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ABSTRACT

METHODS FOR EXTREMES OF FUNCTIONAL DATA

Motivated by the problem of extreme behavior of functional data, we develop statistical theory

at the nexus of functional data analysis (FDA) and extreme value theory (EVT). A fundamental

technique of functional data analysis is to replace infinite dimensional curves with finite dimen-

sional representations in terms of functional principal components (FPCs). The coefficients of

these projections, called the scores, encode the shapes of the curves. Therefore, the study of the

extreme behavior of functional time series can be transformed to the study on functional principal

component scores. We first derive two tests of significance of the slope function using functional

principal components and their empirical counterparts (EFPC’s). Applied to tropical storm data,

these tests show a significant trend in the annual pattern of upper wind speed levels of hurricanes.

Then we establish sufficient conditions under which the asymptotic extreme behavior of the mul-

tivariate estimated scores is the same as that of the population scores. We clarify these issues,

including the rate of convergence, for Gaussian functions and for more general functional time

series whose projections are in the Gumbel domain of attraction. Finally, we derive the asymptotic

distribution of the sample covariance operator and of the sample functional principal components

for functions which are regularly varying and whose fourth moment does not exist. The new theory

is applied to establish the consistency of the regression operator in a functional linear model, with

such errors.
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Chapter 1

Introduction

Functional data analysis (FDA) is a dynamic branch of statistics that provides powerful tools

and techniques to study information contained in a collection of curves or surfaces. It is con-

cerned with observations, called functional data, that are viewed as smooth functions defined over

some domain. Examples include daily stock returns over a specific period of time and annual pat-

terns of temperature in some region. Methodological foundations of FDA are addressed in [1], its

mathematical foundations in [2]. An important feature of FDA is its ability to take into account the

temporal dependence between the observations. Functional time series arise in economics, finance,

and demography to better analyze, model and forecast time series data. Compared to traditional

methods studying scalar and vector time series, functional time series methods are often able to

approximate the periodic components with irregular sampling patterns [3], and effectively reduce

data noise through curve smoothing [4]. In spite of a huge amount of literature on scalar or vector

time series, methodologies for functional time series are in strong demand.

Functional data are intrinsically infinite dimensional. Even though they are measured discretely

over a finite subset of some interval, the dimensionality is still very high. The high dimensional-

ity of these data presents big challenges for both theory and computation. Dimension reduction,

therefore, is a central issue. Functional data analysis offers a way to approach high-dimensional

or infinite-dimensional problems. The fundamental technique of FDA is functional principal com-

ponent analysis (FPCA), see [1, 2, 5, 6]. It is derived from principal component analysis (PCA),

extending the finite dimensional setting to the infinite dimensional one. Both settings thus have

the same underlying concepts and objectives. The individual curves are represented by a linear

combination of basis functions. One choice of basis functions is functional principal components

(FPC’s), the orthonormal eigenfunctions of the covariance operator of the process. By truncating

the basis representation at a finite depth and estimating FPC’s using empirical functional principal

components (EFPC’s), a lower dimensional representation is obtained to approximate the infinite
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dimensional curves. Asymptotic properties of EFPC’s were established by [7] for iid cases and

extended to weakly dependent functional time series by [8].

The study of extreme values is another important topic in applied sciences. Extreme value

theory (EVT) provides theoretical foundations for quantifying the stochastic behavior of a process

at unusually large or small levels. It is widely used in many disciplines, such as finance, insurance,

geology and climatology. There are many excellent accounts of EVT, including [9–12]. One

of the key issues is to estimate the distribution of the maximum or minimum values, which are

called extremes. For a single process, the limit laws for the distribution of maximum value, called

maxima, can be expressed by three extreme value distributions: Gumbel, Fréchet and Weibull, first

derived by [13]. The behavior of extremes for functional data is also of interest, but it has not

been studied extensively. It is therefore hoped that we provide useful contribution that merges the

ideas of functional data analysis and extreme value theory. The major contributions consist of the

study of the extreme behavior of functional time series and of functional principal components and

scores.

The dissertation is organized as follows. Chapter 2 derives two tests of significance of the slope

function using functional principal components and their empirical counterparts. One of the tests

relies on a Monte Carlo distribution to compute the critical values, the other is pivotal with the chi-

square limit distribution. These tests are applied to tropical storm data to detect the annual trend

pattern of the upper wind speed levels of hurricanes. Chapter 3 establishes sufficient conditions

under which the asymptotic extreme behavior of the multivariate estimated scores is the same as

that of the population scores. We clarify these issues, including the rate of convergence, for Gaus-

sian functions and for more general functional time series whose projections are in the Gumbel

domain of attraction. Chapter 4 derives the asymptotic distribution of the sample covariance oper-

ator and of the sample functional principal components for functions, which are regularly varying

and whose fourth moment does not exist. The new theory is applied to establish the consistency of

the regression operator in a functional linear model, with such errors.
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The following chapters of this dissertation are based on the papers during my Ph.D. program.

• Chapter 2 is based on the paper: P. Burdejova, W. Hardle, P. Kokoszka and Q. Xiong, Change

point and trend analyses of annual expectile curves of tropical storms, Econometrics and

Statistics , 1 , 101-117, 2017.

• Chapter 3 is based on the paper: P. Kokoszka and Q. Xiong, Extremes of projections of

functional time series on data-driven basis systems, Extremes, 21, 177-204, 2018.

• Chapter 4 is based on the paper: P. Kokoszka, S. Stoev, Q. Xiong, Principal components

analysis of regularly varying functions. Under review of Bernoulli.

Before moving to individual research topics, in the remainder of this chapter we will introduce

some fundamental concepts that will be used in subsequent chapters. In particular, we will give an

introduction to functional data, functional principal components, functional linear regression and

review the classical change point tests. Then we look at some basic concepts of extreme value

theory, extreme properties for stationary sequences, and introduce the definition of the regularly

varying random element.

1.1 Functional Data

We introduce basic concepts of functional data in a separable Hilbert space H with inner prod-

uct ⟨·, ·⟩. Denote by L the space of bounded (continuous) linear operators on H with the norm

||Ψ||L = sup{||Ψ(x)|| : ||x|| ≤ 1}.

A linear operator Ψ : H → H is Hilbert–Schmidt if
∑∞

j=1 ||Ψ(ej)||2 < ∞, where {ej} is any

orthonormal basis of H . The space S of Hilbert-Schmidt operators is a separable Hilbert space

with the scalar product

⟨Ψ1,Ψ2⟩S =
∞∑

j=1

⟨Ψ1(ej),Ψ2(ej)⟩ .

3



Suppose X1, X2, . . . , XN are a realization of independent and identically distributed (iid) ran-

dom function X = {X(t), t ∈ T } in L2 = L2(T ), the space of integrable functions on a compact

interval T . For simplicity, we work on T = [0, 1] since any compact interval can be normalized to

unit interval. The space L2 = L2([0, 1]) is the set of measurable real-valued functions x defined on

[0, 1] satisfying
∫ 1

0
x2(t)dt <∞. The space L2 is a separable Hilbert space with the inner product

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt.

An important class of operators in L2 are the integral operators defined by

Ψ(x)(t) =

∫ 1

0

ψ(t, s)x(s)ds, x ∈ L2, (1.1.1)

with the real kernel ψ(·, ·). Then ∥Ψ∥2S =
∫∫

ψ2(t, s)dtds and ∥Ψ∥L ≤ ∥Ψ∥S . Such operators are

Hilbert -Schmidt if and only if
∫∫

ψ2(t, s)dtds <∞.

A random function X is said to be square integrable if E ||X||2 = E
∫ 1

0
X2(t)dt < ∞. We

then define the mean and covariance functions by

µ(t) = E[X(t)],

c(t, s) = E[(X(t)− µ(t))(X(s)− µ(s))].

Similar to (1.1.1), the covariance operator of X can be defined by

C(x) = E[⟨(X − µ), x⟩ (X − µ)] =

∫ 1

0

c(t, s)x(s)ds, x ∈ L2. (1.1.2)

IfX1, X2, . . . , XN are iid inL2, all the functional parameters can be estimated by the sample equiv-

alents. The sample mean function, sample covariance function and sample covariance operator are

defined by

µ̂(t) =
1

N

N∑

i=1

Xi(t),

4



ĉ(t, s) =
1

N

N∑

i=1

(Xi(t)− µ̂(t))(Xi(s)− µ̂(s)),

and

Ĉ(x) =
1

N

N∑

i=1

⟨Xi − µ̂, x⟩ (Xi − µ̂), x ∈ L2. (1.1.3)

For a more comprehensive introduction of functional data, see [6].

1.1.1 Functional principal components

The fundamental technique of functional data analysis (FDA) is functional principal component

analysis (FPCA). Each curve Xi admits the expansion

Xi(t) =
∞∑

j=1

√
λjZijvj(t), (1.1.4)

where the λj and vj are, respectively, the eigenvalues and the eigenfunctions of the covariance

operator C defined in (1.1.2), i.e. C(vj) = λjvj, j ≥ 1. The eigenvalues must be identifi-

able, so we assume that λ1 > λ2 > · · · . In practice, we are concerned about the p largest

eigenvalues, and assume that λ1 > λ2 > · · · > λp > λp+1, which implies that the first p

eigenvalues are nonzero. The random variables Zij , called the jth score of Xi, are defined by

Zij = λ
−1/2
j ⟨Xi, vj⟩ = λ

−1/2
j

∫ 1

0
Xi(t)vj(t)dt. They encode the shapes of the functions Xi with

unit variance. In applications, the infinite expansion is replaced by truncating at a finite depth

which involves estimated counterparts of the quantities in (1.1.4). That is to approximate the infi-

nite dimensional curve using a p-dimensional representation with the form

Xi(t) ≈
p∑

j=1

√
λ̂jẐij v̂j(t), (1.1.5)

where the λ̂j and v̂j are the eigenvalues and the eigenfunctions of the sample covariance oper-

ator Ĉ defined in (1.1.3), i.e. Ĉ(vj) = λ̂j v̂j, j ≥ 1. The estimated scores Ẑij are defined by

Ẑij = λ̂
−1/2
j ⟨Xi, v̂j⟩ = λ̂

−1/2
j

∫ 1

0
Xi(t)v̂j(t)dt. The eigenfunctions of the covariance operator C

5



are called the functional principal components (FPC’s) and the eigenfunctions of the sample co-

variance operator Ĉ are called the empirical functional principal components (EFPC’s).

Suppose E ||X||4 < ∞ and λ1 > λ2 > · · · > λp > λp+1. Large sample justifications of the

applications of expansion (1.1.5) rely on the following bounds:

lim sup
N→∞

NE ||ĉj v̂j − vj||2 <∞, lim sup
N→∞

NE|λ̂j − λj|2 <∞, (1.1.6)

where ĉj = sign(⟨v̂j, vj⟩). Relations (1.1.6) were established by [7] for iid functions, and extended

to weakly dependent functional time series by [8]. The weak dependence is quantified by the

condition known as Lp − m−approximability. For p ≥ 1, we denote by Lp
H = Lp(Ω,A,P) the

space of H = L2 valued random variables X such that

vp(X) = (E ||X||p)1/p =
(
E

{∫
X2(t)dt

}p/2
)1/p

<∞.

DEFINITION 1.1.1. A sequence {Xi} ∈ Lp
H is called Lp−m−approximable if each Xi admits the

representation

Xi = f(ϵi, ϵi−1, · · · ),

where the ϵi are iid elements taking values in a measurable space S and f is a measurable function

f : S∞ → H . Moreover we assume that if {ϵ′i} is an independent copy of {ϵi} defined on the same

probability space, then letting

X
(j)
i = f(ϵi, ϵi−1, · · · , ϵi−j+1, ϵ

′
i−j, ϵ

′
i−j−1, · · · )

we have
∞∑

j=1

vp(Xi −X
(j)
i ) <∞.

6



Definition 1.1.1 implies that {Xi} is strictly stationary. We choose p = 4 for our applications of

FDA. Theorem 16.2 in [6] shows that relations (1.1.6) still hold if {Xi} is anL4−m−approximable

sequence and λ1 > λ2 > · · · > λp > λp+1.

Furthermore, [14] derived the asymptotic normality of the random variables N1/2(λ̂j − λj)

using complex arguments related to those developed by [7]. Suppose the random function Xi can

be written as a infinite dimensional stochastic process, i.e. Xi =
∑+∞

j=−∞ aj(ϵi−j). The random

variables ϵj are iid with mean 0 satisfying E ||ϵ||4 < ∞. The bounded linear operators aj map L2

onto L2 and satisfy
∑+∞

j=−∞ ||aj||S < ∞. {Xi} is thus a strictly stationary sequence of random

functions in L2. [14] showed that there exists some Gaussian random operator Z ∈ S , such that

ZN := N1/2(Ĉ − C)
d→ Z, N → ∞.

Denoted by Cϵ the covariance operator of {ϵj} and ej the jth largest eigenvector of Cϵ. Then

N1/2(λ̂j − λj)
d→ N(0, σ2

j ),

with the variance σ2
j = E ⟨Z(ej), ej⟩2. In the course of his proof he also established the asymptotic

normality of the random functions N1/2(ĉj v̂j − vj). [15] then presented simpler arguments under

which the asymptotic properties still hold. Let y ⊗ z be the integral operator in Hilbert space H

defined by (y ⊗ z)(x) = ⟨y, x⟩ z for x ∈ H . Set

Tj =
∑

k ̸=j

(λj − λk)
−1 ⟨Z, vj ⊗ vk⟩ vk.

Suppose {Xi} is an L4 −m−approximable sequence and λ1 > λ2 > · · · > λp > λp+1. Then

N1/2 {v̂j − vj, 1 ≤ j ≤ p} d→ {Tj, 1 ≤ j ≤ p} , in (L2)p.

7



The {Tj, 1 ≤ j ≤ p} are jointly Gaussian distributed with cross covariance operators (for j1 =

1, · · · , p and j2 = 1, · · · , p)

∑

k1 ̸=j1,k2 ̸=j2

⟨Γ, (vj1 ⊗ vk1)⊗ (vj2 ⊗ vk2)⟩
(λj1 − λk1)(λj2 − λk2)

vk1 ⊗ vk2 .

See [15] for more details.

1.1.2 Functional linear regression model

Functional regression model is one of the most powerful tools of functional data analysis.

Recall that the simplest linear regression model is

Yi = β0 + β1xi + ϵi, i = 1, 2, · · · , N,

in which all random variables are scalars, and the regressors xi are typically assumed to be known

scalars. In a functional linear regression model, some of these quantities are curves, and analogs of

the coefficients β0 and β1 must be then appropriately defined. Suppose the explanatory functions

X1, · · · , XN are iid with mean zero in L2. The fully functional model is

Yi(t) =

∫ 1

0

ψ(t, s)Xi(s)ds+ ϵi(t), i = 1, 2, ·, N,

where ψ(·, ·) is the kernel of Ψ ∈ S i.e.
∫ ∫

ψ2(t, s)dtds < ∞. It reflects the effect of the

explanatory functions Xi at time s on the response functions Yi at time t. The error functions ϵi

are assumed to be iid with mean zero in L2 and independent of Xi. The responses Yi are thus iid

in L2. Consider the expansions of explanatory and response functions

X(s) =
∞∑

i=1

ξivi(s), Y (t) =
∞∑

j=1

ζjuj(t),

where the vj are the FPC’s of X and the uj the FPC’s of Y , and
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ξi = ⟨X, vj⟩ , ζj = ⟨Y, uj⟩ .

An estimator of the kernel ψ(·, ·) is

ψ(t, s) =
∞∑

k=1

∞∑

l=1

E[ξlζk]

λl
uk(t)vl(s) (1.1.7)

with λl = E[ξ2l ], the eigenvalue corresponding to vl. The series converging in L2([0, 1] × [0, 1]),

equivalently in S , see Lemma 8.1 in [6]. Another approach to estimate ψ(·, ·) is to consider esti-

mating the form (1.1.7) using EFPC’s, i.e.

ψ̂KL(t, s) =
K∑

k=1

L∑

l=1

λ̂−1l σ̂lkûk(t)v̂l(s),

where σ̂lk is an estimator of E[ξlζk]. The simplest estimator is

σ̂lk =
1

N

N∑

i=1

⟨Xi, v̂l⟩ ⟨Yi, ûk⟩ .

1.1.3 Change point tests of the mean function

Recall that the empirical eigenvalues and eigenfunctions are estimated using the sample co-

variance operator defined in (1.1.3). This approach is however not valid if the observations Xi do

not have the same mean. Furthermore, the inference based on the FPC’s will no longer be valid.

A simple type of change is that the mean function changes abruptly from one deterministic curve

to another. For scalar observations, the model for an abrupt change is Xi = µ1 + Yi, 1 ≤ i ≤ k⋆,

Xi = µ2 + Yi, k
⋆ < i ≤ N , where k⋆ is an unknown change point. Assuming k⋆/N → θ, then Ĉ

is close to CY + θ(1 − θ) ⟨∆, ·⟩∆, where ∆ = µ1 − µ2. Therefore, the eigenfunctions of Ĉ will

then no longer estimate the eigenfunctions of CY , the covariance operator of the Yi. Change point

methodology is often applied to time series, for example, to detect changes in the average annual

temperature at a specific location.
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We assume that the observations Xi ∈ L2 are independent. We want to test if their mean

remains constant in i, i.e. test the null hypothesis

H0 : EX1 = EX2 = · · · = EXN .

The specific value of the mean is not part of the null hypothesis. The alternative is that there is at

least one unknown change point such that the equality under H0 fails. Under the alternative we

can also locate the change points, see Chapter 6 in [6].

Consider the estimated scores corresponding to the largest d eigenvalues

ξ̂l,i =

∫ 1

0

[Xi(t)− X̄N(t)]v̂l(t)dt, i = 1, 2, · · · , N, l = 1, 2, · · · , d,

where X̄N(t) = N−1
∑N

i=1Xi(t). The statistic used to derive the test of the constancy of the mean

function is

TN(x) =
1

N

d∑

l=1

λ̂−1l

( ∑

1≤i≤Nx

ξ̂l,i − x
∑

1≤i≤N
ξ̂l,i

)2

.

The λ̂l and v̂l are the empirical functional principal eigenvalues and eigenfunctions. Under the null

hypothesis, we can represent each functional observation as

Xi(t) = µ(t) + Yi(t), EYi(t) = 0. (1.1.8)

Assume that Yi(t) in (1.1.8) are iid mean zero random elements of L2 which satisfying E ||Yi||4 =
∫ 1

0
EY 4

i (t)dt < ∞, and satisfy λ1 > λ2 > · · · > λd > λd+1, for some d > 0. Then Theorem 6.1

in [6] showed that, under H0,

TN(x)
d→
∑

1≤l≤d
B2

l (x) (0 ≤ x ≤ 1),

in the Skorokhod topology on the space D[0, 1] of right-continuous functions on [0, 1] having

limits to the left at each t ∈ (0, 1]. Here Bl(·) are independent standard Brownian bridges. There-
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fore, we can produce effective tests by the Cramér-von-Mises functional. The convergence of

∫ 1

0
TN(x)dx

d→
∫ 1

0

∑
1≤l≤dB

2
l (x)dx can be rewritten as

SN,d =
1

N2

d∑

l=1

1

λ̂l

N∑

k=1

(∑

1≤i≤k
ξ̂l,i −

k

N

∑

1≤i≤k
ξ̂l,i

)2

d→
∫ 1

0

∑

1≤l≤d
B2

l (x)dx := Kd.

The limit distribution was derived by [16]. Denoting by cd(α) its (1−α)th quantile, the test rejects

H0 if SN,d > cd(α). The critical values cd(α) are given in Table 6.1 in [6].

1.2 Extreme value theory

The asymptotic theory of sample extremes has been developed in parallel with the central limit

theory. Let X1, X2, · · · be independent and identically distributed random variables. The central

limit theory is concerned with the limit behavior of the partial sums X1 + X2 + · · · + XN as

N → ∞, while the theory of sample extremes is concerned with the limit behavior of the sample

extremes max(X1, X2, · · · , XN) or min(X1, X2, · · · , XN) as N → ∞. Since

min(X1, X2, · · · , XN) = −max(−X1,−X2, · · · ,−XN),

we will focus on sample maxima.

Suppose X1, X2, · · · are iid random variables with common cumulative distribution function

(cdf) F . The maximum of the firstN random variables is denoted byMN = max(X1, X2, · · · , XN).

Observe that

P (MN ≤ x) = P (X1 ≤ x, · · · , XN ≤ x) = FN(x).

DEFINITION 1.2.1. Suppose there exists a sequence of constants aN > 0 and bN such that

lim
N→∞

P

(
MN − bN

aN
≤ x

)
= lim

N→∞
FN(aNx+ bN) = G(x), (1.2.9)
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for every continuity point x of G and G a nondegenerate distribution function. The class of distri-

butions F satisfying (1.2.9) is called in the domain of attraction of G.

The class of distributions that can occur as a limit in the relation (1.2.9) is called the class of

extreme value distributions. It has the form of Gγ(ax+ b) with a > 0, b real, where

Gγ(x) = exp
(
− (1 + γx)−1/γ

)
, 1 + γx > 0,

with extreme value index γ real and where for γ = 0 the right-hand side is interpreted as exp(−e−x).

Besides Definition 1.2.1, there are several equivalent definitions of belonging to a domain of

attraction. von Mises established a sufficient condition for F to be in the domain of attraction of

Gγ .

DEFINITION 1.2.2. The distribution function F with its right endpoint x⋆ = sup {x : F (x) < 1}

is said to satisfy von Mises’ condition, if F ′′(x) exists, F ′(x) is positive for all x in some left

neighborhood of x⋆, and

lim
t↑x⋆

(
1− F

F ′

)′
(t) = γ,

where γ ∈ R is some constant.

The distribution function F satisfying von Mise’s condition with some γ is in the domain of

attraction of Gγ , see Theorem 1.1.8 in [12].

There are three classes for the extreme value distributions Gγ .

• Type I (Gumbel distribution): with γ = 0,

Λ(x) = exp(−e−x), x ∈ R.
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• Type II (Fréchet distribution): for γ > 0, use Gγ((x− 1)/γ) and get α = 1/γ > 0,

Φα(x) =





0 x ≤ 0

exp(−x−α) x > 0

• Type III (Weibull distribution): for γ < 0, use Gγ(−(1 + x)/γ) and get α = −1/γ > 0,

Ψα(x) =





exp(−(−x)−α) x < 0

1 x ≥ 0

.

Notice that the Gumbel distribution is light-tailed with 1 − Λ(x) ∼ e−x, as x → ∞. Fréchet

distribution has a rather heavy right tail with 1−Φα(x) ∼ ααx−α, as x→ ∞. Weibull distribution

has a short tail with the right endpoint α and 1−Ψα(α− x) ∼ (α−1x)α, as x ↓ 0.

1.2.1 Gumbel domain of attraction

The distribution function F is said to be in the Gumbel domain of attraction if (1.2.9) holds

with γ = 0, i.e.

lim
N→∞

FN(aNx+ bN) = exp(−e−x), x ∈ R. (1.2.10)

Gaussian distribution is a common example of a distribution in the Gumbel domain of attraction.

DEFINITION 1.2.3. For any nondecreasing function f , f← is the left-continuous inverse if

f←(x) := inf
{
y : f(y) ≥ x

}
.

Let the function U be the left-continuous inverse of 1/(1− F ). Define the function f by

f(t) :=
1− F (t)

F ′(t)
.
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If von Mises’ condition in Definition 1.2.2 is satisfied for γ = 0, then the normalizing constants in

(1.2.10) can be chosen as

aN = f(U(N)), bN = U(N).

See Section 1.2 in [12] for more details.

1.2.2 Extremes of stationary sequence

Let X̃1, X̃2, · · · be a (strictly) stationary sequence of random variables with marginal distribu-

tion function F . The assumption entails that for integer h ≥ 0 and N ≥ 1, the distribution of

the random vector (X̃h+1, · · · , X̃h+N) does not depend on h. We also want to find the limiting

distribution of the sample maximum M̃N = max(X̃1, X̃2, · · · , X̃N). However, the limit distribu-

tion need not be the same as for the maximum MN = max(X1, X2, · · · , XN) of the associated,

independent sequence {Xi} with the same marginal distribution as {X̃i}.

Let M(I) = maxi∈I X̃i and

Ij,k(un) = {{M(I) ≤ un} : I ⊆ {j, · · · , k}}

to be the set of all intersections of the events {X̃i ≤ un}, j ≤ i ≤ k. A mixing condition known

as the D(uN) condition [17] is a sufficient condition that ensure that the M̃N and MN have the

similar limit distributions.

DEFINITION 1.2.4. For all A1 ∈ I1,l(uN), A2 ∈ Il+s,N(uN) and 1 ≤ l ≤ N − s,

|P (A1 ∩ A2)− P (A1)P (A2)| ≤ α(N, s)

and α(N, sN) → 0 as N → ∞ for some positive integer sequence sN such that sN = o(N). This

is called D(uN) condition.

The D(uN) condition says that any two events of the form {M(I1) ≤ uN} and {M(I2) ≤ uN}

can become approximately independent as N increases when the index sets Ii ⊂ {1, · · · , N}
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are separated by a relatively short distance sN = o(N). Hence the D(uN) condition limits the

long-range dependence between such events.

Theorem 10.4 in [11] showed the relationship between the M̃N and MN .

THEOREM 1.2.1. Suppose there exist sequences of constants aN > 0 and bN and a non-degenerate

distribution function G(x) such that (1.2.9) is satisfied,i.e.

P
(MN − bN

aN
≤ x

)
d→ G(x), N → ∞.

if D(uN) holds with uN = aNx+ bN for each x such that G(x) > 0 and if P ((M̃N − bN)/aN ≤ x)

converges for some x, then

P
(M̃N − bN

aN
≤ x

)
d→ G̃(x) := Gθ(x), N → ∞,

for some constant θ ∈ [0, 1], which is called the extremal index.

For a stationary sequence X̃1, X̃2, · · · with the Gaussian marginal distribution, we can specify

how close the distributions of M̃N and MN will be. [18] showed that

P (M̃N ≤ uN)− P (Mn ≤ uN) ∼ e−CRN .

for some sequence uN satisfying

N(1− F (uN)) → C > 0, N → ∞.

The term of RN has the order

N−(1−ρ)/(1+ρ)(logN)−ρ/(1+ρ)

for some 0 < ρ ≤ 1, and N−1 logN for ρ = 0.
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1.2.3 Regular Variation

Recall that the Fréchet distribution is heavy-tailed. The fundamental relationship between reg-

ular variation and extreme value theory is that a random variable X lies in the domain of attraction

of a Fréchet distribution with parameter α > 0 if and only if P (X > ·) is regularly varying with

index −α. Regularly varying random variables form thus the entire domain of attraction of the

Fréchet extreme value distribution.

DEFINITION 1.2.5. A measurable function f : [a,∞) → R+ is regularly varying with index α > 0

if, for all t > 0,

f(tu)

f(u)
→ tα > 0, u→ ∞.

We write f ∈ RVα. If α = 0, f is said to be slowly varying (at infinity).

Slowly varying functions are generically denoted by L(u). Functions of the form R(u) =

uαL(u) are exactly regularly varying with index α.

To define a regular varying random element in a separable Banach space B, we define Bϵ :=

{z ∈ B : ∥z∥ < ϵ} be the open ball of radius ϵ > 0, centered at the origin. Hilbert space is an

example of Banach space. A Borel measure µ defined on B0 := B\{0} is said to be boundedly

finite if µ(A) <∞, for all Borel sets that are bounded away from 0, that is, such that A ∩Bϵ = ∅,

for some ϵ > 0. Let M0 be the collection of all such measures. For µn, µ ∈ M0, we say that the µn

converge to µ in the M0 topology, if µn(A) → µ(A), for all bounded away from 0, µ-continuity

Borel sets A, i.e., such that µ(∂A) = 0, where ∂A := A \ A◦ denotes the boundary of A. The M0

convergence can be metrized such that M0 becomes a complete separable metric space (Theorem

2.3 in [19] and also Section 2.2. of [20]). Then we can give the definition of a regularly varying

element in B.

DEFINITION 1.2.6. A random element X in B is regularly varying with index α > 0 if there exists

V (u) ∈ RV−α and

P (X ∈ u·)
V (u)

M0−→ µ(·), u→ ∞. (1.2.11)
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for some non-null meaure µ on the Borel σ-field B(B0) of B0 = B\ {0}.

V (u) = P (||X|| > u) is regularly varying with index −α hence this choice suits for (1.2.11).

There are some equivalent definitions of regular variation, which we state in Proposition 1.2.1. See

Section 2.2. of [20] and [21] for more details.

PROPOSITION 1.2.1. Let X be a random element in a separable Banach space B and α > 0. The

following three statements are equivalent:

(i) For some slowly varying function L,

P (||X|| > u) = u−αL(u) (1.2.12)

and

P (u−1X ∈ ·)
P (||X|| > u)

M0−→ µ(·), u→ ∞,

where µ is a non-null measure on the Borel σ-field B(B0) of B0 = B\ {0}.

(ii) There exists a regularly varying sequence aN with index 1/α such that

NP (X ∈ aN ·) M0−→ µ(·), N → ∞,

for measure µ same as the one in (i).

(iii) There exists a probability measure Γ on the unit sphere S in B such that, for every t > 0,

P (||X|| > tu,X/ ||X|| ∈ ·)
P (||X|| > u)

w−→ t−αΓ(·), u→ ∞.

(iv) Relation (1.2.12) holds, and for the same spectral measure Γ in (iii),

P (X/ ||X|| ∈ ·| ||X|| > u)
w−→ Γ(·), u→ ∞.
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If any one of the equivalent conditions in Proposition 1.2.1 hold, we shall say thatX is regularly

varying with index α. The measures µ and Γ will be referred to as exponent and angular measures

of X , respectively. The exponent measure µ satisfies

µ(tA) = tαµ(A), ∀t > 0, A ∈ B0.

It admits the polar coordinate representation via the angular measure Γ. That is, if x = rθ, where

r := ∥x∥ and θ = x/∥x∥, for x ̸= 0, we have

µ(dx) = αr−α−1drΓ(dθ).

This means that for every bounded measurable function f that vanishes on a neighborhood of 0,

we have ∫

B

f(x)µ(dx) =

∫

S

∫ ∞

0

f(rθ)αr−α−1drΓ(dθ).
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Chapter 2

Change point and trend analyses of annual expectile

curves of tropical storms

2.1 Introduction

A great deal of research in environmental and climate sciences has been dedicated to detecting

change points and trends in various time series, including those related to temperature, precip-

itation and wind speed. In a typical setting, a scalar time series X1, X2, . . . , XN is analyzed.

Sometimes several correlated series are considered. Most environmental and climate series exhibit

a pronounced annual periodicity which must be removed, or otherwise accounted for, before state-

ments on change–points or trends can be inferred. Sometimes, it is difficult to approximate the

periodic component by a Fourier expansion due to the irregular domain and amplitude of observa-

tions within a year. The data that motivate this work are tropical storm wind speed data, examples

are shown in Figure 2.1 and Figure 2.2. By definition, only storms having the wind speed over

63 kilometers per hour are considered as tropical storms. The onset and end of typhoon and hur-

ricane seasons, as well as their intensity, can change from year to year. We therefore propose to

treat the data available for a whole year as a single high–dimensional data object and perform the

change point and trend analyses on these objects rather than the scalar observations directly. Such

an approach is now relatively well–established in the field of functional data analysis (FDA), the

monographs of [6] or [22] contain many examples. Methodological foundations of FDA are ad-

dressed in [1], its mathematical foundations in [2]. While the amount of information available in

the data is invariably reduced by various smoothing and dimension reduction methods, the most

important and relevant features of the data come into focus. In the problems we study in this paper,

we are interested in the evolution of the annual pattern of tropical storms strength over several

decades, not in specific hourly measurements.
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Five consecutive years of typhoon data
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Figure 2.1: Five consecutive years (2006-2010) of typhoon data. The dots represent the wind speed mea-

surements. Dashed vertical lines separate the years.

The data objects that this paper studies have the formXn(t), where n refers to year, and t to time

within the year. In the framework of functional data analysis, t is viewed as a continuous argument.

The data are observed at a regular or irregular grid, but are converted to functional objects by

means of various basis expansions which are defined for every t. We consider a sequence of curves

Xn(t, τ) for several expectile levels τ ∈ (0, 1); these are similar to quantile levels. Examples of

expectile curves we study are given in Figure 2.2.

The index τ ∈ (0, 1) has the following interpretation. If τ = 0.5, the curve Xn(t, τ) describes

the median strength of tropical storms throughout the year. If τ is close to 1, the curve Xn(t, τ)

captures the annual pattern of highest wind speeds. If τ is close to zero, it does the same for

the lowest wind speeds. We are interested in detecting change points and trends in the functional

time series X1(·, τ), X2(·, τ), . . . , XN(·, τ). For this purpose, we use the existing change point

test of [23] and develop two trend tests. No trend tests have presently been available for the data
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Typhoones in 2005
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Hurricanes in 2005
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Figure 2.2: Typhoons (left) and hurricanes (right) data in 2005 with expectile curves for τ = 0.1, 0.5 and

0.9. The dots represent the wind speed measurements. Generally, a vertical streak of dots represents one

tropical storm event. The lines are the estimated expectile curves.

structure described above. These two tests form a methodological contribution to statistics, while

the analysis of the expectile curves of tropical storms provides an insight to climate science.

We thus focus not only on the average pattern but on change points and trends in annual curves

which describe the behaviour at various levels of wind speed. This is illustrated in Figure 2.2.

The curves in the middle summarize the pattern of average wind speed. These curves will ex-

hibit some evolution from year to year. The curves above them summarize the annual patterns

of the highest speeds; they may exhibit a different evolution than the average curves. This issue

is well–known in climate research; typically trends in the averages are contrasted with trends in

extremes. In our application, no modeling of extreme behaviour is required, the expectile curves

are within the range of the data points. They provide information of behaviour which lies between

the typical behaviour and the unobservable extreme behaviour. Following the work of [24], eval-

uation of trends in extremes has attracted a great deal of attention, with respect to change point

analysis of extremes, we are aware only of the work of [25].

The paper is organized as follows. After reviewing the notion of expectile curves in Section 2.2,

we review in Section 2.3 the test of [23] and present the two trend tests. Section 2.4 presents the
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results of a simulation study. The tests are applied in Section 2.5 to the analysis of expectile curves.

The last section contains the details of the asymptotic theory for the trend tests.

2.2 Expectile curves

In this section we provide some background needed to understand how the expectile curves

studied in this paper are constructed. The underlying concept of expectiles was first discussed

by [26] and further analyzed in several directions, for example [27] and [28] focused on time-

varying expectiles. Most relevant to our setting is the paper by [29], which extended the work

of [30]. It combined the LAWS (least average weighted squares) algorithm with P-splines in order

to estimate expectile curves. Recent applications include [31–33] or more applicable one in finance

by [34], where Value at risk (VaR) and Expected shortfall (ES) were estimated using expectiles.

Expectiles have a similar interpretation as quantiles, but have some desirable properties outlined

in the references cited above.

Consider a scatter plot of points (ti, xi), 1 ≤ i ≤ I . In our applications, the ti correspond to

times within a year at which wind speed is measured and xi to the wind speed. Since the form of

the dependence of the xi on the ti is unknown, a B-spline expansion is used. We thus assume that

xi ≈ ga(ti) =
J∑

j=1

ajBj(ti),

and find coefficients a = (a1, a2, . . . , aJ) which minimize

Sτ (a) = (1− τ)S−(a) + τS+(a),

where

S−(a) =
∑

xi≤ga(ti)
{xi − ga(ti)}2 and S+(a) =

∑

xi>ga(ti)

{xi − ga(ti)}2 .

If τ is close to 1, then S+(a) must be made small. This means that the curve ga will be above most

of the points (ti, xi).
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Denote a matrix of B-splines differences as D. In order to control the smoothness of curves we

can add penalization and minimize

Sτ (a) + λa⊤D⊤Da,

with λ as shrinkage parameter chosen by a desired criterion. We chose λ according to AIC

criterion. After finding âj using penalized spline estimation, the expectile curve is obtained as

∑J
j=1 âjBj(ti). For our computation we set up J=20. The estimation algorithm is implemented in

the R package expectreg, see [35]. Further details are presented in [36] or [37].

2.3 Change point and trend tests

This section presents the significance tests that will be applied to tropical storm data in Sec-

tion 2.5. The change point test described in Section 2.3.1 was derived by [23], it is also described

in Chapter 6 of [6]. Trend tests introduced in Section 2.3.2 are new; their full large sample jus-

tification is presented in the last section. In both inferential settings, we consider as sequence of

curves Xn(t), t ∈ [0, 1], n = 1, 2, . . . N . The index n can be identified with year, the index t

with time within the year normalized to unit interval. The exposition that follows uses now fairly

standard concepts of functional data analysis, including functional principal components (FPC’s)

and their empirical counterparts (EFPC’s), see, for example, Chapter 3 of [6].

2.3.1 Change point test

In change point tests, the null hypothesis is that the mean function does not change with year:

H0 : EX1 = EX2 = . . . = EXN .

The specific value of the mean is not part of the null hypothesis. The alternative is that there is at

least one unknown change point k∗ such that the equality under H0 fails. The theory and practice
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Table 2.1: Critical values of the distribution of Kd, which approximates the distribution of the statistic Ŝd

for large N .

d 5 6 7 8 9 10 11 12

10% 1.2797 1.4852 1.6908 1.8974 2.0966 2.2886 2.4966 2.6862

5% 1.4690 1.6847 1.8956 2.1242 2.3227 2.5268 2.7444 2.9490

1% 1.8667 2.1260 2.3423 2.5893 2.8098 3.0339 3.2680 3.4911

of change points tests have been described in many textbooks, for example, [38–40], so we do not

dwell on the background and move on to the description of the test of [23].

The test is based on the normalized differences of estimated mean functions:

Pk(t) =
k(N − k)

N
{µ̂k(t)− µ̃k(t)} ,

where

µ̂k(t) = k−1
k∑

i=1

Xi(t), µ̃k(t) = (N − k)−1
N∑

i=k+1

Xi(t).

Next, we compute the estimated functional principal components v̂ℓ of the curves Xn and calculate

the scores

ξ̂j,n =

∫ 1

0

{
Xn(t)− X̄N(t)

}
v̂j(t)dt, X̄N(t) = N−1

N∑

n=1

Xn(t). (2.3.1)

We find the smallest d such that 85% of the variance is explained and calculate the test statistic

Ŝd =
1

N2

d∑

j=1

1

λ̂j

N∑

k=1

(∑

1≤i≤k
ξ̂j,i −

k

N

∑

1≤i≤k
ξ̂j,i

)
.

As N → ∞, the statistics Ŝd converges in distribution to the random variable Kd whose critical

values are given Table 2.1, see [6] for more details.
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2.3.2 Trend tests

Suppose the functions Xn(t) follow the trend model

Xn(t) = α(t) + β(t)n+ εn(t). (2.3.2)

The testing problem in our setting is

H0 : β = 0, vs. HA : β ̸= 0.

The paper thus focuses on a linear trend, which is the most common type of trend considered

in atmospheric sciences. The review paper of [41] discusses research on linear trends in the con-

text of tropical storms. The assumption of a linear trend makes the development of significance

tests easier and leads to readily interpretable results if the null is rejected. More general nonlinear

trends can often be displayed using various smoothing methods, but the assessment of their sig-

nificance and interpretation are difficult due the lack of a simple parametrization. It is however

possible to develop tests based on different approaches. [42] propose a permutation test based on

the proportion of time t the curve Xn(t) matches the record curve rn(t) = max1≤k≤nXk(t). We

are however not aware of other approaches to test the presence of an increasing trend in a sequence

of functions. [43] consider curves X(sk, t) defined at spatial locations sk and test H0 : β = 0 in

the model X(sk, t) = α + βt+ ε(sk, t).

Before proceeding with the description of our testing approach we state the assumptions on the

objects appearing in (2.3.2).

ASSUMPTION 2.3.1. The error curves εn are iid elements of the Hilbert space of square integrable

functions with finite second moment: E
∫
ε2n(t)dt < ∞. The functions α and β are deterministic

elements of that space:
∫
α2(t)dt <∞,

∫
β2(t)dt <∞.

Assumption 2.3.1 holds throughout the paper.
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A natural approach to testing is based on an estimator of β. If this estimator is small for all

t ∈ [0, 1], there is not enough evidence to reject H0.

Representing trend model 2.3.2 as the regression




X1(t)

...

XN(t)



=




1 1

...
...

1 N



·



α(t)

β(t)


+




ε1(t)

...

εN(t)



,

we obtain the least squares estimators

α̂(t) =
2

N(N − 1)

N∑

k=1

(2N + 1− 3k)Xk(t) (2.3.3)

and

β̂(t) =
6

N(N + 1)(N − 1)

N∑

k=1

(2k −N − 1)Xk(t). (2.3.4)

Our first approach is based on the statistic
∫ 1

0
β̂2(t)dt. To describe its asymptotic distribution addi-

tional notation is needed. Introduce the covariance function of the errors cε(t, s) = E[εn(t)εn(s)].

Denote by λj, j = 1, 2, . . . the eigenvalues of cε. Next, define the residuals

ε̂n(t) = Xn(t)− α̂n(t)− β̂n(t)n (2.3.5)

and denote by λ̂j the eigenvalues of the empirical covariance function

ĉε(t, s) =
1

N

N∑

n=1

ε̂n(t)ε̂n(s). (2.3.6)

Theorem 2.3.1 describes large sample properties of the suitably normalized statistic
∫ 1

0
β̂2(t)dt.
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THEOREM 2.3.1. (i) Under H0,

Λ̂N =
N3

12

∫ 1

0

(
β̂(t)

)2
dt

L−→ Λ∞
def
=

∞∑

j=1

λjZ
2
j , (2.3.7)

where {Zj, j ≥ 1} are independent standard normal variables, and the λj are the eigenvalues of

the covariance function cε.

(ii) Under HA,

P
{
Λ̂N > qN(α)

}
→ 1, as N → ∞, (2.3.8)

where qN(α) is the (1− α)th quantile of the distribution of ΛN =
∑N

j=1 λ̂jZ
2
j .

Theorem 2.3.1 is proven in the last section.

The distribution of Λ∞ can be approximated by the distribution of

ΛN =
N∑

j=1

λ̂jZ
2
j . (2.3.9)

This leads to the Monte Carlo test whose consistency is claimed in part (ii) of Theorem 2.3.1.

To implement the test, we generate a large number, say R = 104, of independent replications

of ΛN (the λ̂j are estimated only once, from the original sample). Denote these replications by

ΛN,r, 1 ≤ r ≤ R. The P–value of the test is computed as the fraction of the ΛN,r which are greater

than Λ̂N (computed from the data).

It is also possible to develop a test similar to the test of [23] in the sense that a limit distribution

is independent of the distribution of the data. In fact, in the trend model, the limit distribution is the

usual chi–square distribution. This is stated in Theorem 2.3.2, in which we use the inner product

notation ⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt.

THEOREM 2.3.2. Suppose E ||ε||4 <∞ and

λ1 > λ2 > . . . > λq > λq+1 > 0. (2.3.10)
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i) Under H0,

T̂N =
N3

12

q∑

j=1

λ̂−1j

⟨
β̂, v̂j

⟩2 L−→ χ2
q. (2.3.11)

ii) If for some 1 ≤ j ≤ q, ⟨β, vj⟩ ̸= 0, then the test is consistent, i.e.

P
{
T̂N > q(α)

}
→ 1, as N → ∞, (2.3.12)

where q(α) is the (1− α)th quantile of the chi–square distribution with q degrees of freedom.

Theorem 2.3.2 is proven in the last section.

Observe that to establish the consistency, it is not enough to assume β ̸= 0 in L2. Since the

statistic T̂N is based on projections on the first q EFPC’s, we must assume that the slope function

β is not orthogonal to the subspace spanned by the first q FPC’s.

Under the assumption of iid error curves εn, cf. Assumption 2.3.1, the functional principal

components used in this paper offer an optimal expansion. However, if the Assumption 2.3.1

is relaxed to allow some form of weak dependence, for example the approximability introduced

in [8], then a different data–driven orthonormal system may offer some advantages. For example,

the long–run FPC’s of [44] or the dynamic FPC’s of [45] could be used. These systems however

require selections of kernel functions and other tuning parameters, whose selection and impact

would need to be studied. We expect that the test statistics could be formulated in an analogous

way and their asymptotic distribution would have a similar form to those we derived. Some work

in relation to change point tests has been done by [46]. Theoretical and practical exploration of

similar extensions of trend tests is an interesting topic for future research.

2.4 Finite sample performance of the trend tests

A simulation study validating the change point test of Section 2.3.1 is reported in [23]. In this

section, we examine the finite sample performance of the trend tests introduced in Section 2.3.2.
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We consider two models for the error functions εn(t). The first is a generic Gaussian model in

which we take the εn(t) to be Brownian bridges Bn(t). We represent Brownian bridge as a Fourier

series with stochastic coefficients (the Karhunen–Loéve expansion, see [5]):

Bn(t) =
√
2
∞∑

j=1

Znj
sin(jπt)

jπ
≈

√
2

J∑

j=1

Znj
sin(jπt)

jπ
,

where {Zj, j ≥ 1} are independent standard normal random variables. We set J = 100 so the

trajectories of the Bn have similar smoothness as the typhoon and hurricane expectile curves.

The second model for the εn is based more directly on the tropical storm data. We proceed as

follows. We consider τ = 0.1, 0.5, 0.9. For each level τ , we compute the sample mean function

and the sample functional principal components v̂j(t; τ) of the expectile curves Xn(t, τ). Next

we compute the scores ξjn(τ) according to (2.3.1). Denote by σj(τ) the standard deviation of the

ξjn(τ), 1 ≤ n ≤ N, (N = 65). The εn are generated as independent realizations of the random

function

ε(t; τ) =

q∑

j=1

σj(τ)Zj v̂j(t; τ), Zj ∼ iid N(0, 1),

with q determined from the original expectile curves according to the 85% rule. We thus have

four models for the error curves which we refer to as BB, E1, E5, E9. The errors E1, E5, E9 are

different depending on whether hurricane or typhoon data are used. The empirical rejection rates

are however very similar in both cases. We display the results for the errors based on the hurricane

data.

We generate artificial data according to the specification

Xn(t) = bβ(t)n+ εn(t).

To find empirical size, we set β(t) = β0(t) = 0. To find empirical power, we use the slope

functions

β1(t) = −cos
(
tπ3
2

)

100
; β2(t) =

sin (tπ20)

100
,
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Figure 2.3: Slope functions β1(t) (left) and β2(t) (right) used to assess power.

which are graphed in Figure 2.3. The constant b is used to adjust the magnitude of the departure

from the null hypothesis. For E1, E5 and E9 error curves we set b = 20, for BB errors we use

b = 1. The different values are used to ensure similar signal to noise ration for both types of errors.

We consider sample sizes N = 30, 60, 120. Empirical rejection rates are shown in Tables 2.2

and 2.3. The Monte Carlo test, generally has slightly better size and power, but the pivotal chi–

square test performs well too. The chi–square test tends to overreject under H0 (for N = 60 and

N = 120).

Table 2.2: Rejection rates of the Monte Carlo test. Columns corresponding to β0 report empirical size,

those to β1 and β2, empirical power.

BB β0 β1 β2
N=30 0.055 0.175 0.136

N=60 0.056 0.967 1.000

N=120 0.064 1.000 1.000

E1 β0 β1 β2
N=30 0.060 0.082 0.078

N=60 0.045 0.438 0.440

N=120 0.042 1.000 1.000

E5 β0 β1 β2
N=30 0.042 0.072 0.060

N=60 0.047 0.435 0.438

N=120 0.044 1.000 1.000

E9 β0 β1 β2
N=30 0.069 0.081 0.091

N=60 0.058 0.435 0.404

N=120 0.042 1.000 1.000
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Table 2.3: Rejection rates of the Chi–square test. Columns corresponding to β0 report empirical size, those

to β1 and β2, empirical power.

BB β0 β1 β2
N=30 0.064 0.344 0.053

N=60 0.058 0.995 0.085

N=120 0.069 1.000 0.238

E1 β0 β1 β2
N=30 0.053 0.071 0.089

N=60 0.058 0.215 0.220

N=120 0.056 0.975 0.971

E5 β0 β1 β2
N=30 0.047 0.065 0.044

N=60 0.064 0.249 0.193

N=120 0.049 0.982 0.898

E9 β0 β1 β2
N=30 0.051 0.075 0.085

N=60 0.065 0.216 0.234

N=120 0.058 0.929 0.967

2.5 Application to typhoon and hurricane data

In this section we apply the tests of Section 2.3 to annual expectile curves of wind speed data.

The data have the form Xn(ti), where the times ti are separated by six hours, and the index n

stands for year. The value Xn(ti) is the wind speed in knots (1 kn = 0.5144 m/s). We work with

two data sets: typhoons in the West Pacific area over the period 1946–2010, and hurricanes across

the North Atlantic basin over the period 1947-2011. Both datasets are accessible free of charge at

the website of Unisys Weather Information, [47].

Since there are about 1,460 time points ti per year, we treat time 0 ≤ t ≤ T within a year as

continuous, and the observed curves as functional data. For each year n, we construct expectile

curves Xn(t, τ), for τ = 0.1, 0.2, . . . , 0.9. Examples of expectile curves we study are given in

Figure 2.2.

2.5.1 Change point analysis

The results of the application of the change–point test of Section 2.3.1 are shown in Table 2.4.

For both data sets and at all levels τ , the test rejects the null hypothesis that the mean pattern

does not change. As explained in Section 2.2, the construction of the expectile curves involves

the selection of a smoothing parameter λ. Table 2.4 shows the results for λ selected by the AIC
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Table 2.4: Results of the application of the change point test of Section 2.3.1 to typhoon (upper panel) and

hurricane (lower panel) expectile curves. Usual significance codes are used: ** – significant at 5% level,

*** - at 1% level.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d 10 11 12 12 12 12 12 12 12

Ŝd 3.3522 3.2291 3.4317 3.4978 3.6564 3.8554 4.0342 4.2317 4.5084

*** ** ** *** *** *** *** *** ***

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d 5 5 5 6 6 6 7 7 7

Ŝd 2.7440 3.3993 3.8759 4.4640 4.7141 4.8680 5.0366 4.9247 4.5740

*** *** *** *** *** *** *** *** ***

criterion. To validate our conclusions, we performed the same analysis using λ which is either

twice or half of the λ selected by AIC. In both cases, all empirical significance levels remained

under 5%.

The change point test shows that for all expectile levels τ , there are statistically significant

changes in the annual pattern. It is instructive to complement the above inferential analysis by

simple exploratory analysis that reveals some dependence on the level τ . Consider squared norms

Pk(τ) =

∫ T

0

P 2
k (t, τ)dt,

where the Pk(t, τ) are the normalized differences Pk(t) introduced in Section 2.3.1 computed for

the expectile level τ . The plot of Pk(τ) against the year index k shows the magnitude of change

of the mean function. We display such plots in Figure 2.4. They suggest that the largest changes

occur for the expectile levels τ close to one, but it must be kept in mind that they may just reflect

the fact that the curves Xn(t) are "larger" for larger τ . By contract, the statistic Ŝd contains a

normalization with the variances λ̂j , and is scale invariant.

The change point analysis above shows that the pattern of typhoon and hurricane wind speeds

cannot be treated as stable over the sample periods we study. In the next section, we investigate if

this instability can be attributed to systematic trends.
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Figure 2.4: The squared norms Pk(τ) showing the magnitude of change in mean annual pattern for expectile

curves of typhoons (upper panel) and hurricanes (lower panel). The largest changes occur in the expectile

curves corresponding to τ = 0.9.
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Table 2.5: P–values for the Monte Carlo trend test based on Theorem 2.3.1.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

typhoons P–value 0.365 0.537 0.545 0.495 0.438 0.381 0.329 0.316 0.269

hurricanes P–value 0.439 0.239 0.133 0.081 0.062 0.047 0.038 0.040 0.055

Table 2.6: P–values for the chi–square trend test based on Theorem 2.3.2.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q 10 11 12 12 12 12 12 12 12

typhoons P–value 0.534 0.705 0.722 0.688 0.587 0.466 0.382 0.371 0.453

q 5 5 5 6 6 6 7 7 7

hurricanes P–value 0.069 0.024 0.015 0.006 0.003 0.003 0.004 0.006 0.035

2.5.2 Trend analysis

We now apply the trend tests introduced in Section 2.3.2 to typhoon and hurricane expectile

curves. In the Monte Carlo test based on Theorem 2.3.1, we use 104 replications of the random

variable ΛN defined by (2.3.9). In the chi–square test based on Theorem 2.3.2, we determine q as

the smallest number which explains at least 85% of the variance of the residual curves ε̂n defined

by (2.3.5). The results of the tests are presented in Tables 2.5 and 2.6.

For the typhoon data, none of the two tests finds evidence of a trend. For the hurricane data,

the Monte Carlo test based on Theorem 2.3.1 indicates the existence of a trend for expectile levels

τ = 0.6− 0.9 while the chi–square test of Theorem 2.3.2 for all τ except τ = 0.1. Simulations re-

ported in Section 2.4 show that the chi–square test tends to overreject for data generating processes

(DGP’s) of length and error structure similar to the tropical storm expectile curves. We therefore

conclude that there is evidence for the existence of a trend for upper expectile functions of hurri-

cane data. The estimated slope functions β̂ are plotted in Figure 2.5. While general shapes look

similar, the curves are different for different values of τ , with difference of the order 0.05-0.10 on

the same scale as in Figures 2.5 and 2.6.

We conclude the trend analysis by showing in Figure 2.7 the dependence on τ of the norm

∥β̂∥ =
√∫

β̂2(t)dt of the estimated slope function. Even though there is statistical evidence for

nonzero slope function only for the upper expectiles of hurricane data, the exploratory analysis of

the norms indicates that there is a very clear increasing dependence of the slope on τ . Again, the
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Figure 2.5: Estimated slope functions, β̂, for upper expectile curves of hurricane data.
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Figure 2.6: Estimated slope functions, β̂, for upper expectile curves of typhoon data.
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Figure 2.7: Norm of the slope function estimate, β̂, as a function of the expectile level τ ; typhoons (left),

hurricanes (right).

increasing norms could be attributed to the increasing size of the curve Xn(t), and the plots can be

used only as an exploratory tool for comparing the hurricane and typhoon data.

There is not much difference between the size of β̂, for typhoon and hurricane data, but the β̂

for hurricanes show a clear pattern with positive mass around July and November, and negative

mass in early autumn. For the typhoon curves the pattern of mass accumulation is spread more

uniformly throughout the year, with a pronounced negative mass in November. The significance

tests we developed provide a statistical justification for these fairly subtle visual differences.

2.5.3 Main conclusions of data analysis

The change point tests have shown that the annual pattern of wind speeds for both hurricanes

and typhoons cannot be treated as constant, no matter what expectile level is considered. If there is

one or two clear–cut change points, their location can be found as the years n for which the curves

Pn shown in Figure 2.4 attain local maxima. For the tropical storm data, these plots show multiple

local maxima indicating that either we must assume many change points or a continuous change,

akin to trend. The application of the new trend tests has focused on a question which has however

received a fair deal of attention: is there a trend in the intensity of tropical storms. A review of

relevant research is not our aim, the paper of [41] provides background and references. There are
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two novel aspects to our approach: 1) focus on the annual curves, 2) separate analysis for each

intensity level. Based on sixty years of data, our tests detect a trend in the upper wind speeds of

Atlantic hurricanes. Exploratory analysis suggests a similar conclusion for Pacific typhoons, but

it cannot be supported by low P–values with the amount of available data. These conclusions are

similar to the findings of [41] who use different, custom–prepared, data sets. Their P–value for the

existence of a trend in North Atlantic is less that 10−3, but for the North–West pacific it is 0.03

(for South Pacific it is 0.09, 0.06 for the South Indian Ocean). Their analysis is concerned with

the trend in the scalar data, not a trend in the annual pattern. They find all trends to be positive. In

a sense, such trend coefficients can be viewed as averages of the annual curves like those displayed

in Figures 2.5 and 2.6. The hurricane curves indeed have more positive mass, whereas for the

typhoon curves the negative mass is larger (the typhoon curves are not statistically different from

zero, according to our tests). The slope functions of the hurricanes indicate increasing intensity

in summer and late fall, and decreasing intensity in early fall. For typhoons, these curves indicate

decreasing intensity in November.

The conclusions of this paper which are supported by significance tests and do not contradict

existing research are as follows:

1. The annual pattern of wind speeds of both hurricanes and typhoons has been changing at all

wind speed levels over the last 60 years.

2. There is a significant trend in the shape of this pattern for upper wind speed levels of hurri-

canes.

2.6 Proofs of Theorems 2.3.1 and 2.3.2

Before proceeding to the proofs of Theorems 2.3.1 and 2.3.2, we observe that a direct verifica-

tion shows that

cβ(t, s)
def
= Cov

{
β̂(t), β̂(s)

}
= ANcε(t, s),

where
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AN =
12

N(N + 1)(N − 1)
.

The constant AN is repeatedly used in the proofs of Theorems 2.3.1 and 2.3.2.

2.6.1 Proof of Theorem 2.3.1

PROOF OF PART (I): Under H0 (β = 0),

β̂(t) = AN

N∑

k=1

kεk(t)−
1

2
AN(N + 1)

N∑

k=1

εk(t).

Using the identity
N∑

k=1

kεk = N
N∑

n=1

εn −
N−1∑

k=1

k∑

n=1

εn, (2.6.13)

we have

β̂(t) = AN

N∑

k=1

kεk(t)−
1

2
AN(N + 1)

N∑

k=1

εk(t)

= AN

(
N

N∑

n=1

εn(t)−
N−1∑

k=1

k∑

n=1

εn(t)
)
− 1

2
AN(N + 1)

N∑

n=1

εn(t).

(2.6.14)

To determine the limit behaviour of β̂(t), we thus need an invariance principle for the partial sum

process:

SN(x, t) =
1√
N

∑

1≤n≤[Nx]

εn(t), 0 ≤ x, t ≤ 1.

A result of this type has recently been established by [48]. It states that

SN(x, t)
L−→ Γ(x, t), (2.6.15)

where Γ(x, t) is the two parameter Gaussian process which admits the representation

Γ(x, t) =
∞∑

j=1

√
λjWj(x)vj(t), (2.6.16)
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where {Wj(x), 0 ≤ x ≤ 1} are independent standard Wiener processes on [0, 1]. The λj and the

vj are, respectively, the eigenvalues and the eigenfunctions of the covariance function cε(t, s) =

E[εn(t)εn(s)]. In (2.6.15), and whenever weak convergence of two parameter processes is con-

cerned,
L−→ denotes the convergence in the Skorokhod space D([0, 1], L2).

Since AN ∼ 12N−3, (2.6.14) implies

β̂(t) = ANN
3
2SN(1, t)− ANN

1
2

N−1∑

k=1

SN

(
k

N
, t

)
− 1

2
AN(N + 1)N

1
2SN(1, t)

∼ 12N−
3
2SN(1, t)− 12N−

3
2

{
1

N

N−1∑

k=1

SN

(
k

N
, t

)}
− 6N−

3
2SN(1, t)

= 6N−
3
2SN(1, t)− 12N−

3
2

{
1

N

N−1∑

k=1

SN

(
k

N
, t

)}
.

By the continuous mapping theorem and (2.6.15)

1

N

N−1∑

k=1

SN

(
k

N
, t

)
L−→
∫ 1

0

Γ(x, t)dx.

Thus

N
3
2

6
β̂(t)

L−→ Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx. (2.6.17)

Using the continuous mapping theorem again, we obtain

N3

36

∫ 1

0

{
β̂(t)

}2

dt
L−→
∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt.

Set

Dj = Wj(1)− 2

∫ 1

0

Wj(x)dx, (2.6.18)

so that, by (2.6.16), we have

Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx =
∞∑

j=1

√
λjDjvj(t).
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Then, by Parseval’s identity,

∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt =

∣∣∣∣∣

∣∣∣∣∣
∞∑

j=1

√
λjDjvj

∣∣∣∣∣

∣∣∣∣∣

2

=
∞∑

j=1

λjD
2
j . (2.6.19)

The random variables Dj are independent normal with mean zero and variance

Var[Dj] = E

[
W (1)− 2

∫ 1

0

W (x)dx

]2

= EW 2(1)− 4E

[
W (1)

∫ 1

0

W (x)dx

]
+ 4E

[∫ 1

0

W (x)dx

]2

=
1

3
.

We can write Dj =
1√
3
Zj , where Zj are standard normal variables. By (2.6.19)

∫ 1

0

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}2

dt =
1

3

∞∑

j=1

λjZ
2
j .

Thus (2.3.7) is proven.

PROOF OF PART (II): The proof follows from several lemmas. It is assumed throughout that HA

holds, i.e ||β|| > 0. The argument relies on Lemma 2.6.1 whose proof follows from the relevant

definitions, and so is omitted.

LEMMA 2.6.1. Suppose {Xn} and {qn} are sequences of random variables. Suppose further

that {Xn} diverges to infinity in probability and {qn} is bounded in probability , i.e. for each

M, limn→∞ P(Xn > M) = 1 and for each ε > 0, there are M and n0 such that P(qn > M) < ε,

if n > n0. Then

lim
n→∞

P(Xn > qn) = 1.

Relation (2.3.8) now follows from Lemmas 2.6.2 and 2.6.3.
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LEMMA 2.6.2. The statistic Λ̂N defined by (2.3.7) satisfies Λ̂N
P→ ∞.

PROOF: Decompose β̂(t) as

β̂(t) = β(t) +GN(t), (2.6.20)

where

GN(t) =
1

2
AN

N∑

k=1

(2k −N − 1)εk(t).

Observe that GN(t) is equal to the estimator β̂(t) under H0. Therefore, by (2.6.17),

N3/2GN(t)
L−→ 6

{
Γ(1, t)− 2

∫ 1

0

Γ(x, t)dx

}
def
= U(t).

Consequently, as N → ∞

N3
∫
β̂2(t)dt =

∫ {
N3/2β(t) +N3/2GN(t)

}2
dt ∼

∫ {
N3/2β(t) + U(t)

}2
dt

P→ ∞.

More precisely,

N−3Λ̂N ∼ 1

12

∫ {
β(t) +N−3/2U(t)

}2
dt

P→ 1

12

∫
β2(t)dt.

LEMMA 2.6.3. Under H0, the sequence {ΛN} defined by (2.3.9) is bounded in probability.

PROOF: Since the λ̂j are fixed in the generation of the replications in the Monte Carlo test, the

variables Zj are independent of the λ̂j . Therefore, since EZ2
j = 1,

EΛN =
N∑

j=1

Eλ̂j.

The definition of the λ̂j as the eigenvalues of the covariance operator with ĉε(·, ·) defined by (2.3.5)

and (2.3.6) implies that
N∑

j=1

λ̂j =
1

N

N∑

n=1

||ε̂n||2 .
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This is the decomposition of functional sample variance, see details [6], p. 40. Therefore, if we

can show that

lim sup
N→∞

1

N

N∑

n=1

E||ε̂n||2 <∞, (2.6.21)

then we can conclude that lim supN→∞ EΛN < ∞, which in turn implies that the sequence {ΛN}

is bounded in probability.

The decomposition

ε̂n(t) = εn(t) +
{
α(t)− α̂(t)

}
+ n

{
β(t)− β̂(t)

}
, (2.6.22)

implies that for some constant C,

||ε̂n||2 ≤ C
(
||εn||2 + ||α̂− α||2 + ||n(β̂ − β)||2

)
. (2.6.23)

First note that

1

N

N∑

n=1

E||εn||2 = E

[∫ { 1

N

N∑

n=1

ε2n(t)
}
dt

]

=

∫ {
E

[
1

N

N∑

n=1

ε2n(t)

]}
dt

=

∫
Eε21(t)dt = E||ε1||2 <∞.

Next, observe that

1

N

N∑

n=1

E||α̂− α||2 = E||α̂− α||2

=

∫ {
E [α̂(t)− α(t)]2

}
dt

=

∫
E

[
2

N(N − 1)

N∑

k=1

(2N + 1− 3k)εk(t)

]2
dt

=
2(2N + 1)

N(N − 1)
E||ε1||2 → 0.
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Similarly, with HN = (N+1)(2N+1)
6

,

1

N

N∑

n=1

E||n(β̂ − β)||2 = HNE||β̂ − β||2

= HN

∫ {
E

[
β̂(t)− β(t)

]2}
dt

= HN

∫
E

[
6

N(N − 1)(N + 1)

N∑

k=1

(2k −N − 1)εk(t)

]2
dt

=
2(2N + 1)

N(N − 1)
E||ε1||2 → 0.

Thus (2.6.21) holds. Therefore supN EΛN =: CΛ < ∞, and so P(ΛN > M) ≤ M−1CΛ can be

made arbitrarily small by choosing M sufficiently large. The conclusion follows.

2.6.2 Proof of Theorem 2.3.2

PROOF OF PART (I): Under H0, by (2.6.14), (2.6.16) and consistency of estimated eigenfunctions

v̂j , (v̂j
P→ vj),

⟨
N

3
2

6
β̂, v̂j

⟩2

L−→
⟨
Γ(1, ·)− 2

∫ 1

0

Γ(x, ·)dx, vj
⟩2

=

⟨ ∞∑

k=1

√
λkWk(1)vk − 2

∫ 1

0

∞∑

k=1

√
λkWk(x)vk, vj

⟩2

=

[ ∞∑

k=1

√
λk

{
Wk(1)− 2

∫ 1

0

Wk(x)dx

}
⟨vk, vj⟩

]2

= λj

{
Wj(1)− 2

∫ 1

0

Wj(x)dx

}2

= λjD
2
j =

1

3
λjZ

2
j ,

with the random variables Dj defined in (2.6.18), and Zj standard normal variables. It follows that

T̂N =
N3

12

q∑

j=1

λ̂−1j

⟨
β̂, v̂j

⟩2
= 3

q∑

j=1

λ̂−1j

⟨
N

3
2

6
β̂, v̂j

⟩2

L−→
q∑

j=1

Z2
j
L
= χ2

q.
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PROOF OF PART (II): We must show that T̂N
P→ ∞, if ⟨β, vj⟩ ̸= 0 for some 1 ≤ j ≤ q. It is

enough to show that
q∑

j=1

λ̂−1j

⟨
β̂, v̂j

⟩2 P→
q∑

j=1

λ−1j ⟨β, vj⟩2 ,

because the right–hand side is positive. The verification of the above convergence reduces to

∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣ P→ 0 (2.6.24)

and, for 1 ≤ j ≤ q,

||v̂j − vj|| P→ 0, λ̂j
P→ λj. (2.6.25)

To prove relation (2.6.24), observe first that by decomposition (2.6.20),

E

∣∣∣
∣∣∣β̂ − β

∣∣∣
∣∣∣ = E ||GN || ≤

{
E ||GN ||2

} 1
2 =

{
E

∫
G2

N(t)dt

} 1
2

.

To calculate the last expected value, we will use the identity

1

4
AN

N∑

k=1

(2k −N − 1)2 = 1,

which follows from algebraic manipulations. The independence of the εk thus implies that

E

∫
G2

N(t)dt =
1

4
A2

N

N∑

k=1

(2k −N − 1)2E

∫
ε2k(t)dt = ANE ||ε||2 = O(N−3).

By Lemmas 2.2. and 2.3 of [6], relations (2.6.25) will follow from ||ĉε − cε||S
P→ 0, where the

subscript S denotes the Hilbert–Schmidt norm. Proposition 2.6.1 states that, in fact, E ||ĉε − cε||2S =

O(N−1). It thus extends a well–known result, e.g. Theorem 2.5. of [6], which states that

E

∫ (
1

N

N∑

i=1

εi(t)εi(s)− E [ε(t)ε(s)]

)2

dtds = O(N−1). (2.6.26)
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The covariance function ĉε is defined in terms of the residuals ε̂n, cf. (2.3.5), (2.3.6). Estimation

of the intercept and slope functions introduces many additional terms which are, however, all

asymptotically negligible. This is the content of the following proposition whose proof is very

long as it requires the examination of 16 cross–terms. The proof is therefore not presented her, but

is available upon request.

PROPOSITION 2.6.1. Suppose model (2.3.2) holds and E ||ε||4 < ∞. Then the sample covariance

function ĉε, defined by (2.3.5) and (2.3.6), satisfies E ||ĉε − cε||2S = O(N−1).
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Chapter 3

Extremes of projections of functional time series on

data–driven basis systems

3.1 Introduction

The work presented in this paper is motivated by a question that arises in the analysis of time

series of functions, which came to be known as functional time series, many examples are studied

in [6] and [49], and a large number of papers. Suppose X1, X2, . . . , XN is a realization of a strictly

stationary mean zero time series {Xi} such that each Xi is a function in the space L2 of square

integrable functions on a compact interval. Many procedures of functional data analysis are based

on the expansion

Xi(t) =
∞∑

j=1

√
λjZijvj(t), (3.1.1)

in which the vj are the eigenfunctions of the covariance operator and the λj are the corresponding

eigenvalues. The precise definition will be given in Section 3.2. In applications, the infinite expan-

sion is replaced by a finite sum which involves estimated counterparts of the quantities in (3.1.1),

i.e. by

Xi(t) ≈
p∑

j=1

λ̂
1/2
j Ẑij v̂j(t). (3.1.2)

The idea is to replace the infinite dimensional objects, the functions Xi, by the vectors

Ẑi = [Ẑi1, Ẑi2, . . . , Ẑip]
⊤, (3.1.3)

which can be stored in machine memory, and so are amenable to a variety of procedures. Over the

last twenty years, a great deal of research in functional data analysis has focused on the examination

of this approach in various settings. The central question has been how much is lost by reducing the

functions Xi to the vectors Ẑi, and under what assumptions this loss is asymptotically negligible.
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The random variables Zij in (3.1.1), called the scores, encode the shapes of the functions Xi. The

Ẑij are the estimated scores; they are computed from the whole sample X1, X2, . . . , XN , and are

therefore dependent.

A question this paper seeks to answer is under what conditions the asymptotic extreme be-

havior, as N → ∞, of the vectors (3.1.3) is the same as that of the unobservable vectors Zi =

[Zi1, Zi2, . . . , Zip]
⊤. We focus on the case of Gaussian, or nearly Gaussian, functions Xn, as these

occur in many climate research applications (as verified by QQ-plots of various projections). The

simplest example is annual temperature records, Xi(t), where i indexes the year, and t time, in

days, within the year. These may be temperatures measured at a specific location, or temperature

indexes, like Sea Surface Temperature indexes for various areas of the Pacific. There are many

examples of non–Gaussian data of this type, like precipitation records. A corresponding theory

for functional time series with heavy–tailed projections is not the subject of this paper. In either

case, the scores encode the shapes of the annual curves, and their multivariate extremes describe

the extreme shapes of these curves. This is illustrated in Figure 3.1 which shows the residual an-

nual temperature curves obtained after subtracting the the sample mean function (in Fort Collins,

Colorado) together with an "extreme curve" whose scores are the maxima of the scores of the

observed curves. In accordance with the EVT paradigm, the black curve does look extreme, but

it can be expected that a similar curve could be observed with a small positive probability. This

functional, shape–centered, approach can be contrasted with the usual “annual maxima” approach

which focuses on the series maxtXi(t).

To illustrate mathematical difficulties arising when the scores are replaced by estimated scores,

we consider only one projection, i.e. j = 1. In that case, Zi1 = λ
−1/2
1 Yi and Ẑi1 = λ̂

−1/2
1 Yi,N ,

where

Yi = ⟨Xi, v1⟩ , Yi,N = ⟨Xi, v̂1⟩ . (3.1.4)

Assume further that the Xi are Gaussian and independent (hence identically distributed by the

stationarity assumption). Then, the Yi are iid normal, and the limit of their normalized maxima is

the standard Gumbel distribution. However, even in this simplest case, the Yi,N are neither normal
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Figure 3.1: Residual temperature curves (grey) together with an "extreme curve" whose scores are the

maxima of the scores of the observed curves.

nor independent (the v̂1 is estimated from the whole sample). They form a triangular array. [50]

established conditions under which a triangular array of normal dependent random variables is in

the Gumbel domain of attraction. Their approach is specific to Gaussian random variables, and

does not apply to our problem because the Yi,N are not normal. Using a different technique, we

will show that in the simplest case of iid Gaussian functions Xi, the extremal limiting behavior

of the vectors Ẑi is the same as that of the vectors Zi. Even this case is however not trivial, and

requires a new approach.

In most applications, QQ-plots of projections and multivariate significance tests based on pro-

jections, can at best confirm that the observed functionsX1, X2, . . . , XN are approximately normal.

In our context, a relevant question is if the result mentioned above remains valid if the assump-

tion of the exact Gaussian distribution is relaxed to the assumption that the projections are in the

Gumbel domain of attraction. It turns out that for our technique of proof to be applicable in this

more general context, we need to impose an additional assumption, which is however satisfied

by the usual distributions in the Gumbel domain of attraction, including normal, exponential and

gamma. Next, it is of practical importance to ask to what extend the assumption of independence
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can be relaxed. We show that the key property that is needed is a suitably formulated Rootzen’s

condition, roughly that the maxima of a dependent sequence are asymptotically equivalent to the

maxima of its iid version. This condition has been shown to hold for univariate linearly dependent

Gaussian sequences, including the ARMA time series. Finally, while expansions with respect to

the functional principal components are most important and motivate our research, we show that

the results hold in much greater generality. Essentially, all that is needed is that some population

basis functions vj can be estimated with an O(N−1/2) rate.

This paper presents a new exploration at the nexus of Functional Data Analysis (FDA) and

Extreme Value Theory (EVT). Mathematical foundations of FDA are presented in [2], a concise

introduction to the subject is given in [49], the most widely read classic is [1]. There are many

excellent accounts of EVT, including [9–12].

The remainder of the paper is organized as follows. Section 3.2 is concerned with convergence

in distribution, while Section 3.3 focuses on the rate of convergence of the distribution functions.

The proofs are presented in Sections 3.4 and 3.5.

3.2 Convergence in distribution

We assume throughout the paper that the functionsX1, X2, . . . , XN are a realization of a strictly

stationary mean zero sequence of functions in L2, the space of integrable functions on a compact

interval T . The assumption of stationarity could be relaxed and replaced by technical assumptions,

but at the expense of making the exposition too technical. The space L2 could be replaced by an

abstract separable Hilbert space, again at the expense of more abstract formulations. The frame-

work we consider is general enough to cover applications to functional time series. Writing each

Xi as a function Xi(t), t ∈ T , provides a ready connection to applications.

Each Xi admits expansion (3.1.1) in which the λj and vi are, respectively, the eigenvalues

and the eigenfunctions of the covariance operator defined by C(x) = E[⟨Xi, x⟩Xi], x ∈ L2, i.e.

C(vj) = λjvj, j ≥ 1, see e.g. Section 11.4 of [49]. A large number of applications of functional

data analysis use the approximation (3.1.2) with λ̂j and v̂j being the eigenelements of the sample
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covariance operator defined by Ĉ(x) = N−1
∑N

i=1 ⟨Xi, x⟩Xi. Large sample justifications of the

applications of expansion (3.1.2) rely on the following bounds:

lim sup
N→∞

NE ||ĉj v̂j − vj||2 <∞, lim sup
N→∞

NE|λ̂j − λj|2 <∞, (3.2.5)

where ĉj = sign(⟨v̂j, vj⟩). To lighten the notation, in the following we assume that ĉj = 1. For iid

Xi with E ||Xi||4 < ∞, relations (3.2.5) were established by [7]. [8] showed that they continue to

hold for weakly dependent stationary sequences. They used a specific, but very inclusive, concept

of weak dependence, called L4–m–approximability, which has been used in many other contexts,

e.g. [15, 45, 51, 52]. Related concepts of dependence were used, e.g. by [53] and [54]. We refer to

Chapter 16 of [6] for the definition of L4–m–approximability. In our work, only conditions (3.2.5)

are relevant, and they can be established under different quantifications of weak dependence, and

for different data–driven basis systems, e.g. those based on the long–run covariance functions,

see [44]. We therefore impose the following general assumption.

ASSUMPTION 3.2.1. Assume that E ||X||4 < ∞. Let vj be any deterministic vectors and set

λj = Var(⟨X, vj⟩). Assume that relations (3.2.5) hold for 1 ≤ j ≤ p, where the v̂j and λ̂j are

estimators of vj and λj , and ĉj = sign(⟨v̂j, vj⟩).

Set

Yi(j) = ⟨Xi, vj⟩ , Yi,N(j) = ⟨Xi, v̂j⟩ ,

and consider the maxima

MN(j) = max(Y1(j), Y2(j), . . . , YN(j));

M̂N(j) = max(Y1,N(j), Y2,N(j), . . . , YN,N(j)).

In this section, we want to specify sufficient conditions under which the asymptotic distribution,

as N → ∞, of the random vector
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M̂N =
[
M̂N(1), M̂N(2), . . . , M̂N(p)

]T

is the same as the asymptotic distribution of the vector

MN = [MN(1),MN(2), . . . ,MN(p)]
T .

From an applied perspective, the above equivalence means that the effect of the estimation of the vj

is negligible for the purpose of the study of multivariate extrema of projections. The assumptions

we formulate in the following hold if the functionsXi are iid Gaussian. In that case, the asymptotic

distribution of MN is well-known:

P

(
MN(1)−

√
λ1b

(G)
N√

λ1a
(G)
N

≤ x1, . . . ,
MN(p)−

√
λpb

(G)
N√

λpa
(G)
N

≤ xp

)
→ exp

{
−

p∑

j=1

e−xj

}
,

with

b
(G)
N = (2 logN − log logN − log(4π))

1
2 ; a

(G)
N = 1/b

(G)
N . (3.2.6)

It will follow from our general results that in the iid Gaussian case,

P


M̂N(1)−

√
λ̂1b

(G)
N√

λ̂1a
(G)
N

≤ x1, . . . ,
M̂N(p)−

√
λ̂pb

(G)
N√

λ̂pa
(G)
N

≤ xp


→ exp

{
−

p∑

j=1

e−xj

}
. (3.2.7)

We want to see how far the assumptions of independence and Gaussianity can be relaxed.

Since the Xi form a stationary sequence, so do the projections ⟨Xi, vj⟩. Assuming these pro-

jections are in the Gumbel domain of attraction, under condition D(un), e.g. [11] p. 373, their

maxima converge to a Gumbel distribution with an extremal index θj . Rather than assuming con-

dition D(un), which is only a sufficient condition, we make the following assumption.
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ASSUMPTION 3.2.2. For each 1 ≤ j ≤ p,

lim
N→∞

P

(
MN(j)− bj,N

aj,N
≤ x

)
= exp

{
−θje−x

}
, x ∈ R,

for an extremal index θj ∈ [0, 1], and aj,N , bj,N defined in (3.2.9) below.

Assumption 3.2.2 is a finite–projection analog of the definition of the Gumbel domain of at-

traction implied by the theory in Chapter 9 of [12], who consider iid functions. Theorems 4.3.3

and 4.5.2 in [55], see also Theorem 4.4.8 in [10], show that practically all stationary Gaussian

sequences have extremal index 1, so if the functions Xi are Gaussian, Assumption 3.2.2, will prac-

tically always hold with θj = 1. However, for linear processes with subexponential innovations

(which are in the Gumbel domain of attraction) the extremal index is generally smaller than 1, see

Section 5.5.2 of [10].

The normalizing constants in Assumption 3.2.2 are defined as follows. Let Fj be the cdf of

each Yi(j), and Uj the left–continuous inverse of 1/(1− Fj). Define the function fj by

fj(t) :=
1− Fj(t)

F ′j(t)
. (3.2.8)

Then

aj,N = fj(Uj(N)); bi,N = Uj(N). (3.2.9)

To prove the advertised asymptotic equivalence, we need to restrict the Gumbel domain of attrac-

tion. We will assume that for precisely specified values of κ

lim
N→∞

N−κ

aj,N
= 0. (3.2.10)

REMARK 3.2.1. We show in Appendix A that condition (3.2.10) holds, for any κ > 0, for normal,

exponential, and any gamma distribution. We could not find an example of a distribution in the

Gumbel domain of attraction for which it would fail. If the distribution has a density F ′, (3.2.10) is
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equivalent to N1−κF ′(bN) → 0, where bN is the (1−N−1)th quantile. For the Gumbel domain of

attraction, F ′ decays in some approximately exponential fashion, but bN can grow at a logarithmic

rate, so it is not clear if (3.2.10) always holds. Outside the Gumbel domain of attraction, many

examples of distributions which satisfy (3.2.10) exist, e.g. Pareto or Cauchy.

The sequences {Yi(j), i ≥ 1} are in general, not independent. However, to recover the same

limit as in the independent case, it is enough to require asymptotic independence of the extremes

of projections, as stated in the next assumption.

ASSUMPTION 3.2.3. The maxima MN(1),MN(2), . . .MN(p) are asymptotically independent, in

the sense that

P (MN(1) ≤ d1,N(x1), . . . ,MN(p) ≤ dp,N(xp))

− P (MN(1) ≤ d1,N(x1)) . . . P (MN(p) ≤ dp,N(xp)) = o(1),

where

dj,N(x) = aj,Nx+ bj,N .

We can now state the results of this Section. All limits are taken as N → ∞.

THEOREM 3.2.1. Suppose Assumption 3.2.1 and condition (3.2.10) with κ = 1/4 hold. Then, for

any 1 ≤ j ≤ p, and the aj,N and bj,N defined in (3.2.9),

M̂N(j)− bj,N
aj,N

− MN(j)− bj,N
aj,N

= oP (1). (3.2.11)

If, in addition, Assumptions 3.2.2 and 3.2.3 hold, then

P

(
M̂N(1)− b1,N

a1,N
≤ x1, . . . ,

M̂N(p)− bp,N
ap,N

≤ xp

)
→ exp

{
−

p∑

j=1

θje
−xj

}
. (3.2.12)
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The next theorem focuses on the Gaussian case. The normalizing constants are then known

explicitly up to a scale parameter, which is estimated. The conditions E ||X||4 holds automatically,

so in the Gaussian case the only restrictions in Assumption 3.2.1 are conditions (3.2.5).

THEOREM 3.2.2. Suppose the Xi form a stationary Gaussian sequence that satisfies condition

D(un) and Assumptions 3.2.1 and 3.2.3 hold. Then, for any 1 ≤ j ≤ p, and the a
(G)
N and b

(G)
N

defined in (3.2.6),

M̂N(j)−
√
λ̂jb

(G)
N√

λ̂ja
(G)
N

− MN(j)−
√
λjb

(G)
N√

λja
(G)
N

= oP (1), (3.2.13)

and

P


M̂N(1)−

√
λ̂1b

(G)
N√

λ̂1a
(G)
N

≤ x1, . . . ,
M̂N(p)−

√
λ̂pb

(G)
N√

λ̂pa
(G)
N

≤ xp


→ exp

{
−

p∑

j=1

θje
−xj

}
.

(3.2.14)

COROLLARY 3.2.1. Suppose the Xi are iid Gaussian and Assumption 3.2.1 holds. Then relation

(3.2.7) holds.

Theorems 3.2.1 and 3.2.2 are applicable to the special, but the most important, case when the vj

and λj are, respectively, the functional principal components and their eigenvalues, as we illustrate

in the following example. The example also clarifies the structure of our assumptions.

EXAMPLE 3.2.1. Suppose X is a random element of the Hilbert space L2 = L2([0, 1]) with mean

zero and

E ||X||2 = E

∫ 1

0

X2(t)dt <∞.

Define the covariance function of X by c(t, s) = E[X(t)X(s)]. Define its eigenvalues λj and the

eigenfunction vj by ∫ 1

0

c(t, s)vj(s)ds = λjvj(t), j = 1, 2, . . . .
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The random function X admits the L2–convergent expansion X(t) =
∑∞

j=1

√
λjZjvj(t), with

uncorrelated, mean zero and unit variance Zj . All these facts are proven in Chapter 11 of [49]

(and several other books). The functions vj are called the functional principal components (FPCs).

Consider now the sample covariance function ĉ(t, s) = N−1
∑N

i=1Xi(t)Xi(s), where the Xi

are copies of X . If the Xi, 1 ≤ i ≤ N, are a realization of a strictly stationary weakly dependent

time series, then ĉ(t, s) is a consistent estimator of c(t, s), and its eigenelements, λ̂j, v̂j , satisfy

relations (3.2.5). This has been proven in [8] assuming a weak dependence condition called L4–

m–approximability. We give a specific example rather than explain this condition.

Suppose εi are independent copies of ε, which is a mean zero random element in L2 satisfying

E ||ε||4 < ∞. (If ε is Gaussian, then E ||ε||p < ∞, for every p > 0, see e.g. Corollary 1 on p. 338

of [56].) Suppose ψk(·, ·) are Hilbert–Schmidt kernels, and define the linear process

Xi(t) =
∞∑

k=1

∫ 1

0

ψk(t, s)εi−k(s)ds. (3.2.15)

Proposition 16.1 and Theorem 16.2 of [6] imply that if

∞∑

m=1

∞∑

k=m

{∫ 1

0

∫ 1

0

ψ2
k(t, s)dtds

}1/2

<∞,

then Assumption 3.2.1 holds with the vj, λj, v̂j, λ̂j defined above.

Projecting (3.2.15) onto vj , we obtain

⟨Xi, vj⟩ =
∞∑

k=1

∫ 1

0

ψk,j(s)εi−k(s)ds, ψk,j(s) =

∫ 1

0

ψk(t, s)vj(t)dt.

We see that, except the case when the kernels ψk do not depend s, the scalar sequence

{⟨Xi, vj⟩ , i ∈ Z} is not a linear process. With the current state of research, it is difficult to for-

mulate assumptions on the error functions εi which would imply some specific extremal structure

of this sequence. It is however a weekly dependent scalar sequence, so assuming that it satisfies

condition D(un) is not restrictive. Following the paradigm of Chapter 9 of [12], we could assume
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that for some functions aN and bN ,

max
1≤i≤N

εi(s)− bN(s)

aN(s)

d→ G(s),

where G is a random function with marginal Gumbel distributions. But it is not clear, at present,

how to infer that ⟨Xi, vj⟩ would be in the Gumbel domain of attraction. For this reason, we make

the direct Assumption 3.2.2.

If the εi are Gaussian random functions, then {⟨Xi, vj⟩ , i ∈ Z} is a strictly stationary Gaussian

sequence, and for practically all such sequences, Assumption 3.2.2 holds with θj = 1, see the

discussion following this Assumption.

3.3 Rates of convergence

Set

Kj,N(x) = P

(
M̂N(j)− bj,N

aj,N
≤ x

)
− P

(
MN(j)− bj,N

aj,N
≤ x

)

= P
(
M̂N(j) ≤ dj,N(x)

)
− P (MN(j) ≤ dj,N(x)) .

It follows from the results of Section 3.2, that under weak assumptions, for each j and each x,

Kj,N(x) → 0, as N → ∞. More precise information can be obtained by establishing a rate at

which Kj,N(x) tends to zero.

[18] and [57] showed that (subject to technical conditions) for a (scalar) stationary Gaussian

linear time series,

P (MN ≤ uN)− FN(uN) = O(N−r), (3.3.16)

for some r > 0, and any sequence uN which satisfies

N(1− F (uN)) → C > 0, N → ∞.
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The cdf F is the marginal distribution of each scalar observation, say Yi, and MN = max1≤i≤N Yi.

Condition (3.3.16) quantifies the strength of dependence in a stationary time series in a manner

that is relevant to the study of extremes. The dependence must be sufficiently weak, so that the

maximum of the first N observations has asymptotically the same distribution as the maximum of

their independent copies. The strength of the dependence is quantified by the exponent r. Rather

than imposing specific assumptions on the structure of the projections of the functional time series,

we assume in this section that condition (3.3.16) holds with some r > 0. The rationale for such an

approach is similar as in Section 3.2; condition (3.3.16) may hold for different and more general

classes of the process than those for which it has already been established. For these reasons, we

impose the following assumption.

ASSUMPTION 3.3.1. Denote by Fj the marginal cdf of each Yi(j) = ⟨Xi, vj⟩. Let uj,N be any

sequence such that limN→∞N(1− Fj(uj,N)) = Cj > 0. Then, for 1 ≤ j ≤ p, assume that

P (MN(j) ≤ uj,N)− FN
j (uj,N) = O(N−rj), (3.3.17)

for some rj > 0.

Assumption 3.3.1 requires that θj = 1 in Assumption 3.2.2. It could be satisfied by non–

Gaussian processes. To lighten the notation, in the following we drop the subscript j, as the

arguments apply to each j.

THEOREM 3.3.1. Suppose theXi form a stationary Gaussian sequence and Assumptions 3.2.1 and

3.3.1 hold. Then, for any real x, KN(x) = O(N−q), for any 0 < q ≤ min(r, 1/8).

If the assumption of Gaussianity is dropped, the membership in the Gumbel domain of attrac-

tion must be specifically assumed. In the context of projections of a dependent functional sequence,

this is specified by Assumption 3.2.2. However, to establish the rate, we need to restrict the form of

the univariate marginal distribution. We require the von Mises’ condition and condition (3.2.10).

While these conditions theoretically restrict the Gumbel domain of attraction, all distributions used

in applications meet them.
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DEFINITION 3.3.1. The distribution function F with its right endpoint x⋆ = sup {x : F (x) < 1}

is said to satisfy von Mises’ condition, if F ′′(x) exists, F ′(x) is positive for all x in some left

neighborhood of x⋆, and

lim
t↑x⋆

(
1− F

F ′

)′
(t) = γ,

where γ ∈ R is some constant.

Definition 3.3.1 is a sufficient condition for F to be in the domain of attraction of Gγ , see

Theorem 1.1.8 in [12].

ASSUMPTION 3.3.2. The distribution function F satisfies von Mises’ condition with γ = 0.

THEOREM 3.3.2. Suppose Assumptions 3.2.1, 3.3.1, 3.3.2 hold. If condition (3.2.10) holds with

some 0 < κ < 1/4, then, for any real x,

KN(x) = O(N−q),

for any 0 < q ≤ min(r, 1/8− κ/2).

3.4 Proofs of the results of Section 3.2

The proof of Theorem 3.2.1 requires several lemmas.

LEMMA 3.4.1. Suppose Xi are functions in L2 with the same distribution. If E ||Xi||4 <∞, then

E max
1≤i≤N

||Xi||2 = O(N1/2).

Proof. Set ξi = ||Xi||2, 1 ≤ i ≤ N . Then ξ1, ξ2, . . . , ξN are nonnegative random variables with

the same distribution. Observe that

{
E max

1≤i≤N
ξi

}2

≤ E

[
max
1≤i≤N

ξ2i

]
≤

N∑

i=1

Eξ2i = O(N).
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Set

ηi,N(j) = Yi,N(j)− Yi(j), 1 ≤ i ≤ N, 1 ≤ j ≤ p. (3.4.18)

LEMMA 3.4.2. Under Assumption 3.2.1, for the ηi,N(j) defined in (3.4.18), and for any 1 ≤ j ≤ p,

E
(

max
1≤i≤N

|ηi,N(j)|
)
= O(N−1/4).

Proof. Observe that for each i and j,

|ηi,N(j)| = | ⟨Xi, v̂j − vj⟩ | ≤ ||v̂j − vj|| · ||Xi||,

so

max
1≤i≤N

|ηi,N(j)| ≤ ||v̂j − vj|| · max
1≤i≤N

||Xi||.

By the Cauchy-Schwarz inequality, for any 1 ≤ j ≤ p,

E
(

max
1≤i≤N

|ηi,N(j)|
)
≤
(
E||v̂j − vj||2

) 1
2 ·
(
E max

1≤i≤N
||Xi||2

) 1
2
.

Under Assumptions 3.2.1, lim supN→∞NE||v̂j − vj||2 < ∞, so E||v̂j − vj||2 = O(N−1). By

Lemma 3.4.1, we then have

E
(

max
1≤i≤N

|ηi,N(j)|
)
≤
(
O(N−1)

)1/2
·
(
O(N1/2)

)1/2
= O(N−1/4).

LEMMA 3.4.3. Under Assumption 3.2.1, for any 1 ≤ j ≤ p,

E
∣∣∣M̂N(j)−MN(j)

∣∣∣ = O(N−1/4).
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Proof. Observe that

M̂N(j)−MN(j) = max
1≤i≤N

Yi,N(j)− max
1≤i≤N

Yi(j)

= max
1≤i≤N

(
Yi(j) + ηi,N(j)

)
− max

1≤i≤N
Yi(j)

≤ max
1≤i≤N

Yi(j) + max
1≤i≤N

ηi,N(j)− max
1≤i≤N

Yi(j)

= max
1≤i≤N

ηi,N(j)

≤ max
1≤i≤N

|ηi,N(j)|.

A similar argument yields MN(j) − M̂N(j) ≤ max1≤i≤N |ηi,N(j)|. Therefore, the claim follows

from Lemma 3.4.2.

PROOF OF THEOREM 3.2.1 By Markov’s inequality, for any 1 ≤ j ≤ p, and any ϵ > 0,

P
(∣∣∣M̂N(j)− bj,N

aj,N
− MN(j)− bj,N

aj,N

∣∣∣ > ϵ
)

= P
(∣∣∣M̂N(j)−MN(j)

∣∣∣ > aj,Nϵ
)

≤
E
∣∣∣M̂N(j)−MN(j)

∣∣∣
aj,Nϵ

.

Using Lemma 3.4.3, we have

E
∣∣∣M̂N(j)−MN(j)

∣∣∣
aj,N

=
O(N−1/4)

aj,N
→ 0, (3.4.19)

when condition (3.2.10) holds with κ = 1/4. Therefore, relation (3.2.11) follows.
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Suppose Assumptions 3.2.2 and 3.2.3 hold. Then, as N → ∞,

P (MN(1) ≤ d1,N(x1), . . . ,MN(p) ≤ dp,N(xp))

=

p∏

j=1

P (MN(j) ≤ dj,N(xj)) + o(1)

→ exp

{
−

p∑

j=1

θje
−xj

}
.

Equivalently,

(
MN(1)− b1,N

a1,N
, . . . ,

MN(p)− bp,N
ap,N

)
d→ (M1, . . . ,Mp), N → ∞,

where M = (M1, . . . ,Mp) has the cdf FM(x1, . . . , xp) = exp
{
−∑p

j=1 θje
−xj

}
. By the Cramér–

Wold device, we therefore have

p∑

j=1

cj
MN(j)− bj,N

aj,N

d→
p∑

j=1

cjMj, N → ∞, (3.4.20)

for any constants cj . Observe that

p∑

j=1

cj
M̂N(j)− bj,N

aj,N
=

p∑

j=1

cj

(
M̂N(j)− bj,N

aj,N
− MN(j)− bj,N

aj,N

)

+

p∑

j=1

cj
MN(j)− bj,N

aj,N
.

The first term is asymptotically negligible because of (3.2.11), so claim (3.2.12) follows from

(3.4.20).

PROOF OF THEOREM 3.2.2 If theXi form a stationary Gaussian sequence, then condition (3.2.10)

holds for any κ > 0. Since condition D(un) implies Assumption 3.2.2, relations (3.2.11) and

(3.2.12) of Theorem 3.2.1 hold with

bj,N =
√
λjb

(G)
N , aj,N =

√
λja

(G)
N ,
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where a
(G)
N and b

(G)
N are defined in (3.2.6). Therefore, relation (3.2.13) is equivalent to

M̂N(j)

a
(G)
N


 1√

λ̂j

− 1√
λj


 = oP (1). (3.4.21)

By Theorem 3.2.1, we know that, for any 1 ≤ j ≤ p, (M̂N(j) −
√
λjb

(G)
N )/(

√
λja

(G)
N ) = O(1).

Since b
(G)
N ∼ (2 logN)

1
2 and a

(G)
N ∼ (2 logN)−

1
2 , we have

M̂N(j)

a
(G)
N

=

(
O(1) +

b
(G)
N

a
(G)
N

)
√
λj = O(1) +O(logN) = O(logN).

Therefore, (3.4.21) will follow from

logN


 1√

λ̂j

− 1√
λj


 = oP (1). (3.4.22)

By Assumptions 3.2.1 and Chebyshev’s inequality, for any 0 < γ < 1,

N
1−γ
2 (λ̂j − λj)

P→ 0, N → ∞. (3.4.23)

Hence,

logN


 1√

λ̂j

− 1√
λj


 =

logN

N
1−γ
2

N
1−γ
2

(
λj − λ̂j

)

√
λ̂j
√
λj

(√
λ̂j +

√
λj

) P→ 0, N → ∞,

establishing (3.4.22). Thus (3.2.13) follows.

63



Observe that

p∑

j=1

cj
M̂N(j)−

√
λ̂jb

(G)
N√

λ̂ja
(G)
N

=

p∑

j=1

cj


M̂N(j)−

√
λ̂jb

(G)
N√

λ̂ja
(G)
N

− M̂N(j)−
√
λjb

(G)
N√

λja
(G)
N




+

p∑

j=1

cj
M̂N(j)−

√
λjb

(G)
N√

λja
(G)
N

,

for any constants cj . The first term is asymptotically negligible because of (3.2.13). Claim (3.2.14)

thus follows from Theorem 3.2.1.

PROOF OF COROLLARY 3.2.1 For any 1 ≤ j ≤ p, Assumption 3.2.2 holds with θj = 1, and

bj,N =
√
λjb

(G)
N , aj,N =

√
λja

(G)
N ,

where a
(G)
N and b

(G)
N are defined in (3.2.6). Considering independent Gaussian sequenceXi, for any

i, k, Cov(Yi(j), Yk(ℓ)) = 0, if j ̸= ℓ, so sequences {Yi(j), i ≥ 1}, j = 1, 2, . . . , p, are indepen-

dent. It follows that for eachN , the random variablesMN(1),MN(2), . . . ,MN(p) are independent.

Therefore, Assumption 3.2.3 follows.

3.5 Proofs of the results of Section 3.3

If the Xi form a stationary Gaussian sequence, then

bj,N =
√
λjb

(G)
N , aj,N =

√
λja

(G)
N ,

where a
(G)
N and b

(G)
N are defined in (3.2.6). Therefore,

dN(x) =
√
λa

(G)
N x+

√
λb

(G)
N ,

after dropping the subscript j. The proof of Theorem 3.3.1 requires several lemmas. The extremal

behavior of iid sequence is described by the following well–known result:
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THEOREM 3.5.1. If F is the cdf of the N(0, λ) distribution, then

lim
N→∞

FN(dN(x)) = exp
{
−e−x

}
. (3.5.24)

LEMMA 3.5.1. Suppose F is the cdf of the N(0, λ) distribution. For any s > 0, any real c, and

any fixed x,

F
(
dN(x) + cN−s

)
− F (dN(x)) = O

(
N−1−s

)
.

Proof. Notice that b
(G)
N ∼ (2 logN)

1
2 and a

(G)
N ∼ (2 logN)−

1
2 . Therefore dN(x) ∼

√
λb

(G)
N , so

dN(x) + cN−s > 0, for sufficiently large N . Next observe that, for c ≥ 0,

dN (x)+cN−s∫

dN (x)

1√
2πλ

exp

{
−u2

2λ

}
du

≤ cN−s
1√
2πλ

exp

{
− 1

2λ
d2N(x)

}

= O(N−s) exp

{
−(a

(G)
N x+ b

(G)
N )2

2

}

= O(N−s)O
(
N−1

)
= O

(
N−1−s

)
.

For c < 0, since N−sdN(x) → 0, we have

dN (x)∫

dN (x)+cN−s

1√
2πλ

exp

{
−u2

2λ

}
du

≤ cN−s
1√
2πλ

exp

{
− 1

2λ

(
dN(x) + cN−s

)2
}

≤ O(N−s) exp

{
− 1

2λ
d2N(x)

}
exp

{
−1

λ
cN−sdN(x)

}

= O(N−s)O
(
N−1

)
= O

(
N−1−s

)
.
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The following lemma is well-known if the aN and bN are normalizing constants for the extreme

limit to whose domain of attraction F belongs, e.g. Theorem 1.1.6 of [12]. It, however, holds in

greater generality, which we will need in the proofs that follow.

LEMMA 3.5.2. Let F be any distribution function. For any real sequences aN > 0 and bN , the

following statements are equivalent for any fixed x ∈ R:

(i) limN→∞ F
N(aNx+ bN) = exp {−e−x};

(ii) limN→∞N(1− F (aNx+ bN)) = e−x.

Proof. Taking logarithms of both sides of (i), we get an equivalent relation

lim
N→∞

N logF (aNx+ bN) = −e−x. (3.5.25)

Set wN = 1 − F (aNx + bN), so that F (aNx + bN) = 1 − wN . Observe that either (3.5.25) or

condition (ii) imply that wN → 0. By Taylor series expansion of the logarithm around 1,

logF (aNx+ bN) = −wN − 1

2x2N
w2

N , |xN − 1| ≤ wN .

Since 1/x2N is bounded in a neighborhood of 1,

lim
N→∞

−N logF (aNx+ bN)

N
(
1− F (aNx+ bN)

) = lim
N→∞

{
1 +

1

2x2N
wN

}
= 1,

completing the proof.

LEMMA 3.5.3. Suppose F is the cdf of the N(0, λ) distribution. For any s > 0, any real c, and

any fixed x,

FN(dN(x) + cN−s) → exp
{
−e−x

}
, N → ∞. (3.5.26)
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Proof. Set b′N = b
(G)
N + cN−s/

√
λ, so that

FN(dN(x) + cN−s) = FN(
√
λa

(G)
N x+

√
λb′N).

Hence relation (3.5.26) is equivalent to

lim
N→∞

FN(
√
λa

(G)
N x+

√
λb′N) = exp

{
−e−x

}
.

Then by Lemma 3.5.2, it is enough to prove the following relation

lim
N→∞

N(1− F (
√
λa

(G)
N x+

√
λb′N)) = e−x. (3.5.27)

By Theorem 3.5.1 and Lemma 3.5.2, we have limN→∞N(1− F (
√
λa

(G)
N x+

√
λb

(G)
N )) = e−x.

Therefore, by Lemma 3.5.1,

N(1− F (
√
λa

(G)
N x+

√
λb′N))

= N
[
1− F (

√
λa

(G)
N x+

√
λb

(G)
N )
]
+N

[
F (

√
λa

(G)
N x+

√
λb

(G)
N )− F (

√
λa

(G)
N x+

√
λb′N)

]

= N
[
1− F (

√
λa

(G)
N x+

√
λb

(G)
N )
]
+N

[
F (dN(x))− F (dN(x) + cN−s)

]

= N
[
1− F (

√
λa

(G)
N x+

√
λb

(G)
N )
]
+O(N−s)

→ e−x.

LEMMA 3.5.4. Suppose F is the cdf of the N(0, λ) distribution. For any s > 0, any real c, and

any fixed x,

FN(dN(x) + cN−s)− FN(dN(x)) = O(N−s). (3.5.28)
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Proof. We will use the inequality

bN − aN ≤ (b− a) ·NbN−1, 0 ≤ a ≤ b. (3.5.29)

By Lemma 3.5.1, we thus have, for c ≥ 0,

FN(dN(x) + cN−s)− FN(dN(x))

≤
{
F (dN(x) + cN−s)− F (dN(x))

}
·NFN−1(dN(x) + cN−s)

= O
(
N−1−s

)
NLN−1

1,N = O
(
N−s

)
L−11,NL

N
1,N ,

where L1,N = F (dN(x) + cN−s) → 1. Moreover, by Lemma 3.5.3, LN
1,N → exp {−e−x}. Thus

(3.5.28) follows.

Similarly, for c < 0,

FN(dN(x))− FN(dN(x) + cN−s)

≤
{
FN(dN(x))− FN(dN(x) + cN−s)

}
·NFN−1(dN(x))

= O
(
N−1−s

)
NLN−1

2,N = O
(
N−s

)
L−12,NL

N
2,N ,

where L2,N = F (dN(x)) → 1, and by Theorem 3.5.1, LN
2,N → exp {−e−x}. Thus (3.5.28)

follows.

LEMMA 3.5.5. Recall that Yi = Yi(j) = ⟨Xi, vj⟩, for some fixed j. Suppose Assumption 3.3.1

holds. Then, for any s > 0, any real c, and any fixed x,

P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N) = O(N−min(r,s)).

Proof. Denote by Ỹi independent random variables with the same marginal distribution as the Yi.

By the triangle inequality,
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∣∣∣P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N)
∣∣∣

≤
∣∣∣P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Ỹi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)

∣∣∣

+
∣∣∣P (Ỹi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Ỹi ≤ dN(x), 1 ≤ i ≤ N)

∣∣∣

+
∣∣∣P (Ỹi ≤ dN(x), 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N)

∣∣∣

= T1 + T2 + T3.

Lemmas 3.5.3 and Theorem 3.5.1 imply that, FN(dN(x)+cN
−s) → exp {−e−x} andFN(dN(x)) →

exp {−e−x}. By Lemma 3.5.2, we have, for any fixed x,

lim
N→∞

N(1− F (dN(x) + cN−s)) = e−x > 0;

lim
N→∞

N(1− F (dN(x))) = e−x > 0.

Then, by Assumption 3.3.1,

P (MN ≤ dN(x) + cN−s)− FN(dN(x) + cN−s) = O(N−r)

and

P (MN ≤ dN(x))− FN(dN(x)) = O(N−r),

for some r > 0. Therefore, T1 = O(N−r) and T3 = O(N−r), so the conclusion follows from

Lemma 3.5.4.

PROOF OF THEOREM 3.3.1 Recall the definition of ηi,N in (3.4.18) and define the events

BN = {Yi ≤ dN(x), 1 ≤ i ≤ N} ; B⋆
N = {Yi + ηi,N ≤ dN(x), 1 ≤ i ≤ N} .

Therefore, KN(x) = P (B⋆
N)− P (BN).
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Define the event

AN =

{
max
1≤i≤N

|ηi,N | ≤ cN−s
}
,

for any 0 < s < 1/4 and c > 0. By Lemma 3.4.2, there is a positive constant C0 such that

E
(

max
1≤i≤N

|ηi,N |
)
≤ C0N

−1/4.

Therefore, by Markov’s inequality,

P (Ac
N) ≤ c−1N sC0N

−1/4 = O(N−(1/4−s)).

Using the inequality P (A ∩ B) ≥ P (A) + P (B)− 1, we have

P (B⋆
N)− P (BN)

= P (B⋆
N ∩ AN)P (AN) + P (B⋆

N ∩ Ac
N)P (A

c
N)

− P (BN ∩ AN)P (AN)− P (BN ∩ Ac
N)P (A

c
N)

≤ P (B⋆
N ∩ AN)P (AN) + P (Ac

N)
2 − P (BN ∩ AN)P (AN)

≤ P (B⋆
N ∩ AN)P (AN) + P (Ac

N)
2 − [P (BN) + P (AN)− 1]P (AN)

= [P (B⋆
N ∩ AN)− P (BN)]P (AN) + P (Ac

N).

The event B⋆
N ∩ AN is contained in the event {Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N}. Thus, by

Lemma 3.5.5,

KN(x) ≤ P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N) + P (Ac
N)

= O(N−min(r,s)) +O(N−(1/4−s)),

for any 0 < s < 1/4. Similarly,
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P (BN)− P (B⋆
N)

= P (BN ∩ AN)P (AN) + P (BN ∩ Ac
N)P (A

c
N)

− P (B⋆
N ∩ AN)P (AN)− P (B⋆

N ∩ Ac
N)P (A

c
N)

≤ P (BN)P (AN) + P (Ac
N)

2 − P (B⋆
N ∩ AN)P (AN)

= [P (BN)− P (B⋆
N ∩ AN)]P (AN) + P (Ac

N)
2.

The event B⋆
N ∩ AN contains the event {Yi ≤ dN(x)− cN−s, 1 ≤ i ≤ N} ∩ AN , so

−KN(x) ≤
[
P (BN)− P

({
Yi ≤ dN(x)− cN−s, 1 ≤ i ≤ N

}
∩ AN

)]
P (AN) + P (Ac

N)
2

≤
[
P (BN)− P (Yi ≤ dN(x)− cN−s, 1 ≤ i ≤ N)− P (AN) + 1

]
P (AN) + P (Ac

N)
2

≤ P (Yi ≤ dN(x), 1 ≤ i ≤ N)− P
(
Yi ≤ dN(x)− cN−s, 1 ≤ i ≤ N

)
+ P (Ac

N)

= O(N−min(r,s)) +O(N−(1/4−s)),

for any 0 < s < 1/4. Thus

|KN(x)| ≤ O(N−min(r,s)) +O(N−(1/4−s)).

When r > 1/8, KN(x) = O(N−q) for any 0 < q ≤ 1/8; when 0 < r ≤ 1/8, KN(x) = O(N−q)

for any 0 < q ≤ r. The conclusion then follows.

Next we prove Theorem 3.3.2. A key element of the proof is the uniform convergence in

Lemma 3.5.6, which extends a result of [58]. The following definition, used in the proof of

Lemma 3.5.6, was introduced by [58].

DEFINITION 3.5.1. For a positive real number g > 0, define the distribution functions

F (g, x) =





0 if x < −g−1

1− (1 + gx)−g
−1

if x ≥ −g−1
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and

F (−g, x) =





0 if x < 0

1− (1− gx)g
−1

if 0 ≤ x < g−1

1 if x ≥ g−1.

LEMMA 3.5.6. Suppose Assumption 3.3.2 holds. For any fixed real number A, and the aN and bN

defined in (3.2.9),

sup
x≥A

|N (1− F (aNx+ bN))− e−x| → 0, N → ∞. (3.5.30)

Proof. Lemma 3.5.6, has been derived by [58] for A = 0 in (3.5.30). We extend it to an arbitrary

real A. The nontrivial extension is only for A < 0, and this will be assumed throughout the proof.

The general case involves two new factors, denoted LN(A) and RN(A). We show that their effect

is asymptotically negligible.

Assumption 3.3.2 implies that F is in the Gumbel domain of attraction, and for all t ∈ (t0, x
⋆),

t0 < x⋆,

1− F (t) = C exp

{
−
∫ t

t0

1

f(s)
ds

}
, C > 0, (3.5.31)

where f is defined in (3.2.8). Consider a non-increasing function g(x) ≥ 0, s.t. limx→∞ g(x) = 0

and g(x) ≥ |f ′(x)|. Such a function g always exists since we may take g(x) = supt≥x |f ′(t)|.

Consider the change of variables

aNx+ bN = aN(x− A) + (AaN + bN) := aNy + b′N . (3.5.32)

Relation (3.5.30) then becomes

sup
y≥0

|N (1− F (aNy + b′N))− e−(y+A)| → 0, N → ∞. (3.5.33)
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For t ≥ b′N ,

f(t)− f(b′N) =

∫ t

b′N

f ′(s)ds ≤
∫ t

b′N

g(s)ds ≤ g(b′N)(t− b′N)

and

f(t)− f(b′N) =

∫ t

b′N

f ′(s)ds ≥ −
∫ t

b′N

g(s)ds ≥ −g(b′N)(t− b′N).

It follows that

1

f(b′N) + g(b′N)(t− b′N)
≤ 1

f(t)
≤ 1

f(b′N)− g(b′N)(t− b′N)
.

From now on, we assume that A < 0. This implies that b′N = AaN + bN < bN . Recall that

bN = U(N), so

N =
1

1− F (bN)
=

1

F (bN)
.

Using (3.5.31), we therefore have

− log
{
NF̄ (aNy + b′N)

}
= − log

{
F̄ (aNy + b′N)

F̄ (b′N)

F̄ (b′N)

F̄ (bN)

}
=

∫ aNy+b′N

b′N

1

f(s)
ds−

∫ bN

b′N

1

f(s)
ds.

Observe that, using aN = f(bN),

1

g(b′N)
log

{
1 +

g(b′N)f(bN)

f(b′N)
y

}
≤
∫ aNy+b′N

b′N

1

f(s)
ds ≤ − 1

g(b′N)
log

{
1− g(b′N)f(bN)

f(b′N)
y

}
.

The right inequality holds for 0 ≤ y ≤ f(b′N )

g(b′N )f(bN )
and the left for y ≥ 0. Similarly, we have

1

g(b′N)
log

{
1 +

g(b′N)

f(b′N)
(bN − b′N)

}
≤
∫ bN

b′N

1

f(s)
ds ≤ − 1

g(b′N)
log

{
1− g(b′N)

f(b′N)
(bN − b′N)

}
.

Therefore, exponentiating, we find that for y ≥ 0,
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NF̄ (aNy + b′N) ≥
{
1 +

g(b′N)

f(b′N)
(bN − b′N)

}1/g(b′N ){
1− g(b′N)f(bN)

f(b′N)
y

}1/g(b′N )

= LN(A)F̄

(
−g(b′N),

f(bN)

f(b′N)
y

)

and

NF̄ (aNy + b′N) ≤
{
1− g(b′N)

f(b′N)
(bN − b′N)

}−1/g(b′N ){
1 +

g(b′N)f(bN)

f(b′N)
y

}−1/g(b′N )

= RN(A)F̄

(
g(b′N),

f(bN)

f(b′N)
y

)
,

where the functions F (±g, x) are defined in Definition 3.5.1, and the coefficients LN(A) and

RN(A) are given by

LN(A) =

{
1 +

g(b′N)

f(b′N)
(bN − b′N)

}1/g(b′N )

and

RN(A) =

{
1− g(b′N)

f(b′N)
(bN − b′N)

}−1/g(b′N )

.

Then we have

sup
y≥0

|N (1− F (aNy + b′N))− e−(y+A)|

≤ sup
y≥0

∣∣∣∣LN(A)F̄

(
−g(b′N),

f(bN)

f(b′N)
y

)
− e−(y+A)

∣∣∣∣
∨

sup
y≥0

∣∣∣∣RN(A)F̄

(
g(b′N),

f(bN)

f(b′N)
y

)
− e−(y+A)

∣∣∣∣ .

We will only show that

sup
y≥0

∣∣∣∣LN(A)F̄

(
−g(b′N),

f(bN)

f(b′N)
y

)
− e−(y+A)

∣∣∣∣ = o(1). (3.5.34)
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A similar argument applies to the second expression, and (3.5.33) follows. We represent the factor

LN(A) as follows:

LN(A) =

{
1 +

g(b′N)

f(b′N)
(−A)f(bN)

}1/g(b′N )

=
{
[1 + hN(−A)]1/hN

} f(bN )

f(b′
N

)
= QN(A)

f(bN )

f(b′
N

) ,

where

hN =
g(b′N)f(bN)

f(b′N)

and

QN(A) = [1 + hN(−A)]1/hN .

Then

sup
y≥0

∣∣∣∣LN(A)F̄

(
−g(b′N),

f(bN)

f(b′N)
y

)
− e−(y+A)

∣∣∣∣

≤ sup
y≥0

∣∣∣∣QN(A)
f(bN )

f(b′
N

) F̄

(
−g(b′N),

f(bN)

f(b′N)
y

)
−QN(A)

f(bN )

f(b′
N

) e
− f(bN )

f(b′
N

)
y
∣∣∣∣

+ sup
y≥0

∣∣∣∣
[
QN(A)e

−y] f(bN )

f(b′
N

) −QN(A)e
−y
∣∣∣∣+ sup

y≥0

∣∣QN(A)e
−y − e−(y+A)

∣∣

= L1,N(A) + L2,N(A) + L3,N(A).

By Taylor series expansion, there exists b⋆N ∈ (b′N , bN) such that

f(bN) = f(b′N) + f ′(b⋆N)(bN − b′N) = f(b′N)− f ′(b⋆N)Af(bN).

Under Assumption 3.3.2, we then have

f(bN)

f(b′N)
=

1

1 + f ′(b⋆N)A
→ 1, N → ∞.

Therefore, 0 ≤ f(bN )
f(b′N )

≤ 2, for N large enough. Recall that hN =
g(b′N )f(bN )

f(b′N )
and g(x) → 0, as

x→ ∞, so hN → 0, as N → ∞. Thus
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QN(A) = [1 + hN(−A)]1/hN → e−A, N → ∞.

Since A < 0, for N large enough, 1 < QN(A) < e−A + 1, and

QN(A)
f(bN )

f(b′
N

) ≤ QN(A)
2 = O(1).

Proposition 3.1 in [58] shows that for 0 < g < 1,

sup
x≥0

∣∣F̄ (±g, x)− e−x
∣∣ ≤ (2 + g)e−2g.

Thus we have

L1,N(A) = QN(A)
f(bN )

f(b′
N

) sup
y≥0

∣∣∣∣F̄
(
−g(b′N),

f(bN)

f(b′N)
y

)
− e

− f(bN )

f(b′
N

)
y
∣∣∣∣

≤ O(1) (2 + g(b′N)) e
−2g(b′N)

= O(1) (2 + o(1)) e−2o(1)

= o(1).

For the second term,

L2,N(A) ≤ sup
y≥0

∣∣∣∣
[
QN(A)e

−y] f(bN )

f(b′
N

) −QN(A)
f(bN )

f(b′
N

) e−y
∣∣∣∣+ sup

y≥0

∣∣∣∣QN(A)
f(bN )

f(b′
N

) e−y −QN(A)e
−y
∣∣∣∣

=: L21,N(A) + L22,N(A).

Proposition 3.2 in [58] shows that for 0 < g < 1,

sup
x≥0

∣∣e−x(1−g) − e−x
∣∣ ≤ e−1 (g/(1− g))

and

sup
x≥0

∣∣e−x(1+g) − e−x
∣∣ ≤ (g/(1 + g)) (1 + g)−1/g.
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Therefore,

L21,N(A) =QN(A)
f(bN )

f(b′
N

) sup
y≥0

∣∣∣∣e
− f(bN )

f(b′
N

)
y − e−y

∣∣∣∣

≤QN(A)
f(bN )

f(b′
N

) e−1
(
f(b′N)

f(bN)
− 1

)
I

(
0 ≤ f(bN)

f(b′N)
≤ 1

)

∨
QN(A)

f(bN )

f(b′
N

)

(
1− f(b′N)

f(bN)

)(
f(bN)

f(b′N)

) f(b′N )

f(b′
N

)−f(bN )

I

(
1 ≤ f(bN)

f(b′N)
≤ 2

)

≤O(1)e−1o(1)
∨

O(1)o(1)O(1)

=o(1).

By Taylor series expansion, there exists f0 between
f(bN )
f(b′N )

and 1 such that

L22,N(A) =

∣∣∣∣QN(A)
f(bN )

f(b′
N

) −QN(A)

∣∣∣∣

=QN(A)
f0 |logQN(A)|

∣∣∣∣
f(bN)

f(b′N)
− 1

∣∣∣∣

≤QN(A)
2O(1)o(1)

=o(1).

We have thus verified that L2,N(A) = o(1). Finally, observe that L3,N(A) =
∣∣QN(A)− e−A

∣∣ =

o(1). This completes the verification of (3.5.34) and the proof of Lemma 3.5.6.

LEMMA 3.5.7. Suppose Assumption 3.3.2 and condition (3.2.10) with some κ > 0 hold. Then, for

any s > κ, any real c, and any fixed x,

F
(
dN(x) + cN−s

)
− F (dN(x)) = o

(
N−1−(s−κ)

)
.
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Proof. Set rN(x) = N (1− F (dN(x)))− e−x. For any fixed x,

F
(
dN(x) + cN−s

)
− F (dN(x))

= [1− F (dN(x))]−
[
1− F

(
dN(x) + cN−s

)]

= N−1
[
rN(x) + e−x

]
−N−1

[
rN

(
x+

cN−s

aN

)
+ e

−
(
x+ cN−s

aN

)]

= N−1e−x
[
1− e

− cN−s

aN

]
+N−1

[
rN(x)− rN

(
x+

cN−s

aN

)]

= D1,N(x) +D2,N(x).

Observe that, for any s > κ,

N−s

aN
=
N−κ

aN
N−(s−κ) = o

(
N−(s−κ)

)
. (3.5.35)

Then by Taylor series expansion, there exists y⋆ between 0 and cN−s

aN
such that

1− e
− cN−s

aN = e−y
⋆ cN−s

aN
= o

(
N−(s−κ)

)
.

Therefore, for any fixed x,

D1,N(x) = N−1e−xo
(
N−(s−κ)

)
= o

(
N−1−(s−κ)

)
.

Moreover, there exists z⋆ between x and x+ cN−s

aN
such that

rN(x)− rN

(
x+

cN−s

aN

)
= −r′N(z⋆)

cN−s

aN
.

We claim that

r′N(z
⋆) = o(1). (3.5.36)
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Then D2,N(x) = o
(
N−1−(s−κ)

)
follows from (3.5.35). The verification of (3.5.36) relies on

Lemma 3.5.6. Recall that f(t) = 1−F (t)
F ′(t)

. Then

|r′N(z⋆)| = |aNNF ′(aNz⋆ + bN)− e−z
⋆ |

=
∣∣∣ f(bN)

f(aNz⋆ + bN)
N(1− F (aNz

⋆ + bN))− e−z
⋆
∣∣∣

=
∣∣∣ f(bN)

f(aNz⋆ + bN)
N(1− F (aNz

⋆ + bN))−
f (bN)

f(aNz⋆ + bN)
e−z

⋆
∣∣∣

+
∣∣∣ f(bN)

f(aNz⋆ + bN)
e−z

⋆ − e−z
⋆
∣∣∣

= T1,N + T2,N .

By Taylor series expansion, there exists t⋆ between bN and aNz
⋆ + bN such that

f(aNz
⋆ + bN) = f(bN) + f ′(t⋆)aNz

⋆ = f(bN) + f ′(t⋆)f(bN)z
⋆,

then

f(bN)

f(aNz⋆ + bN)
=

1

1 + f ′(t⋆)z⋆
.

(3.5.35) implies that there exists an integer N1 > 0 such that for any N > N1,

∣∣∣N−s

aN

∣∣∣ < 1.

Therefore, setting A1 = x− |c| and A2 = x+ |c|, we have, for N > N1,

xN := x+
cN−s

aN
∈ (x− |c|, x+ |c|) = (A1, A2).

Since x and c are fixed, A1 and A2 are also fixed. Therefore, z⋆ ∈ (A1, A2) and t⋆ → ∞, as

N → ∞. Under Assumption 3.3.2, we then have, as N → ∞,

f(bN)

f(aNz⋆ + bN)
→ 1.

Using Lemma 3.5.6, we then have
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T1,N =
∣∣∣ f(bN)

f(aNz⋆ + bN)

∣∣∣|N(1− F (aNz
⋆ + bN))− e−z

⋆ |

≤ O(1) sup
z≥A1

|N(1− F (aNz + bN))− e−z| = o(1).

Thus

T2,N =
∣∣∣ f(bN)

f(aNz⋆ + bN)
− 1
∣∣∣e−z⋆ = o(1),

and (3.5.36) follows.

LEMMA 3.5.8. Under the assumptions of Lemma 3.5.7, for any s > κ, any real c, and any fixed x,

FN(dN(x) + cN−s) → exp
{
−e−x

}
, N → ∞. (3.5.37)

Proof. Set b⋆N = bN + cN−s, so that

FN(dN(x) + cN−s) = FN(aNx+ b⋆N).

Hence, relation (3.5.37) is equivalent to

lim
N→∞

FN(aNx+ b⋆N) = exp
{
−e−x

}
.

Then by Lemma 3.5.2, it is enough to prove the following relation

lim
N→∞

N(1− F (aNx+ b⋆N)) = e−x. (3.5.38)

Assumption 3.3.2 implies that

FN(dN(x)) → exp
{
−e−x

}
, N → ∞.

By Lemma 3.5.2, we then have for any fixed x ∈ R,
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lim
N→∞

N(1− F (aNx+ bN)) = e−x.

Therefore, by Lemma 3.5.7,

N(1− F (aNx+ b⋆N))

= N [1− F (aNx+ bN)] +N [F (aNx+ bN)− F (aNx+ b⋆N)]

= N [1− F (aNx+ bN)] +N
[
F (dN(x))− F (dN(x) + cN−s)

]

= N [1− F (aNx+ bN)] + o(N−(s−κ))

→ e−x.

LEMMA 3.5.9. Under the assumptions of Lemma 3.5.7, for any s > κ, any real c, and any fixed x,

FN(dN(x) + cN−s)− FN(dN(x)) = o(N−(s−κ)). (3.5.39)

Proof. Using the inequality shown as (3.5.29), and by Lemma 3.5.7, we have for c ≥ 0,

FN(dN(x) + cN−s)− FN(dN(x))

≤
{
F (dN(x) + cN−s)− F (dN(x))

}
·NFN−1(dN(x) + cN−s)

= o
(
N−1−(s−κ)

)
NLN−1

1,N = o
(
N−(s−κ)

)
L−11,NL

N
1,N ,

where L1,N = F (dN(x) + cN−s) → 1. Moreover, by Lemma 3.5.8, LN
1,N → exp {−e−x}. Thus

(3.5.39) follows.
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Similarly, for c < 0,

FN(dN(x))− FN(dN(x) + cN−s)

≤
{
FN(dN(x))− FN(dN(x) + cN−s)

}
·NFN−1(dN(x))

= o
(
N−1−(s−κ)

)
NLN−1

2,N = o
(
N−(s−κ)

)
L−12,NL

N
2,N ,

where L2,N = F (dN(x)) → 1, and Assumption 3.3.2 implies that, LN
2,N → exp {−e−x}. Thus

(3.5.39) follows.

LEMMA 3.5.10. Recall that Yi = Yi(j) = ⟨Xi, vj⟩, for some fixed j. Suppose Assumptions 3.3.1,

3.3.2 and condition (3.2.10) hold with some κ > 0. For any s > κ, any real c, and any fixed x,

P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N) = O
(
N−min(r,s−κ)) .

Proof. Denote by Ỹi independent random variables with the same marginal distribution as the Yi.

Proceeding as in the proof of Lemma 3.5.5,

∣∣∣P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N)
∣∣∣

≤
∣∣∣P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Ỹi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)

∣∣∣

+
∣∣∣P (Ỹi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Ỹi ≤ dN(x), 1 ≤ i ≤ N)

∣∣∣

+
∣∣∣P (Ỹi ≤ dN(x), 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N)

∣∣∣

= T1 + T2 + T3.

Lemmas 3.5.8 and Assumption 3.3.2 imply that FN(dN(x) + cN−s) → exp {−e−x} and

FN(dN(x)) → exp {−e−x}. Following the argument used in the proof of Lemma 3.5.5, we know

that T1 = O(N−r) and T3 = O(N−r). Then the conclusion follows from Lemma 3.5.9.
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PROOF OF THEOREM 3.3.2 Recall the definitions of events BN , B
⋆
N and AN introduced at the

beginning of the proof of Theorem 3.3.1 and the relation P (Ac
N) = O(N−(1/4−s)).

Proceeding as in the proof of Theorem 3.3.1, we have

KN(x) = P (B⋆
N)− P (BN)

≤ P (Yi ≤ dN(x) + cN−s, 1 ≤ i ≤ N)− P (Yi ≤ dN(x), 1 ≤ i ≤ N) + P (Ac
N).

Thus, by Lemma 3.5.10,

KN(x) ≤ O(N−min(r,s−κ)) +O(N−(1/4−s)),

for any κ < s < 1/4. Similarly,

−KN(x) = P (BN)− P (B⋆
N)

≤ P (Yi ≤ dN(x), 1 ≤ i ≤ N)− P
(
Yi ≤ dN(x)− cN−s, 1 ≤ i ≤ N

)
+ P (Ac

N)

= O(N−min(r,s−κ)) +O(N−(1/4−s)),

for any κ < s < 1/4. Therefore, |KN(x)| ≤ O(N−min(r,s−κ)) + O(N−(1/4−s)). When r > 1/8 −

κ/2, KN(x) = O(N−q) for any 0 < q ≤ 1/8−κ/2; when 0 < r ≤ 1/8−κ/2, KN(x) = O(N−q)

for any 0 < q ≤ r. The conclusion then follows.
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Chapter 4

Principal components analysis of regularly varying

functions

4.1 Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional curves

by coefficients of their projections onto suitable, fixed or data–driven, systems, e.g. [1, 2, 5, 6]. A

finite number of these coefficients encode the shape of the curves and are amenable to various

statistical procedures. The best systems are those that lead to low dimensional representations, and

so provide the most efficient dimension reduction. Of these, the functional principal components

(FPCs) have been most extensively used, with hundreds of papers dedicated to the various aspects

of their theory and applications.

If X1, X2, . . . , XN are mean zero iid functions in L2 with E ||Xn||2 <∞, then

Xn(t) =
∞∑

j=1

ξnjvj(t), Eξ2nj = λj. (4.1.1)

The FPCs vj and the eigenvalues λj are estimated by v̂j and λ̂j defined by

∫
ĉ(t, s)v̂j(s)ds = λ̂j v̂j(t), (4.1.2)

where

ĉ(t, s) =
1

N

N∑

n=1

Xn(t)Xn(s). (4.1.3)

Under the existence of the fourth moment,

E ||X||4 =
{∫

X2(t)dt

}2

<∞, (4.1.4)
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it has been shown that for each j ≥ 1,

lim sup
N→∞

NE ||v̂j − vj||2 <∞, lim sup
N→∞

NE
(
λ̂j − λj

)2
<∞, (4.1.5)

N1/2(λ̂j − λj)
d→ N(0, σ2

j ), (4.1.6)

N1/2(v̂j − vj)
d→ N(0, Cj), (4.1.7)

for a suitably defined variance σ2
j and a covariance operator Cj . The above relations, especially

(4.1.5), have been used to derive large sample justifications of inferential procedures based on

the estimated FPCs v̂j . In most scenarios, one can show that replacing the v̂j by the vj and the

λ̂j by the λj is asymptotically negligible. Relations (4.1.5) were established by [7] and extended

to weakly dependent functional time series by [8]. Relations (4.1.6) and (4.1.7) follow from the

results of [15]. In case of continuous functions satisfying regularity conditions, they follow from

the results of [59]. Multivariate versions of (4.1.6) and (4.1.7) have been established in these

papers.

A crucial assumption for the relations (4.1.5)–(4.1.7) to hold is the existence of the fourth

moment, i.e. (4.1.4), the iid assumption can be relaxed in many ways. Nothing is at present known

about the asymptotic properties of the FPCs and their eigenvalues if (4.1.4) does not hold. Our

objective is to explore what can be said about the asymptotic behavior of Ĉ, v̂j and λ̂j if (4.1.4)

fails. We would thus like to consider the case of E∥Xn∥2 < ∞ and E∥Xn∥4 = ∞. Such an

assumption is however too general. From mid 1980s to mid 1990s similar questions were posed

for scalar time series for which the fourth or even second moment does not exist. A number

of results pertaining to the convergence of sample covariances and the periodogram have been

derived under the assumption of regularly varying tails, e.g. [60–65]; many others are summarized

in the monograph of [10]. The assumption of regular variation is natural because non–normal

stable limits can be derived by establishing a connection to random variables in a stable domain of
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Figure 4.1: Five consecutive intraday return curves, Walmart stock.

attraction, which is characterized by regular variation. This is the approach we take. We assume

that the functions Xn are regularly varying in the space L2 with the index α ∈ (2, 4), which

implies E∥Xn∥2 < ∞ and E∥Xn∥4 = ∞. Suitable definitions and assumptions are presented in

Section 4.2.

The paper is organized as follows. The remainder of the introduction provides a practical

motivation for the theory we develop. It is not necessary to understand the contribution of the

paper, but, we think, it gives a good feel for what is being studied. The formal exposition begins

in Section 4.2, in which notation and assumptions are specified. Section 4.3 is dedicated to the

convergence of the sample covariance operator (the integral operator with kernel (4.1.3)). These

results are then used in Section 4.4 to derive various convergence results for the sample FPCs and

their eigenvalues. Section 4.5 shows how the results derived in previous sections can be used in

a context of a functional regression model. Its objective is to illustrate the applicability of our

theory in a well–known and extensively studied setting. It is hoped that it will motivate and guide

applications to other problems of functional data analysis. All proofs which go beyond simple

arguments are presented in Section 4.6.

We conclude this introduction by presenting a specific data context. Denote by Pi(t) the price

of an asset at time t of trading day i. For the assets we consider in our illustration, t is time

in minutes between 9:30 and and 16:00 EST (NYSE opening times) rescaled to the unit interval

(0, 1). The intraday return curve on day i is defined by Xi(t) = logPi(t)− logPi(0). In practice,
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Figure 4.2: The first three sample FPCs of intraday returns on Walmart stock.

Pi(0) is the price after the first minute of trading. The curves Ri show how the return accumulates

over the trading day, see e.g. [66]; examples of are shown in Figure 4.1.

The first three sample FPCs, v̂1, v̂2, v̂3, are shown in Figure 4.2. They are computed, using

(4.1.2), from minute-by-minute Walmart returns form July 05, 2006 to Dec 30, 2011, N = 1, 378

trading days. (This time interval is used for the other assets we consider.) The curves X̂i(t) =
∑3

j=1 ξ̂ij v̂j , with the scores ξ̂ij =
∫
Xi(t)v̂j(t)dt, visually approximate the curves Xi very well.

One can thus expect that the v̂j (with properly adjusted sign) are good estimators of the population

FPCs vj in (4.1.1). Relations (4.1.5) and (4.1.7) show that this is indeed the case, if E∥X1∥4 <∞.

(The curvesXi can be assumed to form a stationary time series in L2, see [67].) We will now argue

that the assumption of the finite fourth moment is not realistic, so, with the currently available

theory, it is not clear if the v̂j are good estimators of the vj . If E∥X1∥4 < ∞, then Eξ41j < ∞

for every j. Figures 4.3 and 4.4 show the Hill plots of the sample score ξ̂ij for four stocks and for

j = 1, 2, 3. These plots illustrate several properties. 1) It is reasonable to assume that the scores

have Pareto tails. 2) The tail index α is smaller than 4, implying that the fourth moment does not
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exist. 3) It is reasonable to assume that the tail index does not depend on j and is between 2 and

4. The evidence for the last assumption is stronger in Figure 4.3, but Figure 4.4 does not refute it.

With such a motivation, we are now able to formalize in the next section the setting of this paper.

4.2 Preliminaries

The functions Xn are assumed to be independent and identically distributed in L2, with the

same distribution as X , which is regularly varying with index α ∈ (2, 4). By L2 := L2(T ), we

denote the usual separable Hilbert space of square integrable functions on some compact subset T

of an Euclidean space. In a typical FDA framework, T = [0, 1], e.g. Chapter 2 of [6]. Regular

variation in finite–dimensional spaces has been a topic of extensive research for decades, see e.g.

[9, 68, 69]. We shall need the concept of regular variation of measures on infinitely-dimensional

function spaces. To this end, we start by recalling some terminology and fundamental facts about

regularly varying functions.

A measurable function L : (0,∞) → R is said to be slowly varying (at infinity) if, for all

λ > 0,

L(λu)

L(u)
→ 1, as u→ ∞.

Functions of the form R(u) = uρL(u) are said to be regularly varying with exponent ρ ∈ R.

The notion of regular variation extends to measures and provides an elegant and powerful

framework for establishing limit theorems. It was first introduced by [70] and has been since

extended to Banach and even metric spaces using the notion of M0 convergence (see e.g. [19]).

Even though we will work only with Hilbert spaces, we review the theory in a more general context.

Consider a separable Banach space B and let Bϵ := {z ∈ B : ∥z∥ < ϵ} be the open ball of

radius ϵ > 0, centered at the origin. A Borel measure µ defined on B0 := B\{0} is said to be

boundedly finite if µ(A) < ∞, for all Borel sets that are bounded away from 0, that is, such that

A ∩ Bϵ = ∅, for some ϵ > 0. Let M0 be the collection of all such measures. For µn, µ ∈ M0, we

say that the µn converge to µ in the M0 topology, if µn(A) → µ(A), for all bounded away from 0,

µ-continuity Borel sets A, i.e., such that µ(∂A) = 0, where ∂A := A \ A◦ denotes the boundary
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Figure 4.3: Hill plots (an estimate of α as a function of upper order statistics) for sample FPC scores for

Walmart (left) and IBM (right). From top to bottom: levels j = 1, 2, 3.
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Figure 4.4: Hill plots as in Figure 4.3 for J. P. Morgan–Chase (left) and Exxon–Mobil (right).
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of A. The M0 convergence can be metrized such that M0 becomes a complete separable metric

space (Theorem 2.3 in [19] and also Section 2.2. of [20]). The following result is known, see e.g.

Chapter 2 of [20] and references therein.

PROPOSITION 4.2.1. Let X be a random element in a separable Banach space B and α > 0. The

following three statements are equivalent:

(i) For some slowly varying function L,

P (||X|| > u) = u−αL(u) (4.2.8)

and

P (u−1X ∈ ·)
P (||X|| > u)

M0−→ µ(·), u→ ∞, (4.2.9)

where µ is a non-null measure on the Borel σ-field B(B0) of B0 = B\ {0}.

(ii) There exists a probability measure Γ on the unit sphere S in B such that, for every t > 0,

P (||X|| > tu,X/ ||X|| ∈ ·)
P (||X|| > u)

w−→ t−αΓ(·), u→ ∞.

(iii) Relation (4.2.8) holds, and for the same spectral measure Γ in (ii),

P (X/ ||X|| ∈ ·| ||X|| > u)
w−→ Γ(·), u→ ∞.

DEFINITION 4.2.1. If any one of the equivalent conditions in Proposition 4.2.1 hold, we shall say

that X is regularly varying with index α. The measures µ and Γ will be referred to as exponent

and angular measures of X , respectively.

The measure Γ is sometimes called the spectral measure, but we will use the adjective “spec-

tral” in the context of stable measures which appear in Section 4.3. It is important to distinguish

the angular measure of a regularly varying random function and a spectral measure of a stable
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distribution, although they are related. We also note that we call α the tail index, and −α the tail

exponent.

We will work under the following assumption.

ASSUMPTION 4.2.1. The random element X in the separable Hilbert space H = L2 is regularly

varying with index α ∈ (2, 4). The observations X1, X2, . . . are iid copies of X .

Assumption 4.2.1 is a coordinate free condition not related in any way to functional principal

components. The next assumption relates the asymptotic behavior of the FPC scores to the as-

sumed regular variation. It implies, in particular, that the expansion X(t) =
∑∞

j=1 ξjvj(t) contains

infinitely many terms, so that we study infinite dimensional objects. We will see in the proofs of

Proposition 4.3.1 and Theorem 4.3.2 that under Assumption 4.2.1 the limit

Qnm = lim
u→∞

P

({∑∞
j=n ξ

2
j

}1/2 {∑∞
j=m ξ

2
j

}1/2

> u

)

P
(∑∞

j=1 ξ
2
j > u

)

exists and is finite. We impose the following assumption related to condition (4.2.9).

ASSUMPTION 4.2.2. For every n,m ≥ 1, Qnm > 0.

Assumption 4.2.2 postulates, intuitively, that the tail sums
∑∞

j=n ξ
2
j must have extreme proba-

bility tails comparable to that of ∥X∥2.

We now collect several useful facts that will be used in the following. The exponent measure

µ satisfies

µ(tA) = t−αµ(A), ∀t > 0, A ∈ B(B0). (4.2.10)

It admits the polar coordinate representation via the angular measure Γ. That is, if x = rθ, where

r := ∥x∥ and θ = x/∥x∥, for x ̸= 0, we have

µ(dx) = αr−α−1drΓ(dθ). (4.2.11)
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This means that for every bounded measurable function f that vanishes on a neighborhood of 0,

we have ∫

B

f(x)µ(dx) =

∫

S

∫ ∞

0

f(rθ)αr−α−1drΓ(dθ).

There exists a sequence {aN} such that

NP (X ∈ aNA) → µ(A), (4.2.12)

for any set A in B(B0) with µ(∂A) = 0. One can take, for example,

aN = N1/αL0(N), (4.2.13)

with a slowly varying function L0 satisfying L−α0 (N)L(N1/αL0(N)) → 1.

We will work with Hilbert–Schmidt operators. A linear operator Ψ : H → H is Hilbert–

Schmidt if
∑∞

j=1 ||Ψ(ej)||2 < ∞, where {ej} is any orthonormal basis of H . Every Hilbert–

Schmidt operator is bounded. The space of Hilbert–Schmidt operators will be denoted by S . It is

itself a separable Hilbert space with the inner product

⟨Ψ1,Ψ2⟩S =
∞∑

j=1

⟨Ψ1(ej),Ψ2(ej)⟩ .

If Ψ is an integral operator defined by Ψ(x)(t) =
∫
ψ(t, s)x(s)ds, x ∈ L2, then ∥Ψ∥2S =

∫∫
ψ2(t, s)dtds.

Relations (4.1.5) essentially follow from the bound

E
∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
2

S
≤ N−1E ||X||4 ,

where the subscript S indicates the Hilbert–Schmidt norm. Under Assumption 4.2.1 such a bound

is useless because, by (4.2.8), E ||X||4 = ∞. In fact, one can show that under Assumption 4.2.1,

E∥Ĉ∥2S = ∞, so no other bound on E∥Ĉ−C∥2S can be expected. The following Proposition 4.2.2
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implies however that under Assumption 4.2.1 the population covariance operator C is a Hilbert-

Schmidt operator, and Ĉ ∈ S with probability 1. This means that the space S does provide a

convenient framework.

PROPOSITION 4.2.2. SupposeX is a random element of L2 withE∥X∥2 <∞ and Ĉ is the sample

covariance operator based on n iid copies of X . Then C ∈ S and Ĉ ∈ S with probability 1.

4.3 Limit distribution of Ĉ

We will show that Nk−1N (Ĉ −C) converges to an α/2–stable Hilbert–Schmidt operator, for an

appropriately defined regularly varying sequence {kN}. Unless stated otherwise, all limits in the

following are taken as N → ∞.

Observe that for any x ∈ H ,

Nk−1N

(
Ĉ − C

)
(x) = Nk−1N

(
N−1

N∑

n=1

⟨Xn, x⟩Xn − E[⟨X1, x⟩X1]

)
(4.3.14)

= k−1N

(
N∑

n=1

⟨Xn, x⟩Xn −NE[⟨X1, x⟩X1]

)

= k−1N

(
N∑

n=1

(Xn ⊗Xn) (x)−NE[(X1 ⊗X1)](x)

)
,

where (Xn ⊗Xn) (x) = ⟨Xn, x⟩Xn. Since the Xn ⊗ Xn are Hilbert–Schmidt operators, the last

expression shows a connection between the asymptotic distribution of Ĉ and convergence to a

stable limit in the Hilbert space S of Hilbert–Schmidt operators. We therefore restate below, as

Theorem 4.3.1, Theorem 4.11 of [71] which provides conditions for the stable domain of attraction

in a separable Hilbert space. The Hilbert space we will consider in the following will be S and the

stability index will be α/2, α ∈ (2, 4). However, when stating the result of Kuelbs and Mandrekar,

we will use a generic Hilbert space H and the generic stability index p ∈ (0, 2). Recall that for a

stable random element S ∈ H with index p ∈ (0, 2), there exists a spectral measure σS defined on

the unit sphere SH = {z ∈ H : ||z|| = 1}, such that the characteristic functional of S is given by

94



E exp{i ⟨x, S⟩} = exp

{
i ⟨x, βS⟩ −

∫

S

| ⟨x, s⟩ |pσS(ds) + iC(p, x)

}
, x ∈ H, (4.3.15)

where

C(p, x) =





tan πp
2

∫
S
⟨x, s⟩ | ⟨x, s⟩ |p−1σS(ds) if p ̸= 1,

2
π

∫
S
⟨x, s⟩ log | ⟨x, s⟩ |σS(ds) if p = 1.

We denote the above representation by S ∼ [p, σS, βS]. The p-stable random element S is necessar-

ily regularly varying with index p ∈ (0, 2). In fact, its angular measure is precisely the normalized

spectral measure appearing in (4.3.15), i.e.,

ΓS(·) =
σS(·)
σS(SH)

.

[71] derived sufficient and necessary conditions on the distribution of Z under which

b−1N

(
N∑

i=1

Zi − γN

)
d→ S, (4.3.16)

where the Zi are iid copies of Z. They assume that the support of the distribution of S, equivalently

of the distribution of Z, spans the whole Hilbert space H . In our context, we will need to work

with Z whose distribution is not supported on the whole space. Denote by L(Z) the smallest closed

subspace which contains the support of the distribution of Z. Then L(Z) is a Hilbert space itself

with the inner product inherited from H . Denote by {ej, j ∈ N} an orthonormal basis of L(Z).

We assume that this is an infinite basis because we consider infinite dimensional data. (The finite

dimensional case has already been dealt with by [72].) Introduce the projections

πm(z) =
∞∑

j=m

⟨z, ej⟩ ej, z ∈ H.

THEOREM 4.3.1. Let Z1, Z2, . . . be iid random elements in a separable Hilbert space H with the

same distribution as Z. Let {ej, j ∈ N} be an orthonormal basis of L(Z). There exist normalizing

constants bN and γN such that (4.3.16) holds if and only if
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P (||πm(Z)|| > tu)

P (||Z|| > u)
→ cm

c1
t−p, u→ ∞, (4.3.17)

where for each m ≥ 1, cm > 0, and limm→∞ cm = 0, and where

P (||Z|| > u,Z/ ||Z|| ∈ A)

P (||Z|| > u,Z/ ||Z|| ∈ A⋆)
→ σS(A)

σS(A⋆)
, u→ ∞, (4.3.18)

for all continuity sets A, A⋆ ∈ B(SH) with σS(A
⋆) > 0.

If (4.3.16) holds, the sequence bN must satisfy

bN → ∞,
bN
bN+1

→ 1, Nb−2N E
(
||Z||2 I{||Z||≤bN}

)
→ λpσS(SH), (4.3.19)

where

λp =





p(1−p)
Γ(3−p) cos(πp/2) , if p ̸= 1

2/π , if p = 1,
(4.3.20)

and Γ(a) :=
∫∞
0
e−xxa−1dx, a > 0 is the Euler gamma function. Furthermore, the γN ∈ H may

be chosen as

γN = NE
(
ZI{||Z||≤bN}

)
. (4.3.21)

REMARK 4.3.1. The origin of the constant λp appearing in (4.3.19) can be understood as follows.

Consider the simple scalar case H = R. Let Z be symmetric α-stable with E[eiZx] = e−c|x|
α
, x ∈

R, where in this case, c = σ(SH) ≡ σ({−1, 1}) > 0. Consider iid copies Zi, i = 1, 2, . . . of Z

and observe that by the p-stability property

1

N1/α

N∑

j=1

Zj
d
= Z ≡ S,

and hence (4.3.16) holds trivially with bN := N1/α and γN := 0.
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On the other hand, by Proposition 1.2.15 on page 16 in [73], we have

P (|Z| > x) ∼ c(1− p)

Γ(2− p) cos(πp/2)
x−p, as x→ ∞.

This along with an integration by parts and an application of Karamata’s theorem yield

Nb−2N E[Z2I{|Z|≤bN}] → λpσS(SH), giving the constant in (4.3.19).

PROPOSITION 4.3.1. Conditions (4.3.17) and (4.3.18) in Theorem 4.3.1 hold if and only if Z is

regularly varying in H with index p ∈ (0, 2) and for each m ≥ 1, µZ(Am) > 0, where

Am =

{
z ∈ H : ||πm(z)|| =

∥∥∥
∞∑

j=m

⟨z, ej⟩ ej
∥∥∥ > 1

}
. (4.3.22)

Our next objective is to show that if X is a regularly varying element of a separable Hilbert

space H whose index is α > 0, then the operator Y = X ⊗ X is regularly varying with index

α/2, in the space of Hilbert–Schmidt operators. If y, z ∈ H , then y ⊗ z is an element of S defined

by (y ⊗ z)(x) = ⟨y, x⟩ z, x ∈ H . It is easy to check that ||y ⊗ z||S = ||y|| ||z||. If B1, B2 ⊂ H ,

we denote by B1 ⊗ B2 the subset of S defined as the set of operators of the form x1 ⊗ x2, with

x1 ∈ B1, x2 ∈ B2. Denote by SH the unit sphere in H centered at the origin, and by SS such a

sphere in S .

The next result is valid for all α > 0.

PROPOSITION 4.3.2. Suppose X is a regularly varying element with index α > 0 of a separable

Hilbert space H . Then the operator Y = X ⊗X is a regularly varying element with index α/2 of

the space S of Hilbert-Schmidt operators.

REMARK 4.3.2. The proof of Proposition 4.3.2 shows that the angular measure of X ⊗ X is

supported on the diagonal (4.6.40) and

ΓX⊗X(B ⊗ B) = ΓX(B), ∀B ⊂ B(SH).
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The next result specifies the limit distribution of the sums of the Xi ⊗Xi based on the results

derived so far.

THEOREM 4.3.2. Suppose Assumptions 4.2.1 and 4.2.2 hold. Then, there exist normalizing con-

stants kN and operators ψN such that

k−1N

(
N∑

i=1

Xi ⊗Xi − ψN

)
d→ S, (4.3.23)

where S ∈ S is a stable random operator, S ∼ [α/2, σS, 0], where the spectral measure σS is

defined on the unit sphere SS = {y ∈ S : ||y||S = 1}. The normalizing constants may be chosen

as follows

kN =

(
α

4− α

)2/α

a2N , ψN = NE
[
(X ⊗X) I{||X||2≤kN}

]
. (4.3.24)

The final result of this section specifies the asymptotic distribution of Ĉ − C.

THEOREM 4.3.3. Suppose Assumptions 4.2.1 and 4.2.2 hold. Then,

Nk−1N (Ĉ − C)
d→ S − α

α− 2

∫

SH

(θ ⊗ θ) ΓX(dθ), (4.3.25)

where S ∈ S and {kN} are as in Theorem 4.3.2. (kN = N2/αL(N) for a slowly varying L.)

If the Xi are scalars, then the angular measure ΓX is concentrated on SH = {−1, 1}, with

ΓX(1) = p,ΓX(−1) = 1 − p, in the notation of [61]. Thus
∫
SH
θ2ΓX(dθ) = 1, and we recover

the centering α/(α − 2) in Theorem 2.2 of [61]. Relation (4.3.25) explains the structure of this

centering in a much more general context.

Theorem 4.3.3 readily leads to a strong law of large numbers which can be derived by an

application of the following result, a consequence of Theorem 3.1 of [74].

THEOREM 4.3.4. Suppose Yi, i ≥ 1, are iid mean zero elements of a separable Hilbert space with

E∥Yi∥γ <∞, for some 1 ≤ γ < 2. Then,
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1

N1/γ

N∑

i=1

Yi
P→ 0 if and only if

1

N1/γ

N∑

i=1

Yi
a.s.→ 0.

Set Yi = Xi ⊗ Xi − E[X ⊗ X]. Then the Yi are iid mean zero elements of S which, by

Proposition 4.3.2, satisfy E∥Yi∥γS < ∞, for any γ ∈ (0, α/2). Theorem 4.3.3 implies that for any

γ ∈ (0, α/2), N−1/γ
∑N

i=1 Yi
P→ 0. Thus Theorem 4.3.4 leads to the following corollary.

COROLLARY 4.3.1. Suppose Assumptions 4.2.1 and 4.2.2 hold. Then, for any γ ∈ [1, α/2),

N1−1/γ∥Ĉ − C∥S → 0 with probability 1.

4.4 Convergence of eigenfunctions and eigenvalues

We first formulate and prove a general result which allows us to derive the asymptotic distri-

butions of the eigenfunctions and eigenvalues of an estimator of the covariance operator from the

asymptotic distribution of the operator itself. The proof of this results is implicit in the proofs of

the results of Section 2 of [15], which pertain to the asymptotic normality of the sample covariance

operator if E∥X∥4 <∞. The result and the technique of proof are however more general, and can

be used in different contexts, so we state and prove it in detail.

ASSUMPTION 4.4.1. Suppose C is the covariance operator of a random function X taking val-

ues in L2 such that E∥X∥2 < ∞. Suppose Ĉ is an estimator of C which is a.s. symmetric,

nonnegative–definite and Hilbert–Schmidt. Assume that for some random operator Z ∈ S , and for

some rN → ∞,

ZN := rN(Ĉ − C)
d→ Z.

In our setting, Z ∈ S is specified in (4.3.25), and rN = NβL(N) for some 0 < β < 1/2. More

precisely,

rN = Na−2N , aN = N1/αL0(N), α ∈ (2, 4).
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We will work with the eigenfunctions and eigenvalues defined by

C(vj) = λjvj, Ĉj(v̂j) = λ̂j v̂j, j ≥ 1.

Assumption 4.4.1 implies that λ̂j ≥ 0 and the v̂j are orthogonal with probability 1. We assume

that that, like the vj , the v̂j have unit norms. To lighten the notation, we assume that sign⟨v̂j, vj⟩

= 1. This sign does not appear in any of our final results, it cancels in the proofs. We assume

that both sets of eigenvalues are ordered in decreasing order. The next assumption is standard, it

ensures that the population eigenspaces are one dimensional.

ASSUMPTION 4.4.2. λ1 > λ2, . . . , > λp > λp+1.

Set

Tj =
∑

k ̸=j

(λj − λk)
−1 ⟨Z, vj ⊗ vk⟩ vk.

Lemma 4.6.2 shows that the series defining Tj converges a.s. in L2.

THEOREM 4.4.1. Suppose Assumptions 4.4.1 and 4.4.2 hold. Then,

rN {v̂j − vj, 1 ≤ j ≤ p} d→ {Tj, 1 ≤ j ≤ p} , in (L2)p,

and

rN

{
λ̂j − λj, 1 ≤ j ≤ p

}
d→ {⟨Z(vj), vj⟩ , 1 ≤ j ≤ p} , in R

p.

If Z is an (α/2)–stable random operator in S , then the Tj are jointly (α/2)–stable random

functions in L2, and ⟨Z(vj), vj⟩ are jointly (α/2)–stable random variables. This follows directly

from the definition of a stable distribution, e.g. Section 6.2 of [75]. Under Assumption 4.2.1,

rN = N1−2/αL−20 (N). Theorem 4.4.1 thus leads to the following corollary.
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COROLLARY 4.4.1. Suppose Assumptions 4.2.1, 4.2.2 and 4.4.2 hold. Then,

N1−2/αL−20 (N) {v̂j − vj, 1 ≤ j ≤ p} d→ {Tj, 1 ≤ j ≤ p} , in (L2)p,

where the Tj are jointly (α/2)–stable in L2, and

N1−2/αL−20 (N)
{
λ̂j − λj, 1 ≤ j ≤ p

}
d→ {Sj, 1 ≤ j ≤ p} , in R

p,

where the Sj are jointly (α/2)–stable in R.

Corollary 4.4.1 implies the rates in probability v̂j−vj = OP (r
−1
N ) and λ̂j−λj = OP (r

−1
N ), with

rN = N1−2/αL−20 (N). This means, that the distances between v̂j and λ̂j and the corresponding

population parameters are approximately of the order N2/α−1, i.e. are asymptotically larger that

these distances in the case of E∥X∥4 < ∞, which are of the order N−1/2. Note that 2/α − 1 →

−1/2, as α → 4.

It is often useful to have some bounds on moments, analogous to relations (4.1.5). Since the

tails of ∥Tj∥ and |Sj| behave like t−α/2, e.g. Section 6.7 of [75], E∥Tj∥γ <∞, 0 < γ < α/2, with

an analogous relation for |Sj|. We can thus expect convergence of moments of order γ ∈ (0, α/2).

The following theorem specifies the corresponding results.

THEOREM 4.4.2. If Assumptions 4.2.1 and 4.2.2 hold, then for each γ ∈ (0, α/2), there is a slowly

varying function Lγ such that

lim sup
N→∞

Nγ(1−2/α)Lγ(N)E
∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
γ

S
<∞

and for j ≥ 1,

lim sup
N→∞

Nγ(1−2/α)Lγ(N)E|λ̂j − λj|γ <∞.

If, in addition, Assumption 4.4.2 holds, then for 1 ≤ j ≤ p,
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lim sup
N→∞

Nγ(1−2/α)Lγ(N)E ||v̂j − vj||γ <∞.

Several cruder bounds can be derived from Theorem 4.4.2. In applications, it is often conve-

nient to take γ = 1. Then E∥Ĉ − C∥S ≤ N2/α−1L1(N). By Potter bounds, e.g. Proposition 2.6

(ii) in [68], for any ϵ > 0 there is a constant Cϵ such that for x > xϵ L1(x) ≤ Cϵx
ϵ. For each

α ∈ (2, 4), we can choose ϵ so small that −δ(α) := 2/α − 1 + ϵ < 0. This leads to the following

corollary.

COROLLARY 4.4.2. If Assumptions 4.2.1 and 4.2.2 hold, then for each α ∈ (2, 4), there are

constant Cα and δ(α) > 0 such that

E∥Ĉ − C∥S ≤ CαN
−δ(α) and E∥λ̂j − λj∥ ≤ CαN

−δ(α).

If, in addition, Assumption 4.4.2 holds, then for 1 ≤ j ≤ p, E ||v̂j − vj|| ≤ Cα(j)N
−δ(α).

Corollary 4.4.2 implies that E∥Ĉ − C∥S , E∥λ̂j − λj∥ and E ||v̂j − vj|| tend to zero, for any

α ∈ (2, 4).

4.5 An application: functional linear regression

One of the most widely used tools of functional data analysis is the functional regression model,

e.g. [1, 6, 49]. Suppose X1, X2, . . . , XN are explanatory functions, Y1, Y2, . . . , YN are response

functions, and assume that

Yi(t) =

∫ 1

0

ψ(t, s)Xi(s)ds+ εi(t), 1 ≤ i ≤ N, (4.5.26)

where ψ(·, ·) is the kernel of Ψ ∈ S . The Xi are mean zero iid functions in L2 = L2([0, 1]), and so

are the error functions εi. Consequently, the Yi are iid in L2. A question that has been investigated

from many angles is how to consistently estimate the regression kernel ψ(·, ·). An estimator that

has become popular following the work of [76] can be constructed as follows.
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The population version of (4.5.26) is Y (t) =
∫
ψ(t, s)X(s)ds + ε(t). Denote by vi the FPCs

of X and by uj those of Y , so that

X(s) =
∞∑

i=1

ξivi(s), Y (t) =
∞∑

j=1

ζjuj(t).

If ε is independent of X , then, with λℓ = E[ξ2ℓ ],

ψ(t, s) =
∞∑

k=1

∞∑

ℓ=1

E[ξℓζk]

λℓ
uk(t)vℓ(s),

with the series converging in L2([0, 1] × [0, 1]), equivalently in S , see Lemma 8.1 in [6]. This

motivates the estimator

ψ̂KL(t, s) =
K∑

k=1

L∑

ℓ=1

σ̂ℓk

λ̂ℓ
ûk(t)v̂ℓ(s),

where ûk are the eigenfunctions of ĈY and σ̂ℓk is an estimator of E[ξℓζk]. [76] study the above

estimator under the assumption that data are observed sparsely and with measurement errors. This

requires two-stage smoothing, so their assumptions focus on conditions on the various smoothing

parameters and the random mechanism that generates the sparse observations. Like in all work of

this type, they assume that the underlying functions have finite fourth moments: E∥X∥4 < ∞,

E∥ε∥4 < ∞, and so E∥Y ∥4 < ∞. Our objective is to show that if the Xi satisfy the assumptions

of Section 4.2, then
∣∣∣
∣∣∣Ψ̂KL −Ψ

∣∣∣
∣∣∣
L

a.s.→ 0, (4.5.27)

as N → ∞, and K,L → ∞ at suitable rates determined by the rate of decay of the eigenvalues.

The integral operators Ψ and Ψ̂KL are defined by their kernels ψ(·, ·) and ψ̂KL(·, ·), respectively.

We focus on moment conditions, so we assume that the functions Xi, Yi are fully observed, and

use the estimator

σ̂ℓk =
1

N

N∑

i=1

ξ̂iℓζ̂ik, ξ̂iℓ = ⟨Xi, v̂ℓ⟩ , ζ̂ik = ⟨Yi, ûk⟩ .
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Since the regression operator Ψ is infinitely dimensional, we strengthen Assumption 4.4.2 to the

following assumption.

ASSUMPTION 4.5.1. The eigenvalues λi = Eξ2i and γj = Eζ2j satisfy

λ1 > λ2 > . . . > 0, γ1 > γ2 > . . . > 0.

Many issues related to the infinite dimension of the functional data in model (4.5.26) are already

present when considering projections on the unobservable subspaces

VL = span {v1, v2, . . . , vL} , UK = span {u1, u2, . . . , uK} .

Therefore we first consider the convergence of the operator with the kernel

ψKL(t, s) =
K∑

k=1

L∑

ℓ=1

σℓk
λℓ
uk(t)vℓ(s).

Set σℓk = E[ξℓζk] and observe that

ψKL(t, s)− ψ(t, s) = −
∑

k>K or ℓ>L

σℓk
λℓ
uk(t)vℓ(s).

Therefore

||ΨKL −Ψ||2L ≤ ||ΨKL −Ψ||2S =
∑

k>K or ℓ>L

σ2
ℓk

λ2ℓ
. (4.5.28)

The condition
∞∑

k=1

∞∑

ℓ=1

σ2
ℓk

λ2ℓ
<∞, (4.5.29)

which is Assumption (A1) of [76], implies that the remainder term is asymptotically negligible. It

is instructive to rewrite condition (4.5.29) in a different form. Observe that

σℓk = E[ξl ⟨Ψ(X) + ε, uk⟩] = E[ξl

∞∑

i=1

ξi ⟨Ψ(vi), uk⟩] = λℓ ⟨Ψ(vℓ), uk⟩ . (4.5.30)
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Therefore

∞∑

k=1

∞∑

ℓ=1

σ2
ℓk

λ2ℓ
=
∞∑

ℓ=1

1

λ2ℓ

∞∑

k=1

λ2ℓ ⟨Ψ(vℓ), uk⟩2 =
∞∑

ℓ=1

||Ψ(vℓ)||2 = ||Ψ||2S . (4.5.31)

We see that condition (4.5.29) simply means that Ψ is a Hilbert–Schmidt operator, and so it holds

under our general assumptions on model (4.5.26).

The last assumption implicitly restricts the rates at which K and L tend to infinity with N .

Under Assumption 4.5.1, the following quantities are well defined

αj = min {λj − λj+1, λj−1 − λj} , j ≥ 2, α1 = λ1 − λ2, (4.5.32)

βj = min {γj − γj+1, γj−1 − γj} , j ≥ 2, β1 = γ1 − γ2. (4.5.33)

ASSUMPTION 4.5.2. The truncation levels K and L tend to infinity with N in such a way that for

some γ ∈ (1, α/2),

lim sup
N→∞

λ
−3/2
L L1/2N1/γ−1 <∞, (4.5.34)

lim sup
N→∞

λ−1L

(
L∑

j=1

α−1j

)
N1/γ−1 <∞, (4.5.35)

lim sup
N→∞

λ−1L K1/2N1/γ−1 <∞, (4.5.36)

lim sup
N→∞

λ−1L





(
K∑

k=1

β−1k

)
+

(
K∑

k=1

β−2k

)1/2


N1/γ−1 <∞. (4.5.37)

The conditions in Assumption 4.5.2 could be restated or unified; and could be replaced by

slightly different conditions by modifying the technique of proof. The essence of this assumption

is that K and L must tend to infinity sufficiently slowly, and the rate is influenced by index α; the

closer α is to 4, the larger γ can be taken, so K and L can be larger.
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THEOREM 4.5.1. Suppose model (4.5.26) holds with Ψ ∈ S , the Xi and the Yi satisfying Assump-

tions 4.2.1 and 4.2.2, and square integrable εi, E ||εi||2 < ∞. Then relation (4.5.27) holds under

Assumptions 4.5.1 and 4.5.2.

4.6 Proofs of the results of previous sections

Throughout the proofs, we will use relatively well–known properties of slowly varying func-

tions, which we collect in Lemma 4.6.1 for ease of reference. For the proofs and many more

details, see e.g., [9, 77].

LEMMA 4.6.1. If L is a slowly varying function, then:

(i) L1(u) = L(uρ), ρ > 0 and L2(u) = |L(u)|a, a ∈ R are slowly varying.

(ii) (Potter bounds) For all δ > 0, we have L(u) = o(uδ), as u→ ∞.

(iii) (Karamata’s Theorem) For all ρ > −1 and η > 1, as u→ ∞, we have

∫ u

0

xρL(x)dx ∼ uρ+1L(u)

(ρ+ 1)
and

∫ ∞

u

x−ηL(x)dx ∼ u−(η−1)L(u)

(η − 1)
,

where a(u) ∼ b(u) means a(u)/b(u) → 1, as u→ ∞.

4.6.1 Proofs of Proposition 4.2.2 and of the results of Section 4.3

Proof of Proposition 4.2.2

Since C is a covariance operator, it is nuclear (
∑

j≥1 λj < ∞), e.g. Theorem 11.2.2 of [49],

and so it is Hilbert–Schmidt (
∑

j≥1 λ
2
j <∞).
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We now verify that Ĉ is a.s. a Hilbert-Schmidt operator. Observe that

∥Ĉ∥2S =
∫∫

ĉ2(t, s)dtds

=

∫∫ {
1

N

N∑

n=1

Xn(t)Xn(s)

}2

dtds

=
1

N2

∫∫ { N∑

n=1

∞∑

j=1

ξnjvj(t)
∞∑

j′=1

ξnj′vj′(s)

}2

dtds.

Set

Sn(t, s) =
∞∑

j=1

ξnjvj(t)
∞∑

j′=1

ξnj′vj′(s)

so that

N2∥Ĉ∥2S =
N∑

n,m=1

∫∫
Sn(t, s)Sm(t, s)dtds.

Next, observe that

∫∫
Sn(t, s)Sm(t, s)dtds =

∞∑

j,j′=1

∞∑

i,i′=1

ξnjξnj′ξmiξmi′

∫
vj(t)vi(t)dt

∫
vj′(s)vi′(s)ds.

Therefore, by the orthonormality by the vj ,

∫∫
Sn(t, s)Sm(t, s)dtds =

∞∑

j,j′=1

ξnjξnj′ξmjξmj′

and

N2∥Ĉ∥2S =
N∑

n,m=1

∞∑

j,j′=1

ξnjξnj′ξmjξmj′ . (4.6.38)

By (4.6.38), it suffices to verify that for each fixed m and n, the series
∑∞

j,j′=1 ξnjξnj′ξmjξmj′

converges almost surely. Set

W (J) =
J∑

j=1

ξnjξmj,

and observe that

107



J∑

j=1

J ′∑

j′=1

ξnjξnj′ξmjξmj′ = W (J)W (J ′).

We see that it is enough to show that the sequence W (J), J ≥ 1, converges a.s. We will verify the

absolute convergence of the series defining it. It follows from the bounds

J∑

j=1

|ξnjξmj| ≤
1

2

J∑

j=1

ξ2nj +
1

2

J∑

j=1

ξ2mj

≤ 1

2

∞∑

j=1

ξ2nj +
1

2

∞∑

j=1

ξ2mj

=
1

2

∫ 1

0

X2
n(t)dt+

1

2

∫ 1

0

X2
m(t)dt.

The right-hand side is finite a.s. because each Xn is a random element of L2.

Proof of Proposition 4.3.1

Set

Γ(·) = σS(·)
σS(SH)

(4.6.39)

Recall that (4.6.39) specifies the relationship between the stable spectral measure σS and the an-

gular measure Γ of a regularly varying distribution appearing in Proposition 4.2.1.

First we assume (4.3.17) and (4.3.18) hold. Take m = 1 in (4.3.17) and A⋆ = SH in (4.3.18),

we then have for every t > 0,

P (||Z|| > tu, Z/ ||Z|| ∈ A)

P (||Z|| > u)
=

P (||Z|| > tu, Z/ ||Z|| ∈ A)

P (||Z|| > tu, Z/ ||Z|| ∈ SH)

P (||Z|| > tu)

P (||Z|| > u)

→ σS(A)

σS(SH)
t−p (u→ ∞)

= Γ(A)t−p,

for any continuity set A of σS (equivalently, of Γ). Thus condition (ii) in Proposition 4.2.1 holds,

which implies that Z is regularly varying with index p.
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Next we assume that Z is regularly varying with index p, and show that (4.3.17) and (4.3.18)

will hold. Using condition (ii) in Proposition 4.2.1, we have

P (||Z|| > u,Z/ ||Z|| ∈ A)

P (||Z|| > u,Z/ ||Z|| ∈ A⋆)
=
P (||Z|| > u,Z/ ||Z|| ∈ A)

P (||Z|| > u)

P (||Z|| > u)

P (||Z|| > u,Z/ ||Z|| ∈ A⋆)

→ Γ(A)

Γ(A⋆)
=

σS(A)

σS(A⋆)
, (u→ ∞)

for all continuity sets A, A⋆ ∈ B(SH) with σS(A
⋆) > 0. Then, with the set Am defined by (4.3.22),

P (||πm(Z)|| > tu)

P (||Z|| > u)
=
P (t−1u−1Z ∈ Am)

P (u−1Z ∈ A1)

=
P (||Z|| > u)

P (u−1Z ∈ A1)

P (t−1u−1Z ∈ Am)

P (||Z|| > tu)

P (||Z|| > tu)

P (||Z|| > u)

→ µZ(Am)

µZ(A1)
t−p =:

cm
c1
t−p, (u→ ∞)

where the above convergence follows from (4.2.9) provided we can show that Am, m ≥ 1 are

continuity sets of the measure µZ . We do that next.

By the definition of Am in (4.3.22) and since πm is continuous and homogeneous, we have

∂Am = {z ∈ H : ||πm(z)|| = 1} and ∂(rAm) = r∂Am = {z ∈ H : ||πm(z)|| = r} .

Furthermore, we have that r1Am ⊃ r2Am for all 0 < r1 < r2. This implies that Am =

∪r>1∂(rAm), where the sets ∂(rAm) are all disjoint in r. By the homogeneity of µZ , however,

(recall (4.2.10)) it follows that µZ(∂(rAm)) = r−pµZ(∂Am). In particular,

µZ(Am) ≥
∑

i

µZ(∂(riAm)) =
∑

i

r−pi µZ(∂Am),

for any sequence ri > 1. If µZ(∂Am) > 0, then by taking ri’s such that
∑

i r
−p
i = ∞, we obtain

µZ(Am) = ∞, which is not possible since Am is bounded away from zero. We have thus shown

that µZ(∂Am) = 0, i.e., Am is a continuity set of µZ for all m ≥ 1.
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To complete the proof of (4.3.17), it remains is to show that cm = µZ(Am) → 0, as m → ∞.

Notice that Am ⊃ Am+1 and thus limm→∞ µZ(Am) = µZ(∩∞m=1Am), since µ(A1) < ∞. It is

easy to see that ∩∞m=1Am = ∅. Indeed, for each z ∈ H , we have ∥z∥2 =
∑∞

j=1 ⟨z, ej⟩
2 < ∞ and

therefore

∥πm(z)∥2 =
∞∑

j=m

⟨z, ej⟩2 → 0, as m→ ∞.

If z ∈ ∩m≥1Am, then ||πm(z)|| > 1 for each m ≥ 1, which is impossible.

Proof of Proposition 4.3.2

Since ||Y ||S = ||X||2 and P (||X|| > u) = u−αL(u), we conclude that

P (||Y ||S > u) = u−α/2L(u1/2).

Notice that u 7→ L(u1/2) is a slowly varying function. Thus, by Proposition 4.2.1 (iii), to establish

the regular variation of Y it remains to show that there must exist a probability measure ΓY on SS

such that

P
(
||Y ||−1S Y ∈ A| ||Y ||S > u

)
→ ΓY (A), u→ ∞,

for every ΓY -continuity set A. The operator Y takes values only in a small subset of SS , namely in

SS(1) = {Ψ ∈ SS : Ψ = x⊗ x for some x ∈ SH} . (4.6.40)

The set SS(1) is closed in SS and its Borel subsets have the form B⊗B, where B is a Borel subset

of SH . We know that

Γ(u)(B) := P (X/ ||X|| ∈ B| ||X|| > u) → Γ(B), u→ ∞,

for every Γ-continuity set B ∈ SH . Denote by ξu a random element of H taking values in SH

whose distribution is Γ(u). Then we have
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ξu
d→ ξ, u→ ∞, (4.6.41)

where ξ has distribution Γ. Furthermore, denote by ηu a random element of S taking values in

SS(1) whose distribution is

P (ηu ∈ A) =
P
(
||Y ||−1S Y ∈ A, ||Y ||S > u

)

P (||Y ||S > u)
, A ∈ SS(1).

We want to identify a random element η such that

ηu
d→ η, u→ ∞, (4.6.42)

whose distribution will be the desired measure ΓY .

We first verify that

ηu
d
= ξu1/2 ⊗ ξu1/2 . (4.6.43)

Relation (4.6.43) is equivalent to

P
(
||Y ||−1S Y ∈ A, ||Y ||S > u

)

P (||Y ||S > u)
= P (ξu1/2 ⊗ ξu1/2 ∈ A) , ∀A ∈ SS(1). (4.6.44)

Set A = B ⊗ B. Since ||Y ||S = ||X||2, the left–hand side of (4.6.44) is

P
(
||Y ||−1S Y ∈ A, ||Y ||S > u

)

P (||Y ||S > u)
=
P
((
||X||−1X

)
⊗
(
||X||−1X

)
∈ B ⊗B, ||X|| > u1/2

)

P (||X|| > u1/2)

=
P
(
||X||−1X ∈ B, ||X|| > u1/2

)

P (||X|| > u1/2)

= Γ(u1/2) (B) ,

while the right–hand side of (4.6.44) is

P (ξu1/2 ⊗ ξu1/2 ∈ A) = P (ξu1/2 ∈ B, ξu1/2 ∈ B) = P (ξu1/2 ∈ B) = Γ(u1/2) (B) . (4.6.45)
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Therefore, (4.6.43) holds. It remains to show that

ηu
d
= ξu1/2 ⊗ ξu1/2

d→ ξ ⊗ ξ =: η, u→ ∞.

The above relation holds because by (4.6.45) and (4.6.41),

P (ξu1/2 ⊗ ξu1/2 ∈ A) = Γ(u1/2) (B) → Γ(B) = P (ξ ∈ B) = P (η ∈ A) ,

provided B is a continuity set of Γ. Using the relation ||y ⊗ z||S = ||y|| ||z||, it is easy to check that

xn ⊗ xn → x⊗ x in S if and only if xn → x in H . Hence, ∂A = ∂B ⊗ ∂B, so the continuity sets

of the distribution of η have the form B ⊗ B with Γ(∂B) = 0.

Proof of Theorem 4.3.2

By Proposition 4.3.2, the operators Xi ⊗ Xi are iid regularly varying elements of S , whose

index of regular variation is α/2 ∈ (1, 2). In order to use Theorem 4.3.1, we first verify that

µX⊗X(Am) > 0, cf. Proposition 4.3.1. This is where Assumption 4.2.2 comes into play. An

orthonormal basis of L(X ⊗X) is {vi ⊗ vj, i, j ≥ 1}, where the vj are the FPCs of X . Set

An,m =



Ψ ∈ S :

∣∣∣∣∣

∣∣∣∣∣
∞∑

i=n

∞∑

j=m

⟨Ψ, vi ⊗ vj⟩S vi ⊗ vj

∣∣∣∣∣

∣∣∣∣∣
S

> 1



 .

We must thus verify that µX⊗X(An,m) > 0. By (4.2.9),

µX⊗X(An,m) = lim
u→∞

P (X ⊗X ∈ uAn,m)

P (∥X ⊗X∥S > u)
.

Clearly

P (∥X ⊗X∥S > u) = P (∥X∥2 > u) = P

( ∞∑

j=1

ξ2j > u

)
,

which is the denominator of Qnm in Assumption 4.2.2. Turning to the numerator, observe that

X ⊗X ∈ uAnm iff
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∣∣∣∣∣

∣∣∣∣∣
∞∑

i=n

∞∑

j=m

⟨X ⊗X, vi ⊗ vj⟩S vi ⊗ vj

∣∣∣∣∣

∣∣∣∣∣
S

> u.

Direct verification, which uses the definition of the inner product in S and the orthonormality of

the vj , shows that ⟨X ⊗X, vi ⊗ vj⟩S = ξiξj. It follows that X ⊗X ∈ uAnm iff

∣∣∣∣∣

∣∣∣∣∣
∞∑

i=n

∞∑

j=m

ξiξjvi ⊗ vj

∣∣∣∣∣

∣∣∣∣∣

2

S

> u2.

Using the definition of the Hilbert–Schmidt norm and the orthogonality of the vj again, we see that

the above inequality is equivalent to
∑∞

i=n ξ
2
i

∑∞
j=m ξ

2
j > u2, so P (X ⊗ X ∈ uAnm) is equal to

the numerator of Qnm.

It remains to show that the normalizing sequences can be chosen as specified in (4.3.24). It is

easy to check that kN → ∞ and kN
kN+1

→ 1. We will show that

Nk−2N E
(
||X||4 I{||X||2≤kN}

)
→ 1, (4.6.46)

which in view of (4.3.19) would yield (4.3.23), where the spectral measure of the limit S is nor-

malized so that λpσS(SS) = 1 with λp in (4.3.20).

Observe that by the Tonelli-Fubini Theorem, we have

E
[
||X||4 I{||X||2≤kN}

]
= E

[∫ ∞

0

I{x<∥X∥4≤k2N}dx

]

=

∫ k2N

0

[
P (∥X∥4 > x)− P (∥X∥2 > kN)

]
dx

=

∫ k2N

0

x−α/4L(x1/4)dx− k2Nk
−α/2
N L(k

1/2
N ),

where we used the fact that P (∥X∥ > x) = x−αL(x). Now, by applying Karamata’s theorem

(Lemma 4.6.1 (iii)) to the integral in the last expression, we obtain
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E
[
||X||4 I{||X||2≤kN}

]
∼ 1

(1− α/4)
k
2−α/2
N L(k

1/2
N )− k

2−α/2
N L(k

1/2
N )

=

(
4

(4− α)
− 1

)
k
2−α/2
N L(k

1/2
N )

=
α

(4− α)
k
2−α/2
N L(k

1/2
N ), (4.6.47)

as kN → ∞, where cN ∼ dN means that cN/dN → 1.

In view of (4.2.12) by taking A = {x : ∥x∥ > 1}, we obtain

NP (∥X∥ > aN) = Na−αN L(aN) → 1, (4.6.48)

since µ is normalized so that µ(A) = 1. Thus, multiplying (4.6.47) byNk−2N and recalling (4.3.24),

we obtain

Nk−2N E
(
||X||4 I{||X||2≤kN}

)
∼ cααk

−α/2
N L(k

1/2
N ) = a−αN L(cαaN),

where cα = (α/(4 − α))1/α. Since L is a slowly varying function, we have L(cαaN) ∼ L(aN) as

aN → ∞, and therefore by (4.6.48), we obtain (4.6.46). This completes the proof.

Proof of Theorem 4.3.3

Observe that by (4.3.14),

Nk−1N

(
Ĉ − C

)
= k−1N

(
N∑

n=1

Xn ⊗Xn − ψN

)
+ k−1N NE

[
(X ⊗X)I{∥X∥2>kN}

]
, (4.6.49)

with kN and ψN as in Theorem 4.3.2. The first term converges to S, so we must verify the existence

of the second term, show that it converges, and describe its limit. The issue is subtle because

kN → ∞ implies that k−1N N
[
(X ⊗X)I{∥X∥2≥kN}

]
→ 0 with probability 1, yet the expected

value does not tend to zero even in the case of scalar observations, see Theorem 2.2 of [61]. It is

convenient to approach the problem in a slightly more general setting.

Suppose Y is a regularly varying element of a separable Hilbert space whose index of regular

variation is p, p ∈ (1, 2). In our application, Y = X ⊗ X , the Hilbert space is S and p =
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α/2. Denote by µY the exponent measure of Y and by uN a regularly varying sequence such that

NP (||Y || > uN) → 1, so that

µN,Y (A) :=
P (Y ∈ uNA)

P (∥Y ∥ > uN)
→ µY (A), (4.6.50)

with the usual restrictions on the set A, cf. Proposition 4.2.1. Set

YN = u−1N NY I{∥Y ∥>uN}

and observe that E[YN ] exists in the sense of Bochner. Indeed, by (4.2.8) and the Potter bounds

(Lemma 4.6.1), we have

P (∥Y ∥ > u) = u−pL(u) = o(u−p+δ), as u→ ∞,

for an arbitrarily small δ > 0. Since p ∈ (1, 2), by taking p − δ > 1, we obtain E[∥Y ∥] =
∫∞
0
P (∥Y ∥ > y)dy <∞ and the expectation of Y and hence YN is well-defined.

Now set MN = E[YN ]. We want to identify M ∈ H such that ∥MN −M∥ → 0. We will show

that the above convergence holds with

M =

∫

B
c
yµY (dy), (4.6.51)

where B = {y : ∥y∥ ≤ 1}. Recall that Y is regularly varying and by (4.2.11) its exponent and

angular measures are related as follows

µY (dy) = pr−p−1drΓY (dθ), (4.6.52)

where r := ∥y∥ and θ := y/∥y∥ are polar coordinates in H . Thus, in polar coordinates, we obtain
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∫

B
c
∥y∥µY (dy) =

∫ ∞

1

∫

S
r∥θ∥ΓY (dθ)pr

−p−1dr (4.6.53)

=

(
p

∫ ∞

1

r−pdr

)∫

S
∥θ∥ΓY (dθ) (4.6.54)

=
p

p− 1
. (4.6.55)

This shows that the Bochner integral in (4.6.51) is well defined and in fact equals

M =
p

p− 1

∫

S
θΓY (dθ).

In view of Remark 4.3.2, by taking Y = X ⊗X and p = α/2, we then obtain

M =
α

α− 2

∫

SH

(θ ⊗ θ) ΓX(dθ),

which is the expression for the offset in (4.3.25).

Observe that by the definition (4.6.50) of µN,Y , since NP (∥Y ∥ > uN) → 1, for any Bochner

integrable mapping of the Hilbert space into itself, or to the real line,

NE[f(u−1N Y )] ∼
∫
f(y)µN,Y (dy). (4.6.56)

Therefore,

MN = NE
[
u−1N Y IBc(u−1N Y )

]
∼
∫

B
c
yµN,Y (dy).

Observe that µN,Y (B
c) = 1, and by (4.6.52),

µY (B
c) =

∫ ∞

1

∫

S
pr−p−1drΓY (dθ) = σY (S) = 1.

Thus µN,Y and µY are probability measures on B
c, and we want to show that

∫

B
c
yµN,Y (dy) →

∫

B
c
yµY (dy).

116



Since µN,Y converges weakly to µY , it suffices to verify that

sup
N≥1

∫

B
c
||y||1+δ µN,Y (dy) <∞, (4.6.57)

for some δ > 0 (this implies strong uniform integrability). Observe that by (4.6.56),

∫

B
c
||y||1+δ µN,Y (dy) = NE

[∣∣∣∣u−1N Y
∣∣∣∣1+δ

IBc(u−1N Y )
]

= Nu−1−δN EN(δ), (4.6.58)

where

EN(δ) = E
[
||Y ||1+δ I{||Y ||>uN}

]
.

By the Tonelli–Fubini theorem, we have

EN(δ) = E

(∫

u1+δ
N

I{∥Y ∥1+δ>x}dx

)
=

∫ ∞

u1+δ
N

P
(
∥Y ∥1+δ > x

)
dx

=

∫ ∞

u1+δ
N

x−p/(1+δ)L(x1/(1+δ))dx.

Now, by picking δ > 0 such that η := p/(1+ δ) > 1 and applying the Karamata Theorem (Lemma

4.6.1(iii)), for the right-hand side of (4.6.58), we obtain

Nu−1−δN EN(δ) ∼ Nu−1−δN

1

η − 1

(
u
1/(1+δ)
N

)1−p/(1+δ)

L(uN)

∼ 1

η − 1
Nu−pN L(uN) =

1

η − 1
NP (∥Y ∥ > uN) →

1

η − 1
,

where the last convergence follows from the definition of the sequence uN . This shows that the

supremum in (4.6.57) is finite, which completes the proof.
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4.6.2 Proofs of the results of Section 4.4

Proof of Theorem 4.4.1

The results of this section require Assumptions 4.4.1 and 4.4.2.

Before stating Theorem 4.4.1, we referred to Lemma 4.6.2 which ensures that the the series

Tj,N =
∑

k ̸=j

(λj − λk)
−1 ⟨ZN , vj ⊗ vk⟩ vk;

Tj =
∑

k ̸=j

(λj − λk)
−1 ⟨Z, vj ⊗ vk⟩ vk.

converge a.s. in L2. These series play a fundamental role in our arguments.

LEMMA 4.6.2. Suppose Ψ ∈ S . For 1 ≤ j ≤ p, set

gj(Ψ) =
∑

k ̸=j

(λj − λk)
−1 ⟨Ψ, vj ⊗ vk⟩ vk.

Then, the series defining gj(Ψ) converges in L2.

Proof. Since the vk are orthonormal, it is enough to check that

∑

k ̸=j

(λj − λk)
−2 ⟨Ψ, vj ⊗ vk⟩2 <∞.

Since the system {vj ⊗ vk, j, k ≥ 1} forms an orthonormal basis in S

∑

j,k≥1
⟨Ψ, vj ⊗ vk⟩2 = ||Ψ||2S <∞.

Therefore,
∑

k ̸=j

(λj − λk)
−2 ⟨Ψ, vj ⊗ vk⟩2 ≤ α−2j ||Ψ||2S ,

withe αj defined in (4.5.32).
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We will use the following lemma, which is analogous to Lemma 1 in [15], whose fully analo-

gous proof, based on algebraic manipulations, is omitted.

LEMMA 4.6.3. For any j ≥ 1,

⟨v̂j − vj, vj⟩ = −1

2
||v̂j − vj||2 .

For any j, k ≥ 1 such that j ̸= k and λ̂j ̸= λk,

⟨v̂j − vj, vk⟩ = r−1N (λ̂j − λk)
−1 ⟨ZN , v̂j ⊗ vk⟩ .

By Assumption 4.4.1, ∥Ĉ − C∥S = OP (r
−1
N ). Using the well–known inequalities

|λ̂j − λj| ≤ ∥Ĉ − C∥S , ||v̂j − vj|| ≤
2
√
2

αj

∥Ĉ − C∥S ,

(see e.g. Lemmas 2.2 and 2.3 in [6]), we obtain the following Lemma.

LEMMA 4.6.4. For 1 ≤ j ≤ p,

∥Ĉ − C∥S = OP (r
−1
N ), |λ̂j − λj| = OP (r

−1
N ), ||v̂j − vj|| = OP (r

−1
N ).

LEMMA 4.6.5. For 1 ≤ j ≤ p,

||rN(v̂j − vj)− Tj,N || = OP

(
r−1N

)
.

Proof. The same arguments apply to any fixed j ∈ {1, 2, . . . , p}, so to reduce the number of

indexes used, we present them for j = 1. Set

dN,k = ⟨rN(v̂1 − v1)− T1,N , vk⟩ ,

where
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T1,N =
∑

ℓ≥2
(λ1 − λℓ)

−1 ⟨ZN , v1 ⊗ vℓ⟩ vℓ.

By Parseval’s identity,

||rN(v̂j − vj)− Tj,N ||2 =
∞∑

k=1

d2N,k.

Focusing on the first term, k = 1, observe that

⟨T1,N , v1⟩ =
∑

ℓ≥2
(λ1 − λℓ)

−1 ⟨ZN , v1 ⊗ vℓ⟩ ⟨vℓ, vℓ⟩ = 0

and, by Lemmas 4.6.3 and 4.6.4,

⟨rN(v̂1 − v1), v1⟩ = −rN
2

||v̂1 − v1||2 = OP (r
−1
N ).

We conclude that d2N,1OP (r
−2
N ), and it remain to show that

∞∑

k=2

d2N,k = OP (r
−2
N ). (4.6.59)

In the remainder of the proof it is assumed that k ≥ 2. Since

⟨T1,N , vk⟩ = (λ1 − λk)
−1 ⟨ZN , v1 ⊗ vk⟩ ,

by Lemma 4.6.3,

dN,k = (λ̂1 − λk)
−1 ⟨ZN , v̂1 ⊗ vk⟩ − (λ1 − λk)

−1 ⟨ZN , v1 ⊗ vk⟩ .

Using a common denominator and rearranging the numerator, we obtain

dN,k =

⟨
(λ1 − λk)ZN(v̂1 − v1) + (λ1 − λ̂1)ZN(v1) , vk

⟩

(λ̂1 − λk)2(λ1 − λk)2
.

It is convenient to decompose the sum in (4.6.59) as
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∞∑

k=2

d2N,k = DN,1 +DN,2 +DN,3,

where

DN,1 =
∑

k≥2

⟨ZN(v̂1 − v1), vk⟩2

(λ̂1 − λk)2
,

DN,2 =
∑

k≥2

2(λ1 − λ̂1) ⟨ZN(v̂1 − v1), vk⟩ ⟨ZN(v1), vk⟩
(λ̂1 − λk)2(λ1 − λk)

,

DN,3 =
∑

k≥2

(λ1 − λ̂1)
2 ⟨ZN(v1), vk⟩2

(λ̂1 − λk)2(λ1 − λk)2
.

Since λ̂1 − λk ≥ λ̂1 − λ2, by Parseval’s identity,

DN,1 ≤
1

(λ̂1 − λ2)2

∑

k≥2
⟨ZN(v̂1 − v1), vk⟩2 ≤

∥ZN(v̂1 − v1)∥2
(λ̂1 − λ2)2

.

By Lemma 4.6.4, the denominator converges in probability to (λ1 − λ2)
2, and the numerator is

bounded above by ∥ZN∥2∥(v̂1 − v1)∥2 = OP (r
−2
N ).

A similar argument shows that

|DN,2| ≤
∣∣∣∣∣

2(λ1 − λ̂1)

(λ̂1 − λ2)2(λ1 − λ2)

∣∣∣∣∣ |⟨ZN(v̂1 − v1), ZN(v1)⟩| .

The denominator again converges to a positive constant. By the Cauchy–Schwarz inequality,

|⟨ZN(v̂1 − v1), ZN(v1)⟩| ≤ ∥ZN(v̂1 − v1)∥∥ZN(v1)∥ ≤ ∥ZN∥2∥v̂1 − v1∥.

We see that DN,2 = OP (r
−2
N ).

The above method also shows that DN,3 = OP (r
−2
N ).
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PROOF OF THEOREM 4.4.1: To prove the first relation, we use the decomposition

rN(v̂j − vj) = Tj,N + (rn(v̂j − vj)− Tj,N) .

By Lemma 4.6.5, it suffices to show that the Tj,n converge jointly in distribution to the Tj . Consider

the operator g : S → (L2)p defined by

g(Ψ) = [g1(Ψ), g2(Ψ), . . . , gp(Ψ)]⊤,

with the functions gj defined in Lemma 4.6.2. The proof of Lemma 4.6.2 shows that ∥gj(Ψ)∥ ≤

α−1j ∥Ψ∥S , so each gj is a continuous linear operator. Hence g is continuous, and so g(ZN)
d→

g(Z). Since, gj(ZN) = Tj,N and gj(Z) = Tj , the required convergence follows.

Now we turn to the convergence of the eigenvalues. We will derive an analogous decomposi-

tion,

rN(λ̂j − λj) = ⟨ZN(vj), vj⟩+ βN(j), (4.6.60)

and show that for each j = 1, 2, . . . , p, βN(j) = OP (r
−1
N ). Since the projections

S ∋ Ψ 7→ ⟨Ψ(vj), vj⟩ = ⟨Ψ, vj ⊗ vj⟩S

are continuous, the claim will follow.

Observe that

(λ̂j − λj)vj = λ̂jvj − λ̂j v̂j + λ̂j v̂j − λjvj

= λ̂j(vj − v̂j) + Ĉ(v̂j)− C(vj)

= (Ĉ − C)(v̂j) + C(v̂j − vj)− λ̂j(v̂j − vj).

It follows that
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rN(λ̂j − λj)vj = ZN(v̂j) + rN

{
C(v̂j − vj)− λ̂j(v̂j − vj)

}
.

We decompose the first term as ZN(v̂j) = ZN(vj) + ZN(v̂j − vj) and get (4.6.60) with

βN(j) = ⟨ZN(v̂j − vj), vj⟩+ rN

⟨
C(v̂j − vj)− λ̂j(v̂j − vj), vj

⟩

= rN

⟨[
(Ĉ − C) + C − λ̂j

]
(v̂j − vj), vj

⟩

= rN

⟨[
(Ĉ − C) + (C − λj)− (λ̂j − λj)

]
(v̂j − vj), vj

⟩

By Lemma 4.6.4,
⟨
(Ĉ − C)(v̂j − vj), vj

⟩
= OP (r

−2
N )

and
⟨
(λ̂j − λj)(v̂j − vj), vj

⟩
= OP (r

−2
N ).

Since C is symmetric

⟨(C − λj)(v̂j − vj), vj⟩ = ⟨v̂j − vj, (C − λj)(vj)⟩ = 0.

This shows that βN(j) = OP (r
−1
N ), and completes the proof.

Proof of Theorem 4.4.2

We start with a simple lemma, custom formulated for our needs.

LEMMA 4.6.6. Suppose {Xn} and {Yn} are sequences of nonnegative random variables and {an}

is a convergent sequence of nonnegative numbers. Suppose Xn ≤ Yn + an. If the Yn are uniformly

integrable, then so are the Xn.

Proof. We will establish a more general result under the assumption that C := supn∈N an < ∞.

Recall that a sequence {Xn} is uniformly integrable if and only if the following two conditions

hold
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(i) We have supn∈NE|Xn| <∞.

(ii) For all ϵ > 0, there exists a δ > 0, such that

sup
n∈N

E (|Xn|1A) < ϵ,

for all events such that P (A) < δ (see, e.g., Theorem 6.5.1 on page 184 in [78]).

Since {Yn} is uniformly integrable, we have supn∈NE|Yn| < ∞ and Condition (i) above

follows from the triangle inequality and the boundedness of the sequence {an}. To show that

Condition (ii) holds, observe that by the triangle inequality

sup
n∈N

E (|Xn|1A) ≤ sup
n∈N

E (|Yn|1A) + CP (A). (4.6.61)

Using the uniform integrability of {Yn}, for every ϵ > 0, one can find δ′ > 0 such that the

first term in the right-hand side of (4.6.61) is less than ϵ/2, provided P (A) < δ′. By setting

δ := min{δ′, ϵ/(2C)}, we also ensure that the second term therein is less than ϵ/2 for all P (A) <

δ ≤ δ′. This completes the proof of the uniform integrability of {Xn}.

In the following, we assume that γ is a fixed number in (0, α/2). Theorem 6.1 of [79] implies

that, in the notation of Theorem 4.3.1, cf. (4.3.16),

lim
N→∞

E

∣∣∣∣∣

∣∣∣∣∣b
−1
N

(
N∑

i=1

Zi − γN

)∣∣∣∣∣

∣∣∣∣∣

γ

= E ||S||γ .

Applying the above result to (4.3.23), we obtain

lim
N→∞

E ||SN ||γ = E ||S||γ , (4.6.62)

where

SN = k−1N

(
N∑

i=1

Xi ⊗Xi − ψN

)
.

In the framework of Theorem 4.3.3, set
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M =

∫

B
c
S
yµX⊗X(dy)

and

MN = k−1N NE
[
(X ⊗X)I{∥X∥2≥kN}

]
,

so that (4.6.49) becomes

Nk−1N

(
Ĉ − C

)
= SN −MN

with SN
d→ S and ∥MN −M∥S → 0. We now explain why we can conclude that

E ||SN −MN ||γS → E ||S −M ||γS . (4.6.63)

Since SN − MN
d→ S − M in S , ||SN −MN ||γS

d→ ||S −M ||γS in R. Convergence (4.6.63)

will follow if we can assert that the nonnegative random variables ||SN −MN ||γS are uniformly

integrable. Since ||SN ||γS
d→ ||S||γS and (4.6.62) holds, Theorem 3.6 in [80] implies that the random

variables ||SN ||γS are uniformly integrable. Relation (4.6.63) thus follows from the inequality

||SN −MN ||γS ≤ Cγ {||SN ||γS + ||MN ||γS}

and Lemma 4.6.6. Relation (4.6.63) implies the first relation in Theorem 4.4.2 with Lγ(N) =

L−2γ0 (N).

Since |λ̂j − λj| ≤ ∥Ĉ −C∥S (see e.g. Lemma 2.2 in [6]), the second relation follows from the

first. Under Assumption 4.4.2, ∥v̂j − vj∥ ≤ aj∥Ĉ−C∥S (see e.g. Lemma 2.3 in [6] or Lemma 4.3

in [5]), so the third relation also follows from the first.

4.6.3 Proof of Theorem 4.5.1

Since ||ΨKL −Ψ||L → 0 by (4.5.28) and (4.5.29), it is enough to show that

∣∣∣
∣∣∣Ψ̂KL −ΨKL

∣∣∣
∣∣∣
L

a.s.→ 0. (4.6.64)
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The operators ΨKL and Ψ̂KL have the following expansions:

Ψ̂KL(x) =
K∑

k=1

L∑

ℓ=1

σ̂ℓk

λ̂ℓ
⟨v̂ℓ, x⟩ ûk, ΨKL(x) =

K∑

k=1

L∑

ℓ=1

σℓk
λℓ

⟨vℓ, x⟩ uk.

Introduce the sample analogs of the subspaces VL and UK ,

V̂L = span {v̂1, v̂2, . . . , v̂L} , ÛK = span {û1, û2, . . . , ûK} ,

and consider the following projections:

πL = projection onto VL, π̂L = projection onto V̂L;

πK = projection onto UK , π̂K = projection onto ÛK .

Observe that

Ψ̂KL = π̂KDN Ĉ
−1π̂L, ΨKL = πKDC−1πL,

where

D = E [X ⊗ Y ] , DN =
1

N

N∑

i=1

Xi ⊗ Yi,

and

C =
∞∑

j=1

λjvj ⊗ vj, Ĉ =
∞∑

j=1

λ̂j v̂j ⊗ v̂j, C
−1 =

∞∑

j=1

λ−1j vj ⊗ vj, Ĉ
−1 =

∞∑

j=1

λ̂−1j v̂j ⊗ v̂j.

Notice that for any y = πL(x) or y = π̂L(x), C−1(y) and Ĉ−1(y) exist.
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For x ∈ L2, consider the decomposition

(
Ψ̂KL −ΨKL

)
(x) =π̂KDN

(
L∑

j=1

λ̂−1j ⟨v̂j, x⟩ v̂j
)

− πKD

(
L∑

j=1

λ−1j ⟨vj, x⟩ vj
)

=π̂KDN

(
L∑

j=1

(
λ̂−1j − λ−1j

)
⟨v̂j, x⟩ v̂j

)

+ π̂KDN

(
L∑

j=1

λ−1j ⟨v̂j − vj, x⟩ v̂j
)

+ π̂KDN

(
L∑

j=1

λ−1j ⟨vj, x⟩ (v̂j − vj)

)

+
(
π̂KDN − πKD

)
(

L∑

j=1

λ−1j ⟨vj, x⟩ vj
)

= : aN(x) + bN(x) + cN(x) + dN(x),

where

aN(x) = π̂KDN

(
L∑

j=1

(
λ̂−1j − λ−1j

)
⟨v̂j, x⟩ v̂j

)
,

bN(x) = π̂KDN

(
L∑

j=1

λ−1j ⟨v̂j − vj, x⟩ v̂j
)
,

cN(x) = π̂KDN

(
L∑

j=1

λ−1j ⟨vj, x⟩ (v̂j − vj)

)
,

dN(x) =
(
π̂KDN − πKD

)
(

L∑

j=1

λ−1j ⟨vj, x⟩ vj
)
.

Relation (4.6.64) will follow from Lemmas 4.6.8, 4.6.9, 4.6.10 and 4.6.13. The first two of

these lemmas use the following result.

LEMMA 4.6.7. Under the assumptions of Theorem 4.5.1,

∣∣∣∣π̂KDN(v̂j)
∣∣∣∣ ≤ λ̂

1/2
j

(
1

N

N∑

i=1

||Yi||2
)1/2

.
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Proof. For each integer ℓ, we have

|
⟨
π̂KDN(v̂j), ûℓ

⟩
| =
∣∣∣
⟨

K∑

k=1

1

N

N∑

i=1

⟨Xi, v̂j⟩ ⟨Yi, ûk⟩ ûk, ûℓ
⟩∣∣∣

=
∣∣∣ 1
N

N∑

i=1

⟨Xi, v̂j⟩ ⟨Yi, ûℓ⟩
∣∣∣

≤ 1

N

(
N∑

i=1

⟨Xi, v̂j⟩2
)1/2( N∑

i=1

⟨Yi, ûℓ⟩2
)1/2

=
(⟨
Ĉ(v̂j), v̂j

⟩)1/2 (⟨
ĈY (ûℓ), ûℓ

⟩)1/2

=λ̂
1/2
j γ̂

1/2
ℓ .

Therefore,

∣∣∣∣π̂KDN(v̂j)
∣∣∣∣ =

∞∑

ℓ=1

⟨
π̂KDN(v̂j), ûℓ

⟩2 ≤ λ̂j

∞∑

ℓ=1

γ̂ℓ,

and
∞∑

ℓ=1

γ̂ℓ =
∞∑

ℓ=1

(
1

N

N∑

i=1

⟨Yi, ûℓ⟩2
)

=
1

N

N∑

i=1

||Yi||2 .

Hence the claim holds.

LEMMA 4.6.8. Under the assumptions of Theorem 4.5.1, ||aN ||L
a.s.→ 0.

Proof. Observe that

||aN(x)|| =
∣∣∣∣∣

∣∣∣∣∣π̂
KDN

(
L∑

j=1

(
λ̂−1j − λ−1j

)
⟨v̂j, x⟩ v̂j

)∣∣∣∣∣

∣∣∣∣∣

≤
L∑

j=1

|λ̂j − λj|
λ̂jλj

| ⟨v̂j, x⟩ |
∣∣∣∣π̂KDN(v̂j)

∣∣∣∣ .

By Lemma 4.6.7, Lemma 2.2 of [6] and the Cauchy-Schwarz inequality, we obtain the bound
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||aN(x)|| ≤
L∑

j=1

λ−1j λ̂
−1/2
j | ⟨v̂j, x⟩ |

(
1

N

N∑

i=1

||Yi||2
)1/2 ∣∣∣

∣∣∣Ĉ − C
∣∣∣
∣∣∣
L

≤λ−1L λ̂
−1/2
L ||x||L1/2

(
1

N

N∑

i=1

||Yi||2
)1/2 ∣∣∣

∣∣∣Ĉ − C
∣∣∣
∣∣∣
L
.

By Corollary 4.3.1, for N > N1 (random),

λ̂L ≥ λL −
∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
≥ λL/2.

Then we have

||aN ||L ≤
√
2

(
1

N

N∑

i=1

||Yi||2
)1/2

λ
−3/2
L L1/2

∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
.

Corollary 4.3.1 implies that, for any γ ∈ (1, α/2), N1−1/γ∥Ĉ − C∥S a.s.→ 0, and by the strong law

of large numbers

1

N

N∑

i=1

||Yi||2 a.s.→ E ||Y ||2 ≤ 2
(
||Ψ||2S E ||X||2 + E ||ε||2

)
<∞.

The claim thus follows from condition (4.5.34).

LEMMA 4.6.9. Under the assumptions of Theorem 4.5.1, ||bN ||L
a.s.→ 0.

Proof. Lemma 4.6.7 implies that

||bN(x)|| =
∣∣∣∣∣

∣∣∣∣∣π̂
KDN

(
L∑

j=1

λ−1j ⟨v̂j − vj, x⟩ v̂j
)∣∣∣∣∣

∣∣∣∣∣

≤
L∑

j=1

λ−1j | ⟨v̂j − vj, x⟩ |
∣∣∣∣π̂KDN(v̂j)

∣∣∣∣

≤
L∑

j=1

λ−1j λ̂
1/2
j ||x|| ||v̂j − vj||

(
1

N

N∑

i=1

||Yi||2
)1/2

.

Lemma 2.3 of [6] yields the relation
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||v̂j − vj|| ≤ 2
√
2α−1j

∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
,

with the αi defined in (4.5.32). Hence,

||bN ||L ≤ 2
√
2λ−1L λ̂

1/2
1

(
L∑

j=1

α−1j

)(
1

N

N∑

i=1

||Yi||2
)1/2 ∣∣∣

∣∣∣Ĉ − C
∣∣∣
∣∣∣
L
.

Since, for N > N2 (random),

λ̂1 ≤ λ1 +
∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
≤ 3

2
λ1,

we have

||bN ||L ≤ 2
√
3λ−1L λ

1/2
1

(
L∑

j=1

α−1j

)(
1

N

N∑

i=1

||Yi||2
)1/2 ∣∣∣

∣∣∣Ĉ − C
∣∣∣
∣∣∣
L
.

By Corollary 4.3.1 and the strong law of large numbers, the claim follows from (4.5.35).

LEMMA 4.6.10. Under the assumptions of Theorem 4.5.1, ||cN ||L
a.s.→ 0.

Proof. Observe that

||cN(x)|| =
∣∣∣∣∣

∣∣∣∣∣π̂
KDN

(
L∑

j=1

λ−1j ⟨vj, x⟩ (v̂j − vj)

)∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣π̂KDN

∣∣∣∣
L

L∑

j=1

λ−1j | ⟨vj, x⟩ | ||v̂j − vj||

≤
∣∣∣∣π̂KDN

∣∣∣∣
L

(
L∑

j=1

λ−1j α−1j | ⟨vj, x⟩ |
)∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L

≤
∣∣∣∣π̂KDN

∣∣∣∣
L λ
−1
L ||x||

(
L∑

j=1

α−1j

)∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
.

Therefore,

||cN ||L ≤ ||DN ||L λ−1L

(
L∑

j=1

α−1j

)∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
L
.
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Since, by the law of large numbers,
∣∣∣∣π̂KDN

∣∣∣∣
L

a.s.→ ||D||L, the claim follows from condition

(4.5.35).

To deal with the last term, we need additional lemmas.

LEMMA 4.6.11. Under the assumptions of Theorem 4.5.1, N1−1/γ∥DN −D∥S a.s.→ 0.

Proof. The decomposition

1

N

N∑

i=1

Xi ⊗ Yi =
1

N

N∑

i=1

Xi ⊗Ψ(Xi) +
1

N

N∑

i=1

Xi ⊗ εi

and the identities

Xi ⊗Ψ(Xi) = Ψ(Xi ⊗Xi), E[X ⊗Ψ(X)] = ΨE[X ⊗X], E[X ⊗ ε] = 0

imply that

||DN −D||S =
∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

Xi ⊗ Yi − E[X ⊗ Y ]

∣∣∣∣∣

∣∣∣∣∣
S

≤ ||Ψ||S
∣∣∣
∣∣∣Ĉ − C

∣∣∣
∣∣∣
S
+

∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

Xi ⊗ εi

∣∣∣∣∣

∣∣∣∣∣
S

.

For any 1 ≤ γ < 2, ∣∣∣∣∣

∣∣∣∣∣
1

N1/γ

N∑

i=1

Xi ⊗ εi

∣∣∣∣∣

∣∣∣∣∣
S

a.s.→ 0.

The above convergence follows from Theorem 4.1 of [74] which implies that in any separable

Banach space of Rademacher type γ, 1 ≤ γ < 2, N−1/γ
∑N

i=1 Yi
a.s.→ 0, provided the Yi are iid

with E∥Yi∥γ < ∞ and EYi = 0. In our case, the Banach space is the Hilbert space S (a Hilbert

space has Rademacher type γ for any γ ≤ 2, see e.g. Theorems 3.5.2 and 3.5.7 of [75]). Clearly,

E[Xi ⊗ εi] = 0 and E∥Xi ⊗ εi∥γS = E∥Xi∥γE∥εi∥γ <∞. Another application of Corollary 4.3.1

completes the proof.
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LEMMA 4.6.12. Under the assumptions of Theorem 4.5.1, λ−1L

∣∣∣∣π̂KDN − πKD
∣∣∣∣
L

a.s.→ 0.

Proof. By the triangle inequality,

∣∣∣∣π̂KDN − πKD
∣∣∣∣
L ≤

∣∣∣∣π̂KDN − π̂KD
∣∣∣∣
L +

∣∣∣∣π̂KD − πKD
∣∣∣∣
L .

For the first term, we have

∣∣∣∣π̂KDN − π̂KD
∣∣∣∣
L = sup

||x||≤1

∣∣∣∣∣

∣∣∣∣∣
K∑

k=1

⟨(DN −D) (x), ûk⟩ ûk
∣∣∣∣∣

∣∣∣∣∣

≤ sup
||x||≤1

(
K∑

k=1

∣∣∣ ⟨(DN −D) (x), ûk⟩
∣∣∣
)

≤ K1/2 ||DN −D||L .

Thus, λ−1L

∣∣∣∣π̂KDN − π̂KD
∣∣∣∣
L

a.s.→ 0 by Lemma 4.6.11 and condition (4.5.36).

Turning to the second term, observe first that

D(x) = E[⟨X, x⟩Y ] = Ψ(E[⟨X, x⟩X]) = Ψ(C(x)).

Setting y = Ψ(C(x)) we thus have

πKD(x) =
K∑

k=1

⟨y, uk⟩ uk, π̂KD(x) =
K∑

k=1

⟨y, ûk⟩ ûk.

Consequently, π̂KD(x)− πKD(x) = D1(x) +D2(x), where

D1(x) =
K∑

k=1

⟨y, uk − ûk⟩ uk, D2(x) =
K∑

k=1

⟨y, ûk⟩ (uk − ûk).

Next,
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∥D1(x)∥ ≤ ∥y∥
{

K∑

k=1

∥uk − ûk∥2
}1/2

≤ 2
√
2∥y∥

∣∣∣
∣∣∣ĈY − CY

∣∣∣
∣∣∣
L

{
K∑

k=1

1

β2
k

}1/2

and

∥D2(x)∥ ≤
K∑

k=1

| ⟨y, ûk⟩ |∥uk − ûk∥ ≤ 2
√
2∥y∥

∣∣∣
∣∣∣ĈY − CY

∣∣∣
∣∣∣
L

K∑

k=1

1

βk
.

We see that condition (4.5.37) implies that λ−1L

∣∣∣∣π̂KD − π̂KD
∣∣∣∣
L

a.s.→ 0.

LEMMA 4.6.13. Under the assumptions of Theorem 4.5.1, ||dN ||L
a.s.→ 0.

Proof. Observe that

||dN(x)||2 =
∣∣∣∣∣

∣∣∣∣∣
(
π̂KDN − πKD

)
(

L∑

j=1

λ−1j ⟨vj, x⟩ vj
)∣∣∣∣∣

∣∣∣∣∣

2

≤
∣∣∣∣π̂KDN − πKD

∣∣∣∣2
L

(
L∑

j=1

λ−2j ⟨vj, x⟩2
)

≤
∣∣∣∣π̂KDN − πKD

∣∣∣∣2
L λ
−2
L

(
L∑

j=1

⟨vj, x⟩2
)

≤
∣∣∣∣π̂KDN − πKD

∣∣∣∣2
L λ
−2
L ||x||2 .

Consequently, ||dN ||L ≤
∣∣∣∣π̂KDN − πKD

∣∣∣∣
L λ
−1
L , so the claim follows from Lemma 4.6.12 and

condition (4.5.34).
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Appendix A

Elaboration on condition (3.2.10)

The normalizing constants aj,N defined in (3.2.9) satisfy condition (3.2.10) for normal, expo-

nential, and any gamma distribution, and for any κ > 0. In the following we drop the subscript j.

Condition (3.2.10) is thus equivalent to

N1−κF ′(bN) → 0, N → ∞, (A.0.1)

cf. [12], p. 18. Recall that N = 1/ (1− F (bN)).

For the normal N(µ, σ2) distribution, the bN satisfy

∫ ∞

bN

1√
2πσ2

e−(x−µ)
2/2σ2

dx =
1

N
.

Example 1.1.7 in [12] implies that

bN = σb̃N + µ ∼ σ (2 logN)1/2 ,

where b̃N ∼ (2 logN)1/2 is the normalizing constants for the standard normal distribution. Observe

that for any κ > 0, as N → ∞,

N1−κF ′(bN) = N1−κ 1√
2πσ2

e−(bN−µ)
2/2σ2 ∼ 1√

2πσ2
N−κ → 0.

Now consider the gamma distribution with the density function

F ′(x) =
βα

Γ(α)
xα−1e−βx, x > 0, α > 0, β > 0.

For the reduced gamma distribution Γ(α, 1), the normalizing constants b̃N satisfy
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∫ ∞

b̃N

1

Γ(α)
xα−1e−xdx =

1

N
.

By the calculation on p. 145 of [81], b̃N ∼ log (N/Γ(α)) . For the Γ(α, β) distribution, the bN

satisfy ∫ ∞

bN

βα

Γ(α)
xα−1e−βxdx =

1

N
.

Therefore,

bN =
1

β
b̃N ∼ 1

β
log (N/Γ(α)) .

Observe that for any κ > 0, as N → ∞,

N1−κF ′(bN) = N1−κ βα

Γ(α)
bα−1N e−βbN ∼ N−κβ

(
log

(
N

Γ(α)

))α−1
→ 0.
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