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ABSTRACT 

 

 

REACTIVE MEMBRANE EXTRACTION IN BIOREFINERIES 

 

 

Separations account for 60-80% of the processing costs of most mature chemical 

processes.  Membrane based separations offer several advantages over conventional 

technology such as lower energy costs and easy scale up.  Here we focus on membrane 

extraction for removal of acetic acid, sulfuric acid, furfural, HMF and other toxic 

compounds from biomass hydrolysates.  As membrane extraction is non-dispersive it 

overcomes the disadvantages of conventional extraction. 

Experiments have been conducted using dilute sulfuric acid pretreated corn stover 

(hydrolysate). Acetic acid, in its protonated form, is extracted into an organic phase 

consisting of octanol/oleyl alcohol and Alamine 336, a tertiary amine, containing 

aliphatic chains of 8-10 carbon atoms.  Co-extraction of sulfuric acid leads to an increase 

in hydrolyste pH.  The effect of aqueous and organic phase flow rates and temperature, 

on the rate of extraction of acetic acid and sulfuric acid has been investigated.  Changes 

in the rates of acetic and sulfuric acid extraction may be explained by considering the 

structure of the complexes formed in the organic phase. 

We conducted computational modeling to elucidate the extraction process of 

Alamine 336 in different solvents. Extraction of carboxylic acids, Furfural and HMF in 

water and octanol was simulated using the Gaussian 03 package. In the past the 
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extraction process has been explained by the direct interaction of the carboxylic acid with 

the Alamine 336 to form an ion pair. More carboxylic acids could be extracted through 

hydrogen bonding forming a dimer or trimer complex form with the Alamine 336, 

stabilized by the organic solvent.  

Hydrolysates treated by membrane extraction and conventional conditioning 

technologies were fermented using a glucose-xylose fermenting bacteria to determine the 

viability of membrane technology to detoxify biomass hydrolysates.  Membrane 

extraction could be a viable hydrolysate detoxification technology because the other 

conditioning technologies do not remove acetic acid. 
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PREFACE 

 

The term renewable energy describes very diverse energy sectors, which can be 

grouped in new and old renewable energy technologies. Old technologies include 

hydrothermal and geothermal energy productions techniques, whereas new technologies 

describe energy production using wind, solar and biomass.  

The first chapter provides an introduction into the biomass renewable energy 

sector, specially the bio-ethanol production from lignocellulosic materials. The 

introduction of the biorefinery concept in this chapter provides background for chapters 

2, 3, and 5. These chapters are published professional papers and focus more on the 

membrane liquid-liquid extraction process with its performance and results. No 

additional knowledge is provided for the membrane extraction process in chapter 1, 

further an overview shows more possible applications of the membrane technology in a 

biorefinery. The final section in chapter 1 states my motivation for introducing liquid-

liquid supported membrane extraction into the biorefinery scheme. 

Chapter 5 shows the possible applications of membrane supported liquid-liquid 

extraction in extracting acids, HMF or glycerol. Chapters 6 tries to elucidate the chemical 

process during extraction presented partially in chapters 2 and 3, using quantum 

chemistry 
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calculations embedded in Gaussian 03 software. Aspen simulation is presented in the 

final chapter 7, comparing the cost of NREL’s lignocellulosic biorefinery with and 

without membrane technology. 
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CHAPTER 1 

1 Background Introduction 

1.1 Petroleum consumption in U.S.  –  Bio-ethanol a solution for the future?  

The theory of basic human needs developed by Maslow states that human needs must be 

satisfied in a strict sequence starting with the most immediate needs followed by secondary 

needs1.  Among these levels are characteristics defined as the need for survival and security. 

Energy could be defined as a part of basic human needs, specifically as a part of human 

fundamentals, essential for human kind. Energy is needed for manufacturing for personnel 

needs; it encourages development and it provides us with security.  Energy is present in 

different forms, such as coal, nuclear energy, hydroelectric energy, natural gas, wood and 

petroleum. Nowadays, energy generated and consumed from petroleum exceeds by far all the 

other energy sources in the U.S.2. Petroleum is consumed in the U.S. mostly for personnel needs 

found in the transportation area, where fuel is used for aviation or automotive engines3.  

Figure 1 shows the total petroleum consumption in U.S., the total petroleum 

consumption for transportation and its fraction used by gasoline engines. As noticed, two thirds 

of petroleum usage is attributed due to transportation, of which over two thirds are consumed 

by gasoline engines. Also the steady increase of petroleum consumption using gasoline engines
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correlates with the steady increase of vehicles numbers from 147.5 millions in 1988 to 

191 millions in 2001, as mentioned by the U.S. Energy Information Administration (EIA)3. 

 

Figure 1  Comparison of petroleum, gasoline , and total transportation fuel consumption in the 
US from 1980 to 2008. Data reproduced from U.S. Energy Information Administration (EIA) 

 

Today the U.S. petroleum imports reached over 11 million barrels per day, an all-time 

high point. It is clear we must act and change our habits.  The availability of petroleum, a fossil 

fuel, is a limited resource and additionally there is an increase demand for this resource from 

such countries as China or India4, 5.   

There are several ways to decrease dependency of petroleum, including new fossil fuels 

resource utilization, increased energy efficiency of gasoline engines, rewards for less fossil fuel 

usage, and renewable energy development. Specfically bio-ethanol has gained rapid attention. 

The production of ethanol needs raw materials, which are grouped in three classes; starch 

containing crops, sugar containing crops, and cellulosic biomass.  Bio-ethanol refers to alcohol 

produced from lignocellulosic biomass whereas alcohol produced from food crops refers to 
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grain alcohol6.  Grain alcohol is also known as first generation ethanol and is the major topic 

involved with the food versus fuel debate7. Its technology is well established and countries, such 

as Brazil, proved that it is possible to commercialize first generation ethanol and reduce the cost 

of the production significantly8. Due to its competition for food, countries such as China, started 

regulating the production of first generation ethanol9. 

 Cellulosic biomass materials used for bio-ethanol production include agricultural 

residues, which include corn stover, bagasse, rice straw, wheat straw, woody materials, such as 

softwood and hardwood, wastes from the paper and pulp industry, and herbaceous materials, 

like switch grass.  

Cellulosic biomass is considered a solution for the future. Plant biomass is available on 

earth in huge amounts with yearly production of 200 x 109 tons10.  The cost of lignocellulosic 

biomass is less than gas, oil or any other energy source. Its chemical and energy input needed 

for production are lower than any other energy source13,14,15. The bio-ethanol industry will 

increase national energy security, create new jobs, and prevent an increase of greenhouse gases 

in the atmosphere. Ethanol produced from cellulosic biomass could reduce the greenhouse gas 

emissions by 88 %11,12. Biomass has a net positive energy balance, according to recent published 

life cycle assessments for materials such as straw, corn stover or switch grass16,17.   

According to the ‘Billion ton study,’ published by the Oak Ridge National Laboratory and 

the USDA in 2005, the United States is able to replace 30% of the petroleum consumption with 

1.3 billion tons of biomass18.  

Additionally, there are several other reasons why bio-ethanol is considered as a source of 

choice used in the transportation sector for gasoline vehicles over other potential 
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considerations, such as hybrid electric vehicles, plug-in vehicles or fuel cells vehicles. For 

example, the production of bio-ethanol is partially based on knowledge developed in the oil 

refining sector.  Other technologies such as fuel cell-based vehicles, are not ready for the market 

and need significantly more development while plug-in vehicles have started to enter the 

market. It is clear that their batteries, made of valuable compounds, can only be produced in 

certain amounts and not everyone will be able to afford the technology. Ethanol can already 

blend well with common gasoline up to 25 % without damaging current vehicles19. Therefore, it 

can directly close our gap of production and consumption of petroleum.   

1.2 The biorefinery concept  

Typical refinery uses petrochemical materials to produce a wide range of fuels (e.g, diesel, 

LPG, domestic fuel oil, gasoline, etc.) and high value chemicals. This wide range of products 

ensures a high economic efficiency of a petrochemical refinery.  Thus, this type of refinery 

serves as a template for the future biorefinery, where one feedstock (raw material) could be the 

platform for a wide range of products converting biomass into high value bio-based chemicals, 

fuels and power.  

Feedstock and technology lead to different biorefinery concepts, which are distinguished 

and based on different platforms, such as the thermochemical (syngas, etc), biogas and 

biochemical (sugar based) platform as shown in Table 1.   
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Table 1  Characteristics of biorefinery platforms with their products. Reproduced with few 
modification from ‘Biorefinery technologies for biomass upgrading’20 

Platform  Platform material  Conversion  
Process 

Products 

Thermochemical Lignocellulosic biomass/ 
plastics. Etc. 

 

 

Gasification Syngas  (also 
hydrogen, methanol 
ect.) 

 Lignocellulosic biomass/ 
plastics 

 

 

Pyrolysis Pyrolysis oil (any 
chemicals, hydrogen) 

Biochemical 
platform 

Sugar and starch   Fermentation Bioethanol 

 Lignocellulosic biomass  Fermentation Bioethanol 

Biogass Manure  Anaerobic 
digestion 

Biogas 

Oil (plants) Plant oils  Extraction  and 
esterification  

Biodiesel 

1.3 Thermochemical platform 

The thermochemical biorefinery can heat up the biomass with or without oxygen, which 

produces syngas or pyrolysis oils. For example, pyrolysis generates sugars, esters, ketones, acids, 

aldehydes, phenolics and other valuable compounds, whereas syngas generates compounds, 

such as CO, CO2, and H221. The advantage of the thermochemical process is that it does not 

distinguish between feed stocks; any biomass or waste can be converted. Both production 

methods can create products that can be further converted to high valuable chemicals or fuels.  

Currently, the biogas or biomethane platform, produces mainly gas through 

microbiological digestion of liquid manure. This production can be economic depending on the 

farm size22. Microbiological digestion is also possible through digestion of sludge or waste 

products from the food industry, which increases the resources of biogas platform23.   
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1.4 Biochemical platform 

The biochemical platform is based on fermentation or sugars, which is performed at 

lower temperatures, but also has lower reaction rates. Bioethanol production is an example for 

a biochemical production platform.  

  The diversity of biomass feedstock leads to different types of biorefineries, producing 

biomass-ethanol.   The development toward this future biorefinery is seen in the three main 

biomass-to-ethanol biorefinery concepts, where bio-ethanol is produced from food crops or 

non-food crops and where non-food crops serve not only for the production of bio-ethanol but 

also for simultaneous  production of co-products.  

 For example, today biorefineries such as the corn to ethanol biorefinery, are well 

established and distinguished by two major processes to produce ethanol from corn by dry-

grind and wet mill. The dry grind process consists of grinding, cooking, liquefaction, 

saccharification, fermentation and extraction of the ethanol52. The wet mill process extracts 

fibers, gluten before saccharification and fermentation is conducted24,52. It is a process mainly 

focused on by-product production with ethanol as a secondary product. Bio energy production 

is also the focus of a lignocellulosic biorefinery; however, it uses the whole biomaterial and 

increases the efficiency of a biorefinery9,20. The lignocellulosic biomass to ethanol concept is still 

under development and has not been implemented on an industrial scale. One step further, at 

an integrated biorefinery, biomass serves as a template for fuel production and high value 

chemicals from biomass is a future vision where progress is expected in the near future.  
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1.5 Lignocellulosic biorefinery   

1.5.1 Components of Lignocellulose 

The lignocellulosic biorefinery uses different feedstocks, such as crop and forest 

residues or grasses. From all these possible lignocellulosic materials, corn stover based 

lignocellulosic material seems to have the highest potential in quickly building a fuel ethanol 

industry in the U.S.  Corn-based ethanol production increased from 1980 to 2000 from 175 

million gallons to 1.63 billion gallons24. The corn – based ethanol industry established a solid 

infrastructure and logistics which could be used by corn-based lignocellulosic biorefineries.  All 

lignocellulosic materials have a common structure built of three biopolymer units: cellulose (40-

50 %), hemicelluloses (25-35%) and lignin (15-20%)25. In order to open the lignocellulosic 

biomass and produce valuable chemicals one has to change the chemistry of cellulose, 

hemicellulose and lignin. 

1.5.2 Cellulose 

Cellulose is a linear biopolymer of glucose units, which are linked by β-(1,4)-glucosidic 

bonds. The cellulose chain has strong tendency to form intra- and inter molecular hydrogen 

bonds or van der Waals bonds using the hydroxyl groups of other linear cellulose chains. These 

chains are ‘bundled’ together and form cellulose fibrils.  This chemical property of the β-(1,4) 

linkage gives cellulose a more crystalline appearance and makes it more insoluble and resistant 

to depolymerization26,28. The crystalline appearance is widely found in biomass; however, 

unorganized cellulose chains can also be found. The amorphous form is more reactive to 

chemical or enzymatic attack.   
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1.5.3 Hemicellulose  

Commonly xylan chain serves as the backbone for hemicellulose with its various 

branches of arabinose, galactose, mannose, etc. The backbone can be a homopolymer or a 

heteropolymer with branches being linked by β-(1.4) or β-(1.3) glycosidic bonds. Hemicellulose 

is more susceptible to chemical attack and builds a matrix by connecting lignin and the cellulose 

fibers. This feature provides more support to the lignin-cellulose-hemicellulose structure27,28. 

1.5.4 Lignin  

Lignin is a phenolic polymer consisting of three monomers: coniferyl alcohol, coumaryl 

alcohol, and sinapyl alcohol. The amount of the units determines the characteristics of wood, 

where softwoods contain more coniferyl and sinapyl alcohol and hardwoods contains mostly 

coniferyl units. Lignin provides the plant structural support, protection against microbial attack 

and water resistance27,28. 

1.6 Pretreatment of lignocelluloses  

1.6.1 Goal of pretreatment  

The requirement for the bio-ethanol production is that chain polymers in biomass, 

hemicellulose and cellulose, have to be broken down (hydrolysis) into their monomer units. 

Cellulose releases mainly D-glucose units whereas D-xylose, D-glucose, D-rahmanose, D-

mannose are mainly released from hemicellulose29.  The National Renewable Energy 

Laboratory’s (NREL) concept of a corn stover based lignocellulosic ethanol biorefinery is shown 

in Figure 2 with its essential bio-ethanol production units.  Key steps in Figure 2 are the 

pretreatment, hydrolysis of cellulose and hemicelluloses to sugars, fermentation of the sugars to 
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ethanol and finally recovery of bio-ethanol (grey highlighted squares in Figure 2).  Most 

important role is found in the pretreatment of lignocellulosic biomass, since it is an expensive 

unit in the bio-ethanol production scheme. Pretreatment of biomass is necessary, as seen with 

the yield of cellulose hydrolysis at about 20 % of the theoretical before treatment and over 90 % 

of theoretical after treatment30. During pretreatment the matrix of hemicellulose, cellulose and 

lignin must produce the following results: Lignin should be released from the matrix or be 

degraded; hemicellulose should be as much as possible hydrolyzed, and cellulose should have a 

reduced crystalline structure. The fraction of amorphous cellulose should be increased28.  

Additionally, pretreatment should have minimal loss of sugars, produce minimal 

formation of degradation products and be cost effective since it accounts for 18 % of cellulosic 

ethanol production31. 

These requirements lead to the development of various pretreatment methods which 

are of physical, thermal or chemical in nature. Only few methods seem to be promising and are 

discussed in the next paragraph.     
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Figure 2  Reproduction of NREL cellulosic biomass to ethanol process, PFD-P110-AOOO. 
Technical report (NREL0TP-510-32438, June 200257) 

 
 
 

1.7 Pretreatment methods 

1.7.1 Physical pretreatment  

Cutting lignocellulosic biomass into small particles is known as a mechanical 

pretreatment method. This increases the specific surface area, reduces crystallinity, and, thus, 

increases the total hydrolysis yield for most biomass types by 5-25%28. No side chemicals, such 

as furfural or 5-hydroxymethylfurfural (HMF) are produced. However, high energy input is 

required leading to an uneconomical process32.  
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1.7.2 Thermal pretreatment  

Heat alone is capable of hydrolyzing parts of hemicellulose and lignin. The temperature 

range, where hydrolysis begins varies between different biomass types due to different 

compositions of hemicellulose and lignin28,33.  The hemicellulose backbone and its type of 

branches determine mostly the thermal stability of hemicellulose. Solubilization of 

hemicellulose and lignin starts to appear at temperatures above 160 °C and leads to formation 

of acids (e.g., acetic , formic, levulenic acids), phenolic compounds (e.g., HMF, furfural) and 

heterocyclic compounds( e.g., vanillin, vanillin aclcohol). Heat is used as steam or liquid hot 

water, and acids or alkaline can be added to increase hydrolysis yields34. 

Pressurized steam and high temperature (temperatures up to 240 °C) are applied to 

biomass for a few minutes to hydrolyze hemicellulose and open cellulose structure for 

enzymatic hydrolysis34. Another type of action is known as steam explosion, where a quick 

depressurization and cooling causes water molecules to explode in the biomass matrix. The 

liquid hot water method uses hot water for pretreatment, instead of steam.  The ammonia fiber 

explosion process is based on same principle as steam explosion with liquid ammonia addition 

and is a type of thermal-chemical method34.   

1.7.3 Chemical treatment  

Alkalis, acids, peroxide or organic solvents can be used in the chemical pretreatment 

area. The alkaline pretreatment mode uses chemicals, such as sodium, ammonium or calcium 

hydroxide, which causes swelling of the biomass, and thus, increases the digestibility as shown 

on hardwoods from 14% to 55 %36. Alkaline treatment cause more a solubilization of lignin and 

less solubilization of cellulose or hemicellulose36,37. The treatment with lime has been explored 
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on corn stover and removes acetyl groups and lignin leading to an enhanced digestibility of 

cellulose38. 

Pretreatment with acids is conducted at high acid or low acid concentrations. Both 

processes require equipment that is resistant to corrosion, but high acid treatment is less 

economic because recovery of acid is necessary39. Low acid treatment at concentrations below 4 

wt % is a promising treatment method, but produces more degradation products because higher 

temperatures are used, but can produce good monomeric  xylose yields of 77 % or greater when 

applied to corn stover40.   

Organic solvents including acetone, ethylene glycol, methanol, peracetic acid, ketones 

and phenols were used mainly for solubilization of hemicellulose and lignin41. Drawbacks of 

organic solvent use are the additional washing step of solids to prevent precipitation of lignin 

and recovery of solvents using distillation. Additional drawback may be the biocompatibility of 

solvents during fermentation, solvents might be inhibitory for the fermenting organisms in small 

amounts and need to be recovered completely.  The recovery step may lead to an uneconomic 

process.   

1.7.4 Summary  

A summary of most promising pretreatment methods is given in Table 2. Up till now all 

of the methods possess advantages and disadvantages.   
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Table 3  Summary of promising pretreatment methods with their advantages and disadvantages. 
Data reproduced with changes from ‘Pretreatment technologies for an efficient bioethanol 

production process based on enzymatic hydrolysis: A review’ 39 

Pretreatment method  Advantages  Disadvantages 

Milling -Reduces crystallinity 

-No detoxification necessary 

-High power and energy 
consumption 

 

Steam explosion  -Lignin transformation and 
hemicellulose solubilization 

-No recovery of chemicals 

-Partial hemicellulose degradation 

-Release of inhibitory compounds 

-High equipment and energy cost 

AFEX -Increases surface area  

-Low formation of inhibitors- no 
detoxification step necessary 

-High consumption and cost of 
chemicals 

-Low lignin biomass required 

  

Alkaline -Low energy consumption -Long pretreatment time 

- Little hemicellulose hydroysis 

 

Concentrated acid -High sugar release  

-Ambient temperatures 

-Need corrosion resistant 
equipment 

-Recovery of acid necessary 

 

Diluted acid -Less formation of inhibitors  

-Few corrosion problems 

-Generation of degradation 

 Products 

- Need corrosion resistant 
equipment 

 

Organosolv -Hydrolysis of lignin and 
hemicellulose 

-Recovery of solvent necessary  

-High cost of solvents 

 

Wet oxidation -Low formation of inhibitors 

-Good removal of lignin 

-High equipment, oxygen and 
alkaline catalyst cost 

 

Biological -Low energy input  

-Degrades lignin and 
hemicellulose 

-Low hydrolysis titer 

-Long residence times 
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1.8 Detoxification of biomass and NREL’s detoxification status  

Hydrolysis of biomass releases not only fermentable sugars but also several compounds 

that are considered to be toxic to the fermenting microorganism.  These compounds are mainly 

grouped into three classes: furans, phenolics derivates and weak acids29,35.  

Figure 3 shows the source of furans, such as 5-hydroxymethylfurfural, or furfural, and 

weak acids, such as formic and acetic acid. Dehydration of glucose or pentose sugars like D-

Rhamnose leads to 5-hydroxymethylfurfural formation. Furfural is mainly a product from xylose 

or arabinose dehydration. Lignin releases mainly phenolics compounds28. Acetic acid is due to 

acetylation of hemicellulose and partially from the lignin35,43. Acetic acid, HMF and furfural 

represent classes of compounds that inhibit growth and ethanol production by interacting in 

vitro with the microorganism35,42,43. The presence of one compound can enhance the inhibitions 

of other present compounds on microorganisms. This synergetic inhibition was proven with 

S.cerevisiae with furfural and acetic acid producing a negative effect on growth rate, cell mass 

production, and ethanol yield. Thus, it is essential to remove inhibitors to a minimal level44.   
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Figure 3  Average composition of lignocellulosic biomass and main derived hydrolysis products, 
reproduced from ‘Increased tolerance and conversion of inhibitors in lignocellulosic 

hydrolysates by Saccharomyces cerevisiae’43 
 

Composition of toxic compounds depends on the type of lignocellulosic biomass and on 

the applied pretreatment method with its time, pH, temperature or pressure conditions.   This 

diversity sparked the development of different detoxification methods, which can be biological, 

chemical or physical.  

Biological methods use specific enzymes or microorganisms that act on phenolic 

compounds, such as HMF and furfural, as shown on spruce and wheat straw45,46. Vacuum 

evaporation is used as a physical method reducing the content of volatile compounds, such as 
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furfural or acetic acid47. Chemical methods include activated charcoal, diatomaceous earth, ion 

exchange or overliming or a combination of all mentioned methods.  

 A comparison of detoxification methods is difficult due to the inhibitory tolerance levels 

of microorganisms in the subsequent fermentation process35.  

Detoxification methods, that were applied to lignocellulosic biomass showed both 

positive and negative outcomes. No method is capable of removing all toxic compounds. Some 

methods decrease the fermentable sugar content or even dilute the hydrolysate producing  

lower ethanol titers45,47.  Combination of two or more detoxification methods on same biomass 

hydrolysate (poplar) significantly improved ethanol titers48. The economic evaluation had not 

been performed and could show that it is impracticable to combine two detoxification methods. 

 Detoxification of biomass hydrolysate has not been conducted with a membrane 

supported liquid-liquid extraction as we proposed.     

1.8.1 NREL’s detoxification method  

Figure 2 shows NREL’s biorefinery concept from 2002, where overliming is performed on 

pretreated corn stover hydrolysate.  The overliming process brings the hydrolysate first to pH 10 

and then pH is adjusted to enzymatic hydrolysis or fermentation pH conditions of 5.0 to 6.0 

using sulfuric acid. Additionally, this process produces gypsum, which is removed using 

hydrocyclone and rotary drum filtrations.  Recent research shows that significant sugar loss 

occurs of 13% xylose and 12% glucose49. 

NREL’s investigations on detoxification of lignocellulosic biomass are moving toward 

ammonium hydroxide treatment.  Overliming as well as ammonium hydroxide method uses the 

same treatment procedures. As with the overliming process, the goal of ammonium hydroxide 
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treatment is to produce a less toxic biomass for further fermentation steps. This new process is 

implemented in the current, but not yet published 2010 NREL process model.  We will compare 

our membrane process to the ammonium hydroxide process.   

1.9 Possible usage of membranes in the biorefinery  

The introduction of membranes into the production stream of a bioethanol biorefinery 

with second generation biofuels could reduce the cost of separation and purification 

significantly. Current separation processes account for up to 80% of the processing costs of most 

chemical processes50. It is expected that this will be similar in a lignocellulosic biorefinery.  

Membranes could be introduced at different stages in the process scheme of a second 

generation biofuel biorefinery to enhance the quality of existing bio-products and reduce high 

production costs. Conceptually, this has been investigated for biorefineries of first and second 

generation biofuels51.52. For example, at the beginning of a second generation biorefinery 

process, valuable compounds can be directly recovered using membranes. Fractionation of black 

liquor has been demonstrated using ultrafiltration membranes. The 5 and 10 kDa lignin fractions 

are possible adhesives, which are considered to be valuable by-products53. Other valuable 

biomass by-products such as 5-Hydroxymethylfurfural and furfural could also be recovered using 

membranes processes. This method has not yet been explored. Traditionally, recovery of 

bioethanol from fermentation broth is conducted via distillation. This last step in a biorefinery 

could be conducted with the help of pervaporation. Pervaporation with silicalite membranes of 

bioethanol-fermentation broth has been demonstrated by several research studies54,55. More 

research must be conducted to reduce the potential threat of acids to pervaporation 
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membranes.  However, significant cost reduction may be realizedby using membranes for 

biomass hydrolysate treatment. 

Biomass hydrolysate treated with ion exchange membranes showed a higher acetic acid 

capacity with ion exchange membranes than ion exchange resins. Sugar losses were noticed, but 

were lower than using ion exchange resins56.  

1.10 Motivation  

Another possible application for membranes is for detoxification of biomass hydrolysate 

using extractive liquid-liquid membrane configurations.  Membranes using a hollow fiber 

configuration are contacted with fluids on both sides on the membrane, where extraction is 

conducted on the interface of each membrane pore. Diffusion of toxic compounds from the 

aqueous phase into the organic phase leads to a less toxic hydrolysate, thus higher pontentially 

increasing ethanol yields. This system has several advantages over conventional chemical 

processes, such as easy scale up, no emulsion formation and higher efficiency. 

Our goal is an economic replacement of current detoxification methods with extractive 

membrane supported liquid-liquid extraction method.      
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Abstract 

 Production of bioethanol from lignocellulosic biomass requires pretreatment of the 

biomass in order to improve the susceptibility of the cellulose to enzymatic hydrolysis to 

glucose. When dilute acid is used to perform this process, the hemicellulose is also hydrolyzed 

to its component sugars while simultaneously releasing acetyl groups attached to the 

hemicellulose backbone.  Other compounds from the lignin and sugar degradation products are 

also produced that inhibit subsequent bioconversion of the solubilized sugars to the desired
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 products.  In this work we focused on removal of acetic acid from a dilute sulphuric acid 

pretreated corn stover hydrolysate.   

 Acetic acid has been extracted into an organic phase at pH values below its pKa.  The 

organic phase diluent consisted of octanol.  Alamine 336, a tertiary amine and Aliquat 336 a 

quaternary amine were used as the aliphatic amine extractants.  Our results indicate more than 

60% removal of acetic acid using Alamine 336.  Extraction rates were much slower for Aliquat 

336 probably due to the higher viscosity of the Aliquat 336/octanol phase.   

 The presence of sulphate anions, as a result of dilute sulphuric acid pretreatment, 

results in the co-extraction of bisulphate anion.  Bisulphate anion is preferentially extracted at 

pH values below its pKa.  Consequently the pH of the hydrolysate increases from between 1 and 

2 to above 4.0 during extraction.  In addition, extraction of low molecular weight lignins and 

phenolics is also observed.  Thus the membrane extraction process developed here may be used 

not only for removal of acetic acid but also to adjust the pH of the hydrolysate to values that are 

more compatible for fermentation and to remove other inhibitory compounds. 

 

 

 

 

Key words:  Aliphatic amine extractant, acetic acid, membrane extraction, hydrolysate, sulphuric 

acid 
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2.1 Introduction 

 Biomass represents a renewable resource for the production of biobased products and 

biofuels.  However a major obstacle to the large-scale industrial production of these materials is 

the lack of cost-effective separation methods for product isolation and purification1, as 

separations currently account for 60-80% of the processing costs of most mature chemical 

processes.   

 Lignocellulosic biomass consists of three main polymers:  cellulose, hemicellulose and 

lignin. Before fermentation, the biomass has to be hydrolyzed to release sugars from the 

polymeric matrix. Different processes have been developed to hydrolyze hemicellulosic sugars 

from lignocellulosic materials. Dilute sulphuric acid pretreatment is commonly used because it is 

effective at producing a xylose-rich hemicellulose hydrolysate liquor while enhancing cellulose 

enzymatic digestibility2. 

 During pretreatment, toxic compounds are produced that inhibit subsequent 

bioconversion of the solubilized sugars to the desired products.  For example, acetic acid is 

produced as a result of hydrolysis of acetyl groups present in the hemicellulose.  Further 

depending on the severity of the pretreatment conditions the pentose-based sugars that are 

produced from the hydrolysis of hemicellulose may be further hydrolyzed to furfural.  Recently 

Bower et al3 have shown that corn stover contains appreciable amounts of sucrose.  Depending 

on the severity of the pretreatment, this sucrose may be hydrolyzed to 5-hydroxymethylfurfural, 

which could be further hydrolyzed to levulinic and formic acid.  Removal of these toxic 

compounds is essential in order to maximize sugar yields.  Here we focus on acetic acid removal.      
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 In its protonated form, acetic acid can diffuse through the cytoplasmic membrane of 

cells and detrimentally affect cell metabolism4,5.  Undissociated acetic acid can diffuse through 

the cell cytoplasm, where it lowers the intracellular pH, resulting in impaired transport of 

various ions and increased energy requirements6.  The sensitivity of the microorganism to acetic 

acid depends on the operating conditions7.  Acetic acid concentrations in lignocellulosic 

hydrolysates can be up to several grams per litre.  However, Maiorella et al8 note that 

concentrations as low as 0.25 g L-1 can affect growth and reduce the rate of ethanol production, 

indicating the importance of acetic acid removal.  This is particularly important, as the economic 

viability of a cellulosic ethanol plant will depend on the efficiency of ethanol production.  The 

amount of acetic acid produced depends on the lignocellulosic biomass.  In general, herbaceous 

biomass produces less acetic acid than an equivalent amount of woody biomass.  Thus, in the 

past removal of acetic acid from herbaceous biomass after pretreatment has not been 

considered necessary.  However, given the trend towards higher solids loadings (more than 30% 

during pretreatment), the acetic acid concentration in hydrolysate liquors is expected to rise.     

 Recovery of carboxylic acids such as acetic acid is important in a number of industries.  

While acetic acid is a toxic by product during the production of cellulosic bioethanol, carboxylic 

acids such as lactic acid are frequently produced by fermentation9.  In addition removal of 

caroboxylic acids is also important from aqueous waste streams in the petrochemical, chemical 

and pulp and paper industries10.  Classical methods for recovering low-volatility carboxylic acids 

involve formation of the insoluble calcium carboxylate salt11.  Besides being energy intensive 

and consuming 1 mol of a mineral acid such as sulphuric acid and calcium base per mol of 

carboxylic acid produced, calcium acetate is a soluble salt.  Here we have investigated the use of 

Alamine 336 a long chain water insoluble tri-octyl/decyl amine and Aliquat 336 a water insoluble 
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quaternary ammonium salt made by the methylation of mixed tri-octyl/decyl amine.  These 

amine extractants were dissolved in octanol. 

 Long chain aliphatic amines may be used for the extraction of carboxylic acids from 

dilute aqueous solutions12,13,14,15,16,17,18,19,20,21.  An amine extractant is dissolved in an organic 

solvent known as the diluent.  Choice of the diluent is important as it can help stabilize the 

amine-carboxylic acid complex thus leading to greater extraction of the carboxylic acid.  The 

diluent also helps to control the viscosity and density of the organic phase.   

In this work we focused on extraction of acetic acid from corn stover hydrolysates 

produced by dilute sulphuric acid pretreatment.  After pretreatment, the pH of the hydrolysate 

is between 1 and 2.  Thus important variables that will affect extraction of acetic acid are:  co-

extraction of species such as H2SO4, HSO4
- and SO4

2- and the diluent and amine extractant used. 

In the next section we summarize the considerable body of literature relevant to extraction of 

acetic acid in the presence of sulphate and bisulphate anions using Alamine 336 and Aliquat 336 

dissolved in octanol. 

 For this work we developed a hollow fibre membrane-based liquid extraction system for 

extraction of acetic acid.  Schlosser et al.22 present a summary of published studies on the use of 

membrane extraction for the recovery of various carboxylic acids.  Membrane extraction offers 

a number of advantages over conventional liquid extraction.  Traditionally, liquid extraction is 

conducted using a number of mixer-settlers in series or a continuous, counter-current extraction 

column. However, irrespective of the equipment used, all conventional extraction processes 

suffer from a number of disadvantages. These include the dispersion of one phase in the other, 
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which requires subsequent coalescence of the dispersed phase after extraction; emulsification 

problems; flooding and loading concerns; and difficulty of scale up.  

 Microporous hollow fibres can overcome all of these disadvantages. In our experiments, 

the organic octanol phase is pumped outside polypropylene hollow fibres while the aqueous 

hydrolysate is pumped inside the fibres.   The organic phase/aqueous phase interface located at 

the inside surface of the fibres (as the fibres are hydrophobic) is stabilized by maintaining the 

pressure of the aqueous phase at a value equal to or greater than the organic phase pressure23. 

The hollow fibre membrane immobilizes the organic phase/aqueous phase interface. 

Importantly, extraction is achieved without dispersion of one phase in the other, so no 

coalescence step is needed. The flow rates of the aqueous and organic phases can be varied 

independently of each other over a wide range of flow rates. Finally, the interfacial area for 

mass transfer can be very large, leading to rapid extraction24,25,26,27.    

 The theory of hollow fibre-based liquid extraction is well developed28. It is assumed that 

the overall mass transfer coefficient depends on three individual mass transfer coefficients, 

which describe mass transfer across a concentration boundary layer in each of the phases and 

through the membrane.  Numerous correlations are available in the literature for predicting the 

mass transfer coefficient inside the fibres, outside the fibres and in the membrane pores29. 

2.2 Theory 

 The use of primary, secondary, tertiary and quaternary amines for extraction of 

carboxylic acids has been described in the literature11.  For effective extraction of acetic acid it is 

essential that the aliphatic amine has minimal solubility in the hydrolysate.  However, longer 

carbon chains results in an increased organic phase viscosity.  Aliphatic amines with less than six 
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carbon atoms per chain are poor extractants due to their water solubility12.  Kertes and King12 

note that the extraction power of aliphatic amines depends on the basicity of the amine.  In 

general this is greatest for tertiary amines though the organic phase diluent has a marked effect 

on the proton association constant.  In addition primary and secondary amines often form gels.  

Unlike primary, secondary and tertiary amines, the capacity of quaternary amines does not drop 

off at pH values approaching the pKa of acetic acid (4.76).  In this work, we use Alamine 336 and 

Aliquat 336, a commercially available tertiary and quaternary amine.  Both amines have been 

frequently used in previous studies.  They offer a good compromise between low water 

solubility and organic phase viscosity. 

 An ideal organic phase diluent is immiscible with water and has a low viscosity.  Octanol 

offers a good compromise between low water miscibility and viscosity.  Further octanol 

stabilizes the acid amine complex by hydrogen bonding.  Tamada et al.13 indicate that 

overloading, i.e., loading greater than 1 of the amine is possible. Loading (Z) is defined as the 

concentration of acetic acid in the organic phase due to complexation with amine divided by the 

amine concentration.  Depending on the percentage of amine in the organic phase and the 

volume of the organic phase relative to the aqueous phase, it may be necessary to account for 

the solubility of acetic acid in octanol.  Here we determine the total amount of acetic acid that 

transfers to the organic phase from the change in the aqueous phase concentration.   We then 

subtract the amount of acetic acid that would have transferred into the same volume of octanol 

in the absence of amine in order to determine the amount of acetic acid that complexes with 

the amine. Overloading indicates that complexes with more than one acetic acid molecule per 

amine have been formed. 
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 A unique feature of the hydrolysates being treated here is the presence of both a 

mineral (sulphuric) and carboxylic acid.  The first and second dissociation constants for sulphuric 

acid are 103 and 10-2.  Consequently at the pH values after pretreatment of 1-2, sulphuric acid 

will be present almost entirely as HSO4
- and SO4

2-.  Eyal and Canari21 describe four major 

mechanisms for acid extraction by amine-based extractants.  Ion pair formation occurs when the 

amine is basic enough (and the acid strong enough) to bind a proton to form the ammonium 

cation (for Alamine 336).  Given that sulphuric acid is a strong acid, it is likely that this 

mechanism will lead to significant removal of sulphuric acid from the hydrolysate according to 

the following expressions: 

R3N(organic) + H+
(aq) R3NH+

(organic) 

 

R3NH+
(organic) + HSO4

-
(aq)

  R3NH+HSO4
-
(organic) 

 

 At pH values well below the pKa of acetic acid protonated acetic acid will be extracted.  

Barrow and Yerger30 indicate that the acetic acid molecule reacts with the amine to form an ion 

pair.  Further, overloading of the amine is possible by hydrogen bonding of a second acid 

molecule to the carbonyl oxygen of the first acid molecule.  Octanol is an ‘active’ diluent that is 

able to hydrogen bond to the acid amine complex thus stabilizing it.   

 Since Aliquat 336 is a quaternary amine, extraction of sulphuric acid will occur by ion 

exchange thus maintaining charge neutrality in the organic phase.  At pH values well below the 

pKa of acetic acid the protonated form of acetic acid will be extracted.  Importantly unlike 

Alamine 336, as the pH approaches and becomes greater than the pKa of acetic acid, acetate 
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anion may be extracted by ion exchange.  Reisinger and King20 indicate that acetic acid may be 

extracted by Aliquat 336 at pH values above 12.   

2.3 Experimental 

 Initial batch extraction experiments were conduced using acetic acid in DI water in order 

to determine the level of overloading if any of the amine.  Acetic acid (cat. Nr. 279307), Aliquat 

336 (cat. Nr. 205613), and octanol (cat. Nr. 297887) were obtained from Sigma-Aldrich (Sigma-

Aldrich Corp. St. Louis, MO).  Alamine 336 was obtained from Cognis (Cincinnati, OH).  In each 

experiment, 4 mL of an aqueous phase containing acetic acid was contacted with 4 mL of the 

octanol/amine organic phase in a 15-ml centrifuge tube.  Table 1 gives the actual compositions 

of the aqueous and organic phases.  The solution was shaken for few seconds using Fisher 

Scientific Vortex Genie shaker (Thermo Fisher Scientific, Inc. Waltham, MA), after which it was 

allowed to settle for 10 minutes. Next it was centrifuged at 300-500 rpm for 10 min using 

Beckman benchtop centrifuge (Beckman Coulter, Inc. Fullerton, CA).  The lower aqueous phase 

was removed by pipeting and the residual acetic acid concentration was determined using a 

1050 HP HPLC equipped with a Biorad Aminex HPX-87 H column and a HP refractive index 

detector (Quantum Analytics, Inc. Foster City, CA) . For the mobile phase, a 10 N sulphuric acid 

solution was diluted to 0.01 N with HPLC grade water and prefiltered using a 0.2 µm filter. A 

series of calibration standards and calibration verification standards (CVS) were obtained from 

Absolute Standards Inc., Hamden, CT.  The flow rate was set at 0.6 mL/min at a column 

temperature of 55 °C.  
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Table 1  Compositions of the aqueous and organic phases for batch extraction of acetic acid 

Acetic acid concentration 

(wt%) 

Alamine: octanol 

(mL) 

Aliquat :octanol 

(mL) 

1, 5, 10 1:3, 2:2, 3:1 1:3, 2:2, 3:1 

 

 Membrane extraction experiments were conducted using two different LiquiCel 

Membrane Contactors (Membrana, Charlotte, NC).  Details of these two modules are given in 

Table 2. 

  Table 2  Specifications of the two hollow fibre modules used in the extraction experiments 

Module MiniModule 1 x 5.5 2.5 x 8 Extra-Flow 

Configuration Parallel flow Extra-flow, centre baffle 

Membrane  Polypropylene Polypropylene 

Porosity 40% 40% 

Fibre OD/ID (µm) 300/220 300/220 

Potting material Polyurethane Polypropylene 

Active surface area (m2) 0.18  1.4  

Priming volume lumen/shell (mL) 16/25 150/400 

 

The experimental set-up for both modules is given in Figure 1.  Corn stover hydrolysate, 

pretreated using 0.1 wt% sulphuric acid was provided by the National Renewable Energy 

Laboratory and is termed here as the aqueous phase. The organic phase consisted of octanol 

and Alamine 336 or octanol and Aliquat 336. The various operating conditions used in the 

experiments are given in Table 3. 

 Flexible chemical resistant Masterflex tubing, precision silicone tubing 6410-18 and 

Tygon 2075 tubing were used to connect the two peristaltic pumps, Master Flex HV-77410-10, 

(all from Cole-Parmer, Vernon Hills, IL) to the LiquiCel module.  The system was started by first 

turning on the aqueous phase pump followed by organic phase pump. The pump speed was 
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adjusted till the desired flow rate was reached.  At all times the aqueous phase pressure was 

about 0.07 bar above the organic phase pressure.  The aqueous phase pH was recorded using a 

pH meter (Thermo Orion 520) equipped with a Metler Toledo pH probe (Cole-Parmer).  At 

frequent intervals 1 mL samples of aqueous phase from the return tube to the aqueous phase 

reservoir were removed for HPLC analysis.   
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Table 3  Operating conditions for the hollow fibre extraction experiments 

Module Aqueous phase Organic  Phase 

MiniModule 1000g hydrolysate 

flow rate 7.5 L h-1 

500g octanol and 500 g Alamine 336 

 flow rate 3.7 L h-1 

MiniModule 1000g hydrolysate 

flow rate 7.5 L h-1 

500g octanol and 500 g Aliquat 336 

flow rate 3.7 L h-1 

Extra-Flow 1000g hydrolysate 

flow rate 53 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 3.7 L h-1 

Extra-Flow 1000g hydrolysate 

Flow rate 165 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 3.7 L h-1 

Extra-Flow 1000g hydrolysate 

flow rate 165 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 15.1 L h-1 

   

Extra-Flow 1000g hydrolysate 

flow rate 165 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 33 L h-1 

Extra-Flow 1000g hydrolysate 

flow rate 165 L h-1 

750 g octanol and 250 g Alamine 336 

flow rate 33 L h-1 

Extra-Flow 1000g of DI water 
containing 12 g L-1 acetic 
acid flow rate 165 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 31 L h-1 

Extra-Flow 1000g of DI water 
containing 12 g L-1 acetic 
acid and 0.1 wt% sulphuric 
acid flow rate 165 L h-1 

500g octanol and 500 g Alamine 336 

flow rate 30 L h-1 
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Figure 1  Experimental set-up 

Hydrolysate samples before and after extraction were analyzed using a UV/Vis 

spectrophotometer with an 8 cell sample holder (Agilent model 8453, Santa Clara CA).  Agilant 

UV/Vis Chemstation 845x software was used. 

2.4 Results  

 The variation of acetic acid loading Alamine 336 and Aliquat 336 with percent amine in 

the organic phase is given in Figure 2.  In all experiments the pH of the aqueous phase remained 

approximately constant at around 3.5.  Thus even after extraction, there was sufficient acetic 

acid present in the aqueous phase to ensure no shift in the pH.  At the highest acetic 

concentration, 10 wt%, overloading of Alamine 336 is observed.  However for the range of 

conditions tested, overloading of Aliquat 336 is not observed.  Previous results by Tamada et 

al.13 also indicate overloading of Alamine 336 by succinic acid in an aqueous phase consisting of 

octanol and chloroform. 
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Figure 2  Batch extraction results at various acetic acid (AA) concentrations 

 

 Figure 3 gives results for the MiniModule.  The left hand side y-axis gives the variation of 

acetic acid concentration (squares) while the right hand side y-axis gives the variation of pH 

(triangles).  Filled symbols are Alamine 336 while open symbols are for Aliquat 336.  At the same 

aqueous and organic phase flow rates, after 200 minutes of operation Alamine 336 removes 

about 40% of the acetic acid present while Aliquat 336 removes only about 15%.  The pH of the 

aqueous phase increases significantly for extraction with Alamine 336.  Between pH values of 

1.5 and 2.5 the pH increases very rapidly.  In contrast the pH of the aqueous phase remains 

almost constant during extraction with Aliquat 336.  Given the much more rapid removal of 

acetic acid using Alamine 336, all experiments with the Extra-Flow module were conducted 

Alamine 336 only. 
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Figure 3  Acetic acid concentration (squares) and pH (triangles) of hydrolysate during extraction 
with the MiniModule 

 

Figures 4-6 give results for extraction of acetic acid from hydrolyste using the Extra-Flow 

module. In these three figures the variation of acetic acid concentration with time in the 

hydrolysate (filled symbols) is read using the left hand side y-axis.  The variation of the aqueous 

phase pH (open symbols) is given by the right hand side y-axis.  Figure 4 gives results at two 

different hydrolysate flow rates that differ by a factor of three.  As can be seen there is little 

change in the variation of acetic acid concentration as a function of time.   
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Figure 4  Acetic acid extraction using the Extra-Flow module at hydrolysate flow rates of 53 L/hr-

1 (triangles) and 165 L/ hr-1 (squares) 

 

Figure 5 gives results for three organic phase flow rates.  As can be seen, changing the organic 

phase flow rate by a factor of ten has no effect on the rate of acetic acid removal. 
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Figure 5  Extraction using the Extra-Flow module at different organic phase flow rates with 3.7 
L/h r-1 (circles), 15.1 L/hr-1 (diamonds),  and 33 L/hr-1 (squares) 

 

Finally Figure 6 indicates that halving the Alamine 336 concentration in the organic 

phase has little effect on the rate of acetic acid removal.   
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Figure 6  Extraction using Extra-Flow module at two different Alamine 336 concentrations of 
25% (triangles) and 50 % (squares) 

However, Figs. 4-6 indicate that the variation of the aqueous phase pH is much more 

sensitive to the operating conditions.   

Figure 7 gives the variation of acetic acid concentration and pH with time for acetic acid 

in DI water and sulphuric acid and acetic acid in DI water.  Results for acetic acid in DI water 

show a steady decrease in acetic acid concentration and an increase in pH with time.  Results for 

acetic acid and sulphuric acid in DI water are similar to the results obtained for hydrolysates.  

There is a rapid increase in pH near the pKa of the bisulphate anion.  Further the rate of acetic 

acid removal increases after the pH rises above the pKa of the bisulphate anion.  
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Figure 7  Extraction of 12 g L-1 acetic acid and 12 g L-1 acetic acid and 0.1 wt% sulphuric acid in DI 
water 

Finally Figure 8 gives absorption spectra for hydrolysate and hydrolysate after extraction 

with the Extra-Flow module. As can be seen, the broad peak at 280 nm is significantly reduced 

after extraction.  Further the shoulder at 320 nm is also reduced.  

 

Figure 8  Absorbance spectra for hydrolysate 
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2.5 Discussion 

Increasing the acetic acid concentration in the aqueous phase leads to overloading of 

Alamine 336 at lower volume percent Alamine 336.  The degree of overloading depends on the 

acetic acid concentration in the aqueous phase as well as the octanol:Alamine 336 ratio in the 

organic phase.  For the experimental conditions considered here, no overloading of Aliquat 336 

was observed (see Figure 2).  A similar result was reported by Reisinger and King20. 

The overall mass transfer coefficient based on the organic phase for transfer of acetic 

acid or sulphuric acid from the aqueous to the organic phase is given by: 

omh kkk

m

K

111


  (1)

 

where m is the distribution coefficient of the acetic acid or sulphuric acid species that transfers 

to the organic phase, K is the overall mass transfer coefficient and kh, km and ko are the 

hydrolysate, membrane and organic phase mass transfer coefficients, respectively.  In these 

studies the acetic and sulphuric acid species that transfer to the organic phase react with the 

amine present.  Reaction with the amine will increase the rate of mass transfer due to an 

enhanced mass transfer coefficient and increased concentration driving force28,31,32.  Due to the 

very low solubility of acetic acid and sulphuric acid in octanol, the reaction front is likely to be 

inside the membrane pores.   

Figure 3 indicates that the rate of acetic acid removal when Aliquat 336 is used is much 

less than for Alamine 336.  However the viscosity Aliquat 336 is 1450 cP at 30 °C while that of 

Alamine 336 is about 20 cP. Thus the organic phase containing Alamine 336 is about 70 times 

less viscous than the organic phase containing Aliquat 336.  Since the organic phase mass 
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transfer coefficient depends on viscosity it is not surprising that the rate of mass transfer is 

much slower when Aliquat 336 is used as the organic phase. 

 Using a model aqueous phase consisting of acetic and sulphuric acid at the same 

concentration that is found in the hydrolysate, we see that the bisulphate anion is preferably 

extracted (Figure 7).  Only when the pH of the aqueous phase reaches the pKa of the bisulphate 

anion, 2.0, is there significant extraction of the protonated form of acetic acid.  This is in 

agreement with previous results and highlights the fact that sulphuric acid is a much stronger 

acid than acetic acid, thus extraction of a proton by the amine followed by extraction of the 

bisulphate anion occurs in preference to extraction of acetic acid. 

 The increase in the rate of acetic acid removal once the pH is above the pKa of the 

bisulphate anion is clearly seen in Figure 7 for the model aqueous feed.  However for real 

hydrolysates (Figs. 3-6) this increase is not so distinctive.  We suspect this is due to the presence 

of other organic compounds such as furfural, phenolics and low molecular weight lignins.  

Further since changing the aqueous and organic phase flow rates has little effect on the rate of 

removal of acetic acid, it appears the rate of acetic acid removal is limited by the rate of reaction 

in the organic phase and not the feed or aqueous phase mass transfer coefficients.  Further 

Figures 4-6 indicate that the change in pH is much more sensitive to operating conditions, 

probably due to the fact that pH changes rapidly near the pKa value of the bisulphate anion 

leading to larger measurement errors.  

 We have explored the removal of other toxic compounds such as low molecular weight 

lignin, phenolics and furfural.  Figure 8 gives the absorption spectra of hydrolysate as well as 

hydrolysates that have been treated by membrane extraction.  The untreated hydrolysate 
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shows a broad peak around 280 nm.  This peak represents furfural and hydroxymethyl furfural 

33.  The treated samples indicate that a significant amount of furfural and hydroxymethyl have 

been extracted into the octanol.  The absorbance in the region less than 225 nm is also reduced 

in the treated samples.   Since absorbance in this region may be attributed to acid soluble lignin 

it appears a significant amount of lignin is also being extracted into octanol.  Finally the shoulder 

around 320 nm is often attributed to phenolic compounds.  As can be seen these compounds 

are also extracted into octanol.   

Thus qualitatively extraction with octanol is successful in removing other toxic compounds.   

Currently after hydrolysis, the hydrolysate is conditioned for simultaneous saccharification and 

fermentation by adding calcium hydroxide in order to remove toxic compounds and adjust the 

pH to the optimal value for fermentation.  Our results indicate that hollow fibre extraction is 

capable of not only extracting acetic acid but also adjusting the pH and extracting toxic 

compounds. Thus it could be a viable process for conditioning the hydrolysate after 

pretreatment. While the solubility of octanol and Alamine 336 is very low in water, Tamada et 

al13 have shown that commercially available Alamine 336 contains small amounts of lower 

molecular weight and more water-soluble amines.  Due to their toxicity, transfer of these lower 

amines to the hydrolysate could lead to decreased ethanol yield during fermentation.  From a 

practical perspective it will be necessary to conduct fermentation studies using hydrolysates 

that have been detoxified using membrane extraction.  The ethanol yields should be compared 

to yields obtained using current detoxification methods such as addition of calcium hydroxide 

(overliming). 
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 Development of a practical extraction process for removal of acetic acid will also depend 

on the economical regeneration of the amine extractant.  In addition recovery of the acid 

(sulphuric and carboxylic in this work) for reuse would be very beneficial.  Currently the 

hydrolysate is frequently detoxified by addition of calcium hydroxide.  This leads to precipitation 

of gypsum (calcium sulphate) as well as higher molecular weight lignin.  In addition the pH of the 

hydrolysate is increased to around 5-6 in order to conduct fermentation.  In keeping with 

current practice, the organic phase could be back extracted with calcium hydroxide leading to 

the formation of gypsum. Alternatively Huang et al.35 describe a back extraction process using 

NaOH. Other methods for regeneration of the amine described in the literature include diluent-

swing regeneration34 and gas antisolvent-induced regeneration35.  We are currently exploring 

various methods for regeneration of the amine and possible recovery of acetic acid.  

2.6 Conclusions 

Hollow fibre-based liquid extraction has been used to remove acetic acid from 

lignocellulosic hydrolysates after pretreatment with dilute sulphuric acid.  Our results indicate 

that using a 50:50 mixture of Alamine 336 in octanol up to 60% of the acetic acid can be 

removed. Further we remove sulphuric acid thus increasing the pH to levels that are better 

suited for fermentation.  In addition extraction of other toxic organic compounds is observed.   
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Abstract 

 Economical conversion of lignocellulosic biomass into biofuels is essential to reduce the 

world’s dependence on fossil fuels.  The typical biochemical process for biomass conversion 

includes a thermochemical pretreatment step to improve enzymatic cellulose hydrolysis and to 

release hemicellulosic sugars from the polymer matrix.  However compounds that are toxic to 

microorganisms in subsequent fermentation steps may also be released.  This work investigates 

the use of membrane extraction to detoxify or remove these toxic compounds from corn stover 

hydrolysates pretreated using dilute sulphuric acid.   

                                                           
b
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Extraction of sulphuric, acetic, formic and levulinic acid as well as 5-hydroxymethylfurfural and 

furfural has been investigated.  Octanol and oleyl alcohol were used as organic phase solvents. 

Alamine 336 was used as the aliphatic amine extractant.  Reactive extraction of sulphuric, acetic, 

formic and levulinc acid was observed while 5-hydroxymethylfurfural and furfural were 

extracted due to their distribution in the organic solvent.  Significant removal of all toxic 

compounds investigated was obtained as well an increase in pH from 1.0 to 5.0.  As small 

quantities of the organic phase transferred into the hydrolysate during extraction, the toxicity of 

the organic phase must be considered.  As it is likely that detoxification will require the use of 

another unit operation in combination with membrane extraction, the economical viability of 

the combined process must be considered. 

 

 

 

 

Key words:  Aliphatic amine extractant, detoxification, hydrolysate, lignocellulosic biomass, 

membrane extraction 
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3.1 Introduction 

Development of efficient unit operations for conversion of lignocellulosic biomass into 

biofuels will be essential in order to replace up to 30% of the petroleum-based transportation 

fuels with biofuels by 20301. The economic viability of producing biofuels from biomass relies 

significantly on obtaining high yields of sugar from lignocellulosic biomass at low cost2,3.  Here 

the focus is on the production of bioethanol from corn stover.  Corn stover is a likely near-term 

feedstock because it is readily available in large quantities. The main steps involved in the 

conversion of corn stover into bioethanol are: pretreatment, hydrolysate detoxification, 

enzymatic cellulose hydrolysis and co-fermentation of the sugars, and product separation and 

purification4.   

Lignocellulosic biomass consists of three main polymers: cellulose, hemicellulose and lignin.  

In the pretreatment step, biomass is treated to improve the susceptibility of the cellulose to 

enzymatic hydrolysis.  Many different mechanical and thermochemical methods have been 

proposed for biomass pretreatment5.  Dilute sulphuric acid was used to produce the material 

tested in this study.  Dilute sulphuric acid has been shown to be effective at producing a xylose-

rich hemicellulose hydrolysate liquor while enhancing cellulose enzymatic digestibility6.  

Effective dilute sulphuric acid pretreatment not only releases xylose and acetic acid, but also 

results in the formation of sugar degradation compounds such as 5-hydroxymethylfurfural 

(HMF), furfural, levulinic and formic acid and phenolic-based lignin fragments that inhibit 

subsequent bioconversion of the solubilized sugars into ethanol7,8.   

The quantity of toxic compounds produced depends on the severity of the reaction 

(temperature, concentration and time of dilute sulphuric acid pretreatment)9,10.  While lower 

severity leads to lower concentrations of toxic compounds, it also leads to lower sugar yields.  
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Thus optimized pretreatment and subsequent detoxification steps, to remove toxic compounds 

that are produced, are essential to maximize sugar yields and hence increase ethanol yields in 

the subsequent fermentation step. 

In earlier work7 it was shown that acetic acid may be removed by reactive hollow fiber 

based membrane extraction.  Schlosser et al.11 present a summary of published studies on the 

use of membrane extraction for the recovery of various carboxylic acids.  Membrane extraction 

has a number of advantages over conventional extraction.  Most importantly for the 

detoxification of biomass hydrolysates, membrane extraction avoids the need to disperse one 

phase in the other thus minimizing the likelihood of entrainment of small amounts of organic 

phase in the aqueous hydrolysate phase.  Given that the organic phase is likely to be toxic to the 

microorganisms used in the subsequent fermentation step, minimizing transfer of organic phase 

into the aqueous phase will be critical.  

Alamine 336, a long chain aliphatic amine was used as the extractant while octanol was the 

organic solvent.  Alamine 336 chemically complexes with the acetic acid present.  Further, 

sulphuric acid present in the hydrolysate is also removed.  Eyal and Canari12 have described four 

major mechanisms for reactive extraction of acids by amines.  Since sulphuric acid is a strong 

acid it is likely that it forms an ion pair with the amine in the organic phase.  At pH values below 

the pKa of acetic acid, the protonated form of acetic acid is extracted.  Further overloading of 

the amine is possible by hydrogen bonding13.  Membrane extraction was shown not only to 

remove acetic acid but also to increase the pH of the hydrolysate (by removal of sulphuric acid).  

After dilute sulphuric acid pretreatment, the pH of the hydrolysate is about 1. Increasing the pH 

to 5-6 is essential in order to conduct the subsequent enzymatic cellulose hydrolysis and 

fermentation steps. 
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The hydrolysate contains other toxic compounds such as HMF, furfural, formic and levulinic 

acid.  The economic viability of a membrane extraction process may depend on the extent to 

which these other toxic compounds are also removed.  Removal of HMF, furfural, formic and 

levulinic acid as well as acetic and sulphuric acid have been investigated.  While formic and 

levulinic acid will form chemical complexes with Alamine 336, it is likely that HMF and furfural 

will be removed by a non-reactive mechanism.  In addition, as the reactive extractant and 

organic phase solvent could be toxic to the microorganisms used in the subsequent 

fermentation step, it is essential to determine the concentration of these compounds in the 

hydrolysate after extraction.  The results indicate that the efficiency of extraction of the 

different toxic compounds present in the hydrolysate varies greatly.  Further, some transfer of 

the organic phase into the hydrolysate always occurs. 

3.2 Experimental 

Figure 1 is a schematic representation of the hollow fibre extraction set up.  A LiquiCell 

Extra-Flow 2.5 x 8 membrane contactor (Membrane, Charlotte, NC) was used.  The module 

contains polypropylene hollow fibers, 300 m OD, 220 m ID, pore size 0.04 m, 40% porosity 

and surface area 1.4 m2.  The module also contains a central baffle to enhance mixing of the 

shell side fluid.  Two gear pumps (NCI 00198KE, flow rate 0-7.5 L min-1 and NCI00198KD, flow 

rate 0-15 L min-1), two controllers (70021-10) and four pressure transducers (EW 07356-53) 

were obtained from Cole Parmer, Vernon Hills, Il.  Two flow meters (8051K13, flow rate 0.75-7.5 

L min-1 and 80514K14, flow rate 2.0-20 L min-1) were obtained from McMaster-Carr Supply 

Company, Elmhurst, IL.  Two 316 stainless steel spring loaded piston check valves (50 psi) 

Swagelock Solon, OH, (see Figure 1) were included to prevent overpressurization. Needle valves 
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(SS-18RS8-BKP) from Swagelock were installed on each inlet and outlet of the module to ensure 

optimal pressure control. Half-inch (1.27 cm) stainless steel piping was used throughout the 

setup.   

 The aqueous phase consisted of 2 L of corn stover hydrolysate liquor provided by the 

National Renewable Energy Laboratory (NREL).  Two organic phase solvents were used: octanol 

(297887) and oleyl alcohol (O7600), both from Sigma-Aldrich, St Louis, MO.  Alamine 336 

(Sigma-Aldrich) was used as the reactive extractant.  Table 1 summarizes the compositions and 

flow rates used for the organic phase.   

The effect of aqueous and organic phase flow rates on the rate of extraction was 

determined for an organic phase consisting of 25% Alamine 336 in octanol by varying the 

aqueous phase flow rate from 3.8 to 8.6 L min-1 at an organic phase flow rate of 2.0 L min-1 and 

varying the organic phase flow from 2.0 to 5.8 L min-1 at an aqueous phase flow rate of 3.8 L 

min-1.  Additional experiments were conducted with an organic phase of 15% Alamine 336 in 

octanol with aqueous and organic phase flow rates of 5.6 and 2.2 L min-1, respectively.  Finally 

experiments were conducted using 15% Alamine 336 in oleyl alcohol at the same flow rates.  All 

testing was conducted at 22 °C except extraction into oleyl alcohol which was conducted at 42 

°C.  The viscosity of oleyl alcohol is about 1.5 x 10-2 Pa s while octanol is 7.2 x 10-3 Pa s at 25 °C.  

To compensate for the lower mass transfer coefficient due to the higher viscosity of oleyl 

alcohol, all experiment using oleyl alcohol as the organic solvent were run at 42 °C instead of 22 

°C.  A temperature of 42 °C was maintained by placing the organic phase reservoir in a water 

bath while 22 °C represents room temperature.  All experiments were run for 360 minutes. 
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 Since the membrane is hydrophobic, the organic phase will fill the membrane pores.  It 

is essential to minimize transfer of the organic phase into the aqueous phase.  Thus, the system 

was started by first turning on the aqueous phase, followed by the organic phase pump.  The 

organic phase was pumped on the shell side.  At all times the inlet and outlet aqueous side 

pressures were 7,000 to 14,000 Pa above the organic side pressure to minimize loss of the 

organic phase in the aqueous phase.  The pH of the hydrolysate was measured using a Thermo 

Orion 520 (Thermo Fisher Scientific, Waltham, MA) pH meter equipped with a Mettler Toledo 

pH probe (Cole-Parmer).  At frequent time intervals, 8 mL samples of the aqueous phase were 

removed from the return tube for compositional analysis.   

The concentration of acetic, formic and levulinic acid as well as HMF, furfural, glucose, 

xylose and arabinose in the aqueous phase was determined using a 1100 HP HPLC (Agilent, 

Santa Clara, CA) equipped with a Biorad Aminex HPX-87 H (Bio-Rad Hercules, CA) column and a 

HP refractive index detector. The mobile phase consisted of 10 N sulphuric acid solution diluted 

to 0.01 N with HPLC grade water and prefiltered using a 0.2 µm filter. A series of calibration 

standards and calibration verification standards (CVS) were obtained from Absolute Standards 

Inc., Hamden CT.  The flow rate was set at 0.6 mL min-1 at a column temperature of 55 °C and 

injection volume of 6 µL.  All measurements were taken at least three times and average results 

are reported. 

Sulphuric acid was measured in the aqueous phase using Lab X pro titration 

machine (Mettler-Toledo Inc., Columbus, OH). Three pH values: 4, 7, and 10 were used 

as standards with a running time of 5 min/sample.  Measurements were made in triplicate 

and average results were reported. 
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 Alamine 336 and octanol were analyzed in the aqueous phase using GCMS (Agilent 5973 

Network Mass Selective Detector, Agilent 6890N Network GC System) equipped with a fused 

silica capillary column (DB-Wax-Liquid phase, 0.5 µm film thickness 30 m x 0.249 mm). The run 

time was 17.5 min using a continuous temperature gradient starting from 135 to 240 °C.  

Standards were prepared by serial dilution using Alamine 336, 100 to 1 ppm, and octanol, 1 to 3 

mg/ml, in hydrolysate.  

 

Figure 1  Schematic representation of experimental set up  

 

Table 1  Summary of organic and aqueous phases and flow rates used 

Organic 
solvent 

Mass of organic 
solvent 

(g) 

Alamine 

 

(g) 

Aqueous/organic phase flow 
rates tested 

(L min-1/L min-1) 

Octanol 

Octanol 

Oleyl alcohol 

1125 

1250 

1250 

375 

250 

250 

3.8/2.0; 5.6/2.0; 8.6/2.0; 
3.8/4.0; 3.8/5.8 

5.6/2.2 

5.6/2.2 
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3.3 Results 

 Figures 2-6 give extraction data for acetic acid, formic and levulinic acid, sulphuric acid, 

HMF and furfural, respectively.  With the exception of formic and levulinic acid, results are given 

for all the experimental conditions investigated (see Table 1).  Since no significant difference in 

the rate of extraction of any of the compounds was observed for an organic phase of 25% 

Alamine 336 in octanol for the range of aqueous and organic phase flow rates investigated, 

these results are show with the same symbol.  Generally, the batch to batch variation in the 

concentration of a given compound is small, the exception being for HMF.  As can be seen in 

Figure 5, the initial HMF concentration in the hydrolysate treated with oleyl alcohol as the 

organic solvent was much lower.  The design of a commercial process must account for the 

small natural variation in hydrolyste pH and toxic compound concentration.  Since the initial 

concentration of formic and levulinic acid is low, extraction of these two acids will not be 

limiting.  Consequently, only the result for 15 % Alamine 336 in octanol and oleyl alcohol are 

shown to highlight that these acids are successfully extracted. 
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Figure 2  Acetic acid extraction results.   are for 25% Alamine 336 in octanol at different 
aqueous and organic phase flow rates (see Table 1).   are for 15% Alamine 336 in octanol while 

◊ are for 15% Alamine 336 in oleyl alcohol 

 

Figure 3  Formic and levulinic acid extraction results for hydrolysate and organic phase flow 

rates of 5.6 and 2.2 L min-1. ∆ are for 15 % Alamine 336 in octanol and ○ are for 15 % Alamine 
336 in oleyl alcohol 
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Figure 4  Sulphuric acid extraction results.   are for 25% Alamine 336 in octanol at different 
aqueous and organic phase flow rates (see Table 1).   are for 15% Alamine 336 in octanol while 

◊ are for 15% Alamine 336 in oleyl alcohol 

 

Figure 5  HMF extraction results.   are for 25% Alamine 336 in octanol at different aqueous and 
organic phase flow rates (see Table 1).   are for 15% Alamine 336 in octanol while ◊ are for 15% 

Alamine 336 in oleyl alcohol 
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Figure 6  Furfural extraction results.   are for 25% Alamine 336 in octanol at different aqueous 
and organic phase flow rates (see Table 1).   are for 15% Alamine 336 in octanol while ◊ are for 

15% Alamine 336 in oleyl alcohol 

 

  Figures 7-10 give the natural logarithm of the initial concentration of acetic acid, 

sulphuric acid, HMF and furfural divided by the concentration at time t versus time.  Since 

results for 25% Alamine 336 in octanol for the range of aqueous and organic phase flow rates 

investigated here fall on the same straight line for each compound, these results are shown with 

the same symbol.  Semi-logarithmic plots for formic and levulinic acid are not included as design 

of an extraction system will not be limited by removal of these acids. 
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Figure 7  Determination of overall mass transfer coefficient for removal of acetic acid.    are for 
25% Alamine 336 in octanol at different aqueous and organic phase flow rates (see Table 1).   
are for 15% Alamine 336 in octanol while ◊ are for 15% Alamine 336 in oleyl alcohol.  The mass 

transfer coefficient was determined from the slope of the straight line 

 

Figure 8  Determination of overall mass transfer coefficient for removal of sulphuric acid.    are 
for 25% Alamine 336 in octanol at different aqueous and organic phase flow rates (see Table 1).  
 are for 15% Alamine 336 in octanol while ◊ are for 15% Alamine 336 in oleyl alcohol. The mass 

transfer coefficient was determined from the slope of the straight line 
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Figure 9  Determination of overall mass transfer coefficient for removal of HMF.  are for 25% 
Alamine 336 in octanol at different aqueous and organic phase flow rates (see Table 1).   are 

for 15% Alamine 336 in octanol while ◊ are for 15% Alamine 336 in oleyl alcohol. The mass 
transfer coefficient was determined from the slope of the straight line 

 

Figure 10  Determination of overall mass transfer coefficient for removal of furfural.   are for 
25% Alamine 336 in octanol at different aqueous and organic phase flow rates (see Table 1).   
are for 15% Alamine 336 in octanol while ◊ are for 15% Alamine 366 in oleyl alcohol. The mass 

transfer coefficient was determined from the slope of the straight line 
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 The concentration of octanol and Alamine 336 in the hydrolysate during extraction is 

given in Figure 11 for 15% Alamine 336 in octanol.  The concentration of Alamine 336 and 

octanol in the aqueous phase was similar for all conditions tested when octanol was used as the 

organic solvent.  As can be seen a small but quantifiable amount of octanol and Alamine 336 

transfer into the hydrolysate during extraction.  It is possible that these organic compounds may 

have an impact on fermentation performance, which could be important in determining the 

viability of membrane extraction for detoxification of biomass hydrolysates.   

 

Figure 11  Variation of octanol and Alamine 336 in the hydrolysate during extraction for 
hydrolysate and organic phase flow rates of 5.6 and 2.2 min-1.  The organic phase contained 15 

% Alamine 336 

 Figure 12 gives the concentration of three sugars; glucose, xylose and arabinose in the 

hydrolysate during extraction.  Results are shown for 15% Alamine 336 in the organic phase.  As 

can be seen there is no detectable loss of any of these sugars from the hydrolysate during 

extraction.  Similar results were obtained for all of the experimental conditions investigated. 

Maximizing sugar yields is critical in the design of economically viable biorefineries, thus 

highlighting the potential benefit of membrane extraction for hydrolysate detoxification. 
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Figure 12  Variation of glucose, xylose and arabinose in the hydrolysate during extraction for 
hydrolysate and organic phase flow rates of 5.6 and 2.2 min-1.  The organic phase contained 15 

% Alamine 336 

3.4 Discussion 

Hydrolysate contains a mixture of acetic, formic and levulinic acids with pKas of 4.80, 

3.74, 4.62, respectively.   The first and second dissociation constants of sulphuric acid are 103, 

and 10-2, respectively.  Since sulphuric acid is a much stronger acid than the three organic acids 

it will be preferentially extracted.  In fact in earlier studies it was shown that for mixtures of 

acetic and sulphuric acid in DI water, the rate of acetic acid removal increases rapidly once the 

pH increases above 2, the pKa of the bisulphate anion7.   

After pretreatment the pH of the hydrolysate is between 1 and 2.  After membrane 

extraction for 360 minutes the pH of the hydrolysate is close to 5.0.  Previous investigators have 

shown that the extraction capacity of tertiary amines decreases rapidly as the pH approaches 

the pKa of the acid14,15,16,17,18.  Thus based on the pKa values for acetic, formic and levulinic acid, 

the rate of formic acid extraction will decrease as the pH increases above 3.74.  
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Figures 2 and 3 indicate that membrane extraction leads to at least a 50% decrease in 

the concentration of all three acids in the hydrolysate.  However given the concentration of 

acetic acid in the hydrolysate is almost an order of magnitude greater than formic and levulinic 

acid, design of a membrane extraction process for hydrolysate detoxification will focus on acetic 

acid removal.  Figure 3 indicates much greater than 50% removal of sulphuric acid, as expected, 

since it is a much stronger acid. 

A mass balance around the feed reservoir for a given compound (acetic acid, sulphuric 

acid, HMF, furfural) gives 

 *CCKA
dt

dC
V             (1) 

where V is the volume of hydrolysate (2 L), K is the overall mass transfer coefficient based on 

the aqueous phase, A is the membrane surface area (1.4 m2), C is the concentration of the 

compound in the aqueous phase and C* is the concentration of the compound in the aqueous 

phase that would be in equilibrium with the concentration in the organic phase.  Since fresh 

organic phase is used for each experiment initially C* may be assumed to be zero.  A number of 

standard assumptions are implicit:  the feed reservoir is fully mixed, the rate of change of acetic 

concentration in the feed per pass through the module is small.   

Integration of Equation (1) leads to 

V

KAt

C

C
Ln 







 0         (2) 

Plotting the left hand side of Equation (2) against run time, t should lead to a straight line the 

slope of which is the equal to the overall mass transfer coefficient.  The overall mass transfer 
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coefficient based on the aqueous phase is made up of three individual mass transfer 

coefficients,  

omh k

m

k

m

kK


11
        (3) 

where kh, km, and ko are the hydrolysate, membrane and organic phase mass transfer 

coefficients and m is the distribution coefficient of the toxic compound between the two 

phases.  The hydrolysate and organic phase mass transfer coefficients depend on the 

hydrolysate and organic phase flow rates19.  Numerous empirical correlations have been derived 

in order to predict these mass transfer coefficients20,21,22,23.  The membrane mass transfer 

coefficient on the other hand, does not depend on either of the phase flow rates.  It is given by 

l

D
km




                      (4)  

where D is the diffusion coefficient of the solute of interest in the membrane pores,  is the 

membrane porosity (40%),  is the membrane tortuoisty and l is the wall thickness of the hollow 

fibres (40 m).  Reaction of acetic and sulphuric acid with Alamine 336 in the organic phase will 

lead to an enhanced organic phase mass transfer coefficient.  Due to the very low solubility of 

acetic and sulphuric acid in octanol, the reaction front is likely to be inside the membrane pores.  

If the membrane mass transfer coefficient controls the rate of mass transfer, the overall mass 

transfer coefficient will appear to be independent of either phase flow rate.  Thus a plot of 

Ln(C0/C) against t should result in the same straight line for a range of aqueous and organic 

phase flow rates.  In Figures 7 and 8 the variation of Ln(C0/C) for acetic and sulphuric acid versus 

t for a range of aqueous and organic phase flow rates for 25% Alamine 336 in octanol is shown 

with the same symbol.  The results fall on the same curve indicating that the membrane mass 
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transfer coefficient is the limiting mass transfer resistance.  These results are in agreement with 

previous studies20.  Further for run times less than 100 minutes results for 25% and 15% Alamine 

336 in octanol and 15% Alamine 336 in oleyl alcohol fall on the same curve.   

For acetic acid (Figure 7), HMF (Figure 9) and furfural (Figure 10) the mass transfer 

coefficient appears to decrease at long run times indicating that the assumption of a non-zero 

concentration in the organic phase may not be applicable.  In the case of sulphuric acid (Figure 

8) the data at longer run times are much more scattered.  This is most likely due to the very low 

measured concentration in the hydrolysate (Figure 4). 

Figures 2 and 7 indicate that while the initial flux of acetic acid was the same for all 

experiments, at higher run times, the rate of extraction of acetic acid is the same for 15 and 25% 

Alamine 336 in octanol but is significantly lower for 15% Alamine 336 in oleyl alcohol.  Previous 

investigators have shown that ‘overloading’ of the amine, where more than one acetic acid 

molecule is extracted per amine molecule is possible by hydrogen bonding a second acetic acid 

molecule to the carbonyl oxygen of the first molecule24.  Octanol is an active solvent that can 

hydrogen bond to the acid amine complex thus stabilizing it and promoting overloading.    Given 

the presence of a double bond and the folded non-linear structure of oleyl alcohol steric 

hindrance effects are likely to limit its ability of form hydrogen bonds with the acetic acid amine 

complex thus limiting overloading. This explains the lower extraction capacity observed in 

Figures 2 and 7. 

Figures 4 and 8 indicate that at longer run times the rate of sulphuric acid extraction 

decreases for 15% Alamine in octanol and oelyl alcohol. Since sulphuric acid is a strong acid it is 

extracted by ion pair formation.  As overloading by hydrogen bond formation is not possible, at 
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the lower Alamine 336 concentration it is likely that the rate of extraction decreases due to 

saturation of the extractant.  This result supports the fact that use of octanol as a solvent is 

beneficial as it can promote overloading of the amine thus increasing the organic phase acetic 

acid capacity.    

Extraction of HMF and furfural (Figures 5 and 6) will be driven by the distribution of 

these compounds in the organic solvent rather than by reaction with the Alamine 336.  

Consequently using 15% and 25% Alamine 336 has no effect on the extraction of these two 

compounds.  The initial HMF concentration in the hydrolysate, when oleyl alcohol was used as 

the organic solvent was much lower than for the runs with octanol as the organic solvent as 

shown in Figure 5.  However Figure 10 indicates that the mass transfer coefficient is similar for 

all runs as is expected if the mass transfer coefficient is independent of concentration25.  

Extraction results for HMF and furfural indicate that at large run times the concentration of HMF 

and furfural in both phases approach an equilibrium value.  

Table 2 gives estimated and calculated overall mass transfer coefficients based on the 

aqueous phase using octanol as the organic phase.  To calculate the mass transfer coefficient it 

is necessary to estimate the membrane tortuosity and the diffusion coefficient of each solute 

species in octanol.  Tortuoisity factors between 2 and 12 have been reported26. Here an average 

value of 3 is used as suggested by Cussler25.  The solute diffusion coefficient in cm2 s-1 was 

estimated using the Wilke Chang equation27,28 

 
6.0

5.0

2

8104.7

V

TM
D




             (4) 
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where  is the association parameter assumed to be 1.5 for alcohols, M2 is the molecular weight 

of octanol (130 g mol-1), T is the temperature (295 K), is the viscosity of the solvent and V is 

the molar volume of the solute.  The presence of Alamine 336 is ignored and the viscosity of 

octanol at 22 °C is used (7.2 x 10-3 Pa s).  The molar volume of each compound is calculated from 

its density and molecular weight (see Table 2)29. 

 Experimental mass transfer coefficients were determined from Figures 7-10.  A straight 

line was fitted to the initial data as shown in the Figures 7-10.  The slope of this straight line 

represents the quantity (KA)/V.  The calculated and experimental mass transfer coefficients are 

in reasonable agreement.  There are however a number of simplifications that have been made 

in estimating the mass transfer coefficient.  Errors in diffusion coefficients predicted by the 

Wilke-Chang Equation are much higher for non-aqueous solutions28.  Further the viscosity of 

octanol was assumed.   

The experimentally determined mass transfer coefficient is based on aqueous phase 

concentrations.  However the membrane pores are filled with the organic phase. Thus a 

distribution coefficient for each solute between the two phases should be included in the 

calculated mass transfer coefficient26.  Assuming pure octanol as the organic phase, the octanol 

water partition coefficients for HMF and furfural are log P = -0.45 and 0.41, respectively, where 

P is the ratio of the concentration of the undissociated solute in octanol to water.  Thus the 

calculated mass transfer coefficients for HMF and furfural will change by a factor of between 2 

and 3.  Estimation of the distribution coefficient for acetic and sulphuric acid is more 

complicated as the concentration of the dissociated species in the aqueous phase as well as acid 

bound to amine in the organic phase must be included, resulting in the distribution coefficient 

being a function of pH.  Consequently the effect of the distribution coefficient on the mass 
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transfer coefficient has been ignored.  Nevertheless the results indicate that reactive membrane 

extraction is successful in removing the major toxic compounds present in biomass hydrolysates. 

 

Table 2  Calculated and experimentally determined mass transfer coefficients 

Compound Molecular 
Weight  

(g mol-1) 

Density 

(g cm-3) 

D 

(m2 s-1) 

km calculated 

(m s-1) 

km experimental 

(m s-1) 

Acetic Acid 60 1.049 3.8 x 10-6 1.2 x 10-6 3.2 x 10-6 

Sulphuric acid 98 1.840 3.9 x 10-6 1.3 x 10-6 5.2 x 10-6 

HMF 126 1.206 2.6 x 10-6 8.8 x 10-7 2.2 x 10-6 

Furfural 96 1.160 3.0 x 10-6 1.0 x 10-6 1.4 x 10-5 

 

 Figure 11 indicates that there will always be a small amount of organic solvent and 

extractant transferred into the aqueous phase, which could be toxic to the microorganisms used 

in the subsequent fermentation step.  Choice of the organic solvent will be critical in the design 

of a viable membrane extraction process.  The results indicate choosing an ‘active’ solvent that 

promotes overloading of the amine is beneficial as it increases the acetic acid capacity of the 

organic phase.   

Choosing a higher molecular weight alcohol will reduce its solubility in the organic phase 

though it could be more toxic.  Further the viscosity of the organic phase is likely to be higher 

leading to increased pumping costs.   Previous investigators have shown that the toxicity of oleyl 

alcohol is much less than octanol30,31.  The results indicate that oleyl alcohol may be an 

alternative organic solvent to octanol. While the acetic acid capacity is slightly reduced, and the 

viscosity of the organic phase is higher, efficient extraction of toxic compounds was still 
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observed.  However oleyl alcohol is more expensive than octanol, indicating that octanol may be 

a more economically viable solvent. 

Numerous fermentation strategies have been proposed to overcome the effects of 

organic solvent toxicity32,33.  The actual toxicity of a given compound depends on the 

microorganisms present and interaction between other chemical species present in the growth 

medium34.  Bar and Gainer30 indicate that a distinction must be made between toxicity due to 

dissolved solvent molecules and that due to a separate solvent phase.  Future work will focus on 

determining ethanol yields after fermentation using hydrolysates detoxified by membrane 

extraction with octanol and oleyl alcohol as the organic solvent. A major advantage of 

membrane extraction using octanol or oleyl alcohol as the organic solvent (Figure 12) is that 

sugar losses are minimized.  Maximizing sugar yields will be critical when designing a 

commercially viable biorefinery. 

The economic viability of membrane extraction has to be determined as part of an 

integrated process.  Efficient methods must also be developed to regenerate the amine 

extractant7. In addition, recovery of toxic compounds such as acetic acid and HMF could be a 

major advantage over current detoxification methods.  All of these issues must be considered 

when determining the viability of membrane extraction for biomass detoxification.   

3.5 Conclusions   

Reactive membrane extraction has been used to detoxify corn stover hydrolysates after 

pretreatment with dilute sulphuric acid.  Unlike many earlier studies the extraction of several 

toxic compounds: acetic, formic, levulinic and sulphuric acid, HMF and furfural from a real 

hydrolysate have been quantified.  Efficient extraction of acetic, formic, levulinic and sulphuric 
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acid as well as HMF and furfural was obtained.  The pH of the detoxified hydrolysate was about 

5.0. Octanol and oleyl alcohol were used as the organic solvent while Alamine 336 was the 

reactive amine extractant.  Losses of the organic phase in the hydrolysate have been quantified.  

The membrane resistance which represents the major resistance to mass transfer, may be 

predicted thus enabling design of larger scale systems. 

Loss of small quantities of the organic phase into the hydrolysate was observed.  Choosing 

an organic phase solvent that maximizes the capacity of the organic phase for removal of toxic 

compounds and minimization of toxic effects on the microorganisms will be essential.  The 

amount of acetic acid removed for a given quantity of amine may be increased by selecting a 

solvent that promotes overloading of the amine.   The economic viability of membrane 

extraction for biomass detoxification must be determined as part of an integrated process. 
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Abstract  

Acid-pretreated biomass contains various compounds (e.g., acetic acid, furfural, etc.) 

that are inhibitory to fermentative microorganisms. Removal or inactivation of these 

compounds using detoxification methods such as overliming or ammonium hydroxide 

conditioning (AHC) improves sugar-to-ethanol yields. In this study, the liquor fraction of dilute-

acid pretreated corn stover was treated using AHC and a new reactive membrane extraction 
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technique, both separately and in combination, and then the sugars in the treated liquors were 

fermented to ethanol with the glucose-xylose fermenting bacterium, Zymomonas mobilis 8b. 

Reactive extraction was performed with mixtures of octanol/Alamine 336 or oleyl 

alcohol/Alamine 336. The best ethanol yields and rates were achieved for oleyl alcohol-

extracted hydrolysates followed by AHC hydrolysates, while octanol-extracted hydrolysates 

were unfermentable because highly toxic octanol was found in the hydrolysate. The addition of 

olive oil significantly improved yields for octanol-extracted hydrolysate. Additional work is 

underway to determine if this technology is a cost-effective alternative to traditional 

hydrolysate conditioning processes. 

 

 

 

 

Keywords: Pretreatment, Bioethanol, Reactive membrane extraction, Ammonium hydroxide 

conditioning, Fermentation    
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4.1 Introduction  

The dependence of the United States on foreign energy sources is currently a major area 

of concern. Both first (starch) and likely second (lignocellulosic) generation feedstocks could 

produce enough bioethanol to decrease the United State’s dependence on imported energy 

supplies. Bioethanol also reduces particulate, carbon monoxide and mono-nitrogen oxides 

emissions and lowers net carbon dioxide production compared to conventional fuels (Sivakumar 

et al., 2010, Steffes et al., 1996, Luo et al., 2009). Additionally, large amounts of lignocellulosic 

biomass are potentially available according to a study by Perlack et al. (2005). But low cost 

production of bioethanol from lignocellulosic biomass must still be demonstrated. 

Lignocellulosic biomass contains cellulose and hemicellulose, which can be hydrolyzed to 

the fermentable sugars, glucose and xylose. A biochemical-based process for converting biomass 

to ethanol requires a thermochemical pretreatment step to enhance the susceptibility of 

cellulose to enzymatic hydrolysis. The goals of pretreatment are to improve enzymatic 

digestibility of biomass while limiting production of inhibitory sugar degradation products and 

other compounds (Gamage et al., 2010). Typical byproducts produced by dilute-sulfuric-acid 

pretreatment include acetic, formic and levulinic acids; furfural and 5-hydroxymethylfurfural 

(HMF). These compounds are known to reduce ethanol yields from fermentation of biomass-

derived sugars (Agblevor et al., 2004; Almeida et al., 2009; Ranatunga et al., 1997; Yang et al., 

2010). Researchers have developed several methods of treating pretreatment hydrolysates to 

improve fermentation performance, such as overliming, fungal treatment, steam treatment, 

solvent extraction and ion exchange treatment. Most of these methods remove some of the 

inhibitory compounds, but not all of them. One of the most effective and low cost methods, 

overliming, produces glucose and xylose losses of 12% and 13%, respectively (Mohagheghi et al., 



84 

 

2006). An NH4OH detoxification method, as proposed by Alrikson et al. (2005), is an alternative 

to overliming (Alriksson et al., 2005, 2006). Jennings and Schell (2011) showed that this method 

produced a 7% improvement in ethanol yields compared to the overliming method.   

Several recent publications reviewed use of membrane processes, such as microfiltration, 

ultrafiltration and nanofiltration for applicability to lignocellulosic biorefining. Purification and 

separation of compounds in multi-component, biomass-derived feed streams are usual 

application of membranes. For example, in starch-based ethanol production, microfiltration as 

well as ultrafiltration could be used to remove enzymes and starch residues from the glucose 

stream prior to fermentation (Lipinzki, 2010). Nanofiltration was used to fractionate hot water 

extractants from woody biomass, such as sugars, acetic acid, sugar degradation products and 

phenolic compounds (Amidon and Liu, 2009; Huang et al., 2008). In another example, 

Schlesinger et al. (2006) showed retention of 90 % of the hemicellulose in alkaline-treated 

process liquor obtained from a viscose fiber production process using nanofiltration 

membranes. Finally, Sjoman et al. (2008) increased xylose purity in a hydrolysate by 1.4-1.7 fold 

using nanofiltration membranes. 

In this study, a dilute-acid pretreated, corn stover hydrolysate (liquor fraction) was 

conditioned using NH4OH and a membrane-facilitated, liquid-liquid extraction process using 

octanol or oleyl alcohol solvents mixed with an extractant, Alamine 336. Acetic acid and other 

compounds in the hydrolysate are transported across a hydrophobic membrane into the solvent 

phase. Biomass sugars remain in the aqueous phase (hydrolysate) and are not degraded. 

However, previous investigations showed that a small amount of the solvent transfers across 

the membrane and is found in the hydrolysate at very low concentrations in the μg/mL range 

(Grzenia et al., 2008, 2010). 
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 The purpose of this study was to test the ability to ferment sugars in membrane 

supported liquid-liquid extracted and ammonium hydroxide conditioned (AHC) hydrolysate. 

Untreated hydrolysate is highly toxic to many fermentative microorganisms and a detoxification 

process is necessary to achieve good conversion of sugars to ethanol. Sugars in variously-treated 

hydrolysates were fermented to ethanol by the recombinant glucose-xylose fermenting 

bacterium, Zymomonas mobilis 8b. The pure solvents, octanol and oleyl alcohol, were tested 

alone and in a 1:1 mixture. Additionally, olive oil was added to some of the liquid-liquid 

extracted hydrolysates to test its reported ability to scavenge solvents and improve ethanol 

yields (Yabannavar et al., 2001).  

4.2 Material and Methods  

4.2.1 Hydrolysate   

 Dilute-acid pretreated, corn stover hydrolysate was produced at the National 

Renewable Energy Laboratory (Golden, CO) in a 900 dry kg/d pilot-scale continuous reactor. 

Pretreatment operating conditions were 25 % (w/w) total solids, 190°C, 55 mg acid/g dry 

biomass and an approximate residence time of 1 min. The liquor fraction was recovered using a 

Q-120 Quadramatic basket centrifuge (Western States Machine Company, Hamilton, OH).  

4.2.2 Ammonium hydroxide conditioning (AHC) 

 Ammonium hydroxide (29.8%, J.T Baker, Phillipsburg, NJ, USA) was added to 

hydrolysate liquor until the pH reached 8.5. The temperature increased from 19°C to 30°C during 

this process. After holding the solution for 30 min, it was filtered through a 0.22 µm 

polyethersulfone top filter (Nalgene, Rochester, NY). The pH was then adjusted to the value 

required for fermentation (pH 5.7) with 10 N sulfuric acid (Mallinckrodt Baker, Inc. Phillipsburg, 
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NJ, USA). The solution was then filtered a second time using a 0.22 µm top filter and stored at 

4°C. 

4.2.3 Liquid-liquid extraction 

 Liquid-liquid extraction was performed in a LiquiCell Extra-Flow 2.5 x 8 membrane 

contactor (Membrana, Charlotte, NC) as described in previous papers (Grzenia et al., 2008, 

2010). Briefly, 2 L of hydrolysate liquor was contacted across the membrane with 1500 g of an 

organic solvent for 300 min. The solvents were octanol (297887) and oleyl alcohol (O7600) both 

acquired from Sigma-Aldrich (St Louis, MO). Alamine 336 (Sigma-Aldrich) was used as the 

reactive extractant and was mixed with the solvents to a concentration of 15% (w/w). After 

membrane extraction the pH of the hydrolysate was about 3 and was then adjusted to pH 5.7 

with ammonium hydroxide. Ammonium hydroxide volume for organic phases during membrane 

extraction consisting of octanol and oleyl alcohol respectively were 6  and 12 mL per 1 liter 

hydrolysate.     

 Fermentation of hydrolysates using different conditioning steps as well as control 

experiments were conducted as summarized in Table 1.  A combination of both detoxification 

methods was also tested to determine if fermentation performance could be further enhanced 

with multiple treatments. Hydrolysate was treated by liquid-liquid extraction method and then 

conditioned using ammonium hydroxide. Additionally, olive oil (used oil from a restaurant at 1% 

w/w) was added to several of the liquid-liquid extracted hydrolysate to scavenge the small 

amount of solvent that was presence in this material.  
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4.2.4 Fermentation  

Fermentations were conducted using Z. mobilis 8b, a glucose-xylose fermenting 

bacterial strain (Mohagheghi et al., 2004). Z. mobilis 8b was stored in cryovials at -70°C in rich 

media (RM, 10 g/L yeast extract, 2 g/L KH2PO4), 20 g/L glucose, 10 g/L xylose in 20% (v/v) 

glycerol.  

Inoculum was produced using the following procedure.  A cyrovial of Z. mobilis 8b 

culture (0.1 mL) was transferred to a 15-mL Falcon tube (Becton Dickinson, Franklin Lakes, NJ) 

containing 10 mL RM with 50 g/L glucose and 10 g/L xylose. The tube was incubated at 30ºC in 

an incubator (Precision Gravity Convection incubator, Model 2, Precision Scientific, Chennai, 

India.). After 8-10 h, the culture was transferred to a 250-mL baffled shake flask containing the 

same media found in the 15-mL tube. The flask was incubated in a shaking incubator (Innova 

4000, New Brunswick, NJ) at 37°C and 150 rpm. Glucose and cell density were monitored using a 

glucose analyzer (YSI 2300 STAT Plus, YSI Incorporated, Yellow Springs, Ohio) and 

spectrophotometer (Spectronic 601, Milton Roy Ivyland, PA). After about 12 h, when glucose 

concentration had dropped to 30-35 g/L and optical density (OD) was 4.0 to 4.5 (absorptance 

units at 600 nm), a 10% (v/v) inoculum was transferred to the fermentation flask.  

Fermentations were performed in 125-mL shake flask at a 100 mL working volume. The 

media contained hydrolysate liquor diluted to 55% (v/v) of its original strength and RM. The 

concentration of glucose in the fermentation flask was increased by an additional 50 g/L. The 

additional glucose represents glucose that would have been produced by enzymatic hydrolysis 

of the cellulosic solid had the solids been present. For simplicity, enzymatic hydrolysis was not 

performed. A positive control fermentation was performed in media containing RM with 50 g/L, 

30 g/L and10 g/L of glucose, xylose and acetic acid, respectively. The pH of the control 
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fermentation was adjusted to 5.7 using potassium hydroxide. Fermentation flasks were loosely 

capped and placed in the shaking incubator (Innova 4000) at 37°C and 150 rpm for 72 h. Each 

condition was performed in triplicate. Samples were taken at 4 h intervals for the first 12 h and 

then every 24 h thereafter.   

4.2.5 Analysis 

Glucose, xylose, ethanol and acetic acid concentrations were determined by High 

Performance Liquid Chromatography (HPLC) using a Biorad Aminex HPX-87 H (Bio-Rad 

Laboratories, Hercules, CA, USA) column equipped with a Cation H+ guard cartridge (BioRad ). 

The HPLC was an Agilent 1100 (Santa Clara, CA, USA) equipped with a refractive index detector. 

The injection volume was 6 µL. The mobile phase was 0.01 N sulfuric acid and column flow rate 

and temperature were 0.6 mL/min and 55°C, respectively. All measurements were performed in 

triplicate and average results are reported.  

4.2.6 Calculations 

Ethanol yield (Y) was calculated using Equation 1.  

)51.0(iS

E
Y


                                     (1) 

∆E (g/L) is the final minus the initial ethanol concentration and Si (g/L) is the sum of the initial 

concentration of glucose and xylose at the beginning of the fermentation.  

Ethanol productivity was calculated from the difference between ethanol 

concentrations at adjacent data points divided by the time interval and only the maximum value 

is reported. 
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4.3 Results and Discussion  

 In our previous work, we investigated reactive-membrane extraction as a 

technique to remove organic compounds from dilute-acid-pretreated hydrolysates (Grzenia et 

al., 2007, 2008). We were able to remove a large fraction of the acetic acid, furfural and 5-

hydroxymethylfurfual from hydrolysate liquors using a cross-flow membrane module and an 

organic solvent containing a tertiary aliphatic amine. The primary goal of this work was to 

ferment membrane-extracted hydrolysate liquors and compare ethanol yields and rates to 

those achieved in AHC hydrolysate liquors.  

 Figure 1 shows glucose, xylose and ethanol concentration data for a well-

performing membrane-treated liquor (Condition 2 in Table 1) and a pH-adjusted liquor 

(Condition 6 in Table 1) that did not perform as well, but was also not the worst performing 

condition. Glucose in the extracted liquor was consumed by 8 h into the fermentation; while 

glucose in the pH-adjusted liquor was not fully consumed until 30 h into the fermentation. The 

xylose concentration data showed a similar trend for the two processes, except that not all of 

the xylose was consumed for either condition. Xylose concentration in the pH-adjusted liquor 

decreased slowly from 43 to 35 g/L over the 48 h fermentation, but nearly all of the xylose was 

consumed in the membrane-extracted liquor. The initial xylose concentration in the membrane 

treated hydrolysate was about 8% lower than the initial concentration in the pH-adjusted 

hydrolysate. This is most likely due to small sugar losses in the organic phase.  Importantly these 

losses are not greater than the losses that occur in current detoxification operations 

(Mohagheghi et al., 2006). The difference in glucose concentrations is less noticeable because 

additional glucose was added to each fermentation flask. Ethanol concentrations reach a 

maximum value of 46 g/L for the extracted liquor and a maximum value of 35 g/L for pH-
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adjusted liquor. The ethanol present at time zero was from ethanol carried over in the inoculum. 

After 8 h of fermentation, the extracted liquor produced more ethanol than the pH-adjusted 

liquor because of greater xylose consumption. Data from the other conditions showed similar 

behavior to these results, except for octanol-extracted hydrolysates where little glucose was 

consumed. This behavior is typical of detoxified hydrolysates and has also been observed in AHC 

and overlimed hydrolysates (Jennings and Schell, 2010, Alriksson et al., 2005, 2006).       

 

 

Figure 1  Glucose (triangles), xylose (squares) and ethanol (circles) concentrations during 
fermentation of a membrane-extracted hydrolysate using an oleyl alcohol organic phase 

followed by AHC (filled symbols, solid line, Condition 2 in Table 1) and pH-adjusted hydrolysate 
(open symbols, dashed line, Condition 6 in Table 1) 
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 Table 1 shows ethanol yields, concentrations, and maximum productivity, as well as 

ammonium hydroxide use for each method if appropriate. The different treatment conditions are 

ranked in the Table 1 from highest to the lowest ethanol yield. As expected, the control 

fermentation achieved the best performance because no inhibitors are present. Hydrolysate 

extracted with oleyl alcohol (Condition 2-3) performed well achieving ethanol yields from 0.83-

0.85 and productivities very near the value (approximately 5 g/(L•h)) achieved by the control 

fermentation. AHC of oleyl alcohol-extracted hydrolysates (Condition 2) did not significantly 

improve performance over the unconditioned oleyl alcohol-extracted material. A positive 

outcome since conditioning is undesirable because of the cost for additional ammonium 

hydroxide.  

 As seen in Table 1, the lowest ethanol yield and productivities were produced on 

hydrolysate extracted with octanol (Conditions 9 and 10). AHC of these materials did not 

significantly improve ethanol production. Both octanol and Alamine 336 were measured in the 

aqueous phase suggesting that both compounds could cross the membrane during the 

extraction process.  This finding has been previously noted (Grzenia et al., 2008, 2010). In 

theory, when hydraulic pressure is higher on the aqueous side of the membrane than on the 

organic phase side of the membrane, there should be no leakage of organic compounds into the 

aqueous phase. However, the hydraulic pressure can be too high and exceed the breakthrough 

pressure forcing solvent molecules out of the pores, which causes leakage of water phase into 

the organic phase. It has been reported that tight control of the pressure difference between 

the aqueous and organic sides of the membrane is important to avoid leakage of compounds 

across the membrane, which if occurs leads to emulsion formation (Gawronski and Wrzesinska, 

2000; Lee et al., 2001; Wang et al., 2002). We maintained excellent pressure control during our 
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experiments and used gear pumps to obtain nearly pulse-less flow. No emulsion formation was 

visible during our work, but octanol and Alamine 336 were still detected in the hydrolysate. 

Total suppression of transport organic phase into the aqueous phase is not possible due to the 

very low solubility of the organic phase in the aqueous phase.  While transport due to 

convection can be suppressed slow diffusion across the membrane will occur. 

 Kapacu et al. (1998) reported that alcohols with 2-12 carbons were strong inhibitors of 

Saccharomyces cerevisiae. Offeman et al. (2008) screened several organic solvents (octanol, 

decanol, isofol, etc.) for extractive removal of ethanol during fermentation. In shake flasks 

experiments, he exposed S. cerevisiae to 20 % (v/v) solvent concentrations and reported strong 

inhibition. Zautsen et al. (2008) removed ethanol during fermentation of lignocellulosic sugars 

by liquid-liquid extraction using various solvents and concluded that solvents with the highest 

partition coefficient (Pow, partition coefficient of a solvent over water and octanol) had better 

biocompatibility. Octanol was also used to extract toxic compounds from hydrolysate, but was 

not considered for use in fermentation due its toxicity. Oleyl alcohol showed the best extractive 

performance among biocompatible solvents tested. Chan et al. (2010) performed fermentations 

on Alamine 336/octanol treated bio-oil hydrolysates. The yeast strain, Saccharomyces cerevisiae 

T2, was not able to produce ethanol until it was adapted to the treated material. Octanol is 

likely the toxic compound in our fermentations. 

Alamine 336 is also reported to be a possible toxin to microorganisms. Yabannavar et al. 

(1991) noted that Alamine 336 is soluble in water at less than 5 ppm, but probably is toxic below 

this level. He immobilized Lactobacillus delbrueckii into k-carrageenan beads to protect the 

microorganism from solvents and investigated the addition of soybean oil to the gel-cell matrix. 

He hypothesized that oil acts as a scavenger for Alamine 336 effectively reducing its diffusion 
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rate into the gel matrix. He showed that the oil protected the cells during direct exposure to a 

15% Alamine 336 (v/v)/oleyl alcohol solution.    

We also explored the potential of adding 1% (v/v) olive oil to treated hydrolysate to 

determine if this procedure improved ethanol yields. As shown in Table 1, olive oil was added to 

hydrolysate extracted with octanol (Condition 8) and further conditioned with ammonium 

hydroxide (Condition 4). The addition of oil for both conditions clearly increased ethanol yield 

and rates compared to the corresponding conditions without oil. We did not measure the 

concentration of octanol before and after addition of olive oil, but suspect that the oil is 

scavenging octanol and worked well to improve ethanol yields on octanol-extracted hydrolysate. 

The results also suggest that Alamine 336 was not impacting fermentation performance since 

oleyl alcohol-extracted hydrolysate performed well. Kapucu et al. (1998) also produced results 

supporting the ability of oil to scavenge alcohols by showing that addition of 30% sunflower oil 

to a fermentation broth reduced the toxicity of decanol.  However in our experiments, the 

microorganism was in direct contact with the solvents and addition of oil into octanol-treated 

hydrolysate (Condition 4) may saponificate octanol molecules protecting the microorganism 

from octanol’s toxic effects.  

Ethanol yields for hydrolysate extracted with a 1:1 (v/v) mixture of octanol and oleyl 

alcohol (Condition 7) were between ethanol yields produced by each solvent used alone, further 

suggesting that octanol is highly toxic to the microorganism. Finally, AHC (Condition 5) and pH-

adjusted hydrolysate (Condition 6) produced ethanol yields and rates substantially better than 

octanol extracted hydrolysate, but less than oleyl alcohol extracted hydrolysate.  
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Both AHC and oleyl alcohol-extraction are effective methods of detoxifying hydrolysates, 

but both methods produce some loss of sugars. However, a significantly larger amount of 

ammonium hydroxide is required for AHC compared to the amount required from extracted 

hydrolysates (see Table 1). Extracted hydrolysates are very near pH 4 after extraction and only a 

small amount of caustic is required to further adjust pH to the value required for fermentation. 

It is unclear if the saving in chemical cost outweighs the additional operating cost of the 

membrane extraction equipment. We must also assume for the extraction process that is no or 

little loss of solvents. Nevertheless, an economic analysis of both methods would clearly 

determine if membrane extraction is economically viable and this work is in progress.       

Table 1  Fermentation performance results and ammonium hydroxide use for treated 
hydrolysate liquors 

Condition 
Number 

Hydrolysate Treatment Ethanol 
Yield 

Final Ethanol 
Concentration 

 

(g/L) 

Maximum  
Ethanol 

Productivity 
(g/(L•h)) 

NH4OH Use 

 

 

(mL/L liquor) 

1 No treatment, pure sugars 0.91 51.0 4.98 - 

2 ME: Oleyl alcohol
a
/AHC 0.85 46.9 4.75 20 

3 ME: Oleyl alcohol 0.83 46.4 4.94 - 

4 ME: Octanol/AHC/olive oil
b
 0.77 45.2 1.86 15 

5 AHC 0.76 45.9 2.54 48 

6 Neutralization 0.54 35.3 1.09 33 

7 ME: mixture
c
/AHC 0.41 21.9 2.04 15 

8 ME: Octanol/olive oil
b
 0.09 10.1 0.33 - 

9 ME: Octanol/AHC 0.04 10.0 0.14 15 

10 ME: Octanol 0.00 0.0 0.00 - 

 
a
ME: solvent-membrane extracted and associated organic phase 

b
1% (v/v) olive oil added to shake flasks containing detoxified hydrolysate 

c
(1:1) mixture of oleyl alcohol and octanol 
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4.4 Conclusions  

Detoxification of dilute-acid-pretreated corn stover hydrolysate can be accomplished 

using reactive membrane extraction. Depending on the solvent used, the technique improves 

ethanol yields and rates compared to AHC. It is also possible to regenerate and recover most of 

the solvent. But reactive membrane extraction process is more complicated and likely has 

higher capital and operating cost. Additionally, the extraction process requires 6 hours of 

contact time whereas the residence time for AHC is one-half hour. Further optimization is 

necessary as well as economic analysis to assess performance and potential to replace AHC.   
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Abstract 

 Dispersion-free membrane-based solvent extraction has been shown to overcome many 

of the disadvantages associated with dispersion-based contacting devices used for conventional 

solvent extraction.  Here, we have explored the use of membrane-based solvent extraction for 

the production of biofuels.  Given the non-volatile nature of most biomass components it is 
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likely that solvent extraction will dominate in future biorefineries.  Three potential applications 

for membrane-based solvent extraction are considered. 

Production of biofuels from lignocellulosic biomass may be achieved through three main 

routes: gasification, pyrolysis or liquefaction, and hydrolysis.  Hydrolysis of the lignocellulosic 

biomass leads to an aqueous sugar-rich solution which may be fermented to biofuels such as 

ethanol.  The use of membrane based solvent extraction  has been investigated for removal of 

acetic acid from hydrolysates derived from sugar cane bagasse, sorghum, oats, coffee husks, 

corn fiber and corn leaves prior to fermentation.  Acetic acid is one of the products of hydrolysis 

that is toxic to the microorganism used to ferment the sugars to ethanol.  The result obtained 

here indicate that membrane based solvent extraction is a flexible unit operation that may be 

used to remove acetic acid from a variety of hydrolysates.   

Biomass hydrolysates may also be converted to fuels by aqueous phase processing.  

Hydroxymethylfurfural (HMF) is an important intermediate in this process.  Membrane based 

solvent extraction has been used to recover this valuable intermediate from an aqueous phase.  

In addition membrane based solvent extraction has been used to remove glycerol from butanol.  

This later separation could be of significance in the production of biodiesel.   

The results for the three extractions investigated here highlight the versatility of 

membrane based solvent extraction for the production of biofuels.  Experimentally determined 

overall mass transfer coefficients agree well with those predicted from theory.  These mass 

transfer coefficients could be used to guide the design of larger scale processes. 
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5.1 Introduction 

Development of energy-efficient process for sustainable production of fuels and 

chemicals is critical, given declining world petroleum reserves, increasing energy needs by 

emerging economies, and political and environmental concerns associated with using fossil 

fuels1.  Figure 1 is a summary of the breakdown of the US energy supply for 20032.   

Fossil fuels (petroleum, coal, and natural gas) accounted for about 86% of the U.S. 

energy supply in 2003, while renewable sources accounted for 6% combined, 47% of which 

comes from biomass.  In addition, energy demand is projected to grow by more than 50% by 

20253.  Clearly, finite petroleum resources cannot meet the increasing energy demand. 

 

Figure 1  Summary of biomass resource consumption modified from [2] 
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The form of renewable energy that can contribute substantially to energy needs at costs 

competitive to fossil fuels is the solar energy captured by photosynthesis and stored in 

biomass4.   Currently, the United States produces about 4.5 billion gallons of ethanol annually 

from about 90 corn grain-to-ethanol refineries (noncellulosic).  It is estimated that 130 billion 

gallons of fuel ethanol could be produced from lignocellulosic biomass in the United States4.  

Improving biomass to ethanol conversion processes to minimize processing costs will have a 

significant impact on our economy.    

A major obstacle to the large scale conversion of lignocellulosic biomass to fuels and 

chemicals is the lack of cost effective separations for product isolation and purification as 

separations can account for up to 60-80% of the processing costs.  While distillation dominates 

in petroleum refinery separations, given the non-volatile nature of most biomass components it 

is likely that solvent extraction will dominate in future biorefineries5.  

Solvent (liquid-liquid) extraction involves the transfer of the solute species from the 

feed to the extracting solvent6.  Two immiscible phases are brought together to promote good 

mass transfer.  This is achieved by dispersing one phase in the other.  Consequently, the 

dispersed phase must be coalesced and the phases separated after extraction of the solute.  The 

amount of solute transferred to the solvent will be limited by its partition coefficient between 

the feed and solvent phases.  Solvent extraction is generally conducted using a number of mixer 

settlers in series, or a continuous countercurrent extraction column.  However, irrespective of 

the equipment used, conventional extraction operations suffer from a number of disadvantages.  

These include dispersion of one phase in the other, which requires subsequent coalescence and 

phase separation, emulsification problems, flooding and loading concerns and scale up related 

issues7.  
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Membrane based solvent extraction, using microporous hollow fibers, overcome all of 

these disadvantages.  The membrane physically separates the two immiscible phases.   Thus, 

independent variation of the two phase flow rates over a large range of flow rates is possible 

without regard to flooding or loading limitations.  The hollow fiber membrane immobilizes the 

liquid-liquid interface.  In the experiments described here hydrophobic polypropylene hollow 

fibers are used.  Thus the membrane pores are filled with the organic phase.  Loss of organic 

phase is prevented by ensuring the aqueous side pressure is higher than the organic side 

pressure.  In addition, extraction is achieved without dispersion of one phase in the other, thus 

no coalescence step is required.   

Schlosser et al.8 have reviewed the use of membrane-based solvent extraction for 

recovery and separation of organic acids.  The theory of membrane-based solvent extraction is 

well developed9.  Transfer of the solute species from the feed to the solvent phase through the 

membrane is described by an overall mass transfer coefficient.  The overall mass transfer 

coefficient depends on three individual mass transfer coefficients which describe mass transfer 

across the concentration boundary layer in each of the phases and through the membrane 

pores.   Numerous correlations are available in the literature for predicting the mass transfer 

coefficient inside the fibers, outside the fibers and in the membrane pores10. 

Here, we present three applications for membrane-based solvent extraction in the 

manufacture of biofuels.  Table 1 summarizes these applications.  The first application focuses 

on production of bioethanol by fermentation of lingocellulosic biomass.  The second application 

explores the feasibility of extraction of 5-hydroxymethylfurfural (HMF) from an aqueous solution 

into methyl isobutyl ketone (MIBK).  While the first two examples focus on extraction of a target 

compound into an organic phase, the third application involves the extraction of glycerol from 2-
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butanol into an aqueous phase.  Efficient removal of glycerol during the manufacture of 

biodiesel is essential for the development of cost-effective technologies for production of 

biodiesel.  Below the potential role for membrane extraction in each of these examples is 

described in more detail. 

5.1.1 Removal of acetic acid from biomass hydrolysates 

Lignocellulsoic biomass consists of three main polymers: cellulose, hemicellulose and 

lignin.  There are three main routes for conversion of lignocellulosic biomass into liquid fuels: 

gasification, pyrolysis or liquefaction and hydrolysis1.  Here we focus on hydrolysis.  Hydrolysis 

involves the combination of thermochemical and biochemical processing steps to convert the 

cellulose into glucose and hemicellulose in to 5 carbon sugars (mainly xylose)11.  Dilute sulfuric 

acid is used to hydrolyse the lingocellulosic biomass, as it has been shown to effectively 

hydrolyze the hemicellulose and increase the enzymatic digestibility of the cellulose12.   All of the 

different lingocellulosic biomass samples were provided by the School of Engineering of Lorena 

(EEL), University of São Paulo, Lorena, SP., Brazil.  Dilute sulfuric acid was used to pretreat the 

lignocellulosic biomass. 
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Table 1  Summary of membrane based solvent extraction experiments conducted.  
Pretreatment was conducted at 120 °C 

Feed Target 
Compound  

Comment 

  Pretreatment conditions Initial pH 

Pressure  

(atm) 

Holding time 
(min) 

 

Sugar cane bagasse  

 

Acetic Acid  

1 10 1.15 

Sorghum 1 10 1.3 

Oat 1 10 1.37 

Coffee Husk  1 30 1.32 

Corn Fiber  0.5 10 0.84 

Corn Leaves 1 10 0.6 

  Organic phase 85:15 octanol: Alamine 336 (weight 
ratio) 

HMF in water or 
water/DMSO mixture 

HMF Organic phase MIBK  

Glycerol in 2-butanol  Glycerol Glycerol extracted from 2-butanol  

 

During pretreatment compounds are produced that are toxic to the microorganism used 

to ferment the sugars to the desired products (ethanol).  Here, we focus on removal of acetic 

acid which is produced as a result of hydrolysis of acetyl groups present in the hemicellulose.  In 

its protonated form, acetic acid can diffuse through the cytoplasmic membrane of cells affecting 

the cell metabolism13,14.  It can further diffuse through the cell cytoplasm where it lowers the 

intracellular pH, resulting in impaired transport of various ions and increased energy 

requirements and reduced ethanol yields15.  This is particularly important as the viability of a 

cellulosic ethanol plant will depend on maximizing ethanol yields.   

In our earlier work, we have explored the feasibility of using membrane-based solvent 

extraction for removal of acetic acid from corn stover hydrolysates16,17.  Here, we present results 
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for extraction of acetic acid from a number of different hydrolysates readily available in Brazil.  

As described in our earlier work, the organic phase consists of Alamine 336, a long chain water 

insoluble tri-octyl/decyl amine dissolved in octanol.  Long chain aliphatic amines may be used 

for extraction of carboxylic acids for dilute aqueous solutions18,19,20,21,22,23,24,25,26,27.  Table I 

summarizes the various lingocellulosic biomass hydrolysates we have investigated.  In addition, 

pretreatment conditions are listed.  These pretreatment conditions were developed by EEL and 

were found to produce a xylose-rich hydrolysate.    

There is a considerable amount of literature available on the extraction of acetic acid in 

the presence of sulfate and bisulfate anions using aliphatic tertiary amines16.  Briefly, for 

effective extraction of acetic acid the aliphatic amine (Alamine 336 used here) must be insoluble 

in the aqueous phase.  Further, for the hydrolysates listed in Table 1, after pretreatment, the pH 

will be between 0.6 and 1.4.  Thus the sulfuric acid will be present almost entirely as HSO4
- and 

SO4
2-.  Eyal and Canri27 describe 4 main mechanisms for acid extraction by amine-based 

extractants.  In the case of sulfuric acid, a strong mineral acid, ion pair formation occurs where 

the amine binds a proton to form an ammonium cation.  As shown in our earlier work, this 

mechanism leads to significant extraction of sulfuric acid according to the following mechanism: 

R3N(organic) + H+
(aq) R3NH+

(organic) 

 

R3NH+
(organic) + HSO4

-
(aq)

  R3NH+HSO4
-
(organic) 

 

Alamine 336 will extract the protonated form of acetic acid.  Barrow and Yerger28 indicate that 

the acetic acid molecule reacts with the amine to form an ion pair.  As we have shown in our 

earlier work16, sulfuric acid will be extracted preferentially.  This leads to a rapid increase in pH 
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till the pH reaches a value of 2, the pKa value for the second dissociation constant for sulfuric 

acid.  After the hydrolysate pH goes above 2, the rate of extraction of acetic acid increases.  As 

the pH approaches 4.75, the pKa of acetic acid, the rate of extraction of acetic acid rapidly 

decreases.  Here, we extend our previous results obtained for corn stover-based hydrolysates to 

the hydrolysates listed in Table 1.  We show that membrane extraction is a highly flexible unit 

operation that may be used to remove acetic acid from a variety of lignocellulosic biomass 

hydrolysates. Further, the rate of extraction may be correlated using mass transfer coefficients.    

5.2.1 Extraction of 5-hydroxymethylfurfural 

 The previous example focused on fermentation of lignocellulosic biomass hydrolysates 

into bioethanol.  Detoxification (conditioning) of the hydrolysate was required in order to 

remove compounds that are toxic to the microorganism.  Alternatively aqueous phase 

processing could be used to chemically convert the aqueous sugar rich hydrolysate into 

potential transportation fuels such as dimethylfuran (DMF).  Aqueous phase processing, 

pioneered by Dumesic and co-workers, involves the catalytic conversion of sugars, sugar 

alcohols and polyols into hydrogen or alkanes29,30,31,32,33,34,35,36,37.   

Huber et al. 1 describe a self-sustaining biomass biorefinery for conversion of biomass 

into liquid alkanes using aqueous phase processing.  Acid dehydration of 6 carbon sugars can 

lead to the production of HMF.  HMF is a critical and versatile intermediate in the conversion of 

biomass to liquid biofuels such as DMF, liquid alkanes and many other value-added products.  

Removal of HMF from the aqueous reaction media will greatly enhance HMF yield by driving the 

forward reaction and preventing HMF degradation.  We have explored the feasibility of HMF 

removal by membrane based solvent extraction. 
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Extraction of HMF is complicated by the fact that HMF is highly hydrophilic. An ideal 

extractant should have low water solubility.  In addition, the extractant should be polar in order 

to efficiently extract the highly polar HMF. We have used MIBK (methyl isobutyl ketone) as the 

organic extractant. Previous investigators have used MIBK as the organic phase in a biphasic 

reactor designed to produce HMF from fructose38,39,40.  Aqueous phases consisting of mixtures of 

water and DMSO (dimethyl sulfoxide) have been used.  Use of a phase modifier such as DMSO 

has been shown to improve reaction yields38.  The results again highlight the versatility of 

membrane based solvent extraction. Our results may be correlated using mass transfer 

coefficients. 

5.3.1 Glycerol extraction 

Biodiesel is a “green fuel” that has several advantages over conventional petroleum based 

diesel.  Engines using biodiesel will have a significant decrease in carbon dioxide and many other 

green house gas emissions. Current commercial biodiesel production uses base catalyzed 

transesterification to convert triglycerides to biodiesel.  Each triglyceride molecule reacts with 

three molecules of alcohol (commonly methanol) to produce one ester and glycerol molecule.   

NaOH and KOH catalysts are commonly used.  Removal of glycerol from the reaction mixture is 

essential.  Base catalyzed transesterification reactions have little tolerance for free fatty acids 

(FFA) and water. FFAs will cause soap formation and generate water.  In turn, water will cause 

ester hydrolysis to produce more FFAs.  Consequently, product recovery can be difficult and 

costly.   

While acid catalysis is slower than base catalysis, the fact that acid catalysts can catalyze 

esterification of FFAs and do not lead to saponification reactions is a major advantage41.  Further 
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use of higher alcohols such as butanol rather than methanol is an advantage as butanol may be 

produced via biomass fermentation leading to a greener process. Additionally, it is hydrophobic 

and has a higher boiling point allowing the transesterification reaction to be conduced at higher 

temperature.   

Development of alternative transesterification schemes will require separation of glycerol 

from a reaction medium containing different components.   Here, we have investigated glycerol 

extraction from an organic phase consisting of butanol as would be the case if butanol were the 

alcohol used for the transesterification reaction.  Unlike the previous examples, membrane-

based solvent extraction is used to extract glycerol from an organic phase into an aqueous 

phase.  However, the same mass transfer correlations apply. 

5.2 Material and Methods   

The membrane extraction set up used for all the experiments is given in Figure 2.  Two 

Liqui-Cel membrane contactors MiniModule® 1 x 5.5 and MiniModule® 1.7 x 5.5 (Membrana, 

Charlotte, USA) were used for extraction of acetic acid and glycerol respectively.  The 1 x 5.5 and 

1.7 x 5.5 modules contain 0.18 and 0.58 m2 of active membrane surface area.  HMF extraction 

was conducted using a Liqui-Cel® Extra-Flow 2.5 x 8 module.  This module contains 1.4 m2 of 

membrane surface as well as a central baffle to promote mixing of the shell side fluid.  All three 

modules contained polyporpylene fibers; 300 m OD, 220 m ID, porosity 40%, pore size 0.04 

m.  The larger Extra-Flow 2.5 x 8 module was compatible with MIBK which was used as the 

organic phase for extraction of HMF. 

Flexible chemical resistant Masterflex, precision silicone 6410-18 and tygon 2075 tubing 

(Cole-Parmer, Vernon, IL) was used to connect a Watson Marlow 505 U and 505 S peristaltic 
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pump (Cole-Parmer, Vernon, IL) to the MiniModule 1 x 1.5.  For the Minimodule 1.7 x 5.5 and 

the Extra-flow 2.5 x 8 module a Masterflex 77601-10 pump head equipped with a 20-650 RPM 

drive (Nr 7591-50, Cole-Parmer) and a Watson Marlow 503 U peristaltic pump were used with 

Masterflex 96410-73 precision silicone tubing (Cole-Parmer).  Pressure gauges, 0 -100 kPa 

(McMaster-Carr, Atlanta, GA) were used to monitor the aqueous and organic phase pressures.  

All experiments were conducted at 25 °C.  The system was started by first turning on the 

aqueous and then the organic phase pumps.  The aqueous phase was pumped through the fiber 

lumen while the organic phase, was pumped on the shell side.  Table 2 gives the various 

aqueous and organic phase flow rates investigated.  In all experiments the aqueous side 

pressure was above the organic phase pressure at any given point in the module to prevent 

passage of the organic phase into the aqueous phase.  For extraction of acetic acid, pH was 

monitored using a Thermo Orion 520 pH meter (Thermo Fisher Scientific, Waltham MA) 

equipped with a Metler Toledo pH probe (Cole-Parmer). Samples were taken from the aqueous 

phase at frequent intervals for high pressure liquid chromatography (HPLC) analysis (extraction 

of acetic acid and HMF) or refractive index measurement (extraction of glycerol) as described 

below.  
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Figure 2  Schematic representation of experimental setup 

 

5.2.1 Removal of acetic acid from biomass hydrolysates 

The various biomass samples listed in Table 1 were air dried and milled to a mesh size of 

10.  Water was added such that the solid : liquid ratio was 1:10. Hydrolysis of the biomass was 

conducted using dilute sulfuric acid at a ratio of 100 mg of acid to 1 g of biomass in a 200-mL 

stainless steel container.  Holding times are given in Table 1.  After reaction, the remaining solids 

were removed by filtration using 0.45 m pore size filter paper (Millipore, Bedford, MA).    

Extraction of acetic acid from different biomass hydrolysates was conducted using 333 g 

of organic phase consisting of 85% octanol (Sigma-Aldrich Corporation, St. Louis, MO) and 15 % 

Alamine 336 (w/w) (Cognis, Cincinnati, OH).  The aqueous phase consisted of 500 g of 
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aqueous side inlet and outlet pressures were maintained at 21 and 3.5 kPa while the organic 
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During extraction, 2 mL samples of the aqueous phase were removed at frequent 

intervals for the HPLC analysis (2424 HPLC system equipped with a refractive index detector, 

Waters Corporation, Milford, MA).  An Aminex HPX-87 H column (Biorad Hercules, CA), was 

used, with a mobile phase consisting of 0.01N sulfuric acid at a flow rate of 0.6 mL min-1.  The 

column temperature was set to 45 ◦C with an injection volume of 20 μL.  

5.2.2 HMF extraction  

HMF was obtained from SAFC© (St. Louis, MO). The initial feed concentration was ~5 

g/L. The aqueous phase (500 mL) comprised either DI water or 15:1 DI water:DMSO (molar 

ratio)mixture. Dimethyl sulfoxide (DMSO) was purchased from Thermo Fisher Scientific. The 

organic phase consisted of 500 ml of MIBK (Sigma-Aldrich). Aqueous and organic phase flow 

rates from 16-64 L hr-1 were investigated (see Table 2).  The HMF concentration in the aqueous 

phase was measured using HP 1050 HPLC equipped with a refractive index detector HP 1047A 

(Agilent Technologies, Santa Clara, CA). The column temperature was set to 55 ◦C with an 

injection volume of 6 μL.  

5.2.3 Glycerol extraction 

Glycerol (Mallinckrodt Baker, NJ) was extracted from 2-butanol (Sigma-Aldrich). The 

organic phase consisted of 86.2 g glycerol dissolved in 340.8 g 2-butanol. Organic phase flow 

rates between 27.7 and 10.8L hr-1 were investigated.  The inlet and outlet organic phase 

pressures were controlled at 14 and 3.5 kPa.  The aqueous phase consisted of 275.0 g of 2-

butanol saturated DI water.  Aqueous flow rates between 10 and 28 L hr-1 were investigated. 

The aqueous phase inlet and outlet pressures were set at 21 and 9.5 kPa, respectively. Samples 

(1 mL) were taken at frequent intervals from the aqueous phase for glycerol analysis using a 

refractive index meter (Bausch & Lomb, Rochester, NY) at 20 ◦C.  
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Table 2   Summary of experimental conditions used for extraction of acetic acid, HMF and 
glycerol 

5.3 Results 

Acetic acid extraction from various biomass hydrolysates is shown in Figures 3-4.  Filled symbols 

linked by a line represent the change in acetic acid concentration in the hydrolsyate and are 

read using the left hand side y-axis.  To compare results for the three different extractions 

considered here (ethanol, HMF, and glycerol), the results are normalized by dividing the 

measured acetic acid concentration in the aqueous phase (g L-1) by the molecular weight of 

acetic acid (60.05 g mol -1) and the membrane surface area (0.18 m2) and multiplying by the 

Feed Aqueous flow 
rate  (L hr-1) 

Organic flow rate 
(L hr-1) 

Initial target 
compound 

concentration (g 
L-1) 

Comments 

Sugar Bagasse 

48 

 

23 

 

2.93 Hydrolysate 
filtered using 

0.45 m filter 
Sorghum 3.61 

Oat 5.94 

Coffee Husk 0.45 

Corn Fiber 2.74 

Corn Leaves 1.21 

 

HMF in water 
and 

water/DMSO 
mixture 

   
Water:DMSO 

(Mole ratio) 

32 32 4.6 1:0 

64 16 4.4 1:0 

48 24 4.5 1:0 

32 16 4.2 15:1 

Glycerol in 2-
butanol 

10.8 24.5 

2 

2-butanol was 
saturated with 
water 

27.7 24.5 

12.7 49 

27.7 49 
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organic phase flow rate (23 L h-1). Thus the change in acetic acid concentration is given in terms 

of an acetic acid flux. Open unconnected symbols give the variation of hydroylsate pH with time 

and are read using the right hand side y-axis.  Figures 3 and 4 indicate that the initial acetic acid 

concentration varies considerably between the different hydrolysates.  The initial acetic acid 

concentration depends on the lingocellulosic biomass as well as the severity (temperature, 

sulfuric acid concentration, and time) of the pretreatment11,42. Consequently, the development 

of a hydrolsyate detoxification process depends on the lignocellulosic biomass and the 

hydrolysis conditions.  All six hydrolysates indicate an increase in pH during extraction.  As 

described in our earlier work16,17  for corn stover hydrolysates, sulfuric acid will be preferentially 

extracted over acetic acid which results in an increase in hydrolysate pH. 

 

Figure 3  Acetic acid extraction from sorghum, oat, coffee husk and sugar bagasse hydrolysates 

using 15% Alamine 336 in octanol as the organic phase 
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Figure 4  Acetic acid extraction from corn fiber and corn leaf hydrolysates 15% Alamine 336 in 

octanol as the organic phase 

A mass balance around the aqueous feed reservoir for acetic acid gives: 

)( *CCKA
dt

dC
V    (1) 

where V is the volume of hydrolysate (500 mL), K is the overall mss transfer coefficient based on 

the aqueous phase, A is the membrane surface area (0.18 m2) C is the acetic acid concentration 

in the hydrolysate and C* is the acetic acid concentration in the hydrolysate that would be in 

equilibrium with the concentration in the organic phase.  Since fresh organic phase was used for 

each experiment, initially C*is zero.  We also assume the aqueous and organic phase reservoirs 

are fully mixed, and the rate of change of acetic acid concentration in the hydrolysate per pass 

through the module is small.  Integration of Equation (1) leads to: 
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V

KAt
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


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



0

    (2) 

Plotting the left hand side of Equation (2) against time should lead to a straight line the slope of 

which is proportional to the overall mass transfer coefficient as given in Figure 5.  For short 

extraction times the results for all six hydrolysates fall on the same straight line.  However, for 

longer run times significant deviations from this straight line are observed.  For hydrolysates 

containing higher initial concentrations of acetic acid such as oat and sorghum, assuming the 

acetic acid concentration in the organic is zero will not be valid at longer run times.   

The decrease in the overall mass transfer coefficient at longer run times may also be 

due to fouling of the membrane by particulate matter in the hydrolysate.  In this work the 

hydrolysate was prefiltered using a 0.45 m filter prior to membrane extraction.  Our results 

indicate that inclusion of a membrane detoxification step will lead to modifications in the unit 

operations before and after the membrane step and the effect of these changes must be 

accounted for when determining the economic viability of membrane detoxification. 

 The overall mass transfer coefficient based on the aqueous phase is made up of three 

individual mass transfer coefficients:  

oma k

m

k

m

kK


11
  (3) 

where ka, km and ko are the aqueous, membrane, and organic phase mass transfer coefficients, 

respectively, and m is the distribution coefficient of acetic acid between the phases defined as 

the acetic acid concentration in the aqueous phase divided by the concentration in the organic 

phase.  The aqueous and organic phase mass transfer coefficients depend on the aqueous and 
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organic phase flow rates43 ,while the membrane mass transfer coefficient does not depend on 

the phase flow rates.  The membrane mass transfer coefficient is given by: 

l

D
km




    (4) 

where D is the diffusion coefficient of acetic acid in the membrane pores,  is the membrane 

porosity (40%),  is the membrane tortuosity, and l is the wall thickness of the hollow fibers (40 

m).  Membrane tortuosity factors ranging from 3-12 have been reported44.  Here we use a 

value of 3 as is commonly used for polypropylene membranes45.   

 

Figure 5  Determination of overall mass transfer coefficient for removal of acetic acid from 

biomass hydrolysates 
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In our earlier work17 ,we have shown that, for extraction of acetic acid, the membrane 

mass transfer coefficient controls the rate of acetic acid extraction.  Thus the overall mass 

transfer coefficient is independent of the aqueous and organic phase flow rates over a large 

range flow rates.  Consequently, the overall mass transfer coefficient may be approximated by 

km/m (Equation (3)).  The experimentally determined value of the overall mass transfer 

coefficient from Figure 5 is given in Table 3. 

 The membrane mass transfer coefficient may be calculated using Equation (4).  The 

diffusion coefficient of acetic acid is estimated using the Wilke-Chang equation46,47.  

 
6.0

5.0

2

8104.7

V

TMx
D





  (5) 

where  is the association parameter assumed to be 1.5 for alcohols, M2 is the molecular weight 

of octanol (130 g mol-1), T is the temperature (295 K), is the viscosity of the solvent and V is 

the molar volume of the solute.  The presence of Alamine 336 is ignored and the viscosity of 

octanol at 25 °C is used (6.09 x 10-3 Pa s).  The molar volume of acetic acid is calculated from its 

density and molecular weight (see Table 4)48.  The calculated value of the overall mass transfer 

coefficient is also given in Table 3.   
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Table 3  Calculated and experimentally determined mass transfer coefficients 

Compound 

KA / V 

(s-1) 

Experimental 
mass transfer 

coefficient 

(ms-1) 

Calculated 
mass transfer 

coefficient 
(ms-1) 

Acetic acid 0.003 1.39E-07 1.49E-06 

Glycerol 0.0526 4.16E-07 5.88E-07 

HMF 0.1415 8.42E-07 7.08E-06 

 

The experimentally determined mass transfer coefficients lower than the calculated 

mass transfer coefficient.  There are, however, a number of simplifications that have been made 

in estimating the mass transfer coefficient.  Errors in diffusion coefficients predicted by the 

Wilke-Chang Equation are much higher for non-aqueous solutions47.  Further, the viscosity of 

octanol was assumed though the organic phase contains 15% Alamine 336 which has a much 

higher viscosity.   

The experimentally determined mass transfer coefficient is based on the aqueous phase 

concentrations.  However, the membrane pores are filled with the organic phase. Thus, a 

distribution coefficient for acetic acid between the two phases should be included in the 

calculated overall mass transfer coefficient49.  Estimation of the distribution coefficient for acetic 

acid is complicated as the concentration of the dissociated species in the aqueous phase as well 

as acid bound to amine in the organic phase must be included, resulting in the distribution 

coefficient being a function of pH.  Consequently, the effect of the distribution coefficient on the 

membrane mass transfer coefficient has been ignored, and the membrane mass transfer 

coefficient is used to approximate the overall mass transfer coefficient.  In addition, fouling of 

the membrane by particulate matter that passed through the 0.45-mm filter used to prefilter 
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the hydrolysate could explain the lower experimentally determined mass transfer coefficient 

compared to the calculated mass transfer coefficient. In earlier work17 for corn stover-based 

hydrolysates, the experimental and calculated mass transfer coefficients were within 60% of 

each other. In this work, the hydrolysate was prefiltered using a 0.22-mm filter. It is also worth 

noting that mass transfer coefficients are typically accurate to within 40%47 .Thus, Table 3 

indicates that the mass transfer coefficient for acetic acid may be estimated using equation 3 

and 4.  
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Table 4  Values of parameters used to calculate diffusion coefficients.  Physical data from 
references [48,50,51] 
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Figure 6 gives results for extraction of HMF from water into MIBK.  Analogous to Figures 

3 and 4, to compare results for HMF extraction with extraction of acetic acid and glycerol, the 

results are normalized by dividing the measured HMF concentration in the aqueous phase (g L-1) 

by the molecular weight of HMF (126.11 g mol-1) and the membrane area (1.4 m2) and 

multiplying by the organic phase flow rate. If the rate of transfer of HMF across the membrane is 

independent of the aqueous and organic phase flow rates, since the measured HMF 

concentration in the aqueous phase is being multiplied by the organic phase flow rate to 

normalize the results, the HMF flux should be directly proportional to the organic phase flow 

rate for the same extraction time. Figure 6 indicates that this is in fact the case. In addition, the 

rate of HMF extraction from either water or a 15:1 mol ratio water:DMSO solution is the same. 

Thus the presence of DMSO in the feed has no effect on the rate of HMF extraction. 

Consequently, as was the case for acetic acid extraction from biomass hydrolysates, the 

membrane mass transfer coefficient dominates and we approximate the overall mass transfer 

coefficient by km/m.  Thus Equations (1-4) apply for the extraction of HMF from water and 

water DMSO solutions.   
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Figure 6  HMF extraction results from water and water/DMSO mixture (mol fraction) at various 

(aqueous/organic) phase flow rates in L hr-1 

Figure 7 is a plot of the left hand side of Equation (2) against time.  The results fall on 

approximately the same curve.  As was the case for extraction of acetic acid, the overall mass 

transfer coefficient may be determined by fitting a straight line to the initial data.  Table 3 gives 

the experimentally determined overall mass transfer coefficient for extraction of HMF.   

Equation (4) may be used to calculate the overall mass transfer coefficient.  Table 4 gives values 

for the molecular weight and viscosity of MIBK and the density, molecular weight, and molar 

volume of HMF48,50.  The a
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experimentally determined mass transfer coefficients given the numerous assumptions that 

have been made, as discussed above.  

 

Figure 7  Determination of overall mass transfer coefficient for removal of HMF from water and 
water/DMSO mixtures (mol fraction) at various (aqueous/organic) flow rates in L hr-1 
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seen for a range of aqueous (10–28 L h-1) and organic (24–49 L h-1) phase flow rates tested, no 

effect is observed on the rate of mass transfer. Thus, again the overall mass transfer coefficient 

may be approximated by km/m (Equation (3)). Since glycerol is being extracted from the organic 

phase into the aqueous phase, a mass balance around the aqueous feed reservoir for glycerol 

leads to a slightly modified form of Equation (1) 

)( * CCKA
dt

dC
V    (6) 

where V is the volume of water, (275 mL), K is the overall mss transfer coefficient based on the 

aqueous phase, A is the membrane surface area (0.58 m2) C is the glycerol concentration in 

aqueous phase and C* is the glycerol concentration in the aqueous phase that would be in 

equilibrium with the concentration in the organic phase. Integration of Equation (6) leads to 

V

KAt

C

C
Ln 










*

1   (7) 

Plotting 






 
*

*

C

CC
Ln  against time should lead to a straight line the slope of which is 

proportional to the overall mass transfer coefficient as given in Figure 9.  The experimentally 

determined overall mass transfer coefficient is given in Table 3.  Equation (4) is again used to 

calculate the membrane mass transfer coefficient.  Table 4 gives values for the molecular weight 

and viscosity of butanol and the density, molecular weight, and molar volume of glycerol48,51.  

The association parameter  was taken to be 1.5 as is usually assumed for alcohols46.  The 

distribution coefficient, m, for glycerol was experimentally determined to be 3.34 

(concentration of glycerol in the water divided by concentration in 2-butonol).  As can be seen, 
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good agreement is obtained between the predicted and experimentally mass transfer 

coefficients.   

 Taken together, our results highlight the versatility of membrane extraction as a unit 

operation in future biorefineries. The overall mass transfer coefficient may be predicted using 

Equations 3 and 4. These mass transfer coefficients will be important when estimating the rate 

of removal of the target compound, in scaling up the process and when correlating the 

experimental data. This in turn will enable easy design and scale up of larger extraction systems.   

 

Figure 8  Glycerol extraction results from 2-butanol into water at various (aqueous/organic) flow 

rates in L hr-1 
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Figure 9  Determination of overall mass transfer coefficient for removal of glycerol from 2-

butanol at various (aqueous/organic) flow rates in L hr-1 
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5.4 Conclusions 
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HMF from an aqueous phase into MIBK has been investigated. HMF is a very valuable 

intermediate during the thermochemical conversion of sugars present in biomass hydrolysates 

into transportation fuels. Extraction of glycerol from an organic phase consisting of 2-butanol 

into water has also been investigated. This extraction could be of significance in the production 

of biodiesel. For each of the extractions studied in this work, the overall and calculated mass 

transfer coefficients are in good agreement. These mass transfer coefficients are important 

when estimating the rate of extraction which will be essential in designing a larger-scale 

process. They will also be important when correlating the experimental data. Our results 

highlight the versatility and tremendous possibilities for dispersion-free membrane-based 

solvent extraction as a unit operation in future biorefineries. 

5.5 Acknowledgements 

 Funding for this work was provided by the National Science Foundation (CBET 045683) 

and Colorado State University through the Sustainable Bioenergy Development Center (SG09) 

and the Clean Energy Supercluster. Funding in Brazil was obtained from FAPESP (2008/57926-4) 

and CNPq  (490351/2007-7). In addition the authors would like to thank Mr. Michael Becker and 

Mr. Flavio Ferraz for their assistance. 



131 

 

References 

 

1 G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels for biomass: Chemistry, 

catalysis and engineering, Che,. Rev., 106 (2006), 4044-4098. 

2 United State Department of Agriculture, Biomass as feedstock for a biorefinery and 

bioproducts industry: the technical feasibility of a billion-ton annual supply, April 2005. 

3 Ragauskas, A.J., C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, 

J.P. Hallett, et al. The path forward for biofuels and biomaterials. Science 311(2006),484-489. 

4 Somerville, C. The billion-ton biofuels vision. Science 312 (2006),1277-1277. 

5 J.D. Seader, E.J. Henley, Separation Process Principles, John Wiley & Sons, Hoboken, NJ, 2006. 
 
6 W. L. McCabe, J. C. Smith, P. Harriott, Unit operations of chemical engineering, 5th edition, 

McGraw Hill, Inc, 1993, New York, NY. 

7 R. Prasad, K. K. Sirkar, Membrane based solvent extraction, Membrane handbook, Eds: W. S W. 

Ho, K. K. Sirkar, van Nostrand Reinhold, New York, NY. 

8 Š. Schlosser, R. Kertész, J. Marták, Revies: Recovery and separation of organic acids by 

membrane based solvent extraction and pertraction An overview with a case study on recovery 

of MPCA, Separation and Purification Technology, 41 (2005) 237-266. 

9 R. Prasad, K. K. Sirkar, Membrane-Based Solvent Extraction, in Membrane Handbook, Eds. Ho, 

W. S. W. & Sirkar, K. K., van Nostrand Reinhold, New York, NY, 1992. 

10 S. R. Wickramasinghe, M. J. Semmens, E. L. Cussler, Mass Transfer in Various Hollow Fiber 

Geometries, Journal of Membrane Science, 69 (1992), 235-250 



132 

 

 
11 S. E. Bower, S. R. Wickramasinghe, N. J. Nagel, D. J. Schell, Modeling sucrose hydrolysis in 

dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass, Bioresource 

Technology, 99(2008), 7354-7362. 

12 J. C. Parajo, H. Dominguez, J. M. Dominguez, Biotechnological production of xylitol. Part 3. 

operation in culture media made from lignocellulosic hydrolysates, Bioresource Technology, 

66(1) (1998), 25-40. 

13 D. Nabarlatz, X. Farriol, D. Montané, Kinetic Modeling of the Autohydrolysis of Lignocellulosic 

Biomass for the Production of Hemicellulose-Derived Oligosaccharides, Ind. Eng. Chem., 43 

(2004), 4124-4131. 

14 E. M. Lohmeirer-Vogel, C. R. Sopher, H. Lee, Intracellular Acidification as a Mechanism for the 

Inhibition by Acid Hydrolysis-Derived Inhibitors of Xylose Fermentation by Yeasts, J Ind. 

Microbiol. Biot., 20 (1998), 75-81. 

15 E. Palmqvist, B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolysates. I: inhibition and 

detoxification, Bioresource Technology, 74(1) (2000), 17-24. 

16 D. L. Grzenia, D. J. Schell, S. R. Wickramasinghe, Membrane extraction for removal of acetic 

acid from biomass hydrolysates, J. Membr. Sci., 322 (2008), 189-195. 

17 D. L. Grzenia, D. J. Schell, S. R. Wickramasinghe, Detoxification of biomass hydrolysates by 

reactive membrane extraction,  J. Membr. Sci., 348 (2010), 6-12.  

18 A. S. Kertes, J. C. King, Extraction chemistry of fermentation product carboxylic acids, 

Biotechnology and Bioengineering, 28 (1986), 269-282. 

19 J. A. Tamada, A. S. Kertes, C. J. King, Extraction of carboxylic acids with amine extractants. 1. 

Equilibria and law of mass action modeling, Ind. Eng. Chem. Res., 29 (1990), 1319-1326.  



133 

 

 
20 J. A. Tamada, J. C. King, Extraction of carboxylic acids with amine extractants. 2. Chemical 

interactions and interpretation of data, Ind. Eng. Chem. Res., 29 (1990), 1327-1333. 

21 J. A. Tamada, J. C. King, Extraction of carboxylic acids with amine extractants. 3. Effect of 

temperature, water coextraction and process conditions, Ind. Eng. Chem. Res., 29 (1990), 1333-

1338. 

 

22 R.-S. Juang, W.-T. Huang, Kinetic studies on the extraction of citric acid from aqueous 

solutions with tri-n-octylamine, Journal of Chemical Engineering of Japan, 28(3) (1995), 274-281. 

23 R. Canari, A. M. Eyal, Extraction of carboxylic acids by amine-based extractants: apparent 

extractant basicity according to the pH of half-neutralization, Ind. Eng. Chem. Res., 42 (2003), 

1285-1292. 

24 A. Senol, Effect of diluent on amine extraction of acetic acid: modeling considerations, Ind 

Eng. Chem, Res., 43 (2004), 6496-6506. 

25 X. Shan, W. Qin, Y. Dai, Dependence of extraction equilibrium of monocarboxylic acid from 

aqueous solutions on the relative basicity of extractant, Chemical Engineering Science, 61 

(2006), 2574-2581. 

26 H. Reisinger, C. J. King, Extraction and sorption of acetic acid at pH above pKa to form calcium 

magnesium acetate, Ind. Eng. Chem., 34 (1995), 845-852. 

27 A. M. Eyal, R. Canari, pH dependence of carboxylic and mineral acid extraction by amine based 

extractants: effects of pKa, amine basicity and diluent properties, Ind. Eng. Chem. Res., 34 (1995), 

1789-1798. 



134 

 

 
28 G. M. Barrow, E. A. Yerger, Acid-base reactions in non-dissociating solvents. Acetic acid and 

triethylamine in carbon tetrachloride and chloroform, Am. Chem. Soc., 76(20) (1954), 5211-

5216. 

29 G. W. Huber, J. N. Chheda, J. C. Barrett, J. A. Dumesic, Production of liquid alkanes by 

aqueous-phase processing of biomass-derived carbohydrates, Science, 308(2005), 1446-1450. 

30 G. W. Huber, J. A. Dumesic, An overview of aqueous-phase catalytic processes for production 

of hydrogen and alkanes in a biorefinery, Catal. Today, 111 (2006), 119-132. 

31 R.D. Cortright, R. R. Davda, J. A. Dumesic, Hydrogen from catalytic reforming of biomass-

derived hydrocarbons in liquid water, Nature, 418 (2002), 964-967. 

32 G. W. Huber, R. D. Cortright, J. A. Dimesic, Renewable alkenes by aqueous-phase reforming of 

biomass-derived oxygenates, J.A. Angew. Chem., Int. Ed., 43 (2004), 1549-1551 

33 J. W. Shabaker, R. R. Davda, G. W. Huber, R. D. Cortright, J. A. Dimesic, Aqueous-phase 

reforming of methanol and ethylene glycol over alumina-supported platinum catalysts, J. Catal. 

215 (2003), 344-352. 

34 R.R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, J.A. Dimesic, A review of catalytic 

issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming 

of oxygenated hydrocarbons over supported metal catalysts, J. A. Appl. Catl. B., 56 (2005), 171-

186. 

35 G. W. Huber, J.W. Shabaker, J. A. Dumesic, Raney Ni-Sn catalyst for H2 production from 

biomass-derived hydrocarbons, Science, 300 (2003), 2075-2077. 

36 R. R. Davda, J. W. Shabaker, G.W. Huber, R. D. Cortright, J. A. Dumesic, Aqueous-phase 

reforming of ethylene glycol on silica-supported metal catalysts, J. A. Appl. Catal., B., 43(1) 

(2003), 13-26. 



135 

 

 
37 J. W. Shabaker, J.A. Dumesic, Kinetics of aqueous-phase reforming of oxygenated 

hydrocarbons: Pt/Al(2)O(3)and Sn-modified Ni catalysts J. A. Ind. Eng. Chem. Res., 43(12) (2004), 

3105-3112. 

38 Roman-Leshkov Y, Chheda, J. N., Dumesic, J. A., Phase modifiers promote efficient production 

of hydroxymethylfurfural from fructose, Science, 312 (2006), 1933-1937. 

39 Chheda, J. N., Dumesic, J. A., An overview of dehydration, aldol-condensation and 

hydrogenation process for production of liquid alkanes from biomass-derived carbohydrates, 

Catal. Today, 123 (2007), 59-70. 

40 Kroger M, Prusse, U, K. D. Vorlop, A new  approach for the production of 2,5-furandicarboxylic 

acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose, Topics Catal. 13 

(2000), 237-242. 

41 Srivastava, A., Prasad, R., Triglycerides-based diesel fuels.  Renewable Sustainable Energy Rev., 

4, (2000), 111-133. 

42 Nguyen, Q.A., Tucker, M.P., Keller, F.A., Eddy, F.P., 1999. Two-stage dilute acid pretreatment 

of softwoods. 21st Symposium on Biotechnology for Fuels and Chemicals. 

43 C. F. Kenfield, R. Qin, M. J. Semmens, E. L. Cussler, Cyanide recovery across hollow fiber gas 

membranes, Environ. Sci. Technol. 22(10) (1988), 1151-1155. 

44 Q. Zhang, E. L. Cussler, Microporous hollow fibers for gas absorption II. Mass transfer across 

the membrane, J. Membr. Sc., 23(3), (1985) 333-345.   

45 Z. Shen, B. Han. S. R. Wickramasinghe, Cyanide removal from wastewater using gas 

membranes: pilot-scale study, Water Environment Research 76(1), (2004), 15-22.  

46 C. R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J, 1 (1955) 

264-270. 



136 

 

 
47 R. H. Perry, C. H. Chilton, Chemical engineering handbook, 5th edition (1974), McGraw hill 

International Book Company, Tokyo, Japan. 

48 S. Budavari (editor), The Merck index, 12 edition (1996), Merck and Company, Whitehouse 

Station, NJ. 

49 R. Riggio, H.E. Martinez, Excess volumes, viscosities, enthalpies, and Gibbs free energies for 

mixtures of methyl isobutyl ketone þ n-pentanol and methyl isobutyl ketone þ isoamyl alcohol 

at 298.15 L, Can. J. Chem. 64 (1986) 1595–1598. 

50A. Mariano, A. Camacho, M. Postigo, A. Valen, H. Artigas, F. M. Royo and J. S. Urieta, Viscosities 

and excess energy of activation fro viscous flow from binary mixtures of tetrahydrofuran with 1-

butanol, 2-butonal, and 1-chlorobutane at 283.15, 298.15 and 313.15 K, Brazilian Journal of 

Chemical Engineering 17(4-7) São Paulo Dec. 2000. 

51B. Han, Z. Shen, S. R. Wickramasinghe, Cyanide removal from industrial wastewaters using gas 

membranes, J. Membr. Sci., 257(1-2) (2005), 171-181. 

 

 

 

 

 

 

  



137 

 

 

 

Chapter 6 

 
 

COMPUTATIONAL EXPLANATION OF EXTRACTION MECHANISM 

 
 

Introduction  

Tertiary long chain aliphatic amines can extract carboxylic acids at relatively low 

concentrations present in wastewater streams, fermentation broth or in any other aqueous 

environments present as products or byproducts1,2.  A mixture of extractant and organic solvent 

is used to extract acids.  The properties of pure amine extractants would be too viscous to be 

suitable for extraction.  Therefore mixtures of amines with polar or non-polar solvents are used 

to enhance extraction by reducing viscosity.  

Several factors have been recognized to influence the mechanisms of extraction and 

extraction efficiency  for acid extraction  using amine –solvent mixtures. These factors include 

the properties of the acid, the concentrations of the extractant and acid, and type of solvent 

used.  Two of the most important properties of the acid are its acidity, represented through  pKa 

value, and the hydrophobicity.  Solvent is considered the other controlling factor that can 

enhance the extraction power of amines. The solvent can form hydrogen bonds with the 

carboxylic acids, leading to a stabilization of the formed acid-amine complexes in the organic 

phase.  Polar solvents tend to enhance the extraction effectiveness of amines as compared to 



138 

 

non-polar solvents.  Additional controlling factors such as co-extraction of water into the organic 

phase, or a third phase formation3, 4 can occur using amines.   

Eyal et a.l5 proposed four mechanisms of extraction for the acid by amine including ion-

pair formation, H-bond formation, solvation and anion exchange, all depending on the acidity 

and basicity of the solute and amine-based extractant respectively. Ion-pair formation based on 

acid-base reaction between the carboxylic acid and amine provides a high distribution of acids 

into the organic phase.   At low pH conditions, where the amine is more basic than the 

conjugate base of the extracted acid or at higher pH where the pKb of the amine is higher than 

the pKa of the acid, the dominant extraction mechanism is via ion-pair formation5.  Pure 

distinction between these mechanisms, especially for carboxylic acids is not clear and one or 

two mechanisms could contribute to the extraction5. However, in the literature common 

explanation of extraction weak carboxylic acids using amine compounds is through amine–acid 

ion pair mechanism.   

Here we present three mechanisms on extraction of acids using aliphatic tertiary amine 

mixed in octanol organic phase. The mechanisms are of acid-base reaction and hydrogen 

bonding type and are a combination of each other in extracting multi-mixtures of acids. The 

selected acids represent three classes of acids; strong acid, weak acids and acids in between the 

two cases. Support for these mechanisms is obtained through computer simulations and shaking 

experiments.    
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6.1 Methods  

6.1.1 Quantum Mechanical Calculations 

6.1.1.1 Gas Phase Free Energy Calculations 

The initial structures of carboxylic acid, its dimers and amine complexes as well as HMF, 

furfural and their amine complexes were constructed using VMD, a molecular dynamics 

visualization software. The optimized structures of these compounds and their free energies and 

associated solvation free energies in both the aqueous and organic phases were determined 

using Gaussian 03. The gas phase free energies were determined using density functional theory 

(DFT) based hybrid B3LYP method with 6-31+G(d) basis set.   

6.1.1.2 Complex Formation and Solvation Free Energy Calculations   

Free energy of complex formation in solution was calculated using a thermodynamic 

cycle, as shown in Figure 1, using acetic acid-alamine complex as an example.  As shown in 

Figure 1, free energy of complex formation in solution (ΔGsolvent) is directly related to the gas 

phase free energy change (ΔGgas) and the solvation free-energies of reactants and products 

(ΔGsol).  

 

Figure 1  Thermodynamic cycle for the free energy of complex formation in solution between 
acetic acid  and alamine 
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  The free energy of complex formation in solution can be calculated using the following 

equation: 

 (1) 

Solvation free energies were calculated using the PCM model with UAHF atomic radii 

based on HF/6-31+G(d)-optimized gas-phase structures. Water and octanol were the solvents 

for the aqueous and organic phases. Standard solvent parameters for these two solvents were 

used in Gaussian03.  The calculations were carried out at room temperature in agreement with 

the experimental extraction conditions.  

6.2 Extraction Experiments 

Liquid-liquid extraction experiments were conducted by contacting known 

concentrations and volumes of organic and aqueous phase solutions.  In 15-mL centrifuge tubes 

(Thermo Fisher Scientific Inc. PA, U.S., Cat. Nr.: 03395-119), a 5 mL aqueous phase containing a 

mixture of acetic acid (Mallinckrodt Baker, Inc. NJ, U.S., CAS No.:64-19-7) , levulinic acid (98+% 

pure, Acros Organics, NJ, U.S., CAS No.: 123-76-2) and formic acid (98+ % pure, Acros Organics, 

NJ, U.S., CAS No.: 64-18-6.) was mixed with 5 mL of Alamine 336 (Cognis, Cincinnati, OH) solved 

in octanol (Sigma-Aldrich Corp. St. Louis, MO, cat. Nr.: 279307). The acetic acid concentration 

was 0.2 M or 0.5 M, whereas the other two acid concentrations varied in the same solution from 

0.005 M, 0.05 M  to 0.02 M. The Alamine 336 concentration was 0.0104x  10-3M, 0.52x10-3M, or 

1.04x10-3M. The solutions were shaken manually for a few seconds and then left still overnight 

for equilibration. Pipetting removed the lower aqueous phase and the remaining acid 

Δ G  (solvent) Δ G (gas)  + Δ G  Δ G  - Δ 

 

G   Δ G (gas)  + Δ G  (sol) Products Δ G  (sol) Reactants -  

 

= 



141 

 

concentrations were measured using a 1100 HP HPLC (Agilent, Santa Clara, CA) equipped with a 

Biorad Aminex HPX-87 H column (Bio-Rad Hercules, CA) and a HP refractive index detector.  

Distribution coefficient of the solute (acetic acid) between the two phases is described 

by the distribution ratio of the overall extracted solute to the remaining concentration of solute 

in the aqueous phase. 

D=
A

A

C

C
     (2) 

,where AC describes the acetic concentration in the organic phase.  

6.3 Results and Discussion  

The liquid portion of biomass hydrolysate possesses carboxylic acids, furan derivatives 

and phenolics.  Depending on the pretreatment method alkaline or inorganic acids are also 

present. The results of extraction of acetic acid from hydrolysate using Alamine 336 (tri-n-octyl 

amine (TAO)) in octanol phase were divided in two experimental series, where the first series 

investigated the effects of sulfuric acid on acetic acid alone and second series focused on other 

carboxylic acid effects on acetic acid extraction.  

Figure 2 shows the distribution coefficient of acetic acid versus Alamine concentration in 

the presence of various sulfuric acid concentrations. As noticed, the sulfuric acid concentration 

has a significant impact on the distribution coefficient, where Kd decreases when sulfuric acid 

concentration increases. The distribution coefficient is also strongly dependent on the acetic 

acid concentration.  It appears that the lower the acetic acid concentration, the better the 

extraction. High distribution coefficient of 21 was observed when sulfuric acid concentration is 
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0.005 M at low acetic acid concentration of 0.05 M.  Distribution coefficient values for acetic 

acid in the range of 3 to 4 in octanol phase using Alamine 336 were shown by several earlier 

studies6,7. High distribution coefficient values in the range of 20 were observed typically for di-

carboxylic acids, and not for short mono-carboxylic acids. Di-carboxylic acids have two possible 

binding sites for amines, forming a 1:2 acid/amine complex. The polar diluent has a stabilizing 

effect on the complex as also reported by Tamada et al.8 for extraction of succunic acid using 

Alamine 336 and octanol.  However, there could be another extraction mechanism acting during 

the acetic acid extraction in the presence of sulfuric acid, as described later. 

The preferable extraction of sulfuric acid to acetic acid was already shown in previous 

publications. The high acidity of the sulfuric acid with first and second pKa values at  -3 and 1.99 

was mostly responsible for preferable extractions as compared to acetic acid with a pKa value of 

4.759 . 

 

Figure 2  Distribution coefficient versus Alamine 336 concentration of acetic acid in the presence 
of sulfuric acid with various concentrations 
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The extraction coefficients of acetic  acid are shown in Figures 3 and 4 as a function of 

Alamine 336 concentration in the presence of two other carboxylic acids of formic and levulinic 

acids. Figure 3 has a lower initial loading of acetic acid of 0.2 M as compared to Figure 4 with 0.5 

M.   Both figures show at very low concentrations of TAO, an acetic acid distribution number, 

which is over three and increases with increasing initial acetic acid loadings. In the past, 

distribution factors of three and more were known for increasing TAO concentration (0.2-1.2 M) 

and for polar solvents10,11. The extraction increased to a concentration of 40 % TAO and 

decreased again due to the low solubility characteristics of TAO for the polar complexes12.  The 

extraction coefficient of acetic acid appears also to depend slightly on the concentrations of the 

formic and levulinic acid as well as the concentration of Alamine 336.  The Kd values are all 

below 1 except for a few points varying the Alamine concentration as well as the formic or 

levulinic acid concentrations. It appears that at lower Alamine concentration as well as at lower 

formic/levulinic acid concentration, the extraction coefficient is substantially higher reaching 

about 3.  However, increasing the Alamine concentration as well as formic or levulinic acid will 

rapidly decrease the acetic extraction coefficient.  It is more apparent for higher acetic acid 

loadings.    

The physical chemistry for the solvation of formic and levulinic acid is very different.  

Formic acid has no large R-chain, is a very polar molecule (1.41 D) with stronger acidity than the 

levulinic acid, its extraction is mostly based on ion-pair formation via acid−base reaction.  

Levulinic acid has a longer R-chain and is more hydrophobic and weaker in acidity.  The 

extraction of levulinic acid is most likely via the formation of a hydrogen bonded complex.  

Therefore, the extraction of acetic acid from a solution containing both acids is chemically very 

interesting and important in mimicking real extraction conditions. 
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Figure 3  Distribution coefficient versus Alamine 336 concentration of acetic acid (0.2M) in the 
presence of various formic and levulinic acid concentrations 

 

Figure 4  Distribution coefficient versus Alamine 336 concentration of acetic acid (0.5 M) in the 
presence of various formic and levulinic acid concentrations 
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Based on experimental observations, we propose three possible mechanisms for acetic 

acid extraction in the presence of other strong or weak acids.  In the presence of a strong acid 

such as sulfuric acid, the strong acid is extracted first based on the acid-base reaction extraction. 

Once the strong acid is extracted to the organic phase, the base amine could be partly 

regenerated due to the recombination of the proton with the conjugated base of the acid. This 

is due to the fact that the acidity of acids is solvent dependent. In organic solvent with a low 

dielectric constant, the acidity is reduced compared to the aqueous phase13. As a result, 

recombination of the dissociated proton and the conjugated base will occur.   After the strong 

acids are extracted, the freed amine will be able to form a complex with the acetic acid which 

will be discussed in more detail in the modeling section.  This acetic-amine complex will then be 

extracted to the organic phase. This is more apparent when both the acetic acid and the strong 

acid concentrations are relatively low as can be seen in Figure 2. At high sulfuric acid 

concentration, the amines are mostly associated with sulfuric acid.  As a result acetic acid 

extraction is not efficient.  At higher acetic acid concentration, the extraction is also low since 

there is not enough amine to complex with the acetic acid to be able to extract to the organic 

phase.  

  The second mechanism involves the weak acid extraction with amine. In the case of 

weak acid, the extraction is due to the formation of the acid-amine complex. Once this complex 

is formed, it has a more favorable solvation free energy in the organic phase and will be 

distributed more favorably in the organic phase. In the case of acetic acid, it is a weak acid with 

a pKa value of 4.76. The COOH acid group will form a hydrogen bond with the N atom of the 

tertiary amine in the case of Alamine 336. The interaction of the polar functional groups 

between the acid and amine will make the complex more favorable in the organic phase. Once 
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the complex is transported to the organic phase, it will be relatively stable.  Thus acetic acid 

extraction by Alamine will be concentration dependent.  Higher concentration of acetic acid will 

reduce the extraction coefficient as shown in Figure 5. The acetic acid extraction could be better 

described by using the acetic acid/amine concentration ratio Cr=Caa/Cam, where Caa and Cam 

represent the acetic acid and amine concentration respectively. When Cr is lower but still much 

larger than 1 at lower acetic acid or higher amine concentrations, the complex formed is 

relatively stable and extraction coefficient increases with the increasing of the amine 

concentration as shown in Table 1. However, at even higher acetic acid concentration, another 

mechanism will start to affect the extraction.  That is the formation of acetic acid dimer in the 

organic phase. The dimer formation will improve the acetic acid extraction.  This will be 

discussed in more detail later.   

 

Figure 5  Distribution coefficient of various acetic acid and Alamine 336 concentrations 

The third extraction mechanism involves an acid with acidity lying between the two 

previous cases such as formic acid with a pKa of 3.75.  In this case, both the acid-base reaction 

extraction process and complex formation extraction process will occur.  For acetic acid 
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extraction in the presence of formic acid, formic acid will be extracted first due to more 

favorable reaction free energy of acid-base reaction/extraction process. However, the amine 

can be easily freed in the organic phase due to the very low acidity of formic acid in the organic 

phase. Since both acid-base reaction extraction as well as complex formation extraction exist for 

the formic acid, the dependence of the acetic acid extraction in the presence of formic acid is 

more complex. In the case of levulinic acid with a pKa value similar to acetic acid, levulinic acid 

extraction will compete with the acetic acid extraction.  

The influence of solvents is present in all three mechanisms. Polar solvents provide a 

good solvation medium for the ion-pair formation of amine and weak acids, wherein octanol 

builds a hydrogen bond to the carbonyl group of the acid. As shown in Figure 3, the TAO to acid 

ratio is 1:5000 for the highest acetic acid loading (0.5M) at the lowest TAO concentration 

yielding a distribution of four. This phenomenon cannot be explained through characteristics of 

solvent, or extractant interaction. Further, a dimer formation of acetic acid in the organic phase 

could lead to this high distribution coefficient at the mentioned conditions in Figure 3 and 4. 

Open or cyclic dimer formations were detected through spectroscopic studies in nonpolar 

solvents by King et al.8 or Ziegenfuss et al.14 and in high acetic acid concentrations ranging from 

3.9 M to 17.9 M, as shown by Irish et al. 15,16.  

Recently, new mathematical models of carboxylic acid extraction, using amine in 

solvents, incorporated 1:1, 2:1 and 3:1 acid –amine complexes and showed great extraction 

prediction17,18.  Quantum chemical calculations in the gas phase and in the nonpolar solvent 

showed that a dimer formation is possible19. According to new quantum calculations strong 

hydrogen bonds are formed in a cyclic acetic acid dimer, where polar solvents stabilizes the 

hydrogen  bonds  better than  nonpolar solvents20. As seen in Table 1 the extraction of acids 
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from water to octanol phase shows a positive ∆∆Gsol free energy of solvation. This is consistent 

with the low distribution coefficients observed for acetic, formic and levulinic acid being 0.48, 

0.28 and 0.28, respectively12. A dimer formation and a possible extraction from the water to the 

octanol phase is indicated though the high negative free energy of dimerization values 

(∆∆Gsolvent) for acetic, formic, and levulinic acid.  Additionally, the influence of TAO shown in 

form of trimethylamine on dimers is shown in Table 1, and indicates no better stabilization of 

the dimer complexes. This result is in agreement with data shown in Figure 3 and 4 where at low 

amine concentrations a higher distributions coefficient was shown for acetic acid. A possible 

dimer formation at low amine concentrations can explain this behavior.    

Table 1  Free energies of solvation (∆ ∆Gsol) for single molecules and free energy of  dimer 
complex formation  (∆∆Gsolvent) for acetic, formic and levulinic cyclic dimers. Free energy of 

complex formation of dimers with trimethylamine molecule 

Single Molecule ∆ ∆Gsol (Water to Octanol) 
(kJ/mol) 

Acetic Acid 32 

Formic Acid 30.1 

Levulenic Acid 52.6 

Dimer ∆ ∆Gsolvent (Waterto Octanol) 

(kJ/mol) 

Acetic Acid -29.8 

Formic Acid -30.4 

Levulinic Acid -29.8 

Dimer-Ammonia  

Acetic Acid-
trimethylamine 

-9.2 

Formic Acid- 
trimethylamine  

-8.9 

Levulinic Acid- 
trimethylamine  

-11.5 
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During experiments presented in Figure 3 and 4, a noticeable reduction of the water 

phase and an increase of organic phase was observed. In the past, water extraction was 

reported for TOA –butyric, TOA- acetic or TOA-succinic acid extractions in n-alkanes14,21,22 . The 

TOA-butyric system seems to influence the co-extraction of water, where one mole of water 

was co-extracted with one mole of complex. In the TOA-acetic acid or TOA-succinic acid 

complexes, TOA seemed not to have any impact. Rather it was decided that water co-extraction 

was influenced by the acid concentration and the solvent.     

Computational simulations using quantum mechanical simulations suggested a water 

co-extraction with acetic acid dimers with one or two water molecules per dimer19. Simulations 

presented in Table 2 agree with the co-extraction of one water molecule per acetic acid dimer, 

however, it unlikely predicts a two water molecule extraction per dimer complex. 

Table 2  Free energy of complex formation for Alamine-water complexes (∆∆Gsolvent) 

Dimer ∆ ∆Gsolvent (Water to Octanol) 
(kJ/mol) 

Acetic Acid- 1 H2O -9.6 

Acetic Acid- 2 H2O 16.3 

 

The influence of Alamine on HMF and furfural extraction is explored in Table 3. Both 

molecules show similar chemical appearance, where the additional hydroxymethyl group 

increases the hydrophilic character of HMF as compared to furfural. However, on their own, 

both molecules are not preferably extracted into the organic phase. Alamine displayed in form 

of an ammonia molecule with three methyl groups enhances the extraction of both molecules. 

The simulated hydrophobic amine molecule interacts better with the more hydrophobic furfural 

than the more hydrophilic HMF. Experimental data verified this behavior for extraction of 



150 

 

furfural and HMF from biomass hydrolysate. In the absence of Alamine 336, the distribution 

coefficient in octanol for HMF and furfural was 0.68 and 1.94 and increased in the presence of 5 

% (v/v) Alamine 336 to 0.82 and 3.25 respectively. Further increase of Alamine 336 

concentration to 15 % (v/v) decreased the furfural distribution coefficient to 2.87 and increased 

slightly the HMF value to 0.89.  The decrease of distribution coefficient for furfural could be due 

to the changes of octanol phase containing acids, making the octanol phase more hydrophilic.   

Table 3  Free energies of solvation (∆ ∆Gsol) for HMF and furfural and free energy of complex 
formation for Alamine-HMF and Alamine-furfural (∆∆Gsolvent) 

Molecule ∆∆G (Sol) Water to 
Octanol  (kJ/mol) 

HMF 52.6 

Furfural 33.7 

Molecule-
complex 

∆∆G (Sol) Water to 
Octanol  (kJ/mol) 

HMF - 
trimethylamine  

-14.2 

Furfural - 
trimethylamine  

-27.2 

 

6.4 Conclusions  

Extraction of acids form hydrolysate using amines has to be separately examined   based 

on the present amine-acid complexes. Three mechanisms of acid extraction in the presence of 

amine were suggested, verified though shaking experiments, and supported using quantum 

mechanical simulations. Strong acids are extracted though acid base mechanism. Co-extraction 

of weak acids in the presence of strong acid is possible due to influence of solvent on strong 

acids.    
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Extraction of acetic acid in the presence of weak acids such as levulinic or formic acid is 

also hindered at concentrations of 0.05 M indicating an occurrence of complex formation and 

acid-base type reactions.  Formic and levulinic acid are preferably extracted in the presence of 

acetic acid. However a high extraction of acetic acid at very low concentration of formic, 

levulinic and extractant, was observed. It increased with increase content of acetic acid. 

Computational simulations propose a cyclic dimer formation of acetic acid and explain possible 

water co-extraction experienced during experiments.  To verify the observations, spectroscopic 

analysis of solutions having distribution coefficients of three to four have to be conducted in the 

future. 

Enhanced HMF and furfural extraction in the presence of Alamine 336 was verified 

through computational simulations.   
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Chapter 7  

 
COST ESTIMATIONS 

 

7.1 General setup implementation considerations   

Aspen Plus (Aspen Plus Technologies Inc., USA) software was used to simulate the 

implementation of membrane supported liquid extraction method into NREL’s detoxification 

unit. As shown in Figure 1, the currently considered ammonia detoxification process is replacing 

the overliming method, which increases the benefits of the overall process in not considering a 

solid/liquid separation unit. A membrane process requires a solid/liquid separation unit for the 

production of a particle free stream. Particles would immediately plug the membrane and 

decrease the extraction of chemical compounds to undesirable rates. Thus, the membrane 

process has to compete economically with a simple ammonia conditioning process.  

 

Figure 1  NREL’s possible detoxification pathways 
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7.2 Aspen simulation procedure considerations  

Due to its biocompatibility, an economic membrane process has to utilize oleyl alcohol 

as a solvent, for the subsequent fermentation step. Aspen simulations were conducted with 

following restrictions: Alamine 336 was substituted with ammonia and octanol was used as the 

organic phase, even though we simulate the extraction with oleyl alcohol as organic solvent.  

Oleyl alcohol cannot be found in the Aspen data base, therefore octanol was substituted. 

Chemical properties (e.g, molecular weight, density) of oleyl alcohol were added to Aspen 

database. Octanol and oleyl alcohol have no chemical effect during the aspen simulations on the 

hydrolysate or the extraction process. The higher costs of oleyl alcohol as compared to octanol 

are considered in the Aspen simulation. 

Alamine 336 had to be substituted with ammonia because parameters in the Aspen data 

banks were not provided for Alamine 336. Ammonia, as a chemical, is more predefined in Aspen 

and its chemical structure (NH3) is similar to Alamine 336, with its nitrogen and 3 side chains. 

Simulations for the membrane treatment were carried out using NRTL method for calculations 

of activities of the liquid phase. 

Table 1 shows the extraction of acetic acid, HMF and furfural from the hydrolysate using 

Alamine 336 (15% w/w) solved in oleyl alcohol or octanol phase.  

Values of the oleyl alcohol phase are implemented into Aspen setup as shown in Figure 

2. The setup in Figure 2 represents the membrane process (black square) and the regeneration 

process (grey square) where the solvent is regenerated using NaOH. In detail: stream HYD 

contains acetic and sulfuric acid and is mixed with stream SOLV, which contains octanol and 15 

% ammonia. Streams are mixed in reactor REA-1 where 30 % of acetic acid and 100 % sulfuric 

acid are converted with ammonia to ammonium-acetate and ammonium sulfate. Ammonium-
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acetate is represented in Aspen through certain key parameters, such as molecular weight or 

enthalpy. Resulted product stream, HYD2, is forwarded to Sep-1, where Octanol ammonium-

acetate, ammonium sulfate flows to block MIX and hydrolysate including 70 % acetic acid flows 

out as an end product stream called PROD. The amount of octanol phase lost during membrane 

treatment is considered through stream SOLVLOST and is between 2-4 %. Octanol phase is 

contacted with sodium hydroxide in block MIX and forwarded to block REUS-REA. In this reactor 

ammonium-acetate plus sodium hydroxide lead to sodium-sulfate and ammonia. Product 

stream is sent to block SEP-3 where two streams are generated as product streams: REU4 and 

TRASH. REU4 stream contains octanol and ammonia and flows as regenerated stream to REA-

1block, which is mixed with fresh octanol. Trash stream contains sodium-sulfate, sodium acetate 

and non reacted sodium hydroxide.   

A simplified version of this setup is shown in Figure 3. 

 
Table 1  Acetic acid, Furfural and HMF extraction using oleyl alcohol solvent with 15 % 

Alamine 336 and octanol solvent with 15 % Alamine 336 
 

Organic phase Acetic acid  Furfural HMF 

 % 

Oleyl alcohol 30.24 59.19 22.78 

Octanol 55.90 71.61 43.87 
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Table 2  Stream ID and their flow rate in Aspen setup   

Stream ID  Item  

Flow rate 

kg/hr 

HYD Hydrolysate  19702 

SOLV 

Organic 

Solvent  8585 

NAOH 

Reg. 

Compound 8585 

SOLVLOS 

Lost 

Solvent  119 

    

 
Figure 2  Aspen simulation of acetic acid extraction using octanol solvent with 15 % ammonia 
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Figure 3  Overall membrane process divided in two scale up areas. Scale up of  membrane 

modules based on hydrolysate flow  rate (Boundary 1 area) and scale up of organic side based 

on regeneration time and flow rate of organic phase (Boundary 2 area ) 

7.3 Tank size and number of modules estimation  

Table 3 shows the membrane characteristics of smaller and commercial scale 

membrane modules at certain working conditions. As noticed in Table 3, both modules use 

identical fibers, which exhibit at higher temperatures a lower tolerance to pressure. The model 

setup, using 2.5 x 8 module run at 40° C with a lumen flow rate of 0.6 gpm and 10 psig and a 

further increase to 2.3 gpm, resulted in a pressure of 25 psig with no noticeable rise in 

extraction. Flow rates of organic phase and aqueous phase will be kept similar in the industrial 

scale (14 x 28) membrane setup, since it uses the same polypropylene hollow fibers as the 

model setup.  

The detoxification capacity of the model setup (2.5 x 8) on hydrolysate, is 2 L in 2 hr to 

concentration levels of toxic compounds that do not harm the microorganism. For reasons of 
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simplicity and easier scale up considerations, we can assume to be able to process 2 L in 1 hr.  A 

scale up in membrane area from 1.4 to 200 m2 results in a scale up factor of 157.14, which 

would decrease the treatment time to 0.38 min for 2 L.  This results in a treatment volume of 

314 L/hr.   

NREL’s Aspen simulation of hydrolysate flow rate, leaving the solid liquid separator, is 412 L/min 

or 19702 kg/hr as shown in Table 2. Therefore 63 membrane modules are needed for a 

continuous run.  

Table 3 Characteristics of membrane module used in the model setup and available commercial 

scale membrane module from Membrana 

Module 2.5 x 8 Extra-Flow 14 x 28 Extra-Flow 

Configuration Extra-flow, centre baffle Extra-flow, centre baffle 

Membrane  Polypropylene, X40 fibers Polypropylene, X40 fibers 

Fibre OD/ID (µm) 300/220 300/220 

Porosity 40% 40% 

Maximum Shellside pressure 

at 5-40 °C (psig) 

120 120 

Maximum Lumenside 

pressure at 15-40 °C (psig) 

35 35 

Active surface area (m2) 1.4 220 

Priming volume lumen/shell 

(mL) 

150/400 21700/33500 

Housing material Polypropylene Stainless Steal 

 

The size of the organic and re-usage tank depends on the flow rate of the organic phase 

through the modules and the regeneration time in the regeneration tank. It is best to assume, 

that fresh organic phase is always contacted with the hydrolysate phase at the same flow rate as 

shown in the model setup, being 0.6 gpm. The regeneration of organic phase was conducted as 
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a mixer and settler setup with a mixing time of 30 min and a total residence time of 3 hr. The 

volumes of the two organic tanks are equal and a volume including a residence time of 4 hr in 

the regeneration tank is assumed. This results in tank volumes of 10000 gal each. In conclusion, 

we can perform a scale up in drawing boundaries around the membrane modules and around 

the organic tanks as seen in Figure 3.   

7.4 Cost  

7.4.1 Cost of Tanks   

 The types of tanks significantly determine the cost of the Aspen simulation. Tanks 

considered for the organic phase can be made out of plastic. Oleyl alcohol or Alamine do not 

have any effect on plastic materials. Cost were estimated with purchase cost equations obtained 

from in Product & Process Design Principles by D. R. Lewin et al.1 and verified through quotes 

from producers.  

The purchase cost equation 1 is corrected by 10-12 % as compared to the published 

equation by D. R. Lewin et al. in 2006 (Cp=18*V0.72). This correction was verified through quotes 

from Plastic-Mart (Stand: January, 2011). Costs of organic side tanks were estimated with 

following specifications; open storage tank of fiberglass type. 

Cp=19.9*V0.72     (1) 

 

7.4.2 Cost of Materials  

 The cost and vendor information of oleyl alcohol, Alamine 336, and sodium hydroxide 

are given in Table 4. The quantity of Alamine 336 is fixed due to the possible recycle option 
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shown in Figure 3.  Oleyl alcohol is replaced based on the quantity lost during extraction 

process, varying 2-4%. Sodium hydroxide is used as a regeneration agent, where the acetic acid 

–alamine complex is disrupted leading to sodium acetate formation. Alamine is regenerated and 

can be used in further detoxification steps. As shown in Table 4, costs are significant.   

Table 4  Cost and vendors information (Stand: February 2011) of chemicals used in Aspen 
simulation  

  

      

 

 

7.5 Selling Price of Ethanol   

The membrane process causes an ethanol selling price of 2.43 $/gal as compared to NREL’s 

current estimation using ammonium hydroxide of 1.99 $/gal. Following reasons increased the 

ethanol price:  

 The number of modules needed and its selling price of  $ 16,100 (stand: February, 2011) 

 The high price of sodium hydroxide used in the regeneration loop contributing alone 

28.04 cents /Gallon ethanol. 

 

 

 

 

 

 

Chemical compound Cost ($/tone) Vendor 

Alamine 336 90 Cognis 

Sodium hydroxide 320 HDI Database 

Oleyl alcohol 8000 Jarchem 
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