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ABSTRACT 

 

EXAMINING MATERNAL EFFECTS AND GENETIC DIFFERENTIATION IN P. FLEXILIS 

AND P. ARISTATA TO IMPROVE SUCCESS OF CONSERVATION ACTIONS  

 

As the climate changes and invasive species continue to spread, proactive management 

may be needed to conserve native plant populations. Selecting appropriate plant material for 

restoration or other actions that will sustain populations is an integral part of any such plan and 

must take into account genetic differentiation to limit maladaptation. Common garden studies are 

used to determine the genetic basis of trait variation among populations from different 

geographic sources. However, maternal effects, the effect of environment during offspring 

development, can also affect performance, complicating the interpretation of these studies. 

Growing one generation in a common environment can help correct for maternal effects, but is 

often not practical with long-lived species. Using limber pine (Pinus flexilis) and Rocky 

Mountain bristlecone pine (Pinus aristata) as model species, I explored the contribution of 

maternal effects to early seedling growth among populations in a greenhouse common garden 

study. I grew offspring sourced over multiple years from the same mother trees, comparing 

growth traits between source years. Additionally, I collected five twig clippings from the upper 

canopy of each mother tree and measured characteristics indicative of the relative vigor of the 

tree during each seed source year.  

There were significant (p<0.05) differences in year-to-year variation in twig growth 

characteristics, seed size, and seedling performance. For bristlecone pine, there was a significant 

positive relationship between the relative inter-annual (RIA) variation in seed mass and seedling 
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total dry mass and a negative relationship between the RIA variation in seed mass and needle 

growth at 210 days. For limber pine, there were significant positive relationships between RIA 

variation in seed mass and cotyledon length, stem height, stem diameter, and needle length at 20, 

120, and 190 days. These results a) support the hypotheses that maternal effects are evident in 

both P. flexilis and P. aristata and that these effects translate into variation in early seedling 

growth and b) suggest possibilities for statistically correcting for maternal effects in genetic 

differentiation common garden studies involving long-lived species.  

Using these data I then conducted a common garden greenhouse study to determine the 

degree of genetic differentiation in limber pine populations in the Southern Rockies. Mid-

summer precipitation varies greatly along a latitudinal gradient throughout this region, 

potentially selecting for local adaptation of populations to their native moisture regime. I 

evaluated the differential response of seed sources from northern and southern portions of the 

range to different moisture regimes during early seeding growth. To test whether seedling growth 

traits, which are often adaptive, differed between northern and southern seed sources, I measured 

primary needle length, stem diameter, water potential, and biomass allocation between root and 

shoot before, during, and after treatments. To test for differentiation in the adaptive traits 

associated with water use, I also measured carbon isotope ratios (δ13C) as a proxy for water use 

efficiency. To account for maternal effects I used cotyledon length as a covariate, which I found 

in the previous study to be a good indicator of maternal year-to-year variation in seedling 

growth.  

There were significant (p<0.05) effects of source region for root length, stem diameter, 

needle length, and total dry mass, where seedlings from southern sources were bigger than those 

from northern sources. Seedlings from the north had a higher probability of mortality than those 
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from southern populations, as did seedlings in the dry treatment. The only significant interaction 

between growth response and source region, signifying the possibility of local adaptation of 

populations, was with the carbon isotope ratio (δ13C, p<0.1). All seedlings in the dry treatment 

regardless of origin had higher δ13C, while seedlings in the wet treatment varied between slightly 

higher (southern populations) and lower (northern populations) values of δ13C. These data 

indicate that genetic differentiation exists among populations in the Southern Rockies, 

potentially increasing the risk of maladaptation when moving seed far from its source.  
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INTRODUCTION 

 

Background 

As invasive pests continue to thrive and the climate changes from historical conditions in 

which species have evolved, many plant populations are becoming increasingly threatened. In 

some cases, supplemental plantings can enhance the genetic diversity of plant populations and 

shift the frequency of key adaptive traits to help ensure future success  (Schoettle and Sniezko 

2007, Schoettle et al. 2009). In other cases, assisted migration may be a desirable way to manage 

for the potential loss of range of a particular species (McLane and Aitken 2011, Williams and 

Dumroese 2013). In either case, research is needed to identify the patterns of genetic 

differentiation across specific plant populations to ensure successful future management. 

Research aimed at determining the presence of differentiation often involves common garden 

studies where populations from throughout a species’ range are grown together in a common 

environment to better distinguish genetic differentiation among populations from differences due 

to environment.  

Maternal effects, or the effect of the environment during development on offspring 

performance, can complicate the interpretation of common garden studies (Roach and Wulff 

1987). Maternal effects can influence offspring directly through seed provisioning or indirectly, 

by influencing gene expression (Roach and Wulff 1987, Galloway 2005). Provisioning has been 

found to impact seed size, germination, and early growth of many plant species (Roach and 

Wulff 1987, Sultan 1996) while the emerging field of epigenetics is finding that conditions 

during seed development can act like a ‘memory’ (Johnsen et al. 2005), affecting gene 

expression in the offspring. In short-lived species, the effects of the maternal environment can be 
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minimized by raising at least one generation of all the source material under the same conditions 

(Bischoff and Müller-Schärer 2010) and using the F1 seeds in further studies of genetic 

differentiation. However this technique is often not feasible in long-lived species that do not 

reach reproductive maturity for decades. Before common garden studies can be accurately 

interpreted, prior research is needed to determine the magnitude of environmental maternal 

effects present and find potential statistical or procedural methods to control for them.  

To examine maternal effects in this study, I grew seed sourced over multiple years from 

the same mother plant in a greenhouse common garden to evaluate the difference in seed and 

seedling growth traits between years. Using this technique allowed me to keep genetics as 

constant as possible to more closely decipher the role environmental maternal effects play in the 

early growth of two pine species, Pinus flexilis (limber pine) and P. aristata (Rocky Mountain 

bristlecone pine). Additionally, I collected twig clippings from each mother tree to better detect 

the differences in growth environments during the years of seed collections. With these data, it 

was possible to test for differences among twig growth characteristics and seed size between 

years, and then determine if those differences affected seedling performance. This study tested 

the technique of using seed from multiple years to evaluate the role of maternal effects in early 

seedling growth while providing evidence for growth metrics that could help correct for maternal 

effects in future common garden studies.  

Taking the maternal effects data into account, I then conducted a greenhouse common 

garden study with P. flexilis to determine the degree of genetic differentiation among populations 

in the southern Rocky Mountains to better prevent maladaptation when seed is moved from its 

native source for conservation efforts. Limber pine is currently threatened and will require active 

management to conserve, which may require moving seed far from its native environment. High-
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elevation five-needle pine ecosystems of western North America, such as those with whitebark, 

limber, and bristlecone pines, are vulnerable to the impacts caused by the non-native fungus 

Cronartium ribicola that causes the lethal disease white pine blister rust (WPBR). Since its 

accidental introduction to the Vancouver, British Columbia area around 1910, WPBR continues 

to spread and is now threatening southern Rocky Mountain limber pine forests (Fig. 1). WPBR 

has contributed to high mortality in whitebark pine populations in the northern Rockies and has 

been a factor in petitioning that species to be listed as endangered under the Endangered Species 

Act (NRDC 2008). It is also infecting increasingly more 

limber pine in Canada, causing the tree species to be listed as 

endangered in 2008 in Alberta under The Wildlife Act 

(Government of Alberta 2010). 

 In the Southern Rockies limber pine has been infected 

in the field with C. ribicola in central Wyoming since the 

1970s, southern Wyoming since the mid-1990s and was first 

detected in Colorado in 1998 (Johnson and Jacobi 2000). The 

disease has since been found in several other National Forest 

lands along the Colorado Front Range, in the Great Sand 

Dunes National Park and Preserve in 2004, and in Rocky 

Mountain National Park in 2009 (Blodgett and Sullivan 2004, 

Schoettle et al. 2011). Risk assessment reveals that more than 

half of the these high elevation forests have environmental conditions annually that are 

conducive to the disease while the other half have environments that support the disease less 

Fig. 1 Current distribution of 
WPBR, circled in red, overlaid 
with the distribution of five-
needle pines. Limber pine 
distribution is in orange (from 
Schoettle and Sniezko 2007). 
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regularly, suggesting that WPBR will continue to spread throughout the five-needle pine forests 

of the Southern Rockies (Howell et al. 2006, Kearns et al. 2013).  

 The effects of WPBR are compounded by threats from mountain pine beetle 

(Dendroctonus ponderosae) and climate change. Whereas blister rust can quickly kill young 

limber pine trees, mountain pine beetle kills mature trees, reducing reproductive ability of the 

stand. Limber pine forests are often in marginal habitats and are among those ecosystems that are 

suspected to experience vast changes as the climate becomes warmer and drier in the western 

United States, increasing the likelihood of fire and drought stress (IPCC 2007). 

The potential for widespread mortality of this species is concerning because of the 

ecological importance of limber pine. Limber pine seeds provide an excellent source of nutrition 

for Clark’s Nutcrackers (Nucifraga columbiana) and black bears (Ursus americanus), 

contributing to the health of those animal populations (Tomback and Achuff 2010). Limber pines 

tend to dominate xeric regions that cannot support other tree species; their presence prevents 

erosion, creates habitat, and caches snow (Schoettle 2004a, Coop and Schoettle 2011). Those 

growing near treeline help retain snow and slow its melt in the spring (Schoettle 2004a). The loss 

of this species would have profound ecological effects. 

Research Basis 

Work has already begun in the management and restoration of whitebark pine forests 

devastated by WPBR in the Northern Rockies (Keane and Arno 2000). Seed transfer guidelines 

have been developed based on results from common garden studies (Bower and Aitken 2008), 

planting guidelines have been established and refined (McCaughey et al. 2009), and management 

guidelines are in place to protect whitebark pine forests now and into the future (Hunt et al. 

2010, Schwandt et al. 2010, Keane et al. 2012). 
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Work has only just recently begun in 

the management and conservation of limber 

pine in the Southern Rockies, however (Burns 

et al. 2008). The research proposed here 

enhances a project that began in 2001 to 

conserve this species by supporting the natural 

recovery of limber pine from the threats of 

WPBR (Schoettle 2004b). Past research has 

confirmed the presence of genetic resistance 

to WPBR in limber pine in the Southern 

Rockies (Schoettle et al. 2009; Schoettle et al. 

2013). The resilience of five-needle pine 

ecosystems to this invasive disease can be increased though targeted restoration with resistant 

seed stock and regeneration opportunities (Schoettle and Sniezko 2007). In preparation for 

planting, resistance mechanisms and their geographic distributions are being investigated 

(Schoettle et al. 2009, Schoettle et al. 2013), outplanting tests have been conducted (Casper et al. 

2011), and guidelines are being prepared. Survival of nursery-grown seedlings in the field has 

been high during the first two years after planting at all test locations from southern Colorado to 

southern Wyoming. However, the long-term success of management treatments involving 

proactive restoration depends not just on the establishment of the planted seedlings, but also on 

their continued ability to succeed in the varied climates where outplanting is needed. 

Seed zones were developed to account for the fact that plants are often locally adapted to 

their native climate based on generations of selection on adaptive traits and thus perform best 

Fig. 2 Seed transfer guidelines for limber 
pine split into five zones (from top 
clockwise): Northern Rockies; Southern 
Rockies; Great Basin; Nevada Humboldt; 
and Columbia Plateau (Mahalovich 2006). 
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close to where they evolved. Current seed transfer guidelines for limber pine delineate the 

Southern Rockies as one seed zone with elevation restrictions of +/- 200m (Fig. 2, Mahalovich 

2006). While this zone was defined using the best available information, including limited 

genetic studies and examination of morphological traits, it has not yet been tested. Because 

patterns of resistance to WPBR are not uniform across the landscape (Schoettle et al. 2013) and 

northern Colorado populations have a greater frequency of resistance than those in southern 

Colorado (Schoettle et al. in prep), long-distance movement of seed throughout the zone will 

likely be needed to supplement resistance in some populations. The potential for maladaptation 

with long-distance movement of seed sources is a distinct possibility given the broad elevational 

(1600-3400m) (Schoettle and Rochelle 2000) and latitudinal (33-43oN) range within this region. 

Mid-summer moisture availability varies greatly along this latitudinal gradient and local 

adaptation to the timing of water events is likely to have evolved among populations.  

The second common garden study explored the presence of genetic differentiation among 

limber pine populations in the southern Rockies, providing insight into the likelihood of 

maladaptation following movement of seeds from their native source. Together, the maternal 

effects and genetic differentiation studies help provide the scientific basis to improve the success 

of conservation efforts of five-needle pines in the Southern Rockies. 
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CHAPTER 1: UNDERSTANDING MATERNAL EFFECTS IN LONG-LIVED PLANT 

SPECIES TO IMPROVE INTERPRETATION OF COMMON GARDEN STUDIES 

 

INTRODUCTION 

 

As climate shifts away from historical norms and invasive species continue to spread, 

more research is being done to better understand methods to conserve threatened plant species. 

Conservation actions like targeted restoration or assisted migration must take into account the 

source population to ensure successful establishment and continued growth. Common garden 

studies are often used to test for genetic differentiation, local adaptation, and trait plasticity 

among populations that could lead to maladaptation in conservation actions. However, it is well 

established that maternal effects, the influence of the environment during seed development on 

offspring performance, can influence early seedling growth, complicating the interpretation of 

common garden studies (Roach and Wulff 1987, Bischoff and Müller-Schärer 2010). Maternal 

effects can be both genetic and environmental in origin (Roach and Wulff 1987, Rossiter 1996); 

environmental maternal effects will be the focus in this study.  

Maternal effects can influence offspring directly through seed provisioning or indirectly, 

through influencing gene expression (Roach and Wulff 1987, Galloway 2005). In gymnosperms, 

both the seed coat and the megagametophyte, which provides food for the germinating seedling, 

are of maternal origin (Kramer and Kozlowski 1979). Larger seeds are generally associated with 

larger seedlings due to the fact that there are more available reserves for the seedling to use in its 

early life (Reich et al. 1994, Westoby et al. 1996). Provisioning due to maternal effects has been 

found to impact seed size, germination, and early growth of many plant species (Roach and 
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Wulff 1987, Sultan 1996), including trees (Castro 1999, Castro et al. 2008, Oliver and Borja 

2010, Gonzalez-Rodriguez et al. 2012). The emerging field of epigenetics explores how the 

environment during seed development influences gene expression, unrelated to changes in DNA, 

in offspring (Wolffe and Matzke 1999). Epigenetics can be thought of as a ‘memory’ of 

environmental conditions during seed development (Johnsen et al. 2005). For example, a study 

found that temperature during seed development affected timing of bud set and cold hardiness in 

Norway spruce progeny (Johnsen et al. 2005). This study focuses primarily on the provisioning 

aspect of maternal effects. 

Maternal effects can vary among closely related species and so far, no clear trends have 

been found to predict their influence (Roach and Wulff 1987), causing them to remain a source 

of uncertainty in common garden studies of long-lived organisms. It is generally accepted that 

maternal effects are strongest in the earliest stages of a plant’s life and then diminish over time, 

often lasting at least one growing season (Roach and Wulff 1987, Reich et al. 1994). Growing 

one or more generations from random crosses in one common environment can minimize 

variation due to maternal environment (Bischoff and Müller-Schärer 2010), though this 

technique is often not feasible for long-lived species that do not reach reproductive maturity for 

decades.  

Rather, the technique proposed here is to examine the magnitude of maternal effects 

through raising seeds across multiple growing seasons from the same maternal plant (Carles et 

al. 2009). Very few studies have used this method to examine maternal effects (Castro 1999, 

Castro et al. 2008, Oliver and Borja 2010) and none have highlighted the effect of the maternal 

environmental, rather than variations due to family effects that could be genetic or environmental 

in nature, on offspring growth. By using seed from the same maternal plant over various years, 
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genetics are held as constant as possible in an open pollinated system and it is possible to test if 

the environment had any effect on seed or seeding characteristics by exploring correlations 

between the change in environment, seed traits, and seedling performance between years. 

This study assessed the effect of the environment during seed development on seed 

characteristics and early seedling growth using seed from multiple maternal trees from at least 

two different collection years from Pinus aristata, Rocky Mountain bristlecone pine, and Pinus 

flexilis, limber pine. The objectives were 1) to determine if year-to-year differences in 

environment during seed maturation affect offspring seed characteristics, 2) to evaluate whether 

those differences in seed traits between years correspond to a difference in early seedling growth, 

and 3) to evaluate the multiple year sampling method for assessing maternal effects in long-lived 

plants. It was predicted that greater variation in twig growth between years would correspond to 

greater variation in seed mass, which would relate in turn to more variation in seedling growth. 

 

METHODS 

 

Seed Source 

Both P. aristata and P. flexilis seeds had been previously collected and stored at -20°C at 

the USDA Agricultural Research Service National Center for Genetics Resources Preservation 

lab in Fort Collins, Colorado. Seed sources originated across northern Colorado and southern 

Wyoming (Fig. 3) from multiple open-pollinated mother trees per population. P. aristata seeds 

from twelve seedtrees and three populations sourced from 2008 and 2009 were used. P. flexilis 

seeds from eighteen seedtrees and seven populations sourced from 2003, 2008, or 2009, were 
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also used (Table 1). Seeds were x-rayed to ensure the presence of a full embryo before thirty 

seeds per family per year were randomly selected for inclusion in the study. 

	
  

Fig. 3 Site locations for P. aristata (red) and P. flexilis (blue). 

 

Table 1. Seed sources included in the maternal effects study. Thirty seeds per family per source 
year were sown. 

Species Population # of seed 
trees 

Source years 

P. aristata STM 7 2008, 2009 
 GEN 2 2008, 2009 
 BPJ 3 2008, 2009 

  
P. flexilis PHA 2 2003, 2009 
 CP 2 2003, 2009 
 RC 5 2008, 2009 
 UU 2 2008, 2009 
 EC 3 2008, 2009 
 LIL 3 2008, 2009 
 TS 1 2008, 2009 
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Experimental design 

Maternal plants from at least two years from twelve open pollinated P. aristata families 

and eighteen P. flexilis families from the Southern Rockies were included in this study. Twig 

clippings were collected from each seedtree to observe the differences in mother tree growth 

between years. Thirty seeds from each seedtree and each source year were randomly assigned to 

ten replicate blocks in a greenhouse common garden to monitor differences in early seedling 

growth between source years. Seedling stem height (measured from soil to the base of 

cotyledons), cotyledon length, and primary needle length were measured throughout the eight 

months of the study before seedlings were destructively harvested for stem diameter, root, and 

shoot biomass measurements.  

 

Twig Clippings 

Twig growth traits were included in the study to detect environmental differences 

experienced by each seedtree between seed collection years. It is often assumed that changes in 

weather measured regionally predictably impact trees on a local level, but microsite can greatly 

influence what weather conditions are actually experienced by a plant. To detect environmental 

effects on mother tree growth during seed development, five twig samples from the upper 

canopy of each seedtree were collected during the summer of 2012. Straight twigs with no 

branching or cone development were collected from the south side of each tree in full sun. 

Measurements were taken on each year’s twig growth including increment length (twig 

extension), average needle length, number of fascicles, and specific leaf area (SLA) using the 

methods of Schoettle (1994). SLA was calculated from the projected leaf area of that year’s 

needle cohort (Delta-T Area Meter System, Cambridge, England) divided by the dried mass of 
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the needle cohort (65°C, 48h). Twig data from 2003 were limited by length of clippings and 

abscised needles. The purpose of including the twigs was to characterize mother tree growth 

during seed provisioning, so tree twig data from the year of seed collection was used in analyses 

for all traits except number of fascicles, which is determined in the branch the year prior to cone 

maturity. See Table 2 for a list of all traits measured for twigs and seedling. 

To see if twig growth was related to local weather conditions, I used precipitation and 

temperature data collected daily by the USDA Natural Resources Conservation Service at 

Snowpack Telemetry (SNOTEL) stations throughout the region. Accumulated precipitation 

(Sensotec 100" Transducer) and average temperature (Extended Range) data were gathered from 

the Bear Lake SNOTEL site 322, which is roughly central to study sites. 

 

Table 2 Traits measured from mother tree twigs (left), seeds (center) and seedlings (right). 

Twig traits measured Seed traits measured Seedling traits measured 
Increment length Seed mass Stem height 
Twig needle length Seed length Cotyledon length 
Specific leaf area Seed width Primary needle length 
Number of fascicles  Relative growth rate 
  Stem diameter 
  Total dry biomass 
  Root-to-shoot ratio 

 
 

Common Garden 

 P. aristata and P. flexilis seeds sourced over multiple years from the same mother tree 

were grown in a greenhouse to compare growth traits between source years. Each seed was 

weighed and seed length and width were measured and recorded. P. flexilis seeds underwent a 1-

2°C moist stratification period of six weeks in a growth chamber (Precision Scientific LT-105, 

Perry, IA). Seeds were kept separate in labeled mesh bags strung over a sealed plastic tub filled 
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with approximately one inch of water. Seeds were rinsed weekly and checked for mold. Moldy 

seeds were rinsed with a 1% solution of H2O2. After stratification seeds were sown in ten 

randomized complete blocks per species with three replicates per block. The planting medium 

was composed of a 1:1 ratio of 4P mix (Conrad Fafard Inc, Agawam, MA) and sand to increase 

drainage; pots used were 656ml deepots D40h (Stuewe and Sons, Inc, Tangent, OR). Once sown, 

seeds were watered daily until germination was complete, then watered 2-3 times per week and 

fertilized weekly with Jack’s Professional 20-8-20 Forestry (JR PETERS, Inc, Allentown, PA) at 

100ppms. Greenhouse temperatures varied between 17-22oC with a 16H/8H photoperiod. 

Seedling performance was assessed by measuring stem height, cotyledon length, primary 

needle length, relative growth rate, stem diameter, and dry biomass (Table 2). Relative growth 

rate (RGR) was calculated as follows:  

[1] RGR = !" !!!!!
(!!!!!)

 

where s is equal to the length of needles in millimeters and t is equal to time in days. Date of 

emergence was recorded for each seedling. Stem and cotyledon length were measured once at 

twenty days after emergence as these did not change over time, while monthly measurements of 

primary needle length and mortality were also made. After eight months, all seedlings were 

harvested for diameter, root, and shoot biomass measurements (65°C, 7d). 

Data Analysis 

 I tested 1) whether twig characteristics, seed size, and seedling performance varied 

between years within each family, 2) whether the difference in twig characteristics between years 

was related to the difference in seed size within each family, and 3) whether the difference in 

seed size between years was related to the difference in seedling performance within each 
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family. To determine if there were variations in twig growth, seed size, and seedling 

performance, a mixed model analysis of variance (ANOVA) was used with random effects of 

site, family nested within site, and year nested within family and site. The significance of each 

random effect was tested through likelihood ratio tests where the model was run with and 

without each term. The effect of variation in twig growth between years on variation in seed size 

between years was analyzed through a linear regression. Similarly, linear regression was used to 

examine the effect of variation in seed size on variation in seedling performance. Prior to 

regression analyses, relative inter-annual (RIA) variation in each trait was calculated according 

to the following equation  

[2] RIA =   1− !"#$%!!!"#$%!
!"#$%!

 

where Trait2 is the average trait value in seed source year 2 and Trait1 is the average trait 

value in seed source year 1 for a given family. Using the relative inter-annual variation takes into 

account the fact that twig growth, seed size, and seedling growth vary among families, allowing 

for a more accurate comparison of inter-annual variation, independent of differences in mean 

traits among families. The regression model used to determine the effect of twig growth 

differences during seed provisioning on seed size differences was 

[3] RIA!""# =   RIA!"#$ 

where RIAseed is the relative inter-annual difference in seed mass between years and RIAtwig is the 

relative inter-annual difference in twig trait between years. The regression model used to 

determine the effect of seed size differences on seedling growth differences observed in the 

greenhouse was 

[4] RIA!""#$%&' = RIA!""# 
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where RIAseedling is the relative inter-annual difference in seedling trait. Transformations were 

needed to obtain a normal distribution for some traits (Table 3). Normality was monitored 

through the Shapiro-Wilk test and the distribution of residuals in qqplots and histograms. The 

families with seed from 2003 and 2009 were analyzed separately from the families with seed 

from 2008 and 2009 because a) residuals could not be normalized when 2003 was coded as “year 

1” along with 2008 and b) including 2003 masked significant differences in traits between 2008 

and 2009. Data for each species was analyzed separately using SAS 9.3 (SAS Institute, Cary, 

NC).  

Table 3 Transformations of seedling growth traits needed to achieve normality in regression 
analyses. 

Species Trait Transformation Species Trait Transformation 
Bristlecone Needle length 

at 20 days 
Tan(x) Limber Diameter Sin(x) 

 RGR between 
80-140 days 

Tan(x)  Cotyledon 
length 

1/x 

 RGR between 
140-210 days 

Sqrt(x)  Needle length 
at 190 days 

1/x 

    RGR between 
20-60 days 

Sqrt(x) 

    RGR between 
60-120 days 

1/x 

 

RESULTS 

 

Weather data indicate that the temperature was fairly consistent in difference source years 

and that 2003 was the wettest, followed by 2009, then 2008 (Fig. 4). The highest and lowest 

temperatures occurred in 2003. These weather patterns were reflected in other SNOTEL sites 

throughout the area and are within the normal range of weather over the last fifteen years.  
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Fig. 4. Average accumulated precipitation (left) and temperature (right) during the growing 
season for seed collection years (from wettest to driest) 2003 (blue), 2009 (green), and 2008 
(red). The highest and lowest temperatures occurred in 2003. 

 

Data for seed length, width, and mass were used in a principal component analysis; the 

resulting factor PC1 had seed mass accounting for 91% of the total variance in bristlecone and 

82% in limber, so seed mass was used in future analyses for ease of interpretation. Results from 

the ANOVA revealed between-year variation in twig traits, seed mass, and seedling performance 

based on site, family, and year. For the twig traits, the year effect was significant for needle 

length in bristlecone pine while it was significant for increment length in limber pine (Table 4). 

For seed mass, site and year contributed significantly to variation in both species (Table 5), 

where 2008 seeds were generally larger than 2009 seeds. For seedling performance, the year 

effect was significant in all traits except for stem diameter (bristlecone only) and root-to-shoot 

ratio (Table 6). 
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Table 4. Covariance parameter estimates of random effects for bristlecone (top) and limber pine 
(bottom) mother tree twig traits. The random effect year(site*family) was significant for needle 
length (bristlecone) and increment length (limber pine), denoted by an asterisks (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Covariance parameter estimates of random effects for bristlecone (top) and limber pine 
(bottom) seed mass. The year effect was significant in both species, denoted by asterisks 
(p<0.05). 

 
Bristlecone Pine 
CovParm Covariance parameter estimates 

 Seed mass 
Site 14.5571* 
Family(site) 3.8797 
year(site*family) 6.1723* 
Residual 6.9223 
 
Limber Pine 
CovParm Covariance parameter estimates 

 Seed mass 
Site 211.04* 
Family(site) 67.3442 
year(site*family) 228.99* 
Residual 220.62 

 
Bristlecone Pine 
CovParm Covariance parameter estimates 

 
Increment 
length 

Needle 
length SLA  Fascicle 

number  
Site 0.03215* 1.59E-19 3.0948 0 
Family(site) 0.01575* 0 3.6434 49.5686* 
year(site*family) 0 0.08269* 3.3776 0 
Residual 0.1076 0.1599 18.0774 230.15 
 

Limber Pine 
CovParm Covariance parameter estimates 

 
Increment 
length 

Needle 
length SLA Fascicle 

number  
Site 0.0775 0.1847 10.4782* 3.5644 
Family(site) 0.06600* 0.08104 3.3363* 79.5171* 
year(site*family) 0.02990* 0.05426 0 8.0614 
Residual 0.1363 0.3721 6.2013 88.8067 
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Table 6. Covariance parameter estimates of random effects for bristlecone pine (top) and limber 
pine (bottom) for each seedling growth trait. Asterisks denote a significant source of variation 
indicated by a likelihood ratio test (p<0.05). 
 
Bristlecone Pine 
CovParm Estimate 

 
 

Stem 
height 

Cotyledon 
length 

Stem 
diameter Total dry mass  

Site 2.9735* 4.8368* 0.006002 0.04876*  
Family(site) 0 0 0.00341 0.002393  
year(site*family) 2.1479* 4.9351* 0 0.01108*  
Residual 7.5049 13.4184 0.1057 0.1852  
      

 
Root: 
shoot 

RGR (30-60 
days) 

RGR (100-
140 days) 

Needle length 
(20 days) 

Needle length 
(140 days) 

Site 0.005430* 1.63E-6* 0 3.3595* 11.9440 
Family(site) 0.000772 0 5.567E-8 0 5.2840 
year(site*family) 0 1.647E-6* 1.518E-7 3.3373* 1.6456 
Residual 0.03922 0.000028 3.365E-6 27.0814 83.8198 
 

Limber Pine 
CovParm Estimate 

 
 

Stem 
height 

Cotyledon 
length 

Stem 
diameter Total dry mass  

Site 4.2600* 36.7667* 0.02143* 0.04919*  
Family(site) 0.976 0 0.0053 0.008379  
year(site*family) 4.2416* 24.5492* 0.00885* 0.02359*  
Residual 10.4805 32.2421 0.09264 0.1137  
      

 
Root: 
shoot 

RGR (30-
60 days) 

RGR (120-
190 days) 

Needle length 
(20 days) 

Needle length 
(190 days) 

Site 0.003339 2.22E-06 0 13.7844* 33.0101 
Family(site) 0.001118 1.25E-23 1.808E-8 1.2224 22.7787* 
year(site*family) 0.001271 4.879E-6* 0 6.3846* 10.7080* 
Residual 0.08224 0.000035 3.436E-6 24.8365 179.94 

 

The regression analyzing the effect of inter-annual variability in mother tree twig growth 

on variation in seed mass found no significant relationships for any twig traits. For bristlecone 

pine there was a positive relationship between the RIA variation in seed mass and variation in 

total seedling dry mass after eight months (p=0.0475 r2=0.272) and a negative relationship 

between the RIA variation in seed mass and variation in seedling needle length measured at 
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seven months (p=0.0498 r2=0.266) (Fig. 5). For limber pine there was a positive relationship 

between the RIA variations in seed mass and cotyledon length (p=0.0027 r2=0.6612), stem 

diameter measured at eight months (p=0.0457 r2=0.3041), stem length (p=0.0334 r2=0.3460), and 

needle length measured at 20 days (p=0.01012 r2=0.4867), 120 days (p=0.0329 r2=0.3479), and 

180 days (p=0.0193 r2=0.4147) (Fig. 6). There were no significant relationships between the 

relative inter-annual variation in seed mass and any measurement of seedling growth for the 

families with seed sourced from 2003 and 2009. 

	
  

Fig. 5 Graphs of bristlecone pine depicting the relationship between the relative inter-annual 
(RIA) variations in seed mass and seedling dry mass (left, p<0.05) and needle length at 7 months 
(right, p<0.05). Trend lines represent the best fit from the linear regression analysis. The circled 
point in the right graph highlights the outlier that drives the negative relationship; when removed 
from the analysis, no significant trend is present. RIA values > 1 indicate 2008 was bigger while 
RIA values <1 indicate 2008 was smaller. 
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Fig. 6 Graphs depicting the relationships between the relative inter-annual (RIA) variations in 
seed mass and seedling traits of limber pine from top left: cotyledon length, stem height, needle 
length at 20 days, 120 days, and 190 days, and diameter. The positive relationship in each case 
signifies that years with larger seeds produced larger seedlings on average. Trend lines represent 
the best fit from linear regression analyses. RIA values > 1 indicate 2008 was bigger while RIA 
values <1 indicate 2008 was smaller. 
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DISCUSSION 

 

The goals of this study were to explore if weather during development affects seed size 

and whether that difference translates into variation in early seedling growth. The objectives 

were to 1) determine if year-to-year differences in environment during seed maturation affect 

offspring seed characteristics, 2) evaluate whether those differences in seed traits between years 

correspond to a difference in early seedling growth, and 3) to evaluate the multiple year sampling 

method for assessing maternal effects in long-lived plants.  

The purpose of including twig clippings was to detect environmental differences in 

seedtree growth during seed development between seed source years. The effect of seed 

collection year was a significant source of twig growth variation in needle length (bristlecone) 

and increment length (limber), with more growth occurring in 2008, the drier year. Due to lack 

of twig data from 2003, there were only two observations comparing 2003 to 2009 limber pine 

twig growth, which was not enough to see a trend. Given that only one twig trait per species 

reflected the different environment during growing season, using twig clippings was not fully 

successful in detecting tree responses to inter-annual variability in weather. Given the lack of 

variation in twig traits, it is unsurprising that it was not effective in predicting variation in seed 

size. It could be that the relatively small sample size of twigs and the similar temperature and 

precipitation trends between the years with the largest samples, 2008 and 2009, prevented the 

ability to detect significant trends in this relationship. So while there are many other factors that 

contribute to the variation in seed size among years, temperature and precipitation during seed 

development should not be ruled out as a potential source of variation. 
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The regression using the relative inter-annual difference between years to examine the 

relationship between seed size and seedling traits did indeed find significant differences. In 

bristlecone pine, a greater variation in seed mass between years was associated with a greater 

variation in total dry mass of seedlings, but less variation in needle length of seedlings, driven by 

a single outlier. In limber pine, relative inter-annual variation in seed mass was positively 

associated with variation in cotyledon length, stem height, stem diameter, and needle length at 

20, 120, and 180 days. These positive relationships indicate that the years with larger seeds were 

associated with larger seedlings on average. In the strongest relationship, seed mass variation 

explained 66% of variation in cotyledon length, suggesting cotyledon length is a good indicator 

of maternal effects. 

 This study looked at maternal environment as a source of variation, though paternal 

effects might have also played a role in offspring variation. The mother trees were open 

pollinated, meaning the pollen cloud responsible for fertilization could have come from a variety 

of pollen sources and likely differed year-to-year. Offspring trait variation could therefore have 

been influenced both by the environment during pollen development and the fact that different 

pollen sources (and thus paternal genotypes) may have fertilized the maternal plant in different 

years. However, while paternal effects may also have contributed to offspring variation, they 

tend to be less influential than maternal effects (Roach and Wulff 1987).  

 The years included in this study were determined by what seed had already been 

collected and was available for use and happened to be from years where the weather did not 

differ drastically. The study duration was also relatively short in relation to the species’ lifespans, 

lasting less than one year. Time and resource permitting, it would be interesting to see how the 
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difference in maternal environment affects offspring growth over the first several years of 

seedling life using seed that developed in environmental conditions that differed more.  

In cases like this with prolonged maternal effects, visible throughout the eight months of 

this study, the influence of the maternal environment on seedling performance needs to be 

accounted for in common garden studies. As no pattern has been found yet to predict maternal 

effects in any given species (Roach and Wulff 1987), common garden studies hoping to 

determine the presence of genetic differentiation should account for the difference in seedling 

size statistically. Bischoff and Müller-Schärer (2010) found in their study with angiosperms that 

using seed mass as a covariate was not effective in reducing maternal effects and tended to 

underestimate genetic differentiation in common gardens. They suggested instead using initial 

plant size to better account for maternal provisioning. We found in this study that cotyledon 

length in both species detected the year-to-year variation in maternal plant and that the years 

with larger seeds were associated with larger cotyledons, a finding mirrored in Reich 1994. 

Growth of cotyledons is related to the size of megagametophyte reserve in the germinating 

seedling (Sasaki and Kozlowski 1970), so larger seeds are able to produce seedlings with longer 

cotyledons. Therefore, we propose using cotyledon length as a covariate to account for any 

residual maternal effects in greenhouse common garden studies with P. flexilis. 

 

CONCLUSION 

 

It was predicted that greater variation in twig growth would correspond to greater 

variation in seed mass, which would relate in turn to more variation in seedling growth. Though 

inter-annual variability was found in twig growth, seed size, and seedling growth, changes in 

twig growth were not significantly related to changes in seed mass. For many traits, however, 
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relative inter-annual seed mass variation was related to variation in seedling performance, 

indicating that maternal effects influence early seedling growth in P. aristata and P. flexilis. 

Consequently when conducting common garden studies to evaluate genetic differentiation, 

studies should account for differences in plant growth using cotyledon length as a covariate 

representing the year-to-year variation in seed provisioning. 

In this study, examining differences in twig growth between years was not effective in 

predicting seed size. However using multiple years of seed from the same maternal plant was 

effective in determining the influence of maternal effects on offspring growth traits. Using this 

technique to study the impact of maternal effects in other long-lived species will help to clarify 

the interpretation of common garden studies. 
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CHAPTER 2: TESTING FOR GENETIC DIFFERENTIATION AMONG SOUTHERN 

ROCKY LIMBER PINE POPULATIONS ALONG A LATITUDINAL GRADIENT  

 

INTRODUCTION 

 
Active management is needed to sustain healthy limber pine (Pinus flexilis) forests in the 

Southern Rockies as they are threatened by the interaction of the mountain pine beetle epidemic, 

climate change, and the spread of the non-native pathogen Cronartium ribicola that causes the 

lethal disease white pine blister rust (WPBR). The frequency of genetic resistance to WPBR is 

not distributed uniformly across the Southern Rockies landscape (Schoettle et al. 2013); northern 

Colorado limber pine populations have greater frequency of WPBR resistance than those to the 

south (Schoettle et al. in prep). As a result, long-distance movement of seed within the Southern 

Rockies will be needed to supplement resistance in some populations to bolster forest resiliency 

against increased blister rust pressure.  

Seed zones are developed to account for the fact that plants are often locally adapted to 

their native climate based on generations of selection on adaptive traits and thus perform best 

close to where they evolved. The idea of seed zones began in commercial forestry as a way to 

improve productivity of timber species and has since expanded to include non-commercial tree 

species as well as grasses, shrubs, and forbs (Johnson et al. 2004). Information for developing 

seed zones historically came from decades-long provenance trials, where plant material from a 

range of locations is grown in multiple testing locations and compared, and more recently 

through common garden studies (Johnson et al. 2004). Seed zones are generally delineated by 

identifying variation in plant traits among populations and mapping them to environmental 

factors like temperature or moisture (Campbell 1986, Sorensen 1992, Rehfeldt 1994, St. Clair et 
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al. 2005). Variation in molecular markers can also be used to inform seed zones, but because 

neutral markers are rarely correlated with adapted traits, those studies should be confirmed 

through common gardens (Johnson et al. 2004). 

Currently the Southern Rockies are considered one seed zone for limber pine (Fig. 2) 

(Mahalovich 2006). The delineations for these seed zones were based on limited genetic studies 

and variation in morphological traits and have not been tested. The Southern Rockies Seed Zone 

covers large elevational (1600m-3,400m), latitudinal (33-43oN), and climatic (temperature, 

precipitation) gradients (Schoettle and Rochelle 2000), causing speculation that some level of 

genetic differentiation among populations may exist. Previous population genetic studies have 

found patterns of genetic differentiation using neutral markers among northern Colorado limber 

pine populations based on glacial refugia (Latta and Mitton 1997) and elevation (Schuster et al. 

1989). Others have looked at geographic variation of phenotypes (Steinhoff et al. 1971, Van 

Haverbeke 1983) and genetic diversity (Jørgensen et al. 2002) across the range. As of yet, no one 

has examined genetic differentiation of adaptive traits along a latitudinal gradient in the Southern 

Rockies as a tool to test the current seed zone delineation. 

Mid-summer precipitation in this region is highly correlated with latitude (Fig. 7). Since 

water availability is generally considered to be a limiting factor in plant growth in arid regions, 

this difference in precipitation could act as a selective force causing local adaptation of 

populations and contributing to the maintenance of genetic variation within the species. Other 

studies examining genetic differentiation in relation to climatic gradients for the purpose of 

devising seed zones have found precipitation (Rehfeldt 1990, O’Brien et al. 2007, Johnson et al. 

2010) and latitude (Sorensen 1992, Campbell 1986) to be highly correlated with variation in 

adaptive traits. 
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Fig. 7. Mean monthly precipitation from the Southern Rockies limber pine seed collection sites 
included in this study (n=14 sites; see Table 7). Precipitation modeled by Hutchinson’s thin plate 
splines (Rehfeldt 2006). 

 

The aim of this study was to determine the degree of genetic differentiation among 

populations of Pinus flexilis in the Southern Rockies. A greenhouse common garden study 

evaluated the differential response of seed sources from northern and southern portions of the 

range to different moisture regimes during early seeding growth. Differences in seedling 

performance between northern and southern seedlings would provide evidence for genetic 

differentiation among limber pine in the Southern Rockies. An interaction between region of 

seed source and drought treatment, with seedlings performing better in the treatment representing 

their native moisture regime, would support the hypothesis that populations are locally adapted 

to differences in summer water availability. Seedling performance was evaluated through 

primary needle length, stem diameter, root length, and biomass allocation between root and 

shoot. These traits were measured before, during, and after water treatments to determine 

whether temporal responses of seedlings from different locations responded differently to 
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drought. Carbon isotope ratios (13C/12C) were also measured to evaluate a difference in water use 

efficiency among populations. I predicted that 1) there would be a differential response of 

seedling growth based on region of seed origin and 2) the response of seedlings to treatment 

would depend on their source region, where northern seedlings would perform better in the dry 

treatment and southern seedlings would perform better in the wet, indicating local adaptation to 

their home mid-summer precipitation regime. 

 

METHODS 

 

Seed Source 

Seed was collected from seven northern (40-41° latitude) and six southern (36-39° 

latitude) populations in 2012. For balance, seed from an additional southern site collected in 

2003, 2005, and 2006 was used as well. Each population was represented by 28 seeds from each 

of three open-pollinated mother trees, spaced at least 60m apart (Fig. 8, Table 7). 2012 had a 

relatively poor cone crop across the southern Rockies, therefore sites were chosen largely based 

on the presence of mature cones in the appropriate geographic location. 
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Fig. 8 Location of cone collecting sites. Southern sites are labeled S1-S7. Northern sites are 
labeled N1-N7. Seeds were collected from three trees (families) per site.  

  
Table 7 P. flexilis seed sources showing the latitude, region, and number of seeds sown from 
each site. Twenty-eight seeds from each of three trees were sampled from each population. 

Population Name Latitude Region/state # seeds sown  
S1 BUP 39.1047 South / CO 84 
S2 MAP 38.3938 South / CO 84 
S3 TAC 38.8116 South / CO 84 
S4 DUR 37.5173 South / CO 84 
S5 BCR 37.5934 South / CO 84 
S6 MSL 37.732 South / CO 84 
S7 USF 36.7864 South / NM 84 
N1 GLE 41.3782 North / WY 82* 
N2 LAJ 40.7947 North / CO 84 
N3 TEL 41.2773 North / WY 53* 
N4 VED 41.1539 North / WY 84 
N5 80C 40.9520 North / CO 84 
N6 BL 40.6458 North / CO 84 
N7 HIV 40.3991 North / CO 84 
* poor germination from one or more families 
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Experimental Design 

The study design was a full factorial with variables of seed source latitude (north and 

south) and watering treatment (wet simulating southern monsoons and dry simulating northern 

drought). Seedlings from each family were randomly assigned a water treatment level. 

Treatments were applied in a split-plot design to 28 blocks containing one replicate seedling per 

family (total n=1,143). All blocks and seedlings within blocks were spatially randomized in the 

greenhouse. Before the treatment began, all seedlings were measured to obtain cotyledon and 

primary needle length and two blocks were harvested to determine stem diameter, root length, 

root, shoot, and total dry biomass, and water potential. Subsequent harvests were made mid-way 

through the treatment and then again at the end of the treatment to assess changes in seedling 

response. 

 

Common Garden 

All seeds underwent a six week cold stratification at 1-2°C in an incubator (Precision 

Low Temperature Incubator 815, Thermo Scientific, Waltham, MA). Seeds were soaked in a 1% 

hydrogen peroxide solution, rinsed with water, and placed in plastic bags with moistened 

vermiculite to maintain moisture. Seeds were checked weekly for mold; moldy seeds were 

discarded. After six weeks, seeds were germinated on moistened filter paper in 8x8cm plastic 

trays (day 18°C day/16°C night, 12 hour photoperiod, Precision Low Temperature Illuminated 

Incubator 818, Thermo Scientific, Waltham, MA). Trays were sprayed weekly with a 1% 

solution of hydrogen peroxide to prevent mold. After three days seeds were checked daily for 

germination (defined as the radicle protruding at least 2mm) and immediately transplanted upon 

germination.  
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Twenty-eight germinated seeds per mother tree were transplanted into 656ml deepots 

D40h (Stuewe and Sons, Inc, Tangent, OR) in a mixture of 20% forest soil, 50% Fafard 4P mix 

potting soil (Conrad Fafard Inc, Agawam, MA), 20% sand, and 10% pea gravel for drainage. 

Forest soil was included to better represent actual growing conditions and provide beneficial 

mycorrhizae. It was collected in a mixed conifer forest containing limber pine in Centennial, 

Wyoming on October 3, 2012. Each pot included Osmocote Classic 14-14-14 control release 

fertilizer (Everris International B.V, the Netherlands). Greenhouse temperatures varied between 

17-22oC with 16H day/8H night photoperiod. 

Water treatments began two months after germination and continued for two months. P. 

flexilis grow substantially between 60-120 days old before growth levels off; by targeting 

treatment during this time of intense growth, a visible effect is more likely. At the 

commencement of treatments, all seedlings were watered to saturation. Half of the seedlings 

(drought simulation) underwent three 2-4 week dry-down cycles while the other half (wet 

simulation) were watered weekly with 50ml de-ionized water per pot (the average weekly 

precipitation in the south). The length of dry-down periods was determined through a pre-study 

of drought effect on two-month old limber seedlings (see appendix). The original plan of two 

one-month drought cycles was amended due to high mortality. The first drought cycle lasted one 

month with total water exclusion while the second was punctuated by a watering event after two 

weeks (Table 7). 

At each harvest (mid-treatment and post-treatment), survival was monitored and growth 

of primary needle length, stem diameter, root length, dry root and shoot biomass, and relative 

growth rate (RGR) was measured. RGR was calculated as follows: 

[3] RGR = !" !!!!!
!!!!!
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where s is equal to the length of needles in millimeters and t is equal to time in days. During all 

harvests, roots and shoots were separated below the cotyledons, placed in separate labeled coin 

envelopes, and dried (60°C, 7d). Once dry, roots and shoots of each seedling were weighed to the 

nearest hundredth of a milligram (Sartorius LE225D, Germany). Water potential was measured 

on a subset of seedlings with a pressure bomb (PMS Instrument Company Model 600, Corvalis, 

OR) before (one seedling per family) and during (one seedling per family per treatment) water 

treatment to ensure the treatment had the desired effect. At the conclusion of the treatment, all 

remaining seedlings were harvested (Table 8).  

Table 8 Schedule of events including seed treatment, germination, transplanting, seedling 
measurements and watering schedule. During dry-down cycles, seedlings in the wet treatment 
were watered weekly with 50ml deionized water per pot while seedlings in the dry treatment 
were not watered. At the end of each dry-down cycle, all seedlings were watered to capacity. 

Week Task Measurements taken 
1 Cold stratification  
6 Seed germination Date of germination 
6-7 Seed transplanted to pots  
16 Measured all seedlings Cotyledon length, primary needle length 

Beginning of 1st dry-down cycle 
Harvested 2 blocks Root and shoot biomass, diameter, root length 

19 Measured all remaining Primary needle length 
Beginning of 2nd dry-down cycle 

20 Harvested 10 blocks Root and shoot biomass, diameter, root length 
22 Harvested 2 blocks Water potential, root and shoot biomass, 

diameter, root length 
Beginning of 3rd dry-down cycle 

23 Measured all remaining Primary needle length 
24 Harvested 14 blocks Root and shoot biomass, diameter, root length 
 

Carbon isotopes 

At the end of the two-month drought treatment and after dry mass was recorded for 

individually harvested seedlings, primary needles of seedlings from each family and each 

treatment (7 wet blocks and 7 dry blocks) were pooled for carbon isotope ratio measurements. 
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During photosynthetic carbon assimilation, C3 plants discriminate against the heavier 13C isotope, 

but to a lesser extent when CO2 is more limiting as a photosynthetic substrate (e.g., when stomata 

are closed or photosynthetic capacity is high). Therefore, the amount of 13C relative to 12C found 

in plant reflects the balance between carbon gain and water loss (Ehleringer 1990). Variation in 

the carbon isotope ratio (δ13C) indicates changes in either variation in photosynthetic capacity 

and/or stomatal conductance (Ehleringer 1990). For instance, stomata closing due to drought 

stress to minimize water loss would also minimize carbon intake, resulting in less discrimination 

(O’Leary 1988, Farquhar et al. 1989). Generally δ13C in plant tissue reflects overall plant water 

use, and has been shown to be a good predictor of water use efficiency (Farquhar et al. 1989). 

Here, δ13C was used as a metric of water use efficiency (WUE) for determining the presence of 

genetic differentiation in these populations and provided insight into the link between biomass 

allocation, growth, and water stress.  

To complete these analyses, samples were dried in a 60°C oven, ground using the 

reciprocal saw method (Alexander et al. 2007), and analyzed at the Colorado State University 

EcoCore lab using a VG Isochrom continuous flow isotope ratio mass spectrometer (Isoprime 

Inc., Manchester, UK) coupled to a Carlo Erba NA 1500 elemental analyzer (Milan, Italy). 

Sixteen random duplicates were run along with a control sample with known isotope 

composition every twelve samples to document machine precision (0.2‰). Sample analysis was 

done randomly over two days, represented as block 1 and 2.  

Since the atmospheric carbon dioxide levels in a greenhouse differ from those outside  

(-8‰ relative to PDM standard) and the relative difference between seed source regions and wet 

and dry treatments was the focus in this study, samples were analyzed as the carbon isotope ratio 

(δ13C) and not the standardized isotope discrimination (Δ) using the following equation:  
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2                       δ!"C   =
R!"#$%&

R!"#$%#&% −   1 ×  1000
 

where R=13C/12C and units are in per mil (‰). 

 

Data Analysis 

A mixed model analysis of variance (ANOVA) was used to evaluate differences in 

seedling performance using fixed effects of region, treatment, and their interaction and random 

effects of site nested within region, family nested within site and region, and block. Cotyledon 

was included in the model as a covariate to account for maternal effects (see chapter 1). 

Response variables included total dry mass, root-to-shoot ratio, stem diameter, root length, 

relative growth rate (RGR), water potential, and δ13C. Data from each harvest were analyzed 

separately. Mortality data were analyzed through a logistic regression with predictors of region, 

treatment, and their interaction. In cases where there was no significant interaction between 

region and treatment, a follow-up analysis was conducted using the same ANOVA model, but 

substituting the continuous variable latitude for the categorical variable region in an attempt to 

detect any discernible interaction. Assumptions of normality were met in all cases based on the 

normal and homoscedastic distribution of residuals and all analyses were run using SAS version 

9.3 (SAS Institute, Cary, NC). 

 

RESULTS 

 
There were no significant interactions between treatment and seed source region for any 

response variable. There were, however, significant region and treatment effects for many 

seedling growth traits. Seedling data from the first harvest before the beginning of treatment 
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showed a significant difference in primary needle length (p=0.0391), cotyledon length, 

(p=0.0013) and root-to-shoot ratio (p=0.0036) between seedlings sourced from the south versus 

the north; southern seedlings had longer needles and cotyledons and northern seedlings had a 

higher root-to-shoot ratio (Table 9, Fig. 9). Other seedling growth traits including root length, 

dry biomass, and stem diameter were not significantly different. By the mid-treatment harvest 

one month after drought was induced, differentiation based on seed source region was evident 

for needle length, total dry mass, and stem diameter, where southern seedlings were larger, while 

none of the seedling growth traits were affected by treatment except for RGR (Table 9). 

 
Table 9. ANOVA table showing fixed effects of seed source region, treatment, and cotyledon 
(covariate to account for maternal effects) for harvest data. No interactions between treatment 
and region were significant except for δ13C (p=0.0778) analyzed using latitude (continuous) in 
place of region (categorical).  
* Significant at p<0.05 
† Estimate represents the estimated difference of least square means between north and south. 
Negative numbers indicate larger values for southern seedlings. 

 Pre-treatment 
Response Effect Num DF Den DF F Value Estimate† p value 
Root length region 1 37 0.11  0.7378 
Needle length region 1 12.3 5.33 -5.52 mm 0.0391* 
Stem diameter region 1 37 0.67  0.4171 
Total dry mass region 1 11.9 3.16  0.1013 
Cotyledon length region 1 38 12.16 -4.91 mm 0.0013* 
Root-to-shoot region 1 37 9.66  0.17 0.0036* 

(continued on next page) 
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Mid-treatment 

Response                Effect Num DF Den DF F Value Estimate† p value 
Needle length region 

trt 
cot 

1 
1 
1 

14.2 
8.02 
275 

13.94 
3.93 
9.79 

-4.34 mm 0.0022* 
0.0826 
0.0019* 

Stem diameter region 
trt 
cot 

1 
1 
1 

15.2 
8 
214 

4.8 
0.62 
26.45 

-0.07 mm 
 

0.0445* 
0.4549 
<0.0001* 

Total dry mass region 
trt 
cot 

1 
1 
1 

14.8 
7.92 
241 

9.77 
4.39 
40 

-34.25 mg 0.0070* 
0.0699 
<0.0001* 

RGR between pre- 
and mid-treatment 
harvests 

region 
trt 
cot 

1 
1 
1 

14.6 
25.7 
559 

0.27 
29.46 
3.62 

 
-0.0041 
mm/mm*d 

0.6139 
<0.0001* 
0.0578 

  
Post-treatment 

Response                Effect Num DF Den DF F Value Estimate† p value 
Root length region 

trt 
cotyledon 

1 
1 
1 

15.4 
12.4 
184 

8.4 
35.26 
8.01 

-2.01 cm 
-4.42 cm 

0.0108* 
<0.0001* 
0.0052* 

Stem diameter region 
trt 
cot 

1 
1 
1 

15.4 
11.4 
331 

6.36 
27.24 
22.92 

-0.12 mm 
-0.17 mm 

0.0231* 
0.0003* 
<0.0001* 

Needle length region 
trt 
cot 

1 
1 
1 

49.1 
12.1 
364 

16.11 
56.07 
10.04 

-5.74 mm 
-7.93 mm 

0.0002* 
<0.0001* 
0.0017* 

Total dry mass region 
trt 
cot 

1 
1 
1 

14.8 
12.1 
304 

10.16 
29.21 
51.49 

-56.29 mg 
-68.94 mg 

0.0062* 
0.0002* 
<0.0001* 

Root-to-shoot ratio region 
trt 
cot 

1 
1 
1 

15 
12.6 
258 

0.04 
27.22 
0.27 

 
-0.17 

0.8386 
0.0002* 
0.6066 

RGR between 
mid- and post-
treatment harvests 

region 
trt 
cot 

1 
1 
1 

15.4 
11.8 
228 

1.78 
81.15 
0.87 

 
-0.00997 
mm/mm*d 

0.2014 
<0.0001* 
0.3521 

δ13C (categorical) region 
trt 

1 
1 

13.9 
64.7 

0.98 
138.94 

 
1.6845‰ 

0.3384 
<0.0001* 

δ13C (continuous) latitude 
trt 
lat*trt 

1 
1 
1 

19.9 
63.3 
63.5 

1.93 
1.73 
3.21 

 
1.6798‰ 

0.1799 
0.1930 
0.0778 
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Soon after this point water potential measurements were taken. Water potential values in 

the dry treatment were significantly lower than the pre-treatment levels (p<0.05), indicating 

increased levels of water stress for seedlings from both northern and southern populations (Fig. 

10). There was no significant difference in water potential between seedlings from northern and 

southern regions within each treatment nor was there an interaction between region and 

treatment. Water potential measurements were relatively low compared to the pre-study (see 

appendix), likely due to the time of day and location measurements were taken.  

 

	
  

Fig. 9. There were statistically significant (p<0.05) differences in needle length, cotyledon 
length, and root-to-shoot ratio between seedlings from northern (blue) and southern (red) 
regions. These measurements, taken before the drought treatment commenced, show that growth 
differences between northern and southern sources existed prior to treatment. 

 

The ANOVA results for the final harvest at the end of the two-month treatment revealed 

growth differences based on source origin for root length, needle length, diameter, and total dry 

mass, where southern seedlings were generally larger. Additionally there was a treatment effect 

for every seedling growth metric with seedlings in the wet treatment outperforming those in the 

dry treatment (p<0.05). There was no significant interaction between region and treatment for 
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any growth trait (Table 9). By the study’s end, 17.6% of all seedlings were dead or declining. 

Significantly more northern seedlings and seedlings from the dry treatment died, though there 

was no significant interaction between region and treatment (Table 10). 

	
  
Fig. 10 Chart of mean water potentials with standard error before and during water treatment for 
southern and northern seedlings. Larger negative values indicate increasing levels of water stress. 
Seedlings in the dry treatment (light grey) were significantly more stressed than seedlings 
measured before the treatment began (black) and those in the wet treatment (dark grey) (p<0.05). 

 
Table 10 Mortality results from the logistic regression. Main effects of region and treatment 
were highly significant. Seedlings from the north or in the dry treatment were more likely to die. 

Analysis of Maximum Likelihood Estimates 
Parameter  DF Estimate Standard 

Error 
Wald Chi-
Square 

Pr>Chi
Sq 

Intercept  1 -1.8889 0.0983 368.9790 <0.0001 
Region     north 1 0.4382 0.0919 22.7542 <0.0001 
Treatment dry 1 0.5481 0.0953 33.0673 <0.0001 

Odd Ratio Estimates 
Effect   Point Estimate 95% Wald  

Confidence Limits 
Region          north vs south 2.402 1.676 3.444 
Treatment     dry vs wet 2.993 2.060 4.349 
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 Results from the δ13C analysis also showed no significant interaction of treatment and 

seed source region (p=0.40). Main effect of region was not significant yet the treatment did have 

a significant effect (p<0.0001) with a difference in least square means showing those in the dry 

treatment had an estimated 1.6845 higher δ13C. However, when replacing region with the 

continuous variable latitude in the model, an interaction was moderately significant (p=0.0778, 

Table 8, Fig. 11). In that case, seedlings that underwent the dry treatment had less discrimination 

(higher δ13C) than those receiving more moisture, with little latitudinal variation. With seedlings 

in the wet treatment, seeds of a more southern origin had a slightly higher δ13C than northern 

seeds (Fig. 11).  

 

 
 

Latitude (oN) 

Fig. 11 Graph showing the values of δ13C from the model with trend lines using the least 
square means at a given latitude for both dry and wet treatments. Larger negative values 
(lower on y axis) indicate more discrimination against 13C and therefore lower WUE. 
Open, blue circles represent seeds in the wet treatment and closed, red circles represent 
the dry. The interaction of treatment and latitude was significant at the 0.1 level. 
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DISCUSSION 

 

The goals of this study were to determine if there was genetic differentiation among P. 

flexilis populations in the Southern Rockies and whether local adaptation to the variation in mid-

summer water availability could be documented. A greenhouse common garden study evaluated 

the differential response of seed sources from throughout the Southern Rockies to moisture 

regimes representing the wetter south and drier north during early seeding growth. 

Pre-treatment harvest results at two months after germination already revealed 

differentiation of some growth traits between seed source regions. Southern seedlings had longer 

needles and cotyledons than northern seedlings (by roughly 5mm) while northern seedlings had a 

0.17 higher root-to-shoot ratio (Table 9). By the mid-treatment harvest, growth differences 

between northern and southern seedlings were also observed in total dry mass, where southern 

seedlings were an estimated 34mg larger and had stem diameters 0.07mm larger than northern 

seedlings. At this point there were no longer any differences in root:shoot among northern and 

southern seedlings. Despite the fact that only relative growth rate exhibited an effect from the 

drought one month into the water treatment, water potential measurements and observations of 

seedling characteristics confirmed that the drought cycles had an effect on seedling physiology 

and growth. By the final harvest, two months after the start of water treatments, all metrics of 

seedling growth were affected by treatment and differentiation between source regions was seen 

in root length, needle length, stem diameter, and total dry mass, with more growth in southern 

seedlings (Table 9). This pattern of differentiation extended to mortality as well, where seedlings 

in the drought treatment were almost 3 times more likely to die than seedlings in the wet 
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treatment while northern seedlings were 2.4 times more likely to die over the course of the 

treatment (Table 10).  

Carbon isotope composition suggests that southern seedlings had less discrimination 

(higher δ13C). It would be unexpected if southern seedlings had higher water use efficiency, 

being in a region where water is not as limiting as in northern regions, but there are at least two 

explanations for this pattern. First, others have found that positive correlations between δ13C and 

dry mass usually indicate that the higher carbon isotope ratio is due to higher photosynthetic 

capacity rather than variations in stomatal conductance (Hubick et al. 1986, Ehleringer 1990, 

Silim 2001). WUE has also been found to vary due to many complex factors, including 

temperature, irradiance, humidity (Warren et al. 2001), stand density (Lajtha and Getz 1993), the 

presence of beneficial mycorrhizae (Hobbie and Colpaert 2004), and elevation (Marshall and 

Zhang 1994, Warren et al. 2001), so factors unrelated to precipitation of the source environment 

may be at play in determining WUE. All seedlings regardless of origin had lower discrimination 

(increased δ13C) under the drought stress, a trend that has been found in other plants (Ehleringer 

and Cooper 1988, Lajtha and Getz 1993, Zhang and Marshall 1994, Warren et al. 2001) and is 

consistent with the mechanisms that contribute to 13C discrimination in arid regions (Ehleringer 

and Cooper 1988, Lajtha and Getz 1993, Zhang and Marshall 1994, Warren et al. 2001). The 

higher δ13C under drought stress can be explained by stomata closing with decreased moisture 

availability to prevent water loss (Pataki et al. 1998). 

Though there was not differentiation based on region for relative growth rate, there was a 

highly significant (p<0.0001) treatment effect, a fact to consider in restoration efforts in dry 

climates. If seedlings grow slower in drier areas (RGR mean of seedlings in the dry treatment 
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was about 1/3 lower than those in the wet), they may be out-competed by other species more 

easily than if they are not water limited. 

The robust growth of southern populations growing near the southern edge of the limber 

pine range was surprising; they were considerably bigger and healthier than northern seedlings. 

There is evidence of hybridization with P. strobiformis (southwestern white pine) at the southern 

edge of the range (Steinhoff et al. 1971), which could perhaps explain this vigor, though results 

from this study do not address hybridization explicitly. Besides their size and vigor, southern 

seedlings appeared similar to known pure limber pine seedlings with no clear statistical outliers 

among southern families. 

Though there was little evidence for local adaptation to water availability as 

experimentally tested in this study, it is possible that other factors could lead to local adaptation 

of populations. The study was short in duration in relation to the longevity of the species; most 

common garden studies examining genetic differentiation in conifers last 2-3 years (Johnson et 

al. 2004). Because of these reasons, the differences in growth may be adaptive and local 

adaptation of populations to water availability should not be ruled out. Additionally, for many 

seedlings initial taproot elongation was much shorter and primary needle growth more stunted 

than expected based on previous work with this species. It is possible that a small percentage of 

seedlings experienced transplant shock when newly germinated seeds were sown in pots, a 

planting technique not used in the previous maternal effects study.  
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CONCLUSION 

 

I predicted that 1) there would be a differential response of seedling growth based on 

region of seed origin and 2) the response of seedlings to treatment would depend on their source 

region, indicating local adaptation to their native mid-summer precipitation regime. Most 

seedling growth traits measured and patterns of seedling mortality demonstrated differential 

growth based on region of seed origin. Seedling response across treatments did not depend on 

region (i.e. there was no significant interaction), except when using latitude as a fixed effect 

instead of region. In that case there was an interaction between latitude and treatment in carbon 

isotope ratios. Seedlings under the drought treatment had less discrimination (a higher δ13C) 

regardless of latitude of origin, possibly due to stomatal closure under stress. In the wet treatment 

where water stress was not an issue, southern seedlings had a higher δ13C, likely due to a higher 

photosynthetic capacity. Results from this study support the hypothesis that genetic 

differentiation in growth traits exists among seed sources from northern and southern regions of 

the Southern Rockies Seed Zone, providing evidence to partition the current seed zone into 

northern and southern sections. 
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NEXT STEPS 

 
The two studies reported here comprise a small part of a larger effort to provide the 

scientific basis for successful proactive conservation of five-needle pines in the Southern 

Rockies. These forests are threatened by the interaction of increased WPBR pressure, mountain 

pine beetle, and more frequent drought and fire events due to climate change. Plans for 

pinpointing high priority areas for management and selecting appropriate actions for a given 

region are being developed (introduced in Schoettle 2004, Burns et al. 2008). The data presented 

here will help increase the success of any future outplanting by helping scientists and land 

managers better understanding the role of maternal effects in early seedling growth and by 

providing information on the likelihood of maladaptation due to genetic differentiation among 

limber populations when moving seed throughout the current Southern Rockies Seed Zone. 

The results from the maternal effects study indicated that environmental maternal effects 

were present in both limber and bristlecone pine. Although examining differences in twig growth 

between years was not effective in predicting seed size, using multiple years of seed from the 

same maternal plant was effective in determining the influence of maternal effects on offspring 

growth traits. Using this technique to study the impact of maternal effects in other long-lived 

species will help clarify the interpretation of common garden studies. There were limitations to 

its use in this study, however. Since seed sources in the maternal effects study were from a small 

latitudinal range (39-41oN) and were all generally small compared to more southern families, it 

would be interesting to see the magnitude of this maternal effect if larger seeds were included in 

the study. Since there is a desire in this field to find a reliable method to account for seed size 

differences due to maternal effects in common gardens with long-lived species, it would also be 
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helpful to fully test the cotyledon covariate technique with seeds of all sizes from throughout the 

range of P. flexilis. 

The latitudinal study results supported the hypothesis of genetic differentiation among 

populations of P. flexilis in the Southern Rockies. This study used a common garden framework 

with treatment of two moisture levels representing the two regions to compare genetic variation 

in adaptive traits related to growth. Though significant trait variation was found in most metrics 

measured, there was not evidence for local adaptation to mid-summer water availability as we 

tested it. Since there could be factors other than precipitation selecting upon population traits and 

possibly leading to local adaptation, this study should be field-tested via a reciprocal transplant. 

After discovering the traits that vary among populations, the next step in designating seed zones 

is to correlate those traits with environmental factors, or “genetic mapping” (Campbell 1986, 

Sorensen 1992, Rehfeldt 1994). The differentiated traits in this study were correlated with 

latitude, but the importance of other environmental factors like elevation, frost-free days, slope, 

and others, could be explored as well. 

Testing for genetic differentiation using molecular tools would also help address 

differentiation. Previous genetic studies indicated current patterns of limber pine genetic 

diversity rangewide were related to repopulation from glacial refugia (Latta and Mitton 1997, 

Jorgensen et al. 2002), but very few of these molecular studies included adequate sampling from 

populations in southern Colorado and northern New Mexico (Mitton et al. 2000). Modern 

molecular techniques can help reveal more about the evolutionary history of white pine species 

and patterns of genetic diversity and gene flow to help us better manage them for the future. 

To best ensure the future resilience of high elevation five-needle pine forests, data 

predicting the effects of climate change on these threatened ecosystems should be integrated into 
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any future management discussions. The Alpine Treeline Warming Experiment based outside 

Boulder, Colorado is studying conifer recruitment in the alpine above current distributions given 

future warmer temperatures (Reinhardt et al. 2011). Better understanding the probable 

distribution shifts of limber pine will help improve the accuracy of climate modeling. 

Incorporating projections from these models into risk assessments and future habitat suitability 

predictions will only improve the success of proactive management. 
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APPENDIX 

 
Pre-study to determine effective drought treatments 

Before beginning watering treatments, it was necessary to determine a) the target drought 

threshold to ensure seedling physiology and growth were affected while avoiding large-scale 

mortality and b) the water potential of the seedlings throughout the treatment to guarantee the 

target drought level was being met without destructively harvesting them. This pre-study 

included 25 seedlings from each of eight families (four southern and four northern populations) 

that were roughly two months old.  

All seedlings were watered to capacity and the soil moisture content of each pot was 

measured both with a probe (VG200, Vegetronix Inc, Riverton, UT) and gravimetrically to test 

the accuracy of the instrument. Then all water was excluded and mid-day water potential of 

seedling and soil moisture were measured periodically for two months (Fig. 12). The resulting 

chart of the relationship between water potential and soil moisture provided a way to 

approximate the stress of the seedling through soil moisture (Fig. 13). 

A recent study with limber pine found a mid-day water potential of -1.4MPa to be 

moderately stressed, while severe stress was associated with -4.0MPa (Moyes et al. 2013). These 

seedlings reached an average of -1.4MPa after about a week and did not consistently reach  

-4.0MPa throughout the duration of water exclusion. Seedlings were moderately stressed when 

soil moisture content reached approximately 10-15%, which consequently became the target soil 

moisture level for the full study. 
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Fig. 12 Graph showing the average water potential of seedlings after water exclusion over time. 
The top and bottom dotted lines represent what is considered moderate and severely stressed 
seedlings, respectively (Moyes et al. 2013). 

 

	
  

Fig. 13 Graph showing the relationship between soil moisture content and water potential after 
water exclusion. The top and bottom dotted lines represent moderate and severely stressed 
seedlings, respectively (Moyes et al. 2013) 
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