WIND-TUNNEL STUDY OF FLOW THROUGH STS SHUTTLE LAUNCH SITE EXHAUST VENTS, VANDENBERG AIR FORCE BASE

by

J. A. Peterka* and J. E. Cermak**

for

Martin Marietta Corporation Vandenberg Operations Bldg. 7300, C-12 Mail Stop GS741 Vandenberg Air Force Base, California 93437

Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

CSU Project 2-95400

September 1982

*Associate Professor **Professor-in-Charge, Fluid Mechanics and Wind Engineering Program

CER82-83JAP-JEC13

TABLE OF CONTENTS

Chapter		Page
	LIST OF FIGURES	ii
	LIST OF TABLES	iii
	LIST OF SYMBOLS	iv
1	INTRODUCTION	1
	1.1GeneralGeneralGeneral1.2The Wind-TunnelTest1.2The Wind-Tunnel	1 2
2	EXPERIMENTAL CONFIGURATION	4
	2.1 Wind Tunnel	4 4
3	INSTRUMENTATION AND DATA ACQUISITION	7
	 3.1 Flow Visualization	7 7 8
4	RESULTS AND DISCUSSION	11
	 4.1 Flow Visualization	11 11 13
	REFERENCES	17
	FIGURES	18
	TABLES	32
	APPENDIX A	71

LIST OF FIGURES

Figure		Page
1	Fluid Dynamics and Diffusion Laboratory	19
2	Wind-Tunnel Configuration	20
3	Completed Model in Wind Tunnel	21
4	Site Plan Showing Door Locations for Duct Closure	23
5	Pressure Tap Locations	24
6	Mean Velocity and Turbulence Profiles Approaching the Model	25
7	Mean Velocities and Turbulence Intensities at Interior Locations	26
8	Peak Pressures on the Duct Closure Doors	27

LIST OF TABLES

<u>Table</u>		Page
1	Configuration Guide and Test Plan	33
2	Calculation of Reference Pressure	34
3	Wind Velocities and Turbulence Intensities in Nondimensional Form	35
4	Wind Velocities and Turbulence Intensities in Dimensional Form	48
5	Maximum Pressure Coefficients and Loads in PSF $$	61

LIST OF SYMBOLS

Symbol	Definition
U	Local mean velocity
D	Characteristic dimension (building height, width, etc.)
ν, ρ	Kinematic viscosity and density of approach flow
	Reynolds number
E	Mean voltage
A, B, n	Constants
Urms	Root-mean-square of fluctuating velocity
Erms	Root-mean-square of fluctuating voltage
U _w	Reference mean velocity outside the boundary layer
Z	Height above surface
δ	Height of boundary layer
^T u	Turbulence intensity $\frac{U_{rms}}{U_{\infty}}$ or $\frac{U_{rms}}{U}$
C p _{mean}	Mean pressure coefficient, $\frac{(p-p_{\infty})_{mean}}{0.5 \rho U_{\infty}^2}$
C p _{rms}	Root-mean-square pressure coefficient, $\frac{((p-p_{\infty})-(p-p_{\infty})_{mean})_{rms}}{0.5 \rho U_{\infty}^{2}}$
C P _{max}	Peak maximum pressure coefficient, $\frac{(p-p_{\infty})_{max}}{0.5 \rho U_{\infty}^2}$
C p _{min}	Peak minimum pressure coefficient, $\frac{(p-p_{\infty})_{\min}}{0.5 \rho U_{\infty}^2}$
() _{min}	Minimum value during data record
() _{max}	Maximum value during data record
р	Fluctuating pressure at a pressure tap on the structure
P_{∞}	Static pressure in the wind tunnel above the model

iv

1. INTRODUCTION

1.1 General

Two previous wind-tunnel studies (1,2) investigated the wind loads on the Mobile Service Tower (MST) and Shuttle Assembly Building (SAB) at the Vandenberg Air Force Base shuttle launch site. The first study (1) showed that the MST and Payload Changeout Room (PCR) alone would not provide adequate protection from the wind of shuttle launch vehicle components during assembly. The SAB, studied in reference (2), provided protection from the wind by sealing the above-ground openings in the MST. However, large openings into the shuttle assembly area remained by means of three rocket engine exhaust ducts. This investigation provides data to assess the need for closures for the ducts and to determine wind loads required for the closures, if needed.

Techniques have been developed for wind-tunnel modeling of structures which allow the prediction of wind pressures on cladding and windows, overall structural loading, and also wind velocities and gusts in areas of concern. Accurate knowledge of the intensity and distribution of the pressures on the structure permits adequate but economical selection of structural elements such as exhaust vent closures.

Modeling of the aerodynamic loading on a structure requires special consideration of flow conditions in order to guarantee similitude between model and prototype. A detailed discussion of the similarity requirements and their wind-tunnel implementation can be found in references (3), (4), and (5). In general, the requirements are that the model and prototype be geometrically similar, that the approach mean velocity at the building site have a vertical profile shape similar to the full-scale flow, that the turbulence characteristics of the flows be similar, and that the Reynolds number for the model and prototype be equal.

These criteria are satisfied by constructing a scale model of the structure and its surroundings and performing the wind tests in a wind tunnel specifically designed to model atmospheric boundary-layer flows. Reynolds number similarity requires that the quantity UD/v be similar for model and prototype. Since v, the kinematic viscosity of air, is identical for both, Reynolds numbers cannot be made precisely equal with reasonable wind velocities. To accomplish this the air velocity in the wind tunnel would have to be as large as the model scale factor times the prototype wind velocity, a velocity which would introduce unacceptable compressibility effects. However, for sufficiently high Reynolds numbers (>2x10⁴) the pressure coefficient at any location on the structure will be essentially constant for a large range of Reynolds numbers. Typical values encountered are 10^7 - 10^8 for the full-scale and 10^5 - 10^6 for the wind-tunnel model. In this range acceptable flow similarity is achieved without precise Reynolds number equality.

1.2 The Wind-Tunnel Test

The wind-tunnel study was performed on a model of the shuttle launch site at a scale of 1:100. Models of the MST and SAB used in earlier studies were placed on a base which included accurate models of the three exhaust ducts. The model was subjected to a simulated atmospheric wind flow in a boundary-layer wind tunnel. The model was rotated to 16 approach wind directions to observe the influence of wind direction. Velocities were measured in the exhaust ducts for open ducts and for ducts which were almost closed. In addition,

pressure measurements were obtained on both sides of duct closures to provide information for design of the duct closures. Table 1 lists the configurations and data acquisition program.

The following pages discuss in greater detail the procedures followed and the equipment and data collecting and processing methods used. In addition, the data presentation format is explained and the implications of the data are discussed.

2. EXPERIMENTAL CONFIGURATION

2.1 Wind Tunnel

Wind engineering studies are performed in the Fluid Dynamics and Diffusion Laboratory at Colorado State University (Figure 1). Three large wind tunnels are available for wind loading studies depending on the detailed requirements of the study. The Environmental Wind Tunnel used for this investigation is shown in Figure 2. The wind tunnel has a flexible roof adjustable in height to maintain a zero pressure gradient along the test section. The mean velocity can be adjusted continuously to the maximum velocity available.

2.2 Model

In order to obtain an accurate assessment of local velocities and pressures, models are constructed to the largest scale that does not produce significant blockage in the wind-tunnel test section. The building models were constructed of thin Lucite plastic and fastened together with glue and metal screws. The ducts were constructed from wood with duct closures made from Lucite. Piezometer taps (1/16 in. diameter) were drilled normal to the exterior surfaces of the duct closures. Photographs of the model installed in the wind tunnel are shown in Figure 3.

A site plan showing duct entrances and exits and their position in relation to the MST and SAB is shown in Figure 4. Six door locations are identified in the figure. Doors 1, 2 and 3 were horizontal and were located at ground level. Door 1 was about 35 ft square; doors 2 and 3 were about 25 x 50 ft. Door 4 was always open. Doors 5 and 6 were vertical, about 50 ft square, and were located in the plane of the duct exit. All doors were fabricated with approximately a 6-in. gap (0.06)

in model) all around the door. The actual gap spacing was set by requiring a gap area of 2.5 percent of the total door area. Data were obtained with the gap open (partially closed (PC) door) and with the gap sealed (closed (C) door).

The seal between the MST and SAB was simulated, at the sponsor's request, as a slightly porous seal. The full-scale gap between buildings of 18 in. was to be closed to a 1 1/2-in. opening by a seal. This 1 1/2-in. gap in the full scale was approximated in the model by a 1/8-in. square gap located at 1 in. spacing along the seal. This gave a total opening area between buildings in the model which was equivalent, at model scale, to the 1 1/2-in. gap in the full scale.

Pressure tap locations on the duct doors were located as shown in Figure 5. Door locations are shown in Figure 4. Pressure tap locations on the doors are shown to scale. Pressure tap numbers are shown on Figure 5.

A model of the shuttle and tanks assembly was obtained from NASA and installed on a model of the launch mount (LM) in the MST and SAB interior.

The terrain features surrounding the model were not modeled for lack of time and dollar resources. A model of the terrain was not considered to be a major influence on determination of the need for duct closures or determination of closure design loads. An open-country environment was assumed to be a reasonably conservative estimate for establishing approach wind characteristics. The floor of the wind tunnel upwind of the model turntable was covered with a randomized roughness selected to provide an open-country environment. Spires and a twodimensional barrier were installed at the test section entrance to

provide a thicker boundary layer than would otherwise be available. The thicker boundary layer permitted a larger scale model than would otherwise be possible and resulted in an improved simulation of internal flows.

3. INSTRUMENTATION AND DATA ACQUISITION

3.1 Flow Visualization

Making the air flow visible in the vicinity of the model is helpful in understanding and interpreting mean and fluctuating pressures and in determining how wind flow through the duct system might interact with the air mass inside the MST/SAB enclosure. Titanium tetrachloride smoke was released from sources on and near the model to make the flow lines visible to the eye and to make it possible to obtain photographic records of the tests. Conclusions obtained from these smoke studies are discussed in Section 4.1.

3.2 Pressures

Mean and fluctuating pressures were measured at each of the pressure taps on the model structure. Data were obtained for 16 wind directions at 22.5-degree azimuthal increments, rotating the entire model assembly in a complete circle. Pieces of 1/16-in. I.D. plastic tubing were used to connect the pressure ports to an 80-tap pressure switch mounted underneath the model. The switch was designed and fabricated in the Fluid Dynamics and Diffusion Laboratory to minimize the attenuation of pressure fluctuations across the switch. Each of the measurement ports was directed in turn by the switch to one of four pressure transducers mounted close to the switch. Four pressure input taps not used for transmitting building surface pressures were connected to a common tube leading outside the wind tunnel. This arrangement provided both a means of performing inplace calibration of the transducers and, by connecting this tube to a pitot tube mounted inside the wind tunnel, a means of automatically monitoring the tunnel speed. A computer-controlled stepping motor stepped the switch into each switch position. The computer kept track

of switch position but a digital readout of position was provided at the wind tunnel.

The pressure transducers used were setra differential transducers (Model 237) with a 0.10 psid range. Reference pressures were obtained by connecting the reference sides of the four transducers, using plastic tubing, to the static side of a pitot-static tube mounted in the wind tunnel free stream above the model building. In this way the transducer measured the instantaneous difference between the local pressures on the surface of the building and the static pressure in the free stream above the model.

Output from the pressure transducers was fed to an on-line data acquisition system consisting of a Hewlett-Packard 21 MX computer, disk unit, card reader, printer, Digi-Data digital tape drive and a Preston Scientific analog-to-digital converter. The data were processed immediately into pressure coefficient form as described in Section 4.3 and stored for printout and further analysis.

All four transducers were recorded simultaneously for 16 seconds at a 250 sample-per-second rate. An examination of a large number of pressure taps from previous experiments showed that the overall accuracy for a 16-second period is, in pressure coefficient form, 0.03 for mean pressures, 0.1 for peak pressures, and 0.01 for rms pressures. Pressure coefficients are defined in Section 4.3.

3.3 Velocity

Mean velocity and turbulence intensity profiles were measured upstream of the model to determine that the desired approach boundarylayer flow had been established. Tests were made at one wind velocity in the tunnel. This velocity was well above that required to produce

Reynolds number similarity between the model and the prototype as discussed in Section 1.1. Very low velocities measured within the model interior may have some distortion due to Reynolds number effects, but conclusions drawn from the data should be valid.

In addition, mean velocity and turbulence intensity measurements were made at duct entrances to the interior space and, for one configuration, at selected locations about the shuttle and tank model. The duct measurements were made at the center of the duct cross section when ducts were open and centered on the gap when the duct was in the PC mode.

Measurements are made with a single hot-wire anemometer mounted with its axis horizontal. The instrumentation used was a TSI constant temperature anemometer (Model 1050) with a 0.001 in. diameter platinum film sensing element 0.020 in. long. Output was directed to the on-line data acquisition system for analysis.

Calibration of the hot-wire anemometer was performed by comparing output with the pitot-static tube in the wind tunnel. The calibration data were fit to a variable exponent King's Law relationship of the form

$$E^2 = A + BU^n$$

where E is the hot-wire output voltage, U the velocity and A, B, and n are coefficients selected to fit the data. The above relationship was used to determine the mean velocity at measurement points using the measured mean voltage. The fluctuating velocity in the form $U_{\rm rms}$ (root-mean-square velocity) was obtained from

$$\dot{U}_{rms} = \frac{2 E E_{rms}}{B n U^{n-1}}$$

where E_{rms} is the root-mean-square voltage output from the anemometer. For interpretation all turbulence measurements for locations within the

model were divided by the mean velocity outside the boundary layer U_{∞} . Turbulence intensity in velocity profile measurements used the local mean velocity.

4. RESULTS AND DISCUSSION

4.1 Flow Visualization

Flow visualization using smoke to make the flow visible showed that for northerly or southerly winds, wind flowed into the upstream exhaust ducts, into the cavity holding the shuttle assembly and out through the downstream exhaust duct (see Figure 3). Much of the higher velocity wind penetrated only a short distance into the interior space, say 50 to 80 ft, before turning downward toward the exit duct. However, significant air motion was observed enveloping the entire shuttle and tank assembly with the ducts open. With ducts partially closed (2.5 percent opening gap), wind speeds in the interior were much reduced.

Flow was observed to pass through the 1/8-in. square openings representing the porosity in the seal between the MST and SAB. The flow entered the interior space on the upwind face and exited on the downwind face.

4.2 Velocity

Velocity and turbulence profiles are shown in Figure 6. Profiles were taken upstream from the model which are characteristic of the boundary layer approaching the model. The height of the reference velocity measurement, δ , is shown in Figure 6. The corresponding prototype value of δ for this study is also shown in the figure. The mean velocity profile approaching the modeled area has the form

$$\frac{U}{U_m} = \left(\frac{z}{\delta}\right)^n.$$

The exponent n for the approach flow established for this study is shown in Figure 6. An open-country environment might expect n = 0.14; the value of n = 0.13 used in this study should produce the same results as a 0.14 profile within measurement accuracy.

The profile of longitudinal turbulence intensity in the flow approaching the modeled area is shown in Figure 6. The turbulence intensities are appropriate for the approach mean velocity profile selected. For the velocity profiles, turbulence intensity is defined as the root-mean-square about the mean of the longitudinal velocity fluctuations divided by the local mean velocity U,

$$Tu = \frac{U_{rms}}{U}$$

Velocity data obtained at each of the doors and interior measurement locations (shown in Figure 7) are listed in Table 3 as mean velocity U/U_{∞} , turbulence intensity U_{rme}/U_{∞} , and largest effective gust

$$U_{pk} = \frac{U + 3U_{rms}}{U_{\infty}}$$

Table 4 shows the same data in miles per hour for a 40 mph fastest mile wind speed at 30 ft. This is the design wind for the upper limit for operations. Velocities for any other design wind speed may be obtained by ratio. Locations 1-12 inside the assembly area adjacent to the shuttle and tanks are shown in Figure 7 with maximum velocities measured at those locations for partially closed doors.

The velocity data show that velocities entering the enclosed cavity during design wind conditions can be as high as 15 mph when the vents are completely open, Configuration A. These velocities drop to about 8 mph at the gap for the partially closed doors when all three doors are partially closed, Configuration E. The conclusion from these data is that the exhaust ducts should have doors installed.

The largest velocities measured at locations 1-12 inside the assembly area and adjacent to the shuttle and tanks are shown in Figure 7. These data were obtained for the case with doors 1, 2, and 3 partially closed. The highest velocity was 4.6 mph measured at location 10 near the shuttle tail. From the wind direction at which this velocity occurred, the velocity probably originated from flow through the 1/8- x 1/8-in. openings between the MST and SAB simulating that closure porosity (see Section 2.2). The maximum velocity at locations 1-9, which probably obtained their velocities from the gaps around the partially closed doors, was 1.8 mph. Table 4 shows that peak gusts will often be 1.5 to 2.0 times the mean value. Whether or not the velocities measured at locations 1-12 represent an acceptable level depends on criteria not known to this investigation.

4.3 Pressures

For each of the pressure taps examined at each wind direction, the data record was analyzed to obtain four separate pressure coefficients. The first was the mean pressure coefficient

$$C_{p_{mean}} = \frac{(p-p_{\infty})_{mean}}{0.5 \rho U_{m}^2}$$

where the symbols are as defined in the List of Symbols. It represents the mean of the instantaneous pressure difference between the building pressure tap and the static pressure in the wind tunnel above the building model, nondimensionalized by the dynamic pressure

at the reference velocity position. This relationship produces a dimensionless coefficient which indicates that the mean pressure difference between building and ambient wind at a given point on the structure is some fraction less or some fraction greater than the undisturbed wind dynamic pressure near the upper edge of the boundary layer. Using the measured coefficient, prototype mean pressure values for any wind velocity may be calculated.

The magnitude of the fluctuating pressure is obtained by the rms pressure coefficient

$$C_{p_{rms}} = \frac{((p-p_{\infty}) - (p-p_{\infty})_{mean})_{rms}}{0.5 \rho U_{\infty}^{2}}$$

in which the numerator is the root-mean-square of the instantaneous pressure difference about the mean.

If the pressure fluctuations followed a Gaussian probability distribution, no additional data would be required to predict the frequency with which any given pressure level would be observed. However, the pressure fluctuations do not, in general, follow a Gaussian probability distribution so that additional information is required to show the extreme values of pressure expected. The peak maximum and peak minimum pressure coefficients were used to determine these values:

$$C_{p_{\text{max}}} = \frac{(p - p_{\infty})_{\text{max}}}{0.5 \rho U_{\infty}^{2}}$$
$$C_{p_{\text{min}}} = \frac{(p - p_{\infty})_{\text{min}}}{0.5 \rho U_{\infty}^{2}}$$

The values of $p-p_{\infty}$ which were digitized at 250 samples per second for 16 seconds, representing about one hour of time in the full-scale, were examined individually by the computer to obtain the most positive and most negative values during the 16-second period. These were converted to $C_{p_{max}}$ and $C_{p_{min}}$ by nondimensionalizing with the free stream dynamic pressure.

The four pressure coefficients were calculated by the on-line data acquisition system computer and tabulated along with the approach wind azimuth in degrees from true north. The list of coefficients is included as Appendix A. The pressure tap code numbers used in the appendix are explained in Figure 5.

To determine the largest peak loads acting at any point on the structure for cladding design purposes, the pressure coefficients for all wind directions were searched to obtain, at each pressure tap, the largest peak negative pressure coefficients. Table 5 lists the largest values and associated wind directions.

The pressure coefficients of Table 5 can be converted to full-scale loads by multiplication by a suitable reference pressure selected for the field site. This reference pressure is represented in the equations for pressure coefficients by the $0.5 \rho U_{\infty}^2$ denominator. This value is the dynamic pressure associated with an hourly mean wind at the reference velocity measurement position. In general, the method of arriving at a design reference pressure for a particular site involves selection of a design wind velocity, translation of the velocity to an hourly mean wind at the reference velocity location and conversion to a reference pressure. The design velocity was specified by the sponsor as 80 mph fastest mile wind at 30 ft. The calculation of reference pressure for this study is shown in Table 2. The factor used in Table 2 to reduce gust winds to hourly mean winds is given in reference (6).

The reference pressure associated with the design hourly mean velocity at the reference velocity location can be used directly with the peak-pressure coefficients to obtain peak local design wind loads. Local, instantaneous peak loads on the full-scale structure suitable for design were computed by multiplying the reference pressure of Table 2 by the peak coefficients of Table 5 and are listed as peak pressures in

that table. The maximum psf loads given at each tap location are the largest peak positive and peak negative values found in the tests.

The net load on any door is the vector sum of the pressure on each side (positive pressures act toward the door surface; negative pressures act away from the door surface). In most cases, the peak negative pressure on one side is associated with a pressure near zero on the other side of the door. Thus a reasonable design procedure is to design the door strength for the largest peak negative pressure observed on one side of that door. For convenience, those values are presented on drawings of the doors in Figure 8. The largest loads on doors 1-3 act downward while the largest loads on doors 5 and 6 act outward from the duct.

The four configurations that are of primary interest are: D with all inner doors completely sealed, E with all inner doors partially closed (2 1/2 percent open), F with inner door 1 partially closed and outer doors 5 and 6 completely closed, and G with inner door 1 and outer doors 5 and 6 partially closed. For Configurations D, E and G, a pressure of 30 psf on all doors would be adequate. For Configuration F, 30 psf on the inner door and 35 psf on the outer doors (with capability for local peak pressures of 40 psf) would be adequate.

REFERENCES

- Kiely, G. K., J. E. Cermak, and J. A. Peterka, "Wind Engineering Study of the Mobile Service Tower and Space Shuttle for SLC-6, Vandenberg AFB, California," Technical Report CER78-79GKK-JEC-JAP42, Fluid Mechanics and Wind Engineering Program, Colorado State University, May 1979.
- 2. Peterka, J. A., J. E. Cermak, and J. H. Cooley, Jr., "Wind-Tunnel Study of STS Shuttle Assembly Building, Vandenberg Air Force Base," Technical Report CER82-83JAP-JEC-JHC6, Fluid Mechanics and Wind Engineering Program, Colorado State University, July 1982.
- 3. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA J1., Vol. 9, September 1971.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," A Freeman Scholar Lecture, ASME J1. of Fluids Engineering, Vol. 97, No. 1, March 1975.
- 5. Cermak, J. E., "Aerodynamics of Buildings," Annual Review of Fluid Mechanics, Vol. 8, pp. 75-106, 1976.
- Hollister, S. C., "The Engineering Interpretation of Weather Bureau Records for Wind Loading on Structures," Building Science Series 30 Wind Loads on Buildings and Structures, National Bureau of Standards, pp. 151-164, 1970.

FIGURES

Figure 1. FLUID DYNAMICS AND DIFFUSION LABORATORY COLORADO STATE UNIVERSITY

Figure 2. Wind - Tunnel Configuration

Figure 3a. Completed Model in Wind Tunnel

Flow Visualization

Figure 3b. Completed Model in Wind Tunnel

NOTE : DRAWING IS NOT TO SCALE

Figure 4. Site Plan Showing Door Locations for Duct Closure

PRESSURE TAP LOCATIONS

Figure 5. Pressure Tap Locations

612 o

Figure 6. Mean Velocity and Turbulence Profiles Approaching the Model

PEAK MEAN WIND VELOCITIES LOCATIONS ARE AT 7, 14 AND 21 MODEL INCHES WITH RESPECT TO FLOOR (58 117 AND 175 FT FULL SCALE) CONFIGURATION E

Figure 7. Mean Velocities and Turbulence Intensities at Interior Locations

CONFIGURATION B NEGATIVE PEAK CLADDING LOADS (PSF) FOR 80 MPH FASTEST MILE WIND REFERENCE PRESSURE = 21 PSF

Figure 8a. Peak Pressures on the Duct Closure Doors

Figure 8b. Peak Pressures on the Duct Closure Doors

28

CONFIGURATION D

NEGATIVE PEAK CLADDING LOADS (PSF)

FOR 80 MPH FASTEST MILE WIND

REFERENCE PRESSURE = 21 PSF

Figure 8c. Peak Pressures on the Duct Closure Doors

29

CONFIGURATION E

DOOR 5

NEGATIVE PEAK CLADDING LOADS (PSF)

FOR 80 MPH FASTEST MILE WIND

REFERENCE PRESSURE = 21 PSF

• INSIDE TAPS • OUTSIDE TAPS

CONFIGURATION F NEGATIVE PEAK CLADDING LOADS (PSF) FOR 80 MPH FASTEST MILE WIND REFERENCE PRESSURE = 21 PSF

Figure 8e. Peak Pressures on the Duct Closure Doors

CONFIGURATION G NEGATIVE PEAK CLADDING LOADS (PSF) FOR 80 MPH FASTEST MILE WIND REFERENCE PRESSURE = 21 PSF
TABLES

TABLE 1

33

CONFIGURATION GUIDE AND TEST PLAN

Configurations

Air flow speeds and pressures were obtained for seven configurations of the exhaust ducts. Exhaust duct identification numbers are shown in Figure 4.

Configuration	Exh	aust	Duct	Intakes	and 0	utlets		
	1	2	3	4	5	6		
Α	0	0	0	0	0	0		
В	С	0	0	0	0	0	0 = 0 pen	
С	PC	0	0	0	0	0	-	
D	С	C	С	0	0	0	C = Closed	
E	PC	PC	PC	0	0	0		
F	PC	0	0	0	С	С	PC = 2 1/2% C)pen
G	PC	0	0	0	PC	PC		

SAB was mated with the MST and the space shuttle vehicle, external tank and boosters were in place for each configuration.

Test Plan

Air flow speeds were measured at exhaust duct intakes and outlets for each configuration as indicated by V. Pressure measurements were made on the closure panel as indicated by P.

Configuration		Exhau	ist Duct	Inta	kes	and	0u	tlets		
	1	2	3	4	5		6	Interior	V =	Wind speed
A	V	v	V	e	-		-	-		measurement
В	Р	V	V	-	-		-	-	D -	Proscure
С	-	V	V	-	-		-	-	r -	measurement
D	Р	Р	Р	-	-		-	-		measurement
E	V,P	V,P	V,P	-	-		-	S	s -	Wind speed
F	P	-	-	-	Р		P	-	5 -	monsurement at
G	V ,P	V	V	-	P		P	-		12 locations

near space

shuttle vehicle

TABLE 2

CALCULATION OF REFERENCE PRESSURE

1. Basic wind speed assigned by the sponsor:

Fastest mile at 30 ft = 80 mph

Mean hourly wind speed = $\frac{80}{1.28}$ = 62.5 mph Mean hourly gradient wind speed = 62.5 $(\frac{1000}{30})^{.14}$ = 102.1 mph Mean hourly wind at ref location at 400' = 102.1 $(\frac{400}{1000})^{.14}$ = 89.8 mph Reference pressure = 0.5 ρU_{∞}^{2} = (0.00256) (89.8)² = 20.6 psf Use reference pressure = 21 psf

2. Mean hourly gradient wind speed for 40 mph fastest mile wind =

 $\frac{90}{2} = 45.0 \text{ mph}$

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION A : DATA ON DOORS 1, 2, 3, DOORS OPENED : 1, 2, 3, 4, 5, 6

DOOR 1

D00R 2

WIND Azimuth	UMEAN/UINF (Percent)	URNS/UINF (PERCENT)	UMEAN+3+URMS/UINF (Percent)	WIND AZINUTH	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
02.00 457.00 912.500 1137.500 1137.500 1137.500 122247.500 2235.500 22247.500 2235.500 2235.500 2235.500 2235.500 2235.500 2335.5000 2335.5000 2335.5000 2335.5000 2335.50000000000000000000000000000000000	21.3 15.6 17.3 15.3 7.3 11.5 20.9 25.4 18.7 18.7 12.5 23.1 23.1	5365739831922642 	34.8 5099.3 14.3 199.3 14.3 12379.8 9 51.4 120.8 53.4 120.8 53.6 120.8 53.6 120.8 53.6 120.8 53.6 120.8 53.6 53.6 53.6 53.6 53.6 53.6 53.6 53.6	0.00 22.50 45.00 90.00 112.50 157.50 180.00 225.00 225.00 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 250 250 250 250 250 250 250 250 250 2	9.3 14.7 16.7 5.8 16.6 20.1 17.9 18.9 13.8 19.4 18.9 13.8 10.6 9.3 8.9	4 8 9 5 1 3 4 4 3 3 3 2 1 6 4 4 4 3 3 3 2 1 6 4 4 4 3 3 3 2 1 6 4 4 4 4 3 3 3 2 1 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23.7 39.3 44.2 9.5 276.0 33.9 279.4 29.6 29.8 20.3 29.4 29.4 23.5 27.4 23.5 27.4 23.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27
DOOR 3							
WIND RZIMUTH	UNEAN/UINF (Percent)	URNS/UINF (Percent)	UNEAN+3+URMS/UINF (PERCENT)				
0.00 22.50 45.50 90.50 112.50 157.50 157.50 225.50 225.50 225.50 2270.50 2270.50 2270.50 2313.50 3135.50	12.7268 15.60 6.69 5.95 7.9 5.96 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	7554 2422 2422 2321 20150 80 10 80	34.4 32.2 310.6 3.9 120.4 15.2 15.2 15.2 15.1 16.9 18.3 14.7 46.4				

TABLE 3--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Configuration A : Data on doors 1, 2, 3, Doors opened : 1, 2, 3, 4, 5, 6

* * GREATEST VALUES * *

UNEAN/UINF (PERCENT)

URNS/UINF (PERCENT)

UNEAN+3+RNS/UINF (PERCENT)

LOC/DR	AZ	NEAN	RHS	N+3RHS	LOC/DR	AZ	NEAN	RHS	N+3RNS	LOC/DR	AZ	NEAN	RNS	H+3RNS
1	225.0	35.4	8.9	61.9	3	337.5	15.5	10.3	46.4	1	225.0	35.4	8.9	61.9
1	202.5	29.7	8.1	53.9	2	45.0	16.7	9.1	44.1	1	202.5	29.7	8.1	53.9
1	337.5	23.1	2,.2	29.6	1	Z25.0	35.4	8.9	61.9	3	337.5	15.5	10.3	46.4
2	135.0	22.4	4.5	36.0	3	315.0	15.0	8.8	41.4	2	45.0	16.7	9.1	44.1
1	315.0	21.5	2.4	28.7	2	22.5	14.7	8.2	39.3	3	315.0	15.0	8.8	41.4
1	0.0	21.3	4.5	34.8	1	202.5	29.7	8.1	53.9	1	180.0	20.9	6.3	39.8
1	180.0	20.9	6.3	39.8	3	0.0	12.7	7.2	34.4	2	22.5	14.7	8.2	39.3
1	157.5	20.5	5.8	37.8	1	180.0	20.9	6.3	39.8	1	157.5	20.5	5.8	37.8
2	157.5	20.1	4.6	33.9	2	292.5	10.6	6.3	29.4	2	135.0	22.4	4.5	36.0
2	225.0	18.9	3.6	29.8	1	157.5	20.5	5.8	37.8	1	0.0	21.3	4.5	34.8

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION B : DATA ON DOORS 2, 3, DOORS OPENED : 2, 3, 4, 5, 6, DOORS CLOSED : 1,

DOOR 3

WIND Azimuth	UNEAN/UINF (Percent)	URNS/UINF (Percent)	UMEAN+3=URMS/UINF (percent)	WIND Azimuth	UNEAN/UINF (Percent)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
0.00 22.50 45.00 67.50 90.00 112.50 135.00	13.1 20.5 19.4 11.3 2.5 7.2 10.7	4.7 5.8 5.4 3.1 .8 3.4 5.8	29.3 37.9 35.4 4.8 17.3 28.1	0.00 22.50 45.00 67.50 90.00 112.50 135.00	6.9 10.9 11.0 5.7 6.4 15.8 19.6	3,9 ,,9 ,,5 ,.5 ,.8 ,.8 ,1 ,4 ,1	16.9 28.4 30.6 13.5 11.7 28.3 34.9
137.50 180.00 225.00 227.50 270.00 270.00 292.50 315.00 337.50	9.8 5.2 5.2 5.6 10.8 14.5 13.1	4.2 2.3 2.3 9 3.1 5 .1 8	21.8 13.7 12.0 10.6 20.2 29.2 27.4	157.50 180.00 202.50 225.00 247.50 270.50 272.50 315.00 337.50	21.7 16.5 16.3 12.8 3.1 5.1 7.5	544336761 	37.7 30.3 27.8 29.1 22.8 11.1 13.3 18.1 15.8

DOOR 2

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Configuration B : Data on doors 2, 3, Doors opened : 2, 3, 4, 5, 6, Doors closed : 1,

* * GREATEST VALUES * *

UMEAN/UINF (PERCENT)

URNS/UINF (PERCENT)

UNEAN+3+RMS/UINF (PERCENT)

LOC/DR	AZ	NEAN	RMS	H+3RH5	LOC/DR	AZ	MEAN	RMS	#+3 # #S	LOC/DR	AZ	MEAN	RMS	# + 3 R H S
2	157.5	21.7	5.3	37.7	2	45.0	11.0	6.5	30.6	3	22.5	20.5	5.8	37.9
3	22.5	20.5	5.8	37.9	2	22.5	10.9	5.9	28.4	2	157.5	21.7	5.3	37.7
2	135.0	19.6	5.1	34.9	3	22.5	20.5	5.8	37.9	3	45.0	19.4	5.4	35.4
3	45.0	19.4	5.4	35.4	3	135.0	10.7	5.8	28.1	2	135.0	19.6	5.1	34.9
2	180.0	16.5	4.6	30.3	3	45.0	19.4	5.4	35.4	2	45.0	11.0	6.5	30.6
2	225.0	16.3	4.3	29.1	2	157.5	21.7	5.3	37.7	2	180.0	16.5	4.6	30.3
2	112.5	15.8	4.2	28.3	2	135.0	19.6	5.1	34.9	3	315.0	14.5	5.i	29.7
3	0.0	15.1	4.7	29.3	3	315.0	14.5	5.1	29.7	3	0.0	15.1	4.7	29.3
2	202.5	14.6	4.4	27.8	3	337.5	13.1	4.8	27.4	2	225.0	16.3	4.3	29.1
3	315.0	14.5	5.1	29.7	3	0.0	15.1	4.7	29.3	2	22.5	10.9	5.9	28.4

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION C : DATA ON DOORS 2, 3, Doors Opened : 2, 3, 4, 5, 6, Doors Partially Closed :1,

DOOR 2

WIND	UNEAN/UINF	URNS/UINF	UHEAN+3+URHS/UINF	WIND	UNEAN/UINF	URMS/UINF	UMEAN+3+URMS/UINF
Azinuth	(percent)	(Percent)	(Percent)	Azimuth	(Percent)	(Percent)	(PERCENT)
0.00 22.50 45.00 90.00 112.50 135.00 157.50 180.00 202.50 247.50 247.50 247.50 270.00 292.50 315.00	15.25 19.38 19.38 12.55 10.19 5.46 9 2.7 13.80	5 5 5 5 5 5 5 5	30.3 36.8 36.2 1.8 15.7 26.4 13.0 11.9 9.9 5.7 21.5 28.9	0.00 22.50 45.00 90.50 112.50 1157.50 1257.50 2255.50 2272.50 247.50 2272.50 247.50 247.50 247.50 247.50 247.50 250 247.50 250 250 250 250 250 250 250 2	6.8 16.5 19.8 7.0 17.6 23.8 18.0 17.6 23.8 18.0 9 17.4 14.8 7.7 5 5	4.1 11.2 12.4 1.9 4.74 5.4 5.4 5.4 5.4 5.4 5.1 5.1 5.1 5.3	18 . 9 50 . 2 15 . 1 15 . 9 12 . 8 31 . 8 30 . 1 22 . 9 33 . 5 23 . 5 23 . 5 23 . 5 23 . 5 23 . 5 23 . 3 24 . 3 29 . 3

TABLE 3--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG CONFIGURATION C : DATA ON DOORS 2, 3, DOORS OPENED : 2, 3, 4, 5, 6, DOORS PARTIALLY CLOSED :1,

* * GREATEST VALUES * *

UNEAN/UINF (PERCENT)

URNS/UINF (Percent)

UHEAN+3+RHS/UINF (PERCENT)

LOC/DR	AZ	HEAN	RMS	N+3RNS	LOC/DR	AZ	MEAN	RMS	N+3RNS	LOC/DR	AZ	NEAN	RMS	M + 3 R M S
2	157.5	23.8	5.4	40.1	2	45.0	19.6	12.2	56.1	2	45.0	19.6	12.2	56.1
2	135.0	22.3	5.4	38.6	2	22.5	16.5	11.2	50.2	2	22.5	5 16.5	11.2	50.2
2	45.0	19.6	12.2	56.1	3	22.5	19.5	5.8	36.8	2	157.5	3 23.8	5.4	40.1
3	22.5	19.5	5.8	36.8	3	45.0	19.3	5.6	36.2	2	135.0	22.3	5.4	38.6
3	45.0	19.3	5.6	36.2	2	157.5	23.8	5.4	40.1	3	22.5	19.5	5,8	36.8
2	180.0	18.0	5.0	33.2	2	135.0	22.3	5.4	38.6	3	45.0	19.3	5.6	36.2
2	112.5	17.6	4.7	31.8	3	135.0	10.1	5.3	26.0	2	180.0	18.0	5.0	33.2
2	225.0	17.4	4.9	32.2	2	292.5	7.7	5.1	22.9	2	225.0	17.4	4.9	32.2
2	22.5	16.5	11.2	50.2	2	180.0	18.0	5.0	33.2	2	112.	17.6	4.7	31.8
2	202.5	15.9	4.6	29.5	3	0.0	15.2	5.0	30.3	3	٥. (15.2	5.0	30.3

TABLE 3--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG CONFIGURATION E: Data on doors 1, 2, 3, Doors Opened: 4, 5, 6, Doors Partially Closed: 1, 2, 3,

LOCATION 1

LOCATION 2

WIND RZIMUTH	UNEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)	WIND Azimuth	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UHEAN+3+URHS/UINF (PERCENT)
0.00 22.50 45.00 90.00 1125.00 135.00 137.50 202.50 225.00 2270.00 2270.00 2337.50	7996684549093978 	5665024440310345	5570737759833893 	0.00 22.50 457.500 11357.500 11357.500 1257.500 22470.500 22470.500 22470.500 22470.500 23137.500	3333333 6778 13322 3222 22322 2322 2322 2322 2 2 2 2	4 5 4 3 0 0 2 1 2 2 0 1 2 0 1 0 3	400093360395831777
LOCATION 3				LOCATION	4		
WIND Azinuth	UNEAN/UINF (Percent)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)	WIND Azimuth	UMEAN/UINF (Percent)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
0.00 22.50 45.00 67.50 90.00 112.50 135.00 1157.50 180.00 202.50 202.50 202.50 202.50 202.50 202.50 200 215.00 215.00 215.00 215.00 215.00 215.00 215.00 200 215.00 200 215.00 200 200 200 200 200 200 200 200 200	3551457665913891		44459865213641	0 2 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0	8996 53 1121063687	1 1 1 0 0 0 2 1 1 2 2 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	11136595486383989

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, Doors Opened : 4, 5, 6, Doors Partially glosed :1, 2, 3,

LOCATION	5				LOCATION	6			
WIND Azimuth		UNEAN/UINF (PERCENT)	URMS/UINF (Percent)	UMEAN+3+URMS/UINF (PERCENT)	WIND Azimuth		UNEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
0.50 45.50 90.50 90.50 1125.50 157.50 22270.50 22702.50 22702.50 23333			2222235432223221	1.7 1.87 154 354 155 155 155 155 155 155 155 155	$\begin{array}{c} 0 & .00\\ 22 & .50\\ 45 & .00\\ 57 & .50\\ 90 & .00\\ 1135 & .00\\ 135 & .00\\ 1202 & .50\\ 2802 & .50\\ 2802 & .50\\ 247 & .50\\ 247 & .50\\ 247 & .50\\ 247 & .50\\ 315 & .00\\ 315 & .00\\ 337 & .50\\ \end{array}$		1.57 1.6 1.58 .9 1.00 1.0 1.0 1.0 1.0 1.1 1.1	332112222232213	2.4 2.53 1.8 1.8 1.4 1.56 1.4 1.6 1.6 1.6 1.6 1.6 1.6
LOCATION	7				LOCATION	8			
WIND Azimuth		UNEAN/UINF (Percent)	URMS/UINF (Percent)	UMEAN+3+URMS/UINF (PERCENT)	WIND Azimuth		UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
0.50 45.50 67.50 112.50 1137.50 1180.50 2225.50 2247.50 2247.50 2247.50 2247.50 2247.50 2313.50		1.1 1.2 1.2 1.2 1.4 2.1 2.3 0 3.0 3 1.8 1.6 1.1 2.1 3.0 3 1.8 1.6 1.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 1.0 0 1.0 0 1.0 0 0 0	222232391974211	1.87 1.99 12.99 12.54 65.09 65.09 65.09 1.326	$\begin{array}{c} 0 & 0 \\ 22 & 50 \\ 45 & 00 \\ 90 & 50 \\ 1135 & 50 \\ 125 & 00 \\ 125 & 50 \\ 200 \\ 200 \\ 245 & 50 \\ 200 \\ 245 & 50 \\ 270 \\ 270 \\ 292 \\ 50 \\ 2315 \\ 50 \\ 337 \\ 50 \end{array}$		9 1 0 1 - 0 1 - 1 1 - 0 1 - 9 1 - 0 1 - 9 1 - 0 1 - 9 2 - 1 1 - 7 1 - 7 1 - 7 1 - 7 1 - 7 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	2222312376422221	1.6 1.7 1.6 2.0 1.7 3.9 4.0 3.7 1.7 1.4 1.4 1.4 1.3

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

LOCATION 10

CONFIGURATION E : DATA ON DOORS 1, 2, 3, DOORS OPENED : 4, 5, 6, DOORS PARTIALLY CLOSED :1, 2, 3,

LOCATION 9				LOCATION I	0		
WIND Azimuth	UNEAN/UINF (Percent)	URMS/UINF (Percent)	UMEAN+3+URMS/UINF (PERCENT)	WIND Azimuth	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URMS/UINF (PERCENT)
0.00 22.30 45.00 90.00 112.50 135.00 135.00 135.00 202.50 225.00 2270.00 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 250 247.50 250 247.50 250 250 250 250 250 250 250 2	1.9 2.7 1.0 3.1 1.1 1.1 1.2 2.5 9 9 1.3	3443222222742222	2.8 3.2 3.5 1.6 1.7 1.7 4.8 1.6 58 1.9	0.00 22.50 45.50 90.00 112.50 135.00 157.50 180.00 202.50 225.50 247.50 247.50 247.50 247.50 2315.00 315.00	3.0 3.1 3.0 5.0 5.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.4 2.0 7.9 0 0 0 3.0 0 0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.0 0.0 0.0 1.0 1.0 1.5 1.8 1.2 1.8 1.2 1.8 1.2 0.0	3.0 3.1 3.0 8.4 9.7 11.9 7.4 10.7 11.9 3.8 2.9 3.5 3.0
LOCATION 11				LOCATION 1	2		
WIND Azimuth	UNEAN/UINF (Percent)	URMS/UINF (Percent)	UMEAN+3+URMS/UINF (PERCENT)	W I N D A Z I MU TH	UMEAN/UINF (Percent)	URMS/UINF (PERCENT)	UMEAN+3*URMS/UINF (PERCENT)
0.00 22.50 45.00 90.00 112.50 135.00 135.00 157.50 202.50 202.50 202.50 202.50 202.50 202.50 202.50 202.50 215.00 270.00 270.50	56004917018397531 56654555543752245	6876768976670056 1.0056	7.4 8.1 7.109 7.636 1.19 7.636 1.19 1.82.1 8.19 5.6 5.8 5.8	0.00 22.50 45.00 90.000 112.500 157.50 1802.500 225.500 225.500 2272.500 2272.500 2315.500 235.5000 235.5000 235.5000 235.5000 235.5000 235.5000 235.5000 235.50000 235.500000000000000000000000000000000000	4 . 1 4 . 3 3 . 4 3 . 9 3 . 4 4 . 5 4 . 2 4 . 2 4 . 2 4 . 1 6 . 4 2 . 7 9 7 3 . 7	7 77 65 66 67 1.6 6 1.6 0 1 .6	66655566650813 66655566650813 162335

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, Doors opened : 4, 5, 6, Doors partially closed :1, 2, 3,

DOOR 1				DOOR 2			
WIND Azimuth	UNEAN/UINF (Percent)	URMS/UINF (percent)	UMEAN+3±URMS/UINF (percent)	WIND Azimuth	UNEAN/UINF (PERCENT)	URMS/UINF (Percent)	UMEAN+3+URMS/UINF (PERCENT)
$\begin{array}{c} 0 \\ 22 \\ 43 \\ 00 \\ 47 \\ 50 \\ 90 \\ 112 \\ 50 \\ 135 \\ 00 \\ 135 \\ 00 \\ 135 \\ 00 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 247 \\ 50 \\ 315 \\ 50 \\ 315 \\ 50 \\ 337 \\ 50 \end{array}$	1 . 1 99 132.65 65 65 67 77 3 . 6 3 . 6 3 . 6 5 6 3 . 6 5 6 3 . 6 5 6 3 . 6 5 6 3 . 6 5 6 5 6 7 7 5 0 6 3 . 6 5 6 7 7 5 0 6 8 6 5 6 7 7 1 . 6 6 6 5 6 7 7 7 5 6 6 7 6 7 7 7 6 6 7 7 7 6 6 7 7 7 7	4 33 1.8 1.4 2.1 1.07 1.07 1.10 22 33 .3	2.4 1.77 1.99 9.39 6.98 5.8 5.8 5.8 5.8 5.9 1.9 2.9 1.99 2.5	$\begin{array}{c} 0 & 0 \\ 22 & 50 \\ 45 & 50 \\ 90 & 00 \\ 112 & 50 \\ 137 & 50 \\ 180 & 30 \\ 225 & 00 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 247 & 50 \\ 2315 & 50 \\ 337 & 50 \\ 337 & 50 \\ \end{array}$	8.7 8.8 8.7 7.5 16.8 17.5 18.6 14.7 18.6 14.7 18.5 7.8 5.7 8.5	9887732862899679 1	11.4 11.4 11.1 9.5 20.5 21.3 24.5 21.4 23.3 13.9 7.5 10.0 11.2
000R 3							
WIND Azimuth	UMEAN/UINF (PERCENT)	URNS/UINF (PERCENT)	UNERN+3+URNS/UINF { PERCENT }				
0.00 22.50 45.00 90.50 112.50 135.00 135.50 180.00 202.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 250 247.50 272.50 215.50	3.64 5.05 3.9 1.22 1.1 1.1 .88 88 3.50 3.50 1	1 . 4 . 7 . 4 . 22 . 22 . 22 . 22 . 22 . 25 9 1 . 1	7.8 7.4 8.0 1.5 1.6 1.6 1.6 1.6 7.4 1.5 1.6 7.4				

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, Doors opened : 4, 5, 6, Doors partially closed :1, 2, 3,

* * GREATEST VALUES * *

UNEAN/UINF (PERCENT)

URNS/UINF (PERCENT)

UMEAN+3*RMS/UINF (PERCENT)

LOC/DR	AZ	MEAN	RMS	N+3RMS	LOC/DR	AZ	MEAN	RMS	N+3RNS	LOC/DR	AZ	MEAN	R M S	M+3RMS
2	157.5	18.6	1.8	24.1	2	180.0	14.8	2.6	22.5	2	157.5	18.6	1.8	24.1
2	225.0	18.0	1.8	23.3	2	202.5	14.7	2.2	21.4	2	225.0	18.0	1.8	23.3
2	135.0	17.8	1.2	21.3	i	135.0	4.5	2.1	10.8	2	180.0	14.8	2.6	22.5
2	112.5	16.5	1.3	20.5	2	247.5	15.5	1.9	21.3	2	202.5	14.7	2.2	21.4
2	247.5	15.5	1.9	21.3	2	270.0	8.2	1.9	13.9	2	135.0	17.8	1.2	21.3
2	180.0	14.8	2.6	22.5	2	157.5	18.6	1.8	24.1	2	247.5	15.5	1.9	21.3
2	202.5	14.7	2.2	21.4	1 0	202.5	6.4	1.8	11.9	2	112.5	16.5	1.3	20.5
10	225.0	10.2	1.8	15.5	1	90.0	3.8	1.8	9.3	1 0	225.0	10.2	1.8	15.5
2	22.5	8.8	. 8	11.4	2	225.0	18.0	1.8	23.3	2	270.0	8.2	1.9	13.9
2	45.0	8.7	. 8	11.1	10	225.0	10.2	1.8	15.5	11	225.0	7.3	1.6	12.1

TABLE 3--WIND VELOCITIES AND TURBULENCE INTENSITIESFLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERGCONFIGURATION G : DATA ON DOORS 1, 2, 3,
DOORS OPENED : 2, 3, 4,
DOORS PARTIALLY CLOSED :1, 5, 6,

000R 1

DOOR 2

WIND Azimuth	UNEAN/UINF (Percent)	URMS/UINF (Pergent)	UMEAN+3+URNS/UINF (PERCENT)	WIND Azimuth	UMEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UHEAN+3+URHS/UINF (PERCENT)
0.00 22.50 45.00 67.50 90.00 1125.50 1135.00 150.00 202.50 2025.00 225.50 2270.00 215.00 215.00 215.00 215.00 215.00 215.00 215.00 215.00 225.00 215.00	2.3 4 2.4 19 12.1 2.5 7 0 3.6 7 0 3.2 1.2 2.3 1.2 2.1 12.3 1 1.2 2.1 2.1 2.1 12.1 1	78657778124502276	4.79 3.41 5779 4.11 5778.19 386.11 4.4 86.11 4.8	00 457 500 1135 1135 222 500 1135 100 225 500 227 500 227 500 227 500 227 500 500 500 500 500 500 500 50	1.8 1.78 1.3 1.3 2.75 2.55 2.77 1.63 1.49 1.9	6672257665323267	5500798235731274
DOOR 3							
WIND Azimuth	UNEAN/UINF (PERCENT)	URMS/UINF (PERCENT)	UMEAN+3+URNS/UINF (PERCENT)				
0.00 22.50 45.00 90.00 112.50 135.00 135.00 1202.50 2225.00 2225.00 2270.00 270.00 272.50 315.00	22.83 22.83 22.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1	7775460533445356	4.97 4.99 7997 3.12 3.14 5.25 4.69 4.39 5.25 4.69 4.39 4.39 4.39 5.25 4.69 4.39 4.39 4.39 4.40 5.25 4.69 4.39 4.39 4.54 5.25 4.69 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.25 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.4				

TABLE 3--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG CONFIGURATION G : DATA ON DOORS 1, 2, 3, DOORS OPENED : 2, 3, 4, DOORS PARTIALLY CLOSED :1, 5, 6,

* * GREATEST VALUES * *

UMEAN/UINF (PERCENT)

URMS/UINF (PERCENT)

UMEAN+3*RMS/UINF (PERCENT)

LOC/DR	AZ	MEAN	R HS	H + 3 R HS	LOC/DR	AZ	MEAN	RMS	M + 3 R M S	LOC/DR	AZ	MEAN	RMS	M+3RMS
1	225.0	4.3	1.5	8.9	1	225.0	4.3	1.5	8.9	i	225.0	4.3	1.5	8.9
1	202.5	4.0	1.4	8.1	1	202.5	4.0	1.4	8.1	1	202.5	4.0	1.4	8.1
1	180.0	3.7	1.2	7.2	1	180.0	3.7	1.2	7.2	1	180.0	3.7	1.2	7.2
1	157.5	3.6	1.1	7.0	1	157.5	3.6	1.1	7.0	1	157.5	3.6	1.1	7.0
1	247.5	3.2	1.0	6.3	1	247.5	3.2	1.0	6.3	1	247.5	3.2	1.0	6.3
3	45.0	2.8	. 7	4.9	3	135.0	2.3	1.0	5.1	3	135.0	2.3	1.0	5.1
3	0.0	2.7	. 7	4.9	1	135.0	2.6	. 8	5.1	1	135.0	2.6	. 8	5.1
2	135.0	2.7	. 7	4.8	1	22.5	2.4	. 8	4.7	3	45.0	2.8	. 7	4.9
3	22.5	2.7	. 7	4.7	2	337.5	2.1	. 7	4.4	3	0.0	2.7	. 7	4.9
1	135.0	2.6	. 8	5.1	2	45.0	1.8	. 7	4.0	2	135.0	2.7	. 7	4.8

TABLE 4--WIND VELOCITIES AND TURBULENCE INTENSITIESFLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERGCONFIGURATION A : DATA ON DOORS 1, 2, 3,
DOORS OPENED : 1, 2, 3, 4, 5, 6

000R 1

DOOR 2

WIND Azimuth	UNEAN (MPH)	URMS (NPH)	UNEAN+3+URNS (NPH)	WIND Azimuth	UHEAN (hph)	URMS (HPH)	UMEAN+3+URMS (MPH)
0 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0	9.089 7.89 1.35.24 1.35.49 1.3	2.0 1.5 2.8 1.7 8 1.7 8 3.6 3.6 4.4 6 7 1.1 0	15.6 11.53 8.9 4.2 6.5 10.4 17.9 24.3 27.5 5.6 12.9 13.3	0.00 22.50 457.50 90.00 1135.000 1357.50 2025.50 2005.50 2	4.2 67.1 67.1 9.1 9.1 8885.20720 44.0		10.7 17.8 190.9 14.3 16.22 15.25 13.25 13.24 13.29 4.62 10.6
DOOR 3							
WIND AZIMUTH	UNEAN (MPH)	URNS (MPH)	UNEAN+3+URMS (NPH)				
0.50 457.500 1157.500 1157.500 125.500 2225.500 22.500 1157.500 2225.500 2227.500 2227.500 2227.500 2227.500 2227.500 2227.500 2225.500 222.500 223.500 223.500 223.500 223.500 223.500 223.500 223.500 223.500 223.500 223.500 223.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.500 233.5000 233.5000 233.5000 233.5000 233.500000000000000000000000000000000000	7860956079647570 233322321267	3.35 2.68 1.30 1.30 1.30 1.49 1.40 6	13.5 14.2 1.4.2 1.5 2.8 5.8 5.8 5.6 5.6 5.6 5.6 18.9				

TABLE 4--WIND VELOCITIES AND TURBULENCE INTENSITIESFLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERGCONFIGURATION A : DATA ON DOORS 1, 2, 3,
DOORS OPENED : 1, 2, 3, 4, 5, 6

* * GREATEST VALUES * *

UNEAN (MPH)

URNS (MPN)

UMEAN+3#RMS (MPH)

LOC/DR	AZ	MEAN	RMS	N+3RNS	LOC/DR	AZ	MEAN	RHS	H+3RHS	LOC/DR	ΑZ	MEAN	RHS	N+3RHS
1	225.0	15.9	4.0	27.9	3	337.5	7.0	4.6	20.9	1	225.0	15.9	4.0	27.9
1	202.5	13.4	3.6	24.3	2	45.0	7.5	4.1	19.6	1	202.5	13.4	3.6	24.3
1	337.5	10.4	1.0	13.3	1	225.0	15.9	4.0	27.9	3	337.5	7.0	4.6	20.9
2	135.0	10.1	2.0	16.2	3	315.0	6.7	4.0	18.6	Z	45.0	7.5	4.1	19.8
1	315.0	9.7	1.1	12.9	2	22.5	6.6	3.7	17.7	3	315.0	6.7	4.0	18.6
1	Q.Q	9.6	2.0	15.6	1	202.5	13.4	3.6	24.3	1	180.0	9.4	2.8	17.9
1	180.0	9.4	2.8	17.9	3	0.0	5.7	3.3	15.5	2	22.5	6.6	3.7	17.7
1	157.5	9.2	2.6	17.0	1	180.0	9.4	2.8	17.9	1	157.5	9.2	2.6	17.0
2	157.5	9.1	2.1	15.2	2	292.5	4.7	2.8	13.2	2	135.0	10.1	2.0	16.2
2	225.0	8.5	1.5	13.4	1	157.5	9.2	2.6	17.0	1	0 .0	9.6	2.0	15.6

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONF SURATION B : DATA ON DOORS 2, 3, DOORS OPENED : 2, 3, 4, 5, 6, DOORS CLOSED : 1,

000R 3

DOOR 2

WIND Azimuth	UMEAN (MPH)	URMS (MPH)	UMEAN+3+URMS (MPH)	WIND AZIMUTH	UNEAN (NPH)	URNS (MPH)	UMEAN+3+URHS (MPH)
0 00	6.8	2.1	13.2	0.00	3.1	1.5	7.6
22 50	ě 2	2 6	17 1	22 50	4 4	2 6	12 8
44.VY	2.4	5 · 7		38.33	Å Å	3.1	17 4
43.00	8.7	<u> </u>	13.2	73.00	3.0	£ · 7	13.0
67.50	5.1	1.4	9.3	67.39	<u> </u>	1. <u>4</u>	<u>8</u> - 1
90.00	1.1	. 3	2.1	90.00	2.9	. 8	5.3
112 50	3 2	1 5	7.8	112.50	7.1	1.9	12.7
	4 6	2.5	12 7	175 00	<u>a</u> <u>a</u>	2 2	15 7
133.00	7.0	2.9	***			3.7	17 0
157.30	4.2	1.7	7.0	126.26	2.9	<u> </u>	<u> </u>
180.00	2.6	1.2	6.2	180.00	7.4	2.1	13.6
202 50	2 4	1 0	5.4	202.50	6.6	2.0	12.5
338 44	3' 7	1.4	ŝ'a	225 00	7 4	1.9	13 1
223.00	£.3	1. 2			z .		10.7
247.39	2.2	. Q	4 - 9	247.34	2.2	* • 2	19.3
270.00	1.2	. 4	2.4	270.00	2.8	. (5.0
292 56	4 8	1.4	9.1	292.50	2.3	1.2	6.0
518' XX	2.4	2 2	17 1	315 00	3 3	1.6	8.2
313.22	2.2	5.3		777 84	2.4	1.7	7 1
557.30	3.7	۷.۷	14.3	33(,3V	٤.7	1.4	r . A

TABLE 4--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG CONFIGURATION B : DATA ON DOORS 2, 3, DOORS OPENED : 2, 3, 4, 5, 6, DOORS CLOSED : 1;

* * GREATEST VALUES * *

UMEAN (MPH)

URMS (MPH)

UHEAN+3+RHS (HPH)

LOC/DR	₩Z	MEAN	RMS	N+3RH5	LOC/DR	ΑZ	MEAN	R MS	H+3RHS	LOC/DR	AZ	MEAN	RMS	M+3RMS
2	157.5	9.8	2.4	17.0	2	45.0	5.0	2.9	13.8	3	22.5	9.2	2.6	17.1
3	22.5	9.2	2.6	17.1	2	22.5	4.9	2.6	12.8	2	157.5	9.8	2.4	17.0
2	135.0	8.8	2.3	15.7	3	22.5	9.2	2.6	17.1	3	45.0	8.7	2.4	15.9
3	45.0	8.7	2.4	15.9	3	135.0	4.8	2.6	12.7	2	135.0	8.8	2.3	15.7
2	180.0	7.4	2.1	13.6	3	45.0	8.7	2.4	15.9	2	45.0	5.0	2.9	13.8
2	225.0	7.4	1.9	13.1	2	157.5	9.8	2.4	17.0	2	180.0	7.4	2.1	13.6
2	112.5	7.1	1.9	12.7	2	135.0	8.8	2.3	15.7	3	315.0	6.5	2.3	13.4
3	0.0	6.8	2.1	13.2	3	315.0	6.5	2.3	13.4	3	0 .0	6.8	2.1	13.2
2	202.5	6.6	2.0	12.5	3	337.5	5.9	2.2	12.3	2	225.0	7.4	1.9	13.1
3	315 0	6.5	2 3	13.4	3	0.0	6.8	2.1	13.2	2	22.5	4.9	2.6	12.8

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION C : DATA ON DOORS 2, 3, DOORS OPENED : 2, 3, 4, 5, 6, DOORS PARTIALLY CLOSED : 1,

DOOR 3

DCOR 2

WIND Azimuth	UNEAN (MPH)	URMS (MPH)	UMEAN+3+URMS (MPH)	WIND Azimuth	UNEAN (NPH)	URHS (HPH)	UNEAN+3+URMS (MPH)
0.00	6.9	2.3	13.6	0.00	3.0	1.8	8.5
22.50	8.6	2.6	16.6	22.50	7.4	2.1	22.0
67.50	5.3	1.5	10.3 9.7	67.50	2.6	1.5	7.2
90.00	i i	. 4	2.2	90.00	3.1	<u>9</u>	5.8
112.50	<u>3.1</u>	1.3	7.0	112.50	7.9	2.1	14.3
135.00	4.5	2.4	11.7	133.00	10.0	2.4	17.4
137.30	4.V 2.6		7.0	180 00	8 1	2.3	14 9
202 50	2.4	1.9	5.2	202.50	7.1	2.1	13.3
225.00	2.5	1.0	5.4	225.00	7.8	2.2	14.5
247.50	2.2	. 7	4.5	247.50	6.4	1.4	10.7
270.00	1.3	4	2.6	270.00	3.1	. 9	3.5
292.50	4.8	1.6	7 . (12. 0	272.30	3.7	2.3	10.3
337.50	5.9	2.1	12.1	337.50	2.9	1.9	8.7

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION C : DATA ON DOORS 2, 3, Doors Opened : 2, 3, 4, 5, 6, Doors Partially Closed : 1,

* * GREATEST VALUES * *

UNEAN (MPH)

URMS (MPH)

UHEAN+3+RHS (HPH)

LOC/DR	ÂZ	MEAN	RMS	N+3RNS	LOC/DR	ΑZ	MEAN	R MS	M+3RHS	LOC/DR	AZ	MEAN	RMS	H+3RHS
2	157.5	10.7	2.5	18.0	2	45.0	8.8	5.5	25.2	2	45.0	8.8	5.5	25.2
2	135.0	10.0	2.4	17.4	2	22.5	7.4	5.1	22.6	2	22.5	7.4	5.1	22.6
2	45.0	8.8	5.5	25.2	3	22.5	8.8	2.6	16.6	2	157.5	10.7	2.5	18.0
3	22.5	8.8	2.6	16.6	3	45.0	8.7	2.5	16.3	2	135.0	10.0	2.4	17.4
3	45.0	8.7	2.5	16.3	2	157.5	10.7	2.5	18.0	3	22.5	8.8	2.6	16.6
2	180.0	8.1	2.3	14.9	2	135.0	10.0	2.4	17.4	3	45.0	8.7	2.5	16.3
2	112.5	7.9	2.1	14.3	3	135.0	4.5	2.4	11.7	2	180.0	8.1	2.3	14.9
2	225.0	7.8	2.2	14.5	2	292.5	3.5	2.3	10.3	2	225.0	7.8	2.2	14.5
2	22.5	7.4	5.1	22.6	2	180.0	8.1	2.3	14.9	2	112.5	7.9	2.1	14.3
2	202.5	7.1	2.1	13.3	3	0 .0	6.9	2.3	13.6	3	Q.Q	6.9	2.3	13.6

TABLE 4--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG CONFIGURATION E : DATA ON DOORS '1, 2, 3, DOORS OPENED : 4, 5, 6, DOORS PARTIALLY CLOSED : 1, 2, 3,

LOCATION 1

LOCATION 2

WIND Azimuth	UMEAN (MPH)	URNS (MPH)	UMEAN+3±URMS (MPH)	WIND Azimuth	UMEAN (mph)	URMS (MPH)	UNEAN+3+URMS (NPH)
0.00 22.30 45.00 67.50 112.50 1135.00 1135.00 1135.00 1202.50 247.50 250 247.50 200 247.50 200 250 250 250 250 250 250 250 250 2	1.67 1.8 1.61 1.35 1.55 1.33 1.55 1.33 1.77 1.7	2 3 3 2 0 1 2 2 0 1 2 2 0 1 1 0 1 2 2 0 1 1 0 1 2 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 2 2 0 1 1 1 2 2 0 1 1 1 2 2 2 0 1 1 1 2 2 2 0 1 1 1 2 2 2 0 1 1 1 2 2 2 0 1 1 1 2 2 2 1 1 1 2 2 2 2	2.3 2.5 2.2 1.5 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 1.5 1.7 2.4	0.00 22.50 45.00 90.50 90.50 1157.50 157.50 202.50 247.50 247.50 215.00 315.00 315.50	1.5 1.6 1.7 1.0 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2 2 1 0.0 0.0 1 1 1 0.0 1 0.1 0.1	2.0 22.3 1.0 1.16 1.5 3 1.6 7 0 1.4 2.7
LOCATION 3				LOCATION			
WIND Azimuth	UNEAN (MPH)	URMS (mph)	UNEAN+3+URMS (MPH)	W I N D A Z I MU TH	UNEAN (MPH)	URMS (MPH)	UNEAN+3+URMS (NPH)
0.00 22.50 45.00 90.50 112.50 135.00 135.00 1202.50 2225.00 2247.50 2247.50 2247.50 2247.50 2315.00 337.50	1.5 1.6 1.4 1.1 1.1 1.1 1.1 1.1 1.3 1.4 1.3 1.4		1.8 1.8 1.4 1.1 1.3 1.3 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4	0.00 22.50 45.50 90.00 112.50 135.00 135.00 180.50 202.50 2247.50 2247.50 2270.00 247.50 270.00 315.00 315.50	1.3 1.3 1.1 1.1 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4	.0 .0 .0 .0 .0 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0	1.4 1.5 1.1 1.1 1.5 1.5 5 1.5 5 1.5 3.3 1.3

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, DOORS OPENED : 4, 5, 6, DOORS PARTIALLY CLOSED : 1, 2, 3,

LOCATION 5

LOCATION

WIND Azimuth	UNEAN (MPH)	URHS (MPH)	UNEAN+3+URMS (MPH)	WIND Azimuth	UMEAN (mph)	URMS (MPH)	UHEAN+3+URNS (NPH)
$\begin{array}{c} 0 & 0 \\ 22 & 50 \\ 45 & 00 \\ 67 & 50 \\ 112 & 50 \\ 1135 & 50 \\ 180 & 00 \\ 2025 & 50 \\ 247 & 50$	555547876544444	1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88 87 1.15 1.20 1.08 77 77 66	0.00 22.50 45.00 50.00 1125.00 157.50 157.50 1580.50 22470.00 22470.00 22470.00 22470.00 22470.00 22470.00 23137.50	777744445544456	.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	1.109567768876769
LOCATION 7				LOCATION 8	i		
WIND Azimuth	UNEAN (MPH)	URNS (NPH)	UNEAN+3+URNS (MPH)	UIND Azinuth	UNEAN (HPH)	URMS (MPH)	UNEAN+3+URMS (NPH)
0.00 22.50 45.00 90.50 1125.50 1135.50 1135.50 1202.50 2225.00 2227.50 2227.50 2922.50 2922.50 2922.50 2923.50	5555656030875444	. 1 . 1 . 1 . 1 . 1 . 4 . 3 . 4 . 3 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	889 97 1 2 28 1 83 1 83 7 6 6 7	0.00 22.50 45.00 90.00 1125.00 157.00 157.00 225.00 225.00 225.00 227.0 247.0 27.0 27.0 2315.00 3337.50	4 4 5 4 5 4 5 4 5 4 5 4 4 4 4	. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	78779679967081.081.18486766

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, Doors opened : 4, 5, 6, Doors partially closed : 1, 2, 3,

LOCATION 9

LOCATION 10

WIND Azîmuth	UNEAN (MPH)	URNS (MPH)	UNEAN+3+URNS (MPH)	WIND Azimuth	UNEAN (NPH)	URNS (MPH)	UMEAN+3+URHS (MPH)
0.00 22.50 45.00 67.50 112.50 112.50 1137.50 180.00 2022.50 247.50 247.50 247.50 315.00 315.00	8999844655551.7744556		1.3 1.5 1.5 1.7 .69 .88 1.9 1.27 .89 1.27 .89	0.00 22.50 45.00 50.00 115.00 135.00 135.00 202.50 202.50 202.50 202.50 202.50 202.50 202.50 200 215.00 200 215.00 200 215.00 200 215.00 200 200 200 200 200 200 200 200 200	1.34 4.35 2.46 896 82 34 3 	0.0 0.0 0.0 0.5 .4 .4 .5 .7 .8 .8 .5 .1 0.0 .1	1.3 1.4 1.3 3.3 7.2 8 4.8 4.9 7.0 4.4 1.3 6 3.1 1.1 1.3
LOCATION 11				LOCATION 12	:		
WIND Azimuth	UMEAN (MPH)	URNS (mph)	UNEAN+3+URNS (MPH)	WIND AZIMUTH	U ME AN (MP H)	URMS (MPH)	UNEAN+3+URHS (MPH)
0.00 22.50 45.00 67.50 90.00 112.50 1135.00 1157.50 180.00 202.50 202.50 2470.50 2470.50 2470.50 2470.50 2470.50 2470.50 2470.50 2470.50 2470.50 250 250 250 250 250 250 250 2	57774235297372193 222222222113221193	3333333433730022	3.772216485473160	0.00 225.50 90.50 90.50 115.50 125.50 125.50 225.50 225.50 22470.50 22470.50 2470.50 2470.50 2470.50 2470.50 2470.50 2470.50 250 2470.50 250 250 250 250 250 250 250 250 250 2	1.89 1.99 1.97 1.00 99 1.99 90 2.33 7	333333333630012	89863797866882454 2.2.2.2.2.2.2.4.5.4 2.2.2.2.2.2.4.5.4 2.1.1.1.2.

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION E : DATA ON DOORS 1, 2, 3, Doors Opened : 4, 5, 6, Doors Partially Closed : 1, 2, 3,

000R 1

DOOR 2

WIND Azimuth	UNEAN (NPH)	URMS (MPH)	UNEAN+3+URNS (HPH)	WIND Azimuth	UNEAN CHPH>	URNS (MPH)	UNEAN+3+URNS (NPH)
0.00 22.50 45.00 112.50 112.50 1137.50 180.00 202.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 247.50 250 247.50 250 250 247.50 250 250 250 250 250 250 250 250 250 2	544 457 1.202 1.22 1.22 1.43 68 .7	2 1 1 8 7 9 4 4 3 5 4 1 1 2 1	1 1 8 8 4 2 3 1 4 2 2 4 2 4 2 6 2 3 1 7 5 9 1 3 1 1	$\begin{array}{c} 0 & 0 \\ 22 & 5 \\ 45 & 0 \\ 67 & 5 \\ 90 & 0 \\ 112 & 5 \\ 157 & 5 \\ 157 & 5 \\ 200 \\ 2255 & 0 \\ 247 & 5 \\ 272 & 5 \\ 272 & 5 \\ 315 & 0 \\ 337 & 5 \\ 337 & 5 \\ \end{array}$	3.9 4.0 3.3 3.5 4.0 4.7 6.1 0.7 5 5 8 6.1 0.7 5 5 8 8 6.1 0 7 3.2 3.8 8 8 6.1 0 7 5 5 8	4 4 3 8 5 5 6 1 1 1 1 9 9 9 3 3 4	5.1 5.1 5.0 4.8 9.6 9.6 10.5 10.5 10.5 6 3.4 5.0 3.4 5.0
DOOR 3							
WIND Azimuth	UNEAN (NPH)	URNS (MPH)	UNEAN+3+URNS (MPH)				
0.00 22.50 45.00 90.00 112.50 135.00 157.50 180.50 202.50 202.50 225.00 2270.00 292.50 292.50 292.50 337.50	1.6 2.4 2.6 .4 .5 .5 .5 .5 .4 .4 1.6 2.2	6 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3332 9888777259 232				

TABLE 4--WIND VELOCITIES AND TURBULENCE INTENSITIES FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Configuration E: Data on doors 1, 2, 3, Doors Opened : 4, 5, 6, Doors Partially Closed : 1, 2, 3,

* * GREATEST VALUES * *

UNEAN (MPH)

URMS (MPH)

UNEAN+3#RHS (NPH)

LOC/DR	AZ	MEAN	RHS	#+3 R #\$	LOC/DR	AZ	MERN	R MS	N+3RNS	LOC/DR	AZ	MEAN	RMS	M+3 R M S
2	157.5	8.4	. 8	10.9	2	180.0	6.7	1.1	10.1	2	157.5	8.4	. 8	10.9
2	225.0	8.1	. 8	10.5	2	202.5	6.6	1.0	9.6	2	225.0	8.1	. 8	10.5
2	135.0	8.0	. 5	9.6	1	135.0	2.0	. 9	4.8	2	180.0	6.7	1.1	10.1
2	112.5	7.4	. 6	9.2	2	247.5	7.0	. 9	9.6	2	202.5	6.6	1.0	9.6
2	247.5	7.0	. 9	9.6	2	270.0	3.7	. 9	6.3	2	135.0	8.0	. 5	9.6
2	180.0	6.7	1.1	10.1	2	157.5	8.4	. 8	10.9	2	247.5	7.0	. 9	9.6
2	202.5	6.6	1.0	9.6	10	202.5	2.9	. 8	5.4	2	112.5	7.4	. 6	9.2
10	225.0	4.6	. 8	7.0	1	90.0	1.7	. 8	4.2	10	225.0	4.6	. 8	7.0
2	22.5	4.0	.4	51	2	225.0	8.1	. 8	10.5	2	270.0	3.7	. 9	6.3
2	45.0	3.9	.4	5.0	10	225.0	4.6	. 8	7.0	11	225.0	3.3	. 7	5.4

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION G : DATA ON DOORS 1, 2, 3, Doors Opened : 2, 3, 4, Doors Partially Closed : 1, 5, 6,

000R 1

D00R 2

WIND Azimuth	UNEAN (MPH)	URMS (MPH)	UMEAN+3+URNS (MPH)	WIND Azimuth	UMEAN (MPH)	URMS (MPH)	UMEAN+3+URMS (MPH)
0.00 22.50 45.00 90.00 112.50 125.00 157.50 2802.50 225.00 247.50 247.50 292.50 315.50	1.0 1.1 .8 1.0 1.2 1.6 1.7 1.7 1.9 1.9 1.9	3332334556751133	2.0 2.1 1.8 5 8 3.2 2.7 8 8 3.2 2.7 8 8 8 2.0 8 8 2.0 7 1.7	0.00 22.50 45.50 90.00 112.50 135.00 180.00 205.00 225.00 2270.00 270.00 317.50 337.50	.88 .65 	33311233821111133	1.6 1.8 9 88 2.2 1.9 1.6 1.6 1.7 1.7 2.0
DOOR 3							

WIND	UNEAN	URMS	UMEAN+3+URHS
Azimuth	(MPH)	(MPH)	(MPH)
0.00 22.50 67.50 90.00 112.50 135.00 157.50 120.00 225.00 225.00 2270.50 227.50 227.50 227.50 2315.00 317.50	1.2 1.3 1.0 7 9 1.0 7 7 6 8 9 7 1.1	3332234211222123	22.12 22.12 1.2 1.2 1.2 1.12 1.12 1.12

FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

CONFIGURATION G : DATA ON DOORS 1, 2, 3, Doors Opened : 2, 3, 4, Doors Partially Closed : 1, 5, 6,

* * GREATEST VALUES * *

UNEAN (MPH)

URMS (MPH)

UNEAN+3+RMS (MPH)

LOC/DR	AZ	MEAN	RMS	H+32H5	LOC/DR	AZ -	MEAN	R MS	N+3RHS	LOC/DR	AZ	MEAN	RMS	H+3RHS
1	225.0	1.9	. 7	4.0	1	225.0	1.9	. 7	4.0	1	225.0	1.9	.7	4.0
1	202.5	1.8	. 6	3.7	1	202.5	1.8	. 6	3.7	1	202.5	1.8	. 6	3.7
1	180.0	1.7	. 5	3.2	1	180.0	1.7	. 5	3.2	1	180.0	1.7	. 5	3.2
1	157.5	1.6	. 5	3.2	1	157.5	1.6	. 5	3.2	1	157.5	1.6	. 5	3.2
1	247.5	1.4	. 5	2.8	1	247.5	1.4	. 5	2.8	1	247.5	1.4	. 5	2.8
3	45.0	1.3	. 3	2.2	3	135.0	1.0	.4	2.3	3	135.0	1.0	. 4	2.3
3	0.0	1.2	. 3	2.2	1	135.0	1.2	.4	2.3	1	135.0	1.2	.4	2.3
2	135.0	1.2	. 3	2.2	1	22.5	1.1	. 3	2.1	3	45.0	1.3	. 3	2.2
3	22.5	1.2	. 3	2.1	2	337.5	. 9	. 3	2.0	3	0.0	1.2	. 3	2.2
1	135.0	1.2	.4	2.3	2	45.0	. 8	. 3	1.8	2	135.0	1.2	. 3	2.2

TABLE 5A. PEAK LOADS FOR CONFIGURATION B : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 2, Doors opened : 2, 3, 4, 5, 6, Doors closed : 1,

LARGEST VALUES OF CLADDING LOAD

TAP	AZI- Muth	PRESS COEFF	NEGATIVE F PEAK PSF	PEAK	TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK PS	POSITIVE PEAK F	TAP	AZI- Muth	PRESS Coeff	NEGATIVE F PEAK PSF	OSITIVE PEAK
101	315	-1.36	-28.6	13.9	111	225	64	-13.5	4.3					

REFERENCE PRESSURE = 21.0 PSF

TABLE 5A. PEAK LOADS FOR CONFIGURATION B : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 2, Doors opened : 2, 3, 4, 5, 6, Doors closed : 1,

LARGEST VALUES OF CLADDING LOAD

REFERENCE PRESSURE = 21.0 PSF

* * 2 GREATEST PRESSURE MAGNITUDES * *

TAP	AZI- Muth	PRESS COEFF	NEGATIVE P PEAK PSF	PEAK
101	315	-1.36	-28.6	13.9
111	225	64	-13.5	4.3

TABLE 3A. PEAK LOADS FOR CONFIGURATION D : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 2, 3, Doors Opened : 4, 5, 6, Doors Closed : 1, 2, 3,

REFERENCE PRESSURE = 21.0 PSF LARGEST VALUES OF CLADDING LOAD TAP AZI- PRESS NEGATIVE POSITIVE TAP AZI- PRESS NEGATIVE POSITIVE TAP AZI- PRESS NEGATIVE POSITIVE

	NUIN	CUEFF	PERK PSF	PERK		nvin	CUEFF	PERK PS	F	n	017	LUEFF	PSF	PENK	
101	315	-1.34	-28.1 -17.2	14.0	201 211	225	-1.18	-24.8 -16.4	13.7 2.8	301 311	22	-1.30 81	-27.4 -17.0	12.8 3.2	

TABLE 5A. PEAK LOADS FOR CONFIGURATION D : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 2, 3, Doors opened : 4, 5, 6, Doors closed : 1, 2, 3,

LARGEST VALUES OF CLADDING LOAD

REFERENCE PRESSURE = 21.0 PSF

* * 6 GREATEST PRESSURE MAGNITUDES * *

TAP	AZI- Muth	PRESS COEFF	NEGATIVE F PEAK PSF	PEAK
101	315	-1.34	-28.1	14.0
301	22	-1.30	-27.4	12.8
201	225	-1.18	-24.8	13.7
111	٥	82	-17.2	3.2
311	٥	81	-17.0	3.2
211	٥	78	-16.4	2.8

TABLE 5A. PEAK LOADS FOR CONFIGURATION E : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 2, 3, Doors dpened : 4, 5, 6, Doors partially closed : 1, 2, 3,

LARG	EST VA	LUES OF	CLADDING	LOAD			REFERENCE PRESSURE = 21.0				O PSF			
TAP	AZI- Muth	PRESS Coeff	NEGATIVE PEAK	PEAK	TAP	AZI- Muth	PRESS COEFF	NEGATIVE P Peak Psf	PEAK	TAP	AZI- Muth	PRESS Coeff	NEGATIVE POS PEAK P PSF -	ITIVE EAK
$101 \\ 111$	315	-1.40 58	-29.5	13.1	201 211	225	-1 15	-24.2	11.9	301 311	292	-1.21	-25.4 1 -13.8	1.73.5

TABLE 5A. PEAK LOADS FOR CONFIGURATION E : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 2, 3, Doors opened : 4, 5, 6, Doors partially closed : 1, 2, 3,

LARGEST VALUES OF CLADDING LOAD

REFERENCE PRESSURE = 21.0 PSF

* * 6 GREATEST PRESSURE MAGNITUDES * *

TAP	AZI- Muth	PRESS COEFF	NEGATIVE P PERK PSF	PEAK
101	315	-1 40	-29.5	13.1
301	٥	-1.21	-25.4	11.7
201	225	-1.15	-24.2	11.9
311	292	66	-13.8	3.5
211	45	59	-12.4	4.3
111	90	58	-12.2	3.9

 TABLE 5A.
 PEAK LOADS FOR CONFIGURATION F :
 FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG

 Data on doors 1, 5, 6,
 Doors Opened : 2, 3, 4,

 Doors Closed : 5, 6,
 Doors Fartially Closed : 1,

 Largest values of cladding Load
 Reference Pressure = 21.0 PSF

TAP	AZI- Muth	PRESS COEFF	NEGATIVE I Peak Psi	POSITIVE PERK F	TAP	AZI- Muth	PRESS COEFF	HEGATIVE Peak Ps	POSITIVE PEAK F	TAP	AZI- Muth	PRESS Coeff	NEGATIVE PEAK PS	POSITIVE PEAK F
101 111 501	¢ 45 90	-1.39 63 61	-29.2 -13.3 -12.8	14.0 5.4 5.6	511 512 601	247 180 315	-1.90 -1.44 62	-39.9 -30.2 -13.0	17.6 12.5 5.6	611 612	0 0	-1.75 -1.65	-36.7 -34.6	14.3 13.5
TABLE 5A. PEAK LOADS FOR CONFIGURATION F : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 5, 6, Doors opened : 2, 3, 4, Doors closed : 5, 6, Doors partially closed : 1,

LARGEST VALUES OF CLADDING LOAD

REFERENCE PRESSURE = 21.0 PSF

* * 8 GREATEST PRESSURE MAGNITUDES * *

TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK PS	POSITIVE PEAK F
511	247	-1.90	- 39 . 9	17.6
611	0	-1.75	-36.7	14.3
612	٥	-1.65	-34.6	13.5
512	180	-1.44	-30.2	12.5
101	٥	-1.39	-29.2	14.0
111	45	63	-13.3	5.4
601	315	62	-13.0	5.6
501	90	61	-12.8	5.6

89

, HBL	Е ЈН.	DATA DOORS DOORS	DN DOORS OPENED : Partially	1, 5, 6, 2, 3, 4, CLOSED : 1	i, 5, 6	,		DGN EXANDS	, (EN13)	SHOTTLE	NJJEND	<u></u> , ,,	NVENDERU	
LARG	EST VA	LUES OF	F CLADDING	LOAD				REFERENCE	PRESSURE	= 21.0 P	SF			
TAP	A Z I - Muth	PRESS COEFF	HEGATIVE PEAK PS	POSITIVE PEAK F	TAP	AZI- Muth	PRESS COEFF	NEGATIVE Perk Psi	POSITIVE PEAK F	TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK	POSITIVE PEAK 5F
1¢1 111 501	315 292 45	-1.39 63 62	-29.3 -13.1 -13.0	14.1 4.5 3.8	511 512 601	180 180 292	-1.32 -1.45 61	-27.7 -30.4 -12.9	16.1 14.2 4.3	611 612	315 45	-1.32 -1.20	-27.6 -25.3	14.9 13.9

TABLE 5A. PEAK LOADS FOR CONFIGURATION G : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG Data on doors 1, 5, 6, Doors opened : 2, 3, 4, Doors partially closed : 1, 5, 6,

LARGEST VALUES OF CLADDING LOAD

REFERENCE PRESSURE = 21.0 PSF

* * 8 GREATEST PRESSURE MAGNITUDES * *

TAP	AZI- Muth	PRESS COEFF	NEGATIVE PEAK PS	POSITIVE PEAK F
512	180	-1.45	-30.4	14.2
101	315	-1.39	-29.3	14.1
511	180	-1.32	-27.7	16.1
611	315	-1.32	-27.6	14.9
612	45	-1.20	-25.3	13.9
111	292	63	-13.1	4.5
501	45	62	-13.0	3.8
601	292	61	-12.9	4.3

70

APPENDIX A NOTES

- 1. Table of Pressure Coefficients of each Tap for each Wind Direction is included.
- 2. Plot of pressure Coefficients of each Tap for each Wind Direction is included.

₩D	TAP	CPNEAN CPR	MS CPNAX	CPHIN	WD.	TAP	CPMEAN	CPRMS	CPMAX	CPHIN	WD	TAP	CPHEAN	CPRMS	CPMAX	CPMIN
0022557700	101 111 101 101 101 101 111	557 .1 128 .1 424 .1 109 .0 523 .1 139 .0 602 .1 243 .0 214 .0 262 .0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1.1555 7382 9401 9474 4606 4800	1 12 1 35 1 357 1 580 1 802 2 022	111 101 111 101 111 101 101 111 101	- 258 - 047 - 1448 - 2684 - 2684 - 2684 - 2684 - 2682 - 2195 - 225	0700 1076 0977 1094 0997	- 023 381 145 138 660 202 5121	477 391 391 3568 015 015 053	247 2770 2992 315 3137 3337	1 0 1 1 1 1 1 0 1 1 1 1	052 308 416 2730 360 951 227 187	084 083 074 105 084 105 084 117 090 127	. 204 049 155 043 377 083 581 286 . 145	360 561 770 508 -1.079 639 -1.360 509

APPENDIX A -- PRESSURE DATA ; CONFIGURATION D ; FLOW THROUGH EXHAUST VENTS, SNUTTLE ASSENBLY, VANDENBERG PAGE A 2

WD	TAP	CPHEAN CPRMS	CPNAX	CPMIN	WD	TAP	CPHEAN	CPRMS	CPMAX	CPHIN	WD	TAP	CPREAN	CPRHS	CPMAX	CPHIN
D 0000022225555557777770000002 2222225555557777777000002	TAP 101 201 201 201 201 201 201 201	CPHEAN CPRNS - 557 202 - 523 101 231 128 - 504 085 - 471 188 - 496 088 - 426 113 - 440 082 - 256 101 - 449 077 - 646 131 - 439 080 - 522 120 - 438 080 - 234 089 - 433 077 - 611 123 - 415 077 - 611 082 - 415 077 - 018 089 - 415 077 - 018 089 - 435 087 - 375 077 - 201 089 - 3778 077 - 201 089 - 387 077 - 201 089 - 387 077 - 201 089 - 387 077 - 201 089	C	CPHIN -1.1820233 -1.1827805831 -1.28058334 -1.2805831 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058331 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.28058333 -1.2805833 -1.2805833 -1.2805833 -1.2805833 -1.2805833 -1.2805833 -1.2805833 -1.2805833 -1.28058 -1.28058	D 2222555555777777000000000222222555	TAP 2011 3101 1011 1011 1011 1011 1011 1011	CP ME HN 719 431 023 023 372 751 376 376 368 .215 368 705 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 365 365 376 376 376 376 368 368 368 365 375 497 497 492 211	LFRR3 104 00803 00794 10079 00794 00794 00794 00794 00795 00775 00775 0080338 0098324 0080338 00981 00803 00991 00803 00991 00803 00794 00803 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00794 00795 00803 00995 0000 0095 00000 00000 00000 00000 0000 00000 0000 00000 00000 00000 00000 00000 00000 00000 0	$\begin{array}{c} - & 1 \\ 3 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	$\begin{array}{c} -1 & .081 \\708 \\708 \\322 \\631 \\532 \\607 \\5957 \\1609 \\5957 \\1602 \\5597 \\5597 \\5597 \\5597 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\7081 \\364 \\1364 \\1364 \\1364 \\138 \end{array}$	2224444477777799999999111111113333333333333	30111 1011 1011 1011 1011 1011 1011 101	$\begin{array}{c} - & 0.27 \\ - & 1.147 \\ - & 0.785 \\ - & 0.7857 \\ - & 0.70857 \\ - & 0.70857 \\ - & 1.147 \\ - & 0.70857 \\ - & 1.147 \\ - & 1.1428 \\ -$	087 087 0705 075 087 087 087 087 087 087 087 087 084 085 084 085 084 085 084 0864 0864 0864 0864 0864 0864 0864	2821 1510 11250 1110 11250 1110 11250 1110 11250 1120 112	

ND	TAP	CPHEAN	CPRMS	CPMAX	CPHIN	WD.	TAP	CPMEAN	CPRMS	CPMAX	CPMIN	ND.	TAP	CPREAN	CPRMS	CPMAX	CPMIN
2222222255555555577777700000222	10111111111111111111111111111111111111		1519 0207778 1007778 10082847 1008647 1008667 100887 10088 1008687 10088 100788 10088 1007788 1007788 1007788 1007788 1007788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 10077788 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 1007766 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 1007778 10077778 10077778 1007778 10077778 10077778 10077778 1007778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 10077778 1007778 10077778 10077778 10077778 100777778 10077	- 1000000000000000000000000000000000000	-1	222255555577777000000022222255555555555	223310101111111111111111111111111111111	- 724759 724759 - 20833335 - 125757 - 20826220 - 20826 - 20820 - 20820	51484872810032169781516187402897 000000000000000000000000000000000000		$\begin{array}{c} -1 & 0 & 20 \\ -1 & 4 & 33 \\ -2 & 4 & 31 \\ -3 & 5 & 23 \\ -1 & 3 & 5 & 22 \\ -1 & 3 & 5 & 22 \\ -1 & -3 & 3 & 5 & 22 \\ -1 & -2 & 0 & 29 & 26 \\ -1 & -2 & 0 & 29 & 26 \\ -1 & -2 & 0 & 29 & 26 \\ -1 & -2 & 0 & 29 & 26 \\ -1 & -2 & 3 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & 0 & 29 \\ -1 & -2 & -2 & -2 & 0 \\ -1 & -2 & -2 & -2 & -2 \\ -1 & -2 &$	224444477777700000222222555555557777777777	33111211111111111111111111111111111111	77981971185471056437288200643118640 010512432225553423138643378880 03036351243237322534231386433188640 	711 00763028870497633771 0082028870497633771 00800786997633771 008007899708651990081051900 0080098105199001061668779	556821989069827331728883400785908 	33404762482318475758572278140293

APPENDIX A -- PRESSURE DATA ; CONFIGURATION E : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG PAGE A 3

APPENDIX A -- PRESSURE DATA ;

CONFIGURATION F : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG PAGE A 4

$ \begin{array}{c} 0 & 101 &539 & 1124 &128 & -1.389 & 112 & 511 &756 & 0.97 &496 & -1.110 & 2225 & 611 &046 & 0.95 & .278 & \\ 101 &333 & 0.75 &086 &5358 & 112 & 501 &757 & 1.28 &1012 & 225 & 611 &046 & 0.957 & \\ 101 &3323 & 0.75 &084 &556 & 112 &576 & 0.97 &084 & \\ 225 & 0.11 &057 & 0.073 & \\ 101 &333 & 0.75 &084 &556 & 112 &576 & 0.97 &296 & \\ 102 &334 & \\ 247 & 101 &014 & 0.57 & 0.067 &008 & \\ 103 &235 & 0.088 &312 & 247 & 101 &014 & 0.57 & 0.057 & \\ 104 &535 & 0.72 &020 &564 & 1.12 & 612 &035 & 0.88 &312 & 247 & 501 &114 & 0.57 & 0.057 & \\ 0 & 6011 &556 & 0.72 &020 &1664 & 1.135 & 511 &765 & 0.64 & 1.164 &247 & 501 &115 & 0.67 & 0.777 & \\ 0 & 6011 &556 & 0.72 &020 &1664 & 0.135 & 5112 &764 & 0.054 & 1.164 &247 & 501 &115 & 0.67 & 0.777 & \\ 0 & 6011 &556 & 0.77 &086 & -1.375 & 512 &764 & 0.057 &128 & 0.77 &115 & 0.077 & 0.77 & \\ 0 & 6011 &556 & 0.77 &086 & -1.375 & 512 &764 & 0.057 &128 & 0.77 &115 & 0.077 &115 & 0.077 &115 & 0.077 &116 &088 & 0.77 &1168 & \\ 0 & 6011 &057 & 0.20 &577 & 1.375 & 511 &764 & 0.057 &247 & 511 &115 & 0.067 & 0.77 &118 &017 &088 & 0.77 &118 &007 &088 &1112 & 0.077 &118 &007 &088 &1110 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &1100 &088 &$	₩D.	TAP C	PMEAN C	PRMS	CPNAX	CPMIN	ND.	TAP	CPMEAN	CPRMS	CPMAX	CPHIN	ND	TAP	CPHEAN	CPRMS	CPNAX	CPMIN
90 612 - 153 .096 188 - 541 225 501 - 031 .066 .177 - 280 337 601 - 377 .070 - 147 112 101 - 144 074 684 - 412 225 511 - 774 .136 - 378 -1.271 337 611 - 570 .135 .066 -1.	D 0000000777777778888888888888888899999999	TA 0110112112112112112112112112112112112112	P 523566516990933774729113928786830465356699093377472911392878833978823397882346533465334653347313139287885336113046633443339788234	PR 107234 107234 1072394 1072668 1072668 10776668 107776668 107776668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 10777668 1077768 1077768 1077768 1077768 1077768 1077768 1077768 1077768 10777768 1077768 1077768 1077768 1077768 1077768 1077768 10777768 10777768 10777768 1077768 10777768 10777768 107777777777	C	N 9188917586488123782858198798898180287712	U 22225555555777777777700000002222222255555555	H 122112112112112112112112112112112112112	L P PE HA 	CFR 6 5 7 85 7 85 7 85 7 85 7 85 7 85 7 85	Image: Construction of the second	$\begin{array}{c} -1 \\ -1 \\ 1 \\ 0 \\ 3 \\ 1 \\ 0 \\ 4 \\ 8 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	= 22244444447777777799999999999991111111111	6611101121121121121111121111112111211121	- 0117494600000000000000000000000000000000000	09533771 09533771 00877571 00877571 0077634300776 0077304 0077634300 0051105550 0051121588 003100 105550 0051121588 00310755	- -	740158497330889547025740482773741

APPENDIX A -- PRESSURE DATA ; CONFIGURATION G : FLOW THROUGH EXHAUST VENTS, SHUTTLE ASSEMBLY, VANDENBERG PAGE A 5

WD	TAP	CPHEAN CPRI	IS CPHAX	CPNIN	WD.	TAP	CPMEAN	CPRMS	CPMAX	CPHIN	ND	TAP	CPHEAN	CPRMS	CPMAX	CPHIN
00000000000000000000000000000000000000	115556661155566611555666115555666115555666115 0110112112111011011011011011011011011011	- 243 0 - 2515 1 - 2515 1 - 2515 1 - 2538 1 - 2538 1 - 2538 1 - 2667 0 - 2663 1 - 2667 0 - 2663 1 3305 1 3305 1 3305 1 		1 - - - - - - - - - - - - -	11111111111111111111111111111222222222	121121111121111121121112112112112112112	- 737 - 6329 - 1992 - 12283 - 12283 - 12283 - 12283 - 7447 - 7782 - 7757 - 7782 - 7782	03711321580111714189202479511238751115958836 0100000000000000000000000000000000000	<td< td=""><td>$\begin{array}{c} -1 & .032\\ -1 & .0329\\ -2 & .03529\\ & .2867350\\ & .2867350\\ & .296800\\ & .3296800\\ & .004189\\ & .004189\\ & .0042522\\ & .0022989\\ & .32197\\ & .33037981\\ & .33037981\\ & .33037981\\ & .21671\\ & .2367350\\ & .33037981\\ & .2367350\\ & .236735\\ & .236735\\$</td><td>22244444447777777777999999999993333333333</td><td>121111211211211211211211211211211211211</td><td>7749938136246230895287492054884718506385951 </td><td>6078193577507238678411354533309354981818661945 000000000000000000000000000000000000</td><td>$\begin{array}{c} 31492325776508639829567926667818111000409408\\ -11110001001078495103314514531453145314531453145314531453145$</td><td>29998628379782340367608530043011886818310 </td></td<>	$\begin{array}{c} -1 & .032\\ -1 & .0329\\ -2 & .03529\\ & .2867350\\ & .2867350\\ & .296800\\ & .3296800\\ & .004189\\ & .004189\\ & .0042522\\ & .0022989\\ & .32197\\ & .33037981\\ & .33037981\\ & .33037981\\ & .21671\\ & .2367350\\ & .33037981\\ & .2367350\\ & .236735\\$	22244444447777777777999999999993333333333	121111211211211211211211211211211211211	7749938136246230895287492054884718506385951 	6078193577507238678411354533309354981818661945 000000000000000000000000000000000000	$\begin{array}{c} 31492325776508639829567926667818111000409408\\ -11110001001078495103314514531453145314531453145314531453145$	29998628379782340367608530043011886818310

Configuration B

Configuration D

Configuration E

Configuration F

