
 

 

DISSERTATION 

 

 

ANALYTICAL SPECTROSCOPY METHOD DEVELOPMENT TO STUDY MECHANISMS OF 

ALZHEIMER’S AND TUBERCULOSIS DISEASES  

 

 

 

Submitted by 

Cheryle Nicole Beuning 

Department of Chemistry 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2020 

 

Doctoral Committee:  

Advisor: Debbie C. Crans 

Nancy E. Levinger 
George Barisas 
Ellen R. Fisher 
Mark Zabel
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  Copyright by Cheryle Nicole Beuning 2020 

    All Rights Reserved

 

 

 

 

 

 

 



ii 

 

ABSTRACT 
 
 
 

ANALYTICAL SPECTROSCOPY METHOD DEVELOPMENT TO STUDY MECHANISMS OF 
 

 ALZHEIMER’S AND TUBERCULOSIS DISEASES 
 
 
 

This dissertation covers the analytical method development created to study and enhance the 

knowledge of two specific disease mechanisms important to Alzheimer’s disease and Mycobacterium 

tuberculosis. There are two parts in this dissertation where Part 1 is entitled Measurement of The Kinetic 

Rate Constants of Interpeptidic Divalent Transition Metal Ion Exchange in Neurodegenerative Disease. Part 

2 is entitled The Electrochemistry of Truncated Menaquinone Electron Transporters with Saturated 

Isoprene Side Chains Important in Tuberculosis. These diseases appear on the World Health 

Organization’s top 10 leading causes of death worldwide. The amyloid-beta (Aβ) peptides are associated 

with Alzheimer’s disease, where neurodegeneration is caused by the aggregation of the peptide into senile 

plaques within neuronal synaptic cleft spaces. Alzheimer’s disease currently has no cure due to its multi-

causative pathology. One disease mechanism is the coordination of divalent metal ions to the peptide. 

Specifically, Aβ coordinates Cu(II) and Zn(II) ions that can enhance the aggregation of Aβ into plaques. 

These metal ions are highly regulated within the human body and are usually found bound to peptides and 

not as free ions. Therefore, the Aβ must sequester the metals from other proteins and peptides.  

The primary research in this dissertation advances fluorescence method development to measure 

interpeptidic Cu(II) exchange kinetics to be able to measure this type of disease mechanism. The small 

peptides GHK (Gly – His – Lys) and DAHK (Asp – Ala – His – Lys) both chelate Cu(II) with nM affinity, have 

biological relevance as they are motifs found in human blood like Aβ, and chelate Cu(II) with similar 

nitrogen-rich binding ligands as Aβ. By substituting non-coordinating lysine residues with fluorescent 

tryptophan, the interpeptidic exchange rates can be measured since tryptophan fluorescence is statically 

quenched when within 14 angstroms of a paramagnetic bound Cu(II). Thus Cu(II) transfer from Cu(H-

1GHW) to either GHK or DAHK can be monitored by recovered GHW fluorescence as the Cu(II) is 

exchanged and second-order kinetic rate constants were determined. This methodology was then used to 

monitor the Cu(II) exchange from truncated Cu(Aβ1-16) and Cu(Aβ1-28) complexes to GHW and DAHW, 
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where second-order reaction kinetic rate constants were determined. While in the exchanges between 

Cu(H-1GHW) with GHK/DAHK the second-order rate constants were on the magnitude of 102 or 101 M-1s-1, 

respectively, the exchanges from Cu(Aβ) complexes were 2-3 orders of magnitude larger, 104 M-1s-1 (to 

GHW and DAHW). These differences in rate constant magnitude arise from the fact that the affinity of GHW 

(KA = 1013 M-1) for Cu(II) is larger than Aβ (KA =1010 M-1). This method development is an important step to 

an accurate measurement of the interpeptidic exchange between Aβ peptides, including in their fibril and 

plaque formations. 

Since senile plaques are found in synaptic cleft spaces with nanometer distances between neurons, 

a model system was generated to study coordination reactions at the nanoscale. In order to do this, the 

metal ion would need to be released in a controlled manner. Studies of metal ion burst reactions through 

the use of photocages can simulate bursts of ions like those seen in the synaptic cleft. Zn(II) is often 

released in its ionic form within the synapse in its function as a neurotransmitter, so we simulated a burst 

of Zn(II) ions by using a photocage, [Zn(NTAdeCage)]- which releases Zn(II) when irradiated with light.  The 

photocage was irradiated to release Zn(II) then we followed its reaction progress with an in situ chelator, 

Zincon, in reverse micelles and in bulk aqueous buffer. The coordination reaction was 1.4 times faster in 

an aqueous buffer than in reverse micelles, despite the Zn(II) and Zincon being closer in the nanoparticle. 

These observations suggested that there is an impact on coordination reactivity within a highly 

heterogeneous environment with a cell-like membrane, which is due to the partitioning of each ligand. We 

observe that the photocage stays in the water pool of the reverse micelle and the Zincon partitions into the 

membrane interface. Thus, the coordination reactivity is diminished, likely due to the need for Zn(II) to 

diffuse to the Zincon, crossing a highly organized Stern layer to encounter the Zincon. Whereas in aqueous 

buffer, these are free to encounter each other despite being hundreds of nanometers apart. These proof of 

concept studies are integral to studying initial binding dynamics of metal ions with peptides at the nanoscale 

present in cells and neuronal synapses. 

Tuberculosis is a pathogenic bacterium which despite having a curable medication, can be drug-

resistant. Menaquinone (MK) analogs with regiospecific partial saturation in their isoprenyl side chain, such 

as MK-9(II-H2), are found in many types of bacteria, including pathogenic Mycobacterium tuberculosis and 

function as electron transport lipids cycling between quinone and quinol forms within the electron transport 
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system. While the function of MK is well established, the role of regiospecific partial saturation in the 

isoprenyl side chain on MK remains unclear and may be related to the redox function. Recently, an enzyme 

in M. tuberculosis called MenJ was shown to selectively saturate the second isoprene unit of MK-9 to MK-

9(II-H2). The knockout expression of this enzyme was shown to be essential to the survival of the bacterium. 

A series of synthesized truncated MK-n analogs were investigated using a systematic statistical approach 

to test the effects of regiospecific saturation on the redox potentials. Using principal component analysis on 

the experimental redox potentials, the effects of saturation of the isoprene tail on the redox potentials were 

identified. The partial saturation of the second isoprene unit resulted in more positive redox potentials, 

requiring less energy to reduce the quinone. While full saturation of the isoprene tail resulted in the most 

negative potentials measured, requiring more energy to reduce the quinone. These observations give 

insight into why these partially saturated menaquinones are conserved in nature.  
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CHAPTER 1: INTRODUCTION AND SPECTROSCOPY BACKGROUNDS 
 
 

 
1.1 Introduction to the research projects and their significance 

In this dissertation, the primary research goals were to use analytical spectroscopic method 

development to understand, measure, and/or quantify the mechanisms, physical and/or chemical properties 

of molecules and their reactions associated with two diseases, Alzheimer's disease (AD) and tuberculosis 

disease (TB). In 2016, according to the World Health Organization (WHO), listed the top 10 leading causes 

of death in the world where AD was #5 and TB was #10.1 The characterization of biological molecules and 

their reactions associated with a disease is often a very arduous task, involving many iterations until a 

reproducible assay is developed. These mechanisms can then be the targets for drug development, 

especially for those reaction mechanisms that are essential for disease progression. There are two primary 

research projects described in this dissertation. The first, Part 1, is concerned with the measurement of 

kinetic constants in the interpeptidic Cu(II) exchange of peptides associated with AD and is discussed in 

Chapters 2 and 3. The second, Part 2, is concerned with the differences in electrochemical redox potentials 

of a series of truncated regiospecifically saturated menaquinones (MK), which are essential electron 

transporters in Mycobacterium tuberculosis (M. tuberculosis) and are discussed in Chapter 5.  

Unfortunately, no cure exists for AD despite three decades of continued research since the amyloid-

beta peptide (Aβ) was first associated with the senile plaques that cause brain atrophy.2-3 The senile 

plaques are found in the synaptic cleft space between neurons and lead to their atrophy since the neurons 

can no longer signal to each other. Thus, the symptoms of dementia and memory loss occur, and 

eventually, death as the brain can no longer work properly. The Aβ peptide forms aggregates which 

accumulate into these senile plaques, where many aggregation mechanisms exist, for a complete 

background see Chapter 3 section 3.1. AD has a multi-causative pathology and is one reason why there is 

no cure. In 2019, the Alzheimer’s Association reported that AD currently affects 5.8 million Americans, costs 

$290 billion in only the treatment of symptoms, is the 6th leading cause of death in the United States, and 

every 65 seconds a person is diagnosed with the disease.4 As the world’s population increases and ages, 

these numbers are expected to rise until the cost of treatment surpasses a trillion dollars by 2050, with 14 

million Americans affected.4 Despite all the research, no definitive cure or vaccine has been found. 
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Although, with the arrival of advanced gene therapy technologies like CRISPR, some hope is on the 

horizon. In a recent 2018 study, gene therapy was used to target specific genes that seem to play a harmful 

role in AD progressions like the allele APOE4 (apolipoprotein E) and swap in genes that play a protective 

role like the APOE2 allele.5 But these types of therapies are still in their infancy. 

Part 1 of the dissertation includes the analytical method development to monitor and measure the 

kinetics of divalent metal ion exchange using optical spectroscopy. The divalent transition metal ions Cu(II) 

and Zn(II) are essential for all biological life, including humans, bacteria, fungi, and animals.6-17 Their 

presence is important for the structural and functional roles of many metalloproteins and biological 

processes. For example, Cu(II) is essential metal for proteins like ceruloplasmin, is a redox-active metal ion 

that participates in oxidative phosphorylation for mitochondrial energy production, and is an indispensable 

co-factor in some oxidases and peroxidases.7, 11, 13, 18-20 Zn(II) is an essential co-factor in metalloproteins 

like metallothioneins, it is the second most abundant transition metal that is vital to good health, and can 

be found in its ionic form in labile pools for its function as a neurotransmitter.6, 14, 16-17, 21-24 Both metals are 

considered essential in embryonic development, especially within the brain. Transition metals have an 

unfriendly biological history due to their inherent toxicity. However, the misconceptions about the roles of 

transition metals in biology are beginning to be considered. Their prevalence in disease mechanisms, 

including neurodegenerative disease, is becoming more widely understood as proteins associated with the 

diseases have many sites that these metals can bind to. The delicate balance of metal ion homeostasis in 

the body is important to both health and disease mechanisms. 

The primary research project concerns the method development to measure the interpeptidic 

exchange rate constants of Cu(II) in small peptide motifs found in human blood and associated with 

neurodegenerative diseases like AD.25 Within the human blood and serum, GHK (Gly-His-Lys) is associated 

with human growth factor and is found intact as a tripeptide, and DAHK (Asp-Ala-His-Lys) is the N-terminus 

sequence of human serum albumin (HSA).19, 26-27 The amyloid-beta peptides (Aβ) are associated with AD 

where the full-length Aβ peptide can have 39 – 42 amino acid residues, and truncated forms also exist, see 

Chapter 3 section 3.1 for a complete background. Both Cu(II) and Zn(II) are found in 0.5 – 1.0 mM 

concentrations in the senile plaques associated with AD due to their complexation with the Aβ peptide.28 

The complexation of Cu(II), Zn(II), and Fe(II) to the Aβ peptide has been shown to enhance the propensity 
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of the peptides to aggregate into the plaques and is one of the many pathologies of AD. Therefore, 

understanding the kinetics of exchange in these peptides with themselves or other biological peptide motifs 

will help to create drugs that can stop the exchange, sequester the metals from aggregates, or target the 

initial binding. Some drugs like clioquinol were developed to target the metal ion binding pathology of AD 

by trying to actively sequester Cu(II) and Zn(II) from Aβ complexes.28-30  

There is a minor research project in Part 1 that concerns the light-induced photolytic release of 

Zn(II) at the nanoscale present in reverse micelles using photocaged complexes and monitoring of Zn(II) 

coordination with a ligand in situ.31 The ability to mimic metal ion bursts on the nanoscale can help to 

develop methods to monitor reactions at the cellular scale through the use of model membrane systems 

like reverse micelles or liposomes. The method of generating metal ion burst reactions in reverse micelles 

was developed for collaboration in the Crans and Levinger research groups to eventually study interpeptidic 

exchange or the initial binding dynamics of metal ions to Aβ peptides at the same scale found in the 

neuronal synaptic cleft, where senile plaques are found. Unfortunately, this extension from the proof-of-

concept methodology presented in Chapter 4 has not been implemented to that goal yet, but is an important 

step to be able to monitor fast metal ion complexation at the nanoscale, and where mixing apparatus is too 

slow to measure sub-millisecond time-scale complexation mechanisms.  

 Part 2 of this dissertation includes the non-aqueous electrochemistry and spectroelectrochemistry 

method development to study certain menaquinone (MK, MK-n, n = number of isoprene units) electron 

transporters found in many pathogenic bacteria, such as M. tuberculosis. TB infects about a quarter of the 

world's population, according to the WHO.32 Although in 2017, only about 10 million people fell ill, where 

about 1.6 million of those perished.32 TB is epidemic in first and third world countries alike. While TB is 

curable through many first- and second-line medications, since it is a bacteria, it is prone to drug-resistance. 

Over 500 thousand cases of first-line drug rifampicin resistivity were reported in 2017, with some strains 

having multi-drug and extensive-drug resistivity.32 As the bacteria can have multi-drug resistivity, new 

disease mechanisms must be identified as drug targets. Other diseases like AIDS can complicate the 

progression of TB and lead to death. In the 1.6 million deaths associated with the disease in 2017, 0.3 

million of those were people infected with HIV/AIDS.32 TB is the leading cause of death in those afflicted 

with HIV/AIDS (other than AIDS itself).  
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The partial regiospecific saturation of the second isoprene unit of the MK isoprenyl side chain is 

conserved in many pathogenic bacteria, including Mycobacterium, Corynebacterium, Halobacterium, and 

Brevibacterium families.33-36 An enzyme called MenJ is responsible for the regiospecific partial saturation 

of MK-9 to MK-9(II-H2) in TB.37-38 The prevalence of these beta-saturated MK analogs in so many bacteria 

may have to do with its redox function. A systematic statistical approach was used to determine the effects 

of isoprenyl side chain saturation on the redox reactivity of a series of unsaturated, partially saturated, and 

fully saturated truncated MK analogs.39 The truncated MK analogs we have studied have side chains with 

1 – 3 isoprene units, which were synthesized by a colleague in the Crans laboratory, Dr. Jordan T. Koehn.  

The following sections will introduce the relevant spectroscopy background for each 

instrumentation or method used for the characterization of the research projects described within. There is 

a section on the kinetic treatment of fluorimetry data. Real experimental examples are provided, where 

appropriate, to show how these approaches or methods were used within the research projects described 

herein. Each of the four major research projects has its own chapter. Lastly, an appendix is provided at the 

end for contributions to projects that are not discussed in the body of the dissertation, or those which were 

only co-authored contributions.  

1.2 Absorption and fluorescence spectroscopy 

Fluorescence is the measurement of the emission of light by a fluorophore upon absorption of light 

at a specific wavelength. Absorption is the measurement of the amount of light absorbed by the fluorophore. 

The absorption of light promotes electrons from the highest occupied molecular orbital (HOMO) ground 

state, So, to the lowest unoccupied molecular orbital (LUMO) excited state, S1, Figure 1.1. After excitation, 

the fluorophore will return to the ground state by releasing the absorbed energy, which is called emission 

or radiative decay. This emission of absorbed energy is called fluorescence when it is from a singlet excited 

state (S1), or phosphorescence if from a triplet excited state (T1). The two states depend on the direction of 

the spin of the excited electron and are radiative releases of energy, which can be measured using 

fluorimetry spectrometers. The Stokes Shift arises from the fact that emission light always has a longer 

wavelength (lower energy) than the absorbed light, so the absorption spectrum is always at a shorter 

wavelength (higher energy) than the emission spectrum of the fluorophore. In Figure 1.1, the absorption 
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and fluorescence of the fluorescent tryptophan tripeptide, GHW (Gly-His-Trp), is shown, where the 

absorption maximum is 280 nm, and the emission maximum is 365 nm.  

In absorption and emission spectroscopy, the Beer-Lambert law is expressed differently. For 

absorption spectroscopy, Eq. 1.1 shows that absorbance (A) is linearly proportional to the product of molar 

absorptivity (ε), concentration (C), and cuvette pathlength (ℓ). Similarly, in emission spectroscopy, Eq. 1.2 

shows that fluorescence intensity (IF) is linearly proportional to the product of molar absorptivity (ε), 

concentration (C), and cuvette pathlength (ℓ), as well as the excitation source intensity (Io) and the quantum 

yield of the fluorophore (ϕf). Due to the dependence on excitation source intensity and quantum yield of a 

fluorophore, fluorescence spectroscopy often requires less concentrated solutions than absorbance 

spectroscopy and is much more sensitive. As a result, there is a maximum concentration where 

fluorescence intensity is still linearly proportional, Eq. 1.3. 

(Eq. 1.1) A = ε C ℓ 

(Eq. 1.2) IF = Io (2.303 ε C ℓ) ϕf 

(Eq 1.3) Cmax = 0.05 * (ε ℓ)-1 

(Eq 1.4) (I0F / IQ) = 1 + τf kq [Q] 

 

Figure 1.1 Left Normalized intensity of the absorption and fluorescence spectrums of a tryptophan 
containing tripeptide GHW. Right Schematic of absorption and emission in the HOMO to LUMO optical 
gap. Fluorescence is the radiative decay from S1 → S0 and phosphorescence is the radiative decay 
from T1 → S0. Intersystem crossing is the non-radiative deactivation from S1 → T1 then T1 → S0 and 
can happen in the presence of heavy atoms with paramagnetic electrons. 
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Fluorescence quenching is a signal response that follows the Stern-Volmer equation, which relates 

a fluorophore with its quencher, Eq. 1.4, where the ratio of the fluorescence intensity without a quencher 

present (I0F) to the fluorescence intensity with a quencher present (IQ) is equal to 1 plus the product of the 

lifetime of the emission excited state of only the fluorophore (τf), the quencher rate coefficient (kq) and the 

concentration of quencher ([Q]). In the system described below, the fluorophore is tryptophan, and the 

quencher is a bound paramagnetic Cu(II). The Cu(II) quenches the fluorescence of tryptophan by a 

relaxation mechanism called the external heavy atom effect. When the Cu(II) is within 14 Å of the 

tryptophan, the paramagnetic electron from Cu(II) interferes with the intersystem crossing of the 

fluorophore, Figures 1.1, 1.2. The intersystem crossing is the rate of change between singlet S1 and triplet 

T1 excited states, which is usually extremely slow. The presence of a paramagnetic electron from a heavy 

atom greatly enhances this rate to a point where the emission of absorbed light is deactivated. Specifically, 

the non-radiative deactivation due to the increase in the rate of intersystem crossing results in no light to 

be emitted, and thus the fluorescence is quenched. As seen in Figure 1.3, as Cu(II) is added to a solution 

of GHW (pH 7.4, 0.1 M HEPES), the fluorescence intensity decreases. This is a static fluorescence 

quenching as the Cu(II) must be bound to the peptide for this to occur and does not occur if the Cu(II), 

which may be bound to another ligand in solution, collides with the tryptophan, as in other types quenching 

mechanisms.  

 

Figure 1.2 Cartoon schematic of the static tryptophan fluorescence quenching in inter-peptidic Cu(II) 
exchange between Cu(H-1GHW) and GHK.  
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Tryptophan absorbance and fluorescence are extremely sensitive to the surrounding chemical  

environment due to two anisotropic perpendicular electronic transitions present in the indole fluorophore, 

Figure 1.4. These two anisotropic states are denoted as 1La and 1Lb electronic transitions. While both 

absorb light at 280 nm, when excitation light of 290 nm is used, the 1La electronic transition is favored for 

emission fluorescence. Absorption is associated more with the 1Lb electronic transition, and emission from 

this transition is rare. The source of environmental sensitivity due to the 1La transition state arises from the 

creation of a large dipole, where the pyrrole ring is partially positively charged, as compared to the 1Lb 

transition. Changes in the solvent environment can affect the dipole of the 1La transition state by interactions 

such as hydrogen bonding to the nitrogen’s hydrogen or changes in pH. These effects make tryptophan’s 

fluorescence extremely sensitive to its solvent environment.  

 

Figure 1.3 The fluorescence intensity of GHW being quenched by addition of mol equivalence of Cu(II). 

 

Figure 1.4 The anisotropic electronic transition states of the indole chromophore of tryptophan.  
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Calibration curves are performed whenever a set of fluorimetry data is acquired to be able to 

convert tryptophan fluorescence intensity (counts per second, CPS) to concentration. As tryptophan is 

extremely sensitive to its surrounding environment, calibrations must be performed in the same conditions 

as the kinetic experiments with the same instrument parameters such as slit width, excitation (λexcitation), and 

emission (λemission) wavelengths. A blank measurement without any fluorescent peptide is taken and 

subtracted out from all data points. An example of a calibration curve for GHW is given in Figure 1.5. The 

concentration of GHW peptide is determined through absorption measurements of the stock solutions, 

where an average and standard deviation is obtained. Then the error is propagated from the volumes of 

pipettes used to make working solutions and calibrator additions in the fluorescence calibration curve, Table 

1.1. The calibration is repeated three times, and the error in fluorescence intensity is a standard deviation 

of those three runs, Table 1.1. The error in concentration, as well as the error in fluorescence intensity 

CPS, is considered by using OriginPro (student versions, 2018b and 2019b) software by using the 

instrumental error weighting option, Figure 1.5. In 0.1 M HEPES at pH 7.40, the GHW fluorescence is 

linearly proportional to concentration, where the slope and y-intercept are used to determine the 

concentration in the experimental kinetic data. 

 

Figure 1.5: An example of a calibration curve created for GHW (0.1 M HEPES, pH 7.40) using the data 
in Table 1.1 and analyzed in OriginPro software. Instrumental error weighting is used, the error in [GHW] 
are the red error bars and the error in fluorescence intensity are the blue error bars. Instrumental 
parameters include, 1.5 nm slit width, λexcitation = 290 nm, and λemission. = 365 nm. 
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1.3 Kinetic treatment of fluorescence data 

 Two approaches were used to determine the second-order kinetic rate constants of the interpeptidic 

exchange of Cu(II). The first approach uses the method of initial rates to determine reaction orders and the 

rate constant for the Cu(II) exchange in the small peptides (GHK, DAHK, etc.). This approach was used in 

the exchange of Cu(II) from Cu(H-1GHW) to GHK or DAHK or the reverse exchange of Cu(H-1GHK) to 

GHW, described in Chapter 2. The second approach uses second-order fitting of the kinetic data in the 

exchange of Cu(II) from truncated Cu(Aβ1-16) and Cu(Aβ1-28) complexes to GHW, DAHW, or GGW, found 

in Chapter 3. These exchanges were much faster than the exchanges examined previously, and the method 

of initial rates could not be consistently employed.  

 The method of initial rates can determine rate law, reaction orders, and rate constants of a reaction 

and is a very straightforward kinetic treatment of data. Because these peptide complexes can have different 

coordination chemistry when the metal ion complex and peptide are in excessive concentrations, a pseudo-

first-order approach cannot be used. Often, kinetic measurements are made in pseudo-first-order 

conditions where one reactant is in large excess compared to another reactant. This can induce other 

complexes to form, such as Cu(H-2(GHW)2). To avoid this, we used very similar concentration profiles in 

the exchanges, careful to not put any one reactant in a large excess of the other.  

In a very simple A + B → C + D reaction with a rate law, rate = k [A]m [B]n, the method of initial rates 

requires two sets of kinetic data to be acquired. In one set of data, the concentration of B is held constant 

while the concentration of A is varied in at least four different experimental conditions to determine the order 

m of reactant A. Similarly, to determine the order n of reactant B, the concentration of A is held constant 

Table 1.1: Example of experimental calibration curve data taken for GHW in 0.1 M HEPES at pH 7.40 
shown in Figure 1.5. 

Actual [GHW], 
M 

Error [GHW], 
M 

IF @ 365 
nm, CPS 

Error IF @ 
365 nm, 

CPS 
1.01E-06 5.36E-08 13863 1414 

2.02E-06 1.20E-07 27180 135 

3.03E-06 1.97E-07 39247 586 

5.03E-06 3.62E-07 64543 975 

6.03E-06 4.03E-07 76157 1726 

8.03E-06 5.49E-07 100080 2834 
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while the concentration of B is varied in at least four different experimental conditions. For example, Table 

1.2 lists the experimental conditions used to determine the orders in the exchange of Cu(H-1GHW) to GHK 

or DAHK, where reactant A is Cu(H-1GHW), and reactant B is GHK or DAHK. The rate is determined in M/s 

using an Excel 2016 slope function of the data points in that region, Figure 1.6, as tryptophan fluorescence 

is recovered. Then the slope of log rate versus log [peptide] plots determines the order for that reactant, 

Figure 1.7, where all reaction orders were determined to be one. Finally, the rate law is determined as the 

orders of reactants are known, and the rate constant can be found Eq. 1.5. 

(Eq. 1.5) rate = k [Cu(H-1GHW)] [GHK] 

Table 1.2: Example of the approximate concentration profiles used in the method of initial rates for the 
Cu(H-1GHW) to GHK/DAHK exchanges.  

  

[Cu(H-1GHW)]initial, 
µM 

[GHK]/[DAHK]initial, 
µM 

Exp A 10 5 
  10 10 
  10 15 
  10 20 

Exp B 3 5 
  5 5 
  8 5 
  10 5 

 

 

Figure 1.6: The kinetic trace of an equimolar exchange of 10 µM Cu(H-1GHW) + 10 µM GHK. The yellow 
dotted line is a tangent to visualize the initial rate of the exchange. The data within the two blue horizontal 
lines was used to determine the rate in M/s using the slope function in Excel 2016.  
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The fitting approach used in the exchanges of truncated Cu(Aβ) complexes to the fluorescent GHW, 

DAHW, or GGW followed Eq. 1.6. In Eq. 1.6, the initial concentrations at t = 0 of [𝐶𝑢(𝐴β)]0 and [𝐺𝐻𝑊]0 are 

known, while the [𝐺𝐻𝑊]𝑡 is determined from the fluorescence at each data point at a time, t. The kinetic 

data was gathered in a similar fashion as the previous work; reactant concentrations were kept close to 

each other, calibration curves generated each time a set of data was gathered, and fluorescence intensity 

data were converted to concentration before analysis using calibration curves. Since this approach is 

looking at a decrease in tryptophan rather than a recovery of fluorescence like in our previous experiments, 

a smaller slit width was used to discourage an inner filter effect (IFE). IFE happens when some of the 

emitted light is reabsorbed by the fluorophore. Thus a decrease in fluorescence is observed but may not 

be due to the exchange. In order to determine a slit width that does not lead to an IFE, the fluorescence of 

the tryptophan peptides was monitored over the time frame of the kinetic experiment, and 1.5 nm was 

chosen as no decreases in fluorescence CPS was observed. As these exchanges were much faster than 

the previous work, the method of initial rates did not produce reliable rate constants or orders, due to the 

inability to get data points within the linear portion of the kinetic curve. We must manually add the reactants 

 

Figure 1.7: For order analysis of Cu(H−1GHW) (green circle, m = 0.966 ± 0.168, R2 = 0.91), a constant 
5 μM GHK was used, for that of GHK (blue triangle, m = 1.09 ± 0.19, R2 = 0.91), a constant 10 μM 
Cu(H−1GHW) was used, and for that of DAHK (black square, m = 1.00 ± 0.15, R2 = 0.94), a constant 10 
μM Cu(H−1GHW) was used. Error bars indicate two to three replicates. 
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due to the lack of any stopped-flow apparatus, which usually takes about four to five seconds. Within that 

4 – 5 seconds in these exchanges, a large decrease in fluorescence was observed, see inset Figure 1.8. 

Therefore, second-order fitting of the data using Eq. 1.6 allowed for the determination of rate constants by 

using the first 10 - 40 seconds of kinetic data (depending on the exchange examined), setting the y-intercept 

to zero, and graphing the left side of the equation versus time, where the slope of the line is the second-

order rate constant. These data were graphed, and their slopes determined in OriginPro 2019b (student 

version), then the slopes can be averaged and 95% confidence levels obtained. Figure 1.8 shows an 

example of graphing the transformed kinetic data to determine the rate constant from the slope of the line, 

where the y-axis is the left side of Eq. 1.6. 

(Eq. 1.6) 
1[𝐶𝑢(𝐴β)]0−[𝐺𝐻𝑊]0 ∗ ln ([𝐺𝐻𝑊]0∗([𝐶𝑢(𝐴β)]0−([𝐺𝐻𝑊]0−[𝐺𝐻𝑊]𝑡)) [𝐶𝑢(𝐴β)]0[𝐺𝐻𝑊]𝑡 ) = 𝑘 ∗ 𝑡 

 

Figure 1.8: Example of the second-order fitting performed on the kinetic data in the interpeptidic 
exchanges involving Cu(Aβ) complexes. The exchange shown here is 4 µM GHW + 5 µM Cu(Aβ1-16) 

at pH 7.40 in 0.1 M HEPES. The first 20 s of data are used. The slope is determined by setting the y-
intercept to zero. Inset is the kinetic concentration versus time data.  
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1.4 Nuclear magnetic resonance 

 Nuclear magnetic resonance, NMR, is an atomic level absorption spectroscopy which gives 

structural and environmental information about a molecule and its atoms through the absorption of radio 

waves under an applied magnetic field. Historically, it is used to elucidate the structures and purity of natural 

and synthesized molecules as well as interpretation of how the chemical environment can alter the chemical 

shifts in an NMR spectrum. In cartesian xyz coordinates, spin (angular momentum) is along the z-axis, 

where the magnetic quantum number, mS, is spin-up or spin-down, and where the number of angular 

momentum states is equal to 2S + 1. When an external magnetic field is applied to an atom with a non-zero 

spin number, an induced splitting of the spin states occurs when irradiated with an appropriate radio 

frequency, ν, and an energy difference between the two states is generated, Figure 1.9. This promotion of 

atoms to higher energy states is called resonance. The population of atoms in each energy state is denoted 

as Nα (lower energy state) and Nβ (higher energy state), and there is always a slight excess of population 

in the lower energy state, Nα > Nβ, following the Boltzmann distribution. In the absence of an applied 

magnetic field, the spin states are degenerate, or at the same energy. The energy difference, ΔE, arises 

 

Figure 1.9: The energy diagram of the simplest half-integer spin, I = 1/2 resulting in two energy 
states Nα/Nβ, with opposing spins ms = +1/2 (aligned with B0) or -1/2 (aligned against B0). For larger 
values of I, more states exist. 
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from the different alignment of the spin in either the same (Nα, ms = + 1/2) or opposite (Nβ, ms = - 1/2) 

direction as the applied magnetic field, B0, which is always situated along the z-axis, Eq. 1.7, where ℎ is 

Plank’s constant, and 𝛾  is the magnetogyric ratio. Each atom has a nuclear constant called the 

magnetogyric ratio, 𝛾, which determines the radio frequency at a given magnetic field strength needed to 

make the atom resonate and is based on the magnetic moment, 𝜇, and the spin number, 𝐼, Eq. 1.8. 

(Eq. 1.7) ∆𝐸 = ℎ𝜈 =  𝑩0ℎ𝛾/2𝜋 

(Eq. 1.8) 𝛾 = 2𝜋𝜇/ℎ𝐼 

NMR spectroscopy involves basic 1-dimensional (1-D) techniques that focus on a single nuclei type 

such as 1H or 13C NMR. These experiments give structural and chemical environment information about 

the molecule of interest. In 1-D NMR, the spectrum is taken by putting the sample in a constant magnetic 

field, where the field strength of a magnet is given in MHz and is based on the frequency needed for a 

proton to resonate. For instance, a 500 MHz NMR is at about 117,500 Gauss or 11.75 Tesla. Once in the 

constant magnetic field aligned along the z-axis, an appropriate radio frequency is pulsed for the atom of 

interest along the x-axis (a common pulse is at 90°, or π/2), the pulsed frequency must be large enough to 

capture the entire frequency range for that nuclei. Once irradiated, the atoms in the sample are excited to 

the higher state, and a free induction decay (FID) is recorded as the nuclei relax back down to the ground 

state and release their absorbed energy. The FID can be mathematically transformed by a technique called 

Fourier transformation (FT), and the NMR spectrum is produced.  

Deuterated solvents are very important in NMR as most instruments use the deuterium (2H) signal 

to stabilize the magnetic field and make it homogeneous. This is achieved by locking the B0 to the frequency 

of the deuterated solvent. Luckily, deuterium does not show up in the NMR spectrum. This is very important 

as most solvents have hydrogen atoms, thus would completely dominate the NMR spectrum due to the 

large intensity. The concentration of the solvent is always much greater than the analyte dissolved in the 

solvent; thus, deuterated solvents are extremely important to use. Inhomogeneity in the magnetic field leads 

to extreme signal broadenings, like that seen with ferromagnetic materials like iron or paramagnetic metals 

like copper. Shimming by small magnets helps to keep the magnetic field stable and homogeneous in the 

sample volume.  
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When the sample is pulsed by a radio frequency along the x-axis, the magnetic vector aligned along 

the z-axis is tipped to the y-axis by 90°. The vector then processes back to the z-axis in a relaxation 

mechanism and is a measure of time. The T1 is called longitudinal relaxation, which is the transfer of energy 

from excited nuclei to neighboring processing nuclei. When T1 is short, then the intensity of the NMR peak 

is related to the number of that type of nuclei. For example, in 1H NMR, the integration of the area under 

the peak is proportional to the number of hydrogen atoms (protons). The T2 is called transverse relaxation, 

which is the transfer of energy from processing nuclei to each other. This type of relaxation causes line 

broadening and signal loss in the NMR spectrum and is usually due to the fanning out of the effective net 

magnetization along the xy plane.  

The NMR spectrum contains signals at very particular chemical shifts, δ (ppm), which give detail 

about the structure and chemical environment felt by the atom. The value ppm is determined from the 

frequency of the signal in Hz divided by the frequency range of the spectrometer in MHz, for example, if a 

1H NMR signal is at 7 ppm on a 300 MHz instrument, the signal was at a frequency of 2100 Hz. Chemical 

shifts are reported as ppm, as these values do not change, given the instrument MHz value. Whereas if the 

chemical shift was given in Hz, the values would be different depending on the instrument used and would 

be difficult to compare chemical shifts across different instruments. Like infrared spectroscopy, in 1H NMR, 

functional groups tend to have select regions of chemical shift ppm that the peaks show up at. For example, 

aromatic protons are often in the range of 6 - 9  ppm (downfield), while aliphatic protons are often in the 

range of 0 – 4 ppm (upfield). The chemical shifts of atoms are very predictable and can be projected using 

software like ChemDraw but are dependent on the solvent environment. For example, a chemical shift of a 

proton in a molecule will be different in aqueous solutions than in organic solvents. Even partitioning effects 

of a molecule within a membrane, like those in reverse micelles, will exhibit differences in the chemical shift 

of a proton, depending on its localized chemical environment. Similarly, when a metal ion binds to a ligand, 

the signals of the ligand’s protons near to the bound metal will shift from the unbound state.  

In addition to the chemical shift, the splitting patterns and the integration give a great deal of 

information about the structure and chemical environment felt by the atoms in the molecule. For instance, 

integration of 1H NMR peaks will give the number of protons of that type there are in the molecule and is 

an effect of the T1 relaxation. A summation over all the integration for all signals should give the total number 
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of hydrogen atoms in the molecule, and deviations from the expected number can indicate purity issues or 

contamination. The phenomenon known as spin coupling allows us to determine which protons are near 

each other in a molecule based on how much splitting of the peak is visible and the distance in Hz between 

them, known as coupling constants. Spin coupling arises from the coupling of the spin of the nuclei with 

other nearby bound nuclei through their bonded electrons following the Pauli principle that paired spins are 

antiparallel, and thus energy stable. This often only works when the coupled protons are 1 - 3 bonds away 

from each other, except in cases of aromaticity or conjugation, or a specific 4 bond coupling known simply 

as W coupling. If there are no coupled protons, a simple singlet (s) peak shows up on the NMR spectrum. 

If there is one coupled proton, a doublet (d) shows up on the NMR spectrum. If there are two coupled 

protons, a triplet (t) shows up on the NMR spectrum. Thus, the extent of splitting is equal to n + 1, where n 

is the number of coupled protons, and the distance between the peaks is the coupling constant, J, which 

does not exceed 20 Hz. The values of J are predictable and are different depending on the structure in the 

molecule. Many complex systems can arise, for example, such as doublets of doublets (dd) or a doublet of 

triplets (dt), which are due to coupled protons with different coupling constants. 

Correlation NMR spectrometry is the collection of 2-D NMR techniques, which are valuable as they 

give information which is not otherwise obtainable using the 1-D NMR spectrum. All 2-D techniques are 

comprised of similar 1-D spectra, which have been plotted using a xy fashion, but often have more complex 

pulse sequences than the 1-D NMR. The pulse sequence in 2-D NMR techniques often involves multiple 

pulses and a time delay between them, or a mixing time. This allows for interaction by the coupled 

technique, so correlations form. Correlations are often found as cross-peaks with diagonals if the two nuclei 

are the same, as in 1H1H COSY (correlation spectroscopy) NMR, which gives information about which 

protons are next to each other in a molecular structure. Contour peaks in the 2-D spectrum are those that 

line up with two individual signals from the spectra of different atoms, as in 1H13C HSQC (heteronuclear 

single quantum coherence spectroscopy) NMR, which gives information about which protons are attached 

to which carbon atoms. There are many 2-D NMR techniques that can tell you different structural 

information, like which H atoms are bound to which C atoms, or if two C or H atoms are near in space.  
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1.5 Electron paramagnetic resonance 

Electron paramagnetic resonance (EPR) is very similar to NMR, in which a magnetic field and radio 

wave irradiation are used to generate an energy difference that can be measured. However, this technique 

uses the unpaired electron in paramagnetic or radical molecules or metals like Cu(II). Just like how nuclei 

have spin which generates a magnetic field, an isolated unpaired electron has a charge and spin, which 

can also generate a magnetic field. The interaction of the unpaired electron with an externally applied 

magnetic field is theoretically like how NMR induces a spin state energy difference. In EPR, this is called 

the Zeeman effect Figure 1.10, which follows Eq. 1.9, where 𝑔𝑒 is the g-factor of an isolated electron (𝑔𝑒 =2.0023192778), and 𝛽 is the Bohr magneton. The unpaired electron has a particle spin of ½, so it has two 

spin states, ms = ± ½ . Since electrons are parts of nuclei and are subject to orbital momentum, the 

experimental g-factor always deviates from the ideal 𝑔𝑒 and are denoted as 𝑔. For experimental values of 𝑔, Eq. 1.10 is followed, where the frequency (in MHz) is a constant value, and the magnetic field (in Gauss) 

is determined experimentally. Unlike NMR, the radio frequency is held constant, in the GHz range, while 

the magnetic field is varied.  

(Eq. 1.9) 𝛥𝐸 =  𝐸+12 − 𝐸− 12 =  𝑔𝑒  𝛽 𝑩0 

(Eq. 1.10) 𝑔 = ℎ 𝑣/𝛽 𝑩0 

(Eq 1.11) 𝐴 = 𝑔 𝜇𝑒  ∆𝑩0/ℎ 

 

Figure 1.10: Induced energy difference of the spin states within a magnetic field for a paramagnetic 
electron with ms = ± ½ which either aligns with or against the magnetic field.  
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 Since the g-factor has directional anisotropic contributions in the xyz Cartesian coordinates ( 𝑔𝑥, 𝑔𝑦, 𝑔𝑧) a low temperature or “powder” spectrum is often taken. Especially for EPR involving Cu(II), without 

freezing the sample, all the directional vectors would cancel each other out due to their ability to freely 

move, and no spectrum would be recorded. In a frozen sample, there is a net summation of all possible 

orientations since they are fixed in space, and a spectrum can be recorded. An EPR spectrum is often 

either plotted with the magnetic field or, more commonly, the g-factor (referenced axis) as the x-axis with 

absorption derivative as intensity on the y-axis. With the g-factor as the x-axis, measurements can be 

directly compared over differing days or instruments since the frequency and magnetic field are already 

accounted for by Eq. 1.10. With Cu(II), there is a parallel (𝑔||) and perpendicular (𝑔⊥) region of the spectrum, 

which is a result of axial anisotropy. Axial anisotropy means that one axis is different than the other two, 𝑔|| =  𝑔𝑧 and  𝑔⊥ = 𝑔𝑥 =  𝑔𝑦. These regions can overlap, especially in Cu(II) EPR. The g-factor is often a 

fingerprint value for Cu(II) complexes. 

 For the Cu(H-1GHW) complex, a powder EPR spectrum is given in Figure 1.11A, which shows the 

parallel and perpendicular regions and their overlap. The parallel region’s peaks are called hyperfine 

interactions, which arise from the coupling of the paramagnetic electron to the Cu(II) nucleus. In the 

perpendicular region, these are called superhyperfine interactions and arise from the coupling of the 

paramagnetic electron to the ligand nuclei. These are both perturbations of the energy differences observed 

in the Zeeman effect and are like the proton coupling observed in NMR. The coupling leads to complexity 

in the spectrum, just like in NMR. The 𝑔|| and 𝑔⊥ values can be interpolated from the EPR spectrum as the 

midpoint in the range of the region. So, for the 4 peaks of Cu(II) in the 𝑔|| region, the g-factor value is the 

midpoint of the parallel range. Similarly, the 𝑔⊥ is taken as the midpoint of the perpendicular range. The 

hyperfine (𝐴||)  coupling constants are determined by the width in Tesla (∆𝑩0) between the two peaks, 

Figure 1.11B and follows Eq. 1.11, where 𝜇𝑒 is the magnetic moment of an electron. The number of peaks 

in the parallel region follows the 2S + 1 rule, where for Cu(II), both 63Cu and 65Cu have nuclear spins of 3/2, 

and 4 peaks are often observed (Figure 1.11A 1-4). The parallel peaks can merge into the perpendicular 
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region, as seen in Figure 1.11A and B, where three peaks are very clear in the parallel region, and the 

fourth is within the perpendicular region. When this type of overlap happens, it can significantly alter the 

perpendicular region’s peaks, as seen in the zoomed images of the perpendicular region below each 

spectrum. The superhyperfine coupling in the perpendicular region is sensitive to bound ligand nuclei. The 

splitting patterns here follow the 2nI + 1 rule, where n is the number of identical nuclei, and I  is the spin 

number for that nuclei. For Cu(H-1GHW), there are three nitrogen ligands and one oxygen ligand (3N + 1O) 

bound to the Cu(II). Therefore, there should be 7 superhyperfine peaks. However, when the paramagnetic 

electron is not coupled to the same ligand type all the time, as in the case with a bound water molecule in 

the Cu(H-1GHW) complex, the intensity is diminished, and the peaks are less defined, see zoomed 

perpendicular region Figure 1.11A. When the electron is in the same ligand environment, as in a 4N binding 

like a Cu(H-2(GHK)2) complex, 9 superhyperfine coupling peaks are clearly defined, see zoomed 

perpendicular region Figure 1.11B.   

 

Figure 1.11: The powder EPR spectrum of Cu(H-1GHW) (A) and of Cu(H-2(GHK)2) (B). Samples were 
frozen with liquid N2, then run at low temperature at ν = 9.5 GHz. The perpendicular region is highlighted 
below each spectrum to show superhyperfine coupling between the paramagnetic electron and its 
ligand environment. 
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1.6 Electrochemistry and cyclic voltammetry  

Electrochemistry is the study of redox-active compounds and their ability to transfer electrons to 

generate or store energy. One of the most common electrochemical techniques is cyclic voltammetry, which 

has robust methods that can determine the physical and chemical properties of a redox-active system. 

Cyclic voltammetry is a potential sweep method in which the applied potential is scanned from some initial 

potential to a vertex potential, and then back to the initial potential. During the cyclic voltammetry 

experiment, information can be obtained about both the oxidized and reduced species, Figure 1.12. The 

half-wave potential, E1/2, is the midpoint between the cathodic and anodic peak potentials, Epc and Epa, 

respectively, Eq. 1.12. The cathodic and anodic peak currents, ipc and ipa, are measured considering the 

double-layer capacitance (horizontal dotted lines) to determine the amount of current passed at the peak 

potential (vertical dotted lines).  

 

Figure 1.12: A cyclic voltammogram of 2 mM ferrocene (structure in the top left) in acetonitrile, using 
a glassy carbon working electrode, a platinum wire auxiliary electrode, and a Ag+/Ag non-aqueous 
reference electrode (0.1 M AgNO3 in MeCN with 0.1 M tetrabutylammonium perchlorate) with  at a scan 
rate of 100 mV/s. The Fc+/Fc couple redox potential is set to 0 V as an internal standard in 
electrochemical studies, which the x-axis is Potential vs Fc+/Fc. The cathodic (red) and anodic (blue) 
peak potentials (Epc, Epa) and peak currents (ipc, ipa) are shown. The redox potential, or half-wave 
potential (E1/2) is shown in yellow.  
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(Eq. 1.12) 𝐸1/2 =  12 (𝐸𝑝𝑐 + 𝐸𝑝𝑎) 

 

Since potential sweep methods involve a potential that is always changing, a charging current, ic, 

is always present at the electrode surface. In Figure 1.12, the tangential lines that are drawn (horizontal 

dotted lines) are the baseline charging current for that scan rate and concentration of the analyte, as shown 

in Eq. 1.13, where 𝐶𝑑 is the differential capacitance of the double layer (shown in the second equation), 𝐷𝑂 

is the diffusion coefficient, n is the number of electrons in the redox process, 𝐶𝑂 ∗  is the bulk concentration 

of species, and v is the scan rate. In cyclic voltammograms, the double-layer capacitance can usually be 

manually inspected by hand (as shown in Figure 1.12) or by some electrochemistry software programs and 

usually doesn’t need to be quantified, just subtracted from the actual current passed.  

 (Eq. 1.13) 
|𝑖𝑐|𝑖𝑝 = 𝐶𝑑 𝑣1/2 (10−5)2.69 𝑛3/2 𝐷𝑂1/2 𝐶𝑂∗   , 𝑖 = 𝑣 𝐶𝑑  [1 − 𝑒− 𝑡𝑅𝑠𝐶𝑑] 

 

When the scan rate is very high, or the concentration of an analyte is very low, the resulting linear 

sweep voltammetry can be highly distorted. Therefore, cyclic voltammetry often requires effective 

concentration ranges where scan rates are limited. A common scan rate used is 100 mV/s and a 

concentration of 1 - 3 mM. The resulting vertical dotted lines for ipc and ipa in Figure 1.12 are the amount of 

current passed due to the ferrocene being reduced or oxidized, with double-layer capacitance omitted. The 

ratio of peak currents, Eq. 1.14, is used as an indication of the reversibility of the redox process. When the 

ratio of peak currents approaches unity, then the system is considered completely reversible, while 

deviations from unity indicate quasi-reversibility or irreversibility. Importantly, the peak current can be used 

to determine the diffusion coefficients, Do, of redox-active species by using the Randles-Sevcik equation, 

Eq. 1.15, where the constant 2.69 x 105 is determined by Faraday’s constant, temperature, and the gas 

constant at standard temperature and pressure (STP) conditions, ip is peak current measured, n is the 

number of electrons in the redox process, 𝐶𝑂 ∗  is the bulk concentration of species, A is the area of the 

working electrode, and v is the scan rate. The diffusion coefficient is an indication of how well the species 

will move to and from the electrode surface and can be used to determine the thickness of the diffusion 

layer. Lastly, to determine the number of electrons in the redox process, the potential width between the 
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peaks is used, Eq. 1.16. In aqueous solution, a general rule is that a 𝛥𝐸𝑝 of 59 mV means one electron is 

in the redox process. In aprotic solutions, due to ohmic drop (high resistivity, IR drop), this can deviate from 

59 mV. Thus, a factor of x was determined by setting the ferrocene n to 1 (as this is known), and determining 

the measured ΔEp, then x is calculated for that solvent., Eq. 1.17.  

(Eq. 1.14)  
𝑖𝑝𝑐𝑖𝑝𝑎 = 1, for reversible 

(Eq. 1.15) 𝐷𝑂 = ( 𝑖𝑝2.69𝑥105 𝑛32 𝐴 𝐶𝑂 ∗ 𝑣12)2
 

(Eq. 1.16)  𝛥𝐸𝑝 =  |𝐸𝑝𝑐 − 𝐸𝑝𝑎| 
(Eq. 1.17) 𝑛 = 𝑥 ((59 𝑚𝑉)(𝛥𝐸𝑝) ) 

In cyclic voltammetry, a classical three-electrode system is used. As shown in Figure 1.13, there 

is a glassy carbon working electrode (WE), a platinum wire auxiliary electrode (AE), and a refillable 

Ag/AgNO3 reference electrode (RE). In order for the RE to keep its constant potential, as is required for any 

RE, all current must be passed through the WE and AE. To do this, the WE and AE must be physically 

closer than the WE and RE. The electrodes are situated like in the photo in Figure 1.13. The solution is put 

into the vial, and Argon gas is bubbled through to desolvate O2 gas before performing the experiment. 

 

Figure 1.13: Pictures of a glassy carbon working electrode (WE), a platinum wire auxiliary electrode 
(AE), a refillable Ag/AgNO3 reference electrode (RE), and their cyclic voltammetry setup.  



23 

 

1.7 Spectroelectrochemistry 

 Spectroelectrochemistry is the combination of both optical spectroscopy and electrochemistry. We 

can use specialized instrumentation that can hold a solution at a certain potential while its absorption 

spectroscopy is obtained. First, the potentials of each redox process are determined by conventional cyclic 

voltammetry. Then these values can be used to hold the potential constant while the absorption 

spectroscopy is obtained. Figure 1.14 shows the Pine Research Honeycomb electrode plate that has both 

platinum WE and AE on the plate, where the WE is in the Honeycomb portion of the plate, and the AE runs 

around the edge.  

The location of the WE allows for quick equilibration of the solution to the applied potential. This is 

inserted in a thin layer quartz cuvette with a  pathlength of ℓ = 1.7 mm. The electrode plate is connected via 

a USB port to the Wavedriver 20 instrument. The electrochemical cell can then be placed in a cuvette holder 

attached to a detector (Avantes AvaSpec 2048) and lamp source (Avantes AvaLight Dual DHc halogen-

deuterium lamp) with fiber optic cables. The height of the beam of light is situated directly in the Honeycomb 

holes and is much more effective at the light being able to pass through than mesh electrode assemblies. 

 

Figure 1.14: Spectroelectrochemical cell kit from Pine Research. The WE/AE plate and the low-profile 
refillable Ag/AgNO3 RE are shown. A front and side view of the spectroelectrochemical cell kit show 
how the plate and RE fit into the thin layer quartz cuvette. There is a reservoir where the RE can contact 
the solution. The light in is always situated toward the front of the plate.  
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A low profile non-aqueous refillable Ag/AgNO3 reference electrode is used and fits in the reservoir behind 

the plate. The UV-vis spectrum is taken while the instrument holds the potential at preset parameters. The 

Pine Research AfterMath software can simultaneously control both the potentiostat and the spectroscopy.  
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CHAPTER 2: MEASUREMENT OF INTERPEPTIDIC CU(II) EXCHANGE RATE CONSTANTS BY  
 

STATIC FLUORESCENCE QUENCHING OF TYRPTOPHAN11 
 

 
 

2.1 Summary 

The interpeptidic exchange of Cu(II) between biologically relevant peptides like Gly-His-Lys (GHK) 

was measured through proximity static fluorescence quenching of a noncoordinating tryptophan residue by 

Cu(II). The inability to spectrally distinguish between starting and final Cu(H−1GHK)+ complexes by the 

current methods was solved by the replacement of noncoordinating lysine for tryptophan in the starting 

complex, Cu(H−1GHW). Because the apoGHW is the only fluorescent species, the recovered fluorescence 

is directly proportional to the [Cu(II)]exchanged between GHW and GHK. The apparent second-order rate 

constants of the exchanges from Cu(H−1GHW) to GHK and DAHK are 1.6 (±0.2) × 102 and 5.0 (±0.7) × 101 

M−1s−1, respectively. The easy-to-implement kinetic fluorescent method described here for Cu(II) 

interpeptidic exchange can be expanded to other biological systems. 

 

2.2 Introduction to interpeptidic exchange kinetics using tryptophan fluorescence quenching and small 

Cu(II) tri- and tetra-peptide complexes  

The role of interpeptidic metal ion exchange in disease is becoming of increasing importance and 

beginning to be addressed in a range of biological systems including neurodegenerative illnesses like 

Alzheimer’s disease.3-12 Specifically, Cu(II) coordinates in structural or functional sites in proteins like 

amyloid-beta (Aβ) the primary protein associated with Alzheimer’s disease, human serum albumin (HSA), 

ceruloplasmin, tau and prions where the binding ligands are mainly nitrogen (N) sites like the amine 

terminus (NH2), histidine (Nim), and deprotonated amide backbone (N-).3-4, 13-17 Since GHK (Gly-His-Lys) is 

associated with cell growth factor, and DAHK (Asp-Ala-His-Lys) is the N-terminal sequence of HSA, 

investigation of the homo- or hetero-inter-peptidic Cu(II) exchange between GHK and DAHK binding sites 

is important as these two motifs co-exist in the serum.16-19 The GHK and DAHK peptides readily form metal 

                                                                 
1 Beuning, C. N.; Mestre-Voegtlé, B.; Faller, P.; Hureau, C.; Crans, D. C., Measurement of Interpeptidic Cu(II) 

Exchange Rate Constants by Static Fluorescence Quenching of Tryptophan. Inorg. Chem. 2018, 57 (9), 4791-4794. 

DOI: 10.1021/acs.inorgchem.8b00182 



30 

 

coordination complexes in the presence of Cu(II) ions, Figure 2.1, and their structures and stoichiometry 

have been determined by electron paramagnetic resonance (EPR), UV-Vis spectrometry, isothermal 

titration calorimetry (ITC), and Job Plots.20-21 Despite the limitations of comparing the behavior of short 

peptide complexes to large protein complexes, the similar Cu(II) coordination sites of the chosen model 

peptides are suitable for use in the proof of concept studies to determine inter-peptidic Cu(II) exchange rate 

constants by static fluorescence quenching of tryptophan.3-4, 6-10, 12, 22-25  

Previous studies of Cu(II) exchange from short peptide complexes were performed with free amino 

acids, EDTA, and nitrogen-rich ligands like the ethylenediamine family as their initial, ternary, and final 

complexes can be spectrally distinguished by stopped-flow absorbance, see selected systems in Table 

2.1.2, 26-37 We have designed a fluorescence experiment by replacing non-coordinating lysine (K, Lys) with 

tryptophan (W, Trp) and using proximity static fluorescence quenching of GHW by paramagnetic Cu(II). 

The critical energy transfer distance between Cu(II) and GHW must be within a maximum of 14 Å for greater 

than 90% quenching, where greater distances provide less or no quenching.38 Cu(II) quenching of GHW 

residues has been extensively used to examine metal-binding domains of proteins and so peptides 

containing W within the metal-binding site are probes to measure inter-peptidic processes.38-39  

 

 

 

Figure 2.1 Solution structures of Cu(II) bound to DAHK (left, Lys = Trp for DAHW) and GHK (right, Lys 
= Trp for GHW, L = H2O) in 0.1 M HEPES at pH 7.4. The L = H2O in the Cu(H-1GHW) complex can be 
readily exchanged by an incoming imidazole ligand (L = Nim) from a second added peptide, forming 
Cu(H-1GHW)(GHK/DAHK), a 1:2 ternary complex. The overall charges on the peptides were omitted 
for clarity. 
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Table 2.1: Cu(II) exchange rate constants of some selected systems.    

Initial Cu (II) Complex + Ligand  

→ Final Cu(II) Complex 

Ligand Donors of 
Initial Complex 

Ligand Donors of 
Final Complex 

Rate Constant, k    

M-1s-1, for Initial to 
Final Complex 

pH Ref. 

Cu(H-2GGG)- + HCys → Cu(H-1GGG)(Cys-) NH2, 2 N-, OH2 2 NH2, N-, S- > x 106 8.7 2 

Cu(H-1GGG)(Cys-) + HCys → Cu(Cys-)2 2 NH2, N-, S- 2 NH2, 2 S- 3.3 x 103 8.7 2 

Cu(H-1HGG)(Cys-) + HCys → Cu(Cys-)2 2 NH2, Nim, S- 2 NH2, 2 S- > x 106 8.7 2 

Cu(H-1LGG)(Cys-) + HCys → Cu(Cys-)2 2 NH2, N-, S- 2 NH2, 2 S- 9 x 102 8.7 2 

Cu(H-3GGGG)2- + Gly- → Cu(H-2GGGG)(Gly-) NH2, 3 N- 2 NH2, 2 N- 7.8 x 105 9-10 26 

Cu(H-2GGHG)- + Pes → Cu(H-1GGHG)(Pes-) NH2, 2 N-, Nim 2 NH2, N-, S- 1.8 7.5 30 

Cu(H-2GGHG)- + Pes → Cu(H-1GGHG)(Pes-) NH2, 2 N-, Nim 2 NH2, N-, S- 4.1 8.5 30 

Cu(H-1GGGGG)( Pes-) + Pes → Cu(Pes-)2 2 NH2, N-, S- 2 NH2, 2 S- 3.6 x 101 7.5 30 

Cu(H-1GGGGG)( Pes-)+ Pes → Cu(Pes-)2 2 NH2, N-, S- 2 NH2, 2 S- 1.1 x 102 8.5 30 

Cu(L-His)2 + HSA → Cu(HSA)(L-His) 
2 NH2, Nim, COO- 

(or 2 Nim) 
NH2, 2 N-, Nim 4.85 x 102 7.5 16 

Cu(L-His)2 + GGH → Cu(H-1GGH)(L-His) 
2 NH2, Nim, COO- 

(or 2 Nim) 
2 NH2, N-, Nim 1.21 x 102 7.5 16 

Cu(H-2GGG)- + trien → Cu(trien)2+ NH2, 2 N-, OH2  Amine N 1.1 x 107 8.4 37 

Cu(H-2GGH)- + trien → Cu(trien)2+ NH2, 2 N-, Nim Amine N 5 x 10-1 uk 28 

Cu(H-1GHG) + HCys → Cu(H-1GHG)(Cys-) NH2, OH2 N-, Nim 2 NH2, N-, S- > x 106 8.7 29 

Cu(H-2GGH)- + HCys → Cu(H-1GGH)(Cys-) NH2, 2 N-, Nim 2 NH2, N-, S- 4 x 101 8.7 29 

Cu(H-1GHG)(Cys-) + HCys → Cu(Cys-)2 2 NH2, N-, S- 2 NH2, 2 S- 6.9 x 103 8.7 29 

Cu(H-1GGH)(Cys-) + HCys → Cu(Cys-)2 2 NH2, N-, S- 2 NH2, 2 S- 3-4 x 103 8.7 29 

Cu(H-1GHW) + GHK+→ Cu(H-1GHK)+ NH2, OH2, N-, Nim NH2, OH2, N-, Nim 1.56 (± 0.16) x 102 7.4 1 

Cu(H-1GHK)+ + GHW→ Cu(H-1GHW) NH2, OH2, N-, Nim NH2, OH2, N-, Nim 4.26 (± 0.31) x 102 7.4 UP 

Cu(H-1GHW) + DAHK → Cu(H-2DAHK)- NH2, OH2, N-, Nim NH2, 2 N-, Nim 5.0 (± 0.7) x 101 7.4 1 

Cu(H-2DAHW)2- + GHK+→ Cu(H-1GHK)+ NH2, 2 N-, Nim NH2, OH2, N-, Nim Very slow 7.4 1 

Cu(H-2DAHW)2- + DAHK → Cu(H-2DAHK)- NH2, 2 N-, Nim NH2, 2 N-, Nim Very slow 7.4 1 

*Abbreviations: Gly = Glycine, Cys = Cysteine, His = Histidine, Pes = Penicillamine, HSA = human serum 
albumin, trien = triethylenetetraamine, UP = unpublished 

 

According to Eq. 2.1, the Cu(II) complexes are characterized as Cu(H-nP)(m-n+1) where m is the 

overall charge of apoP (where P = GHK or DAHK), and n reflects the number of N- donor ligands in the 

complex. In our system, when P = GHK then m = 1, n = 1 and when P = DAHK then m = 0, n = 2. The 

apoGHW peptide is fluorescent, and the Cu(H-1GHW) complex is non-fluorescent; thus, stoichiometric 

amounts of apoGHW are produced when the non-fluorescent GHK (homo-inter-peptidic exchange) or 
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DAHK (hetero-inter-peptidic exchange) peptides are added, Eq. 2.1. When complex equilibria reactions 

exist, non-pseudo first-order kinetic approaches to determine rate constants are necessary. For example, 

a large excess of one reagent in Eq. 2.1 leads to different complex speciation, specifically 1:1 versus 1:2 

(Cu:P) complexes. The conditions under which the correct speciation is present must be identified before 

the kinetics can be measured. In this case, all kinetic measurements for the Cu(H-1GHW) exchanges were 

performed under specific pH, relative concentrations, and buffer conditions to obtain the 1:1 speciation. 

(Eq. 2.1) Cu(H-nGHW) + Pm   kobsP⇌   Cu(H-nP)(m-n+1)+ GHW + (n-1)H+ 

2.3 Experimental methods 

2.3.1 Materials  

The GHW (99.73% pure), GHK (99.73%), DAHW (96.89%), and DAHK (98.64%) peptides used 

were purchased from GeneCust (Luxembourg). The source of Cu(II) ions was CuSO4•5H20 purchased from 

Aldrich. Buffer chemicals HEPES (99.5%) and NaOH (97.0%) were purchased from Sigma. All water used 

was purified by a Milli-Q purification system to 17-18 MΩ•cm resistivity.  

2.3.2 Instrumentation and software  

The UV-vis experiments were performed on a BMG LabTech SpectroStar Nano or a Perkin-Elmer 

Lambda 25 spectrophotometer. Fluorescence experiments were performed on a Fluorolog-3 or Fluorolog-

4 Horiba Fluorimeter or BMG ClarioStar Fluorimeter. Electron paramagnetic resonance (EPR) experiments 

were performed on a Bruker spectrometer Elexys E500 instrument. Quartz or glass cuvettes with a 1 cm 

path length were used. Where applicable well plates used had 200 µL volumes and were treated not to 

absorb UV light used to excite in fluorescence experiments. All data were analyzed in OriginPro 2017b-

2019b (student version) or Excel 2016.  

2.3.3 UV-vis spectroscopy  

The UV-vis samples were designed so that the addition of Cu(II) titrant volume did not significantly 

affect peptide concentration by dilution. Stock peptides were diluted to approximately 1 mM with 0.1 M 

HEPES buffer at pH 7.40 in the cuvette before titration with Cu(II) – for detailed concentration determination, 

see section 1.3.6. Samples were mixed upon each aliquot of Cu(II) added (0.1 to 0.2 mol equivalence) 

before a spectrum was taken. The tryptophan-containing peptides were directly measured through their 
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tryptophan absorbance, λmax = 280 nm and ε = 5690 M-1cm-1. Using Beer’s law, Eq. 1.1, concentration and 

absorbance can be directly related. The Cu(H-1GHK)+ and Cu(H-1GHW) have λmax = 600 nm and ε = 50 M-

1cm-1 while the Cu(H-2DAHK)- and Cu(H-2DAHW)2- have λmax = 525 nm and ε = 100 M-1cm-1, Figure 2.2. 

The HEPES buffer, apoGHK, and apoDAHK have no absorbance where the Cu(II) complexes form, 400 – 

800 nm, Figure 2.3. The apoGHW and apoDAHW both absorb at 280 nm (ε = 5690 M-1cm-1) and within the 

400 – 800 nm have little absorbance, Figure 2.3. The UV-Vis instrument (Perkin-Elmer Lambda 25) is 

equipped with two cuvette holders, one for the sample and the other for the background, in this case, is 0.1 

M HEPES. Thus, the data taken these figures are background corrected at the time of acquisition.  

 

2.3.4 Fluorescence spectroscopy and sample preparation  

Kinetic measurements were designed to take advantage of paramagnetic fluorescence static 

quenching of tryptophan by Cu(II) proximity to the fluorophore. Upon the Cu(II) exchange, the fluorescence 

recovery of the unbound tryptophan peptide’s (apoGHW) fluorescence recovery was monitored with time. 

The method of initial rates was used for rate law determination and rate constant calculation. Since, at such 

low concentrations, the fluorescence intensity (IF) is linearly proportional to concentration following Eq. 1.2, 

 

Figure 2.2 The Cu(H-1GHK)+ and Cu(H-2DAHK)- 
complexes have a λmax = 600 nm (ε = 50 M-1cm-1) 
and 525 nm (ε = 100 M-1cm-1 ), respectively.1-2 
Normalized UV-Vis spectra for all four complexes 
(in 0.1 M HEPES, pH 7.4) are shown to confirm 
they have identical maximum wavelengths. The 
GHW complex is slightly shifted as compared to 
the GHK complex and could be due to slight 
variations of pH. 

 

Figure 2.3 The normalized control UV-Vis 
spectra show no absorbance of HEPES buffer, 
apoGHK, and apoDAHK between 400 – 800 nm 
and little absorbance of apoGHW and 
apoDAHW between 400 – 800 nm, while the 
tryptophan absorbance is seen at λmax = 280 nm 
(ε = 5690 M-1cm-1). 
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the apo[GHW] can be determined from the experimental data by calibration curves taken before kinetic 

measurements. Therefore, the maximum concentration whose fluorescence signal is linearly proportional 

is determined by Eq. 1.3. As all Cu(H-1GHW) fluorescence is quenched, the amount of recovered apo[GHW] 

observed is also equal to the concentration of Cu(II) exchanged since it is a 1:1 complex in these conditions. 

Thus the [Cu(II)]exchanged can be measured with time to determine a rate of Cu(II) exchange. The rate 

constants were determined at 95% confidence intervals with 17 and 14 degrees of freedom for the Cu(H -

1GHW) to GHK and DAHK exchanges, respectively. For Cu(H-1GHW) measurements in the Fluorolog-3 or 

Fluorolog-4 Horiba Fluorimeters the following parameters were used; a quartz or glass cell of 1 cm path 

length, λexcitation = 290 nm, λemission = 365 nm, an emission and excitation slit width of 5 nm, and 1000-2000 

µL total sample volume.  

Samples were prepared so that the added Cu(II) ions and incoming peptide GHK/DAHK were 1-5 

µL of the total volume to minimize any dilution effects or changes in pH. For DAHW measurements in the 

BMG ClarioStar Fluorimeter, a 290 ± 10 nm excitation filter and a λemission = 352 nm were used along with 

200 μL UV treated well plates. All kinetic experiments for GHW exchanges were performed under conditions 

where there was no large excess of GHK/DAHK. This could induce preferential 1:2 Cu:P complexes. The 

kinetic experiment concentrations were chosen in the range where the ratio of [Cu(H-1GHW)]/[GHK] (or 

[DAHK]) versus rate was linear, which resulted in the second-order kinetic rate constants.  

2.3.5 Electron paramagnetic resonance spectroscopy and sample preparation 

All spectra are normalized in both the derivative of the signal (y-axis) and the g factor (x-axis), 

where the g factor is a dimensionless value and is determined by the EPR equation (Eq. 2.2) where h = 

6.626 x 10-34 J·s (Plank’s constant), v is the constant frequency of the experiment in Hz, β = 9.274 x 10-28 

J·G-1 (Bohr magneton), and Bo is the value of the varied magnetic field in Gauss. For experiments run on 

different days, which may have differences in the frequency, plotting the EPR spectra with these axes allows 

for direct spectral comparison. The A// (hyperfine coupling constants) values are determined by using the 

spectra and determining the frequency window between peaks.  

(Eq. 2.2)  g = (hv)*(βBo)-1 

The 1:1 Cu(II): GHW and Cu(II):DAHW samples were prepared at [Cu(II)-Peptide] = 0.5 mM in 0.1 

M HEPES at pH 7.40. The samples were approximately 200 µL in which 40 µL was a 50/50 Glycerol/Water 
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mixture to give an 80:20 HEPES-Water : Glycerol ratio. The samples were vortexed to ensure complete 

mixing, transferred to an EPR tube, left uncapped, and then frozen with liquid N2 within 2 minutes of 

preparation (frozen to ensure capture of ternary species). The samples were then run on the EPR 

instrument at approximately 9.5 GHz (exact frequencies GHK – 9.437358 GHz, GHW – 9.516630 GHz, 

DAHK – 9.531073 GHz, and DAHW – 9.511427 GHz). The 1:2 Cu(II):GHK samples run at 0.10, 0.20, 0.50, 

and 1.0 mM Cu(II) (double these concentrations for GHK) were prepared and ran in the same fashion as 

described above. The concentration range for the EPR study was chosen as this is a working range for 

EPR experiments.  

2.3.6 Stock peptide preparation and concentration determination 

Peptide stock solutions of approximately 50 mM in DI water were prepared given that trifluoroacetic 

acid (TFA) anions co-precipitate during peptide synthesis on cationic peptide sites. The molecular mass of 

these co-precipitated peptides is larger than the peptides alone where GHW, GHK, DAHW, and DAHK have 

molecular masses of 398.42, 340.38, 527.53, and 469.49 g/mol, respectively, but have apparent molecular 

masses of 626.16, 682.16, 755.20, and 811.21 g/mol, respectively, when TFA anions are regarded. To 

determine the actual concentration of the stock peptide solutions of a known concentration of Cu(II) ions 

(from CuSO4•5H20 in DI H2O with 0.5151 M concentration was determined by absorbance ε = 12 M-1cm-1 

at 800 nm and titration by Zincon monosodium salt before dilution) were titrated into a peptide solution of 

approximately 1 mM.  All four peptides chelate Cu(II) in a 1:1 mole ratio with high affinity and have UV-Vis 

d→d transition maxima at 525 or 600 nm for DAHK/W and GHK/W, respectively, Figure 2.2.  

A Job Plot of net absorbance (Abs λmax – Abs400nm) vs μL Cu(II) titrated was used to calculate the 

peptide concentration by using the maximum volume of Cu(II) and calculating peptide concentration 

assuming a 1:1 molar ratio, Figure 2.4, Eq. 2.3. The gain in absorbance near 400 nm is due to the growth 

of a charge transfer band when Cu(H-1GHK)+ is created in high concentrations, e.g., toward the end of the 

titration.  Figure 2.4 shows an example of this type of plot for determination of GHK stock concentration, 

where the left panel  is the absorbance growth of Cu(H-1GHK)+ as Cu(II) is titrated into a solution of GHK 

(for this example it was 20 µL stock in 1000 µL HEPES) and the right panel is the Job Plot showing the 

apex at approximately 1 mol equivalence near 16 uL of Cu(II) added. The Job Plots of all four peptides 

showed a 1 mole equivalence of Cu(II) ions were needed to completely titrate the peptides, indicating the 
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1:1 coordination ratio in the experimental conditions. These titrations, in combination with both the EPR and 

UV-Vis spectroscopy, indicate the 1:1 coordination ratio. Actual peptide concentrations are approximately 

10-20% lower than the apparent molecular mass calculated concentration with TFA anions. All stock 

solutions were prepared in Milli-Q water and stored in the freezer. The UV-Vis working peptide solutions 

were prepared in 0.1 M HEPES at pH 7.40 (pH increased with NaOH) to promote the correct Cu(II) 

speciation.  

(Eq. 2.3) [GHK] = L Cu(II) * mol/L Cu(II) * 1 mol GHK/1 mol Cu(II) * 1/L GHK 

2.4 Results and discussion 

To demonstrate that the replacement of the basic and aliphatic K for the neutral and aromatic W 

did not impact the Cu(II) coordination chemistry, the solution structures of the W peptide complexes were 

examined by both EPR and UV-Vis spectroscopies. The N atoms of K or W residues are not likely 

candidates for Cu(II) coordination as NH2, N-, and Nim sites are heavily preferred for these peptides at 

physiological pH.34, 40 The solution Cu(II) coordination environments of the DAHK/DAHW complexes are 

4N binding in the equatorial plane (NH2, 2 N-, and Nim) and of the GHK/GHW complexes are 3N+1O binding 

 

Figure 2.4 Left Absorbance of Cu(H-1GHK)+ as GHK is titrated with Cu(II). The large increases at 600 
nm are due to charge transfer bands of the complex and indicate when the titration is complete. Cu(II) 
volumes added were, 0, 2, 4, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, and 20 µL, the mol equivalence 
were determined by mol Cu(II)/mol GHK after determining the GHK concentration. Right Job Plot of the 
ΔAbsorbance (600 nm – 400 nm) versus the volume of a known [Cu(II)] added. At the apex, all GHK is 
titrated by Cu(II) in a 1:1 ratio, so the stock concentration of GHK can be determined by dimensional 
analysis, given that [Cu(II)] is known and the stock GHK volume that was diluted is known (in this case 
the aliquot used was 20 uL of stock GHK).  
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in the equatorial plane (NH2, N-, Nim, and OH2), Figure 2.1.20 The low-temperature EPR spectra for all four 

complexes are given in Figure 2.5, where the lysine containing peptide complexes were previously 

reported.20 The EPR hyperfine coupling constants and g factors were determined for the W containing 

peptides for the parallel and/or perpendicular EPR regions; Cu(H-1GHW) has g// = 2.23, A// (63Cu) = 560 

MHz, and g⊥ of 2.05, identical to those previously reported for Cu(H-1GHK)+.20 Cu(H-2DAHW)-2 has g// of 

2.19, A// (63Cu) = 596 MHz, and g⊥ of 2.04, identical to those previously reported for Cu(H-2DAHK)-.20 The 

UV-Vis spectra of all four Cu(II)-peptide complexes were measured and their maximum wavelengths were 

determined to be λ = 525 nm (ε = 100 M-1cm-1) for DAHK/DAHW and λ = 600 nm (ε = 50 M-1cm-1) for 

GHK/GHW for the d→d transition of the coordinated Cu(II), Figure 2.2.20-21 Therefore, the UV-Vis and EPR 

spectroscopic signatures of the Cu(II) complexes of W and K peptides document the identical equatorial 

plane Cu(II) coordination environment.  

(Eq. 2.4)   
d[GHW]recovered

dt
 = d[Cu(II)]exchanged

dt
 = kobsP [Cu(H−1GHW)][P] 

 

Figure 2.5 Frozen EPR spectra (ν ≈ 9.5 GHz – see section 1.3.5 for exact values) of all four peptide 
complexes are shown, 0.5 mM, 0.1 M HEPES pH 7.4, 10 % (v/v) glycerol, frozen with liquid N2, T = 100 
K, and under non-saturating conditions. 
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The forward rate laws of the exchange reactions in Eq. 2.1 were determined experimentally with 

the method of initial rates. The Log Rate versus Log [Peptide] graph in Figure 2.6 shows slopes equal to 

one for all reactants, which defined each reactant as first order and resulted in an overall second-order rate 

law, Eq. 2.4, see Tables 2.2 (GHK) and 2.3 (DAHK) for all concentration profiles used for the exchange 

kinetics for each peptide as well as the kinetic constants determined.  

Generally, most kinetics is studied under pseudo-first-order conditions by using at least a 10-fold 

excess of one of the reactants. However, due to the limit of the quantifiable apo[GHW] (µM) and formation 

of 1:2 Cu:P complexes in a large excess of one reactant, it was not possible to obtain reproducible rate 

constants under pseudo-first-order conditions. As a result, concentrations of each reactant were adjusted 

to ensure 1:1 speciation, and only initial linear data points under 10% release of apo[GHW] were utilized to 

 

Figure 2.6 The Log Rate versus Log [Peptide] graph determined the orders of the reactants by their 
slopes (m). All reactants were experimentally determined as first order. Original values of [Peptide] 
were in M and Rate in M/s. For order analysis of Cu(H-1GHW) (green circle, m = 0.966 ± 0.168, R2 = 
0.91) a constant 5 μM GHK was used, of GHK (blue triangle, m = 1.09 ± 0.19, R2 = 0.91) a constant 10 
μM Cu(H-1GHW) was used, and of DAHK (black square, m = 1.00 ± 0.15, R2 = 0.94) a constant 10 μM 
Cu(H-1GHW) was used. Error bars indicate 2-3 replicates. Inset The crude kinetic data of the 10 μM 
Cu(H-1GHW) + 10 μM GHK or 10 μM DAHK exchanges. 
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measure rate, inset Figure 2.6. The inset shows the crude kinetic data of recovered W fluorescence in the 

10 μM Cu(H-1GHW) to 10 μM GHK or DAHK exchange. The W parameters of Cu(H-1GHW) exchanges 

included fluorescence cuvettes of 1 cm path length, ε = 5690 M-1cm-1, λexcitation = 290 nm, λemission = 365 nm, 

and 5 nm excitation and emission slit widths. In the Cu(H-1GHW) exchanges the conditional second-order 

(pH 7.4, 0.1 M HEPES) Cu(II) exchange rate constants were determined to be kobsGHK = 1.6 (± 0.2) x 102 

M-1s-1 (n=18, 95%) and kobsDAHK = 5.0 (± 0.7) x 101 M-1s-1 (n=15, 95%). We attempted to measure the Cu(II) 

exchange from Cu(H-2DAHW)-2 to GHK and DAHK, but the exchange was too slow with very low 

fluorescence recovery to yield reliable rate constants even in conditions of excess added peptide, Figure 

2.7. 

 

 

Figure 2.7 The kinetic curves obtained for the Cu(H-2DAHW)2- to GHK or DAHK exchange. The slow 
kinetics resulted in little fluorecence recovery of DAHW over the course of 3 days even at very large 
concentration differences. The data shown here is used qualitatively to compare this slow exchange to 
the fast exchange in the Cu(H-1GHW) exchanges.  

 



40 

 

  

Table 2.2: Kinetic data for the Cu(H-1GHW) to GHK exchanges (T= 22 ± 1 °C). The 95% confidence 
level was taken at 17 degrees of freedom where t = 1.74, s = 38 M-1s-1 and n = 18 measurements (E = 
x 10^).   

[Cu(H-1GHW)]i, M [GHK]i, M Rate, M/s k, M-1s-1 
1.00E-05 5.00E-06 7.98E-09 160 
1.00E-05 1.00E-05 1.48E-08 148 
1.00E-05 2.00E-05 2.40E-08 120 
1.00E-05 5.00E-06 7.68E-09 154 
1.00E-05 5.00E-06 1.09E-08 217 
1.00E-05 1.00E-05 1.23E-08 123 
1.00E-05 1.50E-05 2.83E-08 189 
1.00E-05 2.00E-05 3.15E-08 157 
1.00E-05 2.00E-05 2.14E-08 107 
1.00E-05 2.00E-05 2.14E-08 107 
1.00E-05 5.00E-06 7.68E-09 154 
1.00E-05 5.00E-06 1.09E-08 217 
8.00E-06 5.00E-06 5.42E-09 135 
5.00E-06 5.00E-06 4.42E-09 177 
5.00E-06 5.00E-06 5.96E-09 238 
3.00E-06 5.00E-06 1.99E-09 133 
3.00E-06 5.00E-06 1.92E-09 128 
3.00E-06 5.00E-06 2.15E-09 144 

 

 

Table 2.3: Kinetic data for the Cu(H-1GHW) to DAHK exchanges (T=22 ± 1 °C). The 95% confidence 
level was taken at 14 degrees of freedom where t = 1.76, s = 16 M-1s-1 and n = 15 measurements (E = 
x 10^).   

[Cu(H-1GHW)]i , M [DAHK]i , M Rate, M/s k, M-1s-1 

3.00E-06 5.00E-06 7.83E-10 52.20 

3.00E-06 5.00E-06 1.13E-09 75.40 

5.00E-06 5.00E-06 1.27E-09 50.89 

5.00E-06 5.00E-06 1.61E-09 64.39 

8.00E-06 5.00E-06 1.28E-09 32.10 

8.00E-06 5.00E-06 3.05E-09 76.14 

1.00E-05 5.00E-06 1.24E-09 24.77 

1.00E-05 5.00E-06 3.31E-09 66.23 

1.00E-05 1.00E-05 3.72E-09 37.17 

1.00E-05 1.00E-05 5.63E-09 56.34 

1.00E-05 1.50E-05 8.68E-09 57.84 

1.00E-05 1.50E-05 5.63E-09 37.55 

1.00E-05 1.50E-05 6.87E-09 45.80 

1.00E-05 2.00E-05 6.28E-09 31.40 

1.00E-05 2.00E-05 8.65E-09 43.26 
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Approximately 40% of the [GHW]initial (from [Cu(H-1GHW)]) was recovered for the equimolar GHK 

exchange, which indicates the Cu(II) binding affinities of GHK and GHW are on the same order of 

magnitude. Less fluorescence was recovered at equilibrium in the DAHK exchange despite the fact that 

DAHK has a slightly larger affinity for Cu(II).20 The slower rate observed for DAHK as the entering ligand is 

in line with an extra amide N-H group which must be deprotonated to allow for Cu(II) coordination, which is 

sluggish at physiological pH.34 The differences in exchange rates between Cu(H-1GHW) or Cu(H-2DAHW)-

2 to GHK or DAHK are proposed to arise from the ease of formation of an intermediate ternary species, 

Cu(H-1GHW)(P) or Cu(H-2DAHW)(P). These ternary species are not fluorescent as the W residue is still 

near the Cu(II). The faster kinetics observed for Cu(H-1GHW) exchanges are linked to the labile water, 

which allows for fast exchange with Nim ligand of the entering GHK/DAHK histidine residue, Figure 2.1. The 

Nim binding has previously been discussed by EPR labeling of 15Nim for Cu(GHK)2 complexes.20 The 

GHK/DAHK peptides are initially coordinated in a monodentate manner through the Nim, then through 

chelate effects sequesters the Cu(II) forming the final 1:1 complexes of  Cu(H-1GHK)+ or Cu(H-2DAHK)- and 

releases the apoGHW.34  

To characterize the relative amount of ternary species, the low-temperature EPR spectra of a range 

of concentrations from 0.1 to 1.0 mM with the ratio of 1:2 Cu(II):GHK were compared to the 1:1 Cu(H-1GHW) 

complex, Figure 2.8. The hyperfine coupling constants and g-values suggest a concentration-dependent 

formation of the ternary species. When super-hyperfine lines are well-resolved, the perpendicular region of 

a Cu(II) EPR spectrum is very indicative of the ligands bound in the equatorial plane. For a 4N environment, 

with equivalent N atoms, 9 lines are expected and observed for a 1:2 Cu(II):GHK stoichiometry. The g // 

minima observed between g = 2.0 to 1.98 corresponds to the 4th parallel resonance and is dependent on 

the amount of ternary species formed. Change in position of this minimum toward that of the Cu(H-1GHK)+ 

species with decreasing [Cu(II)] mirrors the decrease in the concentration of ternary species. From the 

correlation between the g-values and the amount of ternary species (inset Figure 2.8), it can be estimated 

that in the equimolar exchange experiment at 10 μM, <10 % are ternary species. These studies are in line 

with the formation of a ternary species in solution when the starting species is Cu(H-1GHW). 



42 

 

The rate constants listed in Table 2.1 depend on the location of the His residue, pH, sequence 

length, or available N donor ligands.16, 26, 28-30, 37 Some general trends can be deduced that are of interest 

to the current study. First, the highest rate constants are observed when the starting complex has an 

exchangeable water ligand, as exemplified by the k = 1.1 x 107 M-1s-1 value when starting from Cu(H-2GGG)- 

exchanged to triethylenetetramine (trien) or the ternary species formation of Cu(H-1GHG)(Cys-) with k  > 1 

x 106 M-1s-1, Table 2.1.29, 37 Second, the position of His is crucial and in the third position on the starting 

complex leads to a very slow reaction and may be due to a dual effect of having no labile water and creating 

the very stable ATCUN (Amino Terminus Cu and Ni binding) motif. For example, the Cu(II) exchange rate 

constant to trien from Cu(H-2GGG)- is eight orders of magnitude larger than from Cu(H-2GGH)-, Table 2.1.28, 

37 Our observations correlate with reported data that when the starting complex has an ATCUN motif, the 

rate is much slower. Third, the nature of the entering ligand impacts the rate constant, with ligands offering 

 

Figure 2.8 Low temperature EPR spectra of the 1:2 Cu(II):GHK complex at: 0.1 (blue), 0.2 (green), 0.5 
(orange), and 1.0 mM (red) for [Cu(II)] (where [GHK] = 2[Cu(II)]). The Cu(H-1GHW) complex was 
measured at 0.5 mM (black) for comparison of a pure binary complex. The perpendicular region is 
shown (v = 9.5 GHz, 0.1 M HEPES pH 7.4, 10% (v/v) glycerol, T = 100 K, and under non-saturating 
conditions). Inset The gmin factor values as function of the concentration of ternary Cu(GHK)2, indicating 
the portion of ternary species formed. 
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a higher chelate effect leading to faster exchange rates as exemplified by the four orders of magnitude 

larger Cu(II) exchange rate from Cu(H-2GGG)- to trien versus HCys, Table 2.1. The determined Cu(H-

1GHW) Cu(II) exchange rate constant is an order of magnitude faster for GHK than DAHK which may be 

due to multiple factors including that the DAHK N-terminus has a negatively charged acidic residue, that 

there is one more amide N-H to be deprotonated in DAHK, and that a smaller metallocycle is formed 

between the N-terminal amine and the anchoring Nim in GHK (9 membered) versus DAHK (12 membered).  

2.5 Conclusions 

In conclusion, we have determined the inter-peptidic Cu(II) exchange rate constants with 

fluorescence spectroscopy. We demonstrated that: (i) replacing lysine with tryptophan in the peptide 

sequence was a successful approach for investigating Cu(II) inter-peptidic metal ion transfer as both 

residues are non-coordinating and do not change the Cu(II) coordination, (ii) when tryptophan is within 14 

Å of the Cu(II) binding site it can be used as an indicator to measure inter- and intra-peptidic Cu(II) exchange 

rate constants via stoichiometric static fluorescence quenching, (iii) when the initial Cu(II)-tripeptide 

complex had histidine in the second position as in GHK/GHW, a coordinated water is readily exchangeable 

with the incoming peptide and the Cu(II) exchange rate constants can be measured by the fluorescence 

method described, (iv) when the initial Cu(II)-tetrapeptide complex had histidine in the third position as in 

DAHK/DAHW, the Cu(II) exchange rate constants were too slow to be measured by the method described, 

and (v) the measured inter-peptidic Cu(II) exchange rate constants from an initial Cu(H-1GHW) complex to 

GHK or DAHK were kobsGHK = 1.6 (± 0.2) x 102  M-1s-1 and kobsDAHK = 5.0 (± 0.7) x 101 M-1s-1.  

2.6 Unpublished work on the reverse exchange of Cu(H-1GHK) + GHW 

We were able to measure a reverse rate constant for the Cu(H-1GHK)+ + GHW → Cu(H-1GHW) + 

GHK+ exchange. To prevent an inner filter effect (IFE), we reduced the slit width to 1.5 nm, and all other 

parameters used were the same, see section 2.3.4. The interpeptidic Cu(II) exchange rate constant 

determined by the method of initial rates for this exchange was k = 4.26 (±0.31) x 102 M-1s-1 (95% 

confidence, n = 24, t = 2.069, σ = 73 M-1s-1). We postulated in the published work that since only about 40% 

of the [GHW]intial was recovered that these complexes would have similar affinities on the same order of 

magnitude. We observe that in the reverse exchange, the rate constant is slightly faster and on the same 

order of magnitude, which is consistent with our initial findings.  
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CHAPTER 3: MEASUREMENT OF INTERPEPTIDIC CU(II) EXCHANGE RATE CONSTANTS FROM 
 

TRUNCATED CU(II) – AMYLOID-BETA COMPLEXES TO SMALL PEPTIDE MOTIFS BY TRYPTOPHAN 
 

FLUORESCENCE QUENCHING 
 
 
 

3.1 Summary 

 The interpeptidic Cu(II) exchange rate constants were measured for two truncated amyloid-beta 

Cu(Aβ) complexes, Cu(Aβ1-16) and Cu(Aβ1-28), to fluorescent peptides GHW, DAHW, and GGW using our 

previously reported tryptophan fluorescence quenching methodology. These second-order rate constants 

were determined at three pHs (pH – 6.8, 7.4, and 8.7) important to the Cu(Aβ) complex coordination. The 

interpeptidic Cu(II) exchange rate constants vary in their order of magnitudes from 103 to 104 M-1s-1 

depending on a number of variables; including the pH, the length of the amyloid-beta peptide, whether the 

tryptophan peptide contained a histidine ligand, the number of amide deprotonations needed in the 

tryptophan peptide to coordinate the Cu(II), and the extent of the created tryptophan peptide metallocycle. 

As peptides like GHK and DAHK are important motifs found in the blood and serum, their ability to sequester 

Cu(II) ions from Cu(Aβ) complexes may be an important mechanism in the treatment of Alzheimer’s 

disease. Thus, their kinetic Cu(II) interpeptidic exchange rate constants are important chemical constants 

that can aid in the development of drug treatment. 

3.2 Introduction to the amyloid-beta peptide, Alzheimer’s disease, and the interpeptidic Cu(II) 

exchange of Cu(Aβ) complexes with tryptophan-containing small tri- and tetra-peptides 

The amyloid-beta (Aβ) peptide was first sequenced in 1984 by Glenner and Wong after its 

purification from brain tissue in post-mortem patients suffering from Alzheimer’s disease (AD).1 In the 

following year, they identified Aβ as a major component in the senile plaques observed in AD, which was 

the first report of the possible link of Aβ in the pathology of AD.2 In the three decades since Aβ’s connection 

to AD, it has been the object of extensive research concerning neurodegenerative disease. The prevalence 

of the Aβ peptide in neurodegenerative disease is not confined to just AD, but also prion, Huntington’s and 

Parkinson’s diseases. The human amyloid precursor protein (APP) is cleaved by α-, β-, and γ-secretases 

into both non-amyloidogenic and amyloidogenic peptides, which have many essential biological functions 
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in both neuron and synapse (space between neurons) development and repair, signaling, and even iron 

transport.3 There are mixed reports of the actual biological function of Aβ, which is one of the amyloidogenic 

peptides created by the β- and γ- secretase cleavage of APP. For example, neuronal survival may be 

connected to Aβ as neuronal cell death was reported in studies performed with secretase inhibited Aβ 

production, and the addition of exogenous Aβ1-40 could restore viability.4  

What is known about the Aβ peptide in the pathology of AD is multifaceted. The Aβ peptide can 

form innocuous soluble monomers, which do not seem to contribute to disease mechanisms. However, it 

can form toxic oligomeric species, large unorganized aggregates, highly organized beta-sheet fibrils, 

neurofibrillary tangles, and metal ion complexes all of which can eventually amass into the senile plaques 

which are a hallmark of AD.3, 5-13 Indeed, pathogenic Aβ is on a spectrum, where toxicity is due to 

mechanisms which increase Aβ production as compared to normal healthy levels and not all people will 

experience AD or have senile plaques even though they create the peptide. Similarly, some toxicity of the 

Aβ peptide has been in its ability to form ion channels in membranes, which can alter K+ and Ca2+ 

homeostasis in cells.14-15 The buildup of the precipitated peptide in the space between neurons, called the 

synaptic cleft space, results in less communication between the neurons as they can no longer signal to 

each other. Over time, this leads to atrophy of the neurons since they can no longer communicate, and this 

eventually manifests as the symptoms of dementia and memory loss. In fact, the brain of a person with 

advanced late-stage AD can be significantly smaller than a healthy brain, due to the atrophy of the neurons. 

The Aβ peptide is not purely localized to the brain but is found in cerebrospinal fluid (CSF), plasma, and 

interstitial fluid. Correlation of plasma and CSF ratios of the common isoforms of the Aβ peptide and tau 

proteins have been reported to give an indication of early-onset AD by decreased amounts of Aβ1-42 peptide 

in these fluids due to their precipitation into plaques.16-17 However, CSF biomarkers have given more 

consistent results according to a recent meta-data analysis.18  

The transition metals Zn(II), Fe(II), and Cu(II) are all essential biological metals, are highly regulated 

in the body, and the disruption of the homeostasis of these metals usually results in disease where 

neurodegenerative diseases as the most prominent, since these metals have functions in the brain.10, 19-24 

One type of Aβ aggregation is the chelation of Cu(II), Zn(II), and Fe(II) ions in the brain within the synaptic 

cleft space, and concentrations up to 400, 950, and 1100 µM 25, respectively, have been found in AD 
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plaques.5-6, 8-11, 21 The coordination of these metals to the Aβ peptide has shown an increase in the 

propensity of it to aggregate and precipitate into senile plaques. These metals have a high affinity for the 

Aβ peptides, with association constants on the orders of 1010 M-1 for Cu(II) and 106 M-1 for Zn(II).5, 26 The 

redox-active Cu(II) and Fe(II) also form complexes that can generate reactive oxygen species (ROS), where 

oligomeric species cause the most ROS damage as they are most available for the metals to participate in 

oxidative stress. When the metal is confined to the plaques, it is less likely to be involved in ROS generation. 

Cu(II) is a particularly interesting metal as it is involved in many biologically essential cellular processes like 

red blood cell formation, has many redox functions such as for mitochondrial oxidative phosphorylation 

within the brain, and is essential in healthy fetal brain development.19, 27 We have focused on Cu(II) binding 

to the Aβ peptide due to some of these issues, such as ROS generation. While Zn(Aβ) complexes also 

precipitate into plaques, some mechanisms such as metallothionein exchanging their bound Zn(II) for Cu(II) 

from Cu(Aβ) complexes to generate Zn(Aβ) complexes may be in direct response to the ROS generation 

pathology.28 Hypoxia due to increased mitochondrial ROS generation up-regulates APP expression which 

creates more Aβ peptide which can lead to the development of AD.29  

The Aβ peptide has many isoforms, including the most well-known lengths that are most associated 

with aggregation mechanisms, Aβ1-40 (major form) and Aβ1-42 (minor form), and the sequence is shown in 

Figure 3.1. The Aβ1-42 isoform is much more prone to aggregate than Aβ1-40.30 The cleavage of the APP is 

not highly specific, and small truncated isoforms like Aβ1-16 and Aβ1-28 are also observed. The Aβ peptide 

has a well-known metal-binding domain in the first 16 amino acid residues rich with nitrogen-donor ligands, 

including deprotonated amide N-, imidazole histidine Nim, and terminal NH2, as well as oxygen-donor ligands 

like amide C=O and terminal COO- binding sites. For Cu(Aβ) complexes, two major components are in 

equilibrium at physiological pH, Figure 3.1, and exhibit different binding.5-6, 8-9 Component I, which is 

predominant at pH 6.8, has terminal NH2, amide C=O, and two histidine Nim Cu(II) binding sites in the 

equatorial plane and the terminus COO- in the axial plane. The histidine contributions for Component I are 

from His6 and His13/14 (which are in equilibrium). Component II which is predominant at pH 8.7, has 

terminal NH2, amide N-, amide C=O, one histidine Nim Cu(II) binding sites in the equatorial plane, and the 

terminus COO- in the axial plane. The histidine ligand in Component II can be either His6, His13, or His14, 
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where all three residues equally contribute (are in equilibrium). The binding affinity of Cu(II) to Aβ has been 

measured at 1 x 1010 M-1 and encompasses all forms.26  

Since the Cu(Aβ) complex has a predominant form at pH 6.8 (component I) and 8.7 (component 

II), which are in equilibrium at pH 7.4, we measured the interpeptidic Cu(II) exchanges at all three pH’s 

relevant to the complex. For Cu(Aβ), there are four possible complexes based on the pH of the solution. At 

pH 6.8, Cu(Aβ1-16)- and Cu(Aβ1-28)2- are the predominant complexes that have no deprotonated amide 

nitrogen. At pH 8.7, Cu(H-1Aβ1-16)2- and Cu(H-1Aβ1-28)3- are the predominant complexes that have one 

deprotonated amide nitrogen. At pH 7.4, these respective truncated complexes are in equilibrium with each 

other. For example, both Cu(Aβ1-16)- and Cu(H-1Aβ1-16)2- are present at pH 7.4, and there is no way to 

distinguish which complex the Cu(II) is being exchanged from. The assumption is that both components 

have an equal binding affinity, so one could assume they are taken from both in equal measure. Therefore, 

in the following discussion, the two truncated forms will simply be referred to as Cu(Aβ1-16) and Cu(Aβ1-28), 

with their charges omitted for the sake of clarity.  

 

Figure 3.1: Cartoon schematic of the two components of Cu(Aβ) complexes. The full sequence is given, 
with primary metal binding sites in red and secondary in blue. In the structures, the blue lines represent 
the continuing peptide chain and are drawn to show a simplistic representation of the equatorial binding 
ligands to Cu(II). An apical oxygen is shown and is the terminal COO-. Component I is predominant at 
pH 6.8, Component II is predominant at pH 8.7, and at physiological pH 7.4 both complexes exist in 
equilibrium. 
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The short peptides GHK (Gly-His-Lys) and DAHK (Asp-Ala-His-Lys) are two motifs found in the 

blood. GHK is associated with the human growth factor, while DAHK is the N-terminus sequence of human 

serum albumin (HSA) that also binds Cu(II). We were also interested in a peptide which had no histidine 

residues for comparisons, so we used a simple tripeptide GGW (Gly-Gly-Trp). These peptides coordinate 

Cu(II) with the same types of binding sites as Aβ, Figure 3.2. The three complexes which are created are 

denoted as Cu(H-nP)m-n+1 where n is the number of deprotonated amide N- and m is the overall charge of 

the unbound zwitterion peptide. The three complexes which are formed upon the exchange from Cu(Aβ) 

complexes are Cu(H-1GHW), Cu(H-2DAHW)2-, and Cu(H-2GGW)-. The Cu(II) binding affinities of these small 

peptides are much greater than for Aβ, where the lysine containing peptides were measured at 1.4 x 1013 

M-1 for Cu(H-1GHK)+ and 3.9 x 1013 M-1 for Cu(H-2DAHK)-. This is a result of the very stable formation of 

small 5 or 6 membered rings, which result in the formation of large 9 to 12 membered metallocycles. 

Therefore, the dissociation of Cu(II) from these complexes is not favored and is very slow as these 

structures are highly stable. For the Cu(H-2GGW)- complex, the structure was determined from a reported 

structure for Cu(H-2GGG)- coordination, and is confirmed by both EPR and UV-vis spectroscopy.31  

Using this same fluorimetry methodology described in Chapters 1 and 2,32 we monitored the 

exchange of Cu(II) from two different truncated isoforms, Cu(Aβ1-16) and Cu(Aβ1-28) to GHW, DAHW, or 

GGW following Eq. 3.1, where 𝑎 is the charge of the free Aβ peptide, 𝑏 is the number of deprotonated 

amide N- in the Cu(Aβ) complex, 𝑚 is the charge of the free tryptophan-containing peptide (P), and 𝑛 is the 

 

Figure 3.2: The solution structures of the Cu(H-1GHW), Cu(H-2DAHW)2-, and Cu(H-2GGW)- complexes 
created upon interpeptidic exchange from Cu(Aβ).  
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number of deprotonated amide N- in the Cu(P) complex. See Table 3.1 for all values of 𝑎, 𝑏, 𝑚, and 𝑛. The 

charge of the free ligand is determined by the zwitterion where the N-terminus is NH3+, and the C-terminus 

is COO-, the amino acids Arg (R) and Lys (K) are NH3+, and Asp (D) and Glu (E) are COO-. To coordinate 

Cu(II), the N-terminus must be deprotonated to NH2. We measured the simple GGW peptide to observe 

differences in Cu(II) exchange when there is no histidine in the sequence, which is a strong Cu(II) ligand 

and important in the creation of stable Cu(II)-peptide complexes.33 

(Eq. 3.1) 𝐶𝑢(𝐻−𝑏𝐴𝛽)𝑎−𝑏+1 + 𝑃𝑚  ⟶  𝐶𝑢(𝐻−𝑛𝑃)𝑚−𝑛+1 + 𝐴𝛽𝑎 + (𝑛 − 𝑏)𝐻+  

The kinetic data were fit using a second-order approach following Eq. 3.2. Since there is no way to 

measure the variable [𝐶𝑢(𝐴β)]𝑡, we must estimate it since we know how much Cu(II) has been exchanged, 

and we know the initial Cu(Aβ) concentration. Therefore Eq. 3.3 shows that the concentration of Cu(Aβ) at 

any time, [𝐶𝑢(𝐴β)]𝑡, must equal the initial concentration of Cu(Aβ) minus the change in concentration of 

the fluorescent peptide, as one Cu(II) is exchanged for every Cu(Aβ) dissociated, since all peptides 

coordinate in a 1:1 mol ratio. Therefore, Eq. 1.6 is the final form of the second-order fitting used to transform 

the data to determine rate constants, which was discussed in Chapter 1, section 1.3. These exchanges go 

to completion (or very close to completion) in the GHW and DAHW exchanges due to their three orders of 

magnitude larger association constants, while in the GGW exchange are likely an equilibrium mechanism.  

 (Eq. 3.2) 
1[𝐶𝑢(𝐴β)]0−[𝐺𝐻𝑊]0 ∗ ln ([𝐺𝐻𝑊]0∗[𝐶𝑢(𝐴β)]𝑡[𝐶𝑢(𝐴β)]0[𝐺𝐻𝑊]𝑡 ) = 𝑘 ∗ 𝑡 

(Eq. 3.3) [𝐶𝑢(𝐴β)]𝑡 = [𝐶𝑢(𝐴β)]0 − ([𝐺𝐻𝑊]0 − [𝐺𝐻𝑊]𝑡) 

(Eq. 1.6) 
1[𝐶𝑢(𝐴β)]0−[𝐺𝐻𝑊]0 ∗ ln ([𝐺𝐻𝑊]0∗([𝐶𝑢(𝐴β)]0−([𝐺𝐻𝑊]0−[𝐺𝐻𝑊]𝑡)) [𝐶𝑢(𝐴β)]0[𝐺𝐻𝑊]𝑡 ) = 𝑘 ∗ 𝑡 

Table 3.1: Values of 𝑎, 𝑏, 𝑚, and 𝑛 for all complexes in this work for use in Eq. 3.1.  

Complex Charge free ligand 𝑚 (P) or 𝑎 (Aβ) 
# N- in complex  𝑛 (Cu(P)) or 𝑏 (Cu(Aβ)) 

Cu(H-1GHW) 0 1 
Cu(H-2DAHW)2- -1 2 
Cu(H-2GGW)- 0 2 

Cu(Aβ1-16)- -2 0 
Cu(H-1Aβ1-16)2- -2 1 

Cu(Aβ1-28)2- -3 0 
Cu(H-1Aβ1-28)3- -3 1 

 



53 

 

 These studies are an important step to determine the interpeptidic exchange of Cu(II) between full-

length Aβ isoforms in both their soluble monomeric, aggregate, and fibril formations. The full-length Aβ 

peptides are significantly more difficult to work with due to their hydrophobic residues, which predominate 

in the 17 – 42 amino acid region and their aggregation mechanisms. The Aβ1-16 isoform does not aggregate 

like the full-length Aβ1-40/42, which is an important variable in the current studies, and this isoform is often 

used to study Cu(II) binding.  

3.3 Experimental methods 

3.3.1 Materials  

All peptides were used as purchased from the manufacturer. The GHW (99.73% pure), DAHW 

(96.89%), and GGW (98.64%) peptides used were purchased from GeneCust (Luxembourg). The truncated 

Aβ peptides were purchased from Synpeptide Co., Ltd (China) in the with the following lengths Aβ1-16 (> 

95%) and Aβ1-28 (> 95%). The source of Cu(II) ions was CuSO4•5H20 and was purchased from Aldrich. 

Buffer chemicals HEPES (99.5%) and NaOH (97.0%) were purchased from Sigma. All water used was 

purified by a Synergy Milli-Q purification system to 19  MΩ•cm resistivity. Quartz cuvettes were used in all 

absorption and emission spectroscopy with 1 cm path-lengths. All solid peptides were stored in a -20 C 

freezer. 

3.3.2 Instrumentation  

Fluorimetry measurements were performed on a Horiba Jobin-Yvon FluoroLog-3 

spectrofluorometer. Fluorimetry parameters included a 1.5 nm slit width, an excitation wavelength of 290 

nm, an emission wavelength of 365 nm, and a 0.25 s time interval with quartz cuvettes ℓ = 1.0 cm. 

Absorption measurements were performed with an AvaLight DHc dual deuterium-halogen lamps light 

source for spectroscopy in the 200 – 2500 nm range and AvaSpec-2048 detector. The cuvette holder was 

attached to the light source and the detector by fiber optic cables. Parameters included a boxcar width of 5 

and an average of 100 scans per capture. A thin layer, ℓ = 1.7 mm, quartz cuvettes were used. EPR spectra 

were taken on a Bruker 9.4 GHz ELEXSYS spectrometer with 1 Gauss resolution, 2500 G to 3700 G, 0.5 

mT amplitude modulation, approximately 9.4 GHz (see figure captions for exact values), and at 150 K.  
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3.3.3 Determination of stock peptide concentrations.  

About 50.0 – 70.0 mg of tryptophan-containing peptides GHW, DAHW, and GGW were dissolved 

in 1.00 mL of DI H2O and were kept stored in a -20 C freezer and only thawed when needed. To determine 

the stock concentration of the tryptophan peptides, they were diluted to approximately 1 mM in 0.1 M 

HEPES at pH 7.40 in a quartz cuvette and the absorbance at 280 nm (ε = 5690 M-1cm-1 for tryptophan 

absorption) was measured. This was repeated six times for each peptide. Between 2.0 – 6.0 mg of Aβ1-16 

or Aβ1-28 peptide was added to 2.00 mL of 0.1 M HEPES at pH 7.40 and lightly vortexed until completely 

dissolved. These stock solutions were approximately 1 mM. To determine the stock concentration of the 

Aβ peptides, they were diluted to about 0.1 mM, and the absorbance at 274 nm (ε = 1280 M-1cm-1 for 

tyrosine absorption) was measured and repeated six times for each peptide.  

3.3.4 Creation of Cu(Aβ) complexes 

Once the stock concentrations of Aβ were known, a mole equivalence of Cu(II) from a 0.5151 M 

CuSO4•5H20 stock solution, ε = 12 M-1cm-1 at 800 nm, was added and the resulting solution was clear and 

light blue in color.  

3.3.5 Fluorimetry sample preparation 

To create samples for fluorescence measurement of kinetics, a large aliquot of HEPES buffer at 

the appropriate pH was added to the cuvette (between 994 – 995 µL) using a calibrated 1000 µL pipette 

and the fluorescence was measured. This blank HEPES fluorescence is subtracted from sample 

fluorescence intensity. Then 5 - 7 µL of approximately 1.0 mM GHW, DAHW, or GGW peptide was added 

to the HEPES, mixed, and then its fluorescence intensity was measured. This measurement was always 

the initial tryptophan peptide concentration used in the second-order transformation of data. Lastly, 5 - 7 µL 

of approximately 1.0 mM Cu(Aβ) was added to the cuvette, the cuvette was simply flicked to slightly mix, 

then added to the cuvette holder, and the kinetic experiment started, the time to add the aliquot was 

manually measured between 4-5 seconds, recorded, and added to the time data.  

3.3.6 EPR sample preparation 

Cu(H-2GGW) samples were prepared at 3.73 mM (the UV-vis spectrum was taken before freezing) 

and frozen in an EPR tube with dry ice and acetone. For creation of the ternary species, approximately 8-

10 µL of 78 mM GHW was added to the bottom of an EPR tube, then a about 300 - 400 µL of 1.0 mM 
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Cu(Aβ1-16) in 0.1 M HEPES was added the same EPR tube and then immediately frozen in the dry ice and 

acetone mixture.  

3.3.7 Software  

Kinetic fluorescence data was gathered, and then a calibration curve was obtained using OriginPro 

student version (2019b or 2018b), and then the signal was converted to concentration in Microsoft Excel 

2016. The second-order transformation of data was performed in Microsoft Excel 2016, and then linear 

regression analysis was performed in OriginPro 2019b for the first 20 – 40 s of data depending on the 

exchange being analyzed where the y-intercept was manually set to zero. The slopes of these lines are the 

second-order rate constant in M-1s-1, each exchange has 12 – 15 runs, which are then averaged, and the 

confidence level obtained. Any outliers were determined by a Grubb’s test.  

3.4 Results and discussion 

 First, we could confirm the coordination of Cu(H-2GGW) by EPR and UV-vis 

spectroscopies. The maximum wavelength of the Cu(H-2GGW) is 546 nm and agrees with the reported 

value for the Cu(H-2GGG) complex at 552 nm34, Figure 3.3. This would indicate that the tryptophan is not 

coordinated to the Cu(II) as in the case with GHW and DAHW. The Cu(H-2GGW) complex has a g factor 

values of g// = 2.22 and a g⊥ = 2.01, with a hyperfine coupling constant of A//(63Cu)= 500 MHz. The lack of 

any clearly defined superhyperfine coupling is expected with 3N + 1O binding, however, seven peaks can 

be observed in some cases.   

 
 
Figure 3.3: Low-temperature EPR (left) and UV-vis spectrums (right, LMCT) of the Cu(H-2GGW) complex. 
Samples were taken at T = 150 K at 9.369992 GHz and at 3.73 mM. 
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The interpeptidic Cu(II) exchange from Cu(Aβ1-16) and Cu(Aβ1-28) to GHW, DAHW, and GGW was 

monitored using the previously reported fluorimetry method.32 These exchanges were monitored at three 

different pH 6.83, 7.40, and 8.70 in 0.1 M HEPES. The measurement of kinetic rate constants is usually 

performed under pseudo-first-order conditions where one reactant is in a large excess of the other. With 

metal ion peptide complexes having such conditions can induce higher-order complexes to form, where 

there are multiple peptides per metal ion. In order to avoid this, concentrations of reactants in the 

interpeptidic exchange of Cu(II) are similar, with no excess of one reactant over another. Specifically, the 

reaction concentrations were within 1 mM of each other, such as 4 µM GHW + 5 µM Cu(Aβ1-16), where the 

tryptophan peptides ranged from 4 – 6 µM and the Cu(Aβ) complexes ranged from 4 – 7 µM. Actual initial 

concentrations for the tryptophan peptides were determined through the fluorescence data, while the initial 

concentrations for the Cu(Aβ) complexes were determined from their tyrosine absorption and amount of 

Cu(II) ions added, but the approximate values are given in Table 3.2.  

 

We used a second-order fitting approach to determine the rate constants in these exchanges, Eqs. 

3.2, and 1.6. Previously, we used the method of initial rates to determine the rate constants, which worked 

well because the peptides all had similar association constants on the order of 1013 M-1, which resulted in 

slower rates of exchange. The current exchanges studied were much faster, which resulted in fewer data 

points in the linear portion of the kinetic traces and is due to the weaker Cu(II) association constants for the 

Aβ peptides, on the order of 1010 M-1, compared to the tryptophan-containing peptides. Therefore, the 

second-order fitting approach was used, especially since our current instrumentation does not have 

stopped-flow capabilities, which would have given data in the 4-5 seconds it takes to manually add solutions 

together and start a kinetic measurement. A typical kinetic trace (inset) and second-order fit of the data 

Table 3.2: Approximate concentration profiles used in the interpeptidic exchanges. Actual 
concentrations vary as described.  

[Peptide]0, mM [Cu(Aβ)]0, mM 
5 4 
5 5 
5 6 
4 5 
6 5 
6 7 
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which has been transformed using Eq 1.6 is shown in Figure 3.4 (GHW), Figure 3.5 (DAHW), and Figure 

3.6 (GGW) for each exchange at the approximate 4 µM P + 5 µM Cu(Aβ) concentration profile at all three 

pH conditions. The kinetic data were manually inspected to determine what time the plots began to plateau, 

so depending on the exchange, the data used to determine the rate constant is anywhere from the first 10 

- 40 seconds. Each concentration profile in Table 3.2 is run in triplicate so that 12 -15 rate constants were 

measured for each exchange. These second-order rate constants were then averaged, and their 95 % 

confidence levels determined and are reported in Table 3.3.  

Table 3.3: Conditional second-order rate constants between P + Cu(Aβ) exchanges at the given pH in 
0.1 M HEPES.  

kP , M-1s-1  pH 6.8 pH 7.4 pH 8.7 

kGHW - Cu(Aβ1-16) 4.1 (± 0.3) x 104 4.1 (± 0.4) x 104 2.9 (± 0.3) x 104 

kGHW  - Cu(Aβ1-28) 1.44 (± 0.07) x 104 2.48 (± 0.17) x 104 1.09 (± 0.14) x 104 

kDAHW - Cu(Aβ1-16) 1.04 (± 0.11) x 104 2.16 (± 0.13) x 104 2.18 (± 0.17) x 104 

kDAHW - Cu(Aβ1-28) 6.8 (± 0.6) x 103 1.33 (± 0.10) x 104 1.26 (± 0.15) x 104 

kGGW - Cu(Aβ1-16) ---- 1.12 (± 0.09) x 103 1.58 (± 0.12) x 103 

kGGW - Cu(Aβ1-28) ---- 1.07 (± 0.18) x 103 1.03 (± 0.11) x 103 
 

 

Figure 3.4: The GHW + Cu(Aβ) exchanges where [GHW]0 and [GHW]t are determined by fluorescence 
data and [Cu(Aβ1-16)]0 = 5.47 mM and [Cu(Aβ1-28)]0 = 5.40 mM.  Insets are the kinetic concentration 
versus time graphs.  
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Figure 3.5: The DAHW + Cu(Aβ) exchanges where [DAHW]0 and [DAHW]t are determined by 
fluorescence data and [Cu(Aβ1-16)]0 = 5.47 mM and [Cu(Aβ1-28)]0 = 5.40 mM.  Insets are the kinetic 
concentration versus time graphs.  

 

Figure 3.6: The GGW + Cu(Aβ) exchanges where [GGW]0 and [GGW]t are determined by fluorescence 
data and [Cu(Aβ1-16)]0 = 5.47 mM and [Cu(Aβ1-28)]0 = 5.40 mM.  Insets are the kinetic concentration 
versus time graphs.  
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There are some trends that can be observed in the conditional second-order rate constants that 

are reported in Table 3.3. First, the GHW exchanges are always faster than the DAHW exchanges, except 

with Cu(Aβ1-28) at pH 8.7, where they are more similar. This trend is likely due to the combination of effects 

where the Cu(H-1GHW) complex has only one amide deprotonation, a smaller metallocycle is formed, and 

has a coordinated water molecule. In comparison, the Cu(H-2DAHW)2- complex requires two amide 

deprotonations, forms a larger metallocycle, has no coordinated water, and has an anionically charged N-

terminus residue. Since the pKa of amide nitrogen protons are near 9, at the higher the pH, it becomes 

easier to deprotonate these binding sites to accommodate the Cu(II). However, chelate effects do effectively 

lower the pKa of these motifs.33 Chelate effects are a phenomenon where once the metal has attached, the 

subsequent anchoring is favored and the effective pH needed to deprotonate the amide nitrogen is 

lowered.33 Similarly, the smaller metallocycle formed in the GHK complex may also contribute to these 

effects. Lastly, the presence of an anionically charged and bulky residue at the N-terminus may deter Cu(II) 

binding at the N-terminus as compared to just hydrogen in the glycine residue. The N-terminus binding is 

especially important in the ATCUN (amino terminus copper and nickel) motifs. While the DAHK peptide has 

a slightly larger affinity for Cu(II) than GHK, the combination of these effects is probably the reason why the 

GHW exchanges are much faster than the DAHW exchanges.  

In our previous work described in Chapter 2, the exchanges of Cu(II) from Cu(H-1GHW) to GHK 

and DAHK peptides depended on the formation of a ternary complex. We attributed the faster rate constants 

of the GHK peptides to the ability of the coordinated water to dissociate, which allowed for faster ternary 

complex formation, and ultimately a faster exchange rate. Similarly, a ternary complex must initially form 

between the Cu(Aβ) complex and the incoming tryptophan peptide. As shown in Figure 3.7, we were able 

to capture the GHW-Cu(Aβ1-16) ternary complex by low-temperature EPR spectroscopy. Since both the 

Cu(Aβ1-16) and Cu(H-1GHW) complexes have 3N + 1O binding in the equatorial plane when the Cu(II) is 

bound only to one of the peptides, the g⊥ region would not have distinct and clear superhyperfine coupling. 

However, distinct superhyperfine coupling is observed in the EPR spectrum in Figure 3.7. Since the 

superhyperfine coupling is only clearly defined like this when the paramagnetic electron is in the same 

ligand environment, as in a 4N binding, we are observing the ternary species created, GHW-Cu(Aβ1-16).  
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Figure 3.7: Low-temperature EPR of ternary complex formation GHW-Cu(Aβ1-16). Samples were taken at 
T = 150 K at 9.370512 GHz.  
 

Since the larger Aβ peptide has more residues that surround the Cu(II) coordination sphere, this 

presents a barrier to the initial Cu(II) coordination by the tryptophan peptide to create the ternary complex. 

This would result in a slower ternary complex formation in the longer Aβ peptide than in the shorter length. 

Indeed, the Cu(Aβ1-16) exchanges to GHW and DAHW had faster rate constants than the corresponding 

Cu(Aβ1-28) exchanges. Interestingly, this does not seem to be the case in the GGW exchanges at pH 7.4, 

where both rate constants are essentially the same, but does agree at pH 8.7 where they are statistically 

different. This may be an indication of a hypothesis in our previous paper, that the initial binding in the 

ternary complex is the histidine residue and not the N-terminus.32 The lack of a His residue in GGW and 

the slow exchange displayed by these exchanges would indicate that there is a difference between the 

ternary complex formation that is exhibited by GHW and DAHW. Since the only structural difference is the 

lack of a His residue, and since we have an indication that the His ligand may be the initial binding site in 

ternary complex formation from previous work in the Hureau group35, this result seems to agree with our 

previous statements that the His residue is the likely first chelation site by the GHW and DAHW peptides in 

the ternary complex formation.  



61 

 

All of the measurable exchanges for the GGW peptide (at pH 6.8, these were too slow and not 

reported here as the fitting process was not reliable) were considerably slower than either GHW or DAHW. 

This was an expected result as there is no histidine ligand present in GGW. The effect of histidine in the 

second and third positions of small peptide sequences has been shown to create very stable complexes.33, 

35-36 Therefore, the lack of any histidine residues in the peptide resulted in a much slower exchange by at 

least one order of magnitude. One reason is that when histidine binds the Cu(II), a very stable 6 membered 

ring forms between the amide nitrogen and the histidine nitrogen. When no histidine is present, only a 5 

membered ring forms between the backbone amide or N-terminus nitrogens, see structures in Figure 3.2. 

These 6 membered rings are inherently more stable than 5 membered rings.    

Lastly, the pH of the solution does seem to affect the rate constant, as would be indicated by the 

mechanism given in Eq. 3.1, where a net number of protons can be generated as a product in the exchange. 

For the GHW + Cu(Aβ1-16) exchange, the rate constant is the same at pH 6.8 and 7.4 but is slower at pH 

8.7. In Eq 3.1, a net of 1 H+ is generated in the GHW + Cu(Aβ1-16) exchange when the complex is Cu(Aβ1-

16)- which is predominant at pH 6.8. No net H+ is generated by the Cu(H-1Aβ1-16)2- complex, predominant at 

pH 8.7. Therefore, the exchange is faster for GHW when protons are generated as a product. Conversely, 

for the DAHW + Cu(Aβ1-16) exchange, the rate constant is the same at pH 7.4 and 8.7 and slower at pH 

6.8. A net 2 H+ is generated at the lower pH where the Cu(Aβ1-16)- complex is predominant than the net 1 

H+, which is generated at the higher pH where the Cu(H-1Aβ1-16)2- is predominant. Therefore, the exchange 

is faster for DAHW when less H+ is generated as products. Due to the nature of these peptides, as pH 

decreases, they have a harder time deprotonating the amide and N-terminus protons to allow for Cu(II) 

complexation. So for DAHW, which has 3 of these types of binding sites, the exchanges are faster at the 

higher pHs where fewer protons are generated in the exchange, which decreases the pH less as time 

progresses. While for GHW, which only has two of these types of binding sites, is less dependent on the 

generation of additional protons. In the DAHW exchange with Cu(Aβ1-28) this trend is conserved, whereas 

for GHW it is not. We measured the GHW + Cu(Aβ1-28) exchanges at pH 6.8 a second time and found no 

difference in the rate constant. Thus, the trend is lost upon lengthening of the amyloid peptide, which may 

have implications in the ternary species formation.  
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3.5 Conclusions 

 We have extended our previous methodology to measure interpeptidic Cu(II) exchange rate 

constants in truncated amyloid-beta peptides to the tryptophan-containing GHW, DAHW, and GGW. The 

interpeptidic Cu(II) exchange rate constants vary in their order of magnitudes from 103 to 104 M-1s-1 

depending on a number of variables; including the pH, the length of the amyloid-beta peptide, whether the 

tryptophan peptide contained a histidine ligand, the number of amide deprotonations needed in the 

tryptophan peptide to coordinate the Cu(II), and the extent of the created tryptophan peptide metallocycle. 

We found that almost all of the GHW exchanges were faster than the DAHW exchanges except in one 

case. These observations were attributed to the fact that GHW creates a smaller metallocycle and requires 

fewer deprotonations to accommodate Cu(II) coordination. Similarly, all GHW and DAHW exchanges were 

faster than the corresponding GGW exchanges, which is due to the lack of a histidine residue in the GGW 

peptide. The longer Aβ peptide complexes present a barrier for the ternary complex formation. Thus, all 

exchanges from the Cu(Aβ1-16) complexes are faster than from Cu(Aβ1-28), which is most likely due to faster 

ternary species formation in the shorter peptide .  
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CHAPTER 4: COORDINATION CHEMISTRY OF A CONTROLLED BURST OF ZN2+ IN BULK  
 

AQUEOUS AND NANOSIZED WATER DROPLETS WITH A ZINCON CHELATOR11

 
 

 
4.1 Summary 

The light-induced photolysis of [Zn(NTAdeCage)]1- generates a temporally controlled burst of Zn2+, 

which are rapidly chelated in situ by the free ligand, Zincon2-. The [Zn(Zincon)]2- coordination progress is 

monitored using absorption spectroscopy in bulk aqueous buffer and reverse micelle environments. The 

[Zn(NTAdeCage)]1- photocage and free ligand Zincon2- have different reverse micelle locations that affect 

the [Zn(Zincon)]2- formation at the nanoscale as compared to the bulk aqueous buffer. The formation of 

[Zn(Zincon)]2- in bulk aqueous buffer is more efficient despite the released Zn2+ and Zincon2- being physically 

closer within reverse micelles. The observed reduction of complex formation is attributed to the interfacial 

partitioning of Zincon2-, distinct from the Zn2+ photocage in the water pool, requiring diffusion for the species 

to meet to form [Zn(Zincon)]2-. This work introduces a proof-of-concept methodology to experimentally 

measure fast chelation reactions in confined spaces and thus provides an approach to explore cellular 

responses.  

 

4.2 Introduction to Zn2+ bursts by [Zn(NTAdeCage)]1- photolysis, reverse micelles, and Zincon  

The diverse metabolite and metal ion homeostasis that exists in cells limits our ability to study metal 

ion processes in complex biological systems.5-10 Zn2+ is the second most abundant transition metal within 

the brain and can be stored as bound to metalloproteins or as labile Zn2+ pools bound to metabolites, which 

has contributed to its role in neurodegenerative disease.6, 9, 11-28 Zn2+ has many structural and catalytic roles 

as co-factors for metalloproteins and enzymes, but the release of Zn2+ in its ionic form is essential for its 

function as a neurotransmitter.6, 11-14, 17-18, 29 As cells present a highly heterogeneous and crowded reaction 

environment, studying metal ion complexation reactions confined at the nanoscale in simpler systems like 

reverse micelles provides a fundamental characterization of such reactions.6, 9-10, 14, 30-31 Methods to form 

                                                                 
1 Beuning, C. N.; Barkley, N. E.; Basa, P. N.; Burdette, S. C.; Levinger, N. E.; Crans, D. C., Coordination 
Chemistry of a Controlled Burst of Zn2+ in Bulk Aqueous and Nanosized Water Droplets with a Zincon 
Chelator. Inorg. Chem. 2019, Published ASAP Dec. 6 2019 DOI: 10.1021/acs.inorgchem.9b02848. 
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and control a burst of metal ions and follow their coordination reactions on a cellular scale promotes a better 

understanding of the functions that transition metals have in biology. 

Photocaged metal complexes use light to release metal ions in situ, enabling controlled metal ion 

generation.2, 10, 32-37 We demonstrate the photolysis of a metal-bound photocage, [Zn(NTAdeCage)]1-, to 

generate a temporally controlled burst of Zn2+ in the nanosized reverse micelles. Upon release, the metal 

ion undergoes a complexation reaction with an in situ chelator ligand. The relative metal ion affinity of the 

photocage must be greater than the chelating agent so that any metal ions transferred arise from photolytic 

release and not sequestration. How this type of process proceeds when confined to a highly heterogeneous 

nanoscale environment, is not known. 

In this work, a nitrilotriacetate decarboxylation photocage, [Zn(NTAdeCage)]1- (KD = 1.0 x 10-13 M), 

released a burst of Zn2+ upon irradiation at 355 nm, Figure 4.1a.2 The in situ chelating ligand, Zincon2- 

complexed to the released ions to form [Zn(Zincon)]2-, Figure 4.1b.3-4 We chose Zincon2- as the in situ 

ligand due to its commercial availability, its lower Zn2+ affinity (KD = 2.09 x 10-6 M), and it has well-resolved 

absorption features of its bound and unbound states. The quantum yield of [Zn(NTAdeCage)]1- was 

previously reported near 30% in 40 mM HEPES, 100 mM KCl, pH 7.5, irradiation at 3 W and 365 nm. 2 At 

an average laser power of 0.133 W, the quantum yield was 16.7% in bulk aqueous buffer (40 mM HEPES, 

pH 7.4) or 17.4% in reverse micelles (same buffer and pH in 0.2 M AOT w0 30) and does not contribute to 

the observed differences in reaction progress discussed. We followed the complexation reaction progress 

within reverse micelles because they present a simple self-assembling nanoscale system which can be 

used to characterize how the presence of an interface and nanoconfinement affects molecules and their 

reactions, Figure 4.1c.37-47 A common self-assembling surfactant is sodium bis(2-ethylhexyl) sulfosuccinate 

(AOT), which is dissolved in an organic solvent like 2,2,4-trimethyl pentane (isooctane). When small 

volumes of water are added to AOT/isooctane solutions, isolated nanosized water droplets form surrounded 

by a monolayer of surfactant molecules. We characterize reverse micelle size by w0 = [water]/[AOT].48 The 

nanoscopic reverse micelle provides various sub-environments where encapsulated molecules can 

partition to upon confinement, Figure 4.1c. These include a bulk-like (for larger w0 sizes) water pool interior 

(A), a highly organized interfacial Stern layer where water interacts strongly with the anionic AOT sulfonate 

headgroups and Na+ counterions (B), aliphatic surfactant tails (C), or the organic solvent (D). Considering 
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the number of micelles formed and the number of molecules of each species are known, the w0 = 30 size 

and 32 µM species concentrations ensured a statistical distribution one [Zn(NTAdeCage)]1- and one 

Zincon2- per reverse micelle. Having both species in most of the reverse micelles meant that they did not 

have to exchange their contents for the reaction to proceed. 

 

Figure 4.1: a) Scheme for the [Zn(NTAdeCage)]1- photolytic decarboxylation to form m-
nitrobenzaldehyde and iminodiacetic acid.2 b) Scheme for complexation reaction of Zn2+ with Zincon2- 

to form [Zn(Zincon)]2-.3-4 c) Cartoon representing the reverse micelle regions A: interior bulk-like water 
pool; B: interfacial Stern layer and AOT head groups; C) hydrophobic surfactant tails; D) nonpolar 
phase.  
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4.3 Experimental methods 

4.3.1 Materials 

The following chemicals were purchased from Sigma-Aldrich and used without purification, and all 

solvents are ACS reagent grade; [5-(hydroxy-5-sulfophenyl)-3-phenyl-1-formazyl] benzoic acid 

monosodium salt (Zincon2-), ZnSO4•7H2O, HCl, NaOH, acetone, dimethyl sulfoxide (DMSO), acetonitrile 

(ACN), ethyl acetate, 2,2,4-trimethyl pentane (isooctane), and (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) (HEPES). Sodium bis(ethylhexyl) sulfosuccinate (AOT, Sigma, 97%) was 

further purified using a previously reported method.42, 49-50 2,2'-((carboxy(3-

nitrophenyl)methyl)azanediyl)diacetic acid (NTAdeCage3-) decarboxylation cage was synthesized by the 

Burdette group.2 All aqueous solutions were prepared with high purity deionized (DI) water at 18.2 MΩ•cm 

resistivity from a Millipore or Nanopore system. Both light-sensitive materials, Zincon2- and NTAdeCage3-, 

were stored in the dark and under refrigeration.  

4.3.2 Instrumentation 

Absorption spectra were collected a Perkin Elmer Lambda 25 UV-vis spectrometer with 1500 µL 

quartz cuvettes with a 1 cm pathlength at room temperature, with a sample cuvette and background cuvette 

holder. Background spectra were automatically subtracted from sample absorption with a second paired 

cuvette with blank solutions. Photolysis experiments were performed with an OPOTEK Inc. Opolette 355 

LD nanosecond laser with a pulse frequency at 20 Hz at 100 % efficiency, at 355 nm, with an average 

power of ~133 mW, at room temperature. All NMR studies were performed on an Agilent or Bruker 400 

MHz instrument, with at least 256 scans with 8 transients, mixing times of 200 ms, pulse delay of 1.5 s, at 

273 K, in 1H NMR, COSY, and HSQC. 

4.3.3 Preparation of stock NTAdeCage3-, Zincon2-, and Zn2+ solutions  

The stock solution of 4.0 mM NTAdeCage3- was created by dissolving in 40 mM HEPES at pH 7.4. 

The stock solution of 24.17 mM Zn2+ ions was created in DI water from ZnSO4•7H2O. The stock solutions 

of 2.0 – 5.0 mM Zincon2- were prepared by completely dissolving the powder in approximately 150-300 µL 

of 0.1 M NaOH then diluted to 1000 µL with 40 mM HEPES buffer solution. The Zincon2- solubility in a basic 

solution (1.0 M NaOH) is much greater than at lower pH, and at 0.1 M NaOH, the solubility is 1 mg/mL or 
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about 2 mM.51 If the pH dropped below 5, Zincon2- precipitated out of solution. Aqueous stock solutions of 

all light-sensitive material were stored covered by foil in the refrigerator for up to one week. Both Zincon2- 

and [Zn(NTAdeCage)]1- solutions were prepared freshly and used within a week of preparation. 

4.3.4 Sample preparation for UV-vis spectroscopy and photolysis experiments  

Samples were prepared at concentrations to ensure absorbances less than one in a 1 cm 

pathlength optical quartz micro cuvette. The molar absorptivity of Zincon2- depends on buffer system, 

environment, and pH but is approximately 24,000 M-1cm-1 in the aqueous buffered solution and near 18,000 

M-1cm-1 in the reverse micelles; the [Zn(Zincon)]2- is approximately 15,000 M-1cm-1.3, 52 A 40 μM 

concentration of Zincon2- in buffered aqueous solution gave an absorbance near 0.95. As all three species 

absorb in the 230-350 nm wavelength range (Figure 2), they can all absorb the laser photolysis radiation at 

355 nm.  

4.3.5 Aqueous sample preparation  

Aliquots of stock solutions were pipetted directly into the optical quartz micro cuvette to create the 

final concentrations. Specifically, the 40 µM [Zn(NTAdeCage)]1- was first created by addition of a large 

aliquot of 40 mM HEPES into the cuvette, and then the volumes of Zn2+ and NTAdeCage3- stocks were 

added to create 40 µM [Zn(NTAdeCage)]1- assuming a 1:1 chelation ratio and inverted at least three times 

to mix and ensure complexation. Then 10 μL aliquots (or less) were added of Zincon2- so that the final 

Zincon2- concentration in the cuvette volume was also 40 µM. This allowed for little concentration changes 

in the [Zn(NTAdeCage)]1- by adding small volumes of the second ligand. After all the species were added 

to the cuvettes, they were closed and inverted at least three times to ensure proper mixing.  

4.3.6 Reverse micelle sample preparation 

An aqueous solution of the [Zn(NTAdeCage)]1- complex was prepared in 40 mM HEPES, and then 

Zincon2- was added. This solution was created at a higher concentration (331 µM) so that when diluted with 

a large aliquot of AOT-isooctane, the overall sample concentration was 32 µM for both species in the final 

sample volume. Then a calculated volume of the aqueous sample with both species was added to the 

appropriate volume of 0.2 M AOT in isooctane to create the appropriate w0 value reverse micelle. The 

mixture was then vortexed until clear with a rose color (Zincon2-) or a violet color ([Zn(Zincon)]2-); hazy 
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samples were discarded and remade. All reverse micelles samples were prepared immediately before their 

spectroscopy was performed. The reverse micelle w0 size ranged from 0 (no added water) up to 50, where 

larger w0 values indicate larger water pools where bulk-like water properties can exist.48, 53 The relationship 

w0 = [H2O]/[AOT] was used to find the respective volumes of aqueous and AOT-isooctane solutions 

required.48 For example, a w0 = 30 with 0.2 M AOT requires 107 μL of aqueous solution and 1000 μL of 

AOT-isooctane. The residual water content of the purified AOT was analyzed by NMR by a previous method 

and calculated at 0.33 H2O molecule/AOT molecule. This value was considered in the w0 calculation.49-50 

A reverse micelle size of w0 = 30 was chosen to ensure a system that statistically had one 

[Zn(NTAdeCage)]1- and one Zincon2- molecule in each reverse micelle at the 32 µM concentrations and still 

had the parameters required for UV-vis monitoring. Also, the interior of larger reverse micelles have more 

bulk-like water properties, and lower percentages of interfacial water, thus larger reverse micelle sizes 

enable direct comparison between the photolysis in reverse micelles to that of bulk water.48, 53 Due to the 

volatility of isooctane, the AOT-isooctane solutions were prepared freshly, capped, and sealed with parafilm 

for up to two weeks to prevent concentrating the AOT from isooctane evaporation. The blank used in all 

reverse micelle UV-vis experiments was an empty (no analyte) reverse micelle of the w0 as in the 

experiment. No difference of Zincon2- absorption spectra were found in an aqueous solution of NaCl at high 

(1.0 M) concentrations, like that found at the reverse micelle interface.  

4.3.7 Photolysis sample handling 

All cuvette samples were prepared as described above and measured within 1 h of preparation. All 

samples were kept in the dark container between transport from the laser to the UV-vis spectrometer. The 

time between photolysis exposure was less than 10 min, which included taking the UV-vis absorption 

spectrum between exposures with completed photolysis within 60 min of initial sample preparation within 

the cuvette. All photolysis experiments in aqueous buffered solution and reverse micelles were performed 

in duplicate.   

4.3.8 Photolysis experiment design  

Photolysis samples were created freshly before each photolysis session; the photolysis was 

completed within an hour with an average laser power of 129 ± 4 mW for reverse micelles or 133± 4 mW 
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for aqueous buffered solutions with 100% efficiency, a frequency of 20 Hz, at a wavelength of 355 nm. 

Samples were exposed to the laser for a well-defined time period, after which they were transported in the 

dark from the laser to the UV-vis spectrometer to avoid any photolysis due to ambient light. Upon photolysis, 

the color of the solution gradually changed from rose/orange to violet/blue, indicating Zincon2- conversion 

to [Zn(Zincon)]2-. Samples were kept in the dark at ambient room temperature between laser photolysis and 

absorbance measurements and inverted three times to mix after each laser exposure period. 

4.3.9 NMR sample preparation 

All reverse micelle solutions for NMR analysis were prepared with 0.75 M AOT in isooctane with 

100 % D2O instead of water for the NMR lock. The NMR studies required a higher concentration of AOT so 

that signals from Zincon, and [Zn(Zincon)]2- were above the sensitivity limit with 0.75 M AOT requiring an 

overall 1 mM Zincon2- concentration needed for measurable NMR signals. Because the aqueous solubility 

of Zincon2- is limited, larger volumes of water associated with larger AOT concentration facilitated the 

measurements. The high AOT concentration limited the size to w0 = 20, and we attempted to prepare w0 = 

30 reverse micelles, but they were unstable due to their cloudy, phase-separated appearance. The CH2 

and CH3 signals from the AOT and isooctane, which are not deuterated, are very intense and dominate the 

reverse micelle spectra leading to larger signal to noise ratios in the reverse micelle spectra. The pH of the 

D2O was adjusted with DCl or NaOD to give a pD near 9, where pD = pH + 0.4.54 A pH near 9 was chosen 

for NMR characterization of Zincon2- and [Zn(Zincon)]2- as this is the optimal pH for Zn2+ complexation to 

Zincon2- according to speciation charts, while a physiological pH was preferred for the photolysis 

experiments.4, 55 For Zincon2- NMR in acetone, the addition of 7.7% D2O immensely improved the solubility 

of Zincon2-, and the NMR peaks in acetone alone were not as well resolved due to inhomogeneity in the 

sample of insoluble Zincon2-. 

 

4.3.10 Processing software used in analysis 

OriginPro 2018b (student version) was used for all figure creation, and some data analysis, 

including Gaussian and linear fitting. Microsoft Excel 2016 was used to perform simple data analysis such 

as averages, standard deviations, or other simple calculations.  ChemDraw Professional 16.0 was used to 

create chemical structures. MestReNova x64 was used to create NMR spectra, perform multiplet analysis, 
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and the stacking of NMR spectra. The resolution booster processing tool was used to determine isomer 

content in the aqueous 1H NMR spectra of both Zincon2- and [Zn(Zincon)]2-.  

4.4 Results and discussion 

4.4.1 Aqueous and reverse micelle control experiments performed  

To enable the interpretation of photolysis experiments of complex mixtures, we measured individual 

absorption spectra of the components. Figure 4.2 displays the absorption spectra of each species, 

[Zn(NTAdeCage)]1-, Zincon2-, and [Zn(Zincon)]2-, in aqueous buffered solution (panel a) and reverse 

micelles (panel b).  The sole absorption feature displayed by [Zn(NTAdeCage)]1- appears at 270 nm in both 

aqueous and reverse micelles, which suggests that it resides in the water pool and maintains its hydrated 

coordination sphere. The [Zincon]2- maximum wavelength shifts 70 nm to 545 nm in reverse micelles from 

475 nm in aqueous solution and displays a significantly altered peak shape, suggesting it embeds in the 

interface. The [Zn(Zincon)]2- spectrum displays a similar peak maximum and shape near 620 nm with 

increased intensity at the short wavelength side in the reverse micelles. This suggests [Zn(Zincon)]2- may 

interact with the interfacial water but is not as dramatic as the observed changes in the Zincon2- spectrum. 

 

Figure 4.2: The UV-vis absorption spectra of a) [Zn(NTAdeCage)]1-, Zincon2-, and [Zn(Zincon)]2- in 
40 mM HEPES at pH 7.40 (40 - 50 µM); b) 32 µM [Zn(NTAdeCage)]1-, Zincon2-, and [Zn(Zincon)]2- in 
40 mM HEPES at pH 7.40 within w0 = 30  reverse micelles (0.02 M AOT); c) Zincon2- chemical 
environment comparisons of the aqueous, reverse micelle, and acetone normalized absorption spectra.  
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We also measured spectra for combinations of [Zn(NTAdeCage)]1– and Zincon2– to confirm that 

[Zn(Zincon)]2- complexation arises from the photolytic release of ions and not by the Zn2+ abstraction from 

intact photocages. Figure 4.3 shows that when both [Zn(NTAdeCage)]1- and Zincon2- are present in 

solution, the [Zn(NTAdeCage)]1- remains largely intact, with about 5% of [Zn2+]total bound to Zincon2-. This 

also confirmed that the NTAdeCage3- photocage has a higher Zn2+ affinity than Zincon2-. When Zn2+ is 

added to a solution of NTAdeCage3- and Zincon2-, the Zn2+ preferentially binds to NTAdeCage3- with about 

6% of [Zn2+]total bound to Zincon2-, Figure 4.4. When NTAdeCage3- is added to a solution of [Zn(Zincon)]2-, 

it sequesters a stoichiometric amount of Zn2+ and no [Zn(Zincon)]2- peak remains, Figure 4.5. These 

experiments confirm that Zn2+ complexed by  Zincon2- originates from the Zn2+ captured after photolysis of 

the [Zn(NTAdeCage)]1–and not by the Zn2+ abstraction from intact photocages. 

 

Figure 4.3:  The spectra shown here are the control experiments to determine that [Zn(NTAdeCage)]1- 
remains intact in the presence of Zincon2-. First, 40 µM [Zn(NTAdeCage)]1- was created (black line), and 
then 40 µM Zincon2- (red line) was added, and the spectra were taken 2 minutes after addition.  
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Figure 4.4: The spectra shown here are the control experiments to determine that Zn2+ preferentially 
binds to NTAdeCage3- in the presence of both ligands. First, 40 µM NTAdeCage3- is added (black line) 
and then 40 µM Zincon2- is added (red line). Once the NTAdeCage3- + Zincon2- solution was created, 
then 40 µM Zn2+ was added (blue line).  

 

 

Figure 4.5: The spectra shown here are the control experiments that show NTAdeCage3- sequestered 
a stoichiometric amount Zn2+ from [Zn(Zincon)]2-. First, 40 µM [Zn(Zincon)]2- is created (black line). 
When 40 µM NTAdeCage3- is added (red line) the unbound Zincon2- peak at 475 nm was generated.  
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Various properties of reverse micelles could affect the Zincon2- absorption spectrum. The large 70 

nm red-shift of the Zincon2- absorption peak in reverse micelles suggests a distinct difference from the 

aqueous environment. To determine if the observed red-shift could be attributed to a hydrophobic 

environment, we measured the Zincon2- absorption spectrum in several polar organic solvents, including 

acetone, dimethyl sulfoxide, ethyl acetate, and acetonitrile, Figure 4.6. The remarkable similarity between 

the Zincon2- spectrum in acetone and in reverse micelles, Figure 4.2c, is consistent with Zincon2- 

penetrating deeply into the interface where it interacts with the organic portion of the AOT surfactant. 

Molecules as large as Zincon2- can sample multiple reverse micelle regions, potentially spanning a range 

of physical environments.42 Selective solvation of different Zincon isomers may result in contributions with 

slightly different spectroscopic signatures that can coalesce in the same wavelength range and contribute 

to broadening in the UV-vis absorption spectrum.39, 48, 50, 53 Indeed, the Zincon2- spectrum in reverse micelles 

required four contributions in a sum of Gaussians fit, Figure 4.7, and Table 4.1. Experiments 

varying Zincon2- concentration and reverse micelle size, w0, show little effect on the peak position except 

for slight increases in the short wavelength shoulder, Figure 4.8.  

 

Figure 4.6: Comparison of spectra of 40 µM Zincon2- in w0 = 30 AOT reverse micelles, aqueous buffered 
solution, with Zincon1- (COOH protonated in organic solvent) in dimethyl sulfoxide (DMSO), acetonitrile, 
acetone, and ethyl acetate. The spectra of Zincon2- in reverse micelles (black) and Zincon- in acetone 
(purple) share similar spectral shape and position.    
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Figure 4.7: The fit of the normalized absorption spectrum of 10 µM Zincon2- in w0 = 30 reverse micelles 
to a sum of Gaussian peaks. The experimentally acquired spectrum is shown with the black dotted line. 
There are four distinct peaks when summed together (yellow line) fit the experimental conditions. The 
Gaussian peak information is given in Table S1. These results suggest that as many as four peaks 
contribute to the reverse micelle experimental peak shape. These could be due to different isomers or 
different ways that the Zincon2-associates with reverse micelle interface (see NMR analysis section for 
further discussion). 

 

Figure 4.8: Top Normalized absorbance of 10 µM Zincon2- (in 40 mM HEPES, pH 7.4) in varying reverse 
micelle sizes, w0 = 4-30. We used 0.2 M AOT due to excellent solubility of solutes in all reverse micelle 
sizes. Bottom Normalized absorbance of a constant reverse micelle size w0 = 30 (0.2 M AOT) with 
varying overall concentrations of Zincon2- in 40 mM HEPES in the overall 1 mL reverse micelle sample. 
The spectral shapes are very similar with varying reverse micelle size or concentration, except slight 
increases on the short wavelength shoulder. This indicates that the Zincon2- preferentially localizes in 
the interfacial location regardless of reverse micelle sizes or concentration. 

Table 4.1: The Gaussian fitting 
parameters for fit shown in Figure 

4.7 where λ is the central 
wavelength (nm), σ is the variance 
(nm), and A is the relative 
absorbance maximum for each 
peak. 

 

Peak 
1 

Peak 
2 

Peak 
3 

Peak 
4 

λ 
(nm) 439 491 535 573 

σ 
(nm) 1000 660 400 400 

A 0.29 0.65 0.74 0.69 
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4.4.2 Nuclear Magnetic Resonance analysis of Zincon2- and [Zn(Zincon)]2- reverse micelle locations. 

If the Zincon2- and [Zn(Zincon)]2- interact with or embed in the interfacial Stern layer or AOT tails, 

as the UV-vis absorption spectroscopy suggests, it should severely impede their molecular motion. We test 

this hypothesis using NMR spectroscopy, whose chemical shifts and spectral peak widths are sensitive to 

molecular tumbling. Changes in NMR peak chemical shifts observed between aqueous buffered solution 

and reverse micelles has often been attributed to interfacial probe location. We used various NMR 

techniques to elucidate the extent of interfacial penetration by Zincon2- or [Zn(Zincon)]2- in reverse 

micelles.39, 41-43, 53, 56  

4.4.2.1 The NMR analysis of Zincon2- in aqueous buffer, reverse micelles, and acetone chemical 

environments. 

 We focused on the 1H NMR characterization of the Zincon2- aromatic hydrogens (HA – HJ Figure 

4.9) in various conditions. Figure 4.10 shows the aromatic region in the 1H NMR spectra of the free Zincon2- 

in D2O, in 7.7% (v/v) D2O in d6-acetone, and in AOT reverse micelles prepared with D2O. Peak labels, 

defined in Figure 4.9, are based on the hydrogen assignments derived from 1D 1H NMR integration, 

splitting, as well as 2D 1H1H COSY cross-peaks, and/or 1H13C HSQC NMR, see Figures 4.11 (1H NMR in 

D2O), 4.12 (1H1H COSY in D2O), 4.13 (1H NMR in d6 acetone/7.7% D2O), 4.14 (1H1H COSY in d6 

acetone/7.7% D2O), 4.15 (1H 13C HSQC in d6 acetone w/ 7.7% (v/v) D2O) and 4.16 (1H NMR in w0 = 20, 

0.75 M AOT). There are a few changes in [AOT], [Zincon2-], pH, and w0 size between NMR and UV-Vis 

spectroscopies, as discussed in the experimental section in the NMR sample preparation section.  

 

Figure 4.9: The structure of Zincon2- in the deprotonated form found at pH 7.40. Aromatic hydrogens 
are labeled for identification in NMR analysis.  



79 

 

We make several general observations from these 1H NMR spectra. First, the differences between the 

spectrum of Zincon2- in aqueous and reverse micelle environments, Figure 4.10 A and C, respectively, 

indicate that Zincon2- does not reside in a bulk-like water environment when it is in the reverse micelles. 

Essentially all aromatic hydrogens display different chemical shifts in bulk aqueous versus reverse micellar 

environments, Table 4.2. The chemical shift range for Zincon2- in reverse micelles extends further 

downfield, 7.07 – 9.00 ppm (reverse micelle) vs. 6.79 – 7.90 ppm (aqueous). Specifically, the Zincon2- 

reverse micelle 1H NMR signals experience both upfield and downfield shifting compared to the spectrum 

in D2O, consistent with a heterogeneous chemical environment of the ligand, see Table 4.2 for absolute 

changes in ppm (Δ ppm).39, 56-57 Reports using 2D NMR have further examined locations of compounds in 

reverse micelles and found that such shifting is indicative of various types of interfacial interactions 

depending on the concentration, charge, shape, and hydrophobic/hydrophilic nature of the ligand.39, 43, 56-57 

 

Figure 4.10: The stacked 1H NMR spectra showing signals arising from aromatic region of the 
hydrogens of unbound Zincon2- in A: D2O pD = 9.49; B: d6 acetone with 7.7% (v/v) D2O; C: w0 = 20 
reverse micelle (0.75 M AOT, pD = 9.50). The aromatic hydrogens are labeled as assigned in Figure 
4.9.  
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The upfield shift of hydrogens F and G along with the fact that phenyl ring 2 (Figure 4.9) is unsubstituted 

suggests that it points toward the AOT hydrocarbon tails, a hydrophobic chemical environment. Except for 

peaks F, G, and C, all other Zincon2- peaks shift downfield compared to the aqueous environment. This 

suggests that most of the Zincon2- aromatic hydrogens are situated within the interfacial region where the 

charged environment of the interface stabilizes the substituents on the phenyl rings 1 and 3 (Figure 4.9), 

that have charged species.  

 

Table 4.2: Chemical shifts and changes of Zincon aromatic protons in aqueous, reverse micelle, and 
acetone-D2O chemical environments. The change in proton chemical shift, Δ ppm, is listed in the header. 
A downfield shift is a positive number, while an upfield shift is a negative number.  

Proton, 
Hi 

Aqueous 
ppm 

Reverse 
Micelle 

ppm 

Acetone/7.7% 
D2O ppm 

Δ ppm 
Reverse 
Micelle – 
Aqueous 

Δ ppm 
Acetone – 

Reverse Micelle 

Δ ppm 
Acetone – 
Aqueous 

A 7.78 8.10 8.01 0.32 -0.09 0.23 
B 6.98 7.13 7.12 0.15 -0.01 0.14 
C 7.50 7.33 7.65 -0.17 0.32 0.15 
D 7.78 8.10 8.27 0.32 0.17 0.49 
E 7.38 7.95 7.96 0.57 0.01 0.58 
F 7.67 7.32 7.51 -0.35 0.19 -0.16 
G 7.68 7.21 7.43 -0.47 0.22 -0.25 
H 7.90 9.00 9.33 1.10 0.33 1.43 
I 7.58 7.85 7.84 0.27 -0.01 0.26 
J 6.79 7.07 7.01 0.28 -0.06 0.22 

 

Second, the chemical shift range (7.01 – 9.33) and peak positions observed for Zincon2- in d6 

acetone/D2O bear a resemblance to the spectrum of Zincon2- in reverse micelles. The chemical shifts of 

hydrogens are similar, and peak position changes, Δ ppm, from acetone to reverse micelles are small 

overall with about half of the signals appearing at essentially the same chemical shift, Table 4.2. The mixed 

solvent system appears to present an environment that closely resembles the AOT reverse micelle 

interfacial region, especially when considering that ~30% of the total water content in w0 = 20 reverse 

micelles is interfacial water (~20% in w0 = 30).48 Indeed, when comparing peak positions between Zincon2- 

in acetone – D2O and reverse micelle – D2O, many similarities arise, including similar chemical shift values 

and the direction of the shift (downfield vs. upfield) with the exception of proton C, Table 4.2.  

Third, the Zincon2- 1H NMR peaks are much broader in reverse micelles than they are in aqueous or 

acetone solutions. We attribute the peak broadening to slowed molecular tumbling. If Zincon2- molecules 
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reside embedded in the interface, the molecular tumbling can only occur on the time-scale for the entire 

reverse micelle tumbling, which is orders of magnitude slower than the individual molecules. Additionally, 

the rigidity of the interface can inhibit molecular motion precluding full relaxation back to the magnetic plane 

before the next NMR radiofrequency pulse arrives and therefore causing line broadening. Increasing the 

mixing time of the NMR experiment helps mitigate broadening due to incomplete relaxation. Taken together, 

the Zincon2- UV-vis and NMR spectra indicate that Zincon2- spans the reverse micelle interfacial Stern layer 

with the phenyl ring 2 with aromatic hydrogens F and G embedded in the AOT tails and phenyl rings 1 and 

3 within the charged interfacial Stern layer. 

 

 

 

Figure 4.11: The 1H NMR spectrum of the aromatic region of Zincon2- in D2O at pH 9.09 (pD to 9.49). 
Proton assignments are given in the multiplet box. 1H NMR (400 MHz, Deuterium Oxide) δ 7.90 (d, J = 
2.5 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.72 – 7.64 (m, 3H), 7.58 (dd, J = 8.8, 2.4 Hz, 1H), 7.50 (td, J = 8.0, 1.6 
Hz, 1H), 7.40 – 7.34 (m, 2H), 6.98 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 8.8 Hz, 1H). There are some impurities, 
even though commercial grade.  
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Figure 4.13: The 1H NMR spectrum of the aromatic region of Zincon1- in d6-acetone with 7.7% D2O. 
Proton assignments are given in the multiplet box. 1H NMR (400 MHz, Acetone-d6) δ 9.33 (d, J = 2.2 Hz, 
1H), 8.27 (dd, J = 8.5, 1.1 Hz, 1H), 8.01 (dd, J = 8.0, 1.6 Hz, 1H), 7.96 (d, 2H), 7.84 (dd, J = 8.6, 2.2 Hz, 
1H), 7.65 (t, J = 8.6, 7.2, 1.6 Hz, 1H), 7.51 (t, 2H), 7.43 (t, 1H), 7.12 (ddd, J = 8.2, 7.2, 1.2 Hz, 1H), 7.01 
(d, J = 8.6 Hz, 1H). 

Figure 4.12: A 1H1H COSY NMR plot of the aromatic region of Zincon2- in D2O at pH 9.09 (pD 9.49). Cross-
peaks are indicated by proton correlations next to the cross-peak, and the diagonal is labeled (solid black line). 
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Figure 4.14: A 1H1H COSY plot of the aromatic region of Zincon1- in d6-acetone with 7.7% D2O. Cross-
peaks are indicated by proton correlations next to the signal, and the diagonal is labeled (solid black line). 

 

Figure 4.15: A 1H 13C HSQC plot of the aromatic region of Zincon1- in d6 acetone with 7.7% D20. The signals 
are given by the proton assignments and the corresponding carbon atom with each proton. The given 
chemical shift is the value on the vertical axis, and the value in parenthesis is the estimated carbon chemical 
shift derived from ChemDraw relative to TMS.  
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Figure 4.16: The 1H NMR spectrum of the aromatic region of Zincon2- in a reverse micelle, w0 = 20, 0.75 
M AOT, with a pH 9.10 (pD 9.50). Proton assignments are given in the multiplet box. 1H NMR (400 MHz, 
Deuterium Oxide) δ 9.00 (s, 1H), 8.10 (dd, J = 17.3, 7.5 Hz, 2H), 7.95 (s, 2H), 7.85 (s, 1H), 7.32 (s, 3H), 
7.21 (t, J = 7.3 Hz, 1H), 7.13 (s, 1H), 7.07 (d, J = 8.9 Hz, 1H). 

 

4.4.2.2 The NMR analysis of [Zn(Zincon)]2- in aqueous buffer and reverse micelle chemical environments. 

Unlike free Zincon2-, the 1H NMR spectrum of [Zn(Zincon)]2- complex, shown in Figure 4.17, reveals 

the significant similarity between aqueous and reverse micelle environments. The proton assignments were 

determined from 1D 1H NMR integration, splitting, and 2D 1H1H COSY cross-peaks, see Figures 4.18 (1H 

NMR in D2O), 4.19 (1H1H COSY in D2O) and 4.20 (1H NMR in w0 = 20 reverse micelles, 0.75 M AOT). The 

chemical shift range of [Zn(Zincon)]2- in reverse micelles is 6.92 – 8.37 ppm, which is almost the same for 

the aqueous spectrum, 6.92 – 8.30 ppm. The hydrogens chemical shift order is the same in each 

environment; only slight Δ ppm were observed, Table 4.3. Peaks associated with hydrogens J and I on 

phenyl ring 3 have identical peak positions and no change in ppm, while H experiences only a slight 

downfield shift of Δ ppm = 0.07, Table 4.3. These observations indicate phenyl ring 3 is associated with the 
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bulk water pool. The aromatic hydrogens from the phenyl rings of 1 and 3 also experienced a slight upfield 

or downfield shifting, which would indicate an association or interaction with the interface, but not to the 

extent of the Zincon2- as previously discussed. These chemical shifts suggest that the [Zn(Zincon)]2- 

complex is not entirely embedded in the interface; it most likely sits in the interfacial water layer, with phenyl 

ring 3 pointed toward the water pool. Although the UV-vis absorption spectrum of [Zn(Zincon)]2- does not 

display a significant peak shift, the changes to the shorter wavelength shoulder peak shape could indicate 

some interaction with the interface. The line broadening in the [Zn(Zincon)]2- NMR reverse micelle spectrum 

is not as severe as the Zincon2- spectrum; however, it is still present. This indicated that the reverse micelle 

environment hinders [Zn(Zincon)]2- tumbling less than it does the free Zincon2-, which inferred less 

interaction with the interface. The peaks for the aromatic hydrogens on the phenyl rings 1 and 3 are the 

most affected as the signals are coalesced and broadened, due to these two phenyl rings being situated 

towards the interface. These observations indicate that the [Zn(Zincon)]2- species is likely interacting less 

with the interface/Stern layer and have more interactions with the water pool than Zincon2- does.  

 

 

Figure 4.17: The stacked 1H NMR spectra of [Zn(Zincon)]2- in A) D2O pD 9.53 and B) w0 = 20 reverse 
micelle (0.75 M AOT, pD 9.53). The aromatic hydrogens are labeled as assigned in Figure 4.9. 
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Table 4.3:  Chemical shifts and differences of [Zn(Zincon)]2- aromatic protons in aqueous and reverse 
micelle environments. The change in proton chemical shift, Δ ppm, is the reverse micelle – aqueous 
chemical shift. A downfield shift is a positive number, while an upfield shift is a negative number.  

Proton, Hi Aqueous ppm Reverse micelle ppm Δ ppm 

A 7.91 8.15 0.24 
B 7.24 7.11 -0.13 
C 7.53 7.34 -0.19 
D 7.99 8.15 0.16 
E 8.05 8.15 0.1 
F 7.45 7.36 -0.09 
G 7.35 7.18 -0.17 
H 8.3 8.37 0.07 
I 7.61 7.61 0 
J 6.92 6.92 0 

 

 

Perhaps most notable are the differences between the location we interpret for free Zincon2- and the 

[Zn(Zincon)]2-. Despite both species carrying the same doubly negative charge, neither Zincon2- nor 

[Zn(Zincon)]2- resides entirely in the bulk-like reverse micelle water pool. Indeed, other studies by our group 

have shown that doubly deprotonated aromatic acid species can interact with negatively charged interfaces 

and reside deep within the interface.43 The [Zn(Zincon)]2- reverse micelle NMR spectra share more spectral 

similarities to the aqueous environment than do the free Zincon2- spectra. It is possible that the molecular 

geometry plays a role in the location sampled by Zincon2- and [Zn(Zincon)]2-. As Zn2+ is coordinated in a 

square planar geometry when complexed to Zincon2- this may impede the ability of the complex to penetrate 

the surfactant tail region as it becomes much less flexible than a free Zincon2- molecule. The Zincon2- 

internal rotations are not fixed and can sample the more organic portions of the interface as it can move 

and rotate to fill spaces between AOT tails. UV-vis and NMR spectra indicate that the free Zincon2- is 

embedded deep into the interface while the [Zn(Zincon)]2- only slightly interacts with the interface. 
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Figure 4.18: The 1H NMR of the aromatic region spectrum of [Zn(Zincon)]2- in D2O at pH to 9.13 (pD 9.53). 
Proton assignments are given in the multiplet box. 1H NMR (400 MHz, Deuterium Oxide) δ 8.30 (d, J = 2.4 
Hz, 1H), 8.05 (d, J = 7.8 Hz, 2H), 7.99 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.61 (dd, J = 8.8, 2.4 
Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 
6.92 (d, J = 8.7 Hz, 1H).  

 

Figure 4.19: The 1H1H COSY NMR of the aromatic region of [Zn(Zincon)]2- in D2O at pH 9.13 (pD 9.53). 
Cross peaks are indicated with proton correlations next to the cross-peak, and the diagonal is labeled (solid 
black line).  
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Figure 4.20: The 1H NMR spectrum of the aromatic region for [Zn(Zincon)]2- in reverse micelles, w0 = 20, 
0.75 M AOT, with a pH 9.13 (pD 9.53). Proton assignments are given in the multiplet box. 1H NMR (400 
MHz, Deuterium Oxide) δ 8.37 (s, 1H), 8.15 (d, J = 7.4 Hz, 4H), 7.61 (d, J = 9.9 Hz, 1H), 7.34 (dt, J = 13.9, 
7.5 Hz, 3H), 7.18 (t, J = 7.4 Hz, 1H), 7.15 – 7.03 (m, 1H), 6.92 (d, J = 8.6 Hz, 1H). 

 

 

4.4.2.3 The NMR analysis of [Zn(Zincon)]2- coordination geometry.  

The [Zn(Zincon)]2- coordination geometry can be confirmed by these aqueous NMR spectra and 

interpretation of the aromatic proton shifting from the unbound to bound states. For a Zn2+ and Cu2+ indicator 

that is commercially available, no crystal structure or NMR confirming the coordination has been found in 

the literature for Zincon2-. The lack of more information is astounding, considering the first report of this 

ligand in the literature is from the 1950s.55 Spectroscopic data in the form of the chemical shifts of aromatic 

hydrogen atoms on the phenyl rings 1-3 obtained in an aqueous solution of the unbound Zincon2- (Figure 

4.11) and [Zn(Zincon)]2- complex (Figure 4.18) can indicate coordinate geometry because of coordination 
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induced downfield shifts.58-59 Specifically, all the aromatic hydrogens of the [Zn(Zincon)]2- complex 

experience a downfield shift as compared to the unbound ligand except F and G on phenyl ring 2, Table 

4.4. Hydrogens F and G are the least affected by the Zn2+ coordination because they are furthest from the 

proposed ligand coordination sites, resulting in small upfield shifts. Hydrogen E on the same ring 

experiences the largest shift due to the proximity to the delocalization to the two nitrogen atoms coordinating 

to the Zn2+.  

 

Table 4.4: The chemical shifts and differences of Zincon2- and [Zn(Zincon)]2- aromatic protons in D20. The 
difference in ppm is calculated as Δ ppm = [Zn(Zincon)]2- ppm – Zincon2- ppm, where a downfield shift is a 
positive number while an upfield shift is a negative number.  

Proton, Hi Zincon2-, ppm [Zn(Zincon)]2-, ppm Δ ppm 

A 7.78 7.91 0.13 
B 6.98 7.24 0.26 

C 7.50 7.53 0.03 
D 7.78 7.99 0.21 
E 7.38 8.05 0.67 
F 7.67 7.45 -0.22 

G 7.68 7.35 -0.33 
H 7.90 8.30 0.40 
I 7.58 7.61 0.03 
J 6.79 6.92 0.13 

 

 

4.4.2.4 The analysis of aromatic chemical shifts in the 1H NMR spectra of Zincon2- and [Zn(Zincon)]2- in 

aqueous solution confirm isomer content.  

There are some impurities in the Zincon2- and [Zn(Zincon)]2- 1H NMR spectra, especially the 

aqueous solutions. Through integration analysis using the MestReNova resolution booster tool, we have 

estimated that the percent of these extra proton signals do not exceed 15% of the total aromatic integration 

region for Zincon2- and 5.96% for [Zn(Zincon)]2- in the aqueous 1H NMR spectra. These percentages would 

indicate that these extra signals arise from isomers. The lower percent value in the [Zn(Zincon)]2- suggested 

an isomer in which the Zn2+ binding is less favored. We attempted to separate possible Zincon isomers by 

preparatory TLC plates but were unsuccessful.  
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4.4.3 Photolysis experiments that generate light-induced Zn2+ bursts at the nanoscale in reverse micelles  

With the absorption and NMR spectroscopy interpretation, the three species exhibit different 

partitioning as envisioned in the cartoon schematic given in Figure 4.21. The Zincon2- partitions deep in 

the interface, the [Zn(Zincon)]2- partitions into the interfacial water/Stern layer, and the [Zn(NTAdeCage)]1- 

partitions into the water pool. The locations of each species are important to understand and interpret the 

results of the photolysis experiments. The series of UV-vis absorption spectra of [Zn(NTAdeCage)]1- and 

Zincon2- following exposure to increasing photolysis radiation in reverse micelles (panel a) and bulk 

aqueous buffered solution (panel b) are shown in Figure 4.22. The decreasing intensity in the 250 – 350 

nm spectral range in both panels reflects the conversion of [Zn(NTAdeCage)]1- to its photolysis products, 

as well as the conversion of Zincon2- to [Zn-Zincon]2-. The Zincon2- peak decreased with exposure as Zn2+ 

are generated from the photolysis reaction. An isosbestic point at 600 nm (reverse micelle) or 545 nm 

(aqueous buffered solution) indicates a clean 1:1 conversion of Zincon2- to [Zn(Zincon)]2-. In reverse 

micelles, the Zincon2- peak wavelength maximum appears to shift toward longer wavelengths as the 

photolysis progresses. We can accurately simulate the observed shift in weighted averages of the individual 

Zincon2- and [Zn(Zincon)]2- spectra. Thus, we attribute the apparent shift as due to the overlapping of the 

Zincon2- peak with the short-wavelength [Zn(Zincon)]2- spectral feature, Figure 4.2b. There is some loss of 

the Zincon2- absorbance with laser exposure, but little loss of [Zn(Zincon)]2-, Figure 4.23, suggesting slight 

photobleaching of the ligand.  

 

Figure 4.21: Cartoon representing the interpreted reverse micelle partitioning of the three species 
Zincon2- (red), [Zn(NTAdeCage)]1- (yellow), and [Zn(Zincon)]2- (purple). 
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Figure 4.22: UV-vis absorption spectra marking the progressive photolysis of [Zn(NTAdeCage)]1- and 
Zincon2- in 40 mM HEPES at pH 7.40 within AOT-isooctane (0.02 M AOT) reverse micelles of w0 = 30 
(a) or in 40 mM HEPES at pH 7.40 (b). The average power of the laser was 133 mW per pulse with a 
frequency of 20 Hz, set at 355 nm.  

 

Figure 4.23: The results of laser photolysis conditions on samples in the absence of NTAdeCage3-. Top 
40 µM aqueous buffered Zincon2-; Bottom 40 µM aqueous buffered [Zn(Zincon)]2-. The photolysis 
radiation leads to a slight degradation of each species from the laser alone, which is less pronounced 
for the [Zn(Zincon)]2- complex. About a 0.15 absorbance decrease is observed in the Zincon2- over the 
entire photolysis period with only a 0.04 decrease for the [Zn(Zincon)]2- complex.   
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The nanoscale proportion of the reverse micelle places the [Zn(NTAdeCage)]1- and Zincon2- closer 

together than they would be in bulk aqueous buffer. Specifically, a w0 = 30 reverse micelle has a 

hydrodynamic radius of ~50 Å, including the Stern layer and the water pool.48 At a micromolar concentration 

in bulk aqueous buffer, the average distance between the Zn2+ and a Zincon2- molecule is 100’s of 

nanometers, far greater than the distance in a reverse micelle and would imply a lower reaction efficiency 

as the two species would encounter each other less. However, in the presence of an interface and confined 

to the nanoscale, Zincon2- partitions into the interface while the photocage partitions into the water pool. 

Thus, released Zn2+ cations must diffuse across a highly heterogeneous interface with a barrier of a high 

concentration of hydrated sodium cations to reach the Zincon2-. Alternatively, Zincon2- must diffuse out of 

the interface to bind Zn2+, which is not thermodynamically favorable.  

We expected that confining [Zn(NTAdeCage)]1- and Zincon2- in the reverse micelle environment 

would lead to efficient capture of the released Zn2+. Our observations show the opposite effect, most 

apparent when we compare the normalized Zincon2- absorbance versus total energy added, Figure 4.24. 

Equation 4.1 defines the total exposure energy, 𝐸𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (J), from exposure time in seconds, texposure, laser 

repetition rate, rlaser, (20 pulses/s), and laser power, Plaser (~133 mW). By comparing the slopes, the 

reduction in Zincon2- absorbance is approximately 1.4 times more efficient in aqueous buffered solution 

 

Figure 4.24: The normalized Zincon2- absorbance as a function of exposure energy in aqueous buffered 
solution (brown square) and reverse micelles (blue circle). Error bars indicate absorbance of two 
replicates, and the lines are unweighted linear fits to data. The slopes of the aqueous buffered solution 
were -11.9 (± 0.5) x 10-3 J-1 and reverse micelles were -8.8 (± 0.6) x 10-3 J-1. 
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than in reverse micelles. The interfacial location of Zincon2- in the reverse micelle diminishes its ability to 

capture the Zn2+ by about 25%. If the chelating ligand remains in the water pool with the photocage, we 

expect a more efficient capture of the freed cation. Thus simple confinement on the nanoscale may not 

dictate observed kinetics, and species partitioning must be considered. 

                                (Eq. 4.1)     𝐸𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒  (𝐽) = 𝑡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗ 𝑟𝑙𝑎𝑠𝑒𝑟 ∗ 𝑃𝑙𝑎𝑠𝑒𝑟                               

4.5 Conclusions 

We attempted to measure the ion binding by nanosecond transient absorption spectroscopy60, but 

the absorbance changes were too small for us to detect. We believe the low photolysis efficiency of the 

photocage may not generate a large enough burst of Zn2+. We expect that using a photocage with a larger 

quantum yield and metal ion sensitive fluorophores with emission spectroscopy will enhance the ability to 

measure kinetics.61-62 We have used similar types of signal dampening to measure the kinetic constants of 

Cu2+ transfer in small peptide complexes found in blood using tryptophan fluorescence quenching.63  

These results demonstrate an effective method to monitor metal ion coordination reactions at the 

nanoscale by controlled Zn2+ release through irradiation of a photocage. Association with the reverse 

micelle interface reduces the reactivity of Zincon2- to coordinate Zn2+ by 25% and demonstrates that the 

confinement impacts the reaction due to partitioning exhibited by the different species.46-47 The proof-of-

concept methodology presented here can be optimized to measure metal ion coordination reactions with 

fast time-scale spectroscopy using a photocage with a sufficient quantum efficiency able to release a large 

burst of ions. This approach would benefit measurements where stopped-flow mixing methods are too slow 

to measure free ion complexation.
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PART 2) THE ELECTROCHEMISTRY OF TRUNCATED MENAQUINONE ELECTRON 

TRANSPORTERS WITH SATURATED ISOPRENE SIDE CHAINS IMPORTANT IN TUBERCULOSIS 
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CHAPTER 5: REDOX POTENTIALS OF TRUNCATED MENAQUINONE ANALOGS IN APROTIC  
 

SOLVENTS ARE SENSITIVE TO SATURATION IN THE ISOPRENE SIDE CHAIN11 
 
 
 

5.1 Summary  

Menaquinone (MK) analogs with regiospecific partial saturation in their isoprenyl side chain, such 

as MK-9(II-H2), are found in many types of bacteria, including pathogenic Mycobacterium tuberculosis and 

function as electron transport lipids cycling between quinone and quinol forms within the electron transport 

system. While the function of MK is well established, the role of regiospecific partial saturation in the 

isoprenyl side chain on MK remains unclear and may be related to the redox function. We performed cyclic 

voltammetry on a series of truncated MK analogs with partially saturated, fully saturated, and unsaturated 

isoprene side chains in three aprotic solvents (acetonitrile, dimethyl sulfoxide, and pyridine) and their redox 

potentials and diffusion coefficients are reported herein. Most notably, the partially saturated MK-2(II-H2) 

and MK-3(II-H2) analogs were easier to reduce (more positive potentials), while the fully saturated MKs 

were among the hardest to reduce (more negative potentials), and most unsaturated MK analogs were in 

the mid-range of potentials measured. Principal component analysis performed on the measured redox 

potentials shows that the degree of double bond saturation in the isoprenyl side chain was the primary 

variable in the observed redox potential differences for truncated MK analogs. Absorption 

spectroelectrochemistry was performed on the truncated MK analogs to observe semiquinone 

intermediates. In the spectroelectrochemistry, small bathochromic red-shifts in wavelength were detected 

for the quinoid absorption bands between the unsaturated/partially saturated and fully saturated analogs in 

acetonitrile and dimethyl sulfoxide, which seems to be an effect from the first isoprene unit saturation. These 

studies give insight into why partially saturated MKs are found as the primary electron transporter in many 

bacteria.  

 

 

                                                                 
1 Beuning, C. N.; Koehn, J. T.; Crick, D. C.; Crans, D. C., Redox Potentials of Truncated Menaquinone Analogs in 

Aprotic Solvents are Sensitive to Saturation in the Isoprene Side Chain. 2020, Submitted. 
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5.2 Introduction to menaquinones, their redox processes, and importance in tuberculosis 

Menaquinones (MK) are a class of membrane-bound 1,4-naphthoquinone electron transport lipids 

(lipoquinones), which function in respiration and are essential to generate proton motive force (PMF) 

through membranes in bacteria.2-13 In humans, ubiquinone (UQ), which is structurally similar to MK, is the 

major mitochondrial electron-transporting lipoquinone.2 In humans, MK-4, also known as Vitamin K2, is an 

essential co-factor for blood coagulation and MKs have other functions in bone and cardiovascular health14, 

while in plant life phylloquinones (e.g., Vitamin K1) are essential in photosynthesis.2, 5, 15 In bacteria, PMF is 

generated by the reduction of lipoquinones by electron-donating membrane-bound enzymes such as 

dehydrogenases, hydrogenases, and oxidoreductases, while the subsequent oxidation is carried out by 

electron-accepting membrane-bound enzymes such as oxidases (aerobic respiration), reductases 

(anaerobic respiration), or some cytochromes, Figure 5.1.2-3, 7 This redox cycle of quinone (Q) and 

hydroquinone species (QH2) in bacteria generates PMF, which is used in ATP synthesis, producing cellular 

energy and is critical for sustained life. 

 

Figure 5.1: The reduction of a MK-n analog within bacterial membrane-bound enzymes versus aprotic 
solvent. In bacteria, the quinone is reduced by the actions of e- donating membrane-bound enzyme systems 
to the hydroquinone (QH2) and then oxidized by e- accepting membrane-bound enzyme systems to the 
quinone (Q), where both electrons are simultaneously added or removed. Depending on the MK analog, 
double bonds may or may not be present in all of the isoprenyl units in the side chain; see Figure 5.2 for 
all MK-n structures used in this study.  
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The reduction of the quinone in aprotic media such as acetonitrile (MeCN), dimethyl sulfoxide 

(DMSO), or pyridine follows a different path than in aqueous solution, creating a radical semiquinone (Q●-) 

and dianion (Q2-) when an external potential is applied.4, 6, 16-26 There are examples of stable semiquinone 

species having biological activity with receptor sites in QH2-reductases; however, the most common 

reduced form in biological systems is the quinol.27-29 Due to the hydrophobicity of many quinones, often 

studies of quinone redox potentials in aqueous solution have been estimated by modeling calculations or 

by solvating the quinones in lipid bilayers or films, or mixed organic-water solvent systems with acidic proton 

donors.29-35 Therefore, quinone redox chemistry is often studied in aprotic solvents, where discrete 

differences in redox potentials can be reproducibly measured. Importantly, these solvents more closely 

mimic the hydrophobic region of the lipid bilayer where lipoquinones reside and allow for comparison in 

hydrophobic environments. 

 

Figure 5.2: The structures of all truncated MK-n analogs examined in this work; MK-1, MK-1(H2), MK-2, 
MK-2(II-H2), MK-2(I,II-H4), MK-3, MK-3(II-H2), and MK-3(I,II,III-H6). These structures do not show the 
solution dependent conformational folding that can be exhibited by the longer chained analogs, which we 
have previously reported for MK-2.36 

 

Considerable research has been performed to elucidate the redox mechanisms, functions, roles, 

and redox potential differences among the varying types of lipoquinones (e.g., UQ, MK, phylloquinone); as 

well redox potential differences that arise from substitutions made on the ring moiety, across varying 

biological and synthetic sources, in aqueous buffered solutions, aprotic solvents, and mixed 
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aprotic/aqueous systems.2, 4-6, 16-18, 20, 22-25, 29-30, 32, 34, 36-44 It is known that the hydrophobicity of the isoprene 

side chain helps to anchor the MK in the membrane and to help lateral diffusion.12, 45-46 One study showed 

that in UQ-2 analogs with a fully saturated side chain and partial saturation at the first isoprene unit 

increased binding affinity to bovine complex 1 compared to the unsaturated or partial second isoprene 

saturation.45 Thus, saturation in the isoprene side chain may have more significant roles than just quinone 

mobility. The regiospecific partial saturation of the second isoprene unit on the isoprenyl side chain has 

been reported for the MK pools for many bacteria, including the Mycobacterium, Corynebacterium, 

Halobacterium, and Brevibacterium families, although less information is available on their formation.2, 13, 

47-51 In Mycobacterium tuberculosis (M. tuberculosis), the oxidoreductase MenJ is responsible for the 

regiospecific isoprene saturation converting MK-9 to MK-9(II-H2).3, 8 Removal of the genes responsible for 

the expression of this enzyme resulted in a three-fold decrease in electron transport efficiency in growth 

media, while in host mouse macrophages, was found to be essential for the survival of the bacteria.3 In 

some archaea, fully saturated MK analogs are suggested to have a role in membrane stability under harsh 

environments such as high salinity or extreme pH, and many examples of fully saturated lipoquinones have 

been reported.47-48, 52-55  

Much is known regarding the composition of the MK pool in bacteria and archaea, which has been 

used for taxon classification.2, 12-13, 55-56 It is not clear why saturated lipoquinone derivatives are conserved 

across all of these bacterial families but could be related to its electron transport functions. We recently 

reported on the observed differences in redox potential between MK-1 and MK-1(H2), and we observed a 

conserved 20 mV difference in the same three solvents.40 These studies showed there were significant 

differences in the reactivity of the quinones based on changes in side chain isoprene saturation, which 

warranted a systematic analysis of isoprene unit saturation of truncated MK analogs. To this end, we have 

synthesized various truncated MK-n analogs with partial saturation, full saturation, and unsaturated 

isoprenyl side chains, Figure 5.2.57  

 In this work, the electrochemistry of these hydrophobic compounds was characterized in three 

aprotic solvents (MeCN, DMSO, and pyridine) by cyclic voltammetry (CV). The MK redox reaction was 

monitored by absorption spectroelectrochemistry in MeCN and DMSO to characterize the redox progress 

from quinone to the semiquinone reaction intermediate, as well as the dianion. We hypothesize that the 
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extent of saturation in the isoprene side chain directly affects the redox potentials of the truncated MK-n 

analogs with partial and full saturation in the isoprene side chain. A systematic statistical analysis is used 

to determine if the electrochemical redox potential differences are significantly confident which arise from 

the type and extent of saturation in the isoprene side chain. This investigation is an important to step to 

understand why partial and full saturated isoprene side chains in MKs are observed in pathogenic bacteria 

such as M. tuberculosis.  

5.3 Experimental methods 

5.3.1 Materials  

All MK-n analogs analyzed were synthesized, and the procedures for the synthesis of the MK-n 

analogs are previously reported by Dr. Jordan T. Koehn (MK-3 was reported in the paper this chapter was 

created from).1, 36, 40, 57 All MK-n molecular masses, physical appearances, and weighed masses used in 

the CV are listed in Table 5.1. The supporting electrolyte was tetrabutylammonium perchlorate (TBAP, 

Sigma Aldrich, ≥99.0%) and was used as purchased without any additional purification. The internal 

standard for the cyclic voltammetry was ferrocene (Fc, Sigma). Silver nitrate (AgNO3, Sigma Aldrich) was 

used for the Ag+/Ag reference electrode. Organic solvents used included, acetonitrile (MeCN), dimethyl 

sulfoxide (DMSO), and pyridine were purchased from Sigma Aldrich and dried under argon on a Solv-Tek 

alumina drying column to remove water, as previously reported.40 Glassware was dried in the oven (>130 

Table 5.1: Molecular mass and physical appearances of MK-n analogs, masses weighed for each run 
used in the determination of diffusion coefficients. All masses were dissolved in 5.00 mL of 0.1 M TBAP 
with 2 mM Fc, to give concentrations near 2 mM. 

MK-n 
MW 

(g/mol) 
Physical 

Appearance* 

MeCN 
Runs 1, 2, 3 

(mg) 

DMSO 
Runs 1, 2, 3 

(mg) 

Pyridine 
Runs 1, 2, 3 

(mg) 
MK-1 240.3 Oil 3.0, 3.5, 4.0 2.9, 3.0, 2.8 2.8, 9.2, 2.7 

MK-1(H2) 242.32 Powder 3.2, 2.9, 2.9 4.5, 4.5, 4.3 3.5, 4.9, 3.0 

MK-2 308.42 Powder 3.2, 4.5, 3.9 3.3, 4.2, 4.0 4.0, 3.2, 4.5 

MK-2(I,II-H4) 312.45 Oil 5.6, 5.6, 9.3 9.5, 5.1, 4.8 4.9, 3.4, 5.9 

MK-2(II-H2) 310.44 Oil 3.1, 3.1, 3.2 3.2, 3.2, 3.1 3.1, 3.1, 3.2 

MK-3 376.54 Oil 5.8, 4.3, 4.0 7.5, 5.1, 7.1 5.4, 5.2, 4.5 

MK-3(I,II,III-H6) 382.59 Powder 3.8, 3.8, 3.9 3.8, 3.9, 4.0 3.9, 3.8, 3.9 

MK-3(II-H2) 378.56 Oil 3.8, 3.8, 3.8 3.7, 3.8, 3.8 3.1, 3.1, 3.2 
* Most analogs had a yellow to orange color (some even slightly red) but once dissolved in solvent all 
were yellow in color. 
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°C) and cooled under vacuum and put under anhydrous/inert atmosphere before the addition of solvent to 

the receiving vessel. Solvents were used fresh from the drying column and were analyzed to make sure 

the ferrocene and shorter isoprenyl side chain length MK-1 and MK-2 redox potentials were the same 

compared to in solvents dried over activated molecular sieves, as we previously reported.36, 40 Ultra-high 

purity argon gas was purchased from Airgas.  

5.3.2 Electrochemistry methods, instrumentation, and analysis 

5.3.2.1 Cyclic voltammetry electrodes 

A classical three-electrode system was used with a glassy carbon working electrode (BASi 

MF2012, 3 mm, area of 0.707 cm2), a platinum wire auxiliary electrode (BASi MW1032), and a non-aqueous 

Ag+/Ag reference electrode (BASi MW1085) with 0.1 M TBAP as the electrolyte. The redox potentials are 

reported as half-wave potentials, Eq.1.12, E1/2, where Epc and Epa are cathodic and anodic peak potentials. 

For all electrochemistry performed in this work, half-wave potentials are referenced to the internal standard 

of ferrocene, whose half-wave potential is set to zero (Fc+/Fc E1/2 = 0 V). The Fc+/Fc CV peaks are well 

resolved from the MK peaks, which allowed for direct comparison of potentials across different solvents. 

Electrodes were cleaned after each set of three measurements and manually inspected between runs to 

ensure no buildup accumulated on the glassy carbon electrode. The glassy carbon electrode was polished 

with water and alumina in a figure-eight motion after each CV was recorded, then rinsed with ethanol and 

then dried by evaporation with a stream of Ar (g). Both Pt and Ag wires were cleaned by polishing with 600 

grit sandpaper and rinsed with ethanol, which was then evaporated under a stream of Ar (g). The Ag+/Ag 

electrode was constructed by using the same solvent as the MK-n solution with 0.10 M TBAP and 0.010M 

AgNO3 to eliminate any liquid junction potentials. The Fc+/Fc redox potentials were within experimental 

error (ones of mV) in all three solvents across all runs in that solvent, as previously reported.36, 40  

5.3.2.2 Instrumentation and software 

All electrochemical data was performed on either a CHI 750D potentiostat or Pine Research 

WaveDriver 20 bipotentiostat (Model AFP2). The scan rate for all samples was 100 mV/s and was 

performed in the direction from -2.00 V to 1.00 V to -2.00 V vs Ag+/Ag (some may have been run in the 

opposite direction starting at 1.00 V). The CVs were graphed using Origin2019b student version. Microsoft 
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Excel 2016 was used for mathematical analysis and subtraction of internal standard Fc+/Fc E1/2 redox 

potential from experimental MK data to set the potential axis versus ferrocene. 

5.3.2.3 Sample preparation 

The MK-n concentrations were approximately 2 mM for CV experiments. Experimental solutions 

were created by weighing out the MK-n (Table 5.1) then 5.00 mL of 2 mM Fc in 0.1 M TBAP was added by 

a graduated cylinder. All electrodes equilibrated to each MK-n solution for at least 5 minutes while Ar (g) 

was bubbled through to de-solvate any dissolved O2 (g). All sample preparation and electrochemical 

analysis were performed in a hood system, especially when working with pyridine.  

5.3.2.4 Diffusion coefficient analysis  

The diffusion coefficient, Do, can be determined from the Randles-Sevcik equation, Eq. 1.15, where 

the constant 2.69 x 105 is determined by Faraday’s constant, temperature, and the gas constant at STP, ip 

is peak current measured, n is the number of electrons in the redox process, 𝐶𝑂 ∗  is the bulk concentration 

of species, A is the area of the working electrode, and v is the scan rate. Cathodic peak current passed 

was manually measured from printed CVs using a ruler and converted to amps (A) using an A/cm tick marks 

ratio. The double-layer capacitance was easily observed and subtracted by drawing a tangential line on the 

approach to the CV peak in the direction of the scan. The ip was then drawn as a vertical line down from 

the peak current maximum to the tangential line and measured in cm. Since masses of the MK-n analogs 

were weighed in mg quantities, the diffusion coefficients are restricted to reporting two significant f igures. 

Any outliers were determined and excluded by Grubb’s tests if the value was G = 1.15 or greater.58 The ip 

values for both cathodic (ipc) and anodic (ipa) peak current passed were also used to determine reversibility 

by Eq. 1.14 in which all CV peaks showed peak ratios that approached unity, which indicates a reversible 

redox process. To determine the number of electrons involved in each redox process Eq. 1.17 is used, and 

all the MKs studied had n = 1 electron for both Q/Q●- and Q●-/Q2- redox processes.  

 

 

 



106 

 

5.3.3 Absorption spectroelectrochemistry methods 

5.3.3.1 Pine Research Honeycomb spectroelectrochemical cell cuvette  

To perform the spectroelectrochemistry, we used the platinum Honeycomb spectroelectrochemical 

cuvette/electrode system created by Pine Research with the WaveDriver20 bipotentiostat. This electrode 

has both the working and counter electrodes directly on the plate. The reference electrode used was a low-

profile non-aqueous Ag+/Ag in each solvent, just as in the CV electrochemistry. Pyridine was not a suitable 

solvent for absorption spectroscopy due to its limited solvent window in the low UV region; therefore, the 

spectroelectrochemistry absorption spectra were only measured in MeCN and DMSO. The cuvette is quartz 

and has a thin layer path-length of 1.7 mm, where the electrode plate fits snuggly. The honeycomb design 

allows the light to pass through the solution and helps to quickly equilibrate the solution to the applied 

potential. All MK concentrations were kept below 0.5 mM due to the smaller path-length. Ferrocene was 

not used in the absorption spectroscopy. The AfterMath software program from Pine Research was used 

to perform the spectroelectrochemical measurements, which controls both the potentiostat and the 

absorption instrumentation. The spectroelectrochemical absorption spectra were graphed in Origin2019b 

(student version). 

5.3.3.2 Avantes optics for UV-vis absorption spectroscopy 

Avantes optics were used for the absorption spectroscopy. AvaLight DHc dual deuterium-halogen 

lamps were used as light sources for spectroscopy in the 200 – 2500 nm range and an AvaSpec-2048 was 

used as the detector. The cuvette holder was attached to the light source and the detector by fiber optic 

cables. Table 5.2 lists the potentials used in the measurement of absorption spectra, which were the 

cathodic peak potentials versus Ag+/Ag reference electrode in each solvent. Equilibration times of 60 s were 

used between potential steps, a boxcar width of 5, and an average of 100 scans per spectrum capture. 

Blank solutions were reference captured with ambient light, while the solvent and electrode plate was in the 

cuvette. This reference spectrum was automatically subtracted from the absorption spectra acquired by the 

AfterMath software program.  
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5.3.4 Statistical analysis of MK-n redox potentials 

5.3.4.1 Principal component analysis  

A matrix of unaveraged half-wave redox potentials, Table 5.3,  for each solvent and each MK-n 

analog was generated and then analyzed by the principal component analysis (PCA) in Origin Pro 2019b 

(student version). The multivariate analysis was performed on this matrix, and the subsequent eigenvalues 

graphed as PC 1 as the x-axis and PC 2 as the y-axis. The PC 1 percentage of variance was determined 

to be 88.61%, while PC 2 was 6.30%, and the other variables were less than 2.43 %, each totaling the 

remaining 5%, Table 5.4, including the PCA Scree plot, Figure 5.3. 

Table 5.3: PCA matrix of all measured half-wave potentials (Q/Q●-) versus Fc+/Fc in each solvent for each 
MK-n analog.  

  MeCN   DMSO   Pyridine  
 E1/2 , V E1/2 , V E1/2 , V E1/2 , V E1/2 , V E1/2 , V E1/2 , V E1/2 , V E1/2 , V 

MK-n Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 
MK-1 -1.226 -1.225 -1.230 -1.160 -1.156 -1.158 -1.318 -1.318 -1.320 

MK-1(H2) -1.240 -1.255 -1.247 -1.178 -1.179 -1.181 -1.343 -1.342 -1.343 
MK-2 -1.228 -1.228 -1.233 -1.155 -1.154 -1.156 -1.332 -1.330 -1.330 

MK-2(I,II-H4) -1.259 -1.251 -1.253 -1.178 -1.178 -1.179 -1.342 -1.342 -1.348 
MK-2(II-H2) -1.223 -1.227 -1.225 -1.157 -1.156 -1.155 -1.310 -1.315 -1.313 

MK-3 -1.233 -1.225 -1.230 -1.161 -1.164 -1.159 -1.328 -1.328 -1.332 
MK-3(I,II,III-H6) -1.243 -1.240 -1.258 -1.183 -1.178 -1.176 -1.332 -1.332 -1.338 

MK-3(II-H2) -1.220 -1.221 -1.223 -1.158 -1.158 -1.157 -1.320 -1.315 -1.316 

Table 5.2: Cathodic peak potentials used for spectroelectrochemical absorption spectroscopy 
measurements (Ecathodic vs Ag+/Ag) for each redox process Q/Q●- and Q●-/Q2-.  

MK-n Solvent 
Epc1 Q/Q●-, V 

vs Ag+/Ag 
Epc2 Q●-/Q2-, V 

vs Ag+/Ag 

MK-1 MeCN -1.102 -1.749 
  DMSO -0.927 -1.713 

MK-1(H2) MeCN -1.107 -1.767 
  DMSO -0.929 -1.745 

MK-2 MeCN -1.091 -1.750 
  DMSO -0.929 -1.635 

MK-2(I,II-H4) MeCN -1.121 -1.761 
  DMSO -0.939 -1.727 

MK-2(II-H2) MeCN -1.091 -1.736 
  DMSO -0.931 -1.725 

MK-3 MeCN -1.111 -1.743 
  DMSO -0.933 -1.709 

MK-3(I,II,III-H6) MeCN -1.101 -1.734 
  DMSO -0.950 -1.743 

MK-3(II-H2) MeCN -1.089 -1.740 
  DMSO -0.939 -1.726 
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Table 5.4: The principal component analysis eigenvalues of the correlation matrix, percentage of variance, 
and cumulative percentage as determined by OriginPro 2019b software.  

 

 

 

Figure 5.3: The Scree plot from the PCA performed on the redox potential matrix. The Scree plot shows 
there should be one major principal component (PC 1) and a second less significant component (PC 2), 
with an additional 5 with very low to no statistical significance. 

 

5.3.4.2 Student’s t tests  

Statistical analysis using Student’s t tests of MK-n half-wave potentials were performed in Microsoft 

Excel 2016. Standard deviations and 95% confidence intervals used in the statistical analysis of half-wave 

redox potentials and are listed below in section 5.4.1 in Table 5.5. Student’s t tests were performed to 

determine if two averaged MK-n E1/2 were statistically different or not using tcalculated, Eq. 5 and calculated 

the degrees of freedom (dof) for ttable, Eq. 6.58 Depending on the dof calculated, the highest confidence 

interval where tcalculated > ttable are reported for the following comparisons: for MK-n of the same value of n 

across different solvents Tables 5.6 or degree of saturation Table 5.8, and when compared across different 

values of n,  Table 5.9, see section 5.4.2. Two- or one-tailed p-values were determined using values 

corresponding to the confidence intervals and GraphPad free software.  

PC X Eigenvalue 
Percentage 
of Variance 

Cumulative 

PC 1 7.9747 88.61% 88.61% 
PC 2 0.56727 6.30% 94.91% 
PC 3 0.21827 2.43% 97.34% 
PC 4 0.13111 1.46% 98.79% 
PC 5 0.08254 0.92% 99.71% 
PC 6 0.02277 0.25% 99.96% 
PC 7 0.00333 0.04% 100.00% 
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(Eq. 5.1)  𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = |�̅�1−�̅�2|√𝑠12/𝑛1+𝑠22/𝑛2                       (Eq. 5.2)  𝑑𝑜𝑓 = (𝑠12/𝑛1+𝑠22/𝑛2)2(𝑠12/𝑛1)2(𝑛1−1) +(𝑠22/𝑛2)2(𝑛2−1)  

The hydroquinone (QH2) species, Figure 5.1, is kinetically favored in the presence of water, acidic 

protons, or Lewis acid/base donors. Upon reduction, the two quinoid carbonyl oxygens will become 

hydrated simultaneously, which results in a single two-electron redox process.17 As the amount of inherent 

water content or presence of acidic protons increases in an aprotic solvent, the Q●-/Q2- redox process will 

shift to more positive potentials until finally merging onto the Q/Q●- redox process, which is not affected by 

water content.17 Statistical analysis presented in this work utilizes the first redox process, Q/Q●- as it is 

unaffected by inherent water content, even though all solvents used in this work were rigorously dried, used 

fresh, and under an Argon atmosphere to minimize the effects of water. 

5.4 Results and discussion 

5.4.1 Cyclic voltammetry and redox potentials 

Electrochemical analysis of each MK-n analog in the presence of Fc was performed in MeCN, 

DMSO, or pyridine, where the CVs are given in Figure 5.4. In these CVs, three distinct reversible peaks 

are observed, see MK-1 in pyridine for labeling, first-row second panel, Figure 5.4. The right peak is the 

internal standard of ferrocene, whose potential is set to 0 V, so all MK-n half-wave potentials in different 

solvents can be directly compared versus Fc+/Fc couple. The middle peak is the first one-electron reduction 

of the quinone to the semiquinone, Q/Q●- Figure 5.1. The left peak is the second one-electron reduction of 

the semiquinone to the dianion, Q●-/Q2- Figure 5.1. The peak current passed by the semiquinone reduction 

is always smaller than that of the quinone due to the repulsion of the negatively charged semiquinone from 

the diffusion layer of the working electrode.17 All half-wave potentials for each redox process were 

determined by Eq. 1.12, referenced to an internal standard of Fc+/Fc, and are listed in Table 5.5 with their 

standard deviations and 95% confidence levels (CL). For all MK-n analogs of the same value n, whether 

saturated or unsaturated, the quinone redox potentials were statistically different at 99% confidence or 

higher when comparing across different solvent environment (MeCN vs DMSO, etc.), Table 5.6. Most of 

the MK semiquinone redox processes are above 95% confidence. These observed redox potential 
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differences for MK arises from the changes in dielectric constants (relative polarities) of the three solvents, 

where MeCN (36.64) and DMSO (47) are similar, while pyridine (12.3) is significantly dissimilar.    

 

Figure 5.4: The CVs of MK-n analogs in MeCN, DMSO, and pyridine. Concentrations of MK-n and Fc 
are near 2 mM (see Table 5.1 for details), v = 100 mV/s, at ambient room temperature, and under 
Argon atmosphere. Fc internal standard E1/2 set to 0 V vs Ag+/Ag in reference electrode.  
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Table 5.5: Average E1/2 vs Fc+/Fc for each MK-n with standard deviations (σ) and 95% CL. Standard 
deviations were used in statistical analysis calculations, while reported E1/2 are given at 95% confidence 
level (t = 4.303, n = 3 replicates) at a scan rate of 100 mV/s, under Ar (g), and at ambient room 
temperature. Numbers in parentheses indicate where the CL is not significant.  

MK-n Solvent 
E1/2  Q/Q●- 
vs Fc+/Fc 

(V) 

σ 
(V) 

CL 
95% 
(V) 

E1/2 Q●-/Q2- 
vs Fc+/Fc 

(V) 

σ 
(V) 

CL 
95% 
(V) 

MK-1 MeCN -1.227 0.002 0.006 -1.88(2) 0.014 0.034 

MK-1(H2) 
 

-1.24(7) 0.007 0.019 -1.91(2) 0.009 0.023 

MK-2 
 

-1.230 0.003 0.006 -1.90(2) 0.012 0.031 

MK-2(I,II-H4) 
 

-1.25(4) 0.004 0.011 -1.89(2) 0.010 0.024 

MK-2(II-H2) 
 

-1.225 0.002 0.005 -1.89(0) 0.011 0.028 

MK-3 
 

-1.229 0.004 0.009 -1.87(0) 0.016 0.041 

MK-3(I,II,III-H6) 
 

-1.24(7) 0.010 0.024 -1.89(3) 0.008 0.019 

MK-3(II-H2) 
 

-1.221 0.001 0.003 -1.89(8) 0.011 0.028 

MK-1 DMSO -1.158 0.002 0.004 -1.94(9) 0.006 0.014 

MK-1(H2) 
 

-1.179 0.002 0.004 -1.995 0.001 0.002 

MK-2 
 

-1.155 0.001 0.003 -1.86(3) 0.008 0.021 

MK-2(I,II-H4) 
 

-1.178 0.0001 0.0002 -1.97(2) 0.005 0.013 

MK-2(II-H2) 
 

-1.156 0.001 0.003 -1.951 0.002 0.005 

MK-3 
 

-1.161 0.002 0.005 -1.943 0.003 0.006 

MK-3(I,II,III-H6) 
 

-1.179 0.004 0.009 -1.97(6) 0.004 0.010 

MK-3(II-H2) 
 

-1.158 0.001 0.001 -1.949 0.002 0.006 

MK-1 Pyridine -1.319 0.001 0.002 -2.03(7) 0.005 0.013 

MK-1(H2) 
 

-1.343 0.001 0.002 -2.10(9) 0.005 0.012 

MK-2 
 

-1.331 0.001 0.003 -2.075 0.003 0.008 

MK-2(I,II-H4) 
 

-1.344 0.004 0.009 -2.082 0.003 0.009 

MK-2(II-H2) 
 

-1.313 0.003 0.006 -2.063 0.003 0.007 

MK-3 
 

-1.329 0.002 0.005 -2.066 0.001 0.002 

MK-3(I,II,III-H6) 
 

-1.334 0.003 0.008 -2.04(0) 0.009 0.022 

MK-3(II-H2) 
 

-1.317 0.003 0.006 -2.04(9) 0.010 0.024 
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Some trends can be visualized when the averaged half-wave potentials of the Q/Q●- redox process 

in Table 5.5 are plotted against solvent, Figure 5.5. Most notably are the absolute differences in the redox 

potentials of the MK-n analogs with partially and fully saturated isoprenyl side chains. The partially saturated 

MK-2(II-H2) and MK-3(II-H2) analogs were among the more easily reducible (more positive potentials) MK-

n analogs as compared to their fully saturated counterparts, MK-2(I,II-H4) and MK-3(I,II,III-H6), which are all 

the hardest to reduce (more negative potentials). This trend is conserved across all solvents tested. A 20 - 

30 mV potential difference is observed between the partially saturated versus fully saturated MK analogs, 

Table 5.7. Similarly, we observed a 17 - 24 mV difference between the unsaturated MK-1, MK-2, and MK-

Table 5.6: Student’s t tests of measured redox process E1/2 vs Fc+/Fc of MK-n based on differences in 
the solvent environment. Values are given at the highest % confidence level determined for that 
comparison. The p-values given are based on the highest % confidence level.  

MK-n 
Solvent 

1 
Solvent 

2 

Highest % 
CL E1/2 
Q/Q●- vs 
Fc+/Fc 

p 
(2-tail) 

Highest % 
CL E1/2 

Q●-/Q2- vs 
Fc+/Fc 

p 
(2-tail) 

MK-1 MeCN DMSO 99.9 0.001 99 0.01  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.9 0.001 99.9 0.001 

MK-1(H2) MeCN DMSO 99 0.01 99 0.01  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99 0.01 99.9 0.001 

MK-2 MeCN DMSO 99.9 0.001 98 0.02  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.9 0.001 99.8 0.002 

MK-2(I,II-H4) MeCN DMSO 99.8 0.002 99.8 0.002  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.9 0.001 99.9 0.001 

MK-2(II-H2) MeCN DMSO 99.9 0.001 98 0.02  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.9 0.001 99.8 0.002 

MK-3 MeCN DMSO 99.9 0.001 98 0.02  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.9 0.001 99 0.01 

MK-3(I,II,III-H6) MeCN DMSO 99.8 0.002 99.9 0.001  
DMSO Pyridine 99.9 0.001 99.8 0.002  
MeCN Pyridine 99 0.01 99.9 0.001 

MK-3(II-H2) MeCN DMSO 99.9 0.001 98 0.02 
 

DMSO Pyridine 99.9 0.001 99 0.01  
MeCN Pyridine 99.9 0.001 99.9 0.001 
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3 analogs and their fully saturated counterparts MK-1(H2), MK-2(I,II-H4), and MK-3(I,II,III-H6) in MeCN and 

DMSO, Table 5.7. However, in pyridine, these differences were much smaller in the MK-2 (13.2 mV) and 

MK-3 comparisons (4.7 mV). Only small 1.1 – 8.2 mV redox potential differences were observed between 

the unsaturated versus the partially saturated MK analogs in MeCN and DMSO but were larger for pyridine 

(12.7, 17.7 mV) Table 5.7. The differences seen in pyridine versus the MeCN and DMSO are probably due 

to the differences in their dielectric constants, where MeCN and DMSO have similar dielectric constants.  

 

Figure 5.5: All MK-n averaged E1/2 vs Fc+/Fc of the Q/Q●- redox process compared by the solvent 
used. Measured potential ranges on the y-axis are different for each solvent but are aligned with the 
MK analog with the most positive potential at the top while the MK analog with the most negative is 
at the bottom. Along the x-axis, the solvents are arranged from the most positive potential range to 
the most negative potential range. The range in DMSO was -1.156 V to -1.180V, in MeCN was -1.220 
V to -1.256 V, and in pyridine was  -1.306V to -1.344 V. Potentials are averaged values, n = 3, a scan 
rate of 100 mV/s, at ambient room temperature, and under Ar (g) atmosphere. 

 
Table 5.7: The absolute change in the redox potential of Q/Q●- ΔE1/2 vs Fc+/Fc (mV) between 
unsaturated, partially saturated, and fully saturated isoprenyl side chain of the same MK-n analog.  

MK-n (1) MK-n (2) 
MeCN 
ΔE1/2, 
(mV) 

DMSO 
ΔE1/2, 
(mV) 

Pyridine 
ΔE1/2, 
(mV) 

MK-1 MK-1(H2) 20.0 21.3 23.9 
MK-2 MK-2(I,II-H4) 24.5 23.5 13.2 
MK-3 MK-3(I,II,III-H6) 17.6 17.4 4.7 
MK-2 MK-2(II-H2) 4.9 1.1 17.7 
MK-3 MK-3(II-H2) 8.2 3.5 12.7 

MK-2(II-H2) MK-2(I,II-H4) 29.4 22.4 30.9 
MK-3(II-H2) MK-3(I,II,III-H6) 25.8 20.8 17.4 
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These observations show that saturation of the first isoprene unit of the quinone in the fully 

saturated analogs requires more energy for the reduction, which generated more negative redox potentials 

compared to the partially saturated or unsaturated MK analogs. This effect is observed even though the 

saturation is several carbons away from the quinoid moiety. Accordingly, some non-covalent interactions 

may be inferred. Conversely, when only the second isoprene unit is saturated,  the quinone is easier to 

reduce, resulting in more positive redox potentials, as compared to their fully saturated MK counterparts. 

The alkene on the second isoprene unit is several carbons away from the quinoid moiety, and one possible 

explanation is a through-space interaction of the isoprenyl side chain with the naphthoquinone. Indeed, 

MKs with longer chain lengths can fold over the quinone moiety, which we have previously reported for MK-

2.36 Since there is no conjugation within the isoprene side chain, this appears to be a viable explanation. 

The energy minimum structures of MK-2 in DMSO and MeCN are in a folded conformation, where the 

second isoprene unit folds over the ring system.36 Preliminary data with MK-3 also show folding. Thus, the 

conformation of the isoprenyl side chain over the naphthoquinone moiety is accessible for the longer side 

chain MK analogs, and this interaction with the quinoid appears to influence the redox potentials.  

The synthesis of MK-2(II-H2) generated both cis and trans isomers. Most biological MKs have a 

trans configuration, but there are examples of cis isomers in bacteria such as Mycobacterium phlei and 

Bacillus subtilis.2 The trans-MK isomers are essential to restoring oxidative phosphorylation when 

photoinactivation of quinones in bacteria was performed.2 During the synthesis of MK-2(II-H2), we were 

able to obtain two mixtures of the isoprenologs based on different combinations of fractions collected during 

column chromatography purification of the geometric isomers. Specifically, we obtained cis:trans ratios of 

1:2.2 and 1:2.7; and were able to isolate the pure trans-MK isomer for electrochemical analysis, see 

supporting information section 4, for details on the purification protocol.57 Measuring the redox potentials in 

the two different isomer ratios, yielded no significant difference in redox potentials in each solvent. In MeCN, 

the redox potentials of the 1:2.2 and 1:2.7 cis:trans isomer ratios were -1.225 and -1.223 V vs Fc+/Fc, 

respectively, while in DMSO and pyridine were identical. For the purified trans isomer of MK-2(II-H2), the 

potential in MeCN was -1.222 V vs Fc+/Fc. These results suggest that the isomerism in the isoprenyl side 

chain at the first isoprene unit does not result in differences in redox potentials observed for MK-2(II-H2). 

 



115 

 

5.4.2 Statistical comparisons with Student’s t tests and principal component analysis  

Principal component analysis (PCA) was used to visualize what structural properties influence the 

redox potentials for these MK analogs. The PCA was performed with the matrix consisting of the 

unaveraged Q/Q●- redox potentials for each MK-n in each solvent, Figure 5.6, Table 5.3. The MK-n analogs 

cluster in the PCA by how their structural properties affected the measured redox potentials with PC 1 

having the most influence and PC 2 having less influence. For the MK analogs studied, the extent of 

isoprenyl side chain saturation (percentage of variance – 88.61%) influenced PC 1. The variable which 

influences PC 2 (percentage of variance – 6.30%) is less clear but may be due to a combination of 

saturation and chain length. 

 

 

Figure 5.6: PCA from a matrix of all measured Q/Q●- redox potentials of each MK-n analog in each 
solvent examined. Circles are drawn around the different saturation type, where the partially saturated 
MK-n analogs are in an orange circle, unsaturated analogs are in a green circle (except MK-1), and 
fully saturated analogs are in a blue circle.  
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The variability in PC 1 is based on either partial or full isoprenyl side chain saturation for truncated 

MK analogs. The partially saturated MK analogs cluster together to the left of PC 1, the fully saturated MK 

analogs cluster together to the right of PC 1, and the unsaturated MK analogs cluster together between 

them except for MK-1. The MK-1 analog clusters closer to the partially saturated MK analogs on PC 1, 

which would indicate MK-1, with only one isoprene unit, behaves differently than the other unsaturated MK 

analogs. As compared to the other unsaturated MK analogs, MK-1 had relatively more positive potentials 

in each solvent. MK-1 is distinct from the other unsaturated analogs as it is too short to fold over the 

naphthoquinone.40 

When the unsaturated MK-1, MK-2, and MK-3 analogs were compared to their fully saturated 

counterparts MK-1(H2), MK-2(I,II-H4), and MK-3(I,II,III-H6), by Student’s t tests, the redox potentials are 

statistically different at 95% confidence or higher except for MK-3 vs MK-3(I,II,III-H6) in MeCN (90%) and 

pyridine (80%), Table 5.8. When the partially saturated MK-2(II-H2) and MK-3(II-H2) analogs were 

compared to the fully saturated counterparts MK-2(I,II-H4) and MK-3(I,II,III-H6), the redox potentials are 

statistically different at the 99% confidence level or higher except for MK-3(II-H2) vs MK-3(I,II,III-H6) in 

MeCN, which was at 95%. These results agree with our hypothesis that saturation in the isoprenyl side 

chain on MK influences the redox potential, as we observe in the plots in Figure 5.5 and the PCA in Figure 

5.6. It appears that the largest contribution to the redox potential differences in the fully saturated analogs 

is due to the saturation of the first isoprene unit on the side chain. The partially saturated versus unsaturated 

MK analogs had lower significance in DMSO for MK-2 vs MK-2(II-H2) at 60%, and for MK-3 vs MK-3(II-H2) 

at 80 %, but both comparisons were 90% in MeCN and greater than 99% in pyridine. Generally, the 

differences in redox potential between the partially saturated and the unsaturated of the same MK-n in the 

same solvent were less than 8 mV (except in pyridine) and were more significantly different in MeCN and 

pyridine than in DMSO, Table 5.7, Table 5.8. These observations indicate that the effect of partial saturation 

at the second isoprene unit on MKs lessens the energy burden required to reduce the quinone that makes 

them easier to reduce when compared to the unsaturated or fully saturated counterparts. 
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The PC 2 seems to be influenced by both the extent of saturation, and isoprene side chain length 

across all the MK analogs examined. Therefore, using Student’s t tests, we compared the MK-n analogs of 

different values of n with either the same or different type of saturation in the side chain, Table 5.9. When 

comparing MKs of the same type, (e.g. fully saturated, partially saturated, or unsaturated), there was less 

statistical confidence that the two measured redox potential values are different. For example, the fully 

saturated MK-1(H2) vs MK-2(I,II-H4) had no confidence of being different in any solvent, while MK-1(H2) vs 

MK-3(I,II,III-H6) were only statistically different in pyridine (95%), and MK-2(I,II-H4) vs MK-3(I,II,III-H6) were 

not statistically different in DMSO only (MeCN and pyridine were both 95%). Similarly, when comparing the 

two partially saturated analogs, MK-2(II-H2) vs MK-3(II-H2), the highest confidence was 90% in MeCN and 

DMSO, with only 80% in pyridine. Lastly, when the unsaturated MK analogs were compared, MK-1 vs MK-

2 or MK-3, they had low confidences in MeCN, but 90% in DMSO and 99% in pyridine, while MK-2 vs MK-

3 were only statistically different in DMSO. Conversely, when the different types of saturation (fully 

saturated, partially saturated, or unsaturated) are compared across different MK-n isoprene chain lengths, 

Table 5.8: Highest confidence level based on Student’s t tests of the differences of Q/Q●- E1/2 vs Fc+/Fc 
based on the extent saturation of the isoprene chain for the same MK-n length in the same solvent 
environment. Those comparisons which are not statistically significant at greater than 90% are greyed 
out. 

MK-n (1) MK-n (2) Solvent 
Highest % 

CL 
p 

(2-tail) 
MK-1 MK-1(H2) MeCN 95 0.05 

    DMSO 99.9 0.001 
    Pyridine 99.9 0.001 

MK-2 MK-2(I,II-H4) MeCN 99 0.01 
    DMSO 99.8 0.002 
    Pyridine 95 0.05 

MK-2 MK-2(II-H2) MeCN 90 0.1 
    DMSO 60 0.4 
    Pyridine 99.8 0.002 

MK-2(I,II-H4) MK-2(II-H2) MeCN 99.8 0.002 
    DMSO 99.9 0.001 
    Pyridine 99.8 0.002 

MK-3 MK-3(I,II,III-H6) MeCN 90 0.1 
    DMSO 99 0.01 
    Pyridine 80 0.2 

MK-3  MK-3(II-H2) MeCN 90 0.1 
    DMSO 80 0.2 
    Pyridine 99 0.01 

MK-3(I,II,III-H6) MK-3(II-H2) MeCN 95 0.05 
    DMSO 99 0.01 
    Pyridine 99.8 0.002 
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the confidence these measurements have different redox potentials were overall much more significant, 

with most comparisons at greater than 90%. For example, in all solvents studied, MK-1 vs MK-2(I,II-H4) 

were all statistically different at 99% or greater. Similarly, we observed significant differences in redox 

potentials in the following comparisons (all solvents); MK-1 vs MK-3(I,II,III-H6) were > 90%, MK-1(H2) vs 

MK-2 were > 90%, MK-2 vs MK-3(II-H2) were > 95%, and MK-3 vs MK-2(I,II-H4) were > 99%, Table 5.9. 

Therefore, most of the variability in PC 2 comes from the differences that arise from when both side chain 

length and different saturation types are considered.  

Table 5.9: Highest confidence level based on Student’s t tests of the differences of Q/Q●- E1/2 vs Fc+/Fc 
based on differences in length and saturation of isoprene chain in the same solvent environment. Those 
comparisons which are not statistically significant at greater than 90% are greyed out. 

MK-n (1) MK-n (2) 
MeCN 

Highest 
CL % 

DMSO 
Highest 
CL % 

Pyridine 
Highest 
CL % 

MK-1 MK-2 70 90 99.9 
  MK-2(I,II-H4) 99 99.8 99 
  MK-2(II-H2) 70 80 95 
  MK-3 50 90 99 
  MK-3(I,II,III-H6) 90 99 98 
  MK-3(II-H2) 95 0 70 

MK-1(H2) MK-2 90 99.9 99.9 
  MK-2(I,II-H4) 70 0 0 
  MK-2(II-H2) 95 99.9 99 
  MK-3 95 99.9 99.8 
  MK-3(I,II,III-H6) 0 0 95 
  MK-3(II-H2) 95 99.9 99 

MK-2 MK-3 0 95 50 
  MK-3(I,II,III-H6) 90 99.8 70 
  MK-3(II-H2) 98 95 99 

MK-2(I,II-H4) MK-3 99.9 99 99 
  MK-3(I,II,III-H6) 95 0 95 
  MK-3(II-H2) 80 99.9 99.9 

MK-2(II-H2) MK-3 80 95 99.9 
  MK-3(I,II,III-H6) 90 99 99.9 
  MK-3(II-H2) 90 90 80 

 

Through our statistical analysis, we conclude that the isoprene saturation type is the defining 

variable in our measured redox potentials of truncated MK analogs when compared against the same or 

differing chain lengths. The reducibility of the quinone is directly affected by the fully saturated MK analogs, 

requiring much more energy to be reduced, while the partially saturated MK analogs were among the 

easiest to reduce. Although the differences in redox potentials observed in these truncated MKs are 
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relatively small, they may be significant in a non-biological context as well. There are many industrial 

applications of quinones reported in the last decade, including quinone functionalized hybrid materials used 

as conducting films, electrode materials, electrochemical sensors for NADH, or as replacements for 

traditional battery electrolytes in flow cells.59-65 The electrochemical reversibility of quinones and their ability 

to polymerize with organic and inorganic frameworks allows for their use in energy storage.59-61, 64 

Application of quinones in flow batteries and lithium batteries reduces the presence of toxic metal ions and 

represents an alternative cathode material. 62-63 Therefore, a complete understanding of how structural 

differences in the quinone isoprenyl side chain can affect their redox potentials is relevant in both biological 

and industrial settings.  

5.4.3 Diffusion coefficients 

As the CVs of all MK-n analogs tested were completely reversible, the double layer charge was 

visible, and the concentrations of MK-n were known (see Table 5.1), we could estimate the diffusion 

coefficients from their CVs as calculated by the Randles-Sevcik equation, Eq. 1.15. Each MK-n redox 

process was found to be a one-electron reduction, as determined by Eq. 1.17. The diffusion coefficients 

are listed in Table 5.10, with 90% confidence. We found that the diffusion coefficients are an order of 

magnitude larger in MeCN than in the other two solvents, but were on the order of 10-7 to 10-8 cm2/s. These 

diffusion coefficients indicate that the approach of the MK-n analogs to the electrode surface are slow due 

to their size, bulkiness, and different solvation. These values do have large confidence intervals due to 

some outliers identified by Grubb’s tests and were generally quite large in pyridine.  

Table 5.10: Diffusion coefficient constants of the oxidized MK-n species, values are given at 90% 
confidence.  

MK-n  
MeCN 

Do (cm2/s) 
DMSO 

Do (cm2/s) 
Pyridine 

Do (cm2/s) 
MK-1 1.2 ± (0.4) x 10-7 2.1 ± (0.5) x 10-8 4 ± (6) x 10-8 

MK-1(H2) 6.6 ± (1.4) x 10-7 4.2 ± (1.9) x 10-8 1.8 ± (1.4) x 10-7 
MK-2 3.7 ± (1.6) x 10-7 3.7 ± (1.7) x 10-8 7 ± (6) x 10-8 

MK-2(I,II-H4) 1.1 ± (0.1) x 10-7 1.9 ± (0.6) x 10-8 8 ± (2) x 10-8 
MK-2(II-H2) 1.9 ± (0.4) x 10-7 1.6 ± (0.1) x 10-8 4.0 ± (0.8) x 10-8 

MK-3 1.2 ± (0.5) x 10-7 1.2 ± (0.2) x 10-8 3 ± (2) x 10-8 
MK-3(I,II,III-H6) 2.1 ± (0.4) x 10-7 2.3 ± (0.7) x 10-8 4.6 ± (0.8) x 10-8 

MK-3(II-H2) 1.3 ± (0.5) x 10-7 9 ± (4) x 10-8 5 ± (4) x 10-8 
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Our studies provide information on the movement of truncated MK analogs in an organic 

environment. Experimental diffusion coefficients for some UQs within lipid bilayers range from 10-6 to 10-9 

cm2/s, in which this large range is dependent on the method used to determine the constant.66 Our 

experimental diffusion coefficients for MKs in organic solvents are within the range of reported diffusion 

coefficients found in lipid bilayers for UQs. For the case of UQ-10, one such study found that for a folded 

conformation versus a flat-extended conformation, the diffusion coefficients were on the order of 10-6 and 

10-7 cm2/s, respectively.67  

5.4.4 Absorption spectroelectrochemistry of MK-n analogs in MeCN and DMSO  

To determine the changes in the spectroscopic signatures of the MK analogs based on the redox 

potential, we characterized the analogs in MeCN (Figure 5.7) and DMSO (Figure 5.8) using 

spectroelectrochemical absorption spectroscopy. The absorption spectra of oxidized species (black lines) 

shown in Figures 5.7 and 5.8 are not under any applied potential. The quinone reduction Q/Q●- (red lines) 

absorption spectra were taken at cathodic potentials Epc 1 vs Ag+/Ag, Table 5.2. The semiquinone reduction 

Q●-/Q2- (blue lines) absorption spectra were taken at cathodic potentials Epc 2 vs Ag+/Ag, Table 5.2.  

 
Figure 5.7: Spectroelectrochemical normalized absorption spectra of each MK-n analog in anhydrous 
MeCN.  
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Collectively, the MeCN spectroelectrochemistry of the MK analogs presented here appear very 

similar in their respective redox states, Q, Q●-, and Q2-.  The MK-n oxidized forms (black lines) have 

absorption peaks in the UV region observed near 250 and 265 nm, which are the strongly absorbing π-π* 

transitions of benzenoid and quinoid absorption (double peak character left is benzenoid, right is quinoid) 

respectively, while the peak at 332 nm is the weakly absorbing n-π* transition of the benzenoid.2, 41, 68-69 

Upon semiquinone and dianion reductions (red and blue lines respectively), new peaks form near 300, 350, 

and between 400-500 nm. As the aromaticity in the naphthoquinone is formed upon reduction to the 

semiquinone and dianion species, the benzenoid/quinoid peaks shift from their maxima at 250/265 nm to 

300 nm and coalesce into one single peak. The n-π* transition shifts from 332 nm to 350 nm. An 

intramolecular charge transfer band appears near 400 – 500 nm when one of the quinoids becomes 

negatively charged and grows in intensity as the second is reduced (note this phenomenon is clearer in the 

DMSO spectra, see Figure 5.8). The intramolecular charge transfer of the quinoid anionic oxygen is a 

through bond effect from the increased conjugation of the naphthoquinone. Isosbestic points are seen in 

each set of MeCN spectra near 230 and 275 nm, which is the conversion of oxidized to reduced species. 

 

Figure 5.8: Spectroelectrochemical normalized absorption spectra of each MK-n analog in anhydrous 
DMSO.   
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In DMSO, the MK-n oxidized form benzenoid/quinoid π-π* transitions appear as a single peak near 270 nm 

and the benzenoid n-π* transition near 333 nm. Upon reduction, the benzenoid/quinoid π-π* transition peak 

shifts near 300 nm while the n-π* transition peak shifts near 400 nm. Unlike MeCN, the charge transfer 

from the reduced anionic oxygen was well resolved near 475 nm. An isosbestic point near 280 nm is the 

change from oxidized to reduced species, similar in MeCN. Detailed wavelength maxima of these spectra 

are listed in Table 5.11.   

 

Table 5.11: Detailed absorption maximum wavelengths for MK-n analogs spectroelectrochemistry in 
MeCN and DMSO.  

 MeCN λmaximum (nm)  DMSO λmaximum (nm)  

MK-n Q Q/Q●- Q●-/Q2- Q Q/Q●- Q●-/Q2- 

MK-1 
248, 
262, 
332 

248, 262, 
304, 401, 467 

250, 300, 
330-500 
(broad) 

266, 
333 

298, 405, 
478 

304, 
407, 
477 

MK-1(H2) 
246, 
268, 
331 

246, 267, 
305, 332, 
399, 472 

299, 351, 473 
271, 
333 

269, 304, 
407, 475 

303, 
408, 
479 

MK-2 
246, 
266, 
331 

246, 263, 
304, 329, 
398, 475 

291, 350, 436 
267, 
334 

266, 304, 
334, 406, 

477 

304, 
405, 
478 

MK-2(I,II-H4) 
246, 
268, 
330 

246, 265, 
304, 327, 
397, 471 

249, 293, 
352, 474 

271, 
332 

269, 304, 
334, 408, 

475 

303, 
407, 
476 

MK-2(II-H2) 
246, 
265, 
332 

249, 266, 
306, 328, 
403, 477 

300, 353, 422 
(broad) 

267, 
333 

262, 304, 
404, 475 

301, 
390, 
476 

MK-3 
248, 
265, 
331 

248, 263, 
304, 404, 472 

300, 351, 400 
- 500 (broad) 

267, 
333 

265, 304, 
406, 476 

304, 
405, 
476 

MK-3(I,II,III-H6) 
245, 
268, 
332 

248, 267, 
305, 328, 
392, 470 

248, 292, 
355, 470 

271, 
333 

305, 408, 
478 

304, 
408, 
480 

MK-3(II-H2) 
248, 
265, 
332 

247, 264, 
306, 327, 
404, 471 

292, 349, 443 
268, 
332 

265, 303, 
405, 476 

302, 
406, 
477 

 

Upon the first inspection of the absorption spectroscopy in both solvents, there seem to be no 

differences due to isoprenyl side chain saturation but only the redox state. The quinoid absorption bands 

range from 262-272 nm in various solvents, and small 2 – 10 nm bathorchromic red-shifts to longer 

wavelengths are observed upon saturation of the first isoprene unit.2, 49 Indeed, when comparing the 

unsaturated MK-1, MK-2, and MK-3 analogs with their fully saturated counterparts MK-1(H2), MK-2(I,II-H4) 
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and MK-3(I,II,III-H6), small bathochromic shifts between 2 to 6 nm were observed in their oxidized 

absorption spectra, Table 5.12. Similarly, these small 2 – 6 nm bathochromic shifts were also observed 

between the partially saturated analogs, MK-2(II-H2) and MK-3(II-H2), and their fully saturated counterparts, 

MK-2(I,II-H4) and MK-3(I,II,III-H6), Table 5.12. The relatively large redox potential changes observed based 

on full saturation of the isoprenyl side chain as compared to the partial/unsaturated MK analogs only 

resulted in very small shifts in the quinoid absorption peak. Other than these bathochromic wavelength 

shifts, we do not observe other changes in the spectroelectrochemistry due to the type of saturation or 

conformational folding. Using other more sensitive techniques such as fluorescence or infrared 

spectroelectrochemistry may elucidate these interactions but are not currently available to us.  

 

Table 5.12: Quinoid absorption shifts of unsaturated versus fully saturated MK-n analogs.  

MK-n Quinoid 
Absorption Shifts 

MeCN 
λ, (nm) 

DMSO 
λ, (nm) 

MK-1 / MK-1(H2) 262 / 268 266 / 271 

MK-2 / MK-2(I,II-H4) 266 / 268 267 / 271 

MK-3 / MK-3(I,II,III-H6) 265 / 268 267 / 271 

MK-2(II-H2) / MK-2(I,II-H4) 265 / 268 267 / 271 

MK-3(II-H2) / MK-3(I,II,III-H6) 265 / 268 268 / 271 

  

5.5 Conclusion 

The observations in this work support our hypothesis that the extent and placement of isoprene 

unit saturations in the side chain directly affects the redox potentials of the truncated MK-n analogs studied 

in aprotic solvents. The partially saturated MK-n(II-H2) derivatives are observed in the available quinone 

pool for many bacterial families, including Mycobacteria, Corynebacteria, Halobacteria, and Brevibacteria. 

This includes the pathogenic M. tuberculosis, where the regiospecific partial saturation of MK-9 to MK-9(II-

H2) is carried out by the reductase, MenJ. Motivated by this observation, we pursued studies where a 

systematic statistical analysis approach was used to determine if there are electrochemical redox potential 

differences which arise from the extent and placement of saturation in the isoprene side chain.  
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We found that partial saturation of the second isoprene unit in truncated MK-n analogs generally 

resulted in more positive redox potentials compared to their unsaturated and fully saturated isoprenyl side 

chain counterparts, meaning they require less energy to reduce. The fully saturated MKs were the hardest 

to reduce, requiring much larger negative potentials and thus more energy than the partially or unsaturated 

MK analogs. The principal component analysis confirmed that the saturation type of the MK isoprenyl side 

chain was the defining variable in the redox potential differences analyzed. The statistical analyses and 

spectroelectrochemistry performed on these truncated MK analogs suggested that saturation of the first 

isoprene unit may influence redox potentials the most. Indeed, a lot of our observations in both the cyclic 

voltammetry, statistical analysis, and spectroelectrochemistry would agree that saturation of the first 

isoprene unit on MK does seem to influence the potentials the most and synthesis of analogs such as       

MK-2(I-H2) and MK-3(I-H2) are already being initiated in our lab to confirm these observations. These results 

are an important step toward understanding why the partial saturation of MK-9 to MK-9(II-H2) is observed 

and conserved within pathogenic bacteria, including M. tuberculosis, which is responsible for the infection 

of one-third of the global human population and the death of ~1.3 million people annually.70   

5.6 Unpublished work on the unsaturated MK-4, MK-7, and MK-9 analogs 

 The commercially available unsaturated analogs MK-4 (Sigma Aldrich), MK-7 (U.S. Pharmacopia, 

USP), and MK-9 (Santa Cruz Biotechnology, Inc.) were analyzed by the same methods described in this 

chapter. The following data were not included in the manuscript prepared for publication, as we wanted to 

focus on the characterization of the synthesized truncated forms of the MK-n analogs. These analogs are 

easier to incorporate into liposomes, for instance. A graduate student in the group, Kaitlin A. Doucette, has 

begun to measure the redox potentials of these analogs in liposomes, in preparation for studies with non-

pathogenic M. tuberculosis lipid extracts. Similarly, their conformation in the liposome bilayer is to be 

investigated. The group is interested in measuring the redox potentials of MK-7(II-H2) and MK-9(II-H2) from 

possible synthetic routes, or more likely from purified non-pathogenic bacterial sources. Phylloquinone or 

MK-4 with the first isoprene unit saturated is also commercially available. As these studies continue with 

the Crans and Crick collaboration, these data will be published along with their partially saturated analogs.  
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The averaged E1/2 vs Fc+/Fc of each redox process of the unsaturated analogs MK-4, MK-7, and 

MK-9 are reported in Table 5.13 with their standard deviations and 95% CL. The CVs of MK-4, MK-7, and 

MK-9 in all three solvents are given in Figure 5.9 (concentrations are approximately 2 mM except MK-9, 

which is 0.5 mM). Note MK-9 was insoluble in DMSO. Table 5.14 lists the diffusion coefficients, masses 

weighed, and spectroscopic cathodic peak potentials for each redox process for these analogs. The E1/2 vs 

Fc+/Fc for the Q/Q●- processes can be added to the principal component analysis matrix. The added values 

for MK-4, MK-7, and MK-9 are given in Table 5.15. Note the values for MK-9 in DMSO are estimated from 

the trends observed in MeCN and pyridine. Otherwise, the PCA would not include MK-9. The PCA with all 

eleven analogs discussed in Chapter 5 is shown in Figure 5.10. A similar plot of averaged E1/2 vs Fc+/Fc 

of the first redox process compared against the solvent is with all eleven analogs is shown in Figure 5.11.   

 

 

 

Table 5.13: The average E1/2  Q/Q●- and Q●-/Q2- vs Fc+/Fc with standard deviations and 95% CL of 
MK-4, MK-7, and MK-9. Values in parentheses are not significant at 95%. 

MK-n Solvent 
E1/2  Q/Q●- vs 

Fc+/Fc (V) 
σ 

(V) 
95% 
(V)  

E1/2 Q●-/Q2- 
vs Fc+/Fc (V) 

σ 
(V) 

95% 
(V)  

MK-4 MeCN -1.23(5) 0.007 0.018 -1.82(9) 0.029 0.073 
MK-7 

 
-1.24(1) 0.005 0.012 -1.90(0) 0.017 0.043 

MK-9 
 

-1.233 0.001 0.003 -1.83(1) 0.006 0.014 
MK-4 DMSO -1.160 0.001 0.002 -1.916 0.003 0.007 
MK-7 

 
-1.165 0.001 0.004 -1.962 0.003 0.007 

MK-4 Pyridine -1.32(7) 0.006 0.015 -2.02(0) 0.025 0.063 
MK-7 

 
-1.317 0.0002 0.0004 -2.04(1) 0.005 0.012 

MK-9 
 

-1.306 0.003 0.008 -1.96(9) 0.010 0.024 
 

Table 5.14: The diffusion coefficients and masses weighed for MK-4, MK-7, and MK-9. 

Value Solvent MK-4 MK-7 MK-9 
Do (cm2/s) MeCN 1.5 ± (0.4) x 10-7 5.5 ± (1.0) x 10-8 3.7 ± (0.3) x 10-8 
Do (cm2/s) DMSO 1.8 ± (0.6) x 10-8 1.2 ± (0.1) x 10-8 ---- 
Do (cm2/s) Pyridine 5.9 ± (1.2) x 10-8 4.0 ± (1.1) x 10-8 2.6 ± (0.2) x 10-8 

Molecular Weight (g/mol)  444.66 649.02 785.23 

Runs 1-3 (mg) MeCN 5.0, 4.6, 4.2 6.1, 6.0, 6.4 1.3, 1.3, 1.3 

Runs 1-3 (mg) DMSO 4.4, 4.9, 4.6 5.6, 6.8, 6.0 Insoluble 
Runs 1-3 (mg) Pyridine 4.9, 4.4, 5.0 6.1, 3.2, 6.0 1.5, 1.5, 1.7 
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Table 5.15: The values added to the PCA matrix for MK-4, MK-7, and MK-9. The values for MK-9 in 
DMSO are estimates, based on the trends in the MK-7 and MK-9 in MeCN and pyridine.  

MK-n 

E1/2 vs 
Fc+/Fc 

(V) 
MeCN 
Run 1 

E1/2 vs 
Fc+/Fc 

(V) 
MeCN 
Run 2 

E1/2 vs 
Fc+/Fc 

(V) 
MeCN 
Run 3 

E1/2 vs 
Fc+/Fc 

(V) 
DMSO 
Run 1 

E1/2 vs 
Fc+/Fc 

(V) 
DMSO 
Run 2 

E1/2 vs 
Fc+/Fc 

(V) 
DMSO 
Run 3 

E1/2 vs 
Fc+/Fc 

(V) 
Pyridine 
Run 1 

E1/2 vs 
Fc+/Fc 

(V) 
Pyridine 
Run 2 

E1/2 vs 
Fc+/Fc 

(V) 
Pyridine 
Run 3 

MK-4 -1.231 -1.230 -1.243 -1.159 -1.161 -1.159 -1.332 -1.328 -1.320 
MK-7 -1.237 -1.247 -1.240 -1.165 -1.165 -1.163 -1.317 -1.317 -1.318 
MK-9 -1.235 -1.233 -1.233 -1.161 -1.160 -1.161 -1.310 -1.305 -1.305 

 

 

Figure 5.9: The CVs of MK-4, MK-7, and MK-9 in MeCN, DMSO, and pyridine. Samples are 2 mM in 
0.1 M TBAP with 2 mM Fc except MK-9 which is 0.5 mM and 0.5 mM Fc. A scan rate of 100 mV/s was 
used at ambient room temperature.  
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Figure 5.10: PCA with all 11 analogs analyzed.  

 

Figure 5.11: Plot of averaged E1/2 of the first redox process all eleven analogs in each solvent, same 
as in Figure 5.5 but with MK-4, MK-7, and MK-9 added. 

 



128 

 

In this expanded PCA, the same trends discussed above are still observed, and the most variability 

comes from the type of saturation in the isoprene tail, Figure 5.10. For the new analogs added, the MK-4 

analog seems to follow the trends of the other unsaturated MK-2 and MK-3 analogs and clusters next to 

them, Figure 5.10. The MK-7 seems to follow the same trend; that the longer the chain length, the more 

negative the potential, in the more polar solvents, DMSO and MeCN, but in the non-polar solvent pyridine 

has a much more positive potential than MK-3 and MK-4, Figure 5.11. Similarly, MK-9 in MeCN has a more 

positive redox potential than MK-4 and MK-7, Figure 5.11. Most interestingly, however, MK-9 has the most 

positive potential of any analog in pyridine, Figure 5.11. The position of MK-9 in the PCA in Figure 5.10 

would suggest that it is different than the other analogs. The longer side chain MK-9 has redox potentials 

that are relatively more positive compared to the shorter side chain unsaturated MK-n analogs in the most 

non-polar solvent, pyridine. As pyridine was the most non-polar solvent studied and differences in the 

solvent have been shown to affect the isoprenyl side chain folding36, this could directly affect the reducibility 

of the quinone in a through space manner. One would expect that the long aliphatic chain of lipids in cell 

membranes would present a similar non-polar chemical environment and may favorably influence the 

folding of a similar non-polar isoprenyl side chain. I predict the beta-saturated MK-9(II-H2) will likely have a 

more positive redox potential than any of these analogs studied so far, especially in pyridine and other non-

polar solvents. I base this prediction on how the truncated MK-2(II-H2) and MK-3(II-H2) behaved as well as 

MK-9 in these solvents. This lessening burden on the energy required to reduce the quinone may be the 

reason why these beta-saturated analogs are so well conserved in pathogenic bacteria.  

The same statistical analyses were performed with these analogs. Table 5.16 shows that all of the 

solvent comparisons of the same MK-n were greater than 99% confidence for the Q/Q●- process and greater 

than 95% for the Q●-/Q2- process. The significances arise from the different dielectric constants between 

the solvents. Table 5.17 shows the comparisons of different analogs in the same solvent environment. As 

we previously found, those comparisons which have very similar chain length and similar saturation type 

were less confident than when there was a differing saturation type. Similarly, when MK-4 was compared 

to MK-1, MK-2, MK-3, MK-7, and MK-9, the only comparisons that were different at 90% or higher were 

MK-2 and MK-7 in DMSO and MK-9 in pyridine. As MK-4 was an analog with a chain length in the middle 

of the ones examined, this is interesting that the redox potentials were so similar to all the others. However, 
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when MK-4 is compared to those analogs with saturations in their isoprene tails, more statistically significant 

differences are observed. For example, MK-2(I,II-H4) is statistically different in all solvents at 99% or higher 

(except one is 95%) for MK-4, MK-7, and MK-9. Another observation is that very small chained analogs 

versus the long-chained analogs generally have significant differences, like MK-2 vs MK-9 in pyridine, or 

MK-1 vs MK-9 in both solvents. So even in this expanded PCA, the effect of chain length is likely in 

combination with saturations in the isoprene side chain, as concluded in the previous sections. The 

significant differences that arise in one solvent but not another may be due to solvent-dependent 

conformations as through-space interactions from the folding of the side chain over the naphthoquinone on 

the electrochemical band gap energies would be more likely than through-bond effects, especially in the 

longer-chained analogs.  

Table 5.16: Highest confidence from Student’s t tests of MK-4, MK-7, and MK-9 in different solvent 
environments.  

MK-n 
Solvent 

1 
Solvent 

2 

Highest % 
CL E1/2 
Q/Q●- vs 
Fc+/Fc 

p 
(2-tail) 

Highest % 
CL E1/2 Q●-

/Q2- vs 
Fc+/Fc 

p 
(2-tail) 

MK-4 MeCN DMSO 99 0.01 95 0.05  
DMSO Pyridine 99.9 0.001 98 0.02  
MeCN Pyridine 99.9 0.001 99.8 0.002 

MK-7 MeCN DMSO 99.8 0.002 95 0.05  
DMSO Pyridine 99.9 0.001 99.9 0.001  
MeCN Pyridine 99.8 0.002 99 0.01 

MK-9 MeCN Pyridine 99.9 0.001 99.9 0.001 
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Table 5.17: Highest confidence from Student’s t tests of all analogs compared to MK-4, MK-7, and 
MK-9 in the same solvent environment. Confidences under 90% are greyed out. 

  

MK-n (2) 
MeCN 

Highest 
CL % 

DMSO 
Highest 
CL % 

Pyridine 
Highest 
CL % 

 
MK-n (1) 

 
 

MK-1 MK-4 70 80 80 
 MK-7 95 98 80 
 MK-9 95 --- 98 

MK-1(H2) MK-4 80 99.9 95 
 MK-7 60 99.9 99.9 
 MK-9 90 --- 99.9 

MK-2 MK-4 60 98 60 
 MK-7 95 99.8 99 
 MK-9 80 --- 99.8 

MK-2(I,II-H4) MK-4 99 99.9 95 
 MK-7 99 99 99 
 MK-9 95 --- 99 

MK-2(II-H2) MK-4 80 98 95 
 MK-7 98 99.8 90 
 MK-9 99 --- 50 

MK-3 MK-4 60 60 0 
 MK-7 95 80 99 
 MK-9 70 --- 99 

MK-3(I,II,III-H6) MK-4 80 98 80 
 MK-7 50 99 98 
 MK-9 80 --- 99 

MK-3(II-H2) MK-4 90 95 90 
 MK-7 95 99 0 
 MK-9 99.9 --- 70 

MK-4 MK-7 70 98 80 
 MK-9 0 --- 90 

MK-7 MK-9 80 --- 99.8 
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CHAPTER 6: FUTURE PERSPECTIVES 
 
 
 
 First, I would like to bring attention to the importance of collaborative work, which is realized in this 

dissertation. The ability to work with others from both our own institutions, our own country, and from 

another country is required to tackle tough research questions and is important to the advancement of 

chemistry. In working together, we can figure out how to combat disease and create innovative technology. 

We have made great strides in the method development to measure and understand very specific disease 

mechanisms associated with AD and TB. The works performed in this dissertation are important steps to 

the overall goals we first set out to achieve in the characterization of disease mechanisms in AD and TB, 

but much more work needs to be done in each respective field. In the following paragraphs I have discussed 

the necessary experiments that I believe should be performed in the future to advance our knowledge of 

each field.   

While tryptophan fluorescence quenching has been used to determine Cu(II) binding sites in 

peptides for quite some time, using it to determine interpeptidic Cu(II) exchange was a new methodology 

we were able to provide. We were able to successfully quantify the rate constants in exchanges of small 

peptide complexes and motifs found in the blood. Then we were able to modify and extend that methodology 

to work with soluble amyloid complexes with the same small tryptophan peptides. For the interpeptidic 

Cu(II) exchange in amyloid peptides, extension into the full-length Aβ peptide is the next step. However, 

these peptides are much harder to work with, especially due to their hydrophobicity and propensity to 

aggregate. Special care must be employed to work with these peptides. For example, there are special 

treatments to remove pre-aggregates and following protocols for incubation to induce specific aggregation 

mechanisms to create oligomers, aggregates, or fibrils, all of which can have very different structures. 

Therefore, these experiments are inherently more difficult than the ones described in Chapter 3, where 

aggregation mechanisms were not observed. The addition of tryptophan or synthesized Cu(II)/Zn(II) 

sensitive fluorophores into the sequence will be expensive. Even the native Aβ peptide is thousands of 

dollars for milligram quantities. Therefore, I suggest these experiments with the caveat that it will likely 

require grant funding for this research to be performed.  
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Full-length Aβ peptide isoforms will need substitutions within the metal-binding domain that are 

sensitive to Cu(II) and Zn(II) to further study interpeptidic metal ion exchange in Aβ peptides. The Ala2 

residue would be a very reasonable location for this substitution. The most logical substitutions are Trp2 or 

another type of Cu(II) or Zn(II) sensitive fluorophore that is attached to an amino acid base. At the very 

least, a Trp2 replacement would be able to measure the interpeptidic exchange between native Cu(Aβ1-40) 

or Cu(Aβ1-42) complex. This Trp2 replacement should be easy to incorporate and wouldn’t be quite as 

expensive as using Cu(II) sensitive fluorophore. However, in order to measure Zn(II) interpeptidic 

exchange, these types of synthetic residues will have to be purchased since it cannot quench tryptophan 

fluorescence. With the full-length Aβ peptide, the effect of aggregation mechanisms and fibril formation on 

the interpeptidic Cu(II) exchange rate constants can be determined. This is probably the most important 

goal, as these aggregates and fibrils are where the Cu(II) and Zn(II) are localized and stored in senile 

plaques. There may be mechanisms that we do not know, that stabilize these metal ions when embedded 

within the plaques, despite the use of drugs like strong chelators or other peptides. Observing these 

interpeptidic exchanges within liposomes or reverse micelles could give insight into how a cellular scale 

can alter the kinetics. We know the synaptic cleft space is on the nanoscale. Therefore, the development 

of a method to measure kinetics in nanoscale models like reverse micelles is important. As we observed in 

Chapter 4, the effect of nanoconfinement and the partitioning of species into a membrane can affect 

observed metal ion coordination reactions. Therefore, these experiments should be performed once the 

interpeptidic Cu(II) exchange between two Aβ peptides is finally measured.  

The initial binding dynamics of Cu(II) and Zn(II) to the Aβ peptide should also be tested using fast 

time-scale spectroscopy with metal ion photocages able to release the metal ions in bursts with temporal 

control through irradiation. By creating isoforms that have had residues changed near key binding sites with 

specific sensitive fluorophores, which have different spectroscopic signatures, the initial binding can be 

determined. For example, if one fluorophore emits at 360 nm and is exchanged for the N-terminus residue 

while another emits at 450 nm and is exchanged for the Ala2 residue, then if the initial binding is at the N-

terminus, we would observe quenching only at 360 nm. Similarly, fluorophores that enhance signal upon 

binding could also be employed. Importantly, these fluorophores must be non-coordinating, so that the 

metal ion complexation is the same in the isoform used to study the initial binding dynamics. In any case, 



138 

 

as these metal ion coordination reactions are so fast, we only know the finalized coordination sphere, but 

not the initial dynamics. The experiments performed in Chapter 4 were the first steps to the realization of 

this type of research.  

In the menaquinone research, there is still a lot to be done. The research described in Chapter 5 

was the first discussion in the ample MK literature of how a regiospecific saturation of the isoprenyl side 

chain affected quinone its redox potentials. Most notably, partial saturation of the second (beta) isoprene 

unit generally leads to an easier to reduce quinone. Until now, there has been no mention of this in the 

literature. However, these beta-saturated MKs are highly conserved in many pathogenic bacteria. So why 

is that; why do these bacteria have enzymes whose sole purpose is to saturate the beta isoprene unit? We 

believe it is because it has a beneficial effect of requiring less energy to reduce the quinone, as our studies 

have indicated. Full saturation of the isoprenyl side chain of these MK analogs produced the most negative 

potentials in each aprotic solvent, which meant they were much harder to reduce than the other analogs. 

However, we still need to synthesize MK analogs with partial saturation at the first isoprene unit to confirm 

that it is not just an effect of the first isoprene saturation. Indeed, a lot of our observations in both the CV, 

statistical analysis and PCA, and spectroelectrochemistry would agree that saturation of the first isoprene 

unit does seem to influence the potentials the most and synthesis of analogs such as MK-2(I-H2) and MK-

3(I-H2) are already being initiated in our lab to confirm if that is the case.  

Isolation and purification of MK-9(II-H2) from non-pathogenic M. tuberculosis sources should be 

carried out in the future as this analog is the most biologically relevant. Similarly, synthesis of other MK-n 

analogs with longer chain lengths between n = 4 – 9 need to be analyzed with partial and full saturation 

and compared to their unsaturated counterparts. However, these syntheses are not trivial, it is extremely 

difficult to couple the longer isoprene tails to the naphthoquinone, and often have very low yields. Other 

analogs like MK-6(II-H2), MK-7(II-H2), and MK-8(II-H2) could be purified from many different bacterial 

sources, but that alone would be a large undertaking.  

A similar systematic principal component analysis should be performed on the beta-saturated, fully 

saturated, alpha-saturated, and unsaturated analogs of MK-n with n = 1 – 9. This would mean there would 

need to be a total of 36 analogs created, 11 of which I have already been analyzed by electrochemistry 
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methods and described in Chapter 5. As most of these analogs are not commercially available, this means 

we are just scratching the surface of this research, as many of them would need to be synthesized. A large 

systematic statistical analysis would give an overall view of what structural components affect the MK redox 

potentials and, ultimately, their reactivity the most. While our initial studies do indicate that partial beta-

saturated analogs are easier to reduce, we need more than just two analogs to confirm our hypothesis. It 

would be very interesting to see how the longer chained beta-saturated analogs compared to their shorter 

chained counterparts in terms of the ease of reducibility of the quinone. I believe that the MK-9(II-H2) analog 

will have one of the most positive potentials of all the analogs. Especially since its unsaturated analog, MK-

9 was so fascinatingly different than the other unsaturated analogs we were able to study, including MK-1, 

MK-2, MK-3, MK-4, and MK-7. This may have to do with the conformations these molecules are able to 

take in different environments, but more studies need to be performed to confirm the hypothesis that 

conformation affects redox potential. 

Lastly, Kaitlin Doucette in the Crans group has worked extensively with liposomes and MKs and 

has been able to successfully incorporate the n = 1 – 3 MK-n analogs in liposomes made with 

phosphatidylcholine. Under my guidance, I was able to teach her how to perform and analyze the 

electrochemistry on these liposomes. The extension of my electrochemical methodology is already being 

used in our lab on the instrumentation that I helped procure using the NSF grant funds for our MK project. 

This collaboration produced a novel way to study these electron transporters in more biological media, 

which will undoubtedly help the Crans group to understand and extend our initial findings in aprotic media 

to more biologically relevant systems. While this research is currently ongoing, I will be a co-author on this 

work. This project also has the potential to discover the differences in the conformation of the MK structure 

in a lipid bilayer and their possible effects on redox potential. This would have to be done through 2D NMR 

techniques such as NOESY (nuclear Overhauser effect spectroscopy), which can show proton correlations 

on the isoprene tail having with those on the naphthoquinone.  
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APPENDIX A: CONTRIBUTIONS TO THE CO-AUTHORED PAPER ENTITLED “INTERACTION OF A  
 

BIGUANIDE COMPOUND WITH MEMBRANE MODEL INTERFACE SYSTEMS: PROBING THE  
 

PROPERTIES OF ANTIMALARIAL AND ANTIDIABETIC COMPOUNDS”11 
 
 
 

A.1 Statement of contributions 

The contributions I made to this paper were concerned with the preparation and interpretation of 

the  2D 1H1H NOESY NMR spectroscopy of the 1-phenylbiguanide (PBG) within reverse micelles (RMs). 

The following areas are only where I scientifically contributed to the paper. Figure numbers have been 

changed for clarity. There is a section of unpublished work associated with this content.  

A.2 Experimental method contributions  

A.2.1 Preparation of Aqueous Stock Solutions of 1-Phenylbiguanide (PBG)  

The 100 mM PBG (0.886 g, 5.00 mmol) stock solution was prepared in deuterium oxide, D2O (10 

mL), in a volumetric flask. The solution was stirred until it was clear, and the pH of the suspension was 

adjusted using DCl and NaOD when needed. The pH of the solutions was measured at 25 °C on an Orion 

720A+ pH meter, and these readings were converted to pD by the formula pD = pH + 0.42, and adjusted 

values are reported in this article.  

A.2.2 Preparation of the 2D 1H1H NMR NOESY Sample in an AOT Reverse Micelle Solution with PBG  

A w0 = 10 sample of PBG in AOT/2,2,4- trimethylpentane was prepared with 100 mM PBG in D2O 

solution with pD = 7.07 using NaOD and DCl to adjust the pH, where pD = pH + 0.4. The samples were 

slightly heated in a water bath up to 60 °C in order to dissolve precipitated PBG during the titration at this 

neutral pH. Purified AOT was used to make a 750 mM AOT solution in 2,2,4-trimethylpentane. Once the 

aqueous PBG and AOT in 2,2,4- trimethylpentane were mixed, the suspension was vortex mixed until the 

solution became transparent. 

                                                                 
1 Samart, N.; Beuning, C. N.; Haller, K. J.; Rithner, C. D.; Crans, D. C., Interaction of a Biguanide Compound with 

Membrane Model Interface Systems: Probing the Properties of Antimalaria and Antidiabetic Compounds. 

Langmuir 2014, 30 (29), 8697-8706 
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A.2.3 2D NOESY NMR Spectroscopy 

1H1H NOESY NMR experiments were performed on a 400 MHz Agilent Inova NMR spectrometer. 

The NOESY data were acquired with a 4500 Hz window for protons in t2 and t1. The NOESY mixing time 

was 200 ms, and 32 transients were acquired per increment. The total recycle time between transients was 

1.85 s. The data set consisted of 1332 complex points in t2 by 200 complex points in t1 using States-TPPI. 

Cosine-squared weighting functions were matched to the time domain in both t1 and t2, and the time 

domains were zero-filled prior to the Fourier transform. The final resolution was 2.2 Hz/pt in F2 and 8.8 

Hz/pt in F1. Data processing was done using the Agilent VNMRJ-3.2D software. 

A.3 Results and discussion contributions: 1-Phenylbiguanide (PBG) in an AOT RM 2D NOESY Study 

To further characterize the interactions of PBG with AOT/2,2,4-trimethylpentane in this model 

membrane system, we employed 2D NMR NOESY to investigate the location of the drug in the RM 

system.3-5 The structures of PBG and AOT are given in Figure A.1. Specifically, we characterized the 

interaction of the solution of 100 mM PBG at neutral pH (pD = 7.07) in 750 mM AOT using 2D  1H NOESY. 

Since the NOESY spectra shown in Figure A.2 are for studies carried out on samples prepared from a 

solution of PBG at neutral pH, the Ha signal was found to be different from those shown at w0 = 10 at basic 

or acidic pH. This effect will be investigated at a later time but suffice it to say that for the series at basic 

pH, corresponding line broadening was observed at the lower w0 values.  

 

Figure A.1: Structure of 1-phenylbiguanide (left) and AOT (right) and their aromatic proton assignments for 
NMR analysis. 

As shown in Figure A.2, the partial 2D spectrum in the F2 frame is a close-up of phenyl protons 

Ha (2H, 7.57 ppm), Hb (2H, 7.32 ppm), and Hc (1H, 7.06 ppm) along with a broad H peak, which is the 

N−H signal (6.82 ppm) in PBG. The F1 frame is the full spectrum including a HOD peak (1H, 4.60 ppm), a 
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broad and large peak of 2,2,4-trimethylpentane at 1.01 ppm, and especially the side-arm-chain methylene 

protons of AOT, which show an overlapping signal in AOT (4H, 1.41 ppm, 9,9′ as labeled in Figure A.1). 

The diagonal (solid line) is present to emphasize the two different scales of the sides on the 2D spectrum. 

As expected, there are intense cross-peaks between Ha and Hb as well as between Hb and Hc from PBG, 

and these signals demonstrate that the protons are near each other. A weaker cross-peak between Ha and 

Hc was also observed. The cross-peak between Ha and Hc is weak in comparison to the cross-peak for 

Ha and Hb, indicating that these protons are not as close. 

 

Figure A.2: Partial 1H NMR NOESY spectrum of 100 mM PBG at pD (= pH + 0.4) 7.07 in 750 mM AOT. 
The spectrum was recorded at 400 MHz using the parameters detailed in the Experimental Section. The 
F2 or y-axis is enlarged for the phenyl and nitrogen protons in PBG, and the F1 or x-axis is the full spectrum. 
The diagonal is the solid line, and prominent cross-peaks are shown as dotted lines along with their 
respective hydrogen interactions. 
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The intense cross-peaks of Ha and Hb, as well as those of Hb and Hc, show that these protons are 

close together, which is expected. Phenyl protons Ha, Hb, and Hc all have weak cross-peaks with the 9,9′-

methylene protons of AOT. Prominent cross-peaks between the PBG and signals in AOT are indicated by 

dashed lines. The Hb and Ha protons can interact with the 9,9′-methylene protons in the backbone of the 

AOT tails; this peak is at approximately 1.41 ppm on AOT. As shown in Figure A.2, the weak cross-peak 

with the 9,9′-methylene AOT protons with Ha and Hb indicates the positioning of the molecule in the 

interface; Hc will interact less with these methylene protons. The lack of a cross-peak of Ha, Hb, and Hc 

with the HOD signal at approximately 4.60 ppm shows that the phenyl group is less likely to interact with 

the water pool. Presumably, the phenyl group protons are mainly interacting with the AOT methylene 

protons since there is a defined cross-peak with AOT. Thus, this portion of the PBG is nestled high in the 

interface of the RMs.  

Finally, an intense cross-peak to the NH signal was observed and traced to HOD. As seen in Figure 

A.1, PBG has multiple NH groups, and their signal is very broad, which is an indication that the relaxation 

times (t1 and t2) are very short and different from those of the phenyl protons. However, in the 2D spectrum, 

we see a very intense NH signal along the diagonal and an intense cross-peak with HOD, indicating a close 

association between the NH protons and the HOD protons in the water pool. Although it is possible that 

some water molecules could penetrate the interface, the interaction observed between the NH and HOD 

protons is very strong, suggesting that this interaction of HOD and NH protons is only expected if these 

groups are in or very near the water pool. The lack of an NH cross-peak with any AOT protons also 

suggested that this part of the PBG is nestled inside the water pool.  

Since the 2D NOESY studies suggested that part of the PBG molecule resides in the water pool, 

we carried out preliminary differential FTIR studies confirming that PBG affects the H bonding in the water 

pool of the RMs.6 These studies characterized AOT/2,2,4-trimethylpentane RMs by comparing spectra in 

the absence and presence of 5% HOD. Differential FTIR spectra were recorded for RM samples with 100% 

H2O and RMs containing 5% HOD at pH ∼7.0 and 10 and 100 mM PBG in AOT RMs with w0 = 10. These 

spectra were then subtracted to produce the resulting spectrum of OD stretching. Preliminary differential 

FTIR spectra confirmed the conclusion obtained by NMR spectroscopy studies that part of the PBG resides 

in the AOT RM water pool, as expected for an amphiphilic molecule.  
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In conclusion, PBG interacts both with the hydrophobic and hydrophilic parts of the interface as 

well as HOD in the water pool. This study shows an example of a probe that extends into both the interface 

and the water pool. NMR spectroscopy results show that the chemical shift for the phenyl protons in PBG 

changes, which is consistent with penetration into the interface.  

The NOESY experiments furthermore show that the NH groups on the biguanide interact, 

consistent with the PBG molecule residing at the interface and extending deep into the hydrophobic part as 

well as in the water pool at the same time. The preliminary IR spectroscopy results show that the biguanide 

group in PBG significantly affects the hydrogen bonding present among the water molecules in the water 

pool. These results are consistent with the model illustrated in Figure A.3. 

 

Figure A.3: Cartoon illustrating the suggested location of 1-phenylbiguanide in the AOT reverse micelle. 

H2O is actually D2O within the reverse micelle water pool. 

A.4 Unpublished work using a small volume percent of deuterated cyclohexane within 2,2,4-

trimethylpentane as the NMR deuterium lock instead of D2O to enable the use of H2O in the reverse 

micelle water pool.  

We were interested in using water and not heavy water within the reverse micelles to study peptide 

kinetics and mechanisms associated with the Aβ peptide. This is because D2O has been found to stabilize 

proteins and can affect folding, commonly referred to as the deuterium isotope effect.7 Since deuterium can 

exchange with hydrogen easily, the R-D bond is much stronger than an R-H bond. Proteins that are 

susceptible to misfolding and metal chelation may not act chemically similar in a deuterium rich environment 
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as compared to an aqueous one.7 Specifically, deprotonation mechanisms that are important for Cu(II) or 

Zn(II) coordination to peptides may be significantly harder if deuterium is bound instead of hydrogen. Some 

of the amino acid side chains and the amide backbone protons can exchange with deuterium and then 

would not be able to deprotonate to allow for metal binding. Thus, using D2O in the water pool would not 

be suitable for 2D NOESY NMR studies of protein mechanisms like those described.  

One way to avoid isotope exchange would be to use H2O in the water pool and not D2O, but this 

requires an alternate deuterium lock for the NMR magnet. The use of d12cyclohexane as the organic solvent 

would be a good alternative. However, cyclohexane RMs tend to be smaller in size than those in 2,2,4-

trimethylpentane (isooctane).8 Unfortunately, larger RM sizes do not form in cyclohexane, and in order for 

Aβ peptides to fit, a larger RM size is needed. Some simulation studies done in RMs of Aβ16-22 used wo = 6 

for a 7 residue peptide.9 Therefore, a w0 = 20 – 30 RM size would be needed for Aβ1-16, for example. A 

small volume percent of d12cyclohexane in isooctane solvent should not alter the AOT RM self-assembly 

as it should stay in the organic phase and is a suitable deuterium source to lock the NMR. By only using 

between 1- 5 % of d12cyclohexane to the AOT/isooctane solution, we can lock the NMR and not affect the 

overall self-assembly of the AOT molecules with the isooctane solvent. The number of AOT molecules that 

aggregate is known for each w0 size; therefore, it also determines its radius. The HOD or H2O chemical 

shift peak is very sensitive to its environment, especially at small w0 size, where the water pool is less bulk 

like.10-11 Previous studies showed that the HOD peak shifts upfield from the bulk aqueous solution chemical 

shift since the environment of the water is changing drastically.11 If these chemical shifts are the same in 

RMs prepared in both ways, then the self-assembly of these RMs is likely not affected.  

 First, 1H NMR studies of small RM sizes, wo = 0, 1, 3, and 5 with 1%, 2.5%, and 5% (v/v) 

d12cyclohexane were performed to consider if the presence of d12cyclohexane significantly altered the H2O 

peak chemical shift (HOD in D2O pools), Figure A.4. Previous studies done with AOT showed that the HOD 

peak of D2O water pools had a chemical shift of 3.63, 3.88, and 4.23 ppm for wo of 0, 1, and 5, respectively, 

Table A.1.10  For d12cyclohexane in 1%, 2.5% and 5% (v/v) systems of AOT/isooctane/H2O the chemical 

shift of H2O for wo of 0, 1, and 5 were all approximately 3.63, 3.77, and 4.19 ppm, respectively, Table A.1. 

Slight variations in the chemical shift were observed. The most changed shift was wo = 1 with a 0.11 ppm 

difference. The other wo sizes were consistent with the literature values.8 The water peak shift is most 
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affected in small RM sizes, and as the RM grows in size, the water pool becomes more bulk-like.11 Thus, if 

there were any errors in the addition of this small amount of water (wo = 1) into the RM sample preparation, 

for instance, from a poorly calibrated pipette, it would have large effects on the chemical shift. Since these 

values are consistently about 0.11 ppm difference across the three different wo sizes, it is likely that there 

is a difference in the addition of water compared to previous studies. Since RM size is based on the number 

of water molecules added to the sample, and there is no variability in the change in chemical shift, I believe 

this is a pipette measurement error, resulting in a slightly different sized RM. Since all shifts are relatively 

close to the literature values, this would indicate that the water chemical environment is very nearly the 

same with or without the added d12cyclohexane and thus the RMs are being formed.  

Table A.1: 1HNMR studies of H2O chemical shift (ppm) change due to environmental changes from NaAOT 
RM size and d12cyclohexane volume as compared to known literature values of HOD.  

wo 

Known HOD 

ppm, NaAOT 

RMs 

1% (v/v) 

d12cyclohexane, 

H2O ppm 

2.5% (v/v) 

d12cyclohexane, 

H2O ppm 

5.0% (v/v) 

d12cyclohexane, 

H2O ppm 

0 3.63 3.63 3.63 3.63 

1 3.88 3.75 3.77 3.77 

3 --- 4.02 4.02 4.02 

5 4.23 4.19 4.19 4.20 

 

 

Figure A.4: The 1HNMR spectra of AOT/isooctane/H2O with a) 1 % (v/v) and b) 5 % (v/v) d12cyclohexane. 
Performed on a 400 MHz Aligent Inova NMR, 256 scans, at 25°C.  
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The next question to answer would be how much d12cyclohexane is needed to lock the NMR. As 

seen in Figure A.4 and listed in Table A.1, the 1%, 2.5%, and 5% (v/v) d12cyclohexane resulted in almost 

identical H2O chemical shifts for the respective wo sizes. This would indicate that a 1% (v/v) volume can 

lock the NMR and not interfere with the self-assembly of the RMs.  

Figure A.2 shows the previous 1H NOESY NMR spectrum of PBG in a w0 = 10 RM but in D2O at a 

pD of 7.07. The N-H peak was not observed in this spectrum due to isotope exchange but had an intense 

cross-peak of N-H with HOD was observed. Using this method with H2O in the water pool, isotope exchange 

with deuterium is not observed, and a broad N-H peak is seen in the 1D 1HNMR, Figure A.5. This 

broadness is expected as the relaxation time of N-H protons is much longer than C-H protons and thus 

does not have time to relax back down before being excited again.  

As previously interpreted from Figure A.2, the internal references of the Ha, Hb, and Hc protons 

are also observed in the spectra shown in Figure A.5. These protons are near in space for NOE transfer 

and thus will show cross-peaks with one another. They have distinct similarities in intensity, as previously 

stated. Where the closest protons Ha-Hb and Hb-Hc have very intense cross-peaks, while the Ha-Hc cross-

peak intensity is weaker. Also, as previously observed, they have distinct similarities in intensity with their 

AOT 9, 9’ cross-peaks. The intense NH-H2O is also familiar and expected, as the majority of the biguanide 

moiety should sit within the water pool. The intensity of the H2O peak is expected and can be dampened 

using the NMR software. But this was not necessary for the proof-of-concept studies performed here.  

This leaves the two new cross-peaks not observed previously. The NH-AOT and the Ha-H2O cross-

peaks are new observations in the cyclohexane addition. It is likely that the PBG can move within the 

interface, meaning that it is not statically anchored, and some RMs may have PBG molecules that have 

deeper interfacial or water pool penetration than others. This means that N-H protons closest to the phenyl 

ring can come into range of the AOT protons. Similarly, since Ha is close to the biguanide moiety, it can 

come into the range of some of the water protons. Why, then, are these interactions not observed with the 

D2O pool? One reason could be that the small amount of HOD found when pure D2O is used as the polar 

phase does not penetrate the interface like normal water can or is not in a large enough concentration to 

produce an NOE transfer. 
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Figure A.5: The 2D 1H NOESY plot of 0.08 M PBG, pH = 7.03, w0 = 10 in 0.75 M AOT in isooctane, and 5 
% (v/v) d12cyclohexane. The diagonal and cross-peaks are identified. Note the solvent is isooctane. No Hc-
H2O peak exists as no overlap of signals can be distinguished, and no underlying signal is seen under the 
water cross-peak. The experiment was performed with the same parameters as in Figure A.2.   

 

 In summary, this method verified that PBG resides embedded into the interface of the RM just as 

our published work described, as envisioned in Figure A.3. The phenyl ring embeds into the AOT part of 

the interface, and the protonated biguanide moiety penetrates the water pool. Thes studies show the 

addition of d12cyclohexane does not alter the expected spectra of this known system or the self-assembly 

of the RMs. In fact, using the deuterated cyclohexane gives a better descriptive picture of this dynamic 

system because the use of deuterium oxide is not needed. The effects of isotope exchange are not 

observed, and discrete observations such as the two NOE transfer that were not previously observed were 

clear in the RMs with H2O water pools.  
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APPENDIX B: CONTRIBUTIONS TO THE CO-AUTHORED PAPER ENTITLED “A SYNTHETIC  
 

ISOPRENOID LIPOQUINONE, MENAQUINONE-2, ADOPTS A FOLDED CONFORMATION IN  
 

SOLUTION AND AT A MODEL MEMBRANE INTERFACE”11 
 
 
 
B.1 Statement of contributions 

 My contributions to this manuscript included the electrochemical analysis of the MK-2 in the aprotic 

solvents. The MK-2 redox potentials were also included in the Chapter 5 analysis. Figure numbers have 

been changed for clarity. Figure B.1 and Table B.1 were originally in the supporting information. 

B.2 Experimental contributions 

 All electrochemistry was performed on a CHI 750D potentiostat. For the cyclic voltammetry (CV), 

a classical three-electrode system was used with a scan rate of 100 mV/s at 22 °C. The working electrode 

was a glassy carbon electrode (BASi MF2012, 3 mm), and the counter electrode was a platinum wire 

electrode (BASi MW1032). The Ag+/Ag reference electrode (BASi MW1085) was constructed by inserting 

a Ag wire into a freshly prepared solution of organic solvent (CH3CN, DMSO, or pyridine) with 0.1 M TBAP 

and 0.01 M AgNO3.  

B.3 Results and discussion contributions: Electrochemistry of MK-2 in Different Solvents 

Our interest in these systems relates to the fact that the redox potential of MK is important in 

shuttling electrons between protein complexes. Although the focus of this manuscript has been on the 

conformations of these compounds, we are particularly interested in redox properties because we are 

aiming to investigate the function of these systems as well. For MKs to carry out this process, MKs must 

associate with the transmembrane proteins involved in the electron-transfer processes.2 The electron-

transfer processes all take place within or near the membrane interface with two one-electron reduction 

processes sequentially forming the radical anion (semiquinone) and then the dianion.3-5 Even though there 

have been many reports in the literature on the redox potentials of MK derivatives, the origin of these 

changes is not well understood.3-5 These processes are particularly poorly understood when the quinones 

                                                                 
1 Koehn, J. T.; Magallanes, E. S.; Peters, B. J.; Beuning, C. N.; Haase, A. A.; Zhu, M. J.; Rithner, C. D.; Crick, D. C.; 

Crans, D. C., A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and 

at a Model Membrane Interface. J. Org. Chem. 2018, 83 (1), 275-288. 



151 

 

are present in a hydrophobic molecule that is entirely or partly located in the membrane of a biological 

system. Although it is premature to correlate conformation with redox potential, we are seeking systematic 

information where redox potentials and conformations are known (i.e., within different organic solvents) and 

the electrochemical data on this system becomes an important frame of reference because the 

conformational analysis has been carried out. We hypothesized that the redox potential of MK-2 will vary 

based on the organic solvent environment. 

Although this hypothesis would be anticipated to be confirmed, it is important to measure how and 

if the magnitude of the redox potential changes as the solvent environment changes because the function 

of MK-2 is tied to the redox potentials. Initially, redox studies were planned to be carried out in DMSO, 

acetonitrile, and benzene; however, because of the low solubility of all of the electrolytes examined in 

benzene, benzene was replaced with pyridine as a representative aromatic solvent.6 The electrolyte 

tetrabutylammonium perchlorate (TBAP) was chosen because 1D 1H NMR studies showed that the addition 

of TBAP to MK-2 solutions (solvents: d6-DMSO, d5-pyridine, d3-acetonitrile) did not affect the observed 

chemical shifts of the MK-2 protons, and thus no evidence for artifacts due to ion-pairing would be observed 

(see Supporting Information – section B.4 for further description of the electrochemical analysis, and see 

Figure B.4 for MK-2/TBAP NMR studies). 

MK-2’s first electrochemical potential is the one-electron reduction of the quinone to semiquinone 

(Q/Q⚫–), and the second is the one-electron reduction of the semiquinone to the dianion (Q⚫–/Q2–), Figure 

B.1.3-5 The cyclic voltammogram’s (CVs) of MK-2 and an internal standard of ferrocene (Fc+/Fc) in three 

organic solvents are shown in Figure B.2. The Q/Q⚫–E1/2 vs Fc+/Fc for MK-2 in DMSO, CH3CN, and pyridine 

were measured to be −1.155 (±0.001) V, −1.230 (±0.003) V, and −1.331 (±0.001) V, respectively, Table 

B.1. As shown in Figure B.2, we included the Fc+/Fc reference in the data presented. These results are 

 

Figure B.1: Illustration of the one electron reduction of the quinone (Q) to the semiquinone radical anion 
(Q⚫-) and the second one electron reduction to the dianion (Q2-). The R is n = 2 isoprene units.  
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consistent with Q/Q⚫–E1/2 vs Fc+/Fc values given for 1,4-naphthoquinone.3, 7 The values determined 

experimentally for Q⚫–/Q2–E1/2 vs Fc+/Fc for MK-2 in DMSO, CH3CN, and pyridine were measured to be 

−1.863 (±0.008) V, −1.902 (±0.012) V, and −2.075 (±0.003) V, respectively (Table B.1). In Figure B.3, the 

half-wave potentials are plotted, showing the trend that both redox processes are more readily reduced in 

DMSO than CH3CN or pyridine similar to the trend observed in literature for 1,4-naphthoquinone potentials.7  

 

Figure B.2: Three representative CVs of 2 mM MK-2 in CH3CN, DMSO, and pyridine. The potentials are 
referenced to the Fc+/Fc couple (2 mM) determined in each solvent. From left to right, redox processes are 
Q⚫–/Q2–, Q/Q⚫–, and Fc+/Fc. Each sample has 0.1 M TBAP and was degassed with argon gas for 10 min at 
ambient room temperature before spectra were recorded. Current sweeps are in the anodic direction from 
−2 V to 1 V and back to −2 V. A 100 mV scan rate was used. 

Table B.1: Averaged half-wave potentials of MK-2 in organic solvents. The E1/2 potential measurements 
were done in triplicate. A Student’s t test analysis determined that the E1/2 of Q/Q⚫- and Q⚫-/Q2- are 
statistically different in each solvent. All comparisons were at p<0.0001 except the Q⚫-/Q2- CH3CN vs 
DMSO which was, p<0.01. 
 
 

Solvent Q/Q⚫- E1/2 V vs Fc+/Fc Q⚫-/Q2- E1/2 V vs Fc+/Fc 

CH3CN -1.230 ± 0.003 -1.902 ± 0.012 

DMSO -1.155 ± 0.001 -1.863 ± 0.008 

Pyridine -1.331 ± 0.001 -2.075 ± 0.003 
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Figure B.3. Measured E1/2 (vs Fc+/Fc in V) of MK-2 Q/Q⚫– and Q⚫–/Q2– redox processes vs solvent. Added 
lines show the distinction between each solvent for each redox process. Each solvent was run in triplicate 
with error bars shown. Student’s t test indicated the half wave potentials of each redox process are 
significantly different in each solvent (p < 0.01 for Q⚫–/Q2– CH3CN-DMSO and p < 0.0001 for all other 
comparisons).  

In summary, during the first electrochemical process producing the semiquinone, MK-2 has the 

most positive potential in DMSO and the most negative potential in pyridine, showing MK-2 is slightly more 

reducible in DMSO than pyridine or CH3CN. The observation of different redox potentials between organic 

solvents supports the second hypothesis that the redox potential of MK-2 is influenced by the specific 

organic solvent, where a contributing factor to the observed changes is due to the differences between the 

dielectric constant of each solvent. The different organic solvents influence the observed redox potential of 

MK-2, and from the 2D NMR studies on the conformation of MK-2, slight differences in conformation were 

observed, which may suggest that a combination of solvent effect and conformational differences of MK-2 

may affect the redox potential. 

B.4 Supporting information contributions 

B.4.1 Electrochemistry experimental methods 

Instrumentation and electrode preparations. All electrochemistry was performed on a CHI 750D 

potentiostat. For the cyclic voltammetry (CV), a classical three-electrode system was used with a scan rate 

of 100 mV/s at 22 °C in an air-conditioned. The glassy carbon working electrode (BASi MF2012, 3 mm) 

was lightly polished between runs with alumina powder then rinsed with water and ethanol. The platinum 
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wire counter electrode (BASi MW1032) was gently polished between runs with 600 grit sandpaper. The 

Ag+/Ag reference electrode (BASi MW1085) was constructed by using the Ag wire gently polished with 600 

grit sandpaper inserted into a freshly prepared solution of organic solvent (CH3CN, DMSO, or pyridine) with 

0.1 M tetrabutylammonium perchlorate (TBAP) and 0.01 M AgNO3 as has been reported for other studies 

with quinones.8  

Experimental procedures. Electrochemistry measurements were carried out in organic solvents 

(dried over molecular sieves) and are often done using a reference redox system to standardize the 

measurements.9-10 Ferrocene (Fc) oxidation potential varies little between solvents and is used as a 

standard. To document this process, we show the redox wave for the Fc+/Fc couple in our CV. Before the 

CV spectra were recorded, the reference electrode equilibrated in the 2 mM MK-2 with 2 mM Fc in the 

same organic solvent for 10 minutes with bubbling argon gas to degas any O2. All half-wave potentials 

recorded were referenced to the Fc+/Fc couple in the respective solvent, this was achieved by subtracting 

the Fc+/Fc couple from calculated half wave potentials. After drying the solvent of water, the Fc+/Fc couple 

against the Ag+/Ag couple in CH3CN, DMSO and pyridine was measured in quadruplicate and the Fc+/Fc 

half-wave potential versus Ag+/Ag couple in CH3CN was 0.080 ± 0.006 V in DMSO 0.171 ± 0.002 V and in 

pyridine 0.563 ± 0.003 V. We determined that the presence of Fc did not alter any redox potentials of MK-

2 by running CVs in the presence and absence of Fc. Current sweeps begin in the anodic direction and run 

from -2V to a minimum of 1V and back to -2V even though the sweeps shown in Figure 5 are only shown 

to about 0.5V. 

Analysis. The half wave potentials were calculated using Eq. 1.12, where Epc and Epa are the 

cathodic and anodic peak potentials, respectively. The ipc and ipa were measured manually with a ruler on 

the CVs in cm to determine reversibility as all ratios approached unity, see Table B.2. The number of 

electrons in each process was determined using Eqs. 1.16 and 1.17, where ΔEp is the difference between 

cathodic and anodic peak potentials and where x is the adjustment factor for the Ohmic drop that can be 

seen in low conductivity solvents and was determined by setting the internal standard ferrocene number of 

electrons as n=1 as the ΔEp in non-aqueous solvents can differ from 0.059 V for one electron. The two-

tailed p-values of the E1/2 comparisons in each solvent for each redox process were determined using the 

mean, standard deviations, and triplicate measurements with the software program GraphPad. 
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B.4.2 1D 1H NMR spectra of MK-2 with the electrolyte TBAP  

1H NMR spectra of MK-2 with and without electrolyte (TBAP) were recorded to investigate if the 

electrolyte was associating with the MK-2 derivative and impact the electrochemical potential. TBAP was 

chosen because the addition of TBAP to MK-2 solutions in each solvent did not affect the observed chemical 

shifts of the MK-2 protons, and thus no evidence for ion-pairing was found (see Figure B.4). Samples 

prepared with and without TBAP (0.1 M) in either d6-DMSO, d3-acetonitrile, or d5-pyridine with ~15 mg of 

MK-2. This was done to determine if the presence of 0.1 M TBAP affected the observed chemical shifts of 

protons in MK-2. 

 

Figure B.4:  1D 1H NMR (400 MHz) spectra of MK-2 with and without TBAP (0.1 M) at room temperature 
in d6-DMSO, d5-pyridine, d3-acetonitrile. The spectra were referenced by internal TMS at 0.00 ppm. 

Table B.2. Peak current ratios ipc/ipa and number of electrons (n) of MK-2 Q/Q⚫- and Q⚫-/Q2- redox 
processes.  

Process Solvent ipc/ipa n 

Q/ Q⚫- ACN 0.9 1 

  DMSO 1 1 

  Pyridine 0.9 1 

Q⚫-/Q2- ACN 0.9 1 

  DMSO 0.8 1 

  Pyridine 0.9 1 
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B.4.3 Electrochemical results, interpretation, and discussion  

The electrochemistry of MK-2 in three different organic solvents (DMSO, CH3CN, and pyridine) was 

examined to determine if the organic solvent environment affected the redox potential of MK-2. Experiments 

to measure the reduction reaction of MK-2 in benzene were unsuccessful due to the electrolyte’s low 

solubility in benzene and, therefore, low conductivity in this benzene.11 Pyridine was chosen as a suitable 

replacement for benzene because it is aromatic and has similar properties. 1D 1H NMR studies of MK-2 

were carried out in solvents with and without the electrolyte present, to define the best conditions to carry 

out the redox chemistry. The electrolyte tetrabutylammonium perchlorate (TBAP) was chosen because the 

addition of TBAP to MK-2 solutions in each solvent did not affect the observed chemical shifts of the MK-2 

protons and thus no evidence for ion-pairing was found (see above and Figure B.4).  

MK-2’s first electrochemical potential is the one-electron reduction of the quinone to semiquinone 

(Q/Q⚫-) and the second is the one-electron reduction of the semiquinone to the dianion (Q⚫-/Q2-), Figure 

B.1.3-5 The cyclic voltammogram’s (CV’s) of MK-2 in each solvent are shown in Figure B.2. The Fc+/Fc 

couple E1/2 is set to zero as all potentials were referenced to the internal standard. The Q/Q⚫- peak current 

is larger than that of the Q⚫-/Q2-, which has been attributed to the repulsion of the semiquinone from the 

diffusion layer of the working electrode.12 The lower concentration of semiquinone at the electrode surface 

results in lower current produced, as shown by the Nernstian equation.  

There can be various problems associated with the electrochemical measurements of quinones in 

organic solvents that can influence the half-wave potential observed. The major issues that are negligible 

for the system we used include: inter- and intra-molecular hydrogen bonding from solvent or hydroxyl 

groups on the quinone, ion-pair formation from Lewis acid cations of the electrolyte or from pyridinium ions, 

the working electrode adhesion of hydroquinone (QH), and from interactions of MK-2 with the internal 

standard.3-5, 7, 12-17 The water or acidic proton content greatly impacts the electrochemical potential of the 

semiquinone Q⚫-/Q2- process, while the quinone Q/Q⚫- process is unaffected.3-5, 12, 16 As the solvent’s water 

or acidic proton concentration increases, the concentration of hydroquinone increases. This shifts the 

observed semiquinone half-wave potential to more positive potentials until only one two-electron wave is 

observed.4-5, 12, 16 Therefore, the greater standard deviations in the Q⚫-/Q2- half-wave potentials are 



157 

 

consistent with the inherent water in the solvent even after distillation and drying over activated molecular 

sieves.  

The values determined for MK-2 in each solvent agree with the literature values of substituted 1,4-

naphthoquinones. The literature values for the 1,4-naphthoquinone in DMSO, CH3CN, and pyridine are 

Q/Q⚫- E1/2 vs Fc+/Fc of -1.06V, -1.08V, and -1.19 V, respectively.7 The addition of a methyl substituent lowers 

the Q/Q⚫- E1/2 by ~70 mV while the addition of an isoprenyl unit lowers it by an additional 50-60 mV.7 In 

Figure B.3, the half-wave potentials are plotted showing the trend that the Q/Q⚫- reduction is easier in 

DMSO than CH3CN or pyridine. This trend is also observed in the 1,4-naphthoquinone potentials for the 

Q/Q⚫- process in the three solvents.7 In summary, a clear solvent effect (contributing factor is the change in 

the solvent’s dielectric constant) on redox potential is demonstrated with MK-2. 
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APPENDIX C: CONTRIBUTIONS TO THE CO-AUTHORED PAPER ENTITLED “INVESTIGATING  
 

SUBSTRATE ANALOGUES FOR MYCOBACTERIAL MENJ: TRUNCATED AND PARTIALLY  
 

SATURATED MENAQUINONES” 11 
 
 
 
C.1 Statement of contribution 

 I performed the electrochemical measurements, analysis, and interpretation in this 

manuscript. Figure and table numbers have been changed for clarity. Please see Chapter 5 and section 

B.2 for electrochemical methods as they are the same.  

C.2 Results and discussion contributions: Reactivity of MK-1 and MK-1(H2) in Different Organic 

Solvents: Electrochemistry.  

To determine the effect of saturation of the MK isoprenyl side chain on the quinone redox potential, 

we used cyclic voltammetry to measure the redox potentials of MK-1 and MK-1(H2). Both MK-1 and MK-

1(H2) have two reversible single electron redox processes, the first is the quinone to semiquinone (Q/Q•-) 

and the second is the semiquinone to the dianion (Q•-/Q2-) (Figure 5.1). The half-wave potentials for each 

redox process Q/Q•- and Q•-/Q2- in each solvent for MK-1 and MK-1(H2) are listed in Table 5.5, and cyclic 

voltammograms (CVs) are shown in Figure C.1 (also in Chapter 5, but this figure was in the published 

manuscript). The electrolyte, tetrabutylammonium perchlorate (TBAP), was chosen because of the 

excellent solubility in all organic solvents. Furthermore, the addition of TBAP to MK-1 solutions in each 

solvent did not affect the observed chemical shifts of the MK-1 hydrogens, and thus no evidence for ion-

pairing or association was found (see Figure C.2). The water content of the solvents can affect the 

semiquinone Q•-/Q2- process as acidic hydrogens influence hydroquinone production, which results in 

potentials that approach the quinone Q/Q•- half-wave potentials and therefore, we only compared the first 

redox process, Q/Q•- in our analyses.2-3 Thus, it was important that we carried out our electrochemical 

                                                                 
1 Koehn, J. T.; Beuning, C. N.; Peters, B. J.; Dellinger, S. K.; Van Cleave, C.; Crick, D. C.; Crans, D. C., Investigating 

Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. Biochemistry 

2019, 58 (12), 1596 - 1615. 
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experiments in anhydrous aprotic organic solvents as this issue is then avoided, and organic solvents more 

closely resemble the native MK environment within a cellular membrane compared to aqueous solutions.  

 

Figure C.1: Six cyclic voltammogram’s (CVs) of 2 mM MK-1 and MK-1(H2) in ACN, DMSO, and pyridine. 
The potentials are referenced to the Fc+/Fc couple internal standard (2 mM) determined in each solvent. 
From left to right, redox processes are Q•-/Q2-, Q/Q•-, and Fc+/Fc. Each sample has 0.1 M TBAP and 
was degassed with argon gas for 10 min at ambient temperature before spectra were recorded. Current 
sweeps are in the anodic direction from -2V to 1V and back to -2V vs Ag/AgCl. A 100 mV/s scan rate 
was used. 

 

Figure C.2: 1D 1H NMR (400 MHz) spectrum of MK-1 with and without electrolyte TBAP (0.1 M) at 
room temperature in d6-DMSO, d5-pyridine, and d3-acetonitrile. The spectra were referenced to internal 
solvent peak as follows: d6-DMSO = 2.50 ppm, d5-pyridine = 8.74 ppm, and d3-acetonitrile = 1.94 ppm. 
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As shown in Figure C.1, the ferrocene couple, Fc+/Fc, was used as an internal reference standard 

so that the half-wave potentials are set to 0 V vs Fc+/Fc. The Q/Q•- E1/2 vs Fc+/Fc for MK-1 in ACN, DMSO, 

and pyridine were measured to be -1.227 (± 0.002) V, -1.158 (± 0.002) V, and -1.319 (± 0.001) V, 

respectively. The Q/Q•- E1/2 vs Fc+/Fc for MK-1(H2) in ACN, DMSO, and pyridine were measured to be -

1.247 (± 0.007) V, -1.179 (± 0.002) V, and -1.343 (± 0.001) V, respectively. The results for the Q/Q•- E1/2 vs 

Fc+/Fc values are near those reported for 1,4-naphthoquinone and those previously reported by our group 

for MK-2.4-6 The Q•-/Q2- E1/2 vs Fc+/Fc for MK-1 in ACN, DMSO, and pyridine were measured to be -1.882 

(± 0.014) V, -1.949 (± 0.006) V, and -2.037 (± 0.005) V, respectively. The Q•-/Q2-  E1/2 vs Fc+/Fc for MK-

1(H2) in ACN, DMSO, and pyridine were measured to be -1.912 (± 0.009) V, -1.9947 (± 0.0008) V, and -

2.109 (± 0.005) V, respectively. The measured quinone half-wave redox potential differences in these 

solvents are statistically significant as they are distinctly different from each other at high confidence 

intervals, see Figure C.3 and caption.  

 

Figure C.3: Measured E1/2 (vs Fc+/Fc in V) of MK-1 and MK-1(H2) Q/Q•- and Q•-/Q2- redox process 
versus solvent. Each solvent was run in triplicate, with error bars shown. Added horizontal lines show 
the distinction between each solvent for each redox process. All solvent comparisons (ACN vs DMSO, 
etc.) for each redox process half-wave potential for MK-1 or MK-1(H2) are statistically different with 
Student’s t test confidence intervals of 99.9% (p < 0.0001) except the ACN vs DMSO Q/Q•-  of MK-1, 
which was 99.5% (p < 0.0016), (at four degrees of freedom). Comparisons between MK-1 vs MK-1(H2) 
half-wave potentials of Q/Q•- and Q•-/Q2- for each solvent were at the 99.9% (p < 0.0001) confidence 
level except for ACN, which were 98% (p < 0.0089) and 95% (p < 0.0355), respectively, (at four degrees 
of freedom). 
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The difference in millivolts between the unsaturated MK-1 vs the saturated MK-1(H2) quinone redox 

potential in each solvent of the less variable Q/Q•- process are of the same magnitude of ~20 mV with 

specific values of 20.033 (± 0.007) mV, 21.333 (± 0.002) mV, and 23.917 (± 0.001) mV for ACN, DMSO, 

and pyridine, respectively (Figure C.3). The Q/Q•- process potentials are less variable as the presence of 

acidic hydrogens and/or water can create the hydroquinone species, which results in the Q•-/Q2-  process 

coalesced onto the first redox potential. Our previous work on MK-2 demonstrated that the isoprenyl side 

chain folds over toward the naphthoquinone moiety and that the solvent environment can influence the 

preferred conformation.6 The mixing of molecular orbitals (MOs) on the naphthoquinone moiety with the 

isoprenyl side chain may potentially result in different energies of the electrochemical bandgap (or HOMO 

to LUMO gap) needed to reduce the quinone carbonyl oxygen to an anionic oxygen radical. The 

electrochemical bandgap is suggestive of the potential observed or the energy required to reduce or oxidize 

an electrochemical process. This difference in the bandgap results in unique half-wave potentials as energy 

(E) and potential difference (V) are directly proportional, as evident by the electrostatic equation E = VQ 

where Q is charge. The saturation or unsaturation of the isoprenyl side chain can, therefore, potentially 

influence these MOs and may alter the quinone redox potential in this manner. The semiquinone redox 

potential difference of ~20 mV between MK-1 and MK-1(H2) could indicate the bandgap energy difference 

between the saturated and unsaturated double bond in the one unit isoprenyl side chain. However, the 

difference of ~20 mV is most likely due to an indirect effect manifested by a through-bond electronic change 

by the isoprenyl substituent on the quinone. An indirect substituent effect was used to explain a redox 

potential change for an N-aromatic substituent on a quinone.7 The conformational differences of MK-1 

between solvents were small, and the short isoprenyl side chain has limited spatial reach toward the 

naphthoquinone. If such an effect existed between conformation and redox potential, it might not be evident 

in the one isoprene unit system. However, suitable high-level computational calculations should be carried 

out to characterize the HOMO-LUMO gap of this system and determine the exact contributions to the 

observed ~20 mV difference.  

We also observed a trend in the data of the potential difference for the Q/Q•- process as compared 

by the solvent versus degree of saturation. For both MK-1 and MK-1(H2), the potential difference of the 

Q/Q•- process between ACN and DMSO is 69.250 (± 0.003) mV and 67.950 (± 0.008) mV, respectively. 
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The other solvent comparisons also have values that agree with each other. For MK-1 and MK-1(H2), the 

potential difference of the Q/Q•- process between DMSO and pyridine is 161.050 (± 0.002) mV and 163.633 

(± 0.002) mV, respectively. Similarly, MK-1 and MK-1(H2) have a potential difference of the Q/Q•- process 

between ACN and pyridine is 91.800 (± 0.003) mV and 95.683 (± 0.008) mV, respectively. This conserved 

difference of the Q/Q•- half-wave potentials between MK-1 vs MK-1(H2) in each solvent may signify that 

how the isoprenyl side chain folds is truly solvent dependent and/or it may also suggest that the 

conformation of the short isoprenyl side chain (5 carbons) of MK-1 has little effect on the observed quinone 

redox potential in the one isoprene unit system. 

 In summary, both MK-1 and MK-1(H2) during the first electrochemical process producing the 

semiquinone has the most positive potential in DMSO and the most negative potential in pyridine, 

demonstrating MK-1 or MK-1(H2) is slightly more reducible in DMSO than ACN or pyridine. Most 

remarkably, the observation of a ~20 mV change in quinone Q/Q•- E1/2 between MK-1 and MK-1(H2) 

supports our second hypothesis that saturation of the isoprenyl side chain of MK-1 affects the observed 

quinone redox potential. This is the first time that these subtle changes have been demonstrated in a 

quinone/MK system. The difference is presumably mainly due to a through-bond indirect effect, which 

results in an electronic perturbation of the quinone system upon saturation of the isoprenyl side chain. There 

was not a large difference between the MK-1 analog conformations. Therefore changes in the observed 

redox potentials are not likely due to conformational differences. However, a potential correlation should be 

investigated using the appropriate fully unsaturated and partially saturated MK-2 analogs in combination 

with computational methods to determine if conformational folding of the second isoprene unit can alter the 

quinone redox potential in MK analogs with unsaturated vs partially saturated isoprenyl side chain.  

 

 

 

 

 

 



165 

 

APPENDIX C REFERENCES 
 
 
 
1. Koehn, J. T.; Beuning, C. N.; Peters, B. J.; Dellinger, S. K.; Van Cleave, C.; Crick, D. C.; Crans, D. 
C., Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated 
Menaquinones. Biochemistry 2019, 58 (12), 1596 - 1615. 
 
2. Dryhurst, G., Kadish, K. M., Scheller, F., Renneberg, R. , Biological Eletrochemistry. Academic 
Press: New York, 1982. 
 
3. Wawzonek, S.; Berkey, R.; Blaha, E. W.; Runner, M. E., Polarographic Studies in Acetonitrile and 
Dimethylformamide: III. Behavior of Quinones and Hydroquinones. J. Electroanal. Chem. Soc. 1956, 103 
(8), 456-459. 
 
4. Jaworski, J. S.; Leniewska, E.; Kalinowski, M. K., Solvent Effect on the Redox Potential of Quinone-
semiquinone Systems. J. Electroanal. Chem. 1979, 105 (2), 329-334. 
 
5. Prince, R. C.; Leslie Dutton, P.; Malcolm Bruce, J., Electrochemistry of Ubiquinones. FEBS Lett. 
1983, 160 (1), 273-276. 
 
6. Koehn, J. T.; Magallanes, E. S.; Peters, B. J.; Beuning, C. N.; Haase, A. A.; Zhu, M. J.; Rithner, C. 
D.; Crick, D. C.; Crans, D. C., A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded 
Conformation in Solution and at a Model Membrane Interface. J. Org. Chem. 2018, 83, 275-288. 
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APPENDIX D: UNPUBLISHED CONTRIBUTIONS TO THE CYCLIC VOLTAMMETRY AND  
 

SPECTROELECTROCHEMICAL METHOD DEVELOPMENT AND DATA INTERPRETATION OF  
 

VANADIUM(V) CATECHOL SCHIFF BASE COMPOUNDS 
 
 
 

D.1 Statement of contributions 

Jordan T. Koehn, of the Crans lab, synthesized a series of vanadium (V) catechol Schiff base 

compounds denoted as VO(HSHED)(cat), with varying electron-donating or withdrawing substitutions on 

the catechol ligand as potential anti-cancer agents.1 He then performed their 51V NMR spectroscopy. My 

undergraduate Molly Hartman and I performed the cyclic voltammetry and spectroelectrochemistry on the 

series of six different compounds in acetonitrile. These experiments were done to confirm some of the 

observations in the previous work performed in the group and to see if we could relate 51V NMR chemical 

shift to the redox potential of the complex. This work will be written for publication by Dr. Crans. 

D.2 Background 

 The Crans group synthesized a series of VO(HSHED)(cat) complexes, as shown in Figure D.1. 

The innocent ligand is the HSHED (N-(salicylideneaminato)-N’-(2-hydroxyethyl)ethylenediamine) while the 

catechol is non-innocent, and its substituents are either electron-donating or -withdrawing. The Crans group 

previously determined there is a linear relationship between the solution and solid-state 51V NMR chemical 

shift, δ, of some of these non-innocent V(V) catechol complexes.2 Through this NMR analysis they 

determined that the HOMO-LUMO gap increased for the catechol electron-donating group substitutions 

and the 51V δ shifts upfield. The HOMO-LUMO gap decreased for the catechol electron-withdrawing group 

substitutions and the 51V δ shifts downfield.  

A study performed in 1992 on a large series of similar mono-oxovanadium (V) catecholate 

compounds showed that the magnitude of the shielding of the 51V atom was linearly proportional to the 

inverse of the ligand-to-metal charge transfer band (LMCT) energy.3 Since the optical and electrical band 

gaps are essentially the same, then the electrochemical properties of these compounds should be 

correlated to its 51V NMR chemical shift, and one of the measurements should be able to predict the other. 
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Figure D.1: Structures of the VVO(HSHED)(cat) complexes are listed from the most electron-donating (A) 
to the most electron-withdrawing (F). Catechol ligands include A) 3,5-ditertbutyl catechol – DTBC; B) 3-
methoxy catechol – 3-MeOC; C) catechol – cat; D) coumarin catechol – CC; E) 4-nitrile catechol – 4-CNC; 
F) 4-nitro catechol – 4-NOC.  

 

D.3 Electrochemical and spectroelectrochemical methods and instrumentation 

 For the cyclic voltammetry a classical three-electrode system, as described in Chapter 1 section 

1.6, was used with a glassy carbon working electrode (BASi MF2012, 3 mm, area of 0.707 cm2), a platinum 

wire auxiliary electrode (BASi MW1032), and a non-aqueous 0.01 M Ag+/Ag reference electrode (BASi 

MW1085). Analyte and reference electrode solutions were created with 0.1 M TBAP (tetrabutylammonium 

perchlorate) as the electrolyte and studied at a scan rate of 100 mV/s. 2 mM ferrocene was added as the 

internal standard. Acetonitrile was used dry as previously described in Chapter 5. VO(HSHED)(cat) 

complexes were studied at approximately 2 mM. A Pine Research WaveDriver 20 bipotentiostat was used 

to take all cyclic voltammetry data. For spectroelectrochemistry, the Pine Research Honeycomb plate and 

Avantes optics were used as described in Chapter 1, section 1.7. The concentrations of the vanadium 

complexes were about 0.5 mM for spectroelectrochemical studies and had no ferrocene in them. 
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D.4 Results and discussion 

 The cyclic voltammograms of all six complexes are given in Figure D.2. The ferrocene potential 

has been set to 0 V, as described in Chapter 5. The half-wave potentials, E1/2, of each complex were 

determined from these cyclic voltammograms, in triplicate, from their clearly reversible peaks between -0.5 

to -1.0 V vs Fc+/Fc, Table D.1. The number of electrons in each V(V) redox process is one, going from V(V) 

to V(IV), and their peak current ratios approach unity. These half-wave potentials were then graphed versus 

their 51V NMR chemical shifts in acetonitrile, and a linear relationship is observed, Figure D.3. Their 

diffusion coefficients could also be determined and are given in Table D.1 at the 90% confidence (a greater 

number of measurements is needed to reduce error in these values). 

 

Figure D.2: The cyclic voltammograms of the VO(HSHED)(cat) complexes in acetonitrile with  0.1 M TBAP 
and 2 mM Fc+/Fc at STP (ambient room temperature), under argon gas, and at a scan rate of 100 mV/s.  
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Figure D.3: The solution 51V NMR chemical shift, δ (ppm) of the VO(HSHED)(cat) complexes versus their 
half-wave potentials, E1/2 vs Fc+/Fc in mV in acetonitrile.   

 

Table D.1: Half-wave potentials and diffusion coefficients of the VO(HSHED)(cat) complexes in 
acetonitrile at 90% confidence. Diffusion coefficients are limited to two significant figures due to ones of 
mg on a balance with tenths of mg measurement capability. Those measurements with increased 
confidence are listed in parentheses. 

VO(HSHED) E1/2 vs Fc+/Fc (mV) DO (cm2s-1) at 90% CL 

3,5-ditertbutyl  - 802 ± 1  6.6 (± 1.8) x 10-8 

3-methoxy  - 748 ± 11 1.2 (± 0.2) x 10-7  (98%) 

coumarin  - 546 ± 8 6.6 (± 2.2) x 10-8 

catechol - 698 ± 0.2 2.1 (± 1.7) x 10-7 

4-nitro  - 464  ± 4 5.8 (± 0.8) x 10-8    

4-nitrile  - 519  ± 7 1.5 (± 0.02) x 10-7   (98%)  
 

 As hypothesized, a correlation between the chemical shift 51V NMR δ and the redox potential E1/2 

is observed. A direct linear relationship can be determined for the 51V NMR δ in acetonitrile for a measured 

E1/2 in mV, Eq. D.1. The more electron-donating substituents on the catechol produce more negative redox 

potentials, and their δ move upfield of the catechol base. The more electron-withdrawing substituents on 

the catechol produce more positive redox potentials and their δ move downfield of the catechol base. The 

relationship between the paramagnetic shielding component of δ in vanadium(V) compounds and their 

LMCT ΔE was discussed in the 1992 paper, and here we see direct relationship. The paramagnetic 
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shielding component is affected by the electronic structure of the vanadium and the bound ligands. As the 

electrons are being donated to the V, the redox process becomes more difficult to perform as the atom 

becomes highly shielded. Conversely, as electrons are being withdrawn from the V, the redox process 

becomes easier to perform as the atom becomes de-shielded. These effects are then observed in the 51V 

NMR chemical shift as the magnetic field generated by the electron-donating/withdrawing affect the applied 

magnetic field in different magnitudes. 

(Eq D.1) 51𝑉 𝛿 (𝑝𝑝𝑚) = −1.736 𝐸12 − 1008 

 The spectroelectrochemistry of the VO(HSHED)(cat) complexes in acetonitrile were also performed 

and are shown in Figure D.4. The 400 -560 nm (a 182 nm range) is the LMCT band of the V-catechol, 

while the 800 nm range is the LMCT of the V-HSHED (varies less only a 76 nm range), see Table D.2 for 

all wavelength maxima. The UV region is from the aromatic rings and is very intense. However, we were 

more interested in examining the LMCT peaks. The LMCT HOMO-LUMO gaps were determined to be 

larger for electron-withdrawing with shorter λmaxima and smaller for electron-donating with longer λmaxima. 

These conclusions confirm the group’s previous work with solid-state and solution 51V NMR studies.  

Table D.2: The absorption spectroscopy maximum wavelengths of LMCT bands of VO(HSHED)(cat) 
complexes in acetonitrile.  

Type Catechol 

LMCT V-
catechol 

LMCT V-
HSHED 

Color 

  

λ, nm λ, nm 

e- donate DTBC 549 864 Dark Blue 

e-  donate 3-MeOC 561 829 Indigo 

e-  donate  cat 526 872 Brown-Red 

e-  withdraw CC 517 870 Plum 

e-  withdraw 4-CNC 475 814 Army Green 

e-  withdraw 4-NOC 379 796 Grass Green 
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Figure D.4: The spectroelectrochemical spectra of the VO(HSHED)catechol complexes in acetonitrile. The 
black lines are oxidized forms, under no applied potential. The red lines are -50 mV of their cathodic peak 
potential, Epc, while the blue lines are at a reducing potential quite negative of all complex’s E1/2, -800 mV 
vs Ag+/Ag.  

 

D.5 Conclusions and future experiments 

 This linear relationship is a novel correlation between the NMR and the electrochemistry of 

vanadium compounds. The ability to predict either physical value from another is an important 

characterization tool, especially if one of the spectroscopies is not available. There is much more research 

to perform in this area, including analysis in different solvents to see if the correlation is conserved. Similarly, 

changes to the innocent ligand or alternative substituents on the catechol could be investigated.  
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