. Allen, I. A. Walter, R. L. Elliot, T. A. Howell, D. Itenfisu.

Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holstlag, A.A.M., 1998. A remoiegsens
surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydre{2232198
212.

Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. “A remote sensing surface
energy balance algorithm for land (SEBAL): 1.” Formulation. J. Hydrol. 1998,212-213, 198-
212.

Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal,
T. “A remote sensing surface energy balance algorithm for land (SEBAL): 2.” Validation. J.
Hydrol. 1998,212-213, 213-229.

Black C.A. 1965. “Methods of Soil Analysis: Part I Physical and mineralogical properties”.
American Society of Agronomy, Madison, Wisconsin, USA.

103



Carlson, T. Triangle Models and Misconceptioirgernational Journals of Remote Sensing
Applications; Volume 3; Issue 3; 2013.

Chavez J.L., C.M.U. Neale, L.E. Hipps, J.H. Prueger, and W.P. Kustas. 2005. Comparing
aircraft-based remotely sensed energy balance fluxes with eddy covariance tower ddteatsing
flux source area functions. J. of Hydrometeorology, AMS, 6(6):923-940.

Chéavez, J. L., and C. M. U. Neale. 2003. Validating airborne multispectral remotely seatsed he
fluxes with ground energy balance tower and heat flux source area (footprint) functions. ASAE
CIGR Meeting Paper No. 033128. St. Joseph, Mich.: ASAE.

Chéavez, J. L., C. M. U. Neale, L. E. Hipps, J. H. Prueger, and W. P. Kustas. 2005. Comparing
aircraftbased remotely sensed energy balance fluxes with eddy covariance tower data using heat
flux source area functions. J. Hydromet. 6(6):-928.

Chavez, J. L., P. H. Gowda, T. A. Howell, C. M. U. Neale, and K. S. Copeland. 2009b.
Estimating hourly crop ET using a tvgource energy balance model and multispectral airborne
imagery. Irrig. Sci. 28(1): 791.

Chavez, J. L., P. H. Gowda, T. A. Howell, C. M. U. Neale and K.S. Kopeland. 2009. Estimating
Hourly Crop ET Using a Two-Source Energy Balance Model and Multispectral Airborne
Imagery. Irrigation Science, Vol. 28, No. 1, pp: 79-91.

Chéavez, J. L., T. A. Howell, and K. S. Copeland. 2009a. Evaluating eddy covariance cotton ET
measurements in a semiarid advective environment with large weighing lysinietg. Sci.
28(1): 3550.

Chavez, J.L., C.M.U. Neale, J.H. Prueger and W.P. Kustas. 2008. Daily Evapotranspiration
estimates from extrapolating instantaneous airborne remote sensing ET valyssorrcience
J. (2008) 27:67-81.

Chavez, J.L., Gowda, P.H., Howell, T.A., Garcia, L.A., Copeland, K.S., and Neale, C.M.U.
2012. ET mapping with high resolution airborne remote sensing data in an advective semi-arid
environment. Journal of Irrigation and Drainage Engineering. ASCE. Vol. 138, No. 5, May 1,
2012. Pp. 416-423.

Chavez, J.L., T.A. Howell, P.H. Gowda, K.S. Copeland, and J.H. Prueger. 2010. Surface
Aerodynamic Temperature Modeling over Rainfed Cotton. Transactions of the ASABE,
53(3):759-767.

Chavez, J.L., Taghvaeian, S., Trout, T. J. (2012). Evaluating remote sensing based crop water
use monitoring methods using soil moisture sensors. In Proceedings of the 2012 ASABE Annual
International Meeting. Paper No. 12-1337502. July 29-August 1, 2012. Dallas, Texas. St.
Joseph, MI: ASABE.

104



DeJonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy
temperature-based water stress indices for mAgrécultural Water Management, 156, 51-62.

Evans, R. G, King, B. A. (2012) Site-specific sprinkler irrigation in a water limiteotd. Trans
ASABE 55(2):493504

Evans, Robert G.; LaRue, Jake; Stone, Kenneth C.; and King, Bradley A., "Adoption of site-
specific variable rate sprinkler irrigation systems" (2013). Irrig Sci (2013) 318871DOI
10.1007/s00271-012-0365-x

Finn, M. P. Remote Sensing of Soil Moisture using Airborne Hyperspectral Glafaience
and Remote Sensing; 2011; 48; 4; 522-540.

Gillies, R. R., Kustas, W. P., Humes, K. S. A verification of the 'triangle' method for olgtaini
surface soil water content and energy fluxes from remote measurements of the Normalized
Difference Vegetation Index (NDVI) and surface radiant temperatumeernational Journal of
Remote Sensing; 18; 15; 1997.

Gillies, R. R..,Carlson, T. N. Thermal Remote Sensing of surface soil water content with partial
vegetation cover for incorporation into climate modeisurnal of Applied Meteorology; 1995;
34; 745-756.

Gillies, R.T., Carlson, T.N., Cui, J., Kustas, W.P., Humes, K.S., 1997. A verification of the
““‘triangle’” method for obtaining surface soil water content and energy fluxes from remote
measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant
temperatures. Int. J. Remote Sens. 18 (15),-3RUE6.

Gonzalez-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H.,olndérs
C., and F. Li. 2009. A comparison of operational remote sensing-based models for estimating
crop evapotranspiration. Agricultural and Forest Meteorology, 149 (2009) pp1843-1853

Gonzalez-Dugo, M.P., Mateos, L., 2008. Spectral vegetation indices for benchmaaténg w
productivity of irrigated cotton and sugarbeet crops. Agric. Water Manage.-%8.48

Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., and Tolk, J. (2008). “ET
mapping for agricultural water management: Presatus and challenges.” Irrig. Sci., 26(3),
223-237.

Gowda, P. H., Chavez, J. L., Colaizzi, P.D., Evett, S. R., Howell, T. A,, and Tolk, J.A. 2008.
ET mapping for agricultural water management: Present status and challengescil@tR &3
—237.

Gowda, P.H., Howell, T.A., Vinukollu, R., Colaizzi, P.D. and Evett, S. R. 2009b. Evaluation of
five surface energy balance approaches for mapping ET us-ing Landsat TM data acquired during
BEAREXO08. Paper presented at: ASA, CSSA, and SSSA Annual Meetings, PittsburgbPA. 1

Nov

105



Hadjimitsis, D. G., Clayton, C. R., Hope, V. S. (2004). “An assessment of the effectiveness of
atmospheric correction algorithms through the remote sensing of some reservoirs.” International
Journal of Remote Sensing. 2004, 25, 3651-3674.

Hillel, D. (1998): Environmental Soil Physics, Academic Press, San Diego, CA

Hipps L, Kustas W (2001) Patterns and organisation in evaporation. In: Grayson R, Blo"schl G
(eds) Spatial patterns in catchment hydrology: observations and modeling, chap 5. Cambridge
University Press, London.

Hoffman, G. J., R. G. Evans, M. E. Jensen, D. L. Martin, and R. L. Elliott. (2007b). Design and
Operation of Farm Irrigation Systems. 2nd ed. American Society of Agricultural and Badlogi
Engineers. (2007)

Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SARBmMote Sensing of Environment
25: 295-309.

Huisman, J. A., Hubbard, S. S., Redman, J. D., & Annan, A. P. (2003). Measuring soil water
content with ground penetrating radar. Vadose zone journal, 2(4), 476-491.

Hunt, E. R., Daughtry, C. S. T., Mirsky, S. B., Hively, W.D. Remote sensing with unmanned
aircraft systems for precision agriculture applicatioBscond International Conference on
Agro-Geoinformatic; 2013.

ldso, S.B.; Jackson, R.D.; Pinter, P.J.Jr.; Reginato, R.J.; Hatfield, J.L. Normalizitigetise s
degree day parameter or environmental variab#ityjc. Meteorol. 1981, 24, 24-45.

Kustas, W. P., J. G. Alfieri, M. C. Anderson, P. D. Colaizzi, J. H. Prueger, S. R. Evett, C. M.U.
Neale, A. N. French, L. E. Hipps, J. L. Chavez, K. S. Copeland, T. A. Howell. 2012. Bvgluati
the two-source energy balance model using local thermal and surface flux observations in a
strongly advective irrigated agricultural area, Advances in Water Resources,evadym
December 2012, Pages 120-133.

Kustas, W. P., Norman, J. M. (1999) Evaluation of soil and vegetation heat flux predictions
using a simple two-source model with radiometric temperatures for partial canopy/Agve
For Meteorol 94:1329

Kustas, W. P., Norman, J. M. (2000) A two-source energy balance approach using directional
radiometric temperature observations for sparse canopy covered surfaces. Agron-BS2:847

Kustas, W.P., Norman, J.M., 1996. Use of remote sensing for evapotranspiration monitoring
over land surfaces. Hydrol. Sci. 41, 49%6.

Li, Z.-L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., Zhang, X. A Review of Current

Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed
Data.Sensors 2009,9, 3801-3853.

106



Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current
methodologies for regional evapotranspiration estimation from remotely sensefedsies
2009,9, 3801-3853.

Mabhrt, L., and D. Vickers. 2004. Bulk formulation of the surface heat flux. Bouridargr
Meteorol. 110(3): 35B79.

Mcebisi Mkhwanazi, José L. Chavez , Allan A. Andales and Kendall DeJonge, 2015, SEBAL-A
A remote sensing ET algorithm that accounts for advection with limited datal: Hastl for
transferability, Remote Sensing, accepted on 18 Sept 2015. Published 10 Nov. 2015. Remote
Sens. 2015, 7(11), 15068-15081; doi:10.3390/rs71115068

Mcebisi Mkhwanazi, José L. Chavez , and Allan A. Andales, 2015, SEBAL-A: A remoiagens

ET algorithm that accounts for advection with limited data. Part |: Developsnentalidation,
Remote Sensing, accepted on 3 Nov 2015. Published 10 Nov. 2015. Remote Sens. 2015, 7(11),
15046-15067; doi:10.3390/rs71115046

McLoud, P.R., R. Gronwald, and H. Kuykendall. 2007. Precision Agriculture: NRCS Support for
Emerging Technologies, Agronomy Technical Note No. 1. East National Technology Support
Center, Natural Resources Conservation Service, Greensboro, NC.

Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating cropwater deficit using the
relation between surface-air temperature and spectral vegetation index. Remoten8ems. E
49, 246-263.

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model
evaluation guidelines for systematic quantification of accuracy in watershathsons, Trans.
ASABE, 50(3): 885-900.

Nash JE and Sutcliffe JV (1970) River flow forecasting through conceptual models part 1-
discussion of principles. Journal of Hydrology, 10 (3): 282-290.

NASA Landsat. NASA Landsat mission page:
(http://www.nasa.gov/mission pages/landsat/spacecraft/index.html#.VmnsBEOkrkuU

Neale, C. M., Hatim, M. E. Geli,. Kustas, W. P., Alfieri, J. G., Gowda, P. H., Evett, S. R.,
Prueger, J. H., Hipps, L. E., Dulaney, J. P., Chavez, J. L., French, A. N., and Howell, A. Soil
water content estimation using a remote sensing based hybrid evapotranspiratiamgmode
approach.Advances in Water Resources; 50; December 2012: 152-161.

Neale, C. M., Jayanthi, H., Wright, J.I.. Irrigation water management using high resolution
airborne remote sensingournal of Irrigation and Drainage System; Volume 19; 2005; 321-
336.

Neale, C.M.U., Bausch, W.C., Heermann, D.F., 1989. Development of reflectance-based crop
coefficients for corn. Trans. ASAE 32 (6), 189899.

107


http://www.nasa.gov/mission_pages/landsat/spacecraft/index.html#.VmnsE_krKUk

Norman, J. M.; Kustas, W. P.; Humes, K. S. Source approach for estimating soil andoregetat
energy fluxes in observations of directional radiometric surface temperadgure.For.
Meteorol. 1995,77, 263-293.

Norman, J.M., Kustas, W. P., Humes, K. S. (1995) A two-source approach for estimating soil
and vegetation energy fluxes form observations of directional radiometric surface temperature
Agric Forest Meteorol 77:26293

Petropoulos, G. P. Remote Sensing of Energy Fluxes and Soil Moisture Content. (2014). CRC
Press, New York.

Postel, Sandra. “Pillar of Sand: Can the Irrigation Miracle Last?”” Norton and Company, New
York, 1999. Postel S (1999) Pillar of sand: can the irrigation miracle last? Worldwatch Books,
W. W. Norton & Co, New York, 312 p

Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using
survey-grade global navigation satellite systems (GNSS) to establigtal/detium in the United
States Geological Survey: U.S. Geological Survey Techniques and Methods, book 11 1¢hap. D
102 p. with appendixes.

Sellers, P. J. 1992. Biophysical models of land surface processes. In: Climate Sgsielindvi
K.E. Trenberth (ed.). Cambridge University Press, Cambridge, UK, 451-490.

Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Hehner, B. Orlowskey, and
A. J. Teuling (2010): Investigating soil moisture-climate interactionscimeage climate: a
review, Earth Sci. Rev., 99, 125-161.

Shiklomanov, I.A. (1993). World Fresh Water Resources. In P. H. Gleick (ed.), Water in Crisis:
A Guide to the World’s Freshwater Resources. New York, Oxford University Press

Shuttleworth WJ, Gurney RJ, Hsu AY, Ormsby JP (1989) FIFE: the variation in energypartiti
at surface flux sites. Int Assoc Hydrol Sci (IAHS) Publication 186787

Topp, G.C., and Ferre, T.P.A. 2002. Water content. In J.H. Dane and G.c. Toppetfdsls of
Soil Analysis, part 4- Physical Methods. Soil Science Society of America, Madison, WI, (417-
545.

UNEP (2008), Vital Water GraphicsAn Overview of the State of the World’s Fresh and
Marine Waters. 2nd Edition. UNEP, Nairobi, Kenya. ISBN: 92-807-2236-0

United Nations, Department of Economic and Social Affairs, Population Division (2015). World
Population Prospects: The 2015 Revision, Key Findings and Advanced Tables. New York,
United Nations.

108



Varble, J.L., Chaved.L. “Performance evaluation and calibration of soil water content and
potental sensors for agricultural soils in eastern Colorado.” ELSEVIER: Agricultural Water
Management; 101; October 2011: 93-106.

Walthall, C.L., J. Hatfield, P. Backlund, L. Lengnick, E. Marshall, M. Walsh, S. Adkins, M.
Aillery, E.A. Ainsworth, C. Ammann, C.J. Anderson, |. Bartomeus, L.H. Baumgard, F. Booker,
B. Bradley, D.M. Blumenthal, J. Bunce, K. Burkey, S.M. Dabney, J.A. Delgado, J. Dukes, A.
Funk, K. Garrett, M. Glenn, D.A. Grantz, D. Goodrich, S. Hu, R.C. lzaurralde, R.A.C. Jones,
SH. Kim, A.D.B. Leaky, K. Lewers, T.L. Mader, A. McClung, J. Morgan, D.J. Muth, M.

Nearing, D.M. Oosterhuis, D. Ort, C. Parmesan, W.T. Pettigrew, W. Polley, R. Rader, C. Rice,
M. Rivington, E. Rosskopf, W.A. Salas, L.E. Sollenberger, R. Srygley, C. Stdckle, E.S. Takle, D.
Timlin, J.W. White, R. Winfree, L. Wright-Morton, L.H. Ziska. (2015). Climate Change and
Agriculture in the United States: Effects and Adaptation. USDA Technical Bull@gs.

Washington, DC. 186 pages.

109



APPENDIX 1: CSU TEMPEST UAS

1.1. Tempest UAS

The Tempest is a commercial off-the-shelf R/C model aircraft manufactured by
UASUSA, based out of Boulder Colorado. It has been modified by the manufacturer to be an
unmanned aircraft using a BlackSwift autopilot and integrating three sensors. There are
currenty 65+ approved COA’s for the Tempest UAS. It is defined as a miniature unmanned
aircraft with a gross take-off weight of 11 Ibs, based on ASTM F2395-7 Standard Terminology
for Unmanned Aircraft Systems. The very small size and low speed flight of the Tes@pest
adds additional safety to the operation of the Tempest UAS since this aircrafsiad kinetic
energy and therefore possess very little danger to any structure and significantly teeluces
chance of serious injury to any personal on the ground in the event of an accident. In addition,
since the UA propulsion is electrically powered, there is no on-board fuel that may catéami

the environment or pose as an accelerant for a fire in an accident.

1.1.1. Airframe Modifications

Modification have been performed on the Tempest UAS by the manufacturer to include
the installation of the BlackSwift Autopilot and the addition of remote sensors totcollec
environmental data. The payload compartment is a modular system designed ang thsted b
manufacturer. Modifications are such that the aircraft meets the appropriate ain@ssrthi

requirements laid out in MIL-HDB-516A.
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1.1.2. Tempest UAS Specifications

Figure A1.1.1. Colado State Universities Tempest UAS (Photo by CPT Jeffrey Hathaway

Table A.1.1.1. Tempest UAS Performance Specifications [UASUSA, 2015]

Specifications
Wingspan 127" (251 mm)
Wing Area 1016 sq in (0.65 sq m)
Empty Weight [ 10 Ibs (4.54 kg)
Nominal
GTOW 11 Ibs (5 kg)
Maximum
GTOW 20 Ibs (9.07 kg)
Wing Loading [ 20.6 oz/sq ft
Length 61.375" (1524 mm)
Airfoll MH-32
Center of 3.5" from leading edge of the wing
Gravity (89mm)
Stall Speed 20 mph
Cruise Speed | 50 mph
Max Speed 100 mph
Max Range 60 mi (52.14 NM)
Radio Range 10 mi (8.69 NM)
Flight Time 1.5 HR
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Table A.1.1.2. Tempest UAS Sensor Performance S

1.1.3. Tempest Sensors

pecifications

Sensor nm pm Wavelength 130m (A.GL)
Resolution
FLIR TAU 2 7500 | 13,500| 7.5 | 13.5 Thermal 11.76 cm
Tetra"Aa[;%SNAP 520 | 920 | 052 | 0.92| green red, NIR|  6.5cm
Sony A6000 390 780 0.39 | 0.78 | Visible (RBG) 9.5cm
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Table A.1.1.3. Tempest UAS Sensor Field of View Specifications for Operations Flight.

Tempest Sensor Field of View

Sensor Alt 150 ft / 45.72m | 200ft/ 60.96m | 300ft/91.44m | 400t/ 121.92m

° Rad 150 200 300 400

(deg)

Tetra ACD SNAP (4:3)
HFOV 37.67| 0.65746552d  102.33 136.44 204.67 272.89
VFOV 28.75| 0.50178216 76.89 102.52 153.77 205.03
HPixel Sze (1280) N/A N/A 0.08 0.11 0.16 0.21
VPixel Size (1024) N/A N/A 0.06 0.08 0.12 0.16
FLIR TAU 2
HFOV- 19 32 | 0.558505361 86.02 114.70 172.05 229.40
VFOV 26 | 0.453785608 69.26 92.35 138.52 184.69
HPixel Sze (640) N/A N/A 0.13 0.18 0.27 0.36
VPixel Size (480) N/A N/A 0.14 0.19 0.29 0.38
MSR5
FOV 11.6 | 0.202458193 30.47 40.63 81.26 81.26
IRT
FOV 11 | 0.191986214 28.89 38.52 77.03 57.77
A6000
FOV 44 | 0767944871  121.21 161.61 242.42 323.22
Pixel Size (1040) N/A N/A 0.12 0.16 0.23 0.31
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Table A.1.1.4. Tempest UAS Sensor Pixel Specifications for Operations Flight.

Tempest Sensor Pixel Size

Sensor 150 ft 200ft 300 ft 400 ft

mm cm mm cm mm cm mm cm
Tetra ACD SNAP (4:3)
HPixel Sze (1280) 2437 | 244 | 3249 | 3.25 | 48.74 | 4.87 64.98 6.50
VPixel Sze (1024) 18.31 | 1.83 | 2441 | 244 | 36.62 | 3.66 48.82 4.88
FLIR TAU 2
HPixel Sze (640) 4097 | 410 | 54.62 | 546 | 81.94 | 8.19 | 109.25 10.92
VPixel Sze (480) 4398 | 440 58.64 | 5.86 | 87.96 | 8.80 | 117.28 11.73
A6000
Pixel Size (1040) 3552 | 355 | 4736 | 4.74 | 71.05 | 7.10| 94.73 9.47
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1.1.3.1. FLIR TAU 2

Figure A.1.1.2. FLIR TAU 2 640 Thermal Sensor

http://www.flir.com/cvs/cores/view/?id=54717

Spectral Bands: 7.53.5 um
Dimensions: 1.75x1.75x1.18 IN

Weight: 90 grams
1.1.3.2. Tetracam ADC SNAP

Figure A.1.1.3. Tetracam ADC SNAP Multispectral Sensor

http://www.tetracam.com/Products-orig.htm

Spectral Bands: 520-920 nm (red, green, NIR)
Dimensions: 75x59x33 mm

Weight: 90 grams
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1.1.3.3. Sony A6000

Figure A.1.1.4. Sony A600 SLR Digital Camera.

http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-cam27aHzCE6000//cat-
27-catid-All-Alpha-a6000-
Cameras;pgid=RUNYCXbEGC5SRpdVGsMRP1SHO000wWKYKreeW:;sid=bdnOOLCSnuvdOeQ
aDFOpPIKYKxg1BVAKnVB-sTtG?vva ColorCode=BC008

Lens: 30 mm fixed

Spectral Bands: 520-920 nm (red, green, blue)
Dimensions: 120x67x45 mm

Weight: 344 grams

1.1.4 Communications and Data Link

The SwiftPilot includes a datalink that is built on the Digi Xtend Frequernppiig,
Spread Spectrum (FHSS) radio modem from Digi International. The datalink has up to 115.2
Kbps throughput and is used for command and control, autopilot telemetry and features a user-
configurable retry and acknowledgement error handling scheme. The Digi Xtend operates in the

902-928 MHz ISM frequency band with a maximum 1 Watt output power.

The system is expected to have a communication range of 12 miles line-of-itiigtites
vertically installed quarter-wave antenna used on the Tempest, and the Ground Cdrudrol Sta
(GCS) antenna located at the launch/recovery site. The radio provides securityityediadbi

high tolerance to interference.

116


http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
http://store.sony.com/-alpha-6000-mirrorless-interchangeable-lens-camera-zid27-ILCE6000/cat-27-catid-All-Alpha-a6000-Cameras;pgid=RUNyCXbEGC5SRpdVGsMRP1SH0000wKYKreeW;sid=bdnOOLCSnuvdOeQaDFOpPIKYKxg1BVAknVB-sTtG?vva_ColorCode=BC008
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The ground control station consists of the SwiftStation provided by Black Swift
Technologies, a pilot console, and an Android Tablet running the SwiftPilot User Interface. The
following is an overview of these components containing excerpts from the “SwiftPilot User's

Guide.” (http://www.blackswifttech.com)

The SwiftStation manages the communication link to the avionics systennfgdaseto
Android Tablet, and provides a command and control stream to the UA. In addition, the

SwiftStation includes a GPS receiver and antenna that locates the positiergajund station.

The SwiftStation is powered through an external 12V DC source, provided by a 120 V
AC power supply adapter. This provides power to run the ground station. The SwiftStation
allows for a 12V battery connection as well for when no convenient AC source is available to

power the unit.

The SwiftStation connects to the tablet based user interface through a standard WiFi link.
The ground station GPS antenna is connected to the external USB connector and the ground

station UHF antenna is hooked up to through an SMA connector.

The pilot's console is a standard R/C style handset that is used for manually gieting t
UA through an on-board receiver. The pilot console can be operated without the use of the
SwiftStation through an on board multiplexer that selects control between the piloecamdol
the autopilot. This on-board multiplexer between the autopilot and pilot consalexsra layer

of redundancy.

The Black Swift User Interface is a software application that runs on an Android Tablet
and provides a command and control interface for the operator when the aircraft is in semi-

autonomous mode. All of the SwiftPilot system features are accessible from ttigeet@his

117



includes, but is not limited to, planning and loading waypoint flight plans, monitoring thé healt
and status of the UA and the SwiftStation, and providing a graphical command and control touch

interface for the operator. A screen shot is provided in Figure A.1.1.5.

Figure A.1.1.5. Blackswift SwiftStation.

The main features of the user interface include a moving map display over geo-
referenced maps and satellite images, conveniently displayed health indicatoasranadt

status toolbar, an aircraft actions toolbar giving critical status informationcauticblcof the UA.
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Figure A.1.1.6. Screen shot of Black Swift User Interface.
1.2. Overview of the CSU Pilot Certification Program

The CSU Tempest UAS Training Program is desigoddain and certify CSU Pilots on
the Tempest UAS until the FAA releases their improved UAS guidance in FY 20Y626001F.
The FAA Certifications will be the baseline licensing until the new UA8ajuie is released.
This will ensure that CSU remains within the FAA Regulations during the trangéiood. The
Flight Training Program was develegpwith UASUSA, the manufacturer of the Tempest UAS.
The CSU Flight Training Program can be found at the CSU website
[http://www.engr.colostate.edu/faculty-staff/profiles.php?id=194. The Flighbifigawill occur
over several phases. Initial flight training will be conducted on a user-friendlyRé@raircraft.
This will ensure that any damage of the aircraft during training will be easily releasad

inexpensive. Once the basic flight skills are mastered on the initial trai@étildbin-Training
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(PIT) will advance to a foam R/C aircraft that mimics the flight controls of the &stpAS.

The Final stage of the flight training will be on the Tempest aircraft as#nmsant pilot and

finally the Pilotin-Charge (PIC). The flight training schedule is based on the proficiency of the
pilot at each stage of training. The stated time requirements are the minimurad-égueach
Phase. Prior to moving onto the next phase of flight training, all PIT will demonstrate their

proficiency with the current airframe. The requirements for certification are as follows

e Completion of the flight training for pilot to be certified as a PIC
e Completion of the Online Ground School

e Certification of passing thAirman’s Written Knowledge Exam

e FAA Class 2 Medical

1.3. CSU ARDEC RS Reference Markers

Figre A.1.1.7. Spectralon White Reflectance Target [Spectrolon 24 in x 24 in White Target,
Labsphere, North Sutton, NH]. The white reflectance target sat at an elevation of 36 inche
above ground level.
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3 i '}'
Figure A.11.8. Black Reflectance Target. 4’ x 4’ plywood painted black. The black reflectance
target sat at an elevation of 12 inches above the ground.

R LIRS
Figure A.1.1.9. ARDEC 1070 Soil Target. Located in the buffer of the field.
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APPENDIX 2: REMOTE SENSING ALGORITHMS

2.1. Surface Energy Balance for Land (SEBAL)

The SEBAL model [Bastiaanssen et al., 1998a, 1998b] was deddimpstablish a pixel
by pixel relationship between the surface and air temperature (dT) as a lineanskigtio
between the hot and cold radiometric surface temperature pixel of a RS image. The surface
radiometric temperature is used instead of the aerodynamic temperature due tacthity diffi
estimating the aerodynamic temperature, both with RS and physical measuremetitst The
pixel is define as a dry agricultural surface in the image, while the cold pixelnedefs a well-
watered, fully ETing agricultural field. At the cold pixel, the sensible heat flw) idlassumed

to be 0, the d4=0 and the latent heat:
LE=R -G (A.2.1.1)
While at the hot pixel, the latent heat d.ks assumed to be OgH
H,=R, -G (A.2.1.2)
The dTy is calculated as a function otH

dT, = Hyxr,,

= (A.2.1.3)
pxC,

The linear relation of the radiometric surface temperature and the air ttunpésa

calculated using the hot and cold anchor points and the linear relationship:

dT =a+bxT, (A.2.1.4)
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The pixel by pixel sensible heat flux (H) is then calculated based on the dT and the

aerodynamic resistancesjrcorrected for atmospheric stability using Eq. 2.6

The SEBAL method is effective at estimatinga®ler homogenous surfaces, and when
there are clearly defined hot and cold pixels. Recently, the SEBAL method has been adjusted for
advective conditions in Mkhwanazi et al. (2015). For actual conditions that do not have the
stated conditions, SEBAL can experience large errors, upwards of 35% [Gowda et al., 2008].
Due to the requirement of the extreme temperatures associated with the hot and Ldltepixe

SEBAL method is most effective when used with satellite-based remote sdating
2.2. Mapping Evapotranspiration at High Resolution with Internal Calibration (METRIC)

The METRIC method [Allen et al,. 2007a , 2007b] is another SEB model that uses the dT
to estimate EZ The METRIC models was developed using the SEBAL model and utilizes RS
data covering theed, NIR and TIR bands of the electromagnetic spectrum, as well as ground-
based meteorological data. The METRIC model was developed to address sevarasaifiss
the SEBAL method discussed previously. The first difference is that METRIC does noeassum
the same boundary conditions at the hot and cold pixels as SEBAL does. At the cold pixel, His

not assumed to equal 0 or LE=RNn-G. Instead,LE set to:

LE,, =1.05<ET,, (A.2.1.5)

And Hy:

H,, =R -G-LE,, (A.2.1.6)

At the hot pixel the LE is not assumed to equal O, rather the hot pixel conditions are

determined using a soil water balance method to estimate LE when a wetting evergicdbc
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close to the remote sensing platform overpass. The second major difference is tioa selec
criteria for the hot and cold pixels. The METRIC model requires the selection of the hot and
cold pixels from an agricultural pixel with biophysical properties similar to theersterET

[Gowda et al., 2008]. With the changes in the boundary condition and selection criteria of the
hot and cold pixels, the METRIC model can be applied to the aerial and satehliterbamte
sensing data, due to the high probability of the hot and cold pixels being present in a single
agricultural field [Allen, 2002]. Additionally, the METRIC model has an advantage over
SEBAL in areas under advective condition [Chavez et al., 2009]. In addition, METRIC requires

very good quality hourly weather data to properly scale the dT function.

2.3. Other Methods Triangle Method

Empirically based methods that compare RS derive VI’s, T, albedo, and other, are also
used to estimate surface SWC. These methods are based on plotting the RS data and biophysica
properties in a scatter plot and making inference based on the shape of the plot [Petrbpoulos e
al., 2009a]. The most common of these methods is the Triangle method [Gillies and Carlson,

1995] that compares the VI and thetd derive the surface SWC [Petropoulos et al., 2009a].

The VI vs T creates a triangle (or trapezoid) if the scene has the full range of soll
moisture values, as depicted in Figure A.2.1. The right edge, known as the dry edge, represents
the highest temperatures over the range of VI, which represents vegetation canofrpoove
bare soil to full cover. The left edge, or wet edge, represent the cold temperatutbs saee
range of VI values. The bare soil and fully vegetative ET is then caldulaieg the Penmen-
Monteith, or similar, equation. The location of the pixel on the scatter plot is developed into a
crop water stress index, which is then directly related to the surface SWC and indirtduly t

root zone SWC [Gillies et al., 2010, Carlson 2013].
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Figure A.2.1. Triangle Method VI vssBcatter plot [Petropoulos et al., 2009a].
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The triangle method is suited to aerial-based remote sensing platform due to the
requirement for high spatial resolution multispectral and thermal optical imageditionally,
the method shows promise for use over large areas without site-specific tuning. Thewmtly g
data that is needed for the triangle method is the soil-water parameters cdidleeyiand air

temperature.
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APPENDIX 3: DESCRIPTION OF MODELS USED

3.1. Data Pre-Processing

1.1. Geo-reference Images using ERDAS Imagine 2015 GIS Software [ERDAS@284i5,

Hexagon Geospatial, Cape Town, South Africa].

1.2. Mosaic Images using GIS Software utilizing ground reference points and known location
data. Attempt to utilize as few RS imagery as necessary to limit errorsassgauth pre-

processing data.

1.3 Calibrate Imagery to reflectance ang @ising internal calibration. Convert from 8-bit

digital number (DN (0-255) to reflectan(¥ or fraction)or Tsic (°C or K).

MS, 10t catrasion = 0-003% DN (A.3.1.1)

Tsfc =axDN +b (A.3.1.2)

3.2. Two-Source Energy Balance (TSEB).BMethod

The following procedure is a description of the TSEB model and corresponding ERDAS
Imagine Models. The name of the ERDAS Imagine model is described using therfgllowi
format: “Reference Number Product.” (e.g. “1 OSAVI”). The ERDAS Imagine Models are

located at the CSU website [http://www.engr.colostate.edu/faculty-staffgspip?id=194].
2.1. Calculate OSAVI: Rondeaux et al. (1996). Rangg J-“1 OSAVI”.

OSAV| = &R RED) (A.3.2.1)

NIR+RED+L

where L=0.16 as the optimal value to minimize soil background effects.
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2.2. Calculate the crop height.¢hm): Chavez et a(2005). Range [k=>0]. “2 Crops”.

hec = (1.86xOSAVI — 0.2x (& 4.8 10 xeld7-6%0AVI) (A.3.2.2)
2.3. Calculate Leaf Area Index (LAI): Chavez et al. (206&nge [0.5LAI<5] “3 LAI RS”.
LAl = (4xOSAVI — 0.8)x (1+ 4.7% 100 xel2-640SAVI (A.3.2.3)
2.4. Calculate Fraction Vegetation Cove}.([Normal et al. (1995). Range [0:1]. “4 f ¢”.
fo=1-g O->LA (A.3.2.4)

2.5. Calculate Local LAI (LAl). Kustas and Norman (2000). Range fLAI<5]. “5 LAI 1”.

_LAlys

(A.3.2.5)
fC

LA

2.6. Calculate the Fractional Soil Covey.(fKustas and Norman (2000). Range [0:1]. “6 f s”.
fo=(foxe OXLAILy L1 1) (A.3.2.6)

2.7. Calculate Clumping Factor (€2). Kustas and Norman (2000). Range [0:1] “7 Clumping

Factor”.

_ —LN(fs)

Q= 0.5¢<LAl

(A.3.2.7)

2.8. Calculate “New” (updated w/ Q) Fractional Vegetative Cover (fc new. Kustas and Norman

(2000). Range [0:1]. “7 f ¢ new”.

fo_ new=1-e€ O-LADQ (A3.2.8)
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2.9. Calculate Surface Albedo (as). Brest and Goward (1987). R [0:1]. “8 Surface Albedo”.

ag=0.512<RED + 0.41& NIR (A.3.2.9)

2.10. Calculate the short wave radiation budget,(R/ n?). Range [R.>0]. Inputs: a, Rs. “10

R sw”.
Row=01-a)xRs (A.3.2.10)
where Ry is the incoming short wave solar radiation (VW)rfrom weather station data.

2.11. Calculate este. Brunsell and Gillies (2002). Range [0:1]. “11 Surface Emissivity”.
egfc = foxey+ (- fo)xeg (A.3.2.11)

where vegetationmaissivity (£,=0.98), and soil @issivity (¢s=0.955).

2.12. Calculate the surface outgoing long wave radiation (& W mi?). “12 R_Iw_out”.
R _ 4
LW _out =€s01s (A.3.2.12)

where &stc IS the emissivity of the surface, and WhegesTthe air temperature of the surface (K).

2.13. Calculate the long wave radiation budget(RV n?). “13 R_Iw”.
Riw =RLw _in—RLw _out (A.3.2.13)

2.14. Calculate the Atmospheric/air long wave incoming radiation (R W n?). Excel spread

sheet.

RLW in=¢acTa (A.3.2.14)
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where T is the air temperature of the air (K), €a is the emissivity of the atmosphere, and o

is the Stefan-Boltzmann Constant (5.67E-08 Wy m

2.15. Calculate €a. Range [0:1]. Excel spread sheet.

[l

éa :1.24%1 Y7 (A.3.2.15)

where g@is actual vapor pressure of the air (kPa) axid The air temperature of the air
(K).
2.16. Calculate Net Radiation {RNV mi?). Monteith (1973). “14 R_n”.
Rn = (1-@)Rs + £a0TA —£50Tg" (A.3.2.16)

2.17. Calculate the extinction coefficient for the canopy (K). Campbell (1996), Campbell and

Norman (1998). Excel spread sheet.

K = 1 (A.3.2.17)

2<COS(O %

Where, 0 is the solar zenith angle (degrees) and « is 3.1416.

2.18. Calculate the components of theoretical Clear Sky Short Wave RadiajidDi(@&t Beam

Solar Radiation (R and Diffuse Solar Radiation R Spokas and Forcella, 2006.

Rs=Ry+Ry (A.3.2.18)

2.18.1. Calculate the Optical Air Mass Number (m). Excel spread sheet.

m= P (A.3.2.18.1)

B A
(101.3COS 0%
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where P is the barometric pressure (kPa) from weather data.

2.18.2. Calculate RExcel spread sheet.
Ry =Gsc X 7atm_KB (A.3.2.18.2)

where Gis the solar constant (1360 WAnandtam kg is the atmospheric transmittance

calculated with REF-ET and Weather Station data [Allen, 1992].

2.18.3. Calculate RExcel spread sheet.
Ry =0.3< (I- Gatm KD J" )xGg xCOS 02715 (A.3.2.18.3)

where tam_kp IS the atmospheric transmittance calculated with REF-ET and Weather

Station d#a [Allen 1992].

2.19. Calculate the fractionpfof incident Photosynthetically Active Radiation (PAR) from R

Range [0:1]. Goudriaan (1977). Excel spread sheet.

_ R
R (A.3.2.19)

2.20. Calculate the solar transmittance in the canopy (t¢). Range [0:1]. Norman and Jarvis

(1974). “15 Tau_c”.

M0y )

Tc = 1 (A.3.2.20)
(@ % o)D)
2.20.1. Where A is (Goudriaan (1988)). Excel spread sheet.
A=0.283+ 0.78%a+ 0.159a° (A.3.2.20.1)
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where a=0.9. (DECAGON USERS MANUAL)

2.21. Calculate the initial Canopy Net Radiation {d®R n?). Normal et al. (1995). InputsnR

and f;_new “16 dR_l'l’,.

0.9LN (- fc_new)y

dRy = Ry — (Ry € (A.3.2.21)

2.22. Calculate the Slope of the saturation vapor pressure versus temperature curve (A). Priestly

and Taylor (1972). Excel spread sheet.

A725T
A = 2503e T+273. (A.3.2.22)

(T+273.3f

2.23. Calculate the psychrometric constant (y). Priestly and Taylor (1972). Excel spread sheet.

y =0.00066% P (A.3.2.23)

2.24. Calculate the fraction of LAI that is greeg).(Range [0:1]. Based on ground observations
or as a function of OSAVI.
0.980%AVI > 0.5
fg =0.94,0.25 OsAVI > 0.! (A.3.2.24)
0,0%AVI < 0.25
2.25. Calculate the initial Sensible Heat Flux for CanopyifHW m?). Priestly and Taylor

(1972). Inuts: dR and §. “18 dR_n”.

He_int =R x (L~ (L3« fg x 32-) (A3.2.25)

2.26. Calculate the initial aerodynamic resistance to heat transfgr $rat). Norman et al.

(1995). “19 r_ah_int”
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Zm-d Zm-d
LN(——)xLN
( Z )XLN( " )

fah = m %0 (A.3.2.26)

U*><k2

where, #is the height of the wind speed measurement (m), d is the zem plan
displacement (m),q is the roughness length for momentum (m) ajdszhe roughness length

for heat transfer (m).

2.27. Calculate the friction velocity {Um s?). Norman et al. (1995). “20 iteration”.

Ut = Uxk _ (A.3.2.27)
Zm—d
LN(Em™Y
Zom

2.28. Calculate the initial canopy temperaturgi K). Norman et al. (1995). “20 iteration”.

(Hc_inxTah)

e T (A.3.2.28)

Tc_in=

2.29. Correct Hintfor atmospheric stability using the Monin-Obukhov length Scalg (b). This
is an iterative process, until the change igniddis less than 5%. Norman el. (1995). “20

iteration”.

pPaxCpax(Tc_int—Ta)

3
-U”xTg x paCp
Lo = Aoy A.3.2.30
mo gxkx H ( )

The friction velocity (U), for nonneutral is derived using the stability correction for
momentum and heat transfer (ywm, yn). The stability correction factor for atmospheric heat

transfer and momentum transfer, for unstable conditibps,€0), can be determined by
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Businger-Dyer formulations (Dyer and Hicks, 1970; Dyer, 1974; Businger, 1988; Sugita and

Brutsaert, 1990) and explained in detail in Ché&ted. (2005). “20 iteration”.

Xz, = (1-16x er_n dwa (A.3.2.31)
mo
XZop = (1—16><Z<Eh—_d)1/ 4 (A.3.2.32)
Mo
1+XZ 2
2 LN( ):Limg < O ( |
vh A.3.2.33
Zm ~ Zm—
5 ( ),Limo = O
Lmo

2
2xLN (HA),LmO <0

Yh =
mo

(A.3.2.34)

2
_ 1+Xzom HXzom %
Vg, =2x LNE50M) 1 LN (F20M ) 2 ATAN (xzom)+ 2 (A3.2.:35)

2
+X7 +X7
vz, =2x LN( m) LN( m )— 2x ATAN (xzm)+— (A.3.2.36)
* U xk
0 LN(Zm_d)— x LN(Zm_d)+ x LN(Zom) #3230
x LN(Z[n_d)ﬂ//hZ x LN( )
ah = om m_ Mo oh (A.3.2.38)

U xk

2.30. Calculate initial soil temperatures(if, °C)). Normal et al. (1995). “21 T s in”.
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(A.3.2.39)

I (Tsfc—273.15f ~ fc_newTp, I
S _In— 1_fC new

2.31. Calculate the initial long wave radiation emitted by the canapy\(In7?). Norman et al.

(1995).“22 L ¢”.

—gexoxTH (A.3.2.40)
¢ Gint
n

where & is the canopy emissivity and is set to 0.98 for healthy green vegetation.
2.32. Calculate the initial long wave radiation emitted by the sgiMLm?). Norman et al.

(1995)“23 L s”.

Lg=egxoxTH (A.3.2.41)
Snt

where &sis the soil emissivity and is set to 0.92 for bare soil.
2.33. Calculate Soil Albedo (as). Range [0:1]. Post et al. (2000). “24 soil albedo”.

ag=0.785<NIR—- 0.74% Blue+ 0.872Green+ O.( (A.3.2.42)

where the blue is calculated as a function of the green band:
Blue=0.47xGreen (A.3.2.42.1)

The Tetracam SNAP ADC did not collect data over the blue band of the electromagnetic
spectrum. In order to develop the required blue band data for the study, a linear regression of the
MSRS5 blue vs the Tempest green bands. The regression allowed the estimation of the blue band
from the green bands. The linear relationship is dependent on the specttaditsesusd
bandwidth associated with the multispectral sensor.
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2.34. Calculate the short wave radiation for saik (8 mt). Kustas and Norman (2000). “25

2

S ns.

Shg = 7o x (1- arg) % Re (A.3.2.43)

2.35. Calculate the long wave net radiation from the canapy\i.m?). Kustas and Norman

(2000). “26 1_nc”.

Lne = (1 e KX QxLAlrsy (Rwp, +Ls—2L¢) (A.3.2.44)

where K is the extinction coefficient set to 0.95.

2.36. Calculate the long wave net radiation form the sei) (W n%). Kustas and Norman

(2000). “27 1_ns”.

—K1xQxLAl

Lns=(Rw_inx€e" )xLg)-Lg (A.3.2.45)

2.38. Calculate the net radiation for the soils(RV mt). Norman et al. (1995). “28 r_ns”.
R"]S: 315—'_ LnS (A3246)

2.39. Calculate the net radiation for the canopy, (R mt). Norman et al. (1995). “29 r nc”.

RnC: Rn—RnS (A3247)

2.40. Estimate the sensible heat flux for the canopy usingsth®d&man et al. (1995). “30

h C?’

Hg = Rnex (1- (1.13« fg x Aﬁy ) (A.3.2.48)
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2.41. Using Eq. (A.3.2.48), updated theusing the Monin-Obukhov iterative procedure

outlined in section 2.29. “31 iteration 2”.

2.42. Estimate the mean canopy leaf width (wc, m). For corn, assume the wc is 0.09 m. Chavez

et al. (2009).

2.43. Calculate the extinction coefficient for the wind functiag)(@Range [0:1]. Norman et al.

(1995). “33 a_ext”.

2 1 _1
agxt =0.28¢ (QxLAI B )x (g3 xwe 3 (A.3.2.49)

2.44. Calculate the wind speed at the top of the canopyn(d). Norman et al. (1995). <34

2

uc.

Ln(fee =

Uc=U"x _ _ng (A.3.2.50)
LNy - vy

m

2.45. Calculate the wind speed close to the soil surfagen(id!). Norman et al. (1995). “35

2

(1015
aext x(L hcc5)

Ug=Ucxe (A.3.2.51)

2.46. Calculate the resistance to heat flow above the soil surfaa)(rNorman et al. (1995).
“36r s0”.

1

fen = A.3.2.52
07 0.004+ (0.012Ug ( )

2.47. Compute the soil heat flux (G, W3nChavezt al. (2005). “38 G”.

137



G=(((0.3324+ € 0.024LAl ) (0.8155 —( 0.3032N LAl )R, (A.3.2.53)

2.48. Estimate the updated canopy temperatu€CJ based on updated: End g, Norman et

al. (1995). “39 t ¢”.

To=Hcxfah (A.3.2.54)
Pa*CpPa

2.49. Estimate the updated soil temperatuee®d) based on the updated Noman et al.

(1995). “40 t_s”.

o= (A.3.2.55)

T i/(rsfc—273-15f1— (fc_new<Tc f

I-fc_new

2.50. Calculate the sensible heat flux from the sqjl #inT!). Norman et al. (1995). “41 h_s”.

He = Pa XCan (TS—Ta)
s=

(A.3.2.56)
rah + rso
2.51. Compute the total sensible heat flux (H, W).MNorman et al. (1995). “42 h”.
H=Hc+Hsg (A.3.2.57)

2.52. Estimate the latent heat flux for the soil {(\& nT1). Norman et al. (1995). “43 le_s”.

2.53. Verify that Tand T are correct. If LE0, then the Ts and T are correct. If LE<O, then

the soil is dry. The LEs set to 0 and Hs recalculated as:
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Utilizing the new H, recalculate Jand T by inverting Eq. (2.56) and then Eq. (2.55).

Norman et al. (1995)44 le sislessthan O (T sand T ¢)”.

2.54. Calculate the final H based on results of section 2.53. “45 h_final”.

2.55. Compute the total (soil and canopy) latent heat flux (LE, ¥V 146 et iet d”.
LE=Ry-H-G (A.3.2.60)

2.56. Compute the hourly actual ET ¢EMm hrt) from the LE. Allen et al. (2007). “46 et i

et d”.
- 3600x LE x 100( (A3.2.61)
AvPw
where Ly is the latent heat of vaporization (J%gnd pw is the density of water (~1,000
kg m3).

2.57. Extrapolate the hourly ETo the daily EE(mm d*) using the Reference ET Fraction

(ET,F). “46 et i et_d”.

ETy
ET,F=—1 (A.3.2.62)
ET,

where ETis the ASCE-EWRI reference ET.

ETa d=ELF*ET ¢ (A.3.2.63)

*Note: If the soil is dry, but there is surface moisture (dew during an early flight, ect.),

the daily ET must be adjusted according to FAO-56 SWB derived k
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3.3. Surface Aerodynamic Temperature (SAT) EEthod

The following procedure is a description of the SAT model and corresponding ERDAS

Imagine Models.

3.1. Calculate OSAVI: Rondeaux et al. (1996). Rangg [-“1 OSAVI".

_ (1+L)x(NIR-RED)
OSAVI = =i e (A.3.3.1)

where L=0.16 as the optimal value to minimize soil background effects.

3.2. Calculate the crop height4hm): Chavez et a(2005). Range [k=>0]. “2 Crops”.

hee = (1.86<OSAVI — 0.2x (i 4.8 10 xeld7-6%0AVI) (A.3.3.2)

3.3. Calculate Leaf Area Index (LAI): Chavez et al. (208&nge [0.5LAI<5] “3 LAI RS”.

LAl = (4xOSAVI — 0.8)x (1+ 4.7% 100 xel2-640SAVI (A.3.3.3)

3.4. Calculate the initial aerodynamic resistance to heat transfgr ¢raft). Norman et al.

(1995). “4t_ah_int”

LNEZm=Y), nZm=Y)

Fah = = (A.3.3.2)
U xk

where, #is the height of the wind speed measurement (m), d is the zero plane
displacement (m),o# is the roughness length for momentum (m) ajdszhe roughness length

for heat transfer (m).

3.5. Calculate the aerodynamic temperatug®d). Chavezt al. (2010). “5t o”.
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To =0.534xTgfc + 0.3%T5— 0.224LAlI - 0.19&4) - 1. (A.3.3.5)

3.6. Calculate the initial sensible heat flux (H, WoNorman et al. (1995). “6 H_int”.

(A.3.3.6)
lah
3.7. Calculate the friction velocity (Um st). Norman et al. (1995). “7 Lmo”.
u" = UZ—Xk_d (A.3.3.7)
LN( Zm )
om

3.8 Correct ki for atmospheric stability using the Monin-Obukhov length Scalg, (). This
is an iterative process, until the change indds less than 5%. Nman et al. (1995). “7 Lmo”.

_ —U3 ><Ta X paCPa

L., =
gxkxH

(A.3.3.8)

The velocity (U, Eq. (A.3.3.16)), for non-neutral is derived using the stability correction
for momentum and heat transfer (ym, yn). The stability correction factor for atmospheric heat
transfer and momentum transfer, for unstable conditibj$ €0), can be determined by
Businger-Dyer formulations (Dyer and Hicks, 1970; Dyer, 1974; Businger, 1988; Sugita and

Brutsaert, 1990) and explained in detail in Chaxe. (2005). “8 iteration”.

Xz, = (- 16x2m=9 /4 (A.3.3.10)
mo

Xz, = (- 16><Z<Eh—_d)” 4 (A.3.3.11)
110}
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1+XZ
2% LN( )Lmo <0
Yhy = 2 d
-5x(70—=),.Lmo =0
1+Xz7 h2
2x LN( 20 ),Lmo <O
Yhzgn = Zon—d

2
1+ X% J+x V4
Vi, =2xLN (%)WL LN (%)— 2x ATAN (zom)+

Zm—d Zm-d Z
LN(F = v, x LN( M )tvh, LN(LLh)
—— Zm mo Zoh mo
ah— *
U xk
U*: UXk
Zm—d Zm—d Z
LN(EM x LN(EM2) 4 x LN(SO0M
( Zom ) V/mzm ( Lo ) t//mzom (Lmo)
x LN(Zm_d)+z//h x LN( )
om m Lmo Zoh
lah = *

U xk

3.9. CalcuhteSurface Albedo (as). Brest and Goward (1987). <9 Surface Albedo”.

ag=0.512<RED + 0.418& NIR

3.10. Calculate the short wave radiation budget,(R/ m?). Inputs: o, Rs. “10 R_sw”.

Raw = (1-a)xRg

(A.3.3.12)

(A.3.3.13)

(A.3.3.14)

(A.3.3.15)

(A.3.3.16)

(A.3.3.17)

(A.3.3.9)

(A.3.3.10)

where Ry is the incoming short wave solar radiation (\&Y/from weather station data.
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3.11. Calculate est. Brunsell and Gillies (2002). “11 Surface Emissivity”.
esfc = fexey + (1= fc)xes (A.3.3.11)

where vegetationmaissivity (£,=0.98), and soil @issivity (¢s=0.955).

3.12. Calculate the surface outgoing long wave radiation @8 W n2). “12 R_Iw_out”.
R _ 4
LW_out = gso'TS (A3312)

where &stc is the emissivity of the surface, and WhegésTthe air temperature of the

surface (K).

3.13. Calculate the long wave radiation budget(RV m?). “13 R_1w”.
Rw =RLw _in—RLw _out (A.3.3.13)

3.14. Calculate the Atmospheric/air long wave incoming radiation (R W m?). Excel spread

sheet.
RIW in=é&aoTa
LW_|n = 8aUTa (A3314)

where T is the air temperature of the air (K), €a is the emissivity of the atmosphere, and ¢

is the Stefan-Boltzmann Constant (5.67E-08 W& m

3.15. Calculate 2. Range [0:1]. Excel spread sheet.

[

éa =1.24¢%1 )7 (A.3.3.15)
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3.16. Calculate Net Radiation {RV m?). Monteith (1973). “14 R_n”.

Ry = (- ar)Rs + £30T4 — £50Te (A.3.3.16)

3.17. Compute the soil heat flux (G, WAnChavezet al. (2005). “15G”.
G=(((0.3324+ ¢ 0.024 LAl ) (0.8155 —( 0.3082N LAl WR, (A.3.3.17)
3.18. Compute the total (soil and canopy) latent heat flux (LE, 3V ‘6 et iet d”.
LE=R,-H-G (A.3.3.18)

3.19. Compute the hourly actual ET (Efm hr?) from the LE. Allen et al. (2007). “16 et_i

et d”.
ET, = 3600x LE x 100C (A3.3.19)
AvPw
where Ay is the latent heat of vaporization (J%gnd pw is the density of water (~1,000
kg m3).

3.20. Extrapolate the hourly ETo the daily EE(mm d?) using the Reference ET Fraction

(ET/F).“16 et iet d”.

ETy
ET,F=—1 (A.3.3.20)
ET,

where ETis the ASCE-EWRI reference ET.

ETa d=ETF*ET, ¢ (A.3.3.21)
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*Note: If the soil is dry, but there is surface moisture (dew during an early flight, ect.),

the daily ETE must be adjusted according t© k

3.4. Crop Water Stress Index (CWSI) AWlethod

The following procedure is a description of the CWSI model and corresponding ERDAS
Imagine Model “CWSI”.

4.1. Calculate the dPQ) of the canopy emissivity corrected (fC) and the T(°C). Idso et al.
(1982).

When utilizing the TIR imagery, the surface temperatugg, CC) is utilized instead of
Te. If the multispectral imagery is available, thec@n be estimated using the methods outlined
in the TSEB model.

4.2. Calculate the vapor pressure difference (VPD, kPa). Idso et al. (1982).
17.2°%Ty 17.2%Ty

VPD = 65— 6, = 0.6108e'a+273-15_ (9 g108eat 273-153% (A3.4.2)

4.3. Calculate the vapor pressure gradient (VPG, kPa). Idso et al. (1982).
17.2°%%Ty 17.2% Tq+ 3.11)

VPG =0.6108e'at273-15_ (g g10ge Tat 315 273-153% (A3.4.3)
4.4. Compute dif(°C). Idso et al. (1982).
dTj| =3.11- 1.9%VPD (A.3.4.4)
4.5. Compute dF(°C). Idso et al. (1982).
dTy =3.11- 1.94&VPG (A.3.4.5)
4.6. Compute the CWSI. Idso et al. (1982).
cws =% (A.3.4.6)
4.7. Calculate the ETmm h?)_Idso et al. (1982).
ET, =(1-CWS )xETp (A.3.4.7)

where ET is the EE for no stress conditions.
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4.8. Extrapolate the hourly ETo the daily ET(mm d?) using the Reference ET Fraction
(ET:F).

ET.

ETF S (A.3.4.8)
ET,
Where ETis the ASCE-EWRI reference ET.
ETa_d = ETr F X ETr _d (A349)

3.5. Reflectance-based Crop Coefficients{kETa Method

The following procedure is a description of thetkmodel and corresponding ERDAS
Imagine Model (k_cbrf).

5.1. Calculate the NDVI.

NDVI = IR RED (A3.5.1)
NIR+ RED

5.2. Calculate the NDVI base@gk novi. Range [-1:1]. Neale et al. (1989).
keorf NDVI =1.182xNDVI — 0.02f (A.3.5.2)

5.3. Calculate OSAVI: Rondeaux et al. (1996). Range [-1:1].

_ (1+L)x(NIR-RED)
OSAVI = =i e (A.3.5.3)

where L=0.16 for corn.

5.4. Calculate Leaf Area Index (LAI): Anderson et al. (2004). Rangel[AE<5] “3 LAI RS”.
LAl = (4x OSAVI — 0.8)x (1+ 4.7% 10°xel2-640SAVI (A.3.5.4)
5.5. Calculate Fraction Vegetation Cove}.([Normal et al. (1995). Range [0:1]. “4 f ¢”.
fo =1-g O-5<LA (A.3.5.5)
5.6. Calculate the-base korf 1. Johnson and Trout (2012).
Keorf _ fc =1.13x fc+ 0.14 (A.3.5.6)
5.7. Calculate the hourly ETmm h?).
ETa =[kebrf NDwI OF Kebrf  fcl X ETref (A.3.5.7)

5.8. Extrapolate the hourly ETo the daily ET(mm d*) using the Reference ET Fraction
(ET:F).

146



ET,
ET,F=—2 (A.3.5.8)
ET

Where ETis the ASCE-EWRI reference ET.
ETa_d =ET FxET; d (A.3.5.9)

3.6. Hybrid Soil Water Balance Method.
3.6.1 FAO-56 Soil Water Balance

The FAO-56 SWB approach starts with a given paifile at field capacity (Orc,
mm mt). Field capacity is generally defined as the amount of water held in the soil aftes ex
water has drained away and the rate of downward drainage has decreased. Once the SWB
begins, the daily allowable depletion, and root zone SWC are tracked using the following

equation [Hoffmann et al., 2007]:
D =D_+ET,-(P-S,)-I, +DP-GW (A.3.6.1)

Where D (mm) is the soil water depletion at the end of day.i,iBthe soil water
depletion at the end of day i-1 (mm), &3 the actual crop evapotranspiration (mm), P (mm) is
the gross precipitation infiltrated;o3mm) is the surface runoff; Imm) is the net irrigation on
day i, DP (mm) is the deep percolation on day i, and GW (mm) is the ground water capillary

contribution from the water table on day i [Hoffmann et al., 2007].

The ETais calculated using the dual basal crop coefficient method:

ET, = (ky, xkg+k)xET (A.3.6.2)

ef

Where the dual Kis estimated using the mean bassl the stress coefficient {kand the

soil evaporation coefficient gk[Neale et al., 2012].
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The mean basal crop coefficient can be obtained from published tabulated values in
FAO-56. The mid-seasongvalues are adjusted for the appropriate climate conditions. The
FAO-56 published I values are for humid climates and therefore need to be adjusted to be used

in arid and semi-arid regions with Eq. (A.3.6.3).
Kp =Ky tae [0-04x (U, — 2)- 0.004 RH ; - 45)]'2 ) (A.3.6.3)

where kb _abiecan be found in Table 17 of FAO-56,(m s?) is the mean daily wind
speed at 2 m height above grass during mid-season growth stage(%®Hs the mean value
for minimum relative humidity during mid-season growth stage, and h (m) is the meariora
plant height during mid-season.

The stress coefficientgkaccording to Allen et al. (1995) is calculated as:

TAW - D,

T (A.3.6.4)
TAW — RAW

k=

where TAW is the total available water (mm),i®the root zone depletion (mm), and

RAW is the readily available water (mm).

The shallow soil water evaporation coefficieny, ik calculated using the following

equation:
ke = kr (ke max—Keb) < few* ke max (A.3.6.5)

where, k is the evaporation reduction coefficientkxis the maximum value ofck
following a wetting event, andJ is the fraction of soil that receives sunlight, and water during

the wetting event [Allen et al., 1995].

ke max=max[L.2+ [0.04& (- 2} 0.004 RH min- 45)2(3)kcb+ 0.0 (A.3.6.6)
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1for Dy g<REW

Kr = TEW - Dr s (A.3.6.7)
— =" forD; ¢>REW
TEW - REW —
where D sis the depletion of the soil surface layer (mm).
few = fW(l—% fe) (A.3.6.8)

where the fraction of the surface that is wetted by irrigation and rain (fw) depends on

irrigation.
3.6.2. Remote Sensing Assimilation

The RS derived Eiland kprare assimilated into the FAO 56 SWB using thelk order
to update the SWD, the RS derived:ESused to calculate the updated stress coefficient, k

ETy

ETref ke
kg=—0 (A.3.6.9)
Kebrf

The updated dis used to estimate the actual soil water deficitifion) by using the
linear relationship between the teadily available water (RAW, mm) and total available water
(TAW, mm) as shown in Figure A.3.1. If the hybrid model derived JOi>RAW. If k<1, then
the D is a function of the linear relationship between RAWHK and TAW (k=0) [Allen et
al.,1995]. In the terms of a PA irrigation system, if theRAW, irrigation is not required. If

Di>RAW, irrigation is required.
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0.20
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Figure A.3.1. Relationship betweegy RAW and TAW [Allen et al., 1995]
The soil water content, is updated using theb and R:
6 =(0rc —Dj) xRy (A.3.6.10)
The kot is then used to adjust the kor use in the SWB between RS overpasses. By
adjusting k» based on the actual crop characteristicsydaWill more accurately estimate &ET
Figure A.3.2 depicts the use of the#when compared todk Under ideal condition, thes
will closely approximate &, as with the LIRF fully irrigated crops. Crops that are under non-

standard conditions, will generally fall below thg. k
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Figure A.3.2. kot vs. kp Over the growing season [Neale et al., 2012]
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APPENDIX 4: SUMMER 2015 ARDEC 1070 RS DATA

4.1.22JUL15

] S i e

Figure A.4.1. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m A&3JUL15
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4.2. 30JUL15

Figure A.4.3. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGEQJUL15




Flgure A.4.4. ARDEC 1070 USU Thermal Imagery (121 m AGBOJUL15

155



Figure A.4.5. ARDEC 1070 Tempest UAS Dailyl m AGL)- 30JUL15
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Figure A.4.6. ARDEC 1070 Tempest UAS SWD (121 m AGI30JUL15




4.3. 13AUG15
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Figure A.4.7. ARDEC 1070 Tempest UAS uItispectraI Imagery (121 m AGL3AUGS
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Figure A.4.8. ARDEC 1070 Tempest UAS Thermal Imagery (121 m AGILI3AUG15
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Figure A.4.9. ARDEC 1070 Tempest UAS DailyHI21 m AGL)- 13AUG15
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High : 202.31

Low: 126.022

Figure A.4.10. ARDEC 1070 Tempest UAS SWD (121 m AGILBAUG15
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4.4. 19AUG15

10 0
Figure A.4.11. ARDEC 1070 Tempest UAS Thermal Imagery (121 m AGI9AUG15
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4.5. 10SEP15

Figure A.4.12. ARDEC 1070 Tempest UAS Multispectral Imagery (121 m AGIQSEP15
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Figure A.4.13. ARDEC 1070 Tem
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pest UAS Thermal Imagery (121 m AGIQSEP15
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Figure A.4.15. ARDEC 1070 Tempest UAS SWD (121 m AGIIOSEP15
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4.6. Summary of Results

4.6.1. Raw Data

Table A.4.1. MBE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data

comparisons.

2015 Tempest UAS Raw Data vs MSR5 Data MBE Results
Flight Date MBE
Thermal (C) Green (% Reflection) | Red (% Reflection)| NIR (% Reflection)
Season* -1.36 5.06 0.81 -1.17
22-Jul-15 10.09 3.22 -0.88
30-Jul-1 0.08 0.05 0.14
13-Aug-1§ -8.02 0.14 0.04 0.19
10-Sep-15 1.20 3.28 -0.55 -1.51
Data linearly corrected due to eqipment malfunction
Uncorrected data

No data due to equipment malfunction

Table A.4.2. RMSE Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5 data

comparisons.

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results
Flight Date RMSE
Thermal (C) | Green (% Reflection) | Red (% Reflection)| NIR (% Reflection)
Season* 5.68 7.31 3.51 5.26
Wl-lsa- 10.76 4.03 6.16
30-Jul-1 1.41 1.55 2.80
13-Aug-1§ 9.62 1.64 2.06 5.33
10-Sep-15 2.40 6.06 3.74 5.38
Data linearly corrected due to egipment malfunctior
Uncorrected data
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TableA.4.3. Student-T Test Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5

data comparisons.

2015 Tempest UAS Raw Data vs MSR5 Data RMSE Results

No data due to equipment malfunction

Table A.4.4. Linear Regression Summary of the 2015 ARDEC 1070 RS Campaign RS vs MSR5

data comparisons.

Flight Date T Test
Thermal Green Red NIR
Season* 0.12 0.00 0.05 0.06
22-Jul-15 0.10 0.58 0.82
13-Aug-15 0.00 0.79 0.95 0.93
10-Sep-15 0.45 0.29 0.98 0.71
Data linearly corrected due to egipment malfunctior
Uncorrected data

2015 Tempest UAS Raw Data Linear Reqgression Coefficients

Thermal Green Red NIR
a 0.74 0.92 0.89 0.75
b 7.45 5.62 1.97 8.49
R? 0.67 0.91 0.97 0.91
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46.2. ET

Table A.4.5. Summary of the statistics from the daily B&rived from the 2015 Tempest UAS
RS campaign.

Method Statistic Season| 22-Jul-1% 30-Jul-1p 13-Aug-J5 10-Sep|
MBE (mm/d)] 0.29 0.23 0.06 0.58
TSEB RMSE (mm/d) 0.89 1.10 0.54 0.93
2*P[T<=t] 0.00 0.15 0.47 0.00
MBE (mm/d)] 0.49 -0.89 0.03 0.96
SAT RMSE (mm/d) 1.21 1.56 0.95 1.47
2*P[T<=t] 0.00 0.00 0.83 0.00
MBE (mm/d)| 0.79 0.14 1.27 0.49 1.28
NDVI RMSE (mmv/d 1.43 0.91 1.83 1.00 1.74
2*P[T<=t] 0.00 0.29 0.00 0.00 0.00
MBE (mnvd)| -0.94 -1.17 -0.96 -1.27 -0.36
FAO-56 SWB Rz=1 m| RMSE (mm/d 1.22 1.46 1.23 1.36 0.82
2*P[T<=t] 0.00 0.39 0.00 0.14 0.83
MBE (mmvd)| 1.44 -0.73 0.52 1.97 1.20
FAO-56 SWB Rz=1.5 n| RMSE (mm/d 1.64 1.11 0.86 2.17 1.49
2*P[T<=t] 0.00 0.39 0.00 0.00 0.00
MBE (mmvd)] 1.58 -0.55 0.01
CWsI RMSE (mnv/d 1.86 0.74 0.75
2*P[T<=t] 0.00 0.01 0.00
MBE (mnvd)] 1.88 1.08 2.65 1.25 1.92
FC RMSE (mm/d 2.30 1.44 2.96 1.85 2.23
2*P[T<=t] 0.00 0.00 0.00 0.00 0.00

Table A.4.6. Linear Regression Summary of the statistics from the dailgdé&tived from the
2015 Tempest UAS RS campaign.

2015 Tempest UASETq Linear Regression Coefficients
TSEB SAT NDVI FAO-56 | FAO-56 Cwsl Fe
(R=1m) | (R=1.5m)
a 0.60 0.10 0.29 0.61 0.67 0.88 0.38
b 1.55 2.85 3.16 0.36 0.92 1.90 3.78
R? 0.71 0.12 0.29 0.77 0.63 0.62 0.27
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Table A.4.7. Mean daily EJderived from the 2015 Tempest UAS RS campaign - Full.
2015 Mean Tempest UAS Mean Ed(mm d?) Full Treatment

FAO-56 | FAO-56 CWSI [ R [ NP
TSEB| SAT | NDVI | o9V | (Ret 5m)

220UL | N/A | N/A | 415 3.67 3.75 N/A_ | 5.10 | 4.40

300UL | 4.72 | 326 | 5.28 4.06 5.81 N/A_ | 6.69 | 5.68

13-AUG | 3.74 | 3.16 | 3.66 2.51 3.38 5.04 | 4.47 | 3.84

10-SEP | 3.87 | 3.78 | 4.02 2.85 3.28 505 | 4.75 | 3.70

Table A.4.8. Mean daily EJderived from the 2015 Tempest UAS RS campaign - Limited.
2015 Mean Tempest UAS Mean EZ(mm d?) Limited Treatment

FAO-56 | FAO-56 CWSI | F NP
TSEB| SAT | NDVI | o970 | ket 5m)

2220UL | N/A | NJA | 3.95 2.25 2.78 NA | 482 | 3.82

30-JUL | 3.90 | 3.26 | 5.26 2.58 3.83 N/A | 6.65 | 3.19

13-AUG | 358 | 3.07 | 3.57 2.11 2.62 507 | 432 | 3.41

10-SEP | 3.74 | 3.79 | 4.03 2.78 2.78 460 | 473 | 3.21

Table A.4.9. Mean daily EJderived from the 2015 Tempest UAS RS campaign - Drought.
2015 Mean Tempest UAS Mean EZ(mm d*) Drought Treatment
FAO-56 | FAO-56 CWwWsSI Fe NP
TSEB| SAT NDVI (R=1m) | (R=1.5m)

22-JUL | N/A N/A 3.86 2.12 2.83 N/A 486 | 331
30-JUL | 4.05 | 3.01 5.20 2.45 3.91 N/A 6.53 | 3.12
13-AUG | 2.06 | 3.09 3.47 0.77 1.58 5.02 4.18 | 1.95

10-SEP | 1.18 | 3.74 2.84 0.33 0.77 0.97 3.35 | 0.12
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Table A.4.10. 22JUL15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ET
22-Jul-15
ET d (l:nm/d)

SWB 1.5

Plot NDVI Fc SWB 1m NP

105 3.96 4.68 2.25 2.78 4.36
106 3.95 4.715 2.25 2.78 3.82
12 3.96 4.68 2.25 2.78 3.61

206 4.01 4.79 2.25 2.78 3.96
207 3.99 4.78 225 2.78 3.67

52 4.31 5.1 2.25 2.78 3.98
56 4.37 5.24 2.25 2.78 3.82

76 2.88 4.36 2.25 2.78 4.42
80 3.42 4.38 2.25 2.78 4.56
403 3.73 4.54 2.25 2.78 4.58

MBE 0.14 1.08 -1.17 -0.73
RMSE 0.91 1.44 1.46 111
T-Test 0.29 0.00 0.00 0.00
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Table A.4.11. 30JUL15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ET

30-Jul-15
ET_d (mmvd)

TSEB* SAT NDVI* Fc* SWB 1m ' NP

3.79 3.24 5.23 6.58 2.58 3.83 3.27
3.74 2.87 5.17 6.48 2.58 3.83 2.72
4.1 3.01 5.26 6.6 2.58 3.83 2.99

3.67 2.88 5.3 6.72 2.58 3.83 3.07
3.75 2.88 5.27 6.66 2.58 3.83 3.15

4.04 3.01 5.29 6.79 2.58 3.83 3.1
4.01 3.04 5.32 6.84 2.58 3.83 3.08
3.98 3.01 5.27 6.74 2.58 3.83 3.1

4.17 3.15 5.27 6.67 2.58 3.83 2.86
4.22 3.08 5.32 6.74 2.58 3.83 3.49

0.23 -0.89 1.27 2.65 -0.96 0.52
1.10 1.56 1.83 2.96 1.23 0.86
0.15 0.00 0.00 0.00 0.00 0.03
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Table A.4.12. 13AUG15 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ET
13-Aug-15
ET d Z?]m/d)

Plot TSEB* SAT* CWSI* NDVI* Fc* WB 1 m SWB 1.5

NP

105 4.16 3.38 5.08 3.61 4.55 211 2.62 2.88
106 3.89 2.29 5.08 3.63 4.52 211 262 431
12 3.8 3.27 5.08 3.69 4.17 211 2.62| 3.68

206 3.48 3.08 5.08 3.55 4.29 211 262 3.74
207 3.62 3.13 5.08 3.52 4.24 211 2.62 4.07

301 3.12 2.96 4.91 35 4.2 211 2.62 3.75
52 3.37 3.08 5.08 3.59 4.3 211 2.62 4.05
56 3.4 3.07 5.08 3.55 4.32 211 2.62| 3.75

80 3.44 3.08 5.08 3.62 4.04 211 262 331
403 3.42 3.02 5.08 3.53 4.24 2.11 2.62 3.6

MBE 0.06 0.03 1.97 0.49 1.25 -1.27 -0.55
RMSE 0.54 0.95 2.17 1.00 1.85 1.36 0.74
T-Test 0.47 0.83 0.00 0.00 0.00 0.00 0.00

173



Table A.4.13. 10SEP1515 ARDEC 1070 RS, FAO-56 SWB and NP derived daily ET
10-Sep-15
ET d (empr_n/d)

Plot TSEB SAT* CWSI NDVI Fc SWB1m SWB 1.5

NP

105 4.06 3.9 5.62 4.02 4.73 2.78 3.03 3.8
106 3.91 3.77 5.03 3.94 4.64 2.78 3.03 1.77
12 4.64 4.11 6.41 4.17 4.92 2.78 3.03 3.61

206 3.5 3.67 5.33 4.06 4.65 2.78 3.03] 3.62
207 3.64 3.77 4.16 4.09 4.7 2.78 3.03] 3.12

301 3.53 3.51 4.68 3.79 4.44 2.78 3.03 3.7
52 3.54 3.68 3.79 4 4.71 2.78 3.03 Z.Ehl
56 3.35 3.74 3.49 4.04 4.78 2.78 3.03 3.7

80 3.49 3.72 3.5 4 4.71 2.78 3.03 1.23
403 3.44 3.61 3.95 3.87 4.55 2.78 3.03 3.38

MBE 0.58 0.96 1.20 1.28 1.92 -0.36 0.01
RMSE 0.93 1.47 1.49 1.74 2.23 0.82 0.75
T-Test 0.00 0.00 0.00 0.00 0.00 0.24 0.97
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4.6.3. Soil Water Dedit

Table A.4.14. Summary of the RS overpass soil water deficit statistics for the[ARE& 1070 summer 2015 RS campaign.

ARDEC 1070 RS Overpass Soil Water Deficit Summary

Date MBE (mm) RMSE (mm) T-Test

30-Jul-15 6.32 19.74 0.03

Hybrid 13-Aug-15 -9.92 21.94 0.00
10-Sep-15 -3.76 18.78 0.25

30-Juk-15 -29.55 59.09 0.00

Rz=1 m FAO-56 31-Juk15 -14.16 23.83 0.00
1-Aug-15 -25.16 31.90 0.00

30-Juk-15 46.69 53.16 0.00

Rz= 1.5 m FAO-56 13-Aug-15 39.50 48.20 0.00
10-Sep-15 46.57 54.94 0.00

Table A.4.15. Summary of the RS Campaign soil water deficit statistics for the ARBEHL®70 summer 2015 RS campaign.

ARDEC 1070 RS Campaign Soil Water Deficit Summary

MBE (mm/m) RMSE (mm/m) T-Test
Hybrid -2.45 20.20 0.24 Campaign
Rz=1 m FAO-56 -22.96 33.59 0.00 Campaign
Rz= 1.5 m FAO-56 29.68 42.60 0.00 Campaign
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Table A.4.16. Mean SWD derived from the 2015 Tempest UAS RS campaign of the Full (F),

Limited (L) and Drought (D) Irrigation Treatments.

2015 Mean Tempest UAS Mean SWD (mm 1)

Hybrid

FAO-56

NP

F

L

D

F

L

D

F

L

D

30-JUL

167.3

188.38

178.90

147.15

164.44

159.43

159.77

180.15

175.82

13-AUG

152.32

163.93

194.88

154.86

161.08

182.26

165.83

185.11

188.88

10-SEP

184.11

185.51

194.88

153.96

154.89

190.07

179.82

187.79

206.31

Table A.4.17. Linear Regression Summary of the statistics from the SWD derived from the 2015

Tempest UAS RS campaign.

2015 Tempest UAS ET{ Linear Regression Coefficients

Hybrid | FAO-56 (R=1 m)| FAO-56 (R=1.5m)
a 0.46 0.29 0.41
b 87.20 106.35 117.59
R? 0.25 0.04 0.31
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Table A.4.18. Overpass SWD for the ARDED field 1070 summer 2015 RS campaign (100 and 200 Plots).

NP Location 101 102 103 104 105 106 107 108 109 110 111 112
NP-Deficit (mm) 138.22 135.43 N/A 140.08 176.79 164.69 172.61 180.97 179.9% 181.99 184.61 182
FAO56 SWB (mm) 30-Juk-15 147.15 147.15 N/A 147.15 164.44 164.44 164.44 164.44 165.92 165.92 165.92 165
Hybrid Deficit (mm) 167.11 166.09 N/A 182.14 189.61 192.20 182.66 190.77 176.21 182.92 180.13 181
NP-Deficit (mm) 146.20 140.62 N/A 142.19 186.76 171.36 176.23 190.60 192.3 197.22 200.y7 198
mm/m| FAOS56 SWB (mm) | 13-Aug-15 154.86 154.86 N/A 154.86 161.08 161.08 161.08 161.08 182.26 182.26 182.26 182.26
Hybrid Deficit (mm) 141.25 132.49 N/A 133.93 168.35 164.06 162.21 162.04 194.8 194.88 194.88 194
NP-Deficit (mm) 158.70 153.17 N/A 154.24 191.69 176.56 173.89 186.30 209.72 212.24 217.p0 219
FAO56 SWB (mm) | 10-Sep-15 153.96 153.96 N/A 153.96 154.89 154.89 154.89 154.89 190.07 190.97 190.p7 190)
Hybrid Deficit (mm) 184.50 180.54 N/A 181.37 190.20 186.91 187.60 187.29 194.8 194.98 194.88 194
NP-Deficit (mm) 207.33 203.15 N/A 210.12 265.19 247.04 258.92 271.45 269.92 272.893 276.92 273
FAO56 SWB (mm) 30-Juk-15 189.69 189.69 N/A 189.69 222.59 222.59 222.59 222.59 221.1 221.10 221.10 221
Hybrid Deficit (mm) 250.67 249.14 N/A 273.21 284.41 288.30 273.98 286.19 264.31 274.38 270.20 271
NP-Deficit (mm) 219.30 210.94 N/A 213.28 280.14 257.04 264.35 285.90 288.5 295.82 301.16 298
1.5m| FAOS56 SWB (mm) | 13-Aug-15 210.15 210.15 N/A 210.15 228.35 228.35 228.35 228.39 253.4% 253.45 253.45 253
Hybrid Deficit (mm) 211.87 198.74 N/A 200.90 252.52 246.09 243.32 243.09 292.32 292.32 292.82 292
NP-Deficit (mm) 238.05 229.75 N/A 231.37 287.53 264.84 260.84 279.49 314.5Y 318.36 325.50 329
FAO56 SWB (mm) | 10-Sep-15 220.11 220.11 N/A 220.11 225.61 225.61 225.61 225.6]] 275.89 275.99 275.89 275
Hybrid Deficit (mm) 276.75 270.81 N/A 272.06 285.30 280.37 281.40 280.94 292.31 292.31 292.81 292
NP Location 201 202 203 204 205 206 207 208 209 210 211 212
NP-Deficit (mm) 128.03 137.38 N/A 154.31 175.11 180.35 181.53 182.36 N/A 177.63 197.83 208.58
FAO56 SWB (mm) 30-Juk15 147.15 147.15 N/A 147.15 164.44 164.44 164.44 164.44 N/A 133.48 133.48 133.48
Hybrid Deficit (mm) 174.40 173.24 N/A 182.09 197.57 195.32 192.15 203.7( N/A 189.03 180.21 185.26
NP-Deficit (mm) 128.02 143.80 N/A 156.94 182.42 184.44 182.39 192.14 N/A 186.63 209.36 220.12
mm/m| FAO56 SWB (mm) | 13-Aug-15 154.86 154.86 N/A 154.86 161.08 161.08 161.08 161.08 N/A 182.26 182.26 182.26
Hybrid Deficit (mm) 153.46 146.10 N/A 152.00 162.32 162.85 162.21 166.42 N/A 194.88 194.88 194.88
NP-Deficit (mm) 142.45 158.71 N/A 168.06 168.70 193.14 193.47 199.75 N/A 209.50 226.36 232.18
FAO56 SWB (mm) | 10-Sep-15 153.96 153.96 N/A 153.96 154.89 154.89 154.89 154.89 N/A 190.07 190.07 190.07
Hybrid Deficit (mm) 177.43 186.40 N/A 177.92 184.31 182.18 182.76 183.57 N/A 194.88 194.88 194.88
NP-Deficit (mm) 192.05 206.08 N/A 231.46 262.66 270.52 272.29 273.55 N/A 266.44 296.75 312.87
FAO56 SWB (mm) 30-Juk-15 189.69 189.69 N/A 189.69 222.59 222.59 222.59 222.59 N/A 221.10 221.10 221.10
Hybrid Deficit (mm) 261.59 259.86 N/A 273.13 296.35 292.98 288.23 305.54 N/A 283.54 270.32 277.89
NP-Deficit (mm) 192.04 215.70 N/A 235.40 273.62 276.66 273.59 288.22 N/A 279.95 314.05 330.18
1.5m| FAO56 SWB (mm) | 13-Aug-15 210.15 210.15 N/A 210.15 228.35 228.35 228.35 228.39 N/A 253.45 253.45 253.45
Hybrid Deficit (mm) 230.19 219.14 N/A 228.00 243.47 244.28 243.32 249.64 N/A 292.32 292.32 292.32
NP-Deficit (mm) 213.68 238.07 N/A 252.09 253.06 289.71 290.21 299.62 N/A 314.25 339.54 348.27
FAO56 SWB (mm) | 10-Sep-15 220.11 220.11 N/A 220.11 225.61 225.61 225.61 225.61 N/A 275.89 275.89 275.89
Hybrid Deficit (mm) 266.15 279.60 N/A 266.88 276.47 273.27 274.14 275.39 N/A 292.31 292.31 292.31
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Table A.4.19. Overpass SWD for the ARDED field 1070 summer 2015 RS campaign (300 and 400 Plots).

NP Location 301 302 303 304 305 306 307 308 309 310 311 312

NP-Deficit (mm) 178.57 184.44 175.90 180.96 181.10 172.97 181.95 172.p4 189(00 174.03 18¢.91 1

FAO56 SWB (mm) 30-Juk-15 0.43 0.43 0.43 0.43 147.15 147.15 147.15 147.1p 165.92 165.92 168.92 16

Hybrid Deficit (mm) 188.50 187.47 187.77 187.81 161.09 165.0 159.95 159.88 179|76 181.37 17)7.60 1
NP-Deficit (mm) 180.55 188.78 182.47 182.94 170.40 179.5 191.599 180.p9 200(99 18§.57 19[7.32 2|

mm/m| FAO56 SWB (mm) | 13-Aug-15 161.08 161.08 161.08 161.08 154.86 154.86 154.86 154.86 182.26 182.2 182.76 182.
Hybrid Deficit (mm) 170.09 164.07 162.07 165.97 162.20 152.6 165.40 167.88 19488 194.88 19¢4.88 1
NP-Deficit (mm) 187.28 190.45 189.87 182.58 207.82 187.5% 208.91 189.f8 220(41 202.99 214.95 2

FAO56 SWB (mm) | 10-Sep-15 154.89 154.89 154.89 154.89 153.96 153.9 153.96 153.p6 190(07 190.07 19p.07 1

Hybrid Deficit (mm) 189.36 185.61 185.72 187.09 186.11 186.4 178.1l6 180.14 19488 194.88 19¢4.88 1
NP-Deficit (mm) 267.86 276.65 263.85 271.45 271.66 259.4% 272.18 258.81 28350 264.05 27[.37 2

FAO56 SWB (mm) 30-Juk-15 222.59 222.59 222.59 222.59 189.69 189.6 189.649 189.p9 221|10 221.10 22[1.10 2

Hybrid Deficit (mm) 282.75 281.21 281.66 281.72 241.64 247.49 239.93 239.p7 269(64 281.06 266.39 2
NP-Deficit (mm) 270.83 283.17 273.71 274.40 255.60 269.2% 287.38 270.43 301{48 287.86 29p.97 3

1.5m| FAO56 SWB (mm) | 13-Aug-15 228.35 228.35 228.35 228.35 210.15 210.1% 210.15 210.I5 253|145 253.45 25B.45 2
Hybrid Deficit (mm) 255.14 246.11 243.11 248.96 243.30 228.9 248.10 251.p7 292|131 292.31 29p.31 2
NP-Deficit (mm) 280.91 285.67 284.81 273.86 311.73 281.3 312.76 284.p6 33061 304.49 32p.42 3

FAO56 SWB (mm) | 10-Sep-15 225.61 225.61 225.61 225.61 220.11 220.11 220.91 220.11 275(89 279.89 27p.89 2

Hybrid Deficit (mm) 284.04 278.42 278.58 280.64 279.17 279.6 267.24 270.p1 292|131 294.31 29p.31 2

401 402 403 404 405 406 407 408 409 410 411 412

NP-Deficit (mm) 174.10 187.45 187.72 198.81 179.86 174.82 173.96 167.p9 157|78 153.72 14p.72 1

FAO56 SWB (mm) 30-Juk15 164.44 164.44 164.44 164.44 147.15 147.1% 147.15 14745 165(92 164.92 16p.92 1

Hybrid Deficit (mm) 180.66 182.27 177.81 177.82 165.34 164.3 161.44 161.44 16942 173.47 17p.67 1
NP-Deficit (mm) 181.54 193.07 192.49 193.60 193.17 183.5% 182.93 182.40 175|62 169.80 16p.52 1

mm/m| FAO56 SWB (mm) | 13-Aug-15 161.08 161.08 161.08 161.08 154.86 154.86 154.86 154.86 182.26 182.2 182.76 182.
Hybrid Deficit (mm) 159.62 162.42 163.22 165.00 156.03 152.7 153.48 163.p2 19488 194.88 19¢4.88 1
NP-Deficit (mm) 179.29 187.16 197.03 207.53 206.73 194.59 192.40 194.y7 197|09 189.25 18p.91 14

FAO56 SWB (mm) | 10-Sep-15 154.89 154.89 154.89 154.89 153.964 153.9 153.96 153.p6 190)07 199.07 19p.07 1

Hybrid Deficit (mm) 180.09 184.18 184.82 186.50 190.85 191.24 190.05 186.418 194|88 194.88 194.88 1
NP-Deficit (mm) 261.15 281.17 281.58 298.21 269.79 262.24 259.640 250.p3 23667 229.08 224.58 1

FAO56 SWB (mm) 30-Juk-15 222.59 222.59 222.59 222.59 189.69 189.69 189.649 189.p9 221{10 221.10 2201.10 2

Hybrid Deficit (mm) 270.98 273.40 266.72 266.72 248.04 246.54 242.16 242.116 254{12 26Q.21 256.00 2
NP-Deficit (mm) 272.31 289.61 288.73 290.40 289.76 275.32 274.40 273.p9 263|143 254.70 24B.79 1

1.5m| FAO56 SWB (mm) | 13-Aug-15 228.35 228.35 228.35 228.35 210.15 210.1% 210.15 210.15 253|145 253.45 25B.45 2
Hybrid Deficit (mm) 239.43 243.63 244.83 247.50 234.05 229.0% 230.92 245.p8 292(31 293.31 29p.31 2
NP-Deficit (mm) 268.93 280.74 295.55 311.30 310.09 291.88 288.640 292.116 29563 283.88 274.36 2

FAO56 SWB (mm) | 10-Sep-15 225.61 225.61 225.61 225.61 220.11 220.11 220.]1 220.11 275(89 275.89 27p.89 2

Hybrid Deficit (mm) 270.14 276.27 277.23 279.75 286.28 286.8 285.08 279.y2 292|131 294.31 29p.31 2
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