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1. Introduction

The Global Precipitation Measurement (GPM) 
Core Observatory satellite was launched on February 
27th, 2014. It is expected to improve precipitation 
measurements from space across the globe, especially 
in regions with sparse ground-based observations (Hou  

et al. 2014). The GPM satellite carries the first space-
borne Dual-frequency Precipitation Radar (DPR) 
operating at both Ku (13.6 GHz) and Ka (35.5 GHz) 
bands. The DPR algorithm considers the effects of 
attenuation, non-Rayleigh scattering, phase identifi-
cation, non-uniform beam filling, etc., (Iguchi et al. 
2017; Liao and Meneghini 2019). Some of the import-
ant products offered by the DPR include instantaneous 
rainfall rate, rainfall type classification, and vertical 
rainfall profiles, which are valuable in hydrological 
and meteorological applications. Compared with its 
predecessor, the Tropical Rainfall Measuring Mission 
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precipitation radar, the DPR has a better capability for 
observing light rainfall and snowfall, which is critical 
to understanding the hydrological processes at various 
scales (Skofronick-Jackson et al. 2018).

More recently, ground-based dual-polarization radar  
(GR) offers new opportunity for examining and 
validating the physical and statistical interpretation of 
satellite-based precipitation retrievals (Chandrasekar 
et al. 2008). Previous literature has contributed sig-
nificantly toward evaluating DPR rainfall retrievals 
(Biswas and Chandrasekar 2018; Le et al. 2016; Pe-
tracca et al. 2018; Toyoshima et al. 2015). However, 
the challenge for the DPR is to retrieve high-accuracy 
instantaneous rainfall rates for widely varying rainfall 
types and extreme events, such as hurricanes (Battaglia  
et al. 2015; Petracca et al. 2018; Speirs et al. 2017). 
For instance, the DPR underestimates rainfall rates 
in convective events in the southeastern United 
States, although the reflectivity of the Ku-/Ka-band 
corresponds well with the GR references (Biswas and 
Chandrasekar 2018).

Notable efforts have been made to improve the 
detection and accuracy of rainfall properties from 
the DPR (Liao and Meneghini 2019; Seto and Iguchi 
2015; Seto et al. 2013). As most of the attenuation is 
from precipitation particles and mixed-phase hydro-
meteors, the main objective is to find the paired 
profiles of DSD parameters regarding rainfall rate 
patterns and then perform attenuation correction 
(Iguchi et al. 2017). Seto and Iguchi (2015) and Seto 
et al. (2013) developed a robust attenuation-adjusted 
approach for improving the DPR rain rate retrievals by 
merging Histchfeld-Bordan’s (HB) correction method, 
the dual-frequency ratio (DFR), and the surface ref-
erence technique (SRT), i.e., the H-D-S method. Liao 
and Meneghini (2019) further modified the standard 
DFR approach and added a constant coefficient for 
the Ka-band precipitation radar (KaPR). The benefits 
of adjusting the DSD parameters are likely to retrieve 
more rewarding rainfall profiles. The DPR data might 
also be limited to light and heavy rainfall due to great-
er uncertainty in quantifying the DSD profiles from 
the overlapping parts of the Ku-/Ka-band (Liao et al. 
2014). New efforts are encouraged to obtain more 
accurate DPR rainfall rate estimates.

This study proposes a Bayesian framework to 
improve DPR rainfall rate estimates using GR ob-
servations as references. A flowchart of the proposed 
Bayesian correction (BC) approach is shown in Fig. 1. 
The use of a Bayesian model analysis for improving 
rainfall estimates is not a new approach. Attempts 
have been made to merge precipitation estimates from 

various sources (e.g., satellite, radar, and gauge) at 
subdaily, daily, and monthly scales (Bruno et al. 2014; 
Kim et al. 2018; Ma et al. 2018; Verdin et al. 2015). 
The key points of this study are as follows:
(1) A hierarchical Bayesian model is developed for 

improving the instantaneous rainfall rate retrievals 
from spaceborne radar with higher accuracy.

(2) The impact of rainfall intensity on the observa-
tion errors of DPR instantaneous rainfall rate 
estimates in the Bayesian analysis is explored and 
discussed.

(3) The best-performing BC approach is applied to 
three GPM-overpass cases with heavy rainfall 
records across the southeastern United States.

The proposed BC algorithm is described in Section 
2. The adapted spaceborne and ground-based radar 
rainfall products are introduced in Section 3. Section 
4 provides parameter estimation, model evaluation, 
comparison, and application. The study concludes 
with a summary and discussion in Section 5.

2. Methodology

Let GR s, t be the real surface rainfall rate at site 
s and time t as observed by the GR. It is more con-
venient to work with the instantaneous rainfall rate 

Fig. 1. A sketch flowchart of the Bayesian correc-
tion (BC) approach used in this study.
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after natural logarithm transformation, since it closely 
follows a Gaussian distribution (Fuentes et al. 2008). 
Therefore, the rainfall process is modeled at a natural 
logarithm scale, i.e., Ys, t = log (GR s, t ). The log-trans-
formed rainfall rate is parameterized as:

Ys, t | μ s, t , σ t ~ Normal ( μ s, t , σ t ), (1)

where μ s, t is the mean value at the training site s and 
time t and σ t is the standard deviation at time t and is 
independent of location s.

Let X s, t be further defined as a covariate that is 
related to the DPR instantaneous rainfall rate esti-
mate, where X s, t = log (DPRs, t ) is the natural log- 
transformed DPR rainfall rate at site s and time t. 
Given the observation errors and the spatial/temporal 
misalignment between the DPR estimate and the GR 
reference at site s and time t, the mean value of μ s, t 
is modeled as a generalized linear function of X s, t 
below:

μ s, t = γ 1t + γ 2t * X s, t . (2)

Some alternative models with the above offset ( γ 1t ) 
and slope ( γ 2t ) parameters that vary in space and time 
are specified. The next section explains and discusses 
model choice and comparison.

A simple model, denoted as M1, comprises the gen-
eral model specified in Eq. (2). The offset and slope 
parameters are fixed in space and do not vary between 
sites at a certain time t. They are expressed as:

γ 1t  =  α 1t , (3)
γ 2t  =  α 2t . (4)

According to the rainfall intensity at site s and at 
time t, the rainfall is divided into four categories: 
light (< 2.5 mm h−1), moderate (2.5 ~ 7.6 mm h−1), 
heavy (7.6 ~ 50 mm h−1), and violent (> 50 mm h−1) 
(Glickman 2000). The effect of rainfall intensity is 
considered in the following BC models due to differ-
ent measurement errors from the DPR under various 
rainfall intensities.

A complex model, denoted as M2, is designed such 
that the offset γ 1t varies in space s at time t, but the 
slope parameter γ 2t is fixed in space at the same time. 
An adjustment term β1t is added in Eq. (3) on the basis 
of M1. The varying offset β1t follows a Gaussian dis-
tribution with a mean of zero and variance in terms of 
σ 2
β1 , which is expressed below:

γ 1t = α 1t + β1t ,  (5)
γ 2t = α 2t , (6)
β1t ~ Normal (0, σβ1 ). (7)

In model M3, the slope coefficient γ 2t in Eq. (2) 
varies between sites at time t, but the offset parameter 
γ 1t is fixed in space at the same time. An adjustment 
term β2t is added in Eq. (4) on the basis of M1. The 
varying slope β2t is also normally distributed around 
zero with unknown variance in terms of σ 2

β2 , which are 
repeated as:

γ 1t = α 1t ,  (8)
γ 2t = α 2t + β2t , (9)
β2t ~ Normal (0, σβ2 ). (10)

Considering that both the offset and slope param-
eters in Eq. (2) are impacted by rainfall intensity, M4 
is designed with the additional adjustment terms, β1t 
and β2t , in Eqs. (3) and (4), respectively. They are 
expressed as:

γ 1t = α 1t + β1t ,  (11)
γ 2t = α 2t + β2t ,  (12)
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A covariant relationship between the variable offset 
and slope coefficients is defined in Eq. (13). It as-
sumes that the adjusted offset β1t is correlated with the 
adjusted slope β2t , because both parameters are con-
nected with the rainfall intensity in space. Both β1t and 
β2t are normally distributed with a mean of zero and an 
unknown standard deviation (SD) in terms of σβ1

 and 
σβ2

 respectively. The correlation between β1t and β2t 
is . The variance–covariance matrix Σβ indicates the 
variance connection of varying offset β1t and varying 
slope β2t (Eq. 14). This matrix contains the variances 
of β1t and β2t along the diagonals and the associated 
covariance across the off diagonals.

In the models M1 to M4, the parameters θ are 
denoted as {α 1t , α 2t , σ t }, {α 1t , α 2t , σβ1 

, σ t }, {α 1t , α 2t , 
σβ2 

, σ t }, and {α 1t , α 2t , ρβ, σβ1 
, σβ2 

, σ t }, respectively. 
According to Bayes’ theorem, the joint posterior dis-
tribution p (θ | Ys, t ) for each model can be written as:

p (θ | Ys, t ) µ p (Ys, t  | θ) p (θ), (15)

where p (Ys, t  | θ) is the likelihood function at site s and 
time t — conditional on the model’s parameters — and 
p (θ) is the prior information of the model’s parame-
ters.

The physical structure of the BC algorithm is sum-

yzma
Highlight



Journal of the Meteorological Society of Japan Vol. 98, No. 34

marized in Fig. 2, which includes three blocks: Data, 
Parameter, and Model. The Data module is used to 
organize the associated datasets of the predictor and 
predictand. The Parameter module covers the param-
eters and associated hyperparameters that are applied 
in the BC approach. The Model module consists of 
prior information and proposed likelihood function, 
which are the key components in the Bayesian frame-
work.

The traditional calculation of the posterior distribu-
tion p (θ | Ys, t ) in Eq. (15) is a challenge as its dimen-
sion grows with the number of sites and parameters. 
Thus, a Markov Chain Monte Carlo (MCMC) tech-
nique compiled in the Stan programming language 
(http://mc-stan.org) is applied to address this problem 
(Carpenter et al. 2017; Gelman et al. 2013). Weakly 
informative priors with objective or diffuse meanings 
have minimum impacts on the posterior distribution 
in the Bayesian analysis (Gelman et al. 2013). They 
are adapted so that it is more convenient to execute 
posterior parameter estimation using the MCMC tech-
nique. The purpose of weakly informative priors is for 
regularization and to ensure Bayesian inferences in 
an appropriate range. The priors of the parameters are 

thus initialized as uniform distribution. Considering 
that the variance values in the above models are con-
strained to be positive, the parameters ρβ, σβ1 

, σβ2 
, and 

σ t have a uniform prior with a lower-bound zero.
As the Bayesian parameters are estimated based on 

the training data at site s and at time t, an evaluation of 
the BC model’s performance is required with valida-
tion data at a new site s¢ for the corresponding time of 
observation t before the model’s implementation. Let 
R s¢, t be the natural log-transformed rainfall rate at site s¢ 
and time t. The conditional distribution of f (R s¢, t | Y s, t ) 
is mathematically defined as:

f f ds t s t s t s t( | ) ( , | ) ,, , , ,R Y R Y′ ′= ∫ θ θθ θ  (16a)

       = ∫ ′f f ds t s t( | ) ( | ) ., ,R Yθ θ θθ θ θ  (16b)

The posterior inferences of R s¢, t | Y s, t  from Eq. (16) 
are generated based on the posterior distributions of 
θ at the training site s and at time t using the MCMC 
samplings (Renard 2011; Verdin et al. 2015). Let N 
be the size of the post-convergence MCMC sample. 
The above process is repeated N times and produces 
a predictive posterior distribution at the validated 

Fig. 2. The physical structure of the Bayesian correction (BC) approach used in this study.
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site s¢ and at time t. The statistical values (e.g., the 
mean, median, 5 %, and 95 % credible intervals) are 
calculated from the posterior distribution at each site 
s¢ and at time t. In this study, the median value at site 
s¢ is used as the Bayesian-corrected DPR (DPR_BC) 
rainfall-rate estimates within the validation process. 
It is followed by comparing it with the corresponding 
GR references to evaluate the performance of the BC 
model.

Consequently, the best-performing BC algorithm 
is applied to the regions of interest in GPM-overpass 
cases with rainfall records. In the application, the esti-
mated parameters are implemented in the same region 
for the corresponding time period, i.e., the calculation 
of the DPR_BC rainfall-rate product on the basis of 
Eq. (16) is performed at sites that are also used for 
parameter estimation.

3. Study region and data

The DPR comprises both KaPR and KuPR (Fig. 
3b). The swath widths for the KuPR and the KaPR are 

245 and 120 km, respectively. Both have 49 footprints 
with a horizontal resolution of 5 km. The KuPR’s scan 
mode is known as normal scan, whereas the KaPR has 
two modes: matched scan (MS) and high-sensitivity 
scan (HS). The range resolution for the KuPR is 250 
m, and it samples at 125-m intervals. The resolution 
and sampling intervals of the KaPR in MS mode are 
the same as the KuPR, although in HS mode, the 
resolution is 500 m and the sampling interval is 250 
m (Iguchi et al. 2017). In this study, version 5 of the 
GPM 2ADPR algorithm is used. The “precipRate 
NearSurface” product from the solver module is con-
sidered.

The Weather Service Surveillance Radar (WSR-
88D) network is located in the southeastern plains of 
United States and provides ground references in con-
sideration of the uncertainties that could be present in 
GR observations in mountainous regions. Three radars 
are used in this study: KHGX, KLIX, and KMLB. The 
KHGX radar (29.4719°N, 95.0792°W, 5.48 m) is lo-
cated in Houston–Galveston along the Gulf of Mexico 

Fig. 3. (a) Locations of the Weather Service Surveillance Radar (WSR-88D), i.e., NEXRAD KHGX in Houston–
Galveston, Texas; KLIX in New Orleans, Louisiana; and KMLB in Melbourne, Florida; (b) the GPM–DPR scan 
pattern, which refers to Iguchi et al. (2017); (c) to (e) a display of the spatial patterns of instantaneous DPR Ka-band 
MS near-surface rainfall as the GPM overpasses the KHGX radar on August 20th, 2015, in orbit 8383; the KLIX 
radar on July 21st, 2017, in orbit 1929; and the KMLB radar on February 22nd, 2017, in orbit 1697, respectively.
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in Texas. The KLIX radar (30.3367°N, 89.8256°W, 
7.31 m) is situated in New Orleans, Louisiana. The 
KMLB radar (28.1133°N, 80.6542°W, 10.66 m) is 
stationed in Melbourne, Florida (Fig. 3a). The other 
reason for the location of the radars is that heavy rain-
fall and severe flooding occur more frequently across 
the southeastern United States (Bedient et al. 2000; 
Zhang et al. 2018). This highlights the significance 
of acquiring a deeper knowledge of DPR rainfall rate 
products in the southeastern plains and is also benefi-
cial to extending its application into other regions with 
frequent rainfall events.

The radars have a beam width of 1°, a range reso-
lution of 250 m, and a frequency range of 2700 – 3000 
MHz. It usually takes around 5 min to complete a 
volume scan, which consists of 14 plan position 
indicator scans from 0.5° to 19.5° in elevation (Crum 
et al. 1998). The Next Generation Weather Radar 
(NEXRAD) Level II data are processed by the dual- 
polarization radar rainfall algorithm, DROPS2.0, 

which is detailed by Chen et al. (2017). This algorithm 
is developed by a region-based hydrometeor classifi-
cation mechanism and shows good performance for 
polarimetric radar applications (Wingo et al. 2018). 
Additionally, the DROPS2.0 rainfall product proves 
excellent performance with rain-gauge observations in 
the Dallas–Fort Worth area (Chen and Chandrasekar 
2015). To ensure the rainfall accuracy of GR ob-
servations in this study, DROPS2.0 and NEXRAD 
Single-/Dual-polarization (Pol) rainfall products are 
intercompared with the collected Automated Surface 
Observing System (ASOS) gauges at the KHGX 
radar inside a 100-km radius of the Hurricane Harvey 
event between August 25th and 29th, 2017 (Fig. 4a). 
The normalized mean absolute error (NMAE), the 
correlation coefficient (CORR), and the root mean 
square error (RMSE) of the DROPS2.0 product reach 
34.9 %, 0.92, and 3.86 mm h−1, respectively. It is evi-
dent that the DROPS2.0 product has better skill scores 
compared with both Single-Pol and Dual-Pol products 

Fig. 4. (a) Spatial distribution of the Automated Surface Observing System (ASOS) gauges at the KHGX radar (in-
side 100-km radius) and the hourly scatter plots for ground-based radar rainfall products, including (b) DROPS2.0, 
(c) NEXRAD Dual-polarization (Dual-Pol), and (d) NEXRAD Single-polarization (Single-Pol), compared with 
ASOS gauge observations between August 25–29th, 2018, during the Hurricane Harvey event.
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(Figs. 4b – d). The use of the NMAE index is preferred 
to the mean or normalized mean bias, as it might be 
counterbalanced by the positive and negative signed 
biases in the statistics (Tang et al. 2016). Furthermore, 
to ensure the creditability of the GR references in the 
regions of interest, the KHGX, KLIX, and KMLB 
samples beyond a range of 100 km are not considered 
in this study.

As the spatial resolution is 5 km, and the temporal 
resolution is instantaneous for the training data in 
the BC model, these datasets are carefully chosen to 
ensure that the relative time difference between the 
overpass of the GPM and the GR scan is less than 5 
min. Next, volume matching is performed to place 
both the GR and DPR data in a common grid at 5 × 
5 km2 before evaluating with the BC model. Details 
of the volume-matching algorithm can be found in 
the work by Bolen and Chandrasekar (2003) and 
Schwaller and Morris (2011).

There are two concerns regarding the BC model’s 
performance: with less training data, the parameter 
estimates contain greater variance, while with less 
validation data, the variance of the performance sta-
tistics is greater. In general, there is no ideal tradeoff 
for partitioning the training and validation datasets; 
therefore, this study applies the 80/20 rule. Moreover, 
an additional experiment to test the robustness of the 
best-performing BC algorithm. We randomly repeat 
the operation of selecting training data at ten times 
and reexamine the model performance, respectively. 

A total of 75 volume-matched DPR–GR datasets 
from the GPM overpasses of the KHGX radar from 

April 2014 to June 2018 are used. Model parameters 
are estimated using randomly selected data from 80  
% of the volume-matched DPR–GR statistics. The 
remaining 20 % of the volume-matched data are used 
for model validation (Fig. 5a). The goodness of fit of 
the natural log-transformed GR rainfall rate for the 
proposed BC algorithm is also examined graphically 
using a quantile–quantile (QQ) plot based on the 
training data in this study. Figure 5b shows the prob-
abilistic density function (PDF) curve of the natural  
log-transformed GR training data. All data are approx-
imately close to the theoretical line with the assump-
tion of normal distribution (Fig. 5c). To demonstrate 
the role of rainfall intensity in the BC algorithm, the 
spatial patterns and associated PDF curves of log- 
transformed DPR training data under various rainfall 
intensities are also shown in Figs. 6a and 6b.

In the model application, the best-performing BC 
algorithm is applied as the GPM overpasses the KHGX 
radar (on August 20th, 2015), the KLIX radar (on 
July 21st, 2017), and the KMLB radar (on February 
22nd, 2017) with heavy rainfall records across the 
southeastern United States. The spatial patterns of 
the volume-matched DPR instantaneous rainfall rate 
estimates for the three GPM overpasses are presented 
in Figs. 3c – e. The parameters are, respectively, esti-
mated using the volume-matched data and the best- 
performing BC model for each GPM-overpass case 
and are then applied across the corresponding over-
pass region for the duration of observation.

Fig. 5. (a) Spatial distributions of volume-matched DPR instantaneous rainfall-rate estimates for calibration (blue 
dots) and validation (red dots), respectively, as the GPM overpasses the KHGX radar (inside 100-km radius) be-
tween April, 2014 and June, 2018; (b) the probabilistic density function (PDF) curve of the log-transformed rainfall  
rate from GR measurements in the training period; (c) The quantile–quantile (QQ) plot of the log-transformed GR 
rainfall rate in the training period. The red line is a theoretical line with the assumption of a normal default.
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4. Results

4.1 Parameter estimation
This section demonstrates an example of parameter 

estimation for model M4. The posterior distributions 
for the M4 model’s parameters shown in Fig. 7 reveal 
that a Bayesian analysis is able to simulate parameter 
uncertainty compared with a traditional statistical 
approach. The fixed offset α 1t and slope α 2t show the 
PDF curves with various mean and SD values (Fig. 
7a), where the mean (SD) values of α 1t and α 2t are 
0.03 (0.20) and 0.91 (0.10), respectively (Table 1). 
The fixed offset is close to 0.03 with a larger SD at 
0.20, and the fixed slope has a lower SD in terms of 
0.10 (Table 1). Figures 7b and 7c display the posterior 
PDF curves of the varying offset β1t and the varying 
slope β2t , which are influenced by various rainfall 
intensities. The mean (SD) values of β1t are −0.06 
(0.20), −0.03 (0.21), 0.23 (0.26), and −0.08 (0.33) for 
light, moderate, heavy, and violent rainfalls, respec-
tively (Table 1). The effect of varying offset on heavy 
rainfall is more significant than for the other rainfall 
categories, but the associated uncertainties increase 
with light to violent rainfall. The mean (SD) values 
of β2t are 0.02 (0.10), 0.06 (0.10), −0.04 (0.11), and  
−0.06 (0.10) for light, moderate, heavy, and violent 
rainfalls, respectively. Positive effects on the slope 
parameter are evident for light and moderate rainfalls, 
while negative effects are detected with heavy and 
violent rainfalls. The uncertainties for the influence 
of rainfall intensity on the varying slope are similar in 
terms of SD at around 0.10. The hyperparameters σβ1

 
and σβ2 

, which are related to varying intercept β1t and 
varying slope β2t parameters, show the PDF curves 

with mean (SD) values of 0.33 (0.23) and 0.13 (0.11), 
respectively. The distribution of σβ2

 is narrower than 
that of σβ1 

, which implies that the residual error of 
varying slope is smaller than that of varying offset 
(Fig. 7e). The residual error σ t shows a PDF curve 
in terms of the mean and SD values at 1.0 and 0.01, 
respectively (Fig. 7d).

These posterior parameters are important for model 
inference and clarification. The residual errors (i.e., 
σβ1 

, σβ2 
, and σ t ) quantify the imperfect nature of 

regression models. This example shows that these 
para meters (α 1t , α 2t , β1t , β2t , σβ1 

, σβ2 
, and σ t  ) follow 

different PDF curves with a certain variance. Table 1 
contains more details of the model’s parameters.

4.2 Model inference, comparison, and clarification
To demonstrate the performances of BC models M1 

to M4, the independent 20 % volume-matched DPR–
GR rainfall rate datasets of the GPM’s overpasses 
with the KHGX radar between April 2014 and June 
2019 are used for model validation and comparison 
based on the inferred posterior parameters.

Table 2 reveals that the best performance among the 
four BC models is demonstrated by M4. The corre-
sponding RMSE, NMAE, and CORR indices are 8.74 
mm h−1, 58.11 %, and 0.755, respectively. Compared 
with the original DPR rainfall-rate estimates, the 
RMSE and NMAE values for M4 decrease by 10.38 % 
and 8.21 %, respectively, while its CORR increases 
by 3.40 %. Additionally, M1 has higher RMSE and 
NMAE values at 8.82 mm h−1 and 59.63 % but lower 
CORR in terms of 0.737 compared with M2 and M3 
during the validation period. The results of the statisti-
cal summary imply that it is very important to consid-

Fig. 6. (a) Spatial distributions and (b) their log-transformed PDF curves of various rainfall intensities, including 
light (gray), moderate (blue), heavy (yellow), and violent (red) rain for the original DPR estimates in the training 
period as the GPM overpasses the KHGX radar (inside 100-km radius) between April 2014 and June 2018.
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er the impact of rainfall intensity in the BC algorithm 
for improving the DPR instantaneous rainfall-rate 
estimates. It is noteworthy that M1 does not consider 
the effect of rainfall intensity, and it also demonstrates 
the worst performance among the four BC models; 

however, M1 still shows better skill scores than the 
original DPR rainfall rate retrievals. Additionally, in 
terms of RMSE, NMAE, and CORR, both M2 and 
M3 show similar performances at 8.80/8.78 mm h−1, 
58.24 %/58.19 %, and 0.752/0.753, respectively. This 

Fig. 7. The PDF curves of some inferred posterior parameters of model M4 based on the training data as the GPM 
overpasses the KHGX radar (inside 100-km radius) between April, 2014 and June, 2018. (a) Fixed offset (α 1t ) 
and slope (α 2t ), (b) varying offset (β1t ), (c) varying slope (β2t ), (d) residual error (σ t ), and (e) hyperparameters σβ1   
and σβ2 .
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indicates that the influence of rainfall intensity on 
varying offset and varying slope parameters is more or 
less of equal strength in the BC algorithm.

Table 3 displays the summary of statistical error 
indices of DPR and DPR_BC in the validation 
period with ten random operational tests as the GPM 
overpasses the KHGX radar between April 2014 
and June 2018. The DPR_BC rainfall rate estimates 
corrected by M4 reveal similar performances in the 
validation period among the ten random tests. For 
each experiment, the signed bias of M4 is expected to 
be smaller than that of the original DPR instantaneous 
rainfall rate estimates. The RMSE index of M4 ranges 
between 7.15 and 10.06 mm h−1, which is lower than 
the original DPR estimates between 8.57 and 11.18  
mm h−1; i.e., the RMSE index of the DPR_BC 
decreases by 10.0~18.2 % compared with the DPR 

during the ten random tests. In terms of the NMAE 
index, the DPR_BC also shows higher performances 
than the original DPR, where the NMAE value of the 
DPR_BC decreases by 7.7 ~ 14.4 %, accordingly. Ad-
ditionally, a higher correlation is also evident between 
the DPR_BC and GR products in terms of the CORR 
value at 0.664 ~ 0.758. In total, there is a considerable 
decrease for both RMSE and NMAE values and an 
increase for CORR in terms of the DPR_BC. By 
applying the best-performing BC algorithm, the av-
erage improvement ratios of the RMSE, NMAE, and 
CORR values are 13.6, 10.1, and 4.8 %, respectively, 
regarding the DPR_BC in the validation period for 
the ten random tests. This proves that the observation 
errors of the DPR instantaneous rainfall-rate estimates 
could be minimized if the impact of rainfall intensity 
is adequately considered in the BC algorithm.

Table 1. Summary of the inferred posterior parameters, α 1t , α 2t , β1t , β2t , σβ1 , σβ2 , and σ t , with regard to model M4 based on 
the training data as the GPM overpasses the KHGX radar (inside 100-km radius) between April, 2014 and June, 2018 in 
this study. Mean and SD are the mean value and the standard deviation of the posterior parameter samples, respectively; 
2.5 % and 97.5 % are the posterior 2.5th and 97.5th percentiles of the Bayesian parameters; neff is the effective samples 
of independent draws from the posterior distribution of parameters, and Rhat is the degree of convergence of a random 
Markov chain.

Mean SD 2.5 % 97.5 % neff Rhat
Fixed offset (α 1t )
Fixed slope (α 1t )
Varying offset ( β1t ) (light rainfall)
Varying offset ( β1t ) (moderate rainfall)
Varying offset ( β1t ) (heavy rainfall)
Varying offset ( β1t ) (violent rainfall)
Varying slope ( β2t ) (light rainfall)
Varying slope ( β2t ) (moderate rainfall)
Varying slope ( β2t ) (heavy rainfall)
Varying slope ( β2t ) (violent rainfall)
Hyper-parameter (σβ1 )
Hyper-parameter (σβ2 )
Residual error (σ t )

0.03
0.91

−0.06
−0.03

0.23
−0.08

0.02
0.06

−0.04
−0.06

0.33
0.13
1.00

0.20
0.10
0.20
0.21
0.26
0.33
0.10
0.10
0.11
0.10
0.23
0.11
0.01

−0.44
0.72

−0.47
−0.49
−0.15
−0.83
−0.23
−0.12
−0.39
−0.34

0.02
0.01
0.98

0.44
1.16
0.41
0.40
0.87
0.67
0.22
0.30
0.15
0.14
0.89
0.41
1.02

293
281
299
468
153
394
290
470
158
307
498
469
1635

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.01
1.01
1.00

Table 2. Data intercomparison of statistical error indices, including RMSE (mm h−1), NMAE (%), and CORR for the results 
of models M1 to M4 based on the validation data as the GPM overpasses the KHGX radar (inside 100-km radius) between 
April 2014 and June 2018. The improvement ratios (%) of RMSE, NMAE, and CORR for the results of M1 to M4 com-
pared with the DPR estimates are also calculated.

RMSE
(mm h−1)

Improvement ratio 
for RMSE (%)

NMAE
(%)

Improvement ratio 
for NMAE (%) CORR Improvement ratio 

for CORR (%)
DPR
M1
M2
M3
M4

9.75
8.82
8.80
8.78
8.74

9.58
9.74
9.96
10.38

63.30
59.63
58.24
58.19
58.11

5.79
7.99
8.07
8.21

0.730
0.737
0.752
0.753
0.755

0.95
3.09
3.13
3.40
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4.3 Model application in three GPM-overpass cases
As described in Section 4.2, M4 shows the best 

performance among the four BC models. In this 
section, M4 is used to extend the model’s application 
in three rainfall events as the GPM overpasses three 
NEXRADs (i.e., KHGX, KLIX, and KMLB) across 
the southeastern United States, respectively. Heavy 
rainfall records exist for each GPM-overpass case in 
the model application (Figs. 3c – e).

a. Case: August 20th, 2015, KHGX
As seen from Fig. 3c, on August 20th, the GPM 

overpasses over Houston and captures a widespread 
thunderstorm moving into the coastal region with a 
peak rainfall rate above 50 mm h−1. The original DPR 
instantaneous rainfall rate product reveals an overes-
timation for light rainfall and an underestimation for 
heavy rainfall within a 100-km radius of the KHGX 
radar scan (Fig. 8a). The PDF curve’s peak for the 
DPR_BC is much closer to GR than to DPR, which 
indicates that the DPR_BC estimate performs better 
compared with the DPR. As discovered from the 
statistical summary in Fig. 9, the DPR_BC product 
demonstrates higher skill scores in terms of RMSE, 
NMAE, and CORR at 13.98 mm h−1, 66.58 %, and 
0.625, respectively. Compared with the original DPR 
product, the RMSE and NMAE values of the DPR_
BC decrease by 11.5 % and 9.5 %, respectively, while 
its CORR increases by 6.9 %. The spatial maps of the 
DPR_BC and its associated predictive uncertainties 
are also shown in Figs. 10a – c. The median value and 
credible intervals (i.e., the 5th and 95th percentiles) 
of the DPR_BC reveal similar spatial patterns in the 
survey region.

b. Case: July 21st, 2017, KLIX
Figure 3d shows a GPM-overpass rainfall event 

over the KLIX radar in New Orleans on July 21st, 
2017. Most regions have light and moderate rainfall 
with instantaneous values below 8 mm h−1, except 
for a convective cell with a rainfall rate of about 50 
mm h−1 located in the northeast. Similar to the case 
survey of Aug 20th, 2015, at the KHGX radar, there is 
an overall overestimation for the DPR product on Jul 
21st, 2017. For this GPM-overpass rainfall event, a 
larger bias exists for light and moderate rainfalls, but 
a smaller bias is evident for heavy rainfall (Fig. 8b). 
The RMSE, NMAE, and CORR values of the DPR are 
10.34 mm h−1, 78.19 %, and 0.635, respectively. Based 
on model M4, the accuracy of the DPR_BC estimates 
has increased in terms of the RMSE, NMAE, and 
CORR values at 6.51 mm h−1, 61.84 %, and 0.745, re-
spectively. As shown in Fig. 9, the improvement ratios 
of the above three metrics are 37.1, 20.9, and 17.4 %, 
respectively. The PDF curves show that the DPR_
BC performs better than the DPR as the rainfall rate 
is higher than 2.0 mm h−1. However, the density value 
of the peak curve for the DPR_BC is higher than that 
of both the DPR and the GR as the GPM overpasses 
the KLIX radar. This is attributed to an overestimation 
for DPR in terms of rainfall rate between 1.0 and 2.5 
mm h−1 (Fig. 8b). After M4 adjustment, the corre-
sponding DPR_BC accounts for a higher proportion 
for light rainfall and thus has a higher peak curve with 
a density of 0.40. The rainfall map and its DPR_BC 
uncertainties are presented in Figs. 10d – f, where the 
heaviest rainfall is detected in the center of each figure 
but with various peak values.

Table 3. Statistical error indices, including RMSE (mm h−1), NMAE (%), and CORR for both the DPR and DPR_BC  
rainfall-rate estimates in ten random validation tests as the GPM overpasses with KHGX radar (inside 100-km radius) 
between April 2014 and June 2018. The DPR_BC is calculated based on model M4, and the improvement ratios (%) of 
RMSE, NMAE, and CORR for the results of M4 compared with the DPR estimates are also calculated for each test.

RMSE NMAE CORR
DPR DPR_BC Ratio (%) DPR DPR_BC Ratio (%) DPR DPR_BC Ratio (%)

Sample1
Sample2
Sample3
Sample4
Sample5
Sample6
Sample7
Sample8
Sample9
Sample10

11.18
9.63

10.31
8.57
9.55

10.31
9.29

10.03
10.73
9.76

10.06
8.10
9.09
7.15
8.09
8.43
8.15
8.93
9.13
8.74

10.0
15.8
11.8
16.6
15.3
18.2
12.3
10.9
14.9
10.4

68.6
66.9
68.0
63.6
68.2
69.8
66.3
67.5
66.3
70.4

62.0
58.9
61.7
58.7
60.8
59.8
60.5
61.9
59.2
63.9

9.6
12.0
9.3
7.7

10.9
14.4
8.7
8.4

10.7
9.3

0.635
0.689
0.676
0.734
0.634
0.660
0.656
0.658
0.697
0.625

0.664
0.720
0.699
0.758
0.682
0.699
0.685
0.692
0.726
0.653

4.6
4.6
3.4
3.3
7.7
6.0
4.3
5.2
4.1
4.6
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c. Case: February 22nd, 2017, KMLB
A rainfall event on February 22nd, 2017, is chosen 

for model application. Figure 3e presents a GPM 
overpass of the KMLB radar in Melbourne, Florida. 
As summarized in Fig. 9, the DPR_BC demonstrates 
better skill scores in terms of RMSE, NMAE, and 
CORR at 3.49 mm h−1, 48.35 %, and 0.651, respec-
tively, compared with the original DPR rainfall prod-
uct. Similar to the evaluated results at both the KHGX 
and KLIX radars, the RMSE and NMAE values of the 
M4 results at the KMLB radar decline by 27.5 % and 
59.4 %, respectively, while the CORR increases by 
10.5 %. Furthermore, the DPR_BC product demon-
strates a closer PDF curve with GR observations than 
the original DPR data. This again proves that M4 has 
the ability of improving DPR instantaneous rainfall 

rate estimates for GPM-overpass cases. From Fig. 8c, 
it seems that DPR_BC is insensitive to the presence 
of DPR, as the rainfall rate is more than 5.0 mm h−1. 
This is because the volume-matched DPR rainfall data 
performed well for rainfall rates above 5.0 mm h−1, 
as the GPM overpasses the KMLB radar on February 
22nd, 2017. However, the bias correction result of M4 
is not very obvious under this condition. Moreover,  
as revealed by Figs. 10g – i, similar spatial patterns 
in terms of the median and its credible intervals are 
found for DPR_BC for this GPM-overpass rainfall 
event.

In total, the statistics and their intercomparison at 
three different locations in the southeastern United 
States demonstrate that the best-performing BC al-
gorithm, M4, can reduce the retrieval bias and some 

Fig. 9. Bar plots of statistical error indices (RMSE, NMAE, and CORR) with regard to the DPR and the DPR_BC 
instantaneous rainfall-rate estimates compared with the GR references as the GPM overpasses the KHGX radar 
(August 20th, 2015), (b) the KLIX radar (July 21st, 2017), and (c) the KMLB radar (February 22nd, 2017), respec-
tively.

Fig. 8. The PDF curves of the DPR (blue) and the DPR_BC (red) instantaneous rainfall-rate estimates and the GR 
references (black) as the GPM overpasses the KHGX radar (August 20th, 2015), (b) the KLIX radar (July 21st, 
2017), and (c) the KMLB radar (February 22nd, 2017), respectively.
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potential errors of the standard DPR instantaneous 
rainfall rate product using GR observations as refer-
ences.

5. Summary and discussion

This study proposes a new approach for improving 
the instantaneous rainfall rate product from space-
borne radar under a hierarchical Bayesian framework. 
The modeling experiment was performed using Du-
al-Pol radar rainfall products as references as the GPM 

overpasses the GR across the southeastern United 
States. The volume-matched DPR–GR instantaneous 
rainfall rate estimates in terms of spatial resolution 
at 5 × 5 km2 are used as training data for parameter 
calculation and model evaluation. 

The four BC models, M1 to M4, are intercompared 
to study the impacts of various rainfall intensities 
on the DPR rainfall rate retrievals during the GPM 
overpasses of the KHGX radar between April, 2014 
and June, 2018. A log-transformed Gaussian distri-

Fig. 10. Spatial maps of the predictive DPR_BC rainfall-rate product and its credible intervals as the GPM over-
passes the KHGX radar (August 20th, 2015), (b) the KLIX radar (July 21st, 2017), and (c) the KMLB radar  
(February 22nd, 2017), respectively.
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bution is used to represent the instantaneous rainfall 
process. The best performance in terms of RMSE, 
NMAE, and CORR at 8.74 mm h−1, 58.11 %, and 0.76, 
respectively, is demonstrated by M4. During ten ran-
domly cross-validated tests, the RMSE, NMAE, and 
CORR values of the DPR_BC improve by 13.6, 10.1, 
and 4.8 %, respectively, compared with the original 
DPR rainfall rate estimates. The inclusion of rainfall 
intensity categories in the BC algorithm is crucial for 
minimizing the measurement errors in the standard 
DPR rainfall rate estimates. Considering that several 
other factors (e.g., raindrop-size parameterizations 
(Liao et al. 2014) and attenuation (Seto et al. 2013)) 
will influence the rainfall rate retrieval accuracy of 
the DPR, it is suggested that more physical variables 
should be incorporated into the BC algorithm in the 
future work.

The best-performing BC model, M4, is further 
applied to three rainfall events as the GPM overpasses 
KHGX (Aug 20th, 2015), KLIX (Jul 21st, 2017), and 
KMLB (Feb 22nd, 2017) radar sites across the south-
eastern United States. In most cases, the PDF curve  
corresponding to the DPR_BC correlates better with 
the GR observations compared with the original DPR 
product. If there are larger biases regarding the pres-
ence of the DPR, the proposed BC algorithm is capa-
ble of reducing the original DPR observation errors 
with better performance, which is evident in both 
Figs. 8a and 8c in terms of light rainfall. However, as 
there is less difference between volume-matched DPR 
and GR data, the behavior of the DPR_BC does not 
exhibit an obvious advantage compared with the stan-
dard DPR product. In summary, the application of the 
best-performing BC model clarifies the reliability of 
improving instantaneous DPR rainfall rate estimates 
using GR observations as references.

At this current stage, the BC algorithm is only 
applied in cases when both DPR and GR have rainfall 
records. Yang et al. (2012) reported that a single 
Tweedie distribution exists between precipitation 
occurrence and the associated daily amounts. Bruno 
et al. (2014) also attempted to adapt zero-inflated 
distributions for simulating zero records from GR 
observations. Moreover, this study mainly examines 
the BC method on GPM-overpass cases across the 
southeastern United States. The challenge of complex  
terrain for ground-based radar rainfall estimates 
provides the motivation for proposing a more robust 
Bayesian algorithm for improving the DPR instan-
taneous rainfall rate estimates over the mountainous 
regions of the United States. The application of this 
BC algorithm on a global basis is promising, since 

this model is performed with volume-matched instan-
taneous DPR rainfall rate estimates in terms of spatial 
resolution at 5 × 5 km2 for the training data. The next 
stage is to perform a full application as the GPM over-
passes ground radars around the globe. Additionally, 
one interesting concern is how to extend the best- 
performing BC algorithm for the DPR as the GPM 
overpasses regions with sparse GR observations. The 
exploration of spatial dependences for the Bayesian 
parameters would be beneficial and could be the focus 
for future study.

Acknowledgment

This research is supported by the NASA GPM/
PMM program. Additionally, we sincerely thank the 
editors and anonymous reviewers for their helpful 
comments and suggestions.

References

Battaglia, A., S. Tanelli, K. Mroz, and F. Tridon, 2015: 
Multiple scattering in observations of the GPM dual- 
frequency precipitation radar: Evidence and impact on 
retrievals. J. Geophys. Res., 120, 4090–4101.

Bedient, P. B., B. C. Hoblit, D. C. Gladwell, and B. E. 
Vieux, 2000: NEXRAD radar for flood prediction in 
Houston. J. Hydrol. Eng., 5, 269–277.

Biswas, S. K., and V. Chandrasekar, 2018: Cross-validation 
of observations between the GPM dual-frequency 
precipitation radar and ground based dual-polarization  
radars. Remote Sens., 10, 1773, doi:10.3390/rs1011 
1773.

Bolen, S. M., and V. Chandrasekar, 2003: Methodology for 
aligning and comparing spaceborne radar and ground-
based radar observations. J. Atmos. Oceanic Technol., 
20, 647–659.

Bruno, F., D. Cocchi, F. Greco, and E. Scardovi, 2014: Spa-
tial reconstruction of rainfall fields from rain gauge 
and radar data. Stoch. Environ. Res. Risk Assess., 28, 
1235–1245.

Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Good-
rich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and 
A. Riddell, 2017: Stan: A probabilistic programming 
language. J. Stat. Software, 76, 1, doi:10.18637/jss.
v076.i01.

Chandrasekar, V., A. Hou, E. Smith, V. N. Bringi, S. A. Rut-
ledge, E. Gorgucci, W. A. Petersen, and G. S. Jackson, 
2008: Potential role of dual- polarization radar in the 
validation of satellite precipitation measurements: 
Rationale and opportunities. Bull. Amer. Meteor. Soc., 
89, 1127–1145.

Chen, H., and V. Chandrasekar, 2015: The quantitative 
precipitation estimation system for Dallas–Fort Worth 
(DFW) urban remote sensing network. J. Hydrol., 
531, 259–271.



Y. MA et al.June 2020 15

Chen, H., V. Chandrasekar, and R. Bechini, 2017: An 
improved dual-polarization radar rainfall algorithm 
(DROPS2.0): Application in NASA IFloodS field 
campaign. J. Hydrometeor., 18, 917–937.

Crum, T. D., R. E. Saffle, and J. W. Wilson, 1998: An update 
on the NEXRAD program and future WSR-88D sup-
port to operations. Wea. Forecasting, 13, 253–262.

Fuentes, M., B. Reich, and G. Lee, 2008: Spatial–temporal 
mesoscale modeling of rainfall intensity using gage 
and radar data. Ann. Appl. Stat., 2, 1148–1169.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Ve-
htari, and D. B. Rubin, 2013: Bayesian Data Analysis. 
Third Edition. CPC Press, 675 pp.

Glickman, T. S., 2000: Glossary of Meteorology. 2nd Edi-
tion. Amer. Meteor. Soc., 850 pp.

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. 
Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. 
Iguchi, 2014: The global precipitation measurement 
mission. Bull. Amer. Meteor. Soc., 95, 701–722.

Iguchi, T., S. Seto, R. Meneghini, N. Yoshida, J. Awaka, and 
T. Kubota, 2017: GPM/DPR Level-2 algorithm theo-
retical basis document. NASA Goddard Space Flight 
Center, 81 pp.

Kim, T.-J., H.-H. Kwon, and C. Lima, 2018: A Bayesian 
partial pooling approach to mean field bias correction 
of weather radar rainfall estimates: Application to 
Osungsan weather radar in South Korea. J. Hydrol., 
565, 14–26.

Le, M., V. Chandrasekar, and S. Biswas, 2016: Evaluation 
and validation of GPM dual-frequency classification 
module after launch. J. Atmos. Oceanic Technol., 33, 
2699–2716.

Liao, L., and R. Meneghini, 2019: A modified dual-wave-
length technique for Ku- and Ka-band radar rain 
retrieval. J. Appl. Meteor. Climatol., 58, 3–18.

Liao, L., R. Meneghini, and A. Tokay, 2014: Uncertainties 
of GPM DPR rain estimates caused by DSD parame-
terizations. J. Appl. Meteor. Climatol., 53, 2524–2537.

Ma, Y., Y. Hong, Y. Chen, Y. Yang, G. Tang, Y. Yao, D. 
Long, C. Li, Z. Han, and R. Liu, 2018: Performance 
of optimally merged multisatellite precipitation prod-
ucts using the dynamic Bayesian Model averaging 
scheme over the Tibetan Plateau. J. Geophys. Res., 
123, 814–834.

Petracca, M., L. P. D’Adderio, F. Porcù, G. Vulpiani, S. 
Sebastianelli, and S. Puca, 2018: Validation of GPM 
Dual-Frequency Precipitation Radar (DPR) rainfall 
products over Italy. J. Hydrometeor., 19, 907–925.

Renard, B., 2011: A Bayesian hierarchical approach to re-
gional frequency analysis. Water Resour. Res., 47, 11, 
doi:10.1029/2010WR010089.

Schwaller, M. R., and K. R. Morris, 2011: A ground valida-
tion network for the global precipitation measurement 
mission. J. Atmos. Oceanic Technol., 28, 301–319.

Seto, S., and T. Iguchi, 2015: Intercomparison of attenuation 
correction methods for the GPM dual-frequency pre-
cipitation radar. J. Atmos. Oceanic Technol., 32, 915– 
926.

Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance 
of a precipitation retrieval algorithm for the global 
precipitation measurement mission’s single/dual- 
frequency radar measurements. IEEE Trans. Geosci. 
Remote Sens., 51, 5239–5251.

Skofronick-Jackson, G., D. Kirschbaum, W. Petersen, G. 
Huffman, C. Kidd, E. Stocker, and R. Kakar, 2018: 
The Global Precipitation Measurement (GPM) 
mission’s scientific achievements and societal contri-
butions: Reviewing four years of advanced rain and 
snow observations. Quart. J. Roy. Meteor. Soc., 144, 
27–48.

Speirs, P., M. Gabella, and A. Berne, 2017: A comparison 
between the GPM dual-frequency precipitation radar 
and ground-based radar precipitation rate estimates 
in the Swiss Alps and Plateau. J. Hydrometeor., 18, 
1247–1269.

Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016: 
Evaluation of GPM Day-1 IMERG and TMPA Ver-
sion-7 legacy products over Mainland China at multi-
ple spatiotemporal scales. J. Hydrol., 533, 152–167.

Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: 
Early evaluation of Ku- and Ka-band sensitivities for 
the global precipitation measurement (GPM) dual- 
frequency precipitation radar (DPR). SOLA, 11, 14–17.

Verdin, A., B. Rajagopalan, W. Kleiber, and C. Funk, 2015: 
A Bayesian kriging approach for blending satellite 
and ground precipitation observations. Water Resour. 
Res., 51, 908–921.

Wingo, S. M., W. A, Petersen, P. N. Gatlin, C. S. Pabla, D. 
A. Marks, and D. B. Wolff, 2018. The system for in-
tegrating multiplatform data to build the atmospheric 
column (SIMBA) precipitation observation fusion 
framework. J. Atmos. Oceanic Technol., 35, 1353– 
1374.

Yang, C., Z. Yang, and Y. Shao, 2012: Probabilistic precip-
itation forecasting based on ensemble output using 
generalized additive models and Bayesian model 
averaging. Acta Meteor. Sinica, 26, 1, doi:10.1007/
s13351-012-0101-8.

Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: 
Urbanization exacerbated the rainfall and flooding 
caused by hurricane Harvey in Houston. Nature, 563, 
384–388.


