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ABSTRACT 
 
  

DEVELOPMENT OF METHODS TO ESTIMATE OR REDUCE PRESSURE FLATTENING 

OF POTATOES DURING STORAGE  

 

The physiological disorder referred to as pressure flattening is a cause of significant economic losses in 

storage of Irish potatoes (Solanum tuberosum L.) intended for use as fresh market or “table stock”. As the 

flattened area on each tuber becomes larger in diameter or becomes more depressed, the USDA quality 

grade, and therefore market value of the potatoes, is reduced. The disorder is also frequently referred to as 

pressure bruising, although not all pressure flattened areas and not all cultivars readily produce the 

darkened “bruise” discoloration under affected areas. Pressure flattening occurs as potatoes are stored in 

bulk storage bins and are exposed to pressure over time from the weight of other potatoes above them in 

the pile of potatoes. The force/pressure/weight of the potatoes is transferred to the individual potato at the 

points of contact with adjacent potatoes or with the storage structure itself (walls, ducting and floor). 

These contact points become the flattened, depressed areas that cause the reduction in quality. The 

physical deformation of the tubers due to these pressures comes from the crushing of the outer layers of 

periderm and underlying cells.  The height of the pile in which the potatoes are stored and the duration 

that they are stored therefore become critical to determining the accumulated pressure to which the tubers 

are exposed. However, due to the monetary costs involved in building additional climate controlled 

storages and the irregularity of the timing of purchase and movement of stored potatoes, it is difficult to 

address pressure flattening by reducing storage duration and pile height. The development of pressure 

flattening is also a result of dehydration of the tubers that occurs during harvest and storage. This 

dehydration can be the result of contact with dry soil or soil air prior to harvest, moisture loss during 

harvest and shipping to storage, moisture loss from wounded or damaged tissue, moisture loss due to 

vapor pressure deficit, and moisture loss through a poorly suberized, immature periderm during the first 
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days to weeks of storage, and moisture loss due to respiration and dehydration by lower humidity 

ventilation air throughout the duration of storage. A final factor in the development of pressure flattening 

are cultivar specific traits which have yet to be fully identified but most likely relate to cell wall structure, 

spatial arrangement of periderm cells, and possibly concentration of starch and/or of amyloplasts in the 

tissue.  This doctoral research program was undertaken to 1) develop a controlled method to induce 

pressure flattening that can be used to evaluate the impact of factors related to pressure flattening 2) 

develop a method for predicting which lots of potatoes, once stored, are more likely to pressure flatten 

early or severely so that they can be preferentially shipped earlier than other stored potato lots to avoid 

rapid declines in tuber quality, and 3) identify methods that can be used during the growing season or 

after harvest that can either delay/reduce pressure flattening by reducing or delaying factors associated 

with moisture loss or cultivar susceptibility.   

This doctoral dissertation is based on three years of study and experimentation focused on understanding 

causes of pressure flattening and identifying methods to reduce the negative economic impacts of the 

disorder on the fresh market potato industry. Results from the accumulated research confirm the 

importance of moisture loss, storage duration, pile height, and cultivar susceptibility in the development 

of pressure flattening. A controlled system for inducing pressure flattening while maintaining conditions 

nearly identical to bulk potato storage was successfully developed. The development of this system has 

allowed for a controlled evaluation of different cultivars and treatments for their rate and severity of 

pressure flattening development. Experimentation was conducted to determine if it was possible to 

identify at-harvest or early in the storage season which potato lots within and among cultivars were likely 

to pressure flatten earlier or more severely. Several different at-harvest methods for testing relative 

dehydration and other properties thought to be related to increased pressure flattening development were 

evaluated and compared to subsequent pressure flattening. The use of an instrumented penetrometer or 

texture analyzer to measure peak load required for periderm deformation at harvest appears to correctly 

anticipate the majority of fields from which tubers  are more likely to have severe pressure flattening at 6 
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months storage duration compared to those fields from which tuber would develop less pressure 

flattening. Potato lots, regardless of cultivar, that required higher amounts of pressure to deform at-

harvest produced less pressure flattening after months of storage. As a result of this finding, one major 

Colorado potato producer is already using at-harvest texture analysis to determine order of shipping. This 

testing method is likely to be developed into a service to assist other potato producers in making decisions 

about which storage bins should be shipped early in the storage season. Year to year evaluation of 

pressure flattening of multiple cultivars supports the conclusion that there are cultivars that consistently 

pressure flatten more severely than other cultivars that are of a similar type (russet, red skinned, yellow 

skinned). Applications of nitrogen, calcium, potassium, and boron during the late growing season were 

evaluated to determine if there was an effect on the rate of pressure flattening development. Although 

applications of nitrogen late in the growing season can result in an increase in susceptibility to physical 

damage and may delay suberization and periderm maturation, the results from this research were not clear 

on the effects of late nitrogen on pressure flattening. The majority of significant increases in pressure 

flattened area per tuber occurred when additional late nitrogen was applied, but at times there was more 

pressure flattening at the intermediate 22.5 kg per hectare application rate, compared to both the control 

and 45 kg. per hectare additional application rate. There were no significant differences in pressure 

flattening development for potatoes that were grown with additional late growing season applied calcium, 

boron, or potassium applied either individually or in combination The effect of irrigating after vine kill to 

avoid in-field dehydration was evaluated over two years. Results indicated that the pressure flattening was 

reduced if post vine kill soil water capacity was maintained between 60-75% depending on the cultivar. 

Pressure flattened area per tuber increased for some cultivars when irrigation treatments resulted in soil 

water content above 75% and increased for other cultivars when soil water content fell below 65%.   
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The factors of pile pressure, moisture loss, and storage duration are likely to cause significant pressure 

flattening, even with the optimal management during extended storage durations beyond 5to 6 months. 

However, it is the conclusion of this research that potato growers and shippers can significantly reduce 

their economic losses from pressure flattening, especially at 3 to 6 month storage durations by adopting a 

combination of practices that are feasible for their individual production system.  Identification  and 

planting of cultivars that are more resistant to rapid development of pressure flattening and/or are less 

likely to develop discoloration of tissue below flattened areas can greatly reduce economic losses. Crop 

management that minimizes late growing season nitrogen fertilization and maintains adequate soil 

moisture to promote skin maturation and avoid dehydration can improve physical maturity and reduce the 

rate of pressure flattening in storage. Management of the crop that reduces physical damage and skinning 

at harvest and minimizes moisture loss between vine kill and the first weeks of storage can also 

significantly delay pressure flattening development for at least some cultivars. Reducing the height of the 

bulk piles in which potatoes are stored appears to reduce early development of pressure flattening and 

may be economically feasible, especially for higher value specialty potato crops such as red potatoes.  

Lastly, use of carefully implemented at-harvest texture analysis of tubers from different fields and 

cultivars as the potatoes are loaded into storage, could allow growers to identify and ship lots of potatoes 

that are more susceptible before they develop significant pressure flattening. 
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GENERAL INTRODUCTION AND LITERATURE REVIEW. 

 
Physiology and Causes of Pressure Flattening: 

The physiological disorder pressure flattening is a major cause of economic losses in bin stored potato 

crops. The disorder is also frequently referred to as pressure bruising, although not all pressure flattened 

areas and not all cultivars readily produce the darkened “bruise” discoloration under affected areas of skin 

(Lulai et al, 2000). Pressure flattening refers to the development of depressed or sunken areas on stored 

tubers (Rowe, 1993). Pressure flattening occurs as potatoes are stored in bulk storage bins and are 

exposed to pressure over time from the weight of other potatoes in the bin. Long-term storage of up to 12 

months raw product is necessary to provide a year round supply of potatoes to the market.  

Pressure flattening occurs as the tuber surface becomes depressed or flattened due to constant contact 

from a portion of an adjacent tuber (Figure 1). This area of contact also receives the force exerted by the 

adjacent tuber as a result of the weight of tubers above it in the pile. The downward force or pile pressure 

is approximated as 672 kg./m3 of pile above the potato (Muthukumarappan at al., 1994). Potato growers 

and shippers often store russet potatoes in bulk piles up to 6 meters in height. In the San Luis Valley of 

Colorado, specialty potato cultivars such as fresh market red and yellow potatoes are also stored in pile 

heights up to 6 meters. The area of greatest pressure flattening is approximately 1-2 meters from the floor 

due to this pressure of pile potatoes above and the distribution of ventilation air. This also corresponds to 

the area of maximum lateral pressure from the pile (Matson and Helleckson, 1983).   
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Figure 1. Photograph of Canela Russet tubers with pressure flattening 

 

Tuber moisture loss is regarded as an important factor in increasing the susceptibility of tissue to forming 

depressions and the extent of bruise in response to force (Kunkel and Gardner 1965; Hughes 1980; Lin 

and Pitt 1986; Muthukumarappan, et al. 1994; Konstankiewicz and Zdunek 2001; Olsen and Oberg 2003).  

As tuber moisture loss increases, cellular turgor decreases resulting in reduced mechanical resistance of 

the tissues. These tissues are more prone to changes in cell shapes, cell wall cracking, debonding of the 

cells, and leakage of intracellular liquids through the cell walls (Konstankiewicz and Zdunek 2001). 

Reduced turgidity of the outer layers of tissue can cause increased susceptibility to pressure flattening 

although excessive turgidity of tissue may also reduce resistance to deformation due to increased cell wall 

fracturing under pressure (Zdunek and Bednarczyk 2005).  Dehydration and water loss from potato tubers 

occurs between vine kill and the final use by a consumer or processor.  The tubers lose moisture through 

the outer most layers of periderm, due to evaporative loss and respiration. Once the vines of a potato plant 

senesce or are chemically or mechanically vine killed, senescence of the underground stems and stolons 

also occurs.  Tuber moisture content is then no longer contingent on water provided through the plants 

root system. After vine kill the tubers may gain or lose moisture depending on the availability of water in 

the soil, or water tension, and also as a factor of soil air humidity. If there is too much free moisture in the 
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soil, tubers may become more susceptible to disease or may become highly turgid or “crisp” which may 

cause the ends to shatter if damaged during harvest, a disorder known as shatter bruise. Dry soil prior to 

harvest can result in flaccid, dehydrated tubers at the time of harvest. These tubers may be especially 

sensitive to pressure or may respire more as a result of moisture stress. Additionally, these tubers may be 

more susceptible to blackspot bruise damage during harvest (Thornton and Timm, 1990).Tuber skin 

maturation and suberization of the periderm that takes place after vine kill can reduce the susceptibility of 

the periderm to lose or gain moisture.  

Rapid loss of moisture from the tubers can take place at harvest and during the first weeks of bulk storage. 

Moisture loss at harvest appears to be greatest in potatoes that are not fully matured or have poorly set 

skin (Thornton and Bohl 1998). Moisture loss during harvest results from the removal of the tubers from 

the soil as they are maneuvered through the harvester and loaded onto trucks for transport to storage. 

Harvesting in low relative humidity during the warmer part of the day, followed by transport in open air 

vehicles can increase dehydration of the tubers. The difference in temperature and humidity between the 

tuber and the environment during harvest and storage is the vapor pressure deficit (Olsen and Odberg 

2003). The greater the vapor pressure deficit, the more moisture can be lost from the tuber during harvest 

and storage. Transpiration accounts for 90% of tuber weight loss and is mostly due to diffusion of water 

vapor through the skin to the surrounding air (Lutman, 1934). Research has also determined that the 

amount of moisture that is lost through the periderm can increase up to 60 fold if a tuber is immature or 

damaged (Kleinschmidt and Thornton, 1991). Skinning and cutting of tubers can increase moisture loss 

from the tubers up to 1000 times that of a non-damaged, well suberized tuber (Olsen and Odberg, 2003). 

Within the pile of stored potatoes, tubers near the bottom will dehydrate the most due to proximity to the 

inflow of cool ventilation air. Tuber weight loss after harvest is the combination of transpiration and 

respiration processes.  The estimated weight loss due to transpiration is 5 to 10 % of total tuber weight 

during 8 to 9 months of storage. Mature potatoes respire at a rate of 5 ml O2/kg/h (Rastovski et al, 1981). 

This corresponds to approximately 1.5% in weight loss in 8-10 months of storage. Potatoes immediately 
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after harvest lose water three times faster than they do after one month of storage. Shrinkage loss is 

greater during the early part of the storage season due to factors such as higher tuber respiration rates, 

higher storage temperatures, and higher transpiration. During the preliminary period of storage, tubers 

wound heal by developing a suberized layer, which retards water evaporation during the subsequent 

storage duration.  Tuber moisture loss begins to increase again as tuber dormancy (quiescence), a 

naturally occurring duration of reduced respiration, ends and tubers in storage begin to ”wake up”.  Sprout 

formation during storage, which often begins at the end of the period of physiological rest, will cause 

additional moisture loss.  As a result, effective sprout control is necessary to minimize potato dehydration 

and therefore pressure flattening, during long durations of storage. The pressure flattened areas are made 

up mostly of crushed periderm (Lulai et al. 1996) and can become a source of moisture loss after removal 

from storage because they are more susceptible to evaporation from damaged cells (Lulai et al. 1996).  

 

Economic Impacts of Pressure flattening 

Pressure flattening accounts for a substantial portion of the $298 million dollars in losses due to potato 

bruising each storage year (Baritelle et al. 2000, Baritelle and Hyde 2003). Losses are generally more 

severe for potatoes intended for the fresh potato sales, however pressure flattening accompanied by 

discoloration of the underlying tissue is a major concern for chipping and processing users as well. The 

severity of pressure flattening losses is often not apparent until the potatoes are removed from storage.  

The economic losses are usually a result of the reduction in the quality grade assigned to shipped tubers 

due to pressure flattened tubers. Pressure flattening often results in shipments that would have quality 

sufficient to be sold as USDA No.1 being downgraded to USDA No. 2 or lower. This often reduces 

returns to potato grower/shippers by 40% or more.  By late spring some lots of potatoes may have as 

much as 70-80% of tubers with pressure flattening (Eric Allen, personal communication). This can result 

in half a bin of potatoes being thrown away in order to meet a grade standard desired by a buyer. In 
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addition to the sunken depressed area itself causing a reduction of quality grade, the development of 

discoloration below the surface can reduce quality grade as well and may not develop until up to 5 days 

after the potatoes are first unloaded. This is thought to be due to limited oxygen availability to the 

damaged area until the potatoes are removed. In some instances, a shipment of potatoes with moderate 

pressure flattening is inspected, certified, and shipped out of bulk storage as a higher value US No.1 

shipment and a few days later packed into final consumer packaging, and sold to retail markets. It is not 

until the fourth or fifth day when the potatoes reach the retail outlet that the pressure flattening has 

resulted in discoloration and/ or additional breakdown which results in the quality being downgraded and 

the shipment rejected by the purchaser. This delay in being able to determine the final extent of pressure 

bruise damage can result in an additional 20-30% loss due to the costs associated with shipping and 

packing that took place after the initial inspection.   

 

Current Techniques for Reduction of Pressure Flattening 

Recommendations have been developed to minimize moisture loss and damage at harvest that may 

contribute to pressure flattening (Thornton and Bohl, 1998) These recommendations are based on 

minimizing physical damage to tubers at harvest and providing optimum temperatures and humidity for 

the crop during bin loading to minimize stress and moisture loss (Thornton and Bohl 1998, Voss et al. 

Shetty, Smittle et al. 1974). Some research indicates that an immature crop may lose10-60 times more 

moisture than a crop that is allowed to senesce and set skin (Kleinschmidt and Thornton, 1991) Pressure 

flattening can also result from moisture loss during the storage season. This moisture loss can be reduced 

by maintaining above 90% relative humidity in the air supplied for tuber ventilation and also by 

maintaining tuber quiescence through sprout inhibiting treatments (Caldiz et al. 2001 and Pavlista, 2005). 

However, even storage operations that utilize these recommendations may have severe economic losses 

due to pressure flattening. It has also been suggested that there may be a connection between low specific 
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gravity and increased pressure flattening, although it is unclear if this is a reflection of an immature crop 

rather than an actual effect of solids content (Thornton and Bohl, 1998).   

Below is a list of storage management suggestions to reduce the potential of pressure bruise development 

(Adapted from Olsen and Oberg, 2003).  

1. Apply water to the open areas storage floors before and during bin loading to increase relative 

humidity. 

2. Use tarpaulins over the potatoes if an open top vehicle will be used to transport the potatoes from 

field to storage. 

3. Do not pile potatoes higher than 5 meters during bin loading. Further reduction in pile height is  

recommended if storage space is not limiting. 

4. Apply humidified ventilation air to the storage bin during loading.  

5. Humidity above 95% is optimal for the duration of storage.  When possible it is better to use 

outside air rather than having the ventilation system re-circulate air. 

6. Measure the tuber pulp temperatures as loads of potatoes arrive from the harvesting operation. Do 

not have the environmental control system set point more than a few degrees below the coolest 

pulp temperature during the day.  

7. Allow at least 2 weeks for the crop to suberize after they are loaded into storage. This can be done 

by maintaining the potatoes at about 10ºC (50ºF). Suberization and wound healing may require 

longer amounts of time if the crop was damaged at harvest or the crop did not mature in the field. 

8. Holding potatoes stored for the fresh market at low temperatures 4.5-7.2ºC (40-45ºF) will 

minimize weight loss. Maintain a less than a 1ºC (2ºF) differential between the top and bottom of 

the pile by applying additional ventilation air if the heat generated by the stored potatoes is not 

being removed from the upper part of the pile. This recommendation requires the storage operator 

to take pulp temperatures of tubers near the bottom and top of the pile every few days. 
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9. Apply sprout inhibitor treatments on schedule to avoid additional moisture loss, depending upon 

past experience with the cultivar and crop. Frequent observations of the crop in storage will help 

determine optimal timing of application.  

 

Objectives for the Doctoral Research Program: 

This graduate research program was developed  to 1) develop a controlled method to induce pressure 

flattening that can be used to evaluate the impact of factors related to pressure flattening 2) develop a 

method for predicting which lots of potatoes, once stored, are more likely to pressure flatten early or 

severely so that they can be shipped before pressure flattening causes significant declines in tuber quality 

3) find methods that can either delay or reduce pressure flattening that can be implemented in-season or 

at-harvest and 4) improve understanding of the causes of early pressure flattening in storage. The 

experimental research was conducted over three years between 2009 and 2012 and was developed based 

on practices used and cultivars grown in the San Luis Valley of Colorado.   
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SECTION 1. DEVELOPMENT OF A RESEARCH METHODOLOGY TO INDUCE AND 
MEASURE PRESSURE FLATTENING 

  
An important step in developing the pressure bruise research program was to devise a method to create 

pressure flattening in samples to determine which growing season or postharvest treatments resulted in 

differences in pressure flattening development. Additionally, samples that would be induced to pressure 

flatten under controlled conditions would identify which at-harvest measurements could give the best 

indication of future pressure flattening during storage.  The initial methodology for inducing pressure 

flattening consisted of using replicates of roughly 12 kg. of treatment or control potatoes placed in red 20 

kg. mesh onion sacks. During bin loading, the samples were placed in the potato piles of commercial 

storages near the wall at about 1 m. from the floor (Figure 2). These samples would theoretically be 

exposed to both high velocities of ventilation as well as the pressure of most of the height of the pile.  

These samples were evaluated for pressure flattening when the commercial bins were unloaded. However, 

the inherent problems of this experiment were: 1) that it is difficult to control whether a bin may be 

unloaded before pressure flattening occurs, 2) whether the surrounding potatoes will have excessive 

disease that can spread to the research samples, and 3) to prevent tuber breakage or loss of samples when 

they are pulled from the pile during unloading. In the 2008-2009 storage season, samples intended to 

determine relative cultivar susceptibility to pressure flattening were placed in 19 separate storage bins at 

two different storage operations.  Of the 19 sets of samples, 15 were in bins that were unloaded by the 

middle of December, which is often at least a few weeks before significant pressure flattening typically 

occurs. Two of the remaining sets of samples were in bins that had a high percentage of potatoes 

developing soft rots and storage diseases, resulting in those samples being decayed and non-usable. The 

remaining two sample sets were retrieved months apart and provided only marginally useful data.   
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Development of the Ventilated Container System to Induce Pressure Flattening 

It was evident that the success of any research to determine methods to anticipate or reduce pressure 

flattening of stored potatoes depended on developing a system in which pressure flattening could be 

induced under conditions similar to those in a bulk storage (Figure 3) while maintaining control over the 

date that samples are retrieved and minimizing factors such as sample damage due to the spread of 

disease through a bin. As a result, an alternative method (the crib or ventilated container method) of 

causing pressure flattening was developed by myself and Dr. Jayanty with input from Kendall Nye, a 

potato farm and storage manager (Figure 4). Ventilated, plastic bulk produce containers (122 cm X 122 

cm X 79 cm HDPE plastic) were used to provide an environment for inducing pressure flattening.  A 

layer of filler potatoes approximately 15 cm. is first placed across the bottom of the container (Figure 4 

“D”). Several  2.2 kg. mesh potato bags containing up to 10  tubers from each treatment, randomly 

selected from the freshly harvested potatoes are labeled were placed on top of these potatoes(Figure 4 

“E”) and then more filler potatoes (Figure 4”D”) are added to reach the upper rim of the container.   A 

107 cm X 107 cm sheet of 2.5 cm thick plywood that has been precut with 20 equally spaced 5 cm 

diameter holes is placed across the surface of the potatoes in the container, taking care to avoid contact 

between the plywood and the sides of the container.  A concrete block (Figure 4 “C”) is placed at each 

corner of the plywood sheet plus one in the middle of the sheet. The 1042 l. capacity water tank (Figure 

4”A”) is supported and kept level atop the wooden support pallet (Figure 4”B”). The concrete blocks 

allow for the water tank and pallet to move downward as tubers are compressed without the water tank 

and its supporting pallet resting directly upon the ventilated plastic container. A length of 46 cm diameter 

polyethylene plastic greenhouse air exchange tube (Figure 4 “F”) with precut air release holes is 

connected to a 46 cm circular fan that was placed above the 10 mil plastic sheeting (not shown in the 

image) between the two rows of elevating concrete blocks (Figure 4 “G”). Plastic sheeting extending past 

both sides of the concrete blocks is then carefully sealed to the sides of the containers. The plastic 

sheeting can be secured using duct tape and construction staples, forcing the air supplied from below to 
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move upward through the containers of potatoes.  Before the containers were assembled the polyethylene 

ventilation tube was attached to the fan to check the ventilation air output of the system. An anemometer 

was used to determine that each hole in the air exchange tube provided air velocity of 28-30 m3 min-1, 

which is comparable to that supplied by holes cut in the round metal ventilation tubes used in commercial 

potato storage cellars.   

For the experiments conducted, the potato filled ventilated containers were placed tightly together with 

the continuous air exchange tube beneath them.  In initial testing of the design, a custom fabricated 

pressure plate was placed in the bottom of the container. The pressure plate provided a means to 

determine whether the force of the additional weight added was being exerted downward through the 

potatoes into the area with the samples or merely being distributed into the walls of the container itself. It 

also provided a means to calculate the approximate commercial storage pile height that corresponds with 

the force exerted on the samples. The pressure plate showed that this apparatus once full of potatoes and 

topped with 1040 l. of water in the tank could apply approximately 1225 kg per m2 of pressure to samples 

located in the lower portion of the ventilated container. This is approximately equivalent to 2.4 m. of 

potatoes above the sample bags based on an observed weight of 494 kg of russet potatoes per m3. This 

corresponds to pressures near the mid-height of a 5 m high potato pile in a commercial storage cellar.  
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Figure 2. Example of research samples placed in commercial storage pile. 

 

 

Figure 3. Example of typical bulk storage pile (5 m. pile height) in the San Luis Valley of Colorado 
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Figure 4. Diagram of the ventilated container design for inducing pressure flattening in storage. 

The use of the ventilated container and water tank system successfully induced pressure flattening over 

the course of several months of storage (Figure 5). The flattening proceeded at a similar rate to what is 

seen in commercial storages in the same geographical area with pressure flattening developing in 

December and January ( 3 months storage duration) and then producing bruise in excess of grade 

standards in the months of March and April ( 5-6 months storage duration). The measured and calculated 

pile pressure of approximately 2.4  m. of pile pressure (800 kg./m. sq.) above the samples was sufficient 

to produce pressure flattening in the sample zone when the ventilation system was run continuously, 

rather than using the pile temperature based run times used by commercial storage operators. Potential 

limitations of the design were that because inflation of the poly-tube regulated the air flow, there is 
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limited opportunity to reduce air flow rate, although power to the fan itself can be controlled through the 

use of a timer to simulate different run times that are used by commercial storages. In addition, studies 

may use the amount of water used in the water tank to supply different pressures to simulate different 

commercial pile heights. This would allow for development of cultivar specific pile height 

recommendations. The relatively large tuber holding capacity of the ventilated container allowed for 

sufficient replications of each treatment so that the inherent potential of the design to produce differences 

based on location within the sample zone were minimized. 

The advantages of the ventilated container design for inducing pressure flattening were: 

1. The physical mechanism of pressure flattening in the cribs is nearly identical to that of pressure 

flattening in commercial storage operations. 

2. The ventilated container design allows for evaluation of multiple treatments and replications 

within the same container.   

3. The design allows for simulation of different pile heights by adjusting water tank fill levels and 

for different amounts of ventilation by controlling power to the fan. 

4. The additional pressure/ weight provided by the water tank can be added and removed with 

minimal movement of the potatoes within the ventilated container. 

5. The researcher has more control over the date that the samples are retrieved than when using 

samples placed within a commercial storage pile. 

6. There is a reduced likelihood of damage to the samples when they are retrieved as well as 

reduced influence of storage rot on results with the crib design. In part this is because it is easier 

to hand select the additional potatoes used to fill in above and below the research samples, 

discarding any that are damaged or obviously diseased. 
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Figure 5. Example of pressure flattened tubers retrieved from the ventilated container design. 

 

The limitations of the ventilated container design were:  

1. The ventilated containers need to be placed within a storage area that can maintain a desired 

temperature and relative humidity. 

2. The design limits calculated pressure applied to no more than 2.4-2.75 m. of pile pressure above 

the sample area (with 1040 l. water tank completely filled).  

3. There is a potential for effects resulting from the positioning of samples within the sample area 

but this can be controlled through sufficient replication and randomization of placement within 

the area of the container.  

4. The water tanks used to apply additional weight/pressure can tilt or shift during storage season 

but they can be drained in place, adjusted, and refilled without any physical movement of the 

potatoes in the crib. 
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Evaluation Methodology for Determining Severity of Pressure Flattening: 

When samples were removed from the commercial storage of the ventilated container system, each tuber 

within each sample bag “replicate” was evaluated. For the initial research in 2009 and 2010, samples were 

graded as scorable (pressure flattening in excess of the area allowed as a US No.1 potato) or not scorable 

(pressure flattening within the USDA pressure flattening grade standard) (see Table 1 below). After the 

initial storage season, pressure flattening was evaluated in more detail. Each tuber with pressure flattening 

had each flattened area measured, numbered, and diameter of each area recorded (Figure 6). This data 

could be used to compare aggregated pressure flattened areas numerically as well as to determine the 

approximate USDA quality grade of each tuber in each sample bag. The percentage of tubers in each 

USDA grade can also allow for differences in pressure flattening to be presented as dollars saved or lost 

by treatment at different storage intervals. The flattened areas from the samples had the surface skin 

removed by peeling (approximately 3mm. thickness) 3-5 days after initial removal from the ventilated 

containers for the 2010-2011 storage season. The tissue beneath the peeled skin was then visually 

inspected for the occurrence and severity of discoloration under the flattened areas. Very few peeled areas 

had even mild discoloration and no conclusions could be made based on the data obtained.  

  Table 1. USDA Tolerances for Pressure Flattened Areas by Grade Standard (converted to 
metric) 

Tuber Diameter  Tuber Weight  No. 1 (aggregate area)  No. 2 (aggregate area)  
 Potato is:  Potato is:  Not more than:  Not more than:  
Less than 5.08 cm.  Less than 113 g.  1.27 cm. 2.54 cm. 
5.08 to 6.35 cm. 114  to 170 g. 2.54 cm. 3.81cm. 
6.36 to 7.62 cm. 171 to 227 g. 3.18 cm. 4.45 cm. 
7.63 to 8.89 cm. 228 to 397 g.  3.81 cm.  4.76 cm. 
8.90 to 10.16 cm. 398 to 567 g. 4.45 cm. 5.08cm. 
10.17 to 11.43 cm. 568 to 794 g. 5.08 cm. 5.72 cm. 
11.44 to 12.7cm. 795 to  1021 g. 5.72 cm. 6.99 cm. 
More than 12.7 cm. More than 1021 g. 6.35 cm. 8.26 cm. 
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Figure 6. Example of evaluation methodology to determine pressure flattening following storage 

experiments. 
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SECTION 2. DEVELOPMENT OF AT-HARVEST AND EARLY STORAGE SEASON 
TESTS TO PREDICT RELATIVE SEVERITY OF PRESSURE FLATTENING  

 

Introduction to Predictive Tests: 

A considerable challenge faced by potato farms and shippers is successful determination an optimal 

“shipping order”. In other words, growers must do their best to determine which potatoes to unload from 

storage first and which potatoes will store with the least amount of loss if kept until the end of their 

storage season. It was decided that if an at-harvest or early storage season test could determine which 

fields or cultivars would pressure flatten first it would help growers determine a shipping order that could 

reduce their economic losses. This would be accomplished by early storage season shipping of the most 

pressure flattening susceptible fields and cultivars, while allowing less susceptible fields to be shipped 

later. This should, on average, reduce economic losses due to pressure flattening. An initial step in 

determining whether to consider an at-harvest testing methodology to predict pressure flattening would be 

to determine if there is variability in the response of samples, both among and within cultivars with regard 

to the factor being tested. Secondly, there was a need to be able to correlate data from these at-harvest 

tests with the amount of pressure flattening observed after a common duration of storage. Our initial 

testing was done using a mixture of samples from different fields and cultivars. Based on the previous 

research on maturity differences resulting in moisture loss and therefore, potentially increased pressure 

flattening, the susceptibility of samples from different fields and cultivars to moisture loss could be 

predictive of pressure flattening development. The different fields and cultivars produced a range of at-

harvest moisture loss susceptibility when allowed to dry in ambient conditions (20C and 40% RH) and at 

an accelerated rate in a drying oven set at 38 degrees C. It was thought that dry soil, and therefore tuber 

dehydration prior to harvest, may have a strong influence on pressure flattening development so two tests 

were developed to attempt to determine hydration status of the tubers at harvest. The first involved 

soaking tubers for 24 hours and measuring weight gain believed to result from absorption of water 

through the periderm. The second technique involved modifying a procedure that used short duration 
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soaking of leaf discs to determine relative water content (Dhanda and Sethi, 1998). In our testing, tissue 

cores were extracted from the surface of the tubers and soaked, ideally to reach maximum hydration. Due 

to the influence of tuber dehydration on increased blackspot bruise incidence at harvest (Thornton and 

Timm, 1990) and the variability in blackspot bruise incidence when a range of fields and cultivars were 

tested, attempts were also made to see if percentage of tubers with blackspot bruise at-harvest would 

correlate with differences in pressure flattening. Research has suggested that potatoes with lower specific 

gravity may be more prone to pressure flattening development (Thornton and Bohl, 1998). As a result, 

specific gravity was measured at harvest to determine whether a correlation existed between specific 

gravity and pressure flattening susceptibility. The last potential at-harvest predictive test involved 

measurement of the maximum amount of force required to deform the surface of the tubers at harvest. 

This testing would be similar to testing using a penetrometer conducted with apples to determine 

storability. Previous research had also been conducted that determined differences in the resistance of 

potato tissue to force and pressure based on cultivar differences and tuber hydration (Zdunek and Umeda, 

2005, Bajema et al. 1998). However, the use of a penetrometer or texture analyzer to predict relative 

pressure flattening was considered a novel concept. 

 

Materials and Methods 

In order to develop a method for predicting differences in potential to pressure flatten in storage there 

needed to be ways to obtain measurements of moisture loss at harvest coupled with the ability to evaluate 

whether those measurements are related to eventual pressure flattening. In 2009 and 2010, experiments 

were carried out to measure moisture loss at harvest, re-uptake of water by freshly harvested tubers, and 

blackspot bruising. In 2011, samples were tested at-harvest for relative water content using tissue cores, 

specific gravity and the peak load required for 3mm. deformation. These results were than compared with 

pressure flattening development for the respective storage seasons.  
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For the initial year of rehydration and at-harvest dehydration tests, one hundred and fifty tubers (228-342 

g.) were harvested by hand from 16 separate commercially managed fields on the day prior to commercial 

harvest. These 16 fields were selected because they represented 3 different russets, 2 different yellow 

skinned potato cultivars, and 2 different red skinned cultivars that were thought to differ substantially in 

storability. The tubers were divided into three sets of five replicates of ten tubers. The samples were 

collected into 4.5 kg. plastic mesh bags with labels and weighed immediately after collection. One set of 

five bags was placed into a Grieve drying oven and dehydrated at 37 degrees C for 24 hours. A second set 

of five sample bags was held in ambient conditions (20 degrees C and 40% relative humidity). After 24 

hours the samples were reweighed. The third set of five bags from each field /treatment was placed in a 

35 l. plastic bucket filled with water at approximately 18 degrees C for 24 hours. After 24 hours the 

samples were re-weighed, and percentage weight gain or loss was calculated.  On the day of harvest for 

each of the 16 fields, three 20 kg plastic mesh onion sacks were filled with approximately 12 kg of 227-

340g, freshly harvested tubers and labels were placed in each sack. The filled sacks were then stored 

inside a climate controlled corridor at approximately 14 degrees C and 95% relative humidity while 

samples from the other fields were obtained during the next several days. Once the at-harvest samples 

were all collected, they were tied shut using 1.3 cm diameter polymer rope and taken to a 30,000 cwt. 

storage bin that was being filled. The operator of the piling apparatus created a flat pile of potatoes with 

an area approximately 1 m. high and 3.7 m. by 1.2 m. wide in the middle of the storage cellar. The sample 

bags were laid flat on top of this short potato pile in a randomized fashion. Additional polymer rope was 

then used to tie the bags closely together by threading the rope through one end and sliding them together 

one at a time. The excess rope that was still attached to the samples was then tied to metal railing on a 

catwalk above the pile. The piling line operator then resumed filling the cellar until it was uniformly filled 

to a height of 5 m. The blackspot bruise testing was conducted by an agricultural consulting and testing 

company (Agroengineering, Inc, Alamosa, Colorado USA) that evaluates all fields and cultivars grown by 

several local potato growers for blackspot bruising during harvest. Their procedure to test blackspot 
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bruise susceptibility is to randomly collect approximately 10 kg. of potatoes from every 2nd truckload of 

potatoes that arrives at the storage to be unloaded, incubate the tuber for 16 hours at 37 degrees C and 

then peel the tubers to determine percentage of tubers with blackspot bruising. A typical field would 

produce roughly twenty, 10kg. samples. The blackspot bruise results from this testing were used for the 

16 combinations of fields and cultivars that were selected for study.  

In 2011, a series of three at harvest tests were developed to predict relative pressure flattening 

susceptibility. The tests were to measure at-harvest specific gravity, at-harvest relative water content 

using cores cut from the potatoes surface, and determination of peak load in grams required for a 3mm 

surface deformation of the tubers. This testing was conducted for all treatments and cultivars in field trials 

in 2011, which resulted in 45 separate combinations of cultivar and treatment.  Plots were mechanically 

harvested 3 weeks after vine kill, and 21 plastic mesh bags were used collect samples with ten 228-342 

gram tubers for 3, 6, and 9 month storage duration testing. These samples were put aside for later pressure 

flattening evaluation using the ventilated container system. From the remaining non-damaged tubers, 

samples were gathered for specific gravity, relative water content, and texture analysis testing. Specific 

gravity was determined using the weight in air vs. weight in water method wherein specific gravity = 

weight in air/(weight in air - weight in water). Three samples of ten tubers each were first weighed on a 

10 kg. capacity analytical balance and then transferred to an attached metal basket that was immersed in a 

190 l. plastic water barrel.  Water used was allowed to equilibrate to the ambient temperature of 20 

degrees C before testing. The At-harvest relative water content testing was adapted from techniques using 

discs of leaf tissue (Dhanda and Sethi, 1998) in which tissue samples are weighed, floated for four hours 

in a small container or petri dish containing water, removed and weighed again, and then placed in a 

drying oven to remove all water from the tissue and thereby obtain an oven dry weight. Once these weight 

measurements are obtained the relative water content of the tissue at harvest can be calculated using RWC 

= (FW-DW)/(TW-DW), where FW is the initial fresh weight, DW is the oven dried weight, and TW is the 

turgid weight of the samples immediately after soaking in water. Potato tubers are obviously not leaves, 
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so for our testing, ten 1 cm. diameter by 1.5 cm. depth tissue cores were extracted using a 1 cm. diameter 

tubular metal hand borer from each of fifteen tubers randomly selected at harvest for each 

cultivar/treatment combination. The tissue cores were weighed and then placed in a 50 ml. conical plastic 

tube. Cold water was added to the tube until the cores were immersed and then the tubes were labeled, 

including the time, and placed in a test tube rack for three hours. The tubes were not handled or agitated 

during this time to avoid sloughing of tissue. After three hours the cores were removed from the tube, 

gently patted dry using a paper towel, and weighed. Then the cores were placed in an aluminum foil tray 

and put into a drying oven at 80 degrees C for 48 hours to remove all moisture, before being weighed 

again. The texture analyzer or instrumented penetrometer used to determine peak load required for 

surface tissue deformation was a 10 kg. capacity Brookfield CT3 Texture Analyzer equipped with a TA 

Bt kit and a T18 spherical probe (Brookfield Engineering Laboratories, Inc. Middleboro, MA. USA).  The 

TA-Bt Kit is an adjustable flat metal sample table that holds a sample below a descending probe fixture 

(in this case, a 12 mm. spherical steel ball, the T18 probe). The spherical probe was considered the most 

analogous to the rounded surface of an adjacent tuber. The 3mm. target deformation depth was thought to 

correspond well to the depth of the periderm and underlying cells that would be crushed by pressure 

flattening in commercial storage. An attempt to achieve greater deformation depth would likely require 

more force than the 10 kg. model was capable of producing. When the instrument was purchased, 

preliminary testing was conducted using previously stored and oven treated tuber samples, with and 

without removing the periderm by peeling, to determine the if the periderm itself and moisture loss had an 

effect on the peak load required for deformation. The tubers were tested using the instrument by cutting 

them in half and setting the half, cut side down, on top of the fixture table. The instrument was set for the 

probe to descend at 0.5 mm. per second until contact with the tuber surface resulted in a force load of 75 

g., at which point the instrument recorded the force applied every one tenth of a second. This continued 

until the probe was 3mm. below the 75 gram “trigger” setting. Once 3mm.deformation was achieved the 

probe ascended at 5 mm. per second post-test speed. The highest force applied, the “peak load” in grams 
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was recorded separately, averaged, and used to compare the different cultivars and treatments.  For the at-

harvest testing of the different fields and cultivars, thirty tubers were tested. For these samples, the tuber 

surface was not peeled because preliminary testing determined that the skin (outer periderm) itself 

provided some resistance to pressure as well as because potatoes in bulk storage are stored with their skin 

attached.   

In 2011 and 2012, additional texture analysis testing was done using tubers of 3 russet cultivars (Russet 

Norkotah Selection 8, Classic Russet, and Rio Grande Russet) to determine the sensitivity of the texture 

analyzer to moisture loss (as percent weight loss) from the tubers. The relative water content test was also 

evaluated in 2011 for the three russet cultivars to determine how sensitive that test was to differences in 

moisture loss. Approximately three hundred tubers (weighing 228-342 g.) of each cultivar were harvested 

from moist soil by hand and weighed using an analytical balance. The weight of the tubers was then 

written on that tuber using a black permanent marker. The tubers were then stored in groups by cultivar in 

35 l. plastic buckets under ambient conditions (20 degrees C and 40% relative humidity) and re-weighed 

twice a day. As the tubers lost weight, the tubers were separated into groups based on half- percent 

moisture loss intervals (+/- 0.15%) until a group of twenty tubers was created for each group. In other 

words, as each of the 300 potatoes for each cultivar were reweighed, the amount of weight loss was 

immediately calculated for that tuber. If a tuber had lost between 0.35% and 0.65% it was put in a group 

of potatoes that had lost roughly 0.5%. Once twenty tubers were found at an individual re-weighing that 

had lost 0.5%, that set of tubers was considered to be complete for that cultivar. The twenty tubers were 

then evaluated using the texture analyzer to determine peak load required for 3mm. deformation and 

tested for relative water content. Immediately before the texture analysis for each potato, the tissue cores 

for relative water content were collected from the half of the potato not used for the texture analyzer. 

Extra tubers that had been re-weighed were returned to the buckets so that twenty tubers could be 

identified at subsequent weighing that had lost 1% of their weight and so on until twenty tubers with 4.5% 

moisture loss had been tested. Although only 180 tubers were used for each cultivar, 300 tubers were 
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initially harvested.  This was done because many tubers at each weighing would not fall within +/-0.15 

percent of a weight loss category, and other tubers would either lose weight much faster or far slower than 

the majority of the tubers for that cultivar. The same procedure for evaluating pressure flattening versus 

weight loss was followed in 2012, with an exception that the CT3 texture analyzer used had a 25 kg. 

capacity for applying a load.   

 

Procedure to Induce Pressure Flattening  

The samples from 2009-2010 were placed in a 5 m. high potato pile in commercial storage bin and 

allowed to develop pressure flattening until the bin was shipped in March. The sample bags were 

removed from storage and evaluated for pressure flattening as described on the next page (Evaluation of 

the Samples for Pressure Flattening).The 21 mesh bags set aside at harvest in 2011 were weighed, the 

weight recorded, and then placed into three sets of ventilated containers. Seven sample bags from each 

cultivar and treatment were placed in each set of ventilated containers. One set of two containers would 

be disassembled and the sample tubers evaluated after 3 months, another set after 6 months, and a third 

set after 9 months storage duration. Samples from within the same field experiment were kept in the same 

container. The ventilated container apparatus, as described earlier, was designed to test tuber 

susceptibility to pressure flattening when exposed to ventilation, time, and pile pressures similar to those 

found in commercial potato storages. The six filled containers were placed tightly together with a 

continuous air exchange tube beneath them. After the desired storage duration, sample bags were 

removed from the containers, weighed to determine weight moisture loss during storage and then assessed                  

for pressure flattening. The set of samples stored for 9 months in 2011 was discarded due to excessive 

sprouting. The samples had not been treated with sprout inhibitors because the containers were being kept 

in a storage normally used to store seed potatoes.  
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An initial evaluation of the effects of simulated pile heights is being conducted in 2012-2013. Tubers 

from 15 different cultivars were evaluated for peak load required for 3mm surface deformation at harvest. 

Six ventilated containers were used, to allow for three different pile heights (3.1 meters, 3.7 meters, and 

4.6 meters) at 2 different storage durations (3 month and 6 month). For each cultivar, five replicates of six 

tubers were placed in labeled 2 kg. plastic mesh bags and then placed in the sample zone of each 

ventilated container. The ventilated container system was modified by reducing the amount of water in 

the plastic tank above the container that is used to provide additional weight. The differences in the fill 

level of the tanks would allow for pressures on the samples to change, creating the different simulated pile 

heights.  The comparisons between at-harvest peak load and the resulting pressure flattening per tuber are 

presented with the data on use of texture analysis.  

 

Evaluation of the Samples for Pressure Flattening  

Pressure flattening was evaluated for each tuber within each sample bag.  Tubers were visually inspected 

and each flattened area was circled, numbered in ascending order using permanent markers, and its 

diameter measured. Counting the number and measuring the individual diameter of each bruised area 

enabled estimation of the USDA grade for each tuber. For example, USDA potato grade standards specify 

that a 227-340g tuber which has more than 18 cm2 combined flattened area is beyond the grade tolerances 

established for a US No. 1 or US No. 2 potato. The samples evaluated in 2009-2010 were recorded as the 

percentage of tubers that had no observable pressure flattening, the percentage that had pressure flattening 

but were still acceptable as a US No. 1 potato, and the percentage of tubers that had pressure flattening 

that would reduce the quality of the potato to a US No. 2 or below.  In 2010 and 2011, individual 

flattened areas were measured and averaged for each sample bag, with the number of bags serving as a 

replicate. Pressure flattening from those experiments is presented as the averaged pressure flattened area 

per tuber. 
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Statistical Analysis and Design 

Tubers that were tested or subjected to pressure flattening were randomly selected from among 227-340g.  

tubers from the harvested field or from tubers collected from the research plot trials. The tuber samples 

placed in the ventilated container design were arranged in randomized fashion within the described 

sample zone. Data analysis for comparisons among treatments was performed using analysis of variance 

at α=0.05 using the data analysis toolpak in Microsoft Excel 2007. Data for individual tubers was 

averaged within each sample bag. Decayed, diseased, or broken tubers were discarded and the average for 

each bag did not include these tubers.  Correlations are based on an automatically calculated logarithmic 

trend line for comparing two sets of plotted data using Microsoft Excel 2007. The R-squared values 

displayed in the figures were also calculated by Excel. Error bars in figures and means separation in tables 

using letter based groupings are based on a calculated Fishers LSD at α=0.05 using the standard error for 

the LS means and an approximated T-value of 2. 

 

Results 

The rate of weight (moisture) loss under ambient conditions correlated to the rate of weight loss from the 

oven dried samples from the same field (R2=0.5896) (Figure 7). This indicates that use of the drying oven 

to determine moisture loss susceptibility could provide more dramatic and easily observable differences 

between cultivars and fields while maintaining similar relative moisture loss to that which is likely to 

occur during harvest and early storage.  
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Figure 7. Correlation of  percent moisture loss of sets of at harvest samples that were either allowed to 
lose moisture for 48 hours under ambient conditions (20°C and 45% relative humidity) or for 24 hours in 
a  drying oven at 37°C). The R-squared value for the correlation trend line is in the upper right corner of 
the figure. 

 

Table 2 indicates differences in all at harvest measurements between cultivars and in some instances 

between fields within a cultivar. The field of Classic Russet and Mozart Field C were more susceptible to 

blackspot bruise than all Innovator fields Satina fields or Yukon Gold Fields. Additionally, Innovator 

Field B, Red Star, and Satina Field A had less blackspot bruising than Fields A or B of Russet Norkotah.  

Blackspot bruise results appear to result mostly from differences between different cultivars. Oven 

moisture loss results indicated significantly lower moisture loss susceptibility for Innovator Field A 

compared to Innovator Field B and Yukon Gold Fields A and C compared to Yukon Gold Field B.Russet 

Norkotah Field C also had significantly higher moisture loss compared to Innovator Field B or Yukon 

Gold Fields A and C.  

The amount of weight gain due to immersion in water was variable enough that significant differences 

were observed. One challenge of rehydrating the potatoes is that samples with very poor skin set appear to 

show high water uptake that may be more related to skin set than to the hydration status of the tubers. 
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This was likely the case for the cultivar Mozart, which across all three fields had significantly more 

weight gain than Red Star,Russet Norkotah Field A, and Satina Field A.   

 

Table 2.  Weight loss (moisture loss) measurements and blackspot bruise results from at-harvest testing 
(by percent). 

Field Cultivar % Oven loss % Water gain % Blackspot Bruise 

A Classic Russet 5.1 AB 1.7 AB C 24 D 

A Innovator 8.4 B 2.0 BC 12 AB 

B Innovator 2.4 A 1.7 ABC 2 A 

A Mozart 5.3 AB 2.6 C 11 ABC 

B Mozart 4.6 AB 2.6 C 11 ABC 

C Mozart 6.0 AB 2.7 C 17 D 

A Norkotah 6.5 AB 0.5 A 15 CD 

B Norkotah 6.7 AB 1.3 ABC 14 BCD 

C Norkotah 8.4 B 1.7 ABC 9 ABCD 

A Red Star 5.0 AB 0.9 AB 3 A 

A Satina 6.6 AB 1.0 AB 4 AB 

B Satina 4.9 AB 1.3 ABC 5 ABC 

C Satina 4.8 AB 1.4 ABC 3 A 

43 Yukon 1.9 A 1.7 ABC 5 ABC 

53 Yukon 8.2 B 2.3 BC 5 ABC 

55 Yukon 2.6 A 1.6 ABC 6 ABC 
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The pressure flattening results from the samples stored in the commercial storage until March are 

compared in Table 3. More scorable pressure flattening was observed for Classic Russet (63%) and 

Yukon Gold Fields  A and B (57% and 48% respectively) compared to the two Innovator Fields, the three 

Satina Fields, Russet Norkotah Field A, Yukon Gold Field C, and Mozart  Field B. The only significant 

difference in the non-scorable results was between the Classic Russet field (36%) and Yukon Field A 

were among the lowest compared to Mozart Field B (75%) and Innovator Field A with (70%). This is 

largely due to fact that the remainder of the Classic Russet tubers and Yukon Field A tubers had severe 

pressure flattening. The table could also be interpreted to show that potatoes in the lower half of a 5 m. 

pile of potatoes are likely to have pressure flattening (even if non-scorable if stored for several months). 

Please note the explanation for scorable and nonscorable pressure flattening below the table. 
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Table 3. Total at harvest moisture loss, blackspot bruise, and March pressure flattening results      (by 
percent). 

Field Cultivar %Flattening non-scorable % Flattening scorable 

A Classic Russet 36 A 63 D 

A Innovator 70 BC 20 ABC 

B Innovator 62 ABC 0 A 

A Mozart 47 ABC 33 ABCD 

B Mozart 75 C 5 A 

C Mozart 63 ABC 28 ABCD 

A Norkotah 50 ABC 13 AB 

B Norkotah 63 ABC 30 ABCD 

C Norkotah 50 ABC 38 ABCD 

A Red Star 58 ABC 25 ABCD 

A Satina 51 ABC 16 A 

B Satina 62 ABC 5 A 

C Satina 54 ABC 17 AB 

A Yukon 40 AB 57 CD 

B Yukon 51 ABC 48 BCD 

C Yukon 52 ABC 35 ABC 

***Percent flattening nonscorable is the percent of tubers that had small pressure flattening that would 
not be scored as damage by USDA. Percent scorable flattening is the combined total of potatoes that 
would be damaged enough to be graded as No. 2 or lower. 

 

The percent of tubers with more severe, scorable pressure flattening compared to the percent of weight 

loss (as moisture loss) from the drying oven for the fields and cultivars is plotted in Figure 8. Despite the 

logic that immature tubers were more likely to lose moisture and therefore pressure flatten more severely, 

there was no significant correlation between oven moisture loss and pressure flattening.   



 
 

30 
 

 

 

Figure 8. Correlation of moisture loss susceptibility (24 hours at 37°C) with percent of tubers that 
developed pressure flattening in excess of the USDA No. 1 quality standard after 5 months storage in a 
commercial storage bin. The R-squared value for the correlation trend line is in the upper right corner of 
the figure. 

 

The percent weight loss from the drying oven treatment was plotted against the percent weight gain from 

the rehydration treatment to determine if fields and cultivars that had greater moisture loss in the oven 

were more (or less) likely to absorb more water when immersed (Figure 9). In other words, it was 

important to determine if sampled fields were losing less weight in the oven because they had previously 

been dehydrated in the field (resulting in an increase in weight gain from rehydration).  For the fields and 

cultivars studied there appeared to be no relationship between the oven weight loss treatment results and 

the weight gained during rehydration. In addition, there was no correlation observed when the percent 

weight gain from rehydration is compared to the percent of tubers with scorable pressure flattening 

(Figure 10).  
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Figure 9. Correlation of percentage of water uptake of samples at harvest (as increase in mass) after 
immersion in 20°C water for 24 hours compared with percent moisture loss when stored at 37°C for 24 
hours. The R-squared value for the correlation trend line is in the upper right corner of the figure. 

 

 

Figure 10. Correlation of percentage of water uptake of samples at harvest ( as increase in mass) after 
immersion in 20°C water for 24 hours compared with percent of tubers that developed pressure flattening 
in excess of the USDA No. 1 quality standard after 5 months storage in a commercial storage bin. The R-
squared value for the correlation trend line is in the upper right corner of the figure. 
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A graphical comparison of increasing percentage of tubers with scorable pressure flattening against the 

percentage of tubers with blackspot brusing at harvest is represented in Figure 11. Although the field with 

the most blackspot bruise (Classic Russet) also had the most scorable pressure flattening, there is no 

obvious trend showing a relationship between blackspot bruise and percent scorable flattening across 

fields and cultivars. When the data is plotted to determine if there is a correlation between blackspot 

bruise at- harvest and scorable pressure flattening there was no correlation (Figure 12). 

 

             

       

Figure 11. Comparison of percentage of tubers with blackspot bruise across fields and cultivars 
with the percentage of tubers that developed pressure flattening in excess of the USDA No. 1 
quality standard after 5 months storage in a commercial storage bin arranged in order of 
increasing pressure flattening.  
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Figure 12. Correlation of percentage of tubers with blackspot bruise at with percent of tubers that 
developed pressure flattening in excess of the USDA No. 1 quality standard after 5 months storage in a 
commercial storage bin. The R-squared value for the correlation trend line is in the upper right corner of 
the figure. 

 

In 2011, there was a different series of at-harvest predictive tests conducted to anticipate relative pressure 

flattening development for forty four combinations of russet cultivars and treatments. At-harvest specific 

gravity results showed low correlation (R2=0.2404) with the pressure flattened area per tuber after three 

months storage in the ventilated containers (Figure 13).  There was a similar small correlation 

(R2=0.2026)  for the at-harvest specific gravity compared with the pressure flattened area per tuber after 6 

months storage duration using the ventilated containers system (Figure 14). 
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Figure 13. Correlation of at harvest specific gravity of tubers with the pressure flattened area per tuber 
(cm2) after 3 months storage duration. The R-squared value for the correlation trend line is in the upper 
right corner of the figure. 

 

 

The change in relative water content did show a downward trend as tuber moisture loss increased (Figure 

15). However, it does not appear that, at least using our methodology, relative water content testing of 

tuber tissue cores would be sensitive enough to correctly identify differences in tuber weight loss in 1% 

increments. 
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Figure 14. Correlation of at harvest specific gravity of tubers with the pressure flattened area per tuber 
(cm2) after 6 months storage duration. The R-squared value for the correlation trend line is in the upper 
right corner of the figure. 

 

 

 

Figure 15. Change in relative water content as percentage as tuber moisture loss increases (2011 data).  
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There is low to medium correlation (R2 =0.3230) between the relative water content taken at harvest and 

the resulting pressure flattening after three months storage duration (Figure 16). This indicates that at least 

some differences in at-harvest moisture content between cultivars and treatments resulted in increased 

pressure flattening after 3 months in storage and were observable as differences in the results of the at-

harvest relative water content testing. There was only low correlation (R2=0.1742) when the relative water 

content results observed at harvest were compared to the resulting differences in pressure flattening after 

6 months storage (Figure 17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Correlation of at harvest relative water content of tuber tissue cores with the pressure flattened 
area per tuber (cm2) after 3 months storage duration. The R-squared value for the correlation trend line is 
in the upper right corner of the figure. 
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Figure 17. Correlation of at harvest relative water content of tuber tissue cores with the pressure flattened 
area per tuber (cm2) after 6 months storage duration. The R-squared value for the correlation trend line is 
in the upper right corner of the figure. 

 

The results of preliminary testing with the texture analyzer are presented in Figure 18. The trend of the 

data indicated that the peak loads required for 3mm. deformation did decrease as moisture loss from the 

tubers was increased within a cultivar. It also appeared that the skin itself provided some resistance to 

deformation, and therefore to pressure flattening. The samples were obtained and treated after 5 months 

commercial storage which is why the peak load values are much lower than those expected from at-

harvest testing.  
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Figure 18.Change in peak load required for 2mm tuber surface deformation of post storage tubers with 
additional moisture loss treatments. Tubers were tested with skin intact and with skin removed. 

 

 

The texture analyzer was then used in 2011 and 2012 to evaluate the change in peak load required for 

3mm tuber surface deformation as tubers lost weight at 0.5% intervals following harvest from moist soil. 

In 2011, there was a general trend of decreased peak loads after 1.5% moisture loss across the cultivars 

tested (Figure 19).  However, a likely cause of the lack of decrease in peak load between 0.5 and 1.5% 

moisture loss was that many samples had resistance to deformation in excess of the texture analyzer’s 

testing capacity and had been counted as 10,000 g. even if the actual force required had been higher 

(Figure 20). The number of samples out of twenty tubers that were above the maximum peak load 

declined precipitously as weight loss increased from 0.5% to 2.0%.  
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Figure 19. Change in at harvest peak load required for 3mm tuber surface deformation as tubers lost 
moisture following harvest from moist soil (2011 data). 

 

 

 

Figure 20. Number of at –harvest samples (out of 20) with a peak load required for 3mm tuber surface 
deformation that exceeded the 10kg. limit of the texture analyzer as tubers lost moisture following harvest 
from moist soil (2011 data)  
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Results of similar testing in 2012 when a 25kg. capacity CT3 texture analyzer was used, show a steady 

decrease in the peak load required to deform tubers once tubers had lost more than 1% of weight 

following harvest (Figure 21). Additionally, in both 2011 and 2012, the cultivar Classic Russet was 

consistently less resistant to pressure from the texture analyzer which may reflect detectable differences in 

pressure resistance based on cultivar specific factors in addition to differences resulting from moisture 

loss.  

 

Figure 21. Change in at harvest peak load required for 3mm tuber surface deformation as tubers lost 
moisture following harvest from moist soil (2012 data). 
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the peak load values at harvest.  When the peak loads are compared to the resulting pressure flattened area 

after three months storage in the ventilated containers there is moderate correlation (R2=0.3895) as shown 

in Figure 23. 

5000 
5500 
6000 
6500 
7000 
7500 
8000 
8500 
9000 
9500 

CONTROL 1.0% 2.0% 3.0% 4.0% 

Pe
ak

 L
oa

d 
re

qu
ir

ed
 fo

r 
3m

m
 

de
fo

rm
at

io
n 

 

Percent Moisture Loss 
Rio Grande Norkotah Classic 



 
 

41 
 

 

 

Figure 22. Comparison of at-harvest peak loads required to cause 3mm surface deformation across 
treatments and cultivars from 2011 field research trials. 

 
 

 

Figure 23. Correlation of at harvest peak load required for 3mm surface deformation with the pressure 
flattened area per tuber (cm2) after 3 months storage duration. The R-squared value for the correlation 
trend line is in the upper right corner of the figure. 
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Because of the moderate correlation observed, it was decided to compare the averaged pressure flattened 

area per tuber for the upper half of fields (when organized in order of ascending at-harvest peak load) 

with the pressure flattened area per tuber form the bottom half of fields after 3 months storage. The results 

in Figure 24 demonstrate that, as a group, the fields with lower at- harvest peak loads produced 

approximately 50% more (9.85 cm2 vs. 15 cm2) pressure flattened area per tuber after 3 months storage.   

 

Figure 24. Comparison of averaged pressure flattened area per tuber (cm2) across treatments and cultivars 
after 3 months storage duration for 2011 field experiments.  “Bottom half” treatment is the average of 
samples that were in the lower half of values when arranged in order of increasing peak load required for 
3mm. surface deformation at harvest. “Top half” treatment is the average of samples in the upper half of 
values when arranged in order of increasing peak load required for 3mm surface deformation at harvest.  

 

 

Next a similar comparison was conducted by organizing the fields and cultivars into quartiles by 

ascending peak load, each consisting of 11 fields (Figure 25). When analyzed by quartile, the fields with 

lowest at-harvest peak loads produced approximately twice as much pressure flattened area per tuber after 

3 months storage compared to the fields in the highest quartile   (8.33 cm2 vs. 17.01 cm2).   
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Figure 25. Comparison of averaged pressure flattened area per tuber (cm2) across treatments and cultivars 
after 3 month storage duration for 2011 field experiments.  “Bottom 1/4” treatment is the average of 
samples that were in the lower 25% of values when arranged in order of increasing peak load required for 
3mm. surface deformation at harvest. “Bottom 1/4-1/2 ” treatment is the average of samples that were in 
the lower 25% to 50% of values when arranged in order of increasing peak load required for 3mm. 
surface deformation at harvest. “Upper 1/2-3/4” treatment is the average of samples that were in the upper 
50%-75% of values when arranged in order of increasing peak load required for 3mm. surface 
deformation at harvest. “Top 1/4” treatment is the average of samples in the upper 25% of values when 
arranged in order of increasing peak load required for 3mm surface deformation at harvest. 

 

 

The at-harvest peak loads for the 2011 samples were also compared to the pressure flattened area per 

tuber after 6 months storage duration (Figure 26). The results indicate a moderate to strong correlation 

(R2=0.5481) between at-harvest peak load and pressure flattening development after 6 months storage. 
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Figure 26. Correlation of at harvest peak load required for 3mm surface deformation with the pressure 
flattened area per tuber (cm2) after 6 months storage duration. The R-squared value for the correlation 
trend line is in the upper right corner of the figure. 

 

There was a significant increase in pressure flattened are per tuber between the upper half of fields and 

cultivars when organized by peak load and the bottom half of fields and cultivars (Figure 27). The 

pressure flattened area per tuber was 19.96 cm2 for the fields with higher peak load values at-harvest and 

31.8 cm2 for the fields with lower peak load values. 
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Figure 27. Comparison of averaged pressure flattened area per tuber (cm2) across treatments and cultivars 
for 2011 field experiments after 6 months storage.  “Bottom half” treatment is the average of samples that 
were in the lower half of values when arranged in order of increasing peak load required for 3mm. surface 
deformation at harvest. “Top half” treatment is the average of samples in the upper half of values when 
arranged in order of increasing peak load required for 3mm surface deformation at harvest. 

 

The results for the 6 month duration samples also indicated significant differences in pressure flattened 

area per tuber when different quartiles of the fields were compared (Figure 28). While there was no 

difference in pressure flattened area between the upper two quartiles, the upper two quartiles did produce 

significantly less pressure flattening after 6 months storage compared to the lower two quartiles. There 

was also a statistically significant difference in pressure flattened area per tuber between the bottom two 

quartiles, with the lowest quartile producing more flattened area (35.95 cm2) than the next lowest quartile 

(27.65 cm2).     
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Figure 28. Comparison of averaged pressure flattened area per tuber (cm2) across treatments and cultivars 
after 6 months storage duration for 2011 field experiments.  “Bottom 1/4” treatment is the average of 
samples that were in the lower 25% of values when arranged in order of increasing peak load required for 
3mm. surface deformation at harvest. “Bottom 1/4-1/2 ” treatment is the average of samples that were in 
the lower 25% to 50% of values when arranged in order of increasing peak load required for 3mm. 
surface deformation at harvest. “Upper 1/2-3/4” treatment is the average of samples that were in the upper 
50%-75% of values when arranged in order of increasing peak load required for 3mm. surface 
deformation at harvest. “Top 1/4” treatment is the average of samples in the upper 25% of values when 
arranged in order of increasing peak load required for 3mm surface deformation at harvest. 

 

A similar analysis of pressure flattening development compared with at- harvest peak loads was 

conducted for an experiment in 2012-2013 involving changes to bulk storage pile height. The correlation 

for the at-harvest peak loads of samples of 15 cultivars with the resulting pressure flattened areas are 

presented in Figure 29 and Figure 30. In Figure 29, there was a strong correlation (R2=0.592) across 

cultivars between the at-harvest peak load required for 3 mm. surface deformation and the pressure 

flattened area per tuber after 3 months storage in a simulated 3.1 m. bulk potato pile. There was a 

moderate correlation (R2=0.3346) between the peak load for the 15 cultivar samples and the pressure 

flattened area per tuber after 3 months storage at a simulated pile height of 4.6 m. (Figure 30).  
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Figure 29. Correlation of 3 month storage duration pressure flattening (cm2) for an equivalent 3.1 m. high 
pile with at-loading peak load for 3mm surface deformation. 

 

 

 

Figure 30. Correlation of 3 month storage duration pressure flattening (cm2) for an equivalent 4.6 m. high 
pile with at-loading peak load for 3mm surface deformation. The R-squared value for the correlation trend 
line is in the upper right corner of the figure. 
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When the different cultivars are segregated into two groups based on increasing peak load values at 

harvest, there is a statistically significant increase in pressure flattened area per tuber for the cultivars with 

lower peak loads. This difference occurred regardless of simulated pile height for tubers kept for 3 

months storage duration (Figure 31). 

 

Figure 31. Comparison of averaged pressure flattened area per tuber (cm2) by pile height. “Bottom half” 
treatment is the average of samples that were in the lower half of values when arranged in order of 
increasing peak load required for 3mm. deformation at harvest. “Top half” treatment is the average of 
samples in the upper half of values when arranged in order of increasing peak load required for 3mm 
deformation at harvest. 
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SECTION 3. EVALUATION OF GROWING SEASON METHODS TO REDUCE PRESSURE 
FLATTENING  

 

Introduction 

The physiological disorder, pressure flattening is a major cause of economic losses in cellar stored potato 

tubers. This complex physiological disorder is also referred to as pressure bruise. Pressure flattening 

refers to the development of depressed or sunken areas on stored tubers (Rowe et al. 1993). These 

damaged areas may also result in a grey or black discoloration in the tissue under the skin (Lulai et al. 

2000). Pressure flattening accounts for a substantial portion of the $298 million dollars in lost due to 

potato bruising each storage year in the United States (Baritelle et al. 2000,  Rowe et al.1993). Economic 

losses from pressure flattening result from inability to meet the USDA grade tolerance causing a 

reduction in value for the potatoes as they are downgraded from US No.1 to US No. 2 or lower. Pressure 

flattening can result in a substantial portion of a storage cellar being discarded as cull potatoes in order to 

meet a desired USDA grade tolerance for the remaining tubers. Pressure flattening occurs as the tuber 

surface becomes depressed or flattened due to constant contact with an adjacent tuber. This contacted area 

receives the force exerted by the adjacent tuber as a result of the weight of tubers above it in the pile, 

which increases as pile height increases. This pile pressure is approximated as 655 kg./m3 of pile above 

the potato (Muthukumarappan, et al. 1994).  The development of pressure flattening is often proposed to 

result from the interaction of three factors; pressure within the pile, duration of storage, and tuber 

moisture loss (Muthukumarappan, et al. 1994).  Three different sets of experiments and analysis were 

conducted to attempt to determine 1) if there is a consistent pattern of cultivar differences in pressure 

flattening susceptibility from year to year, 2) if the  use of late growing season applications of boron, 

calcium, and potassium reduced pressure flattening development, and 3) if additional applications of 

nitrogen near the end of the growing season reduced tuber physical maturity and/or increased pressure 

flattening development during storage. 
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Effect of Cultivar in Pressure Flattening Development. 

At-harvest moisture loss increased the susceptibility to pressure flattening for some cultivars more than 

others (Castleberry and Jayanty, 2012). The significant differences between cultivars in the effects of 

moisture loss on pressure flattening development suggests that moisture loss (as a component of weight 

loss) may result in an increase in pressure flattening for some cultivars. However, cultivar specific 

physiological and anatomical features, such as those responsible for differences in blackspot bruise 

susceptibility may explain pressure flattening differences that are not directly related to tuber dehydration 

(Thornton and Bohl 1998; Corsini et al. 1999). Studies of russet cultivars have shown that mechanical 

resistance of tuber tissue samples can be affected by turgidity but the degree of turgidity loss that leads to 

tissue structural failure under pressure is likely cultivar specific (Bajema, et al. 1998). Tuber anatomical 

features such as cell size, cell wall thickness, and skin thickness may also contribute to the mechanical 

properties of the tissue and are different for different cultivars (Konstankiewicz and Zdunek 2001; 

Zdunek and Umeda. 2005). When plant tissue is compressed, the main effect is on the cell walls, which 

comprise the basic structural elements responsible for structural integrity of the tissue. Higher resistance 

to mechanical stress is found in smaller-sized cells but these cells may be less resistant to micro-damage 

(Konstankiewicz and Zdunek 2001; Zdunek and Umeda. 2005). Some cultivars may pressure flatten 

earlier than other cultivars even if the later flattening cultivars had higher initial rates of moisture loss 

(Castleberry and Jayanty, 2012). Five cultivars that had been planted between 2009 and 2012 at a farm 

and storage operated by a private company were evaluated for relative pressure flattening development. 

Asterix, Innovator,Russet Norkotah, Satina , and Yukon Gold were the cultivars evaluated because they 

included two russet cultivars, (Innovator and Russet Norkotah) and three specialty cultivars (Asterix, 

Satina, and Yukon Gold). It was also thought that Russet Norkotah, Satina, and Asterix would develop 

pressure flattening more slowly than Yukon Gold and Innovator based on the experience of the 

commercial storage operator.   
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Effect of Calcium, Boron, Potassium and Late Growing Season Nitrogen Applications on Pressure 

Flattening Development.  

Calcium, boron, and potassium applications made late in the growing season were thought to improve 

tuber maturity or skin set. Calcium nutrition in particular was thought to be important for periderm 

development (Palta, 2010) Additionally, it was thought that the beneficial role of calcium in cell wall 

structure (Palta, 2010) may improve structural integrity of the cells and therefore confer increased 

resistance to pressure flattening. Furthermore, tuber concentrations of calcium have been reported to be 

affected by genetic factors that relate to cultivar differences (Brown et al. 2012).  Previous research is 

unclear as to whether in-season applications of calcium affect yield, although there may be an 

improvement in cooked potato texture (Agblor and Scanlon, 2002). Boron is frequently applied to potato 

fields although yield and quality effects are uncertain even at higher application rates (Hopkins et al. 

2010). Applications of potassium are reported to reduce specific gravity but also have an impact on yield 

(Panique et al.1997). Interactions between calcium, boron, and potassium applications have also been 

studied. Calcium and boron applications late in the season are believed to cause improve senescence and 

improve tuber maturity. However, boron at higher concentrations may interfere with calcium uptake 

(Abdulnour, et al.2000). Our initial field research in 2009-2010 included a field trial using Yukon Gold to 

evaluate late season applications of different rates of calcium, boron, and potassium and various 

combinations of these nutrients evaluated on subsequent pressure flattening development. In 2011 and 

2012, research was focused on late growing season applications of the individual nutrients, as well as 

nitrogen, to russet cultivars to determine whether there was an effect on pressure flattening development.  
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Effect of Late Growing Season Nitrogen Applications 

Previous research examining the relationship between storability, tuber maturity and nitrogen fertilization 

has focused on issues that are of great importance to potatoes grown for processing (Long et al. 2004).  In 

the processing potato context, tuber immaturity would refer to low specific gravity or higher 

concentrations of reducing sugars, which are factors of great importance to potato processors (Labowski 

2007). Increased nitrogen applications during the late part of the growing season can result in lower 

specific gravity and therefore reduce suitability for processing.  The specific gravity and sugar content are 

not as important to fresh market potato growers in Colorado, who prioritize yield and appearance. For 

fresh market potato production immaturity of a potato crop would refer to poorly developed periderm or 

other factors.  Yield effects of nitrogen rate and application timing are often cultivar dependent and 

differences have been observed among russet cultivars (Love et al. 2005). Some cultivars appear to do 

well with only pre-plant nitrogen applied, while others seem to respond to post emergence applications 

during the growing season (post-emergence). Although pre-plant nitrogen avoids some of the problems 

associated with later applications, there are environmental consequences to both excessive total nitrogen 

and early applications (Shrestha et al, 2010, and Millard 1990). Late season applications of nitrogen are 

often successful in controlling early blight (Soltanpour and Harrison, 1974), but some research indicates 

use of specific fungicides would provide control if late nitrogen applications are undesirable (Millerand 

Rosen 2005). Tuber moisture losses during storage are the direct cause of “shrink” losses during storage 

and have been observed as a consequence of excessive late season nitrogen (Kolbe et al. 1995). 

Furthermore, harvest of immature tubers or tubers with poor skin set can result in an increase in moisture 

loss (Thornton and Bohl,1998 and Olsen and Odberg, 2003) and therefore could potentially result in an 

increase in pressure flattening. The economic returns from fresh market potato crops are affected not only 

by conditions and diseases during the growing season, but also by factors occurring during harvest and 

storage. Increased nitrogen applied during the late growing season that results in tuber immaturity may 

delay harvesting risking frost damage in areas with short growing season. Potato growers and shippers 
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who sell to the fresh market often have significant economic losses from harvest damage as well as from 

pressure flattening and moisture loss (shrinkage) in storage, possibly as a result of excessive nitrogen 

fertilization. Immature potato tubers are more prone to shrinkage of potatoes in storage, and more 

susceptible to bruising and other harvest damage (Thornton and Bohl, 1998, Baritelle et al. 2000). 

Increased periderm damage during harvest can result in an increase in moisture loss from the tubers of up 

to 1000 times that of a non-damaged, well suberized tuber (Olsen and Odberg, 2003). Additionally, tuber 

immaturity can delay or reduce wound healing or suberization of the crop during the early part of the 

storage season (Lulai and Orr, 1995).  Tuber moisture loss can result in further economic losses due to 

increased susceptibility to pressure flattening of potatoes stored for the fresh market (Castleberry and 

Jayanty 2012). Research was undertaken in 2010 and 2011 to study the effects of different rates of late 

growing season nitrogen on harvest damage, and pressure flattening of several popular russet potato 

cultivars. An additional trial in 2011included an organic nitrogen source applied three weeks earlier than 

the inorganic source.  

 

Materials and Methods 

 

Cultivar Susceptibility Methodology 

The 2009- 2010 evaluation of cultivar differences and pressure flattening development used three, 

approximately 10 kg. potato samples that were dug by hand  from a field of each cultivar on the day of 

commercial field harvest. The filled sacks were then stored inside a climate controlled corridor at 

approximately 14 degrees C and 95% relative humidity while samples from the other fields were obtained 

during the next few days. Once the at-harvest samples were all collected they were tied shut using 1.3 cm 

diameter polymer rope and taken to a 30,000 cwt. storage bin that was being filled. The operator of the 

piling apparatus created a flat pile of potatoes with an area approximately 1 m. high and 3.7 m. by 1.2 m. 
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wide in the middle of the storage cellar. The sample bags were laid flat on top of this short potato pile in a 

randomized fashion. Additional polymer rope was then used to tie the bags closely together by threading 

the rope through one end and sliding them together one at a time. The excess rope that was still attached 

to the samples was then tied to the metal railing of a catwalk above the pile. The piling line operator then 

resumed filling the storage bin until it was uniformly filled to a height of 5 m. Once the bin was unloaded, 

samples were retrieved, and tubers were removed from the bags to be evaluated for pressure flattening. 

Unfortunately, the tubers were only stored for 4 months prior to bin unloading and samples from the 

cultivar Innovator had sufficient damage and disease that they were not able to be evaluated properly.  

For the cultivar susceptibility data presented from 2011 and 2012, sixty tubers per cultivar were collected 

at harvest from field trucks during commercial storage loading and placed inside a climate controlled 

corridor at approximately 14 degrees C and 95% relative humidity while samples from the other cultivars 

were obtained during the next few days. These tubers were then used to create 10, six tuber replicates that 

were placed in the ventilated container design used to induce pressure flattening. Each year, five 

replicates were placed in a ventilated container that was to be unloaded after 3 months and the other five 

replicates were placed in a ventilated container for 6 months storage duration.  

In 2011, additional samples of thirty tubers of each cultivar were collected from the top of the commercial 

potato cellar piles one month after harvest and evaluated for differences in the peak load required for 3 

mm. surface deformation.  In 2012, the thirty tuber samples were collected from the commercial storages 

one week after harvest. The texture analyzer, or instrumented penetrometer, used to determine peak load 

required for surface tissue deformation was a 10 kg. capacity Brookfield CT3 Texture Analyzer equipped 

with a TA Bt kit and a T18 spherical probe (Brookfield Engineering Laboratories, Inc. Middleboro, MA. 

USA).  The TA-Bt Kit is an adjustable flat metal sample table that holds a sample below a descending 

probe fixture (in this case, a 12 mm spherical steel ball, the T18 probe). The spherical probe was 

considered the most analogous to the rounded surface of an adjacent tuber. The 3mm. target deformation 

depth was thought to correspond well to the depth of the periderm and underlying cells that would be 
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crushed by pressure flattening in commercial storage. The tubers were tested using the instrument by 

cutting them in half and setting the half, cut side down, on top of the fixture table. The instrument was set 

for the probe to descend at 0.5 mm. per second until contact with the tuber surface resulted in a force load 

of 75 g., from this point on the instrument recorded the force applied every one hundredth of a second. 

This continued until the probe was 3mm. below the 75 gram “trigger” setting. Once 3mm.deformation 

was achieved the probe ascended at 5 mm. per second post test speed. The highest force applied, the 

“peak load” in grams was recorded separately, averaged, and used to compare the different cultivars. 

 

Calcium, Boron, and Potassium Research Methodology  

For the first year of research, in which combinations of boron, calcium, and potassium were applied to 

field plots of the cultivar Yukon Gold, research plots were established in a commercially planted field 

managed by a cooperating farm. The plants were established during commercial planting and then 

subdivided into plots following emergence. Approximately 135 kg. per hectare nitrogen (a 32-0-0 liquid 

formulation) was applied to the field (78 kg. at planting with an additional 3 applications of 22 kg. 

incrementally until 60 days after planting). Plots were established in a randomized block design, with 

each combination of treatments replicated four times. Each individual plot was three rows (planted on .9 

m. centers) by 5 m. with a 1 m. plant-free border between the ends of the plots. Each plot had a 50 cm. 

long wooden stake that was labeled with treatment code to make nutrient applications more efficient and 

accurate. Each plot was treated with the desired nutrient rate and combination dissolved into 2 l. of water 

and then applied with a 3.3 l. hand sprayer to the soil along the upper sides of the raised rows, rather than 

sprayed on the foliage. Boron applied was Solubor, a 20% boron compound that is soluble in water. 

Potassium was applied as potassium chloride (KCl) dissolved in water at the desired rate of potassium. 

Calcium applied was calcium chloride (CaCl2), again dissolved in water to obtain the desired 

concentration. Control plots and plots that did not include a second nutrient were sprayed with water. 
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Treatments were made a few hours before the irrigation system applied 1.2 cm of water. Boron, calcium, 

and potassium were applied at 75 days after planting in the following combinations in which control is no 

application of the nutrient: 

1. Calcium at control, 11.1 kg./hectare additional, and 22.5 kg./hectare additional X potassium at 

control, 2.7 kg./hectare additional, 5.7 kg./hectare additional, and 11.1 kg./hectare additional. 

2. Calcium at control, 11.1 kg./hectare additional, and 22.5 kg./hectare additional X boron  at 

control, .6 kg./hectare additional, 1.2  kg./hectare additional, and  2.2 kg./hectare additional. 

3. Potassium at control, 2.7 kg./hectare additional, 5.7 kg./hectare additional, and 11.1 kg./hectare 

additional X boron  at control,.6 kg./hectare additional, 1.2  kg./hectare additional, and  2.2 

kg./hectare additional. 

 

At harvest, yield was evaluated for the center row of each three row plot and 50 tubers from each 

treatment combination were placed in the experimental ventilated container design and evaluated for 

pressure flattening after 5 months storage duration.   

The boron, calcium and potassium trials established in 2011 were much simpler. Research plot trials were 

established at the San Luis Valley Research Center of the Colorado State University system, using two 

russet skin cultivars, Russet Norkotah Selection 8 and Classic Russet, planted as separate experiments. 

The experimental design used was a randomized block design to attempt to minimize field location 

effects on yield. Each treatment was replicated three times. Each plot consisted of three 5 m. rows planted 

on 0.95 m. centers. Plots were separated at the ends by a 1 m. long plant free area. The research plots 

were fertilized with 67 kg. per hectare of nitrogen (a 32-0-0 liquid fertilizer) applied at planting and three 

additional applications of about 22 kg. each were made during June and early July. Treatment 

applications were made at 90 days after planting. The nutrient applications applied to each cultivar 

consisted of a control (water), boron (solubor w/ 20% boron) at 2.2 kg./hectare, calcium (CaCl2) at 22.5 
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kg./hectare, nitrogen (32-0-0 liquid) at 22.5 kg./hectare, and potassium (KCl) at 11.1 kg./hectare. After 

diluting or mixing with water, each treatment was applied using a hand sprayer at a final volume of 3.3 l. 

per plot. Application was directed towards the upper portion of each raised row, rather than being applied 

to the foliage. Plots were harvested 3 weeks after defoliation of the crop.  At harvest, yield data was not 

collected and tubers from the plots of the same cultivar and treatment were mixed. For each cultivar, 

seventy tubers from each treatment were then selected and placed into fourteen 2 kg. capacity plastic 

mesh bags, weighed on an analytical balance, and labeled. These samples would be used for pressure 

flattening evaluation using the ventilated container system. Seven bags, serving as replicates, were placed 

in one ventilated container to be unloaded after 3 months storage duration, and the second set of seven 

bags was placed in a second ventilated container to be unloaded after six months storage duration. At the 

time of unloading samples would be evaluated for pressure flattening. 

  

Late Growing Season Nitrogen Application Methodology 

Research plot trials were established at the San Luis Valley Research Center of the Colorado State 

University system in 2010 and 2011 to evaluate the effect of late growing season nitrogen applications on 

pressure flattening development. The experimental design used was a randomized block design to attempt 

to minimize field location effects on yield. Individual plots consisted of three, 6 m. rows and each 

treatment was replicated 4 times. The standard practice for both years was to apply sixty seven kg. per 

hectare of nitrogen applied at planting and three additional applications of about 22 kg. per hectare each 

were made during June and Early July.  All treatment applications of conventional nitrogen were done 

using a 32-0-0 liquid nitrogen fertilizer. The organic nitrogen source applied in July as part of the 2011 

research plot trials was a dried animal blood product “bloodmeal” which corresponded to an 11-0-0 

nitrogen fertilizer.   
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For the first field research year, research plot trials were established for four russet cultivars: Canela 

Russet, Centennial Russet, Rio Grande Russet, and Russet Norkotah Selection 8. Plots were planted on 

May 6th, 2010 and late applied nitrogen treatments (control, additional 22.5 kg./hectare nitrogen, and 

additional 45 kg./hectare nitrogen) were applied as a liquid foliar application to the upper portion of the 

raised row, rather than over the foliage, on August 10, which was approximately 90 days after planting. 

Control plots were sprayed with water. This was approximately 25 days prior to vine desiccation.  

Research plots were mechanically harvested on September 28th and October 2nd. Tubers from each plot 

were weighed to determine yield and were evaluated for harvest damage such as skin peeling, and shatter 

bruise. Subsamples were also created following grading to be tested for tuber skin resistance to shearing 

force, specific gravity, and moisture loss from 24 hours in a drying oven at 37 degrees C. After yield was 

measured, fourteen subsamples were created for each cultivar and treatment using 2 kg. plastic mesh 

bags. These samples, each consisting of five tubers would be used to measure long-term moisture loss and 

for pressure flattening evaluation after storage. Seven samples (replicates) of each treatment and cultivar 

were placed in each of two ventilated containers as part of an experimental design for inducing pressure 

flattening.  After 3 months of storage for one container, and again after 6 months of storage in the other 

container, the subsamples of tubers were removed, weighed again, and observed for the number and 

diameter of pressure flattened areas.  

In 2011, replicated, randomized block design plot trials were established, managed, and harvested similar 

to the 2010 field experiments.  In 2011, one set of experiments evaluated the cultivars Canela Russet, 

Mesa Russet, Classic Russet, Rio Grande Russet, and Russet Norkotah Selection 8 with a non-treated 

control, 22.5 kg. per hectare additional nitrogen, and 45 kg. per hectare additional nitrogen applied 90 

days after planting. Once again, the application was made to the upper portion of the raised row, rather 

than over the foliage. Each cultivar was planted and analyzed separately. A second set of experiments 

using the cultivars Canela Russet, Centennial, Premier, and Rio Grande Russet was evaluated for the 

effects of a non-treated control, 22.5 kg./hectare additional organic source nitrogen, 45 kg./hectare 
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additional organic source nitrogen, 22.5 kg./hectare additional inorganic source nitrogen, and 45 

kg./hectare additional inorganic source nitrogen. The organic nitrogen source was applied as a dry 

fertilizer which spread over the ground for the appropriate plots at 70 days after planting. The inorganic 

nitrogen was applied at 90 days after planting.  For this second trial, nitrogen applications were made 

using a calibrated 3 row sprayer that applied the nitrogen over the tops of the plants, including the foliage. 

Plots were harvested 3 weeks after defoliation of the crop. Yield and relevant at-harvest tests including 

specific gravity were conducted. After yield was measured, fourteen subsamples were created for each 

cultivar and treatment using 2kg. plastic mesh bags. These samples, each consisting of five tubers would 

be used to measure long-term moisture loss and for pressure flattening evaluation after storage. Seven 

samples (replicates) of each treatment and cultivar were placed in each of two ventilated containers as 

part of an experimental design for inducing pressure flattening.  After 3 months of storage for one 

container, and again after 6 months of storage in the other container, the subsamples of tubers were 

removed, weighed again, and observed for the number and diameter of pressure flattened areas.  

 

Evaluation of the Samples for Pressure Flattening  

Pressure flattening was evaluated for each tuber within each sample bag.  Tubers were visually inspected 

and each flattened area was circled, numbered in ascending order using permanent markers, and its 

diameter was measured. Counting the number and measuring the individual diameter of each bruised area 

enabled estimation of the USDA quality grade for each tuber in each bag. For example, USDA potato 

grade standards specify that a 227-340g tuber which has more than 18 cm2 combined flattened area is 

beyond the grade tolerances established for a US No. 1 or US No. 2 potato. The samples evaluated in 

2009-2010 were recorded as the percentage of tubers that had no observable pressure flattening, the 

percentage that had pressure flattening but were still acceptable as a US No. 1 potato, and the percentage 

of tubers that had pressure flattening that would reduce the quality of the potato to a US No. 2 or below.  

In 2010 and 2011, individual flattened areas were measured and averaged for each sample bag, with the 
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number of bags serving as a replicate. Pressure flattening from those experiments is typically presented as 

the averaged pressure flattened area per tuber in cm2. 

 

Statistical Analysis and Design 

Field trials such as those designed to test applications of nitrogen or other nutrients were planted in a 

randomized block design with the blocks of treatments arranged based on distance along the length of the 

irrigation system. This was intended to prevent a damaged or plugged spray nozzle on the irrigation 

system from affecting more than one replication of each treatment. The plot designs did not include 

different cultivars within the same plot, so each cultivar was planted as a separate plot trial. Tubers that 

were tested or subjected to pressure flattening were randomly selected from among 227-340g. tubers from 

the harvested field or from tubers collected from the research plot trials. The tuber samples placed in the 

ventilated container design were arranged in randomized fashion within the described sample zone. Data 

analysis for comparisons among treatments was performed using analysis of variance at α=0.05 using the 

data analysis toolpak in Microsoft Excel 2007. Data for individual tubers was averaged within each 

sample bag, with the bag average being used as a replicate. Decayed, diseased, or broken tubers were 

discarded and the average for each bag did not include these tubers.  Error bars in figures and means 

separation in tables using letter based groupings are based on a calculated Fishers LSD at α=0.05 using 

the standard error and an approximated T-value of 2.  
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Results  

 

Cultivar Susceptibility Results 

Although it was not possible to evaluate the pressure flattening of the Innovator samples, there were 

fewer tubers with “scorable” pressure flattening following 4 months storage for Asterix andRusset 

Norkotah, relative to Yukon Gold (3.2% and 3.32%  compared to 9.87%) (Figure 32).  

 

 

Figure 32. Percent of tubers with pressure flattening that is sufficient to reduce quality grade below US 
No.1 (scorable) for samples of different cultivars removed after 4 months in commercial storage (2009-
2010). 

 

When the peak load required for 3mm surface deformation was evaluated for the different cultivars in 

2011, Asterix, Russet Norkotah, and Satina all were significantly higher than Innovator or Yukon Gold 

(Figure 33). Similarly, after 6 months storage duration in the ventilated container system, Yukon Gold 

and Innovator produced significantly more pressure flattening per tuber in 2011 (Figure 34). The pressure 
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flattened area was more than double for Innovator relative to Asterix, Russet Norkotah, and Satina 

cultivars. 

 

Figure 33. Peak load required for 3mm. surface deformation for samples from different cultivars after 1 
month storage duration. (2011 data)  

 

 

Figure 34. Pressure flattened area per tuber (cm2) for different cultivars after 6 months storage duration 
2011-2012 data. 
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A similar trend was observed when texture analysis and pressure flattening measurements were conducted 

in 2012-2013. The peak loads required for 3mm. deformation were significantly higher for Russet 

Norkotah, Satina and Asterix compared to Innovator and Yukon Gold (Figure 35).  Data obtained after 3 

months storage from the 2012-2013 storage season indicates a trend towards increased pressure flattened 

area for Innovator, although there were no observable differences between Yukon Gold and Russet 

Norkotah or Asterix (Figure 36). Satina produced the least pressure flattened area per tuber, significantly 

less than Innovator. It must be noted though that the amount of pressure flattening was fairly low because 

the storage duration was only 3 months. Results from the 6 month storage duration are likely to be more 

dramatic. 

 

 

Figure 35. Peak load required for at-harvest 3mm. surface deformation for samples from different 
cultivars (2012 data)  
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Figure 36. Pressure flattened area per tuber (cm2) by cultivar after 3 month storage duration (2012-2013 
data). 

 

Nutrient and Nitrogen Fertility Application Results 

Results from the first calcium, potassium, and boron trial produced no significant differences in either 

percent of tubers with scorable pressure flattening or incidence of non-scorable pressure flattening (Table 

4). There may be a slight trend towards increased pressure flattening for treatments without calcium or 

potassium but included variable rates of boron. When soil tests were taken post harvest, the results 

revealed that the plot area already had high concentrations of boron and calcium in the soil. 
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Table 4. Comparison of applications of Calcium, Boron, and Potassium based on percentage of tubers 
with pressure flattening exceeding the area allowed by the USDA grade and quality standards for US. No. 
1 potatoes and percentage of tubers with any pressure flattening. 

%  Scorable Damage No Calcium 11.2 kg/ha Calcium 22.5 kg/ha Calcium
No Boron 12 8 18
Boron .56 kg/ha 22 9 2
Boron 1.1 kg/ha 4 15 11
Boron 2.2 kg/ha 10 9 7
No Potassium 17 9 13
Potassium  2.8 kg/ha 13 8 11
Potassium 5.6 kg/ha 7 11 9
Potassium 11.2 kg/ha 10 14 5

%  Scorable Damage No Potassium 2.8 kg/ha Potassium 5.6 kg/ha Potassium 11.2 kg/ha Potassium
No Boron 10 17 14 8
Boron .56 kg/ha 17 6 13 7
Boron 1.1 kg/ha 13 7 5 16
Boron 2.2 kg/ha 12 13 3 8

\
%  Any Flattening No Calcium 11.2 kg/ha Calcium 22.5 kg/ha Calcium
No Potassium 56 71 81
Potassium  2.8 kg/ha 75 81 70
Potassium 5.6 kg/ha 62 77 62
Potassium 11.2 kg/ha 69 67 63
No Boron 68 81 75
Boron .56 kg/ha 65 82 73
Boron 1.1 kg/ha 57 68 64
Boron 2.2 kg/ha 73 69 64

%  Any Flattening No Potassium 2.8 kg/ha potassium 5.6 kg/ha Potassium 11.2 kg/ha Potassium
No Boron 71 74 79 72
Boron .56 kg/ha 70 78 76 69
Boron 1.1 kg/ha 61 72 50 70
Boron 2.2 kg/ha 77 77 64 54
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There were no statistically significant differences in pressure flattened area per tuber for the 2011-2012 

experiments as well (Table 5). The cultivar Russet Norkotah may have shown some trend towards 

reduced pressure flattening for the treatment using the 22.5 kg. per hectare calcium after 6 months storage 

and the cultivar Classic Russet may have shown a trend for additional early pressure flattening 

development after application of 2.2 kg. per hectare additional boron (Figure 37 and Figure 38).  

Table 5. Pressure flattened area per tuber (cm2) by cultivar by late season fertilizer application after 3 and 
6 months storage duration (2011-2012 data) 

Cultivar Treatment  3 month storage 6 month storage 
Classic Russet Control 8.7 NS 19.0 NS 

 
Boron 2.2 kg. hectare 15.7 NS 16.5 NS 

 
Calcium 22.5 kg./hectare 6.2 NS 16.2 NS 

 
Nitrogen 22.5 kg./hectare 4.3 NS 18.1 NS 

 
Potassium 11 kg./hectare 7.4 NS 16.3 NS 

Russet Norkotah Control 3.3 NS 20.8 NS 

 
Boron 2.2 kg./hectare 6.3 NS 16.3 NS 

 
Calcium 22.5 kg./hectare 5.0 NS 10.1 NS 

 
Nitrogen 22.5 kg./hectare 6.5 NS 18.6 NS 

 
Potassium 11 kg./hectare 5.4 NS 15.4 NS 

 

 

Figure 37. Pressure flattened area per tuber (cm2) after 3 months storage duration for 2011-2012 late 
season fertilizer trials. 
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Figure 38. Pressure flattened area per tuber (cm2) after 6 months storage duration for 2011-2012 late 
season fertilizer trials 

 

The soil at the San Luis Valley Research Center (classified as a loamy-skeletal, mixed (calcareous) frigid 

Aquic Ustorthents) includes many rocks that are 170-284 g. and many rough-surfaced and jagged rocks. 

As a result, very high percentages of at harvest skin damage were observed. A typical farm would not 

usually experience as much damage as was observed in this study.  In 2010, there was a trend towards 

increased skin removal and damage of tubers at harvest across all cultivars as a result of additional late 

season nitrogen, although the numbers were not statistically significant (Figure 39).   
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Figure 39. 2010 Percent of tubers with at-harvest skinning or damage by cultivar and late season fertility 
treatment. 

 

Results from 2011 were less consistent (Figure 40), with trends for Canela Russet indicating increased 

damage with additional nitrogen but results for Rio Grande russet indicating an opposite trend. Because of 

the very wide variability in damage results it was difficult to determine whether results were due to late 

nitrogen application rates or simply variability in the amount or large rock that made it into the harvester 

with the potatoes. No observed differences in either 2010 or 2011 were statistically significant. 
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Figure 40. 2011 Percent of Tubers with At-harvest Skinning or Damage by Cultivar and Late Season 
Fertility Treatment. 

 

A modified torqueometer designed to measure shear force resistance of skin was also used to evaluate the 

effect of late nitrogen applications on resistance to skin removal (Figure 41). The higher values indicate 

increased resistance and therefore more durable and more matured potato skin. A value of 3 or so would 

indicate moderate or susceptibility to skin damage, while 4 and above would indicate very mature and 

durable skin.  There were no statistically significant differences (or strong trends) within each cultivar as 

a result of late nitrogen treatment.  
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Figure 41. Resistance to Skin Shearing by Cultivar and Late Season Fertility Treatment for 2011. 

 

 

Tuber specific gravity, which can also provide an indication of tuber maturity was tested at  

harvest. In general, higher specific gravities indicate more crop maturity within a specific cultivar.   

The 2010 results were varied across the cultivars, with higher specific gravities observed for the  

22.5 kg. per hectare nitrogen treatment for Russet Norkotah  CO8 and Canela Russet, while there  

was a trend towards decreased specific gravity with additional nitrogen for Rio Grande Russet  

(Figure 42).  
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Figure 42. Tuber specific gravity for each cultivar by late nitrogen application treatment (2010 data). 

 

Specific gravities in 2011 showed an expected trend across cultivars of decreasing specific gravities as a 

result of additional late season nitrogen fertilization (Figure 43).  

 

 
Figure 43. Tuber specific gravity for each cultivar by late nitrogen application treatment (2011 data). 
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An important part of the research program was to evaluate if there were storage problems that  

result from late season nitrogen. There were no observed differences in tuber moisture loss (shrink) 

during storage (data not shown).  Data from 2010-2011 indicate significant differences in pressure 

flattening following different storage durations in the ventilated container system (Table 7). At 3 month 

storage duration Canela Russet treated with 45 kg. per hectare additional nitrogen produced significantly 

more pressure flattened area per tuber compared with the control treatment (32.6 cm2 vs. 18.4 cm2) 

(Figure 44) However the opposite was true of the samples recovered after 6 months storage, in which the 

Canela Russet treated with 45 kg. per hectare additional nitrogen showed a trend towards less pressure 

flattening. There were significant increases in the pressure flattened area per tuber for Rio Grande and 

Russet Norkotah that were treated with 22.5 kg. per hectare additional nitrogen, but oddly not significant 

increases for the potatoes treated with 45 kg per hectare additional nitrogen (Table 6 and Figure 45). 

 

 
Table 6. Flattened area per tuber (cm2) for each cultivar by late nitrogen treatment after 3 and 6 month 
storage duration (2010-2011 data).  
Cultivar Treatment 3 month storage 6 month storage 
Canela Russet Control 18.4 A 42.2 NS 

 
22.5 kg./hectare Late 24.3 AB 38.8 NS 

 
45  kg./hectare Late 32.6 B 32 NS 

Centennial Russet Control 28.8 NS 42.2 NS 

 
22.5 kg./hectare Late 38.6 NS 38.8 NS 

 
45  kg./hectare Late 32.2 NS 35.2 NS 

Rio Grande Russet Control 33.1 NS 35.5 A 

 
22.5 kg./hectare Late 32.0 NS 45.7 B 

 
45  kg./hectare Late 31.1 NS 35.9 A 

Russet Norkotah Control 22.4 NS 24.9 A 

 
22.5 kg./hectare Late 22.1 NS 38.8 B 

 
45  kg./hectare Late 18.5 NS 26.5 A 
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Figure 44. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment after 3 
month storage duration (2010-2011 data). 

 

 

 

Figure 45. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment after 6 
month storage duration (2010-2011 data). 
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Pressure flattening results from 2011-2012 (Table 7, and Figure 46 and Figure 47) provided only one 

difference that was found to be statistically significant. Russet Norkotah that was provided the 22.5 kg. 

per hectare additional nitrogen treatment had more pressure flattened area per tuber compared to Russet 

Norkotah that received the 45 kg. per hectare additional nitrogen treatment.  There was also a trend 

towards increased pressure flattening for the Canela that were treated with 22.5 kg. per hectare additional 

nitrogen after 6 months storage.   

 
Table 7. Flattened area per tuber (cm2) for each cultivar by late nitrogen treatment after 3 and 6 month 
storage duration (2011-2012 data).  
Cultivar Treatment 3 month storage 6 month storage 
Canela Control 23.2 NS 24.8 NS 

 
22.5 kg./hectare Late 22.0 NS 30.2 NS 

 
45  kg./hectare Late 11.7 NS 24.9 NS 

Mesa Russet Control 14.3 NS 18.7 NS 

 
22.5 kg./hectare Late 12.8 NS 19.5 NS 

 
45  kg./hectare Late 11.3 NS 15.6 NS 

Russet Norkotah Control 7.9 NS 17.9 AB 

 
22.5 kg./hectare Late 8.3 NS 19.0 B 

 
45  kg./hectare Late 10.2 NS 13.9 A 

Rio Grande Russet Control 17.3 NS 32.1 NS 

 
22.5 kg./hectare Late 13.0 NS 35.5 NS 

 
45  kg./hectare Late 13.6 NS 29.4 NS 
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Figure 46. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment after 3 
month storage duration (2011-2012 data). 

 

 

 

 

Figure 47. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment after 6 
month storage duration (2011-2012 data). 
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Table 8, and Figure 48 and Figure 49, present the pressure flattening results from the 2011 late nitrogen 

trial that included organic nitrogen sources and foliar application methodology. For Canela Russet, there 

was a statistically significant increase in pressure flattening after three months storage duration for the 45 

kg. per hectare additional organic nitrogen treatment and a trend towards increased pressure flattening for 

the 45 kg. per hectare additional inorganic nitrogen treatment. Centennial pressure flattening results also 

showed a trend of increased pressure flattening for all additional nitrogen treatments after 3 months 

storage. After 6 months storage duration, there was a statistically significant increase in pressure flattened 

area for the 45 kg. per hectare additional organic nitrogen treatment compared to the control or the 

additional inorganic nitrogen applications. Additional inorganic nitrogen applied at 22.5 kg. per hectare 

and 45 kg. per hectare increased pressure flattening for Rio Grande relative to the control or the organic 

nitrogen applications.    
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Table 8. Flattened area per tuber (cm2) for each cultivar by late nitrogen treatment after 3 and 6 month 
storage duration (2011-2012 data).  

Cultivar Treatment 3 month storage 6 Month Storage 

Canela Russet Control 13.2 A 34.3 A 

 
July +22.5 kg organic 16.8 A 31.1 A 

 
August +22.5 kg  17.1 A 36.8 AB 

 
July +45 kg organic 34.6 B 41.6 B 

 
August +45 kg.  26.5 AB 31.7 A 

Centennial Control 12.1 NS 33.5 NS 

 
July +22.5 kg organic 21.0 NS 33.9 NS 

 
August +22.5 kg  18.7 NS 36.7 NS 

 
August +45 kg  24.0 NS 37.6 NS 

Premier Russet Control 11.4 NS 35.9 NS 

 
July +22.5 kg organic 15.5 NS 34.9 NS 

 
August +22.5 kg  11.3 NS 33.1 NS 

 
July +45 kg organic 15.0 NS 32.0NS 

 
August +45 kg.  13.7 NS 

 Rio Grande 
Control 12.4 NS 

30.3 A 

 
July +22.5 kg organic 10.3NS 

33.6 AB 

 
August +22.5 kg  10.2 NS 

42.8 C 

 
July +45 kg organic 12.7 NS 

33.8 AB 

 
August +45 kg.  11.5 NS 

41.8 BC 
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Figure 48. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment after 3 
month storage duration (2011-2012 data). 

 

 

Figure 49. Pressure flattened area per tuber (cm2) for each cultivar based on late nitrogen treatment  after 
6 month storage duration (2011-2012 data). 
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SECTION 4. EVALUATION OF POST-GROWING SEASON AND STORAGE METHODS 
TO REDUCE PRESSURE FLATTENING  

Introduction:  

 

Effect of Moisture Loss that Occurs Between Vine Dessication and the Initial Weeks of Storage 

Pressure flattening occurs as the tuber surface becomes depressed or flattened due to constant contact 

with an adjacent tuber. This contacted area receives the force exerted by the adjacent tuber as a result of 

the weight of tubers above it in the pile, which increases as pile height increases. This pile pressure is 

approximated as 655 kg/m3 of pile above the potato (Muthukumarappan, et al. 1994).  The development 

of pressure flattening is often proposed to result from the interaction of three factors; pressure within the 

pile, duration of storage, and tuber moisture loss (Muthukumarappan, et al. 1994). Tuber moisture loss is 

regarded as an important factor in increasing the susceptibility of tissue to forming depressions and the 

extent of bruise in response to force (Kunkel and Gardner 1965; Hughes 1980; Lin and Pitt 1986; 

Muthukumarappan, et al. 1994; Konstankiewicz and Zdunek 2001; Olsen and Oberg 2003).  As tuber 

moisture loss increases, cellular turgor decreases resulting in reduced mechanical resistance of the tissues. 

These tissues are more prone to changes in cell shape, cell wall cracking, debonding of the cells, and 

leakage of intracellular liquids through the cell walls (Konstankiewicz and Zdunek 2001). Reduced 

turgidity of the outer layers of tissue can cause increased susceptibility to pressure flattening, although 

excessive turgidity of tissue may also reduce resistance to deformation due to increased cell wall 

fracturing under pressure (Zdunek and Bednarczyk 2005). Dehydration and water loss from potato tubers 

occurs between vine kill and the final use by a consumer or processor.  The tubers lose moisture through 

the outer most layers of periderm, due to transpiration or evaporative loss and respiration. Once the vines 

of a potato plant senesce or are chemically or mechanically vine killed, senescence of the underground 

stems and stolons also occurs.  Tuber moisture content is then no longer contingent on water provided 

through the plants root system. After vine kill the tubers may gain or lose moisture depending on the 
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availability of water in the soil, or water tension, and also as a factor of soil air humidity. If there is too 

much free moisture in the soil, tubers may become more susceptible to disease or may become highly 

turgid or “crisp” which may cause the ends to shatter if damaged during harvest, a disorder known as 

shatter bruise.  Dry soil prior to harvest can result in flaccid, dehydrated tubers at the time of harvest. 

These tubers may be especially sensitive to pressure or may respire more as a result of moisture stress. 

Additionally, these tubers may be more susceptible to blackspot bruise damage during harvest (Thornton 

and Timm, 1990).Tuber skin maturation and suberization of the periderm that takes place after vine kill 

can reduce the susceptibility of the periderm to lose or gain moisture. Rapid loss of moisture from the 

tubers can take place at harvest and during the first weeks of bulk storage. Moisture loss at harvest 

appears to be greatest in potatoes that are not fully matured or have poorly set skin (Thornton and Bohl 

1998). Moisture loss during harvest results from the removal of the tubers from the soil as they are 

maneuvered through the harvester and loaded onto trucks for transport to storage. Harvesting in low 

relative humidity during the warmer part of the day, followed by transport in open air vehicles can 

increase dehydration of the tubers. The difference in temperature and humidity between the tuber and the 

environment during harvest and storage is the vapor pressure deficit (Olsen and Odberg, 2003). The 

greater the vapor pressure deficit, the more moisture can be lost due to transpiration from the tuber during 

harvest and storage. Transpiration may account for 90% of tuber weight loss and is mostly due to 

diffusion of water vapor through the skin to the surrounding air. Within the pile of stored potatoes, tubers 

near the bottom will dehydrate the most due to proximity to the inflow of cool ventilation air. The 

estimated weight loss due to transpiration is 5 to 10 % of total tuber weight during 8 to 9 months of 

storage. Mature potatoes respire at a rate of 5 ml O2/kg/h (Rastovski et al, 1981). This corresponds to 

approximately 1.5% weight loss during 8-10 months of storage. Shrinkage loss is greater during the early 

part of the storage season due to factors such as higher tuber respiration rates, higher storage 

temperatures, and higher transpiration. During the preliminary period of storage, tubers wound heal by 

developing a suberized layer, which retards water evaporation during the subsequent storage duration.  
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Tuber moisture loss begins to increase again as tuber dormancy (quiescence), a naturally occurring 

duration of reduced respiration, ends and tubers in storage begin to ”wake up”.  Sprout formation, which 

often begins at the end of the period of physiological rest will cause additional moisture loss.  As a result, 

effective sprout control is necessary to minimize potato dehydration and therefore pressure flattening, 

during long durations of storage. The pressure flattened areas are made up mostly of crushed periderm 

(Lulai et al. 1996) and can become a source of moisture loss after removal from storage because they are 

more susceptible to evaporation from damaged cells (Lulai et al. 1996).  

Large reductions in the height of piled potatoes or storing potatoes for only a few months may not be 

practical alternatives to current methods. Therefore reducing moisture loss from tubers was considered to 

be the most economical and practical approach for preventing or reducing pressure flattening. 

Recommendations had been developed to minimize moisture loss and damage at harvest that may 

contribute to pressure flattening (Thornton and Bohl, 1998) These recommendations are based on 

minimizing physical damage to tubers at harvest and providing optimum temperatures and humidity for 

the crop during bin loading to minimize stress and moisture loss (Thornton and Bohl 1998, Smittle et al. 

1974).  Moisture loss during the storage season can be reduced by maintaining above 95% relative 

humidity in the air supplied for tuber ventilation and also by maintaining tuber quiescence through sprout 

inhibiting treatments (Caldiz et al. 2001 and Pavlista, 2005).  However, even storage operations that 

utilize these recommendations may have severe economic losses due to pressure flattening. 

Experimentation was conducted in 2009- 2010 to determine if there were cultivar specific differences in 

pressure flattening development in response to initial moisture loss, and  to determine the potential of 

moisture loss at harvest and during the early storage to increase pressure flattening development. After 

identifying dry soil prior to harvest as a potential source of tuber moisture loss and therefore a potential 

source of increased pressure flattening during storage, research was also conducted in 2010-2011 and 

2011-2012 to determine if post vine dessication irrigation would reduce pressure flattening.  
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Pile height and storage duration 

Pressure flattening occurs as the tuber surface becomes depressed or flattened due to constant contact 

from a portion of an adjacent tuber.  The area of contact also receives the force exerted by the adjacent 

tuber as a result of the weight of tubers above it in the pile. This pile pressure is approximated as 655 

kg/m3 of pile above the potato (Muthukumarappan, et al. 1994).  Potato growers and shippers often store 

russet potatoes in bulk piles up to 6 m. in height. In the San Luis Valley of Colorado, specialty potato 

cultivars such as fresh market red and yellow potatoes are also stored in pile heights up to 6 m. Within the 

higher bulk stored piles, the area of greatest pressure flattening is approximately 1-2 m. from the floor due 

to the pressure of piled potatoes above and the distribution of ventilation air. This also corresponds to the 

area of maximum lateral pressure from the pile (Matson and Helickson, 1983)  The development of 

pressure flattening is often proposed to result from the interaction of three factors; pressure within the 

pile, duration of storage, and tuber moisture loss (Muthukumarappan, et al. 1994). Examining the factors 

individually allows for better understanding and developing strategies to limit pressure flattening. Large 

reductions in the height of piled potatoes or storing potatoes for only a few months may not be 

economical alternatives to current methods focused on moisture loss prevention. However, it may still be 

important to understand the extent to which the pile height of bulk stored potatoes and storage duration 

are responsible for pressure flattening development. It may be that for higher value specialty potatoes, a 

significant reduction in pressure flattening would be economically justifiable, even if the costs of storage 

and shipping were increased due to reduced pile height. Data is presented to show some initial research 

results on the effects of different simulated pile heights on pressure flattening development. Also, the 

summation of different treatments and cultivars that were stored at 3 and 6 months storage duration over 

the past 3 years is presented to provide insight into the development of pressure flattening in response to 

duration of storage. 
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Materials and Methods 

 

Moisture Loss At-harvest and Post Vine-Kill Irrigation Study Methodology  

For the study of at-harvest moisture loss and cultivar effects, potatoes were selected from field plots 

grown at the San Luis Valley Research Center, Colorado during the 2009 growing season. The potato 

fields received standard irrigation and pest control applications as needed. Applied nitrogen fertilization 

wused a 32-0-0 liquid fertilizer at 123 kg per hectare, including 67 kg applied before planting. Potatoes 

were planted during the week of 12th May 2009 and vine killed using sulfuric acid during the first week of 

September 2009. Tubers were mechanically harvested during the week of 21st September 2009. Eighteen 

samples of ten tubers (170 g to 340 g) from each of the cultivars; Canela Russet, Rio Grande Russet, 

Russet Norkotah, and Centennial Russet were placed in 4 kg. plastic mesh bags and weighed. One half of 

the samples was placed in a 37°C drying oven for 24 hours, and then reweighed to determine weight loss 

(moisture loss). The remaining samples were held in ambient air (18°C, 40% RH) for 24 hours and then 

reweighed. After treatment all samples were stored at 3°C and 95% RH prior to placement into the 

ventilated container system to induce pressure flattening. The mesh bags set aside at harvest were then 

placed into three sets of ventilated containers. Three sample bags from each cultivar and treatment were 

placed in each set of ventilated containers. One set of containers would be disassembled and the sample 

tubers evaluated after 3 months, another set after 5 months, and a third set after 6 months storage 

duration. The ventilated container apparatus, as described earlier, was designed to test tuber susceptibility 

to pressure flattening when exposed to ventilation, time, and pile pressures similar to those found in 

commercial potato storages. The six filled containers were placed tightly together with a continuous air 

exchange tube beneath them.  

After the desired storage duration, sample bags were removed from the containers, weighed to determine 

weight (moisture) loss during storage and then assessed for pressure flattening. Pressure flattening was 
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evaluated for each tuber within each sample bag.  Tubers were visually inspected and each flattened area 

was circled, numbered in ascending order using permanent markers, and its diameter measured. The field 

plots to study the effects of post vine kill irrigation was established at the San Luis Valley Research 

Center, Colorado during the 2010 and 2011 growing seasons. The potato fields received standard 

irrigation and pest control applications as needed. Potatoes were planted during the first week of May in 

2010 and the second week of May in 2011. In 2010, the plots were established as two, 30 m. by 12 row 

sections, each separated by a 10 m. non-planted border.  On both sides of the plots, parallel to the sections 

and border areas were sets of standard sprinkler lines which provided irrigation at a rate of roughly 1.2 

cm.  per hour. The four cultivars, Canela Russet, Colorado Rose, Russet Norkotah Selection 8, and Rio 

Grande Russet, were planted in two row strips, approximately 15 m. long and randomized to be planted 

three times within each section. After planting, two sets of digital tensiometers, connected to a data logger 

and 3 sets of plastic 10 cm. capacity rain gauges were placed in the ground for each section The plots 

were vine killed using sulfuric acid during the first week of September 2010.  After vine kill sprinkler 

lines were detached along the length of the plot so that only one section (and part of the 10 m. buffer) 

would receive the weekly ½ inch irrigation effects. The experimental setup was similar for the 2011 field 

experiment, except that three sections were established and sprinkler heads were modified to ensure one 

section received 1.2 cm. irrigation each week and the next section received 0.6 cm. weekly.   For both 

years tarpaulins were used to cover the control section when precipitation was anticipated with mixed 

results due to frequent displacement by high winds. Immediately prior to harvest rain gauges and moisture 

sensors were removed. Tubers were mechanically harvested during the first week of October 2010 and the 

second week of October in 2011. Broken and rotten tubers were not collected and yield was not 

measured. The tubers from the same cultivar and treatment section were mixed together. Thirty samples 

of five tubers (170 g to 340 g) from each of the cultivars and treatments were placed in 2 kg. plastic mesh 

bags, labeled and weighed. These mesh bags were then placed into three sets of ventilated containers. Ten 

sample bags from each cultivar and treatment were placed in each set of ventilated containers. One set of 
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containers would be disassembled and the sample tubers evaluated after 3 months, another set after 6 

months, and a third set after 9 months storage duration. The set of samples stored for 9 months was 

discarded due to excessive sprouting. The samples had not been treated with sprout inhibitors because the 

containers were being kept in a storage normally used to store seed potatoes. After the predetermined 

storage duration, the sample bags were removed from the containers, weighed to determine weight 

(moisture) loss during storage and then assessed for pressure flattening. Pressure flattening was evaluated 

for each tuber within each sample bag.  Tubers were visually inspected and each flattened area was 

circled, numbered in ascending order using permanent markers, and its diameter measured.  

In order to better evaluate the data from the tensiometers, during the winter months tensiometers were 

placed in a 15 l. plastic pot filled with field soil from the plots.  The pot, which included holes at the 

bottom to allow for drainage of water that exceeded the soils field capacity, was then saturated with 

water, weighed and the tensiometer measurements recorded. Every few days the pot was weighed again 

and tensiometer meetings recorded until the soil was very dry. This was done so that the relationship 

between the percent of soil water capacity of the field soil at the station and the tensiometer readings 

could be established and therefore results from the tensiometers in the field experiments could be 

converted accurately into percent of soil water holding capacity. 

 

Pile Height and Storage Duration Methodology 

An initial evaluation of the effects of simulated pile heights is being conducted in 2012-2013. Two 

hundred (113-283g.) tubers were collected at harvest for 15 separate cultivars from tubers being unloaded 

at the commercial storage. These tubers were then kept in a climate controlled corridor at 15 degrees C 

and approximately 95% relative humidity until all samples had been collected. Twenty tubers from each 

cultivar were evaluated for peak load required for 3mm surface deformation at harvest. The remaining 

one hundred eight tubers of each cultivar were divided into thirty labeled plastic mesh bags, each 
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containing six tubers. For each cultivar, five replicates of six tubers were placed in labeled 2 kg. plastic 

mesh bags and then placed in the sample zone of each ventilated container.  Six ventilated containers 

were used, to allow for three different pile heights (3.1 meters, 3.7 meters, and 4.6 meters) at 2 different 

storage durations ( 3 month and 6 month). The ventilated container system was modified by reducing the 

amount of water in the plastic tank above the container that is used to provide additional weight. The 

differences in the fill level of the tanks would allow for pressures on the samples to change, creating the 

different simulated pile heights.  The comparisons between at-harvest peak load and the resulting pressure 

flattening per tuber are presented with the data about the accuracy of texture analysis as a predictive tool 

(Section 2 Results). To examine the general effect of storage duration on pressure flattening development, 

data was averaged for the different treatments and cultivars that were stored at 3 and 6 months storage 

duration over the past 3 years.   

 

Statistical Analysis  

For the moisture loss and cultivar study tubers were randomly selected from among freshly harvested 

tubers that had been loaded into storage. Tuber samples in the crib were arranged in randomized fashion 

within the described sample zone. Data analysis was performed using  two factor analysis of variance at 

α=0.05 using SAS (Version 9.2). Data for individual tubers was analyzed within each sample bag. 

Pressure flattened area and bruise number per tuber were analyzed using LS means procedure to account 

for samples affected by rot and therefore containing some tubers that were not usable. Error bars in 

figures and means separation in tables using letter based groupings are based on a calculated Fishers LSD 

at α=0.05 using the standard error and an approximated T-value of 2. 

The field trials to study the effect of post vine kill irrigation were a split plot design in which cultivars 

were randomly planted within blocks in each treatment section but the treatment areas were separate 

sections arranged based on distance along the length of the irrigation system. As a result, there was no 
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randomization of the treatments. Tubers that were tested or subjected to pressure flattening were 

randomly selected from among 227-340g. tubers from the harvested field or from tubers collected from 

the research plot trials. The tuber samples placed in the ventilated container design were arranged in 

randomized fashion within the described sample zone. Data analysis for comparisons among treatments 

was performed using a single factor analysis of variance at α=0.05 using the data analysis toolpak in 

Microsoft Excel 2007. Data for individual tubers was averaged within each sample bag, with the bag 

average being used as a replicate. Decayed, diseased, or broken tubers were discarded and the average for 

each bag did not include these tubers.  Error bars in figures and means separation in tables using letter 

based groupings are based on a calculated Fishers LSD at α=0.05 using the standard error and an 

approximated T-value of 2. In the study on the effect of pile height, tubers that were tested or subjected to 

pressure flattening were randomly selected from among 113-283g. tubers that were being loaded into bulk 

storage. The tuber samples placed in the ventilated container design were arranged in randomized fashion 

within the described sample zone. Data for individual tubers was averaged within each sample bag, with 

the bag average being used as a replicate. The averaged pressure flattened area per tuber for all bags, 

regardless of cultivar, that were stored at each simulated pile height were used as a replicates to compare 

different pile heights. Data analysis for pressure flattening comparisons among treatments was performed 

using a single factor analysis of variance at α=0.05 using the data analysis toolpak in Microsoft Excel 

2007. The error bars in the figure are based on a calculated Fishers LSD at α=0.05 using the standard 

error and an approximated T-value of 2. 

 

 

 

 



 
 

88 
 

Results 

Effects of At-harvest Moisture Loss and Cultivar on Pressure Flattening Development   

More moisture loss was observed in the oven dry samples than the air dry samples, regardless of cultivar 

(Figure 50), and there were significant differences among the cultivars. For example, Centennial Russet 

had greater weight loss (4.99%) than the other cultivars and Russet Norkotah (3.82%) had less than 

Centennial but more than Canela Russet (2.93%) or Rio Grande Russet (3.24%) for the oven treated  

tubers.  After 25 weeks of storage, weight loss from oven dry Centennial Russet (6.16%) tubers was 

significantly greater than the air dry Centennial Russet tubers (4.38%) (Figure 51). The other cultivars did 

not have significant differences in weight loss during storage attributable to the at harvest treatments. 

Russet Norkotah tubers lost the least amount of weight during 25 weeks of storage among the four 

cultivars. 

 

 

Figure 50. Weight loss following moisture loss treatments. Oven dry tubers were placed in a drying oven 
at37°C for 24 h. Air dry tubers were held at approximately 18 C for 24 h. Error bars represent the 
calculated least significant difference (LSD) for the least square means given α=0.05. Error bars that 
overlap indicate no significant difference between those treatments. Cultivars names are abbreviated as 
follows: CanR is Canela Russet, CenR is Centennial Russet, RGR is Rio Grande Russet and RNor is 
Russet Norkotah.    
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 Figure 51. Weight loss by cultivar and treatment during storage at 4 C and 95% RH following the 
moisture loss treatments described in Figure 1. Error bars represent the calculated LSD for the least 
square means given α=0.05. Error bars that overlap vertically indicate no significant difference between 
treatments. Cultivars names are abbreviated as in Figure 44. 

.  

More pressure bruise areas per tuber were observed in the oven dry treatments compared to the air dry 

treatments between 21 and 25 weeks of storage (Figure 52). Similarly, tubers in the oven dry treatments 

had significantly more flattened area per tuber than tubers from the air dry treatments after 21 and 25 

weeks of storage (Figure 53). The total area of pressure flattening in oven dry tubers intersected the line 

indicating 18cm2 (the area of flattening allowable by the USDA grade standards) approximately 2 weeks 

earlier than the air dry treated tubers. 
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Figure 52. Mean number of bruises per tuber by treatments described in Figure 2 after storage at 4 C and 
95% RH.  Values are least square means averaged for all cultivars. Error bars represent the calculated 
LSD given α=0.05. 

 

 

Figure 53. Mean flattened area per tuber (cm2) by treatments as described in Figure 2 after storage at 4 C 
and 95% RH. The dotted line indicates a flattened area of 18 cm2, at which a 227-340 g tuber is 
considered out-of-grade according to the USDA potato quality and grade standards. Error bars represent 
the calculated LSD for the least square means given α=0.05. 
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It is interesting to compare the increase in pressure bruised area within a cultivar by treatment with the 

amount that results in tubers that are pressure flattened in excess of 18 cm2 and therefore below the 

quality needed as a US No. 2 potato. For Canela Russet there was no significant difference in the area of 

pressure flattening per tuber at the three storage durations tested (Figure 54 A). The difference of in the 

time to reach 18 cm2 of flattened area in the air dry tubers and oven dry Canela Russet tubers was only 

about one week. Centennial Russet had no differences attributable to moisture loss treatments in the 

amount of pressure flattening per tuber at any of the three storage durations tested (Figure 54 B).  This is 

despite significant differences in both at-harvest moisture loss treatments (Figure 50) and weight loss 

during storage (Figure 51).  

The number of pressure flattened areas of Rio Grande Russet tubers is not significantly different between 

moisture loss treatments at the three storage times (Figure 54 C). Although the pressure flattened areas 

per tuber are lower for the air dry treatment, the differences are not significant. However, the air dry 

tubers reached 18cm2 of flattened area approximately 3 weeks later than the oven dry tubers. Pressure 

flattened areas of Russet Norkotah did not differ for air dry vs. oven dry at 13 weeks of storage, but the 

differences at 21 and 25 weeks of storage were significant (Figure 54 D). Air dry tubers had 18cm2 of 

flattened area six weeks later than the oven dry tubers. 
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Figure 54. Flattened area per tuber (cm2) in Canela Russet (A), Centennial Russet (B), Rio Grande Russet 
(C) and Russet Norkotah (D) after storage at 4 C and 95% RH. The dotted line indicates a flattened area 
of 18 cm2 as noted in Figure 5. Values are least square means. Error bars represent the calculated LSD for 
the least square means given α=0.05. Cultivars names are abbreviated as in Figure 44.  
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The number of pressure bruised areas per tuber was significantly greater for both air and oven dry 

treatments of Canela Russet compared to air dry Centennial Russet and air dry Russet Norkotah after 13 

weeks of storage (Table 9).  At 21 and 25 weeks of storage, air dry Russet Norkotah had fewer bruised 

areas compared to oven dry Russet Norkotah. After 21 weeks of storage, in cultivars Russet Norkotah, 

Rio Grande Russet and Canela Russet air dried tubers had significantly fewer bruised areas tubers of the 

same cultivar from oven dry treatments. However, at 25 weeks only Russet Norkotah still showed this 

difference. 

Table 9. Number of bruised areas per tuber after storage at 4°C and 95% RH. Values presented are least 
square means. Values within a column denoted by the same letter are not significantly different at α=0.05. 
Cultivars names are abbreviated as in Figure 41.    

    Number of Flattened Areas/Tuber 

Cultivar and 
Treatment 

Initial  loss in % 13 weeks storage 21 weeks storage 25 weeks storage 

CanR air dry  0.4  3.3 B 5.2 BC 5.8 CD 

CanR oven dry  2.9 3.4 B 6.8 D 7.1 D 

CenR air dry  0.5 2.1 A 4.0 B 4.6 ABC 

CenR oven dry  5.0 2.8 AB 4.6 BC 5.3 BC 

RGR air dry  0.4 2.1 AB 3.5 AB 3.9 AB 

RGR oven dry  3.2 2.8 AB 5.8 CD 4.6 ABC 

RNor air dry  0.4 1.6 A 2.7 A 3.3 A 

RNor oven dry  3.8 2.4 AB 5.6 CD 5.0 BC 

 

The pressure flattened area per tuber was significantly greater for Canela Russet in both treatments 

compared to air dried Centennial Russet and air dried Russet Norkotah after 13 weeks of storage (Table 

10).  After 21 and 25 weeks of storage, the pressure flattened area per tuber was also significantly higher 
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for Canela Russet for both treatments compared to both treatments of Centennial Russet, Rio Grande 

Russet, and air dried Russet Norkotah.  

Table 10. Flattened area per tuber (cm2) after storage at 4°C and 95% RH. Values presented are least 
square means. Values within a column denoted by the same letter are not significantly different at α=0.05.  
Cultivars names are abbreviated as in Figure 41. 

  
Pressure flattened area/ tuber 

Cultivar and 
Treatment 

Initial loss 
in % 

13 weeks 
storage 

21 weeks  
storage 

25 weeks 
storage 

CanR air dry 0.4 7.0 B 32.0 CD 42.0 CD 

CanR oven dry 2.9 7.0 B 41.0 D 49.0 D 

CenR air dry  0.5 3.0 A 18.0 AB 25.0 AB 

CenR oven dry 5 6.0 AB 19.0 AB 27.0 B 

RGR air dry  0.4 4.0 AB 17.0 AB 21.0 AB 

RGR oven dry 3.2 4.0 AB 25.0 BC 29.0 B 

RNor air dry  0.4 3.0 A 13.0 A 18.0 A 

RNor oven dry  3.8 4.0 AB 30.0 C 37.0 C 
 

 Soil moisture sensor readings were averaged and converted to percent of soil water capacity to determine 

the effect on soil moisture of the control (no additional irrigation) versus the 1.2 cm. per week irrigation 

treatment (Figure 55). The results indicate that while the soil moisture declined for both the control and 

treatment following vine kill, the percent soil water capacity stayed above 75% for treated areas, while 

declining below 65% for the control areas. 

 



 
 

95 
 

 

Figure 55. Soil moisture content as percent of field capacity by post vine kill irrigation treatment from 
vine kill until harvest( Fall 2010).  

 

The pressure flattening per tuber data (Table 11 and Figure 56 and Figure 57) indicates a trend toward 

increased pressure flattening for Russet Norkotah treated with the additional irrigation and stored for three 

months( 28.1 cm2 vs. 17.7 cm2 for the control).  At the six month storage duration, Colorado Rose 

produced a statistically significant increase in pressure flattening when additional irrigation was applied 

(49.5 cm2 vs. 37.0 cm2 for the control). 
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Table 11. Pressure flattened area per tuber (cm2) for each cultivar by post vine kill irrigation treatment 
after 3 and 6 months storage duration (2010-2011). 

Cultivar Treatment 3 month storage 6 month storage 
Colorado Rose 1.2 cm. per week 36.2 NS 49.5 B 

 
Control 42.2 NS 37.0 A 

Canela Russet 1.2 cm. per week 27.3 NS 43.0 NS 

 
Control 26.5 NS 35.3 NS 

Rio Grande 1.2 cm. per week 28.0 NS 44.6 NS 

 
Control 32.9 NS 35.8 NS 

Russet Norkotah 1.2 cm. per week 28.1 NS 39.4 NS 

 
Control 17.7 NS 38.3 NS 

 

 

 

 

 

Figure 56. Pressure flattened area per tuber (cm2) for each cultivar based on post vine kill irrigation 
treatment after 3 month storage duration (2010-2011 data). 
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Figure 57. Pressure flattened area per tuber (cm2) for each cultivar based on post vine kill irrigation 
treatment after 6 month storage duration (2010-2011 data). 

 

 

 

Data from the soil moisture sensors for the 2011-2012 study of post-vine kill irrigation effects on pressure 

flattening development are represented in Figure 58.  The results indicate little or no difference in the 

percent of filled soil moisture capacity between the 1.2 cm. per week and 0.6 cm. per week irrigation 

treatments. For most of the period after vine kill, the percent of soil moisture capacity for the two 

treatments was between 67% and 72%. For the non-irrigated control, the soil moisture capacity steadily 

decreased and fell below 65% during the last week before harvest. 
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Figure 58. Soil moisture content as percent of field capacity by post vine kill irrigation treatment from 
vine kill until harvest( Fall 2011).  

  

Pressure flattening results from the 2011-2012 experiment indicate significant increases in pressure 

flattened area per tuber for some of the cultivars in response to the irrigation treatments (Table 12 and 

Figure 59 and Figure 60). In the three months storage duration data there is a trend toward increased 

pressure flattened area for the Canela Russet that were given 0.6 cm. irrigation per week and for Rio 

Grande provided 1.2 cm. irrigation per week. After 6 months storage duration there was a statistically 

significant increase in pressure flattened area for the Canela Russet without additional water (33 cm2) 

compared to the 1.2 cm. per week irrigation treatment (26 cm2). 
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Table 12. Pressure flattened area per tuber (cm2) for each cultivar by post vine kill irrigation treatment 
after 3 and 6 months storage duration (2011-2012).   

Cultivar Treatment 3 month storage 6 month storage 
Canela Russet Control 9.9 NS 33.3 B 

 
0.6 cm. per week 19.1 NS 29.9 AB 

 
1.2 cm. per week 11.9 NS 26.0 A 

Colorado Rose Control 10.3 NS 28.2 NS 

 
0.6 cm. per week 11.4 NS 34.9 NS 

 
1.2 cm. per week 13.0 NS 26.6 NS 

Russet Norkotah Control 11.0 NS 20.9 NS 

 
0.6 cm. per week 11.1 NS 22.1 NS 

 
1.2 cm. per week 9.0 NS 18.8 NS 

Rio Grande Control 13.7 NS 28.8 NS 

 
0.6 cm. per week 11.4 NS 31.8 NS 

 
1.2 cm. per week 19.2 NS 36.3 NS 

 

 

 

Figure 59. Pressure flattened area per tuber (cm2) at 3 months storage duration for each cultivar based on 
post vine kill irrigation treatment (2011-2012 data). 
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Figure 60. Pressure flattened area per tuber (cm2) at 6 months storage duration for each cultivar based on 
post vine kill irrigation treatment (2011-2012 data). 

 

Effect of  Pile Height and Storage Duration: 

The results of preliminary experimentation to study the effect of different simulated pile heights on 
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simulated pile height was increased from 3.1 m. to 3.7 m. (7.64 cm2 vs. 9.11 cm2). The pressure flattened 

area from the 4.6  m. pile height (13.25 cm2) was dramatically higher in comparison to the flattened area 

per tuber for the 3.1 m. and 3.7 m. (9.11 cm2  and 7.64 cm2 respectively). 
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Figure 61. Comparison of pressure flattened area per tuber (cm2) based on pile height after 3 months 
storage duration (averaged across all samples and cultivars). 

 

There appeared to be a linear increase in the overall mean number of bruised areas per tuber until 21 

weeks of storage (Figure 62). Between the 21 and 25 weeks of storage there was no increase in the mean 

number of pressure bruises per tuber. This suggests that the contact points between adjacent tubers that 

will result in pressure flattening are established. There are on average four to six such areas of contact for 

each tuber within a tuber pile (Figure 62). The flattened area per tuber continued increase linearly after 21 

weeks of storage (Figure 63). This suggests that the an increase in pressure flattening for potatoes stored 

more than 21  weeks is due to an increase in the diameter of individual areas rather than an increase in the 

numbers of areas.  
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Figure 62. Averaged bruises per tuber for all samples regardless of cultivar and treatment observed after 
3, 5, and 6 months of storage at 4 degrees C and 95% relative humidity. Values are averages of the least 
square means for all treatments and cultivars.  

 
 
 
 

 

Figure 63. Averaged flattened area per tuber (cm2) for all samples regardless of cultivar and treatment 
observed after 3, 5, and 6 months of storage at 4 degrees C and 95% relative humidity from the 2009-
2010 cultivar by moisture loss study .Values are averages of the least square means. 
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Results averaged from the experiments in 2010-2011 and 2011-2012 show year to year differences bust 

still show an overall linear increase in the pressure flattened area per tuber (Figure 64). 

 

           

Figure 64. Averaged flattened area per tuber (cm2) for all samples regardless of cultivar and treatment 
observed after 3 and 5 months storage duration for the 2010-2011 and 2011-2012 storage seasons. 
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DISCUSSION AND CONCLUSIONS  

 

Development of a Research Methodology to Induce and Measure Pressure Flattening. 

The ventilated container with water tank system successfully induced pressure flattening over the course 

of several months of storage. The development of pressure flattening proceeded at a rate similar to that 

have been observed in commercial storages in the San Luis Valley of Colorado. Early symptoms of 

pressure flattening are observed in December and January (13 weeks storage duration) and the bruise 

severity increases as time in storage increases, often exceeding grade tolerances in the months of March 

and April (21-25 weeks storage duration). The simulated pile pressure of approximately 2.4 m. of 

potatoes above the samples was found to be sufficient to produce pressure flattening in the sample zone. 

The pressure flattening results from sample bag to sample bag varied considerably, which indicates a need 

for at least several replications of samples within the treatment area of the container. If there is a large 

enough volume of samples to be tested in each container, it is especially important that the samples be 

loaded randomly from among the treatments and cultivars so that there are some samples from each 

cultivar and treatment nearer to the bottom, the top, and the center of the treatment area. It is also of 

critical importance that tuber samples be kept for as short a duration as possible between harvest and 

placement in the containers. Most of the research conducted using the design allows the ventilation 

system to run continuously, however specific intervals of ventilation could be evaluated if the power 

supply to the fan was controlled using a timer. To evaluate different humidity and storage temperatures, 

the system would need to be assembled in a climate controlled area that could be adjusted to those 

parameters, since the design does not include any method to regulate temperature and humidity. Overall, 

the system may be refined further, but the system is successful in generating pressure flattening in a 

nearly identical way to the occurrence of pressure flattening in storage.  Development of the ventilated 

container design has enabled this research to be conducted in a controlled manner, without the costs and 
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logistics involved in conducting the experiments using multiple bulk storage bins and many tens of 

thousands of kilograms of potatoes.    

Development of At-Harvest and Early Storage Season Tests to Predict Relative Severity of Pressure 

Flattening. 

The initial objective of the doctoral research program was to evaluate different fertility and plant nutrient 

applications to increase the duration that potatoes could be stored prior to significant pressure flattening. 

Due to the weight of potatoes in bulk commercial storages, and the months of storage duration, there was 

a concern that any management changes or recommendations developed by the field and storage based 

experiments could result in only minimal assistance to growers and storage operators in reducing pressure 

flattening. When pressure flattening was evaluated in commercially operated storages important 

observations were made that changed the initial objectives of the research program. Even when 

accounting for potential environmental and climate control differences between storage areas, it was 

evident that some fields and or cultivars were more likely to develop pressure flattening earlier in the 

storage season than others. If a predictive test could be developed that could identify the potatoes that 

were more likely to develop pressure flattening first, (even if the test was only moderately accurate) it 

would help improve returns for growers and shippers. Results from the tests applied at harvest (oven 

moisture loss, whole tuber rehydration, blackspot bruise incidence, specific gravity, relative water 

content, and resistance to 3mm. surface deformation) varied between the different cultivars and fields. 

When data from these at-harvest tests are correlated with the amount of pressure flattening observed after 

a common duration of storage, only a few tests (relative water content, specific gravity, peak load 

required for deformation) provided any correlation.  The modification of testing relative water content for 

leaf tissue (Dhanda and Sethi, 1998) using potato tissue cores was similar to work done with pumpkin 

tissue cores in which the cores themselves were evaluated for failure strain and elasticity in addition to 

moisture content (Mayora et. al., 2007).  There was low to moderate correlation for our relative water 

content at-harvest results compared with the 3 and 6 month pressure flattened areas. While the relative 
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water content results from tubers did respond to weight loss, it does not appear that, at least using our 

methodology, relative water content testing of tuber tissue cores would be sensitive enough to correctly 

identify differences in tuber weight loss of 1.5% or less. Additionally, results from our evaluations of the 

effect of at-harvest moisture loss and post vine kill irrigation reveal that moisture loss is not solely 

responsible for relative pressure flattening development (Castleberry and Jayanty, 2012). Research has 

suggested that potatoes with lower specific gravity may be more prone to pressure flattening development 

(Thornton and Bohl, 1998). The specific gravity results from at-harvest testing showed moderate 

correlation (R2=0.2404 and 0.2026 at 3 and 6 months storage duration respectively) with pressure 

flattened area per tuber. There may be different reasons for a tuber having higher specific gravity. Higher 

specific gravity can be a reflection of physiological maturity at harvest or could merely reflect that the 

tuber is dehydrated, resulting in higher percent solids. Additionally, some cultivars such as Innovator that 

can have relatively high specific gravities appear to pressure flatten before lower specific gravity cultivars 

such as Russet Norkotah.  At-harvest measurement of the peak load required to deform the surface of the 

tubers at harvest provided moderate to strong correlations with pressure flattened area after storage.  Peak 

load measured by the texture analyzer appeared to respond well to both decreases in tuber moisture 

content as well as corresponding well with cultivar differences. The use of a penetrometer had also been 

previously shown to accurately determine differences in tuber moisture content (Sharrock, 1968).  Other 

research determined differences in the resistance of potato tissue to force and pressure were based on 

cultivar differences and tuber hydration (Zdunek and Umeda, 2005, Bajema et al. 1998).  Following 

testing of rheological properties, Zhu (Zhu, 2003) theorized that greater resistance to load may be based 

on cells being relatively unable to gradually leak contents unless the cells fully rupture. Cellular rupture is 

especially likely to occur if cellular adhesion is strong. There are many complex factors that make up the 

response of plant tissue to pressure, including cellular turgor, cell wall properties, elastic properties of the 

tissue, and structural arrangement of the tissue. Because of this complexity, it is difficult for a single 

instrumental analysis to be highly accurate (Landahl et al. 2004). However, based on the differences in 
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the resulting pressure flattening between the groups of fields and cultivars arranged based on peak load 

values, it appears that use of texture analysis at-harvest will identify the majority of potatoes that are 

likely to pressure flatten earlier in the storage season. This discovery represents significant progress in 

providing guidance to growers that can determine an optimal order of shipping across multiple fields and 

cultivars.  

 

Evaluation of Growing Season Methods to Reduce Pressure Flattening 

 

Effect of Cultivar on Pressure Flattening Development 

At-harvest moisture loss increased the susceptibility to pressure flattening for some cultivars more than 

others. The significant differences between cultivars in the effects of moisture loss on pressure flattening 

development suggests that moisture loss (as a component of weight loss) may result in an increase in 

pressure flattening for some cultivars. However, cultivar specific physiological and anatomical features, 

such as those responsible for differences in blackspot bruise susceptibility may explain pressure flattening 

differences that are not directly related to tuber dehydration (Thornton and Bohl, 1998; Corsini et al. 

1999). Even with the assumed substantial additional moisture loss during 25 weeks of storage, oven dry 

Centennial Russet tubers had less pressure flattened area per tuber than oven dried Russet Norkotah  or 

Canela Russet from either the oven or air dried treatment.  Studies of other russet cultivars have shown 

that mechanical resistance of tuber tissue samples can be affected by turgidity but the degree of turgidity 

loss that leads to tissue structural failure under pressure is likely to be cultivar specific (Bajema, et al 

1998). Tuber anatomical features such as cell size, cell wall thickness, and skin thickness may also 

contribute to the mechanical properties of the tissue (Konstankiewicz and Zdunek 2001; Zdunek and 

Umeda. 2005). When plant tissue is compressed, the main effect is on the cell walls, which comprise the 

basic structural elements responsible for structural integrity of the tissue. Some of the cell wall and tissue 
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resistance to pressure may due to “reinforcement zones” in which pectic polymer concentration increases 

cell adhesion (Jarvis et al. 2003). The concentration of these pectic polymers may be different for 

different cultivars.  Higher resistance to mechanical stress is also found in smaller-sized cells but these 

cells may be less resistant to micro-damage (Konstankiewicz and Zdunek 2001; Zdunek and Umeda. 

2005).  Rate of suberization may also be different among cultivars and may require experimental study to 

determine if it is an important factor in storability. When other factors are accounted for, the differences 

in pressure flattening development between cultivars are significant. The data strongly suggests that some 

cultivars can be stored for much longer durations than others before pressure flattening becomes severe. 

Changing from more susceptible cultivars to less susceptible cultivars appears to have as great or even 

greater promise in reducing pressure flattening than any single one of the treatment methodologies that 

were evaluated by this research program. Determination of which cultivars are more and less susceptible 

would likely require multiple years of evaluation at multiple durations of storage.   Multi-year evaluation 

can ensure that differences in pressure flattening susceptibility are based on true cultivar differences 

rather than immaturity of tubers from a cultivar due to improper management. Development of pressure 

flattening “cultivar trials” could enable identification of near release cultivars and existing commercial 

cultivars that can be stored profitably for longer durations or at increased pile heights. 

Effect of In-Season Fertilizer Application on Pressure Flattening Development 

Field experiments evaluating calcium, boron, and potassium were designed to include multiple rates and 

interactions of all three nutrients to improve resistance to pressure flattening. None of the calcium, boron, 

or potassium treatments had a significant effect on pressure flattening development. It may be that if 

applications of the nutrients, especially calcium, had been made earlier in the growing season or if the 

fields had been deficient in those nutrients, the treatments would have had an effect. Further research, 

especially into the role of calcium applications to reduce pressure flattening, may be conducted using pre-

plant applications. Such research should also involve biochemical analysis of cell wall constituents to 

determine if pressure flattening reduction is due to changes in cell wall composition.  It was difficult to 
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determine if the late nitrogen applications resulted in a significant reduction of tuber maturity at harvest. 

Due to problems with the harvester and the amount of rocks in the soil, it was not possible to accurately 

determine differences in susceptibility to harvest damage, especially skin durability. For some of the 

cultivars in the study there was a significant increase in the pressure flattened area per tuber due to 

additional nitrogen fertilization. It is unclear as to why some of the 22.5 kg. per hectare additional 

nitrogen treatments resulted in significantly more pressure flattening compared to the 45 kg. per hectare 

additional treatment. It may be that, for some cultivars, the higher rate resulted in a reaction by the plants 

that promoted senescence rather than continued growth and tuber bulking. The most promising results for 

understanding the role of late nitrogen applications in pressure flattening susceptibility were from the 

experiment that included the slower release organic form of nitrogen and had inorganic nitrogen applied 

over the foliage. This same methodology was repeated this past year, but at the time this dissertation was 

being prepared storage samples have yet to be evaluated. As a general statement, the data does suggest 

that over-fertilization of nitrogen for some cultivars can result in increased pressure flattening during 

storage. The results of the second year of this study, or future research, will likely determine if the 

increases in pressure flattening are from moisture loss due to immaturity or other factors.  

 

Evaluation of Post-Season and Storage Methods to Reduce Pressure Flattening. 

 

Effect of Moisture Loss Treatments on Pressure Flattening 

Differences in pressure flattening development occurred within a cultivar as a result of moisture loss 

treatments as well as among the cultivars. There was no difference in the storage time required for 

Centennial Russet to pressure flatten beyond USDA grade tolerances when the tubers had five percent 

(4.99%) or less than one percent(0.52%) weight loss prior to storage. Russet Norkotah tubers that lost less 

than one percent (0.37%) weight could be stored six additional weeks before the tubers were out-of-grade 

compared to those that lost nearly four percent weight (3.82%). As tuber moisture loss increases, 
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including loss during the storage season, cellular turgor decreases resulting in reduced mechanical 

resistance of the tissues (Alvarez and Canet, 2000). The oven dry potatoes were not affected by treatment 

in such a way that tubers were prone to differentially higher moisture loss during the subsequent storage 

period for Rio Grande Russet, Canela Russet and Russet Norkotah. This lack of difference in moisture 

loss during subsequent storage indicates that the oven moisture loss treatment did not affect tuber 

respiration and dormancy. Centennial Russet tubers lost significantly more weight during storage among 

the oven dried potatoes compared to air dried potatoes, but there was no significant difference in pressure 

flattening development between air and oven dried treatments. However, the results confirm that reduced 

tuber turgidity as a result of loss of moisture, caused tissue to be more susceptible to deformation in some 

cultivars.  When the cultivar results were averaged, there were significant increases in the number of 

flattened areas and the combined flattened area per tuber when samples were oven dried.  There are 

important economic implications of reduced at- harvest moisture loss for potato production and storage 

management. Some cultivars such as Russet Norkotah may be profitably packed and sold for longer 

durations if moisture loss at harvest and early in the storage season is kept to a minimum. For other 

cultivars, such as Canela Russet, storage of potatoes in piles that are 5 meters or more in height may make 

economic sense only for short durations of storage, even if moisture loss can be minimized   

At harvest texture analysis from different fields within the same cultivar may allow for identification of 

potato storage sections that are more susceptible to pressure flattening due to moisture loss. These 

potatoes could then be sold and shipped earlier in the season before their value decreases precipitously.  

 

The Effect of Post-Vine Kill Irrigation on Pressure Flattening Development.  

It was anticipated that post vine kill irrigation would reduce pressure flattening after storage. However, 

the opposite trend was observed. In the first year of experimentation, after 6 months storage duration, the 

potatoes that received 1.2 cm. supplemental irrigation had more pressure flattened are compared to the 
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control.  In the second year (2011-2012), results appeared more mixed with Rio Grande Russet and 

Colorado Rose showing a trend towards increased pressure flattening as a result of the additional 

irrigation and Canela Russet showing a decrease in pressure flattening from supplemental irrigation 

(Canela Russet). A potential cause of these findings would be that the irrigation treatment the first year 

resulted in a soil moisture content that may have been higher than optimal resulting in delayed tuber 

maturity and skin set or causing hypoxic conditions for the tubers. There is also a potential that tuber 

tissue at higher turgor, while more elastic, is more prone to deformation during storage (Mayora et al. 

2007). Soil moisture content was generally lower during the second year of experimentation. This may 

have resulted in soil moisture content under irrigated treatments being more optimal for turgor and 

maturation of some cultivars, while still being too wet for other cultivars to mature. Upon hindsight, it 

may be that more effective experimentation could have been acheived by applying irrigation when 

necessary to achieve differences in soil moisture content rather  than evaluating irrigation events that are 

applied without regard to soil moisture content. It appears that there is a cultivar specific optimal soil 

moisture content, above which tubers may be stressed or fail to mature (resulting in increased pressure 

flattening susceptibility) and below which tuber maturation may also be delayed and tuber dehydration 

may occur (resulting in increased pressure flattening susceptibility).  

 

The Role of Pile Height and Storage Duration on Pressure Flattening Development. 

The initial results of the pile height evaluation experiment indicate that pile height changes of less than    

1 m. can result in significant differences in pressure flattening after 3 months storage duration. Further 

analysis of the data indicated that there may be differences among cultivars in how much pressure 

flattening increases as pile height is increased (data not shown). This experimentation is in the initial 

phase of a two to three year study to determine the effects of pile height and to develop cultivar specific 

pile height recommendations for Colorado potato growers. The experimental data may change the 

economic calculations made by growers when trying to decide between piling potatoes higher to reduce 
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storage related expenses and reducing pile height to avoid pressure flattening losses. Based on the initial 

data it could be recommended that growers should store higher value potatoes, such as red skinned 

potatoes at 3.6 m. or less pile height if the potatoes are likely to be stored for more than 3 or 4 months. An 

exception to this recommendation would be if the storage operator has previous experience that indicates 

that a particular cultivar will store well at longer storage durations or at greater pile heights.  

When the development of pressure flattening across multiple fields and cultivars was averaged for the last 

3 years, it appears that after the first few months of storage there is a continuous linear increase in 

pressure flattened area, especially between 3 and 6 months storage duration. With regard to the number of 

pressure flattened areas it is likely that after 5 months of storage, the number of areas of contact with 

adjacent tubers that will result in pressure flattening is determined. Based on the data from the past few 

years it appears that after 3 months of storage duration, pressure flattening will increase continuously for 

tubers in the lower half of a pile of bulk stored potatoes. Further evaluation of the data is currently being 

performed to develop an equation, based on multi-year data, for the rate of daily pressure flattening 

increase after three months storage. This should enable different treatments or cultivars to be evaluated 

based on how many additional weeks or months of storage can be obtained before the pressure flattened 

area is equal to the area produced using current cultivars or practices. 
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