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LIST OF SYMBOLS 
Variables 
A Cross section area 
[A] Coefficient matrix 
a Component of coefficient matrix 
{B} Vector of intercept values 
b Top width 

Dt Dynamic contribution of lateral inflow 

do Steady uniform flow depth 

g Gravitational acceleration 
h Depth of flow from channel bed 

Lo Reference channel length 

K Conveyance 
Q Discharge 
q Lateral inflow 
R Hydraulic radius 
r Component of vector of intercept values 

S1 Friction slope 

so Slope of the channel bed 
T Wave period 
t Time 
uo Steady uniform flow depth 
v Mean velocity 
vx X-Component of velocity in lateral inflow 
{x} Vector of unknowns 
x Downstream distance 
T Dimensionless wave period 
y Depth of flow from datum 
6t Increment of time 
6x Increment of distance 
p Fluid mass density 
e Weighting factor 

iii 



Superscripts 
n Current time step 
n + 1 Next time step 
p Improved unknown value through iteration 
p-1 Unimproved unknown value 

Subscripts 
Current section number 

i + 1 Next section number 
i-1 Previous section number 
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I. INTRODUCTION 
The study of water flow in steep mountain stream systems is of vital importance in the 

management of water resources systems and in the design of stream channel control works. 
In general, unsteady flood flows in stream channels can be simulated by simplified mathe-
matical models which are derived from the governing one-dimensional nonlinear partial dif-
ferential equations describing the laws of conservation of mass and momentum. These 
equations are simple models of extremely complex phenomena and they incorporate only the 
most important terms in simulating the real-life flow phenomena. Terms which are thought 
to be of secondary importance for modeling purposes are neglected. Theoretical analysis of 
even the simplified nonlinear partial differential equations is so complicated that analytic 
solutions can only be obtained by approximate methods. 

A frequently employed approximation method for solving unsteady flow equations in 
natural channels is the finite difference method. In this method, the partial differential 
equations describing the channel flows are approximated by a set of difference equations .. 
These equations are integrated in a step-by-step process through time. Depending on the 
integration scheme utilized, the finite different methods are classified in two broad categories: 
explicit and implicit schemes. The explicit schemes utilize the known values of flow variables 
at a given time step to. derive their values in the future time steps. In the implicit schemes, on 
the other hand, a set of simultaneous equations describing the relationship between values at 
a given time step and the previous time steps are solved to obtain the values of flow variables. 
Due to the nature of formulation, explicit schemes are easier to formulate and to implement 
in computer programming languages. However, in natural channels uncertain initial flow 
variables and stability restrictions cause modelers to choose implicit finite difference formu-
lations rather than explicit finite difference formulations. Most implicit finite difference 
models can further be classified into two groups based on the type of equations solved. The 
first group solves the full nonlinear equations which are more rigorous in theory, but it has little 
advantage over the linear solutions (Barkau,1985). The second group solves the linear equa-
tions which have computational speed and stability advantage over the nonlinear equations. 

In Sections II through VI of this manual, two mathematical models using kinematic wave 
theory are presented. The first model(YINSCl) is a nonlinear iterative model based on the 
Abbott-Ionescu implicit scheme. The second model(KINSC2) is a fully linear model based on 
the Four-Point(Preissmann) implicit scheme. In Section II, governing equations for one-
dimensional unsteady water flow in channels are derived. Section III presents implicit for-
mulations of governing equations used in the models and also gives the solution methods for 
the set of simultaneous equations resulting from implicit formulations. In the computer 
models presented in this manual, the user is allowed to enter several input parameters inter-
actively. A step-by-step guide to the operation of the program is presented in Section IV and 
V of the manual. In Section VI, case studies demonstrating the application and capabilites of 
the model are given. Finally, Section VII presents the conclusions of the study. 
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II. FUNDAMENTALS OF CHANNEL FLOW 
The equation describing the one-dimensional unsteady motion in a channel can be 

derived from Figure 2.1 that represents an instantaneous picture of the motion in an ele-
mentary reach. The instantaneous discharges through section I and II are Q and 
Q + ( o QI ox) dx, respectively. 

During the time period dt, the volume accumulation within the reach is given by the 
expression [ Q - { Q + ( o QI ax) d x}] d t. This volume must be equal to the increased storage 
within the element. 

~ . A II I b dx 

Q --....... 
y h 

. A Horizontal Datum SECTION A - A 
~ 

Figure 2.1 Elementary channel reach 

Equating these two expressions: 
oA oQ -+-=q ot ox [EQ. 2.1] 

Equation [EQ. 2.1] can be reduced to the following equation when no lateral inflow is con-
sidered: 

oA+oQ=o 
ot ox 

[EQ. 2.2] 

These equation [EQ. 2.1] and [EQ. 2.2] mathematically express the Law of Conservation of 
Mass applied to an incompressible fluid. The momentum equation can be obtained from 
Newton's Second Law. The only forces assumed to be acting upon the control volume of 
Figure 2.1 are gravitational and friction forces. 
The gravitational force can be expressed as: 
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oy 
-(pAdx)g-

ox 

And the friction force can be expressed as: 
-(p Adx)gS 1 

[EQ. 2.3] 

[EQ. 2.4] 

The acceleration of the element with mass of ( p A dx) is given by 
d V Id t = o VI o t + V ( o VI ox). 

From Newton's Second Law: 

( ov oV) oy 
(pAdx) at+V ox =-pAdxg 0x -pAdxgS 1 [EQ. 2.5] 

oV oV oy 
-+V-+g-+gS =O 
ot ox ox 1 [EQ. 2.6] 

From Figure 2.1, [EQ. 2.6] can be rewritten in terms of water depth, velocity, bed slope 
and friction slope using y = z + hand S 0 = - o z Io x. 

oV oV oh 
at+V ox +gox =g(So-Sf) [EQ. 2.7] 

Expressing [EQ. 2.7] in terms of Q and h (Cunge, 1980): 

oQ o(Q 2 1 A) oh 
-+ +gA-=gA(S -S) 
ot ox ox 0 I 

[EQ. 2.8] 

The comparison of the order of magnitude of the internal, pressure, gravity and friction 
terms shows that the internal and pressure terms (the three terms on the left hand side in [EQ. 
2. 7] or [EQ. 2.8]) are insignificant compared with the gravity and friction terms. Their terms 
can be neglected in the mathematical modeling. 
The resulting simplified form of the momentum equation is known as the kinematic wave 
equation, which is given as: 

[EQ. 2.9] 

or 

5 1 =5 0 [EQ. 2.10] 

Ponce and Simons(1978) investigated the criteria for slow-rising flood waves based on a 
comparison of the attenuation of the analytical solution for the kinematic models. 
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The following definitions are used in the simplified criteria by Ponce and 
Simons: U 0 =steady uniform flow mean velocity; d 0 =steady uniform flow 
depth; S 0 =bed slope; Lo=reference channel length; T=wave period of sinusoidal per-
turbation to steady equilibrium flow; i:=dimensionless wave period of the unsteady com-
ponent of the motion, such tha~ 

[EQ. 2.11] 

[EQ. 2.12] 

The suggested criteria by Ponce and Simons for the applicability of the kinematic wave 
models are [i:> 171] with 95% accuracy and ['t>83] with 90% accuracy. 
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III. FINITE DIFFERENCE FORMULATIONS 
The two basic differential equations (continuity and momentum equations) which are 

derived in the preceding section express the phenomena of the water flow in the channel. 
However, they furnish no direct answers as to the values of discharges and water depths which 
are solutions of the basic equations which are functions of time and space. That is, the theo-
retical analyses are so complicated that solutions can only be obtained by approximate 
methods. A frequently employed approximate method is the finite difference method. 

In the finite difference methods, uncertain initial flow variables and stability restrictions 
cause modelers to choose implicit finite difference methods rather than explicit finite differ-
ence methods. The dependence of the coefficients upon the flow variables in the differential 
equations claasifies the implicit models into two groups: the nonlinear models and the linear 
models. The nonlinear models are rigorous in theory but the iterations require a great deal of 
computational time. On the other hand, the linear models, which are developed by discreti-
zation of nonlinear coefficients, have computational speed and stability advantage over the 
nonlinear equations. 

In this section, the finite difference formulations for a nonlinear model (KINSCl) and a 
linear model (KINSC2) are presented. KINSCl is a nonlinear model based on the Abbott-
Ionescu implicit scheme and uses Gauss-Seidel iterative method. On the other hand, KINSC2 
is a fully linear model based on a four point implicit scheme and uses a double sweep method. 

3.1 Finite Difference Formulation for KINSCl 
3.1.1 Selection of the Scheme 

An implicit scheme proposed by Abbott-Ionescu is selected for KINSCl. In the 
scheme two flow variables (Q and h) are computed at different grid points as shown in 
Figure 3.1. This scheme was first proposed by Abbott and Ionescu (1967) at the Inter-
national Institute for Hydraulic and Environmental Engineering in Delft, the Nether-
lands. Because the flow variables are computed at different points, the difference 
approximations of the derivatives in [EQ 2.1] and [EQ 2.10] are not applied at the same 
cross section. 

From this scheme, time derivative, space derivative and the coefficients are writ-
ten as follows: 
time derivative·: 0 h h ?• 1 - h? 

-=----
()t ~t 

[EQ. 3.1] 

space derivative: 
[EQ. 3.2] 

conveyance: K~·112 = !(K~·1 + K~+1 + K~ + K~ ) 
l+ 1 4 l t+2 l l+2 [EQ. 3.3] 

top width: 
[EQ. 3.4] 
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Discharge Water Depth Discharge 
i I 

I 
I ! n+l , 

Qn+l hn+l Qn+l 
i-1 i i+l 

~ 
~t 

H 
E-t n hn n 

Qi-1 Qi+l LENGTH n . i ,, 
6x i 

i-1 i i+l 

Figure 3.1 Formulation of Abbott-Ionescu Scheme 

Using these derivatives and coefficients, the continuity equation [EQ. 2.1] and 
momentum equation [EQ 2.10] are replaced by algebraic finite difference relationships. 
The continuity equation is replaced as follows: 

b ~· l /2 i - i + - i+ l - i- l + i+ l - i- l = qi + qi hn+l hn l(Qn+l Qn+l Qn Qn ) ( n i+l) 

z !1t 2 2!1x 2!1x 2 
[EQ. 3.5] 

[EQ. 3.6] 

The momentum equation [EQ. 2.10] for kinematic flood wave approximation can 
be rewritten in terms of discharge and conveyance, which is defined as K = i.:86 

R 213 A 

[EQ. 3. 7] is discretized as: 

Q2 
-=S K2 o 

or 

( K'!-+112)2 

Q ~+ 1 = z+ l S 
z+l Qn o 

i+ l 

6 

[EQ. 3.7] 

[EQ. 3.8] 

[EQ. 3.9]1 



In order to solve the set of equations, [EQ. 3.6] and [EQ. 3.9], an iterative method 
is used. In this iterative method, the equations are solved starting with known initial values 
of flow variables at time step n 6 t as an approximate solution. These approximations are 
improved iteratively until convergence criteria is satisfied. In [EQ. 3.6] and [EQ. 3.9], the 
superscript ( n + & ) indicates that the coefficients are evaluated between two time levels 

n6t and (n + 1 )6t. The coefficient K~:1112 is interpolated as K~.\112 = ~ 

(Kr 1 + K ~:d + K ~ + K ~. 2 ) since it is evaluated at the discharge point. 

3.1.2 Selection of the Algorithm 
The gauss-Seidel iterative method is selected for solving [EQ. 3.6] and [EQ_. 3.9]. 

This method is frequently used for solving engineering problems because of the advan-
tages of less computing time and relatively rapid convergence. The governing equations 
can be expressed in the matrix form [A] {X} = {B}. 

Where, [A] : coefficient matrix 
{X} : vector of unknown 
{B} : vector of intercept values 

a 11 x ~ p) + a 12 x ~p- 1 ) + a 13 x &p- 1 ) + ... + a 1 n x ( p - 1 ) = b 1 

a21 x~P> + a22XCP> + a23x&p-1) + ... + a2nX~p-1) = bz 

[A]{x} = {B} s 

a x<P>+a x<P>+a xCP>+ +a x<P>=b n 1 1 n 2 2 n 3 3 • • • nn n n 

[EQ. 3.10] 

Superscript p means an improved unknown value through iteration, and p - 1 
means an unimproved unknown value. An improved unknown value at the first section 
can be, expressed as: 

x~P> = - 1
-[- fa lix)p-l) + b 1 J 

a11 i-2 
[EQ. 3.11] 

The general expression at isection is given as: 

1 [ i-1 n J x~P>=- - \ a .. x<.P>_ \ a .. x<.P- 1>+b. 
i L i1 1 L i1 1 i 

aii i-2 i·i•l 
[EQ. 3.12] 

i=2, 3, 4, ., n 
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Through [EQ. 3.11] and [EQ. 3.12], the unknown variables xi are successively 
improved by substitution into the right hand side. As soon as a new value is computed, it 
is taken into account for subsequent computations. This is a method of successive 
relaxation. The iteration process is continued until the absolute value of the difference 
between two successive iterations is smaller than the accuracy criteria. 

3.1.3 Organization of the Program 
KINSCl consists of a main program containing three major parts: determination of 

channel geometry and initial flow conditions, solution by the iterative method, and output 
of results. 

The input data for determination of channel geometry and initial flow conditions 
are explained in the Section V (How to Use the Program). 

Solution by iterative method is initiated from upstream to downstream. For the fast 
convergence, the values of the calculated flow variables at the downstream end are 
adjusted by downstream boundary condition (Manning's equation) and iteration is con-
tinued until the difference between the successive iterations is within the accuracy crite-
ria. 

The numerical values of water depths, water surface elevations, discharges, etc. are 
printed in the output file. 
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3.1.4 Flow Chart for the Program KINSCl 

START 

READ 
PARAMETERS 

COMPUTE 
CHANNEL GEOMETRY 
AT EACH SECTION 

COMPUTE 
INITIAL FLOW 

CONDITIONS 

READ 
UPSTREAM BOUNDARY 

CONDITION 

SET 
TIME - 0 

TIME - TIME + ~t 

YES 

COMPUTE 
FLOW VARIABLES 
(FORWARD) USING 

ITERATIVE 
TECHNIQ~E 

STOP 

9 

CHECK AND 
ADJUSTMENT 

BY DOWNSTREAM 
BOUNDARY CONDITION 

COMPUTE 
FLOW VARIABLES (BACKYARD 

USING ITERATIVE 
TECHNIQUE 

FLOW VARIABLES CHANGE 
FROM n+l (NEY) TIME 

LEVEL TO n (KNOWN) 
TIME LEVEL 

PRINT 
TIME AND FLOW 

VARIABLES 



3.2 Finite Difference Formulation for KINSC2 
3.2.1 Selection of the Scheme 

A four point implicit scheme proposed by Preissmann is selected for KINSC2. This 
scheme was introduced by Preissmann (1961) and has been described in a number of 
papers (Cunge and Wegner,1964; Amein and Fang,1970; Liggett and Cunge,1975; Bar-
kau,1985 and so on). 

In this scheme two flow variables (Q and h) are computed at the same computa-
tional grid points as shown in Figure 3.2. . 

hn+l 
i 

hn+l 
i+l 

n+l 
~ Qn+l Qn+l 
~ i i+l 
H __, -E-4 ~t 

9 n 
hn hi+l LENGTH 

n i 

l Q~ ~x Q~+1-t 
i i+l 

Figure 3.2 Formulation of a four point scheme 

From this scheme time derivative, space derivative and the coefficient are written as 
follows: 

time derivative: oh=~( h?++ll - h?+ 1+h?+ 1 - h?) 
ot 2 .6.t .6.t 

[EQ. 3.13] 

- = 8 l+ 1 l + ( 1 - 8) i+ 1 l 
space derivative: oQ ( Q'!-+ 1 - Q'!-+ 1) ( Q'!- - Q'!-) 

ox .6.x .6.x 
[EQ. 3.14] 

top width: b ~ = b ~ + b ~ 
l+l/2 l t+l [EQ. 3.15] 

If 8 = 1 (fully implicit scheme), then the space derivative is rewritten as follows: 
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space derivative:() Q = Q 7;1
1 - Q 7· 1 

()x fix 
[EQ. 3.16] 

Using these derivatives and coefficient, the continuity equation [EQ. 2.1] and 
momentum equation [EQ. 2.10] are replaced by algebraic finite difference relationships 
as follows: 

For the continuity equation: 
b~+l/2 n+l hn hn+I n) 1 n+l n+I 1 n · n+I 
2

fit (hi - i + i+l -hi+I + fix(Qi+I -Qi )=2(qi+ll2+qi+ll2) [EQ. 3.17] 

Multiplying [EQ. 3.17] by ( 4lit), 

[EQ. 3.18] 

[EQ. 3.18] can be rewritten as a simple finite difference form by substituting e for:~. 

AQ~· 1 + Bh~· 1 + CQ~· 1 + Dh~· 1 = R 
L L L+ I L+ I [EQ. 3.19] 

The expressions of the coefficients of [EQ. 3.19] can be written as follows: 
A =-48 

B = 2b ~.I /2 

C= 48 

D = 2b~. 112 

R = 2 b n h n + 2 b n h n + 2 " l ( n + n+ 1 ) i+l/2 i i+l/2 i+I Ll qi+I/2 qi+I/2 

The friction slope, S 1 , is expressed as a function of the discharge (Q) and the 
conveyance(K), which is defined as a function of water depth (h) using Manning's equa-
tion. This friction slope, which is accordingly a function of two flow variables, renders the 
momentum equation a nonlinear equation which requires iterations for the solution. To 
derive the linear equation from this nonlinear equation, the friction slope can be discre-
tized using Taylor's series as follows: · 

11 



[EQ. 3.20] 

n+l=5 n+ t+l(Q~+l_Q~ )- t+l_::: Sbi+l_ 4Ri+l (h~+l_h~ ) 251.n 251.n K'!- ( n n ) 
sf. !. Qn t+l L+l Kn An 3 3 L+l t+l 

t+l z+l i+l i+l i+l 

[EQ. 3.21] 

The momentum equation can be rewritten into a simple linear equation by substi-
tuting [EQ. 3.20] and [EQ. 3.21] into [EQ. 2.9]. : 

£Q~· 1 + Fh~· 1 + GQ~+i + Hh~· 1 = Q 
l l 1+ 1 1+ 1 [EQ. 3.22] 

The expression of the coefficients of [EQ. 3.19] can be written as follows: 
gA?5 1 n 

£= i 

Q? 

gA? 5 i~K'!-(Sb'!- 4R'!-) F=- , i --'---' 

K7 Af 3 3 

g A 7+ 1 5 f n K n ( Sb n 4 R n ) 
H - - i+l i+l i+l i+l - -----

K~l A~1 3 3 

l gA~5 / Kn(Sbn 4Rn) n l n n n n ii i in Q=gA. 112 5 +-gA.S 1 +-gA. 1 S 1 - - ---- h. 1
• 

0 2 ' i 2 1
• i• i K '!- A'!- 3 3 1 

L l 

_ i+l~ i+l i+l n g A ?+ 1 S f n K n ( Sb n 4 R n ) 
--- h-1 

K n n i+ i• i Ai• i 3 3 

The procedure for the decision of the coefficients of the momentum equation is 
indicated in the flow chart for the subroutine KINEM. 
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3.2.2 Selection of the Algorithm 
The double sweep method, which takes advantage of the banded matrix structure 

of equations to compute the solution, is selected for solving [EQ. 3.19] and [EQ. 3.22]. 
The major advantage of this method is the reduction of the storage required for the 
coefficient matrix. That is, the computer storage required for the coefficient matrix is 
reduced significantly from the 2N x 2N matrix to the 2N x 4 matrix. Here, N is the number 
of sections required for computing flow variables. 
Two equations can be written in matrix notation as [A] {X} = {B}, 
where [A] : coefficient matrix 

{X} : vector of unknown 
{B} : vector of intercept values 

The coefficient matrix [A] can be expressed in the following form: 

a11 a i2 

az1 az2 az3 az4 

a31 a32 a33 a34 

[A]= a41 a42 a43 a44 

as1 as2 as3 as4 
[EQ. 3.23] 

If the components of [A] are shifted horizontally such that the relative positions of 
the components in any one row remain the same, [A] takes the form [A']. Also, two 
equations can be written in matrix notation such as [A'] {X} = {B}. The coefficient matrix 
[A'] can be expressed by [EQ. 3.24]. 

a 13 a14 

az1 az2 az3 az4 

a31 a32 a33 a34 

a41 a42 a43 a44 

[A ]= [EQ. 3.24] 

This matrix can be solved by the deci~ion of the value of matrix coefficients and then 
the unknown values. The recurrent formulas for the coefficient calculation, applicable to 
even-numbered rows (i = 2,4,6, ... ,2n) are: 
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· M i-1,4 . M. =-a. +a. 1.2 1.1 M 1,2 
i-1. 3 

[EQ. 3.25a] 

and 

• Zi-1 
Z.=-a. 1 +r. 

I I, M I 
i-1, 3 

[EQ. 3.25b] 

in which M l . 3 = a ~ . 3 , M 1 . 4 = a ~ . 4 and Z 1 = r 1 

The recurrent formulas, applicable to the odd-numbered rows (i = 3,5, 7, ... ,2n-1) 
are: 

· Mi-2,4 • M. 2=-a. l +a. 2 
I, I, Mi-2,3 I, 

[EQ. 3.26a] 

. M i.2 . 
M. 3=-a. l 3 +a. 3 I, 1-. M I, 

i-1, 2 
[EQ. 3.26b] 

. M i.2 • 
M · 4 =-a ·-1 4 +a· 4 

I, I • Mi-I.2 I, 
[EQ. 3.26c] 

and 

[EQ. 3.26d] 

The computations of the coefficients proceed sequentially from i = 2 to i = 2n. The 
components of the unknown values, Xi, are obtained by back-substitution commencing 
at i = 2n and proceeding sequentially to i = 1. 

The unknown at i= 2n is: Z 2n 
X2n = M 

2n,2 

and the recurrent formula for odd-numbered row is: 

14 
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[EQ. 3.28] 



while the formula for even-numbered row is: 

[EQ. 3.29] 

The double sweep method converges faster than iterative matrix methods and thus 
saves computational time. The solution procedure by this double sweep method is shown 
in the flow chart for the subroutine MA TRIX. 

3.2.3 Organization of the Program 
KINSC2 consists of a main program and two subroutine programs. The main pro-

gram has the same three major parts as KINSCl: determination of channel geometry and 
initial flow conditions, solution by the double sweep method, and output of results. 

The determination of channel geometry and initial flow conditions, and output of 
results are identical to KINSCl. 

The double sweep method consists of two sweeps: forward and backward. The 
forward sweep is carried on to compute the value of coefficient matrix by applying [EQ. 
3.25] and [EQ. 3.26]. The first component of unknown value is obtained by using the value 
of the coefficient calculated by the downstream boundary condition. The rest of the 
components of the unknown are obtained in the backward sweep. That is, the decision of 
the components of the unknown proceeds from the last section to the first section. 

The subroutine KINEM is used to compute the values of the coefficient matrix in 
the forward scheme and the subroutine MATRIX is used to compute the values of the 
unknown in the backward scheme. . 
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3.2.4 Flow Charts for the Program KINSC2 
3.2.4.1 Main Flow Chart 

START 

-READ 
PARAMETERS 

COMPUTE 
CHANNEL GEOMETRY 
AT EACH SECTION 

COMPUTE 
INITIAL FLOW 

CONDITIONS 

READ 
UPSTREAM BOUNDARY 

CONDITION 

SET 
TIME - 0 

TIME - TIME + ~t 

YES 

CALL KINEM 
COMPUTE THE 

COEFFICIENT OF 
CONTINUITY AND 

MOMENTUM EQUATION 

CALL MATRIX 
COMPUTE 

FLOW VARIABLES 

FLOW VARIABLES CHANGE 
FROM n+l (NEY) TIME 
LEVEL TO n (KNO\JN) 

TIME LEVEL 

YES 

PRINT 
TIME AND 

FLOW VARIABLES 

No-----
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3.2.4.2 Flow Chart for the Subroutine KINEM 

SUBROUTINE KINEM 

, 
g An Sn 

1 f i 
Bi, l - Qn 

i 

g An Sn Kn [ Sbn 4R1] 
B 2 - -

i f 1 ::.1 .:..:..1. 
i. Kn An 3 - 3 

i i 

,., 
n Sn g Ai+l f 1+1 8 i,3 - n . 
Qi+l 

n Sn [ ] g Ai+l n n n 
f 1+1 ~ 5b1+1 4R1+1 

B 4 - - 3 - 3 i, n n 
Ki+l Ai+l 

n s l. An Sn 1 n Sn Ri - g Ai+l/2 + g + 2 g Ai+l 0 2 i f i f i+l 

g An Sn Kn ( s~t 4:1] i f i - ::1 - hn 
Kn An i 

i i 

n Sn { ] g Ai+l n n n 
f i+l ~ Sbi+l 4Ri+l n - - hi+l n n 3 3 

Ki+l Ai+l 

RETURN 
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3.2.4.3 Flow Chart for the Subroutine MATRIX 

SUBROUTINE MATRIX 

M 
M 2 

- - , 1-2 4 + , 
i ail M 8 i 3 • i-1,2 • 

Mi-1 4 a' + a' i,l Mi-l 3 1,2 . 

z. 2 
• 1.: + a. 1 M 'Y 
1., i-2 3 . 

RETURN 
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IV. BEFORE USING THE PROGRAM 
Two kinematic wave models, KINSCl and KINSC2, using finite difference formulations 

developed in the previous section were programed in Fortran language. 
KINSCl is a nonlinear model based on the Abbott-Ionescu implicit scheme and uses 

Gauss-Seidel iterative method. On the other hand, KINSC2 is a fully linear model based on a 
four point implicit scheme and uses the double sweep method. 

KINSCl consists of a main program, whereas KINSC2 consists of a main program and 
two subroutines which are KINEM for decision of the matrix coefficients of the momentum 
equation and MATRIX for the decision of the unknown variables. 

To avoid unnecessarily large storage required of the PC, the dimensions of the variables 
are fixed on 10 segments and 100 cross sections. If the number of segments is greater than 10, 
then the dimensions of LENG, SLOP, TOP, Band TLEN must be increased to the number of 
the segments. If the number of cross sections is greater than 100, then the dimensions of Q, H, 
K, REACH, Z, SO, A, R, Y, QQ, and Tin KINSCl and Q, H, K, REACH, Z, SO, A, R, Y, 
QQ, T, SS, SF, TT, MM, and AA in KINSC2 must be increasd to the number of the cross 
sections. Also, the dimension of ZZ, RR, and XV in KINSC2 must be increased as much as 
twice the number of cross sections. 

To run the models, an IBM PC, PC-XT, PC-AT or compatible is needed. An Epson 
compatible Dot-Matrix printer, Hewlett-Packard Laser-Jet+ printer or Hewlett-Packard 
Laser-Jet Series II printer is also needed to print out the results. 

To excute and increase the dimensions in the program, IBM PC/MS DOS(Version 2.0 
or greater) is needed. To make an execution file after increasing the dimensions or debugging, 
a Microsoft Fortran Compiler(Version 4.0 or greater) is needed. Data input in the program is 
explained in the next section. 
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V. HOW TO USE THE PROGRAM 
This section describes how to use the main program and to input the parameters in 

appropriate format. 
The first step is to execute "KINSCl" or "KINSC2". This is accomplished by typing on your 

PC: 
KINS Cl 
or 

.KINSC2 
Now you are ready to enter the output file name and input data. Please be make sure 

that KINSCl is a nonlinear model using an iterative technique and KINSC2 is a linear model 
using a double sweep technique. 

5.1 Setting The Output File 

This is done by typing the output file name at the following instruction on your PC: 
Instruction : ENTER THE OUTPUT FILE NAME (DEV:FNAME.EXT) 
Example : A:KINSCl.OUT for the case of "A" drive, file name of "KINSCl" and 

extension of "OUT". 

5.2 Setting Number of Segments and Time Limit 

This is done by typing segment numbers having different bed slope in a channel and 
calculation time limit at the following instruction on your PC: 

Instruction : ENTER NO. OF SEGMENTS HA YING DIFF. BED SLOPE & TIME LIMIT 
Example : 1,1000. for the case of a single segment with a constant slope and time limit 

of 1000 seconds. 

5.3 Setting The Upstream Elevation and Channel Roughness 

This is done by typing the upstream channel bed elevation and channel roughness 
(Manning's N) at the following instruction on your PC: 

Instruction: ENTER TOP ELEVATION AND ROUGHNESS OF THE CHANNEL 
Example : 100.,0.03. for the case of the upstream channel bed elevation of lOOft and 

channel roughness of 0.03. 
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5.4 Setting The Geometry of Each Segment 

This is done by typing segment numbers, lengths, slopes and widths for each segment 
at the following instruction on your PC: 

Instruction : ENTER SEGMENT NO.,LENGTH,SLOPE & WIDTH IN EACH SEGMENT 
Example : 1,1000.,0.0l,100. for the case of a segment channel having a constant slope 

of 0.01, 1000 ft length and 100 ft width. 

5.5 Setting The Magnitude of Space and Time Increment 

This is done by typing the intervals of space increment and time increment at the fol-
lowing instruction on your PC: 

Instruction: ENTER THE INTERVAL OF LENGTH AND TIME FOR CALCULATION. 
Example : 100.,10. for the case of length interval of 100 ft and time interval of 10 

seconds. 

5.6 Setting The Magnitude of Base Flow 

5.6.1 Selection of The Base Flow Condition 
This is done by selecting "1" for the base water depth or "2" for the base discharge 

at the following instruction on your PC: If you select "1" as the base flow condition, the 
computer automatically requires the base water depth(Ref. 4.6.2) and if you select "2" as 
the base flow condition,. the computer requires the base discharge(Ref. 4.6.3). 

Instruction : SELECT THE BASE FLOW OPTION (WATER DEPTH:l, DISCHARGE:2) 
Example :2 for the case that the base flow condition is discharge. 

5.6.2 Input of The Base Water Depth 
This is done by typing the base water depth at the following instruction on your PC: 
Instruction : ENTER THE BASE WATER DEPTH OF THE CHANNEL 
Example : 3. for the case of the base water depth of 3 ft. 

5.6.3 Input of The Base Discharge 
This is done by typing the base discharge at the following instruction on your PC: 
Instruction : ENTER THE BASE DISCHARGE OF THE CHANNEL 
Example: 1000. for the case of the base discharge of 1000 cfs. 
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5.7 Setting The Magnitude and Duration of The Lateral Inflow 

This is done by typing the unit discharge( cfs/ft) and duration (seconds) of the lateral 
inflow at the following instruction on your PC: 

Instruction: ENTER THE DISCHARGE FOR LATERAL INFLOW & DURATION 
Example : 0.5,100. for the case of a unit discharge of 0.5 cfs/ft and duration of 100 

seconds. 

5.8 Setting Upstream Boundary Condition 

5.8.1 Selection of The Upstream Boundary Condition 
This is done by selecting "1" for a constant discharge, "2" for a sinusoidal type dis-

charge and "3" for a linear type discharge as an upstream boundary condition. If you select 
"1","2" or "3" as the upstream boundary condition, the computer automatically requires 
the constant discharge(Ref.4.8.2), sinusoidal type discharge(Ref.4.8.3) or linear type 
discharge(Ref.4.8.4 ), respectively. 

Instruction: SELECT UPSTREAM BOUNDARY OPTION (CONS.:l,SINU.:2,LIN.:3) 
Example : 1 for the case of upstream boundary condition of constant discharge. 

5.8.2 Input of The Constant Discharge 
This is done by typing the constant discharge at the following instruction on your 

PC: 
Instruction: ENTER THE DISCHARGE IN UPSTREAM BOUNDARY CONDITION 
Example : 1500. for the case of the constant discharge of 1500 cfs at upstream 

boundary. 

5.8.3 Input of The Sinusoidal Type Discharge 
This is done by typing the parameters(Dl, D2, D3 & TL) for the sinusoidal type 

discharge at the fc_,owing instruction on your PC: 
Instruction: ENTER PARAMETERS FOR THE SINUSOIDAL UPSTREAM BOUNDARY 
Example: 0.5,1.0,20.,360000. for the case of the base flow of 0.5 cfs/ft (Dl),ampli-

tude of 1.0 cfs/ft (D2),period of 20 hours (D3) and duration of 360000 seconds (TL). 
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Q=D1 + 02 cos (3.14t/D3) 0< t <TL 

TL D1=Base Flow 

Time 

Figure 5.1 Sinusoidal type discharge 

5.8.4 Input of The Linear Type Discharge 
This is done by typing the parameters (Tl,T2 & QM) for linear type discharge at 

the following inst:r:uction on your PC: 

Base F1ow 

Time 

Figure 5.2 Linear type discharge 

Instruction : ENTER THE PARAMETERS FOR LINEAR UPSTREAM BOUNDARY 
Example : 600.,1800.,500. for the case that the duration of increment, the duration 

of decrement and peak discharge are 600 seconds (Tl), 1800 seconds (T2) and 500 cfs 
(QM), respectively. 

5.9 Summary of Instructions 
(1) ENTER THE THE OUTPUT FILE NAME (DEV: FNAME.EXT) 
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(2) ENTER NO. OF SEGMENT HAVING DIFF. BED SLOPE & TIME LIMIT 
(3) ENTER TOP ELEVATION AND ROUGHNESS OF THE CHANNEL 
(4) ENTER SEGMENT NO., LENGTH, SLOPE & WIDTH IN EACH SEGMENT 
(5) ENTER THE INTERVAL OF LENGTH AND TIME FOR CALCULATION 
(6) SELECT THE BASE FLOW OPTION (WATER DEPTH:l,DISCHARGE:2) 

(A) ENTER THE BASE WATER DEPTH OF THE CHANNEL 
(B) ENTER THE BASE DISCHARGE OF THE CHANNEL 

(7) ENTER THE DISCHARGE FOR LATERAL INFLOW & DURATION 
(8) SELECT UPSTREAM BOUNDARY OPTION (CONS.:1,SINU.:2,LIN.:3) 

(A) ENTER THE DISCHARGE IN UPSTREAM BOUNDARY CONDITION 
(B) ENTER PARAMETERS FOR THE SINUSOIDAL UPSTREAM BOUNDARY 
(C) ENTER THE PARAMETERS FOR LINEAR UPSTREAM BOUNDARY 
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VI. CASE STUDIES 
The two models, KINSCl and KINSC2, have been applied to three case studies. The 

first case study was applied to show the comparison of development of the wave front with 
time between two models. The development of the wave front by KINSC2 propagates faster 
than KINSCl. This means that the convergence by KINSC2 is faster than KINSCl. 

The second case study, chosen from Viessman, was applied to show the attenuation and 
consistence of two models through the comparison of the hydrographs between upstream and 
downstream. 

The third case study, chosen from Crawford & Linsley, was applied to show the com-
parison between the observed hydrograph and the simulated hydrographs by the models. The 
third case study indicates that these models have relatively good agreement with observed 
data. 

In general, KINSC2 using the double sweep method has about 40% decreased com-
puting time compared to KINSCl using the iterative method. The physical characteristics of 
each case study are presented in the following table. 

Description Case #1 Case #2 Case #3 

Source Viessman Crawford & 

Analysis 
Linsley 
Observed 

----------------- ------------ ------------ ------------
Length 1000 ft 20 miles 460 ft 
Width 100 ft 20 ft 100 ft 
Slope 0.01 0.0025 0.02 
Manning's n 0.03 0.02- 0.04 0.014 
Space increment 100 ft 2 miles 46 ft 
Time increment 10 sec. 10 min. 30 sec. 
Time limit 100 sec. 10 hr 15 min. 
Base flow 2.5 ft 800 cfs 1 cfs 
Lateral inflow .00017cfs/ft 
Upstream constant linear 
B.C. 0=1000 cfs T1=4 hr 

T2=10 hr 
QM=2000 cfs 
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6.1 Case Study #1 Wave Front Propagation 
We start with an example of a simple rectangular stream channel for propagation from 

the simple to the more complex studies. This example illustrates the propagation of the wave 
front with time. 

A constant discharge of 1000 cfs was imposed on a impervious surface for 100 seconds 
with a surface roughness of 0.03 (Manning's roughness coefficient) and a slope of 0.01 ft/ft. 
The channel reach is 100 ft long and 100 ft wide. The time and space increment are 10 seconds 
and 100 ft, recpectively. 

Data 

0 

D l 0 SEC 

Length 
Width 
Slope 
Manning's n 
Space increment 
Time increment 
Time limit 
Base flow depth 
Upstream discharge 

: 1000 ft 
: 100 ft 
: 0.01 ft/ft 
: 0.03 
: 100 ft 
: 10 seconds 
: 100 seconds 
: 2.5 ft 
: 1000 cfs 

WATER DEPTH VARIATION USING KINSC 1 

0.2 0.4 0.6 
(Thousands) 

LENGTH (FEET) 
+ 20 SEC 6. 60 SEC 

0.8 

X 80 SEC 

Figure 6.1 Water depth variation using KINSCl 
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Figure 6.2 Water surface profile using KINSCl 
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Figure 6.3 Water depth variation using KINSC2 
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Figure 6.4 Water surface profile using KINSC2 

Plots of two computed values of water depth and water surface profile with time are 
given in Figure 6.1-6.4. These Figures indicate different rates of convergence between two 
models. Convergence of KINSC2 is faster than KINSCl. Computational time is 1.98 seconds 
for KINSCl and 1.26 seconds for KINSC2. 

28 



6.2 Case Study #2 Linearly Varied Flood Simulation 
This case study, which is taken from Viessman(1977) and adjusted for the kinematic 

wave criteria, was analyzed to compare hydrographs resulting from these models. A 20 ft 
wide rectangular channel 20 miles long having a uniform flow discharge of 800 cfs is subjected 
to an increase of discharge of 2000 cfs in a period of 4 hours. This flow then decreases uni-
formly to the initial flow depth in an additional period of 6 hours. The channel has a bottom 
slope of 0.0025 ft/ft. 

Data 

......... 
Ul 
"""'...-.. u rJl 
'-'"O 
LaJ c:: 
<.!:> ~ a:: rJl 

::I <o 
::I;:.J:: 
uf-Ul .._, 
Q 

0 

2 

1.9 

1.8 

1.7 

1.6 

l.5 

1.4 

1.3 

1.2 

1.1 

0.9 

0.8 
0 

UPSTREAM 

Length 
Width 
Slope 
Manning's n 
Space increment 
Time increment 
Time limit 
Base flow depth 
Peak upstream discharge 

: 20 miles 
: 20 ft 
: 0.0025 ft/ft 
: 0.04 
: 10560 ft 
: 10 min. 
: 10 hr 
: 800 cfs 
: 2000 cfs 

SUCCESSION OF HYDROGRAPHS USING KIN SC 1 

200 400 

TIME (MINUTES) 
+ 4 MILE x 16 MILE 

600 

v DOWNS. 

Figure 6.5 Succession of hydrographs using KINSCl 
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SUCCESSION OF HYDROGRAPHS USING KINSC2 
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Figure 6.6 Succession of hydrographs using KINSC2 

Comparison was made for a succession of simulated hydrographs from upstream to 4, 
8, 12, 16 and 20 miles downstream as shown in Figure 6.5-6.6. The simulated hydrographs 
between two models show fair agreement within 5% difference. 

In Figure 6.5, the peak discharge of the hydrograph simulated by KINSCl shows an 
almost constant value within the fluctuation of about 1 % difference. On the other hand, the 
peak discharge by KINSC2 shows a little attenuation by advancing from upstream to down-
stream. This is because the attenuation in the kinematic wave theory is not allowed because 
the kinematic wave theory does not consider dynamic effects (described by the pressure 
gradient and acceleration terms in the full dynamic equation). However, discretization in 
KINSC2 allows the part of the dynamic effects and this component of dynamic effects allows 
a little attenuation in the discretized model. 

, The rising and falling limbs of the hydrographs. simulated by KINSC2 indicate a more 
consistent interval between the succession of hydrographs than KINSCl. In Figure 6.7-6.8, 
the comparison of the hydrographs for different roughnesses (Manning's n) was made at 10 
miles downstream. Resulting hydrographs between two models show agreement within 5 % 
difference. Computing time is average 12.10 seconds for KINSCl and average 7.25 seconds 
for KINSC2. 
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Figure 6. 7 Hydrographs for different roughnesses using KINSCl 
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Figure 6.8 Hydrographs for different roughnesses using KINSC2 
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6.3 Case Study #3 Simulation by Constant Lateral Inflow 
This case study from Crawford and Linsley(1966) was applied to compare the observed 

hydrograph and the hydrographs simulated usmg two models. This is the same case of 
channel flow over a impervious surface as perviously modeled by Crawford and Linsley. The 
lateral inflow of 0.00017 cfs/ft continues during 8 minutes, and the slope and Manning's n are 
0.02 ft/ft and 0.014, respectively. The accompanying data is listed below. Note that this case 
study used a 100 ft rectangular channel, whereas Crawford and Linsley used a 1 foot wide 
channel. 

Data 
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: 0.00017 cfs/ft 
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Figure 6.9 Comparison of the flow hydrographs 
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In the Figure 6.9, the hydrographs simulated by two models show good agreement with 
the observed hydrograph. The comparison between three hydrographs in the plateau and 
falling limb shows especially good agreement. In the rising limb, the difference between the 
observed discharge and discharge simulated by KINSCl is much greater than the difference 
between the observed and KINSC2. · 
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VII. CONCLUSIONS 
In this manual, a nonlinear iterative model (KINSCl) based on the Abbott-Ionescu 

implicit scheme and a fully linear model (KINSC2) based on the four point implicit scheme 
are introduced. 

Two governing equations, which are continuity and momentum equations, are derived 
in the section called "Fundamentals of Channel Flow". General finite difference descriptions, 
schemes, algorithms, program organizations, and flow charts for two models are given in the 
section called "Finite Difference Formulations". The general knowledge required to execute 
the program and to input data are presented in the sections called "Before Using the Program" 
and "How to Use the Program". 

Three case studies, which are wave front propagation, linearly varied flood simulation, 
and simulation by constant lateral inflow, show the application of the models in the section 
called 'Case Studies'. The comparison of two models is made in terms of convergence, 
boundary conditions, presentation of phenomena in the channel, and computational time. 
These case studies produce the following four conclusions. First, it is concluded that the con-
vergence of KINSC2 is faster than KINSCl, as shown in the case study #1. Second, two models 
require two boundary conditions (upstream and downstream). The discharge or water depth 
variation is applied as upstream boundary condition in both models. On the other hand, 
Manning's equation is applied as a downstream boundary condition. When this downstream 
boundary condition is applied in KINSCl, interpolation between different computational 
points is necessary since Q and hare not known at the same location. However, in KINSC2 
interpolation is not necessary since Q and hare known at the same location. That is, the error 
by this interpolation exists in KINSCl but does not exist in KINSC2. Third, case study #2 and 
#3 show that both models present the variation of water depth or discharge very well. Fourth, 
the computational time using KINSC2 is about 60% that of KINSCl. 

From these comparisons, it is concluded that KINSC2 is the more applicable model than 
KINSCl. The model KINSC2 will be the core of a dendritic channel network. 
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IX. APPENDIX I - PROGRAM LISTINGS 
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9.1 APPENDIX 1.1 - KINSCl 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C KINSC1 C 
c c 
C THIS IS A CHANNEL ROUTING PROGRAM USING KINEMATIC WAVE THEORY C 
C AND ABBOTT-IONESCU SCHEME DEVELOPED BY GYE WOON CHOI C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c 

DIMENSION Q(2,100),H(2,100),LENG(10),SLOP(10),TOP(10) 
DIMENSION B(10),K(2,100),REACH(100),Z(100),S0(100),A(2,100) 
DIMENSION TLEN(10),R(2,100),Y(2,100),QQ(2,100),T(100) 
CHARACTER FNAME*50 
REAL LENG,MAN,K,KAVE 

C READ FILE NAME AND PARAMETERS 
c 

G=32.2 
WRITE (*,'CA\) 1 ) 

+• ••• ENTER THE OUTPUT FILE NAME (DEV:FNAME.EXT) 
READ(*,'(A) 1 ) FNAME 
OPEN (1,FILE=FNAME,STATUS='UNKNOWN') 
TLEN(1)=0. 
WRITE(*, I (A\) I) 

+• ..• ENTER NO. OF SEGMENT HAVING DIFF. BED SLOPE & TIME LIMIT 
READ(*,*) L,TLIM 
WRITE(*, I (A\) I) 

+• ••• ENTER TOP ELEVATION AND ROUGHNESS OF THE CHANNEL 
READ (*,*) TOP(1),MAN 
DO 188 1=1,L 
WRITE (*,'(A\) 1 ) 

+• ••• ENTER SEGMENT NO.,LENGTH,SLOPE & WIDTH IN EACH SEGMENT 
READ (*,*) IJ,LENG(l),SLOP(l),B(I) 
lf(I.EC.1) GO TO 151 
IF(l.GE.2) TOP(I)=TOP(l-1)-LENG(l-1)*SLOP(l-1) 

151 TLENCI+1)=TLEN(I)+LENG(I) 
IF (I.EC.L) TOT=TLENCI+1) 

188 CONTINUE 
WRITE C*,'CA\) 1 ) 

+• ••• ENTER THE INTERVAL OF LENGTH AND TIME FOR CALCULATION 
READ (*,*) DELX,DELT 

c 
C CALCULATION OF CHANNEL GEOMETRY CLENGTH,WIDTH,BED SLOPE AND 
C BED ELEVATION) AT EVERY POINTS. 
c 

c 

NS=TOT/DELX+1 
DELX=TOT/CNS-1) 
THETA=DELT/DELX 
J=1 
REACH(1)=0. 
Z(1)=TOP(1) 
T(1)=BC1) 
S0(1)=SLOP(1) 
DO 301 I=2,NS 

351 REACH(l)=REACH(I-1)+DELX 
IFCREACH(I)-TLEN(J+1)) 305,305,350 

305 ZCI)=TOP(J)-(REACH(I)-TLEN(J))*SLOP(J) 
SO(l )=SLOP(J) 
TC l)=BC J) 
GO TO 301 

350 J=J+1 
GO TO 351 

301 CONTINUE 
T(NS+1 )=T(NS) 
SO(NS+1)=SO(NS) 

C INITIAL CONDITION 
c 
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c 

WRITE(* I I CA\) I) 
+• ••• SELECT THE BASE FLOW OPTION (WATER DEPTH:1,DISCHARGE:2) 

READC*,*)JJ 
IFCJJ.EQ.1) THEN 

WRITE(* I I CA\) I) 
+ '··· ENTER THE BASE WATER DEPTH OF THE CHANNEL 

READ(*,*) HC1,1) 
A(1,1)=TC1)*HC1,1) 
RC1,1)=AC1,1)/CTC1)+2.*HC1,1)) 
YC1,1)=HC1,1)+Z(1) 
KC1,1)=1.486/MAN*RC1,1)**(2./3.)*AC1,1) 
Q(1,1)=KC1,1)*S0(1)**0.S 

ELSE 
WRITE(* I I CA\) I) 

+ '··· ENTER THE BASE DISCHARGE OF THE CHANNEL 
READ(*,*) Q(1,1) 
HC1,1)=CMAN*Q(1,1)/(1.486*T(1)*SOC1)**0.Sj)**(3./5.) 
KC1,1)=QC1,1)/S0(1)**0.S 
CC=1.486**1.S*T(1)**2.5/CMAN**1.5) 
L=O 

833 L=L+1 
IF(L.GT.20) GO TO 1000 
FUN=TC1)*KC1,1)**1.5+2.*KC1,1)**1.S*HC1,1)-CC*HC1,1)**2.S 
FF1=2.*K(1,1)**1.S-2.S*CC*HC1,1)**1.S 
HC=H(1,1) 
HC1,1)=H(1,1)-FUN/FF1 
IFCABSCHC1,1)-HC).LT.0.001) GO TO 377 
GO TO 833 

377 A(1,1)=T(1)*HC1,1) 
RC1,1)=AC1,1)/(T(1)+2.*HC1,1)) 
YC1,1)=HC1,1)+Z(1) 

END IF 
DO 102 I=2,NS+1 
Q(1,I)=Q(1,1) 
H(1,I)=HC1,1) 
YC1,I)=HC1,l)+Z(I) 
AC 1, I>=AC 1, 1) 
RC1,I>=RC1,1) 
KC1,l)=KC1,1) 
QC2,I)=QC1,I) 
HC2, I>=HC 1, I) 
YC2, I )=YC1, I) 
AC2,l)=AC1,I) 
RC2,I)=RC1,I) 
KC2,I)=KC1,I) 

102 CONTINUE 
QO=Q(1,1) 
WRITE(* I I CA\) I) 

+• ••• ENTER THE DISCHARGE FOR LATERAL INFLO\.l & DURATION 
READ(*,*)E1,TD 

C UPSTREAM BOUNDARY CONDITION 
c 

WRITE(* I I CA\) I) 
+• ••• SELECT UPSTREAM BOUNDARY OPTION CCONS.:1,SINU.:2,LIN.:3) 

READ(*,*) JJJ 
IF(JJJ.EQ.1) THEN 

WRITE(*, 'CA\)') 
+ '··· ENTER THE DISCHARGE IN UPSTREAM BOUNDARY CONDITION 

READ(*,*) Q(2,1) 
ELSE 

IFCJJJ.EQ.2) THEN 
WRITE(* I I CA\) I) 

+ '··· ENTER PARAMETERS FOR THE SINUSOIDAL UPSTREAM BOUNDARY 
READC*,*)D1,D2,D3,TL 

ELSE 
\JRITEC* I I (A\) I) 

+ '··· ENTER THE PARAMETERS FOR LINEAR UPSTREAM BOUNDARY 
READC*,*)T1,T2,QM 

END IF 
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c 
c 

END IF 

C CALCULATION OF DISCHARGE & WATER DEPTH USING ABBOTT-IONESCU SCHEME 
c 
c 

TIME=O. 
CALL GETTIMCIHR,IMIN,ISEC,I100TH) 
STIME=IHR*3600.+IMIN*60.+ISEC+I100TH/100. 

601 TIME=TIME+DELT 
IFCJJJ.EQ.1) THEN 

Q(2,1)=Q(2,1) 
ELSE 

IFCJJJ.EQ.2) THEN 
Q(2,1)=CD1+D2*COS(3.14*TIME/(3600.*D3)))*T(1) 
IFCTIME.GT.TL) THEN 

Q(2,1)=QO 
END IF 

ELSE 
IFCTIME.LE.T1) THEN 

Q(2,1)=QO+(QM-QO)*TIME/T1 
ELSE 

IFCTIME.GT.T1.AND.TIME.LE.T2) THEN 
Q(2,1)=QM-CTIME-T1)*(QM-QO)/C,2-T1) 

ELSE 
Q(2,1)=QO 

END IF 
END IF 

END IF 
END IF 
IFCTIME.GT.TLIM) GO TO 1000 
KK=O 

611 KK=KK+1 
IFCKK.GT.200) GO TO 701 
GO TO 602 

701 WRITEC1,504)KK 
504 FORMAT(SX, 1 ITERATION N0. 1 ,5X,I5,3X, 1 NOT CONVERGED') 

GO TO 1000 
602 NSEC=NS/2 

NNSEC=NSEC*2 
c 
C LATERAL INFLOW 
c 

c 

IFCTIME.LE.TD) THEN 
QQ2=E 1*TC1 > 

ELSE 
QQ2=0. 

END IF 
QQAVE=O. 
DO 111 I=2,NS,2 

C CONTINUITY EQUATION (FORWARD) 
c 

c 

IFCI.EQ.NS) GO TO 604 
C1=4. *TC l)*DELX 
C2=DELT*Q(2,I+1)/C1 
C3=DELT*QC2,I-1)/C1 
C4=DELT*(Q(1,I+1)-Q(1,I-1))/C1 
HC2,I)=H(1,I)-C2+C3-C4+QQ2*DELT/T(I) 
IF(I.EQ.2) HCHK=H(2,I) 

C MOMENTUM EQUATION (FORWARD) 
c 

A(2,I)=T(I)*HC2,I) 
RC2,I)=AC2,I)/(T(I)+2.*HC2,I)) 
KC2,I)=1.486*RC2,I)**(2./3.)*A(2,I)/MAN 
KAVE=CKC1,I)+KC1,I+2)+K(2,I)+KC2,I+2))/4. 
Q(2,I+1)=(0.5*(SO(I)+SO(I+1))+QQAVE/CG*T(I)*H(2,I)))*KAVE**2/ 

1QC1,I+1) 
IF(l.EQ.2) QCHK=Q(2,I+1) 
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c 
IF(I.EQ.NS-1) GO TO 777 

111 CONTINUE 

C CHECK AND ADJUSTMENT AT LAST SECTION (FOR EVEN LAST SECTION) 
c 

c 

604 LL=O 
610 LL=LL+1 

CC1=0.25*THETA/T(I) 
CC2=1.486*TCI)**(5./3.)*SO(I)**0.5/MAN 
Q(2,I)=CC2*HC2,I)**C5./3.)/(T(I)+2.*HC2,I))**C2./3.) 
Q(1,I)=CC2*HC1,1)**(5./3.)/(T(I)+2.*HC1,I))**C2./3.) 
FUN1=HC2,I)-H(1,I)+CC1*CC2*HC2,I)**(5./3.)/(T(I)+2.*HC2,I))** 

1C2./3.)-CC1*Q(2,I-1)+CC1*Q(1,I)-CC1*Q(1,I-1)-QQ(2,I)*DELT/T(I) 
IF(ABS(FUN1).LT.0.000001) GO TO 609 
FF1=1.+(5./3.*CC1*CC2*HC2,I)**(2./3)*(T(I)+2.*HC2,I))**C2./3.)-

14.*CC1*CC2*HC2,I)**(5./3.)/(3.*CTCI)+2.*HC2,I))**(1./3.))) 
2/CTCI)+2.*HC2,I))**(4./3.) 

HHC=HC2,I) 
HC2,I)=HC2,I)-FUN1/fF1 
IFCABSCHHC-H(2,I)).LT.0.00001) GO TO 609 
IFCLL.GT.90) GO TO 1000 
GO TO 610 

609 DO 112 I=NS,2,-2 
IFCI.EQ.NS) GO TO 605 

c· CONTINUITY EQUATION (BACKWARD) 
c 

c 

C1=4. *TC I)*DELX 
C2=DELT*Q(2,I+1)/C1 
C3=DELT*QC2,I-1)/C1 
C4=DELT*(Q(1,I+1)-Q(1;I-1))/C1 
HC2,I)=HC1,I)-C2+C3-C4+QQ2*DELT/T(I) 
IF(I.EQ.2) GO TO 606 

C MOMENTUM EQUATION (BACKWARD) 
c 

605 AC2,l)=TCl)*HC2,I) 
RC2,I)=AC2,I)/(T(I)+2.*HC2,I)) 
KC2,I)=1.486*R(2,I)**(2./3.)*AC2,I)/MAN 
KAVE=CKC1,I)+K(1,I-2)+KC2,I)+K(2,I-2))/4. 
Q(2,I-1)=(0.5*CSO(I)+SOCI-1))+QQAVE/CG*AC2,I)))*KAVE**2/Q(1,I-1) 

112 CONTINUE 
c 
C CHECK AND ADJUSTMENT AT LAST SECTION (FOR ODD LAST SECTION) 
c 

c 

777 LL=O 
779 LL=LL+1 

CC1=0.25*THETA/T(l+1) 
CC2=1.486*TCI+1)**(5./3.)*SO(I+1)**0.5/MAN 
Q(2,I+2)=CC2*HC2,I+2)**(5./3.)/(T(I+1)+2.*HC2,1+2))**C2./3.) 
Q(1,I+2)=CCZ HC1,I+2)**(5./3.)/CTCI+1)+2.*HC1,I+2))**(2./3.) 
FUN1=HC2,I+2)-HC1,I+2)+CC1*CC2*HC2,I+2)**(5./3.)/(T(I+1)+2.* 

1HC2,1+2))**(2./3.)-CC1*QC2,I+1)+CC1*Q(1,I+2)-CC1*Q(1,I+1) 
2-QQ(2,I+1)*DELT/T(I+1) 

IFCABS(FUN1).LT.0.000001) GO TO 717 
FF1=1.+(5./3.*CC1*CC2*HC2,I+2)**C2./3.)*CTCI+1)+2.*HC2,I+2)) 

1**(2./3.)-4.*CC1*CC2*HC2,I+2)**(5./3.)/(3.*CTCI+1)+2.* 
2HC2,I+2))**(1./3.)))/(T(I+1)+2.*HC2,I+2))**(4./3.) 

HHC=HC2,I+2) 
HC2,I+2)=HC2,I+2)-FUN1/FF1 
IF(ABSCHHC-HC2,I+2)).LT.0.00001) GO TO 717 
IFCLL.GT.90) GO TO 1000 . 
GO TO 779 

717 DO 115 I=NS+1,2,-2 
IF(l.EQ.NS+1) GO TO 705 

C CONTINUITY EQUATION (BACKWARD) 
c 

C1 =4. *TC I )*DELX 
C2=DELT*QC2,I+1)/C1 
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c 

C3=DELT*QC2,I-1)/C1 
C4=DELT*(Q(1,I+1)-Q(1,I-1))/C1 
HC2,I)=HC1,I)-C2+C3-C4+QQ2*DELT/TCI) 
IF(I.EQ.2) GO TO 606 

C MOMENTUM EQUATION (BACKWARD) 
c 

c 

705 AC2,I)=TCI)*HC2,I) 
RC2,I)=AC2,I)/CTCI)+2.*HC2,I)) 
KC2,1)=1.486*RC2,I)**C2./3.)*AC2,I)/MAN 
KAVE=CKC 1, I )+KC 1,. I -2)+KC2, I )+KC2, I -2) )/4. 
QC2,I-1)=(0.5*CSOCI)+SOCI-1))+QQAVE/CG*AC2,I)))*KAVE**2/Q(1,I-1) 

115 CONTINUE 

C CHECK AND ADJUSTMENT AT UPSTREAM SECTION 
c 

c 

606 CC3=0.25*THETA/TCI) 
FUN2=HCHK-HC1,I)+CC3*(Q(2,I+1)-Q(2,I-1)+Q(1,I+1)-Q(1,I-1)) 

1-QQ(2,I)*DELT/TCI) 
IFCABSCHCHK-HC2,2)).LT.0.000001) GO TO 773 
IFCABSCFUN2).LT.0.000001) GO TO 773 
GO TO 611 

C INTERPOLATION OF WATER DEPTH 
c 

c 

773 DO 113 I=2,NS-1,2 
HC2,I+1)=(HC2,I)+H(2,I+2))/2. 

113 CONTINUE 
HC2,1)=HC2,2) 

C INTERPOLATION OF DISCHARGE 
c 

c 

DO 114 I=1,NS-1,2 
Q(2,I+1)=(Q(2,I)+Q(2,I+2))/2. 

114 CONTINUE 

C WRITE THE RESULTS 
c 

DO 550 I=1,NS+1 
HC1,I)=HC2,I) 
Q(1,I)=QC2,I) 
YC1,I)=HC1,I)+ZCI) 
KC 1, I>=KC2, I> 

550 CONTINUE 
KK=TIME/10 
PP=TIME/10. 
IFCKK.EQ.PP) THEN 

WRITEC1,888) TIME 
888 FORMATC//,10X, 1 TIME= 1 ,F8.1,2X, 1 SEC 1/) 

WRITE( 1,333) 
333 FORMATC4X, 1 N0 1 ,7X, 1 LENGTH 1 ,8X, 1 BED EL. 1 ,6X, 1 WATER DEP',5X, 

1 1 ELEVATION 1 ,6X, 1 DISCHARGE 1/) 

DO 299 I=1,NS 
WRITEC1,444) I,REACHCI),ZCI),HC1,I),Y(1,I),Q(1,I) 

444 FORMATC4X,I2,5X,F9.0,5X,F9.2,5X,F9.2,5X,F9.2,5X,F12.2) 
299 CONTINUE 

GO TO 601 
ELSE 

GO TO 601 
END IF 

1000 CALL GETTIMCIHR,IMIN,ISEC,I100TH) 
EXTIME=IHR*3600.+IMIN*60.+ISEC+I100TH/100.-STIME 
WRITEC1,446) EXTIME 

446 FORMATC//,20X,'EXECUTION TIME= 1 ,F9.2,2X, 1 SEC 1 ) 

STOP 
END 
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9.2 APPENDIX 1.2 - KINSC2 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C KINSC2 C 
c c 
C THIS IS A CHANNEL ROUTING PROGRAM USING KINEMATIC WAVE THEORY C 
C AND FOUR POINT FULLY IMPLICIT SCHEME BY GYE WOON CHOI C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

c 

DIMENSION LENG(10),SLOP(10),TOPC10),B(10),REACHC100),Z(100) 
DIMENSION TLENC10),QQ(2,100),SS(100),IJC10) 
COMMON BBC8,100),AC2,100),SFC2,100),Q(2,100),K(2,100),TC100), 

1 RC2,100),TTC100),SOC100),HC2,100),YC2, 100) 
COMMON /BLOCK1/MMC5,100),AA(5,100),ZZC200),RRC200),XVC200) 
CHARACTER FNAME*50 
REAL LENG,MAN,K,KAVE,MM 

C READ FILE NAME ANO PARAMETERS 
c 

G=32.2 
WRITE C*,'CA\) 1 ) 

+• ••• ENTER THE OUTPUT FILE NAME CDEV:FNAME.EXT) 
READC*, 1 (A) 1 ) FNAME 
OPEN C1,FILE=FNAME,STATUS= 1UNKNOWN') 
TLENC1)=0. 
WRITE(* I I CA\) I) 

+• ••• ENTER NO. OF SEGMENT HAVING DIFF. BED SLOPE & TIME LIMIT 
READ (*,*) L,TLIM 
WRITE(* I I CA\) I) 

+• ••• ENTER TOP ELEVATION AND ROUGHNESS OF THE CHANNEL 
READ (*,*) TOP(1),MAN 
DO 188 1=1,L 
WRITE C*,'CA\) 1 ) 

+• ••• ENTER SEGMENT NO.,LENGTH,SLOPE & WIDTH IN EACH SEGMENT 
READ (*,*) IJ(l),LENG(l),SLOP(l),B(I) 
IF(l.EQ.1) GO TO 151 
IFCI.GE.2) TOP(l)=TOPCl-1)-LENGCI-1)*SLOPCI-1) 

151 TLENCI+1)=TLEN(l)+LENG(I) 
IF(l.EQ.L) TOT=TLEN(l+1) 

188 CONTINUE 
WRITE C*,'CA\) 1 ) 

+• ••• ENTER THE INTERVAL OF LENGTH AND TIME FOR CALCULATION 
READ (*,*) DELX,DELT 

c 
C CALCULATION OF CHANNEL GEOMETRY CLENGTH,WIDTH,BED SLOPE AND 
C BED ELEVATION) AT EVERY POINTS. 
c 

N =TOT/DELX+1 
DELX=TOT/CNS-1) 
J=1 
REACHC1)=0. 
ZC1)=TOP(1) 
TC1 )=BC1) 
S0(1)=SLOP(1) 
DO 301 1=2,NS 

351 REACH(l)=REACHCl-1)+DELX 
IFCREACH(l)-TLENCJ+1)) 305,305,350 

305 ZCl)=TOP(J)-CREACH(l)-TLEN(J))*SLOP(J) 
SOC l)=SLOPC J) 
TCI>=BCJ) 
GO TO 301 

350 J=J+1 
GO TO 351 

301 CONTINUE 
c 
C INITIAL CONDITION 
c 

WRITE(* I I CA\) I) 
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c 

+• ••• SELECT THE BASE FLOW OPTION (WATER DEPTH:1,DISCHARGE:2) 
READC*,*)JJ 
IFCJJ.EQ.1) THEN 

WRITE(*, I CA\) I) 
+ '···ENTER THE BASE WATER DEPTH OF THE CHANNEL 

READ(*,*) H(1,1) 
AC1,1)=TC1)*HC1,1) 
RC1,1)=AC1,1)/CTC1)+2.*HC1,1)) 
Y(1,1)=HC1,1)+Z(1) 
KC1,1)=1.486/MAN*RC1,1)**C2./3.)*AC1,1) 
Q(1,1)=KC1,1)*S0(1)**0.5 

ELSE 
WRITE(*, I CA\) I) 

+ '··· ENTER THE BASE DISCHARGE OF THE CHANNEL 
READ(*,*) Q(1,1) 
HC1,1>=CMAN*QC1,1)/(1.486*TC1)*SOC1)**0.5))**(3./5.) 
KC1,1)=Q(1,1)/S0(1)**0.5 
CC=1.486**1.5*T(1)**2.5/CMAN**1.5) 
L=O 

833 L=L+1 
IFCL.GT.20) GO TO 1000 
FUN=T(1)*KC1,1)**1.5+2.*KC1,1)**1.5*HC1,1)-CC*HC1,1)**2.5 
FF1=2.*KC1,1)**1.5-2.5*CC*HC1,1)**1.5 
HC=HC1,1) 
HC1,1)=HC1,1)-FUN/FF1 
IFCABSCHC1,1)-HC).LT.0.001) GO TO 377 
GO TO 833 

377 AC1,1)=TC1)*HC1,1) 
RC1,1)=AC1,1)/CTC1)+2.*HC1,1)) 
YC1,1)=HC1,1)+Z(1) 

END IF 
SFC1,1)=QC1,1)*ABS(Q(1,1))/KC1,1)**2 
DO 102 1=2,NS 
Q(1,l)=Q(1,1) 
HC1,l)=HC1,1) 
YC1,l)=HC1,l)+Z(I) 
A(1,l)=AC1,1) 
RC1,l)=RC1,1) 
KC1, I>=KC1, 1) 
SFC1,I)=QC1,l)*ABS(Q(1,l))/K(1,I)**2 

102 CONTINUE 
QO=Q(1,1) 
WRITE(* I I (A\) I) 

+• ••• ENTER THE DISCHARGE FOR LATERAL INFLOW & DURATION 
READC*,*)E1,TD 

C UPSTREAM BOUNDARY CONDITION 
c 

c 
c 

WRITE(* I I (A\) I) 
+• ••• SELECT UPSTREAM BOUNDARY OPTION CCONS.:1,SINU.:2,LIN.:3) 

READ(*,*) JJJ 
IFCJJJ.EQ.1) THEN 

WRITE(* I I CA\) I) 
+ '··· ENTER THE DISCHARGE IN UPSTREAM BOUNDARY CONDITION 

READ(*,*) Q(2,1) 
ELSE 

IFCJJJ.EQ.2) THEN 
WRITE(* I I CA\) I) 

+ • ••• ENTER PARAMETERS FOR THE SINUSOIDAL UPSTREAM BOUNDARY 
READC*,*)D1,D2,D3,TL 

ELSE 
WRITE(* I I (A\) I) 

+ • ••• ENTER THE PARAMETERS FOR LINEAR UPSTREAM BOUNDARY 
READ(*,*)T1,T2,QM 

END IF 
END IF 

C CALCULATION OF DISCHARGE & WATER DEPTH USING DOUBLE SWEEP METHOD 
c 
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c 

c 

TIME=O. 
CALL GETTIMCIHR,IMIN,ISEC,I100TH) 
STIME=IHR*3600.+IMIN*60.+ISEC+I100TH/100. 

601 TIME=TIME+DELT 
IFCTIME.GT.TLIM) GO TO 1000 
DO 150 1=1,NS-1 

C LATERAL INFLOW 
c 

c 

IFCTIME.LE.TD) THEN 
QQ2=E 1 *TC 1 ) 

ELSE 
QQ2=0. 

END IF 
QQAVE=O.O 

C MOMENTUM EQUATION 
c 

c 

AAVE=0.5*AC1,1)+0.5*AC1,1+1) 
THETA=DELT/DELX 
VEL1=QC1,l)/AC1,I) 
VEL2=QC1,1+1)/AC11I+1) 
DKDH1=KC1,I)/AC1,I)*(5.*TCI)/3.-4.*RC1,I)/3.) 
DKDH2=KC1,1+1)/AC1,I+1)*(5.*TCI+1)/3.-4.*RC1,I+1)/3.) 
CALL KINEM CAAVE,G,QQAVE,DKDH1,DKDH2,I) 

C CONTINUITY EQUATION 
c 

c 
c 
c 
c 

c 
c 

88(1,I)=-4.*THETA 
TAVE=CTCI)+T(I+1))/2. 
88(2, I>=2. *TAVE 
88(3,I)=4.*THETA 
88(4,1)=2.*TAVE 
SS(I)=2.*TAVE*HC1,I)+2.*TAVE*HC1,I+1)+4.*DELT*QQ2 

150 CONTINUE 

DECISION OF MATRIX COEFFICIENTS. 

AT INTERNAL POINTS 
DO 650 I=1,NS-1 
J=2*I 
AAC1,J)=88(1,I) 
AAC2,J)=8BC2,I) 
AAC3,J)=BBC3,I) 
AAC4,J)=BBC4,I) 
RR(J)=SS(I) 
J=J+1 
AAC1,J)=BBC5,I) 
AAC2,J)=BBC6,I) 
AAC3,J)=BB(7,I) 
AAC4,J)=BBC8,I) 
RR(J)=TTCI) 

650 CONTINUE 

BY UPSTREAM BOUNDARY CONDITION 
AAC1, 1)=0. 
AAC2,1)=0. 
AA(3,1)=1. 
AAC4,1)=0. 
IFCJJJ.EQ.1) THEN 

RRC1)=QC2,1) 
ELSE 

IFCJJJ.EQ.2) THEN 
RRC1)=(01+D2*COS(3.14*TIME/(3600.*D3)))*TC1) 
IFCTIME.GT.TL) THEN 

RRC1)=QO 
END IF 

ELSE 
IFCTIME.LE.T1) THEN 
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c 

RR(1)=QO+(QM-QO)*TIME/T1 
ELSE 

IFCTIME.GT.T1.AND.TIME.LE.T2) THEN 
RR(1)=QM-CTIME-T1)*(QM-Q0)/(T2-T1) 

ELSE 
RR(1)=QO 

END IF 
END IF 

END IF 
END IF 

C BY DOWNSTREAM BOUNDARY CONDITION 

c 

NN=2.*NS 
DIR=(1.486/MAN)*TCNS)*(5./3.)*HC1,NS)**C2./3.) 
AA(1,NN)=1. 
AAC2,NN)=·Q(1,NS)*(5.*T(NS)-4.*RC1,NS))/(3.*AC1,NS)) 
AAC3,NN)=O. 
AAC4,NN)=O. 
RRCNN)=Q(1,NS)-Q(1,NS)*(5.*TCNS)-4.*RC1,NS))*HC1,NS)/(3.*AC1,NS)) 

C DOUBLE SWEEP METHOD 
CALL MATRIX CNS) 
DO 400 I=1,NS 
Q(2,l)=XVC2*1-1) 
HC2,l)=XVC2*1) 
IFCHC2,l).LT.0.001) HC2,1)=0.1 

400 CONTINUE 
c 
C WRITE THE RESULTS 
c 

c 

DO 550 1=1,NS 
HC1,l)=HC2,I) 
Q(1,l)=Q(2,I) 
YC1,l)=HC1,l)+ZCI) 
AC1,I)=TCI)*HC1,I) 
RC1,l)=AC1,l)/CTCl)+2.*HC1,I)) 
KC1,1)=1.486/MAN*RC1,1)**(2./3.)*AC1,I) 
SF(1,l)=QC1,I)*ABSCQ(1,l))/KC1,1)**2 

550 CONTINUE 
KK=TIME/10 
PP=TIME/10. 
IFCKK.EQ.PP) THEN 

WRITEC1,888) TIME 
888 FORMATC//,10X,'TIME=',F8.1,2X,'SEC'/) 

WRITE( 1,333) 
333 FORMATC4X, 1 N0 1 ,7X, 1 LENGTH',8X, 1 BED EL. 1 ,6X, 1 WATER DEP',5X, 

1 'ELEVATION 1 ,6X,'DISCHARGE'/) 
DO 299 1=1,NS 
WRITEC1,444) I,REACHCI),Z(I),H(1,I),Y(1,I),Q(1,I) 

444 FORMATC4X,12,5X,F9.0,5X,F9.2,5X,F9.2,5X,F9.2,5X,F12.2) 
299 CONTINUE 

GO TO 601 
ELSE 

GO TO 601 
END IF 

1000 CALL GETTIMCIHR,IMIN,ISEC,I100TH) 
EXTIME=IHR*3600.+IMIN*60.+ISEC+I100TH/100.-STIME 
WRITEC1,446) EXTIME 

446 FORMATC//,20X,'EXECUTION TIME=',F9.2,2X,'SEC') 
STOP 
END 

C THIS IS A SUBROUTINE FOR KINEMATIC WAVE THEORY 
c 

SUBROUTINE KINEM (AAVE,G,QQAVE,DKDH1,DKDH2,I) 
COMMON BBC8,100),AC2,100),SFC2,100),Q(2,100),K(2,100),T(100), 

1 RC2,100),TTC100),S0(100),HC2,100),YC2,100) 
REAL K 
BBC5,l)=G*AC1,I)*SF(1,I)/Q(1,I) 
BBC6,l)=-G*AC1,I)*SF(1,I)*DKDH1/K(1,I) 
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c 

BBC7,I)=G*AC1,I+1)*SFC1,1+1)/QC1,I+1) 
BBC8,I)=-G*AC1,1+1)*SFC1,I+1)*DKDH2/KC1,I+1) 
TTCI)=0.5*G*AAVE*CSOCI)+SOCI+1))+0.5*G*AC1,I)*SFC1,I)+0.5*G* 

1 AC1,I+1)*SFC1,I+1)-G*AC1,I)*SFC1,I)*DKDH1*HC1,I)/KC1,I) 
2 -G*AC1,1+1)*SFC1,I+1)*DKDH2*HC1,I+1)/K(1,I+1)+QQAVE 

RETURN 
END 

C THIS IS A SUBROUTINE FO~ MATRIX CALCULATION 
c 

SUBROUTINE MATRIX CNS) 
COMMON /BLOCK1/MMC5,100),AA(5,100),ZZC200),RRC200),XVC200) 
REAL MM 
NN=2*NS 
MMC3,1)=AAC3,1) 
MMC4,1)=AAC4,1) 
ZZC1)=RR(1) 
DO 200 1=2,NN 
J=I/2*2 
IFCI.EQ.J) GO TO 611 
MMC2,I)=-AAC1,I)*MMC4,I-2)/MMC3,I-2)+AAC2,I) 
MMC3,I)=-MMC2,I)*AAC3,I-1)/MMC2,I-1)+AAC3,I) 
MMC4,I)=-MMC2,I)*AAC4,I-1)/MMC2,I-1)+AAC4,I) 
ZZCI>=-MMC2,I)*ZZCI-1)/MMC2,I-1)-AAC1,I)*ZZCI-2)/MMC3,I-2)+RRCI) 
GO TO 200 

611 MMC2,I)=-AAC1,I)*MMC4,I-1)/MMC3,I-1)+AAC2,I) 
zzc I >=-AA( 1, I )*ZZCI -1 )/MMC3 I I -1 )+RRCI) 

200 CONTINUE 
XV(NN)=ZZCNN)/MMC2,NN) 
DO 300 1=1,NN-1 
KK=NN-I 
J=KK/2*2 
IFCKK.EQ.J) GO to 612 
XVCKK)=CZZCKK)-MM(4,KK)*XVCKK+1))/MMC3,KK) 
GO TO 300 ' .. 

612 XVCKK)=CZZCKK)·A~{4,KK)*XVCKK+2)-AAC3,KK)*XVCKK+1))/MMC2,KK) 
300 CONTINUE 

RETURN 
END 
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