
DISSERTATION

SPARSE MULTIVARIATE ANALYSES VIA `1-REGULARIZED OPTIMIZATION

PROBLEMS SOLVED WITH BREGMAN ITERATIVE TECHNIQUES

Submitted by

Nicholas Rohrbacker

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2012

Doctoral Committee:

Advisor: Michael Kirby

Christopher Peterson
Jiangguo Liu
Asa Ben-Hur

Copyright by Nicholas John Rohrbacker 2012

All Rights Reserved

ABSTRACT

SPARSE MULTIVARIATE ANALYSES VIA `1-REGULARIZED OPTIMIZATION

PROBLEMS SOLVED WITH BREGMAN ITERATIVE TECHNIQUES

In this dissertation we propose Split Bregman algorithms [38] for several multivariate

analytic techniques for dimensionality reduction and feature selection including Sparse

Principal Components Analysis, Bisparse Singular Value Decomposition (BSSVD) and

Bisparse Singular Value Decomposition with an `1-constrained classifier BSSVDl1. For

each of these problems we construct and solve a new optimization problem using these

Bregman iterative techniques. Each of the proposed optimization problems contain one or

more `1-regularization terms to enforce sparsity in the solutions. The use of the `1-norm

to enforce sparsity is a widely used technique, however, its lack of differentiability makes

it more difficult to solve problems including these types of terms. Bregman iterations

make these solutions possible without the addition of variables and algorithms such as the

Split Bregman algorithm makes additional penalty terms and multiple `1 terms feasible,

a trait that is not present in other state of the art algorithms such as the fixed point

continuation algorithm [40]. It is also shown empirically to be faster than another iterative

solver for total variaton image denoising, another `1-regularized problem, in [38]. We also

link sparse Principal Components to cluster centers, denoise Hyperspectral Images using

the BSSVD, identify and remove ambiguous observations from a classification problem

using the algorithm and detect anomalistic subgraphs using Sparse Eigenvectors of the

Modularity Matrix.

ii

ACKNOWLEDGMENTS

Many thanks and acknowledgments need to be made. First, to my Advisor Michael

Kirby for introducing me to the topics that would ultimately shape this thesis, supporting

me in times of need, and always being able to give some much needed perspective. Christo-

pher Peterson for his valuable guidance during my Master’s work, and a compliment at the

end of my Masters studies which I will always remember. To my Mom and Dad, Loella and

Robert Rohrbacker, who were always proud of me, no matter what. My In Laws, Alan and

Colleen Campbell, for their timely words of support. To my wonderful, loving and tolerant

wife Dawn Rohrbacker who took on the extra burden during my absence and made all of

this possible. And finally to Orion and Kepler Rohrbacker for always reminding me what

truly matters.

iii

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGMENTS . iii
LIST OF TABLES . v
LIST OF FIGURES . vi

1 Introduction 1

2 Bregman and Split Bregman Iterations and Convergence 4
2.1 Bregman and Split Bregman . 5

2.1.1 Theoretical Formulation . 6
2.1.2 Split Bregman . 9

2.2 Addition of Penalty Terms . 13
2.3 Non-constant Penalty Parameters on E(u) 14
2.4 The Dual Formulation . 15
2.5 Summary . 17

3 Sparse Principal Components Analysis 18
3.1 Bregman Sparse PCA . 22
3.2 Numerical Example . 26
3.3 Sparse PCA Application: Face Data . 27
3.4 Simultaneous Rank K Approximations . 34
3.5 Summary . 35

4 The Bisparse SVD 36
4.1 Bisparse SVD . 39
4.2 Fabry-Perot Hyperspectral Imagery . 53
4.3 BSSVD with Dynamic Parameters . 63
4.4 Summary . 64

5 `1-Constrained BSSVD Classifier 65
5.1 A Sparse `1-Constrained Classifier . 65
5.2 BSSVDl1 . 76
5.3 Arrhythmia Data . 86
5.4 Summary . 93

6 Modularity Maximization in Networks and Anomaly Detection 95
6.1 Detecting Graph Anomalies using Bregman Iterations 98
6.2 Summary . 100

7 Conclusions and Future Work 101
7.1 Conclusions . 101
7.2 Future Work . 101

References 102

Appendix A Definitions 114

iv

LIST OF TABLES

3.1 Variables Included in Jeffers’ Pitprops Data. 19
3.2 PCA Loadings for Pitprops Data . 20

5.1 Separable Data Classifier Results . 70
5.2 Non-Separable Data Classifier Results . 72
5.3 BSSVDl1 Confusion matrix . 93

v

LIST OF FIGURES

3.1 The original data matrix X . 27
3.2 The first sparse loading vector and the first PCA loading vector. 28
3.3 The basis vectors as determined by the SVD of X. Note that the first basis

vector (in blue) is devoted to capturing the high level of noise in the data. 28
3.4 The first five loading vectors . 30
3.5 The first sparse PCA and traditional PCA based eigenface 30
3.6 The second sparse PCA and traditional PCA based eigenface 31
3.7 The third sparse PCA and traditional PCA based eigenface 31
3.8 The fourth sparse PCA and traditional PCA based eigenface 32
3.9 The fifth sparse PCA and traditional PCA based eigenface 32
3.10 The graph associated with the 2D Laplacian Eigenmaps embedding. Note

the three clusters and the green dots representing the embedding of the first
three sparse Eigenfaces. 33

4.1 The original data matrix X with noise in the interval [0, .1] 42
4.2 The rank 2 SVD approximation to X with noise in the interval [0, .1] . . . 43
4.3 The rank 2 BSSVD approximation to X with noise in the interval [0, .1] . . 43
4.4 The first two left singular vectors from the rank 2 SVD approximation . . 44
4.5 The first two left singular vectors from the rank 2 BSSVD approximation . 44
4.6 The first two right singular vectors from the rank 2 SVD approximation . . 45
4.7 The first two right singular vectors from the rank 2 BSSVD approximation 45
4.8 The original data matrix X with noise in the interval [0, .3] 46
4.9 The rank 2 SVD approximation to X with noise in the interval [0, .3] . . . 47
4.10 The rank 2 BSSVD approximation to X with noise in the interval [0, .3] . . 47
4.11 The first two left singular vectors from the rank 2 SVD approximation . . 48
4.12 The first two left singular vectors from the rank 2 BSSVD approximation . 48
4.13 The first two right singular vectors from the rank 2 SVD approximation . . 49
4.14 The first two right singular vectors from the rank 2 BSSVD approximation 49
4.15 The original data matrix X with noise in the interval [0, 1.3] 50
4.16 The rank 1 SVD approximation to X with noise in the interval [0, 1.3] . . . 50
4.17 The rank 1 BSSVD approximation to X with noise in the interval [0, 1.3] . 51
4.18 The first left singular vector from the rank 1 SVD approximation. 51
4.19 The first left singular vector from the rank 1 BSSVD approximation 52
4.20 The first right singular vector from the rank 1 SVD approximation 52
4.21 The first right singular vector from the rank 1 BSSVD approximation . . . 53
4.22 Example of hyperspectral image, with two spatial dimensions and one wave-

length/color dimension . 54
4.23 The 50th frame of Fabry Perot data. No plume present yet. Original image

at top, background removed image in the middle, rank 10 BSSVD approxi-
mation at the bottom. 55

4.24 The 130th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 56

4.25 The 150th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 56

vi

4.26 The 170th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 57

4.27 The 190th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 57

4.28 The 210th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 58

4.29 The 230th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 58

4.30 The 250th frame of Fabry Perot data. Original image at top, background
removed image in the middle, rank 10 BSSVD approximation at the bottom. 59

4.31 The first left vector in image form. BSSVD on top, SVD on bottom 59
4.32 The second left vector in image form. BSSVD on top, SVD on bottom . . 60
4.33 The third left vector in image form. BSSVD on top, SVD on bottom . . . 60
4.34 The fourth left vector in image form. BSSVD on top, SVD on bottom . . . 61
4.35 The first right vector. 61
4.36 The second right vector. 62
4.37 The third right vector. 62
4.38 The fourth right vector. 63

5.1 Mesh plot of the data used to test Equation (5.12) 73
5.2 Mesh plot of the rank two SVD approximation to the data used to test

Equation (5.12) . 73
5.3 Mesh plot of the rank two BSSVD approximation to the data used to test

Equation (5.12) . 74
5.4 Plots of the decision vectors for the model trained on the original, noisy

data, and the denoised BSSVD decomposed data. 75
5.5 Plot of the errors from the model based on the original data. Note that they

all occur within the first 50 observations where the small decision weight
was unable to overcome larger weights applied to noisy data. 75

5.6 Mesh plot of the data used to test the BSSVDl1 algorithm 81
5.7 Mesh plot of the rank one SVD approximation to the data used to test the

BSSVDl1 algorithm . 81
5.8 Mesh plot of the rank one BSSVDl1 approximation to the data used to test

the BSSVDl1 algorithm . 82
5.9 Plot of the BSSVDl1 left singular vector, the SVD left singular vector and

a green line at zero. Note how the BSSVDl1 left singular vector provides a
classification of the data. 82

5.10 Plot of the BSSVDl1 right singular vector and the SVD right singular vector. 83
5.11 Plot of the BSSVDl1 right singular vector and the `1 weighting/decision vector 83
5.12 Plot of the classifier constrained left vector for the test data. The penalty

parameter associated with the classifier increases from left to right and top
to bottom. 84

5.13 The first left singular vector of the example data based on the classic SVD 85
5.14 The first left singular vector of the example data based on the BSSVDl1

algorithm. The penalty parameter increases left to right and top to bottom. 86

vii

5.15 The first left singular vectors as determined by the BSSVDl1 algorithm for
increasing classifier penalties. 88

5.16 The 3D Laplacian Eigenmaps embedding. Normal data points in blue, Ar-
rhythmia data points in green. 89

5.17 The 3D Laplacian Eigenmaps embedding after rotation. Note the concen-
tration/distribution of green points to the right. 90

5.18 In red are the Normal data points that are indicated for removal. Note the
location of the points within the distribution of the green Arrhythmia data
points. 90

5.19 In black are the Arrhythmia data points that are indicated for removal.
These are generally found in the concentration of blue Normal points. . . . 91

5.20 The original, rotated data after the points indicated for removal have had
their classes switched, revealing a better split between the data. 91

6.1 A sample social network clustered using modularity. Clusters correspond to
different groupings of family and friends based on chronological and other
factors. 96

6.2 A sample RMAT network clustered using modularity, with a hidden eight
node subgraph embedded within the graph. 97

6.3 The first loading vector from the sparse pca of the modularity matrix asso-
ciated with Figure 6.2 . 98

6.4 The first and second loading vector from the sparse pca of the modularity
matrix associated with Figure 6.2, with two embedded subgraphs 99

6.5 A 2D embedding of the graph using the sparse PCA vector rows as coordinates. 99
6.6 A 2D embedding of the graph using the traditional PCA vector rows as

coordinates. 100

viii

1 Introduction

Optimization problems featuring `1-constrained terms are becoming more familiar in

the mathematical and statistical literature. The `1-norm has many well known properties

including being robust to outliers and enforcing sparsity in optimization problems where it

is present as part of the optimization problem. This has led to its use in many applications

including variable selection [82], matrix rank minimization and completion [53, 19, 17,

15], multiple target tracking [44] and image analysis [38, 90] among others. While `1-

optimization has been around for a while [29, 82, 2], there has been a recent explosion of

interest in this area. This is due in part, to the success of compressed sensing [18, 98, 28].

Compressed sensing is the technique whereby a signal x of length n is recovered using

m � n linear functional measurements. This is achieved by solving an `1-minimization

problem such as the basis pursuit problem

minimize
u

‖u‖1 +
λ

2
‖Au− b‖2

2 (1.1)

The `1-norm is also used in the relatively new field of large margin hyperplane classifiers,

commonly known as Support Vector Machines (SVM) [12], [34]. In this setting, the `1-

norm is used to enforce sparsity in a decision vector w where the decision function classifies

data into two classes, C+, C− via

sgn(x′w − γ) =

1 then x ∈ C+,

−1 then x ∈ C−.

(1.2)

As can be seen by the decision function given in Equation (1.2), if w is sparse, then the

variables that determine class separation are more easily determined.

The `1-norm has also been used in fields such as image denoising. In 2005, Stanley Osher

used an `1 regularized optimization problem to minimize the total variation problem [64].

It was also used in [80] for hyperspectral image demixing.

Another well known use of `1 regularization is the Least Absolute Shrinkage and Se-

lection Operator or LASSO for short, introduced by Tibshirani in 1996 [82]. In [82] the

1

`1-norm is used to enforce sparsity in the vector of coefficients in regression. The problem

stated in [82] is given by the least-squares regression problem,

(α̂, β̂) = arg min

{
N∑
i=1

yi − α−
P∑
j=1

βjxij

}
subject to ‖β‖1 ≤ t (1.3)

where the goal is to solve for a vector of regression coefficients β subject to the constraint

that the `1-norm of β is less than or equal to some real number t.

Beginning in 2003, sparsity within multivariate analytic techniques began with the

introduction of the SCoTLASS algorithm [46]. This algorithm used the LASSO criteria to

calculate sparse principal components. This was followed up by Zou et al. who also used

as LASSO criteria to look for sparse principal components [102].

Other multivariate techniques also followed, including sparse Canonical Correlation

Analysis (CCA) and sparse versions of the Singular Value Decomposition (SVD). Since

the SVD is a necessary component for the solution of CCA at least two of the sparse SVD

algorithms come from papers where sparse CCA is the goal [65, 93, 51, 3, 76].

Other areas of active research that may benefit from the introduction of `1 regularized

problems are image segmentation and finding community structure in networks [74, 61, 60,

59]. In these problems, the task is to solve the combinatorial optimization problem [74,

62, 91]. However, the majority of these techniques involve a ”relaxation” of an eigenvector

problem to allow continuous values in the results. Then, the values are assigned to either

−1 or 1 based on their sign.

For example, in some cases, finding small subgraphs within a network is desirable.

The formulation of this problem results in solving for eigenvectors of a matrix called the

Modularity Matrix [57]. Solving for the eigenvectors of this symmetric matrix may be

accomplished using Sparse PCA.

The remainder of this dissertation will be structured as follows. Chapter two will cover

Bregman and Split Bregman Iterative schemes and their convergence. The ability to allow

variable parameters, and a general dual formulation will also be covered. Chapter three will

be devoted to a review of Sparse Principal Component Analysis and the implementation

2

of Bregman iterations to that problem. Through a numerical example, the dimension

reduction capability of the sparse PCA will be demonstrated. This capability will be

further displayed using images of faces and allowing the Sparse PCA algorithm to reduce

the data by choosing geometrically meaningful principal components. Chapter four will

cover a sparse version of the Singular Value Decomposition (SVD) that we call the Bisparse

SVD (BSSVD). The Defense Threat Reduction Agency (DTRA) is interested in algorithms

that can identify plumes of possibly threatening chemicals and we will show an application

using the BSSVD to this effect. In Chapter five an optimization problem for a Bisparse SVD

with an `1-constrained classifier will be proposed and solved, we will refer to this algorithm

as the BSSVDl1. Applying this algorithm to both toy and real-world data has shown

promising results in the area of feature selection. Feature selection in model building can

be important in many ways, such as selecting the most important variables in a classification

or predictive model, or by selecting the needed variables for dimensionality reduction. In

this paper we focus on the ability of the algorithm to identify observations from a dataset

meant for classification that are ambiguous, or inconsistent with the supplied labeling. We

will examine the ambiguous data from a geometric viewpoint and also test to see if removing

these ambiguous records during the training process aids in the overall classification rate.

Chapter six will visit the modularity problem and will calculate sparse eigenvectors of the

modularity matrix using the sparse PCA algorithm. Using this technique we are able to

identify hidden subgraphs of interest. This problem mimics threat detection and anomaly

detection in a network setting. Chapter 7 will be used to discuss areas of possible future

work and conclusions.

3

2 Bregman and Split Bregman Iterations and Convergence

Bregman distances were introduced in 1967 by the mathematician L.M. Bregman [13].

Bregman was mainly concerned with finding a common point of convex sets, which corre-

sponded to a solution to a convex optimization problem. Bregman introduced the distance

Df (x, y) = f(x)− f(y)− (g(y), x− y)

where f is a strictly convex differentiable function, g is the gradient of f , and (x, y) denotes

the dot product of the two vectors x and y. The Bregman distance is not a distance in the

strict sense, since D(x, y) does not necessarily equal D(y, x)1.

Bregman iterations based on the Bregman distance were introduced by Stanley Osher

in 2005 for image restoration based on total variation [64]. Osher also presented a solid

theoretical foundation for using Bregman iterations to solve convex optimization problems.

Since then, it has been applied to many different applications such as inverse scale space

methods for image restoration [14], image super resolution via total variation regulariza-

tion [55], likelihood estimation [58], wavelet based denoising [94], compressed sensing [98],

hyperspectral image demixing [80], surface reconstruction [37] and a fused lasso and fused

lasso support vector classifier [96]. In general, Bregman iterations based on Bregman

distances were introduced as a method for solving convex optimization problems with `1-

regularization terms. For example, in the realm of compressed sensing, Bregman iterations

are used to solve the basis pursuit problem,

minimize
u

‖u‖1 +
λ

2
‖Au− b‖2

2 (2.1)

For the total variation based image restoration, the Split Bregman technique was used to

solve

minimize
u

‖∇xu‖1 + ‖∇yu‖1 +
µ

2
‖u− f‖2

2

From these two examples, it is clear that the technique is able to be adapted to a range of

different `1-regularized optimization problems.

1Consider the function f(x) = x4. Here, D(1, 2) = −11 6= D(2, 1) = −17.

4

2.1 Bregman and Split Bregman

In this section, we focus on the convergence of Bregman iterative schemes and extend

this to the Split Bregman algorithm, which allows multiple `1 terms and easy addition of

penalty terms [38]. These features make the Split Bregman algorithm easily adaptable to

a wide range of `1-regularized problems.

We begin by focusing on the following problem statement:

minimize
u

{E(u) : H(u) = 0, u ∈ Rn} (2.2)

where E and H are nonnegative convex functions. This equation is converted to an uncon-

strained problem by adding a penalty-term for the constraints.

minimize
u

E(u) + λH(u) (2.3)

Based on the work by Bregman in his paper [13], if we define the Bregman distance asso-

ciated with a function E and subgradient2 of E at v, pv as

Dpv
E = E(u)− E(v)− (pv, u− v),

then Goldstein and Osher [38] suggested iteratively solving

uk+1 = minimize
u

Dp
E(u, uk) + λH(u)

= minimize
u

E(u)− E(uk)− (pk, u− uk) + λH(u)

= minimize
u

E(u)− (pk, u− uk) + λH(u) (2.4)

where the term E(uk) is dropped from the second line due to it being constant and not

effecting the nonnegativity of the Bregman distance, nor the minimization of the original

problem. The term pk represents a subgradient of E at uk. This means that in the case

where E is a differentiable convex functional, that pk is the gradient of E at uk.

2See Appendix A for definition of subgradient

5

If we assume that H(u) is differentiable and consider the subdifferential of Dpk
E (u, uk +

λH(u)) then

∂E(uk+1)− pk +∇H(u) = 0

since by definition of the subdifferential, 0 will be in the subdifferential of this expression

at uk+1. Given that pk+1 ∈ ∂E(uk+1) we can then write

pk+1 = pk −∇H(uk+1) (2.5)

This is a variant of a formula, Equations (2.7) and (2.8), seen in the proof of theorem 3 in

Bregman’s original paper [13]

2.1.1 Theoretical Formulation

To show how to formulate the Split Bregman algorithm for our problem we will use three

theorems and one lemma. The first theorem was stated in [38] and stated and proven

in [98].

Theorem 1. Assume E and H are both convex and that H is differentiable, then, H mono-

tonically decreases in the iterates uk.

Proof. Define

Qk(u) = minimize
u

E(u)− E(uk−1)− (pk−1, u− uk−1) +H(u).

By assumption, uk minimizes Qk, this, along with the nonnegativity of the Bregman dis-

tance implies that

H(uk) ≤ E(uk)− E(uk−1)− (pk−1, uk − uk−1) +H(uk)

= Qk(uk) ≤ Qk(uk−1) = H(uk−1)

The next lemma provides an inequality that will help in the proof of the next theorem.

Lemma 1 and Theorem 2 are a portion of a proposition and a theorem that appear in [64].

6

Lemma 1. Assume that E and H are both convex and that H is also differentiable, then

Dpk(u, uk) +Dpk−1(uk, uk−1) +H(uk) ≤ H(u) +Dpk−1(u, uk−1)

Proof.

Dpk(u, uk)−Dpk−1(u, uk−1) +Dpk−1(uk, uk−1)

=E(u)− E(uk)− (pk, u− uk)− E(u) + E(uk−1) + (pk−1, u− uk−1)

+E(uk)− E(uk−1)− (pk−1, uk − uk−1)

=− (pk, u) + (pk, uk) + (pk−1, u)− (pk−1, uk−1)− (pk−1, uk) + (pk−1, uk−1)

=(uk − u, pk − pk−1)

=(uk − u,−∇H(uk))

=(u− uk,∇H(uk))

Given that H is assumed to be convex, the final line implies that

(u− uk,∇H(uk)) ≤ H(u)−H(uk)

Substituting Dpk(u, uk)−Dpk−1(u, uk−1)+Dpk−1(uk, uk−1) back into the left hand term and

simple algebra give the result.

Theorem 2. Assume that E and H are both convex and that H is also differentiable, then

if ũ is a minimizer of H(u) such that E(u) <∞ then

H(uk) ≤ H(ũ) +
E(ũ)

k

Proof. Summing both sides of lemma 1 gives

k∑
j=1

Dpj(u, uj) +Dpj−1(uj, uj−1) +H(uj) ≤
k∑
j=1

H(u) +Dpj−1(u, uj−1),

k∑
j=1

Dpj(u, uj)−Dpj−1(u, uj−1) +
k∑
j=1

Dpj−1(uj, uj−1) +H(uj)−H(u) ≤ 0

7

If we focus on the first term on the left side of this inequality it becomes clear that this is a

telescoping sum which when expanded will become equivalent to −Dp0(u, u0) +Dpk(u, uk),

which when substituted back into the original inequality results in

Dpk(u, uk) +
k∑
j=1

Dpj−1(uj, uj−1) +H(uj)−H(u) ≤ Dp0(u, u0)

Since Dpk(u, uk) ≥ 0, Dpk−1(uk, uk−1) ≥ 0 and H(u) is monotonic we can conclude that

k [H(uk)−H(u)] ≤ Dp0(u, u0) ≤ E(u),

which then implies that

H(uk) ≤ H(u) +
E(u)

k
.

Theorem 2 states that if E and H satisfy some simple assumptions, then the sequence

{uj} chosen through the Bregman iterations will converge, i.e. H(uj)→ H(ũ) as j →∞

Theorem 3 below gives the final convergence result, namely the fact that the Bregman

iterative scheme proposed in Equation (2.4) will converge to an optimal solution given

minor assumptions on E. This theorem is a slight variant of a theorem proven in [38], in

that the form of H(u) is unrestricted.

Theorem 3. Let E be convex, and assume that H(u) is convex and differentiable with

minimum value 0. Also assume that some iterate u∗ satisfies H(u) = 0. Then, u∗ is a

solution to the problem,

minimize {E(u) : H(u) = 0, u ∈ Rn} (2.6)

Proof. Let u∗ be such that H(u∗) = 0 and

u∗ = min
u
E(u) + λH(u) (2.7)

8

If û is a solution to the original problem given by Equation(2.6) then H(u∗) = H(û) = 0.

Since u∗ is a solution of Equation 2.7, this implies that

E(u∗) + λH(u∗) ≤ E(û) + λH(û)

Given the equality of the second term on both sides of the equation we can conclude that

E(u∗) ≤ E(û). Plus, since û solves Equation (2.6) implies that this inequality can be

changed to an equality and that u∗ is also a solution to Equation (2.6).

Thus, using Theorems 1, 2 and 3 and Lemma 1, we can conclude the following: Theorem

1 proves that H will monotonically decrease in the iterates u. Lemma 1 and Theorem 2

show that H will monotonically decrease towards the minimum of H provided that E is

finite. Finally, Theorem 3 proves that the iterates will approach a solution to (2.6) since

the second term in this problem satisfy the assumptions on H in the previous theorems

and lemma.

2.1.2 Split Bregman

The goal of Split Bregman is to split the `2/differentiable portion from the `1 portions

of the problem. To begin, consider the following variation of the original unconstrained

problem for a differentiable function Φ

arg min
u,d

‖d‖1 + F (u) s.t. d = Φ(u),

which can be rewritten as:

arg min
u,d

‖d‖1 + F (u) +
λ

2
‖d− Φ(u)‖2

2 . (2.8)

This is a restatement of the original problem with E(u, d) = ‖d‖1 + F (u) and H(u, d) =

‖d− Φ(u)‖2
2. Thus we look to iteratively solve

(uk+1, dk+1) = arg min
u,d

‖d‖1 + F (u)− (puk , u− uk)− (pdk, d− dk) +
λ

2
‖d− Φ(u)‖2

2 (2.9)

Here is where the split takes place. Equation (2.9) is split into the portions of the problem

that include differentiable components, and non-differentiable components i.e.,

9

1. uk+1 = arg min
u

F (u)− (puk , u− uk) + λ
2
‖dk − Φ(u)‖2

2

2. dk+1 = arg min
d

‖d‖1 − (pdk, d− dk) + λ
2
‖d− Φ(uk+1)‖2

2

3. puk+1 = puk −∇Hu(uk+1)

4. pdk+1 = pdk −∇Hd(dk+1)

where ∇Hu indicates the gradient of H with respect to u and ∇Hd is defined similarly.

For the first equation, since all components are differentiable, the structure of the problem

can be used to identify the best solution method. For the second equation, since the

components can all be calculated separately from one another, shrinkage operators are

used to find the optimal solution [40, 82] i.e.,

(dk+1)j = shrink(Φ(uk+1)j + (pdk)j,
1

λ
)

where

shrink(x, γ) =
x

|x|
·max(|x| − γ, 0).

A second formulation of the problem given in [98] removes terms involving the subdif-

ferential and can be easier to implement when the constraints associated with a problem

are linear. For this, we need Theorem 4. First, note that ∂
∂u

(1
2
‖Au− b‖2

2) = AT (Au − b).

Substituting this into ∇H gives

pk+1 = pk − AT (Auk+1 − b) (2.10)

Theorem 4. The following versions, V1 and V2 of the Bregman iterative scheme are

equivalent

10

V1:

u0 := 0, p0 := 0

For k = 0, 1, . . . , do

uk+1 = minimize
u

Dpk(u, uk) +
1

2
‖Au− b‖2

2 (2.11)

pk+1 = pk − AT (Auk+1 − b)

V2:

b0 := 0, u0 := 0

For k = 0, 1, . . . , do

bk+1 = b+ (bk − Auk+1)

uk+1 = minimize
u

E(u) +
1

2
‖Au− bk+1‖2

2 (2.12)

Proof. At k = 0, (3.9) gives:

=minimize
u

Dp0(u, u0) +
1

2
‖Au− b‖2

2

=minimize
u

E(u)− (0, u− 0) +
1

2
‖Au− b‖2

2

=minimize
u

E(u) +
1

2
‖Au− b‖2

2

Note that in the second line, E(u0) has been dropped as it is constant and will not change

the calculation of the minimum. At k = 0, (2.12) gives:

=minimize
u

E(u) +
1

2
‖Au− b1‖2

2

=minimize
u

E(u) +
1

2
‖Au− (b+ (b0 − Au0))‖2

2

=minimize
u

E(u) +
1

2
‖Au− b‖2

2

[40] showed that for all optimal solutions, AT (b − Au) is constant. This implies that

AT (b− Au1) = AT (b− Aū1) for all optimal solutions. Hence

p1 = p0 − AT (Au1 − b) = AT (b− Au1) = AT (b− Aū1) = AT (b1 − Aū1)

11

Using induction on pk = AT (bk − Aūk), and moving all terms that are constant in u into

the constants C1, C2 and C3,

Dpk(u, uk) +
1

2
‖Au− b‖2

2 = E(u)− (pk, u) +
1

2
‖Au− b‖2

2 + C1

= E(u)− (bk − Aūk, Au) +
1

2
‖Au− b‖2

2 + C2

= E(u)− (bk − Aūk, Au) +
1

2
(Au− b, Au− b) + C2

If we focus on the term (bk − Aūk, Au)− 1
2
(Au− b, Au− b) we see that this term

= (bk, Au)− (Aūk, Au) +
1

2
(Au,Au)− (Au, b) +

1

2
(b, b)

=
1

2
[2(bk, Au)− 2(Aūk, Au) + (Au,Au)− 2(Au, b) + (b, b)]

=
1

2
[2(bk, Au)− 2(Aūk, Au) + (Au,Au)− 2(Au, b) + (b, b)] +

1

2
[(bk, bk) + (Aūk, Aūk)− (bk, bk)− (Aūk, Aūk)]

=
1

2
(Au− (b+ (bk − Aūk)), Au− (b+ (bk − Aūk)))−

1

2
(bk, bk)−

1

2
(Aūk, Aūk)

if C3 := C2 − 1
2
(bk, bk)− 1

2
(Aūk, Aūk) then continuing from above we get

=E(u)− (bk − Aūk, Au) +
1

2
‖Au− b‖2

2 + C2

=E(u) +
1

2
‖Au− (b+ (bk − Aūk))‖2

2 + C3

=E(u) +
1

2
‖Au− bk+1‖2

2 + C3.

Which we see is equivalent to Equation (2.12).

Theorem 4 allows us to write the Bregman iterative problem

uk+1 = arg min
u

Dpk(u, uk) +
λ

2
‖Au− b‖2

2

pk+1 = pk − λAT (Auk+1 − b)

in the following form:

uk+1 = arg min
u

E(u) +
λ

2
‖Au− bk‖2

2

bk+1 = bk + b− Auk.

12

To put this in the Split Bregman framework, the `1 and `2 portions are again split apart,

i.e.,

(uk+1, dk+1) = arg min
u,d

‖d‖1 +H(u) +
λ

2
‖d− u− bk‖2

2

bk+1 = bk + uk+1 − dk+1.

The solution method is similar to the original formulation to solve the first problem. It

is split into the portions of the problem that include differentiable components, and non-

differentiable components, i.e.,

1. uk+1 = arg min
u

H(u) + λ
2
‖dk − u− bk‖2

2

2. dk+1 = arg min
d

‖d‖1 + λ
2
‖d− uk+1 − bk‖2

2

3. bk+1 = bk + uk+1 − dk+1.

It should be noted that it has been shown in [32] that the Split Bregman method can

be equivalent to the Alternating Direction Method of Multipliers (ADMM) found in [35].

However, it is also noted that this is in general only the case when the constraints on

the optimization problem are linear. As evidenced by the convergence theory of the Split

Bregman method it is able to allow for convex constraints.

2.2 Addition of Penalty Terms

The addition of penalty terms in the Split Bregman Framework is generally very simple

and one of its major advantages over other algorithms. How to change the optimization

problem depends on if the function is differentiable or not. For example, consider the basic

problem given by,

minimize
u

‖u‖1 + ‖Au− f‖2
2 (2.13)

Where u ∈ Rn, f ∈ Rm and A ∈ Rm×n. In the Split Bregman framework, using a simplifi-

cation presented in [38], this is represented as

minimize
u,d

‖d‖1 +
λ1

2
‖Au− f‖2

2 +
λ2

2
‖d− u− b‖2

2 (2.14)

13

Where b has taken the place of the Bregman update parameter which previously was given

by pk.

In order to add an `1 term P1(u) the problem would need to be changed as follows

minimize
u,d,dP

‖d‖1 +‖dP‖1 +
λ1

2
‖Au− f‖2

2 +
λ2

2
‖d− u− b‖2

2 +
λ3

2
‖dP − P1(u)− bP‖2

2 (2.15)

To add a differentiable term, the term is just added to the main optimization problem,

with no additional variables needed. Let P1(u) be a differentiable function of u, then we

have the following Bregman interpretation of the problem.

minimize
u,d

‖d‖1 +
λ1

2
‖Au− f‖2

2 +
λ2

2
‖d− u− b‖2

2 + λ3P1(u) (2.16)

The differentiable term, P1(u) will be added to the iteration of ui+1, and will not be

present when working with the `1 penalized terms.

2.3 Non-constant Penalty Parameters on E(u)

The proof of convergence for this technique given above does not allow variable parameters.

However, the ability to change parameters attached to penalty terms may have beneficial

effects in regards to sparsity levels and iteration step size. Following the outline given

in [98] we note that if we let E(u)k := µkE(u), then, a subgradient for E(u)k would be

given by µkpk. Considering the following problem,

minimize
u

µkE(u) + λH(u) (2.17)

and its Bregman version

minimize
u

µkE(u)− (pk−1, u− uk−1) + λH(u). (2.18)

We note that pk−1 solved for in the iterative sense would actually be a subgradient of

E(u)k−1 and therefore the problem that needs to be solved is given by

minimize
u

µkE(u)− µk
µk−1

(pk−1, u− uk−1) + λH(u). (2.19)

14

Further calculations give that

pk+1 = −µk+1

k+1∑
j=1

λ∇H(uj)

µj
(2.20)

Using the proof of Theorem 4 above, and the third part of the proof of Theorem 3.1 in [38]

we have that

pk+1 =
µk
µk−1

pk − AT (Auk+1 − b) =
µk
µk−1

pk − AT (Aūk+1 − b) (2.21)

=
µk
µk−1

AT (bk − Aūk)− AT (Aūk+1 − b)

= AT (b+
µk
µk−1

(bk − Aūk)− Aūk+1).

When used in conjunction with equation 3.9 in [98], this gives that

bk+1 = b+
µk
µk−1

(bk − Auk) (2.22)

Thus, if the sequence of µk is bounded, we can see that while the number of necessary

iterations may increase, the overall convergence of the optimization problem will not be

compromised.

2.4 The Dual Formulation

The derivations found in this section come mainly from [32] and [99]. Consider a convex

functional J(u) and the following constrained optimization problem:

minimize
u∈Rm

J(u)

subject to Ku = f (2.23)

Where K ∈ Rs×m and f ∈ Rs. If we assume that J(u) can be split into two different

functions, J(u) = E(u) +H(u), then we can form

minimize
u,z∈Rm

E(z) +H(u)

subject to Bz + Au = f. (2.24)

15

Where B is defined to be,

B =

 Im,m

0s,m

A is defined as,

A =

 Im,m

K

and b is

b =

 0m,1

f

 .

Equation 2.24 is equivalent to

minimize
u,z∈Rm

E(z) +H(u)

subject to z = u and Ku = f (2.25)

To find the dual formulation, we begin by forming the Lagrangian.

L(z, u, λ) = E(z) +H(u) + (λ, b− Au−Bz). (2.26)

If we want to find the dual associated with L, then we look at

max
λ∈Rs+m

q(λ) (2.27)

where q(λ) = minz,u∈Rm L(z, u, λ). The dual functional is generally written in terms of the

Legendre-Fenchel transform [32, 99, 70].

q(λ) = min
z,u

E(z) +H(u) + (λ, b− Au−Bz)

= min
z
E(z)− (λ,Bz) +

(
min
u
H(u)− (λ,Au)

)
+ (λ, b)

= −max
z

(BTλ, z)− E(z)−
(

max
u

(ATλ, u)−H(u)
)

+ (λ, b)

= −E∗(BTλ)−H∗(ATλ) + (λ, b) (2.28)

Where E∗ and H∗ are the Legendre-Fenchel transforms of E and H defined by

E∗(BTλ) = max
z

(BTλ, z)− E(z) (2.29)

H∗(ATλ) = max
u

(ATλ, u)−H(u) (2.30)

16

2.5 Summary

In this section we covered the Split Bregman method and its applicability to `1-regularized

optimization problems. We showed convergence under mild assumptions on the terms in the

objective function, gave examples of how to add additional penalty terms, briefly explored

the notion of variable parameters and calculated a general form for the dual formulation.

Much of the work above was expository in nature, confirming that this method would

be satisfactory for the problems of interest. However, there were novel contributions that

furthered the work that has been done in this area. These include the explicit instruction for

how to add additional penalty terms to the objective function, providing a fully contained

proof of convergence, and expanding the details within these proofs. All of these are

important as they provide a solid foundation for using this framework to its fullest extent

and in many cases are constructive in the sense of providing guidelines forn when the

method is appropriate and how to tailor it to the problem at hand.

17

3 Sparse Principal Components Analysis

Principal Components Analysis is a multivariate statistical technique which replaces

observed variables with derived variables [45]. These derived variables are linear combina-

tions of the original variables called principal components. The principal components for a

given data set is the orthonormal set of vectors, that explains the most variance within the

data set when compared to all other orthonormal bases [45]. PCA has many uses includ-

ing dimensionality reduction, classification, clustering, facial recognition, and independent

variable creation for regression modeling [95, 47, 78, 48]. For many of these applications, it

is desirable that the principal components be easily interpreted, and this is sometimes the

case. Interpretation is generally easier when the number of non-zero loadings is small. If

a principal component has non-zero loadings on a large number of the variables interpre-

tation is more difficult. However, since the principal components are linear combinations

of all of the observed variables, it is not guaranteed that the loadings will be sufficiently

sparse in order to make interpretation easy. The `1-norm has been introduced in the last

several years as a way to force as many zero entries in the PCA coefficients as possible

[46, 102].

Sparse Principal Component Analysis dates back to the 1980’s when Hausman restricted

the set of loading coefficients in PCA to the set {1, 0,−1} by using a branch and bound

algorithm [41]. In 2000, Vines proposed a method that restricts the coefficients to be

integers. His algorithm was an iterative algorithm based on the Jacobi method [88]. The

algorithm SCoTLASS proposed by Jolliffe in 2003 was one of the first algorithms to attempt

to force zero coefficients in the principal components [46]. It does this by enforcing a lasso

constraint on the normal formulation of the principal component optimization problem [82].

One of the most influential papers written on sparse PCA came in 2006 from Zou et al. In

their paper, PCA is reformulated as a regression problem and Ridge and Lasso penalization

terms are added to enforce sparsity [102]. The field of sparse principal components has

grown in recent years, e.g. [73, 26, 43, 52, 36, 27].

18

Table 3.1: Variables Included in Jeffers’ Pitprops Data.

Variable Description

x1 Top diameter in inches

x2 Length in inches

x3 Moisture content, percent of dry weight

x4 Specific gravity at time of test

x5 Oven-dry specific gravity

x6 Number of annual rings at top

x7 Number of annual rings at bottom

x8 Maximum bow in inches

x9 Distance of point of maximum bow from top in inches

x10 Number of knot whorls

x11 Length of clear prop from top in inches

x12 Average number of knots per whorl

x13 Average diameter of the knots in inches

A classic example of the potential difficulty in interpreting principal components (PCs)

is illustrated by the pitprops data introduced by [42] that consists of 180 observations of 13

variables. The following two tables taken from [46] help illustrate this concept. Table 3.1

contains descriptions of each of the variables and Table 3.2 contains the loadings for the first

six principal components. As can be seen by the values in Table 3.2 the interpretation of

the components is made difficult by the large number of loadings that could be interpreted

as significant or non-significant present in each PC. Granted, in each PC there are larger

values and smaller values by magnitude, but there are also always values between these

that would make association of any one of the PC’s back to a small subset of the original

variables difficult.

There have been many different formulations used to solve the sparse PCA problem.

19

Table 3.2: PCA Loadings for Pitprops Data

Variables PC1 PC2 PC3 PC4 PC5 PC6

x1 0.404 0.212 -0.219 -0.027 -0.141 -0.086

x2 0.406 0.180 -0.245 -0.025 -0.188 -0.111

x3 0.125 0.546 0.114 0.015 0.433 0.120

x4 0.173 0.468 0.328 0.010 0.361 -0.090

x5 0.057 -0.138 0.493 0.254 -0.122 -0.560

x6 0.284 -0.002 0.476 -0.153 -0.269 0.032

x7 0.400 -0.185 0.261 -0.125 -0.176 0.030

x8 0.294 -0.198 -0.222 0.294 0.203 0.103

x9 0.357 0.010 -0.202 0.132 -0.117 0.103

x10 0.379 -0.252 -0.120 -0.201 0.173 -0.019

x11 -0.008 0.187 0.021 0.805 -0.302 0.178

x12 -0.115 0.348 0.066 -0.303 -0.537 0.371

x13 -0.112 0.304 -0.352 -0.098 -0.209 -0.671

Simplicity Factor (Varimax) 0.059 0.103 0.082 0.397 0.086 0.266

Variance (%) 32.4 18.2 14.4 8.9 7.0 6.3

Cumulative Variance (%) 32.4 50.7 65.0 74.0 80.9 87.2

20

Here, we give an overview of the problems associated with four of the most well-known

sparse PCA algorithms. To begin, we look at the problem solved for SCoTLASS in [46].

In that problem, the authors look for vectors ak that maximize the variance with respect

to the correlation matrix R with a scaling and an orthogonality constraint,

maximizeak aTkRak (3.1)

aTk ak = 1 and aTk ah = 0 for k 6= h

with the added constraint that ‖ak‖1 ≤ t for some positive real-value t. In [26] the authors

use a relaxation of a semidefinite programming problem to directly restrict the cardinality

of the solutions. If we define Tr(A) to be the trace of the matrix A and |X| to be the

sum of the absolute values of the entries of X, then their optimization problem is based

on finding a rank one matrix X which optimizes the following,

maximize
X

Tr(AX)− ρ1T |X|1 (3.2)

subject to Tr(X) = 1,

X � 0,

where the constraint Tr(X) = 1 results in the norm of solution being equal to one and

X � 0 means that the solution matrix X is positive semidefinite. Furthermore, the greedy

algorithm they construct can find all of the possible solutions, meaning all solutions with

cardinality 1 to n. Zou et al. in [102] recast PCA as a regression problem in order to utilize

the Elastic Net penalty.

(α̂, β̂) = arg min
α,β

n∑
i=1

∥∥Xi − αβTXi

∥∥2

2
+ λ

k∑
j=1

β2
j +

k∑
j=1

λ1,j|βj| (3.3)

subject to αTα = Ik

In the above equation, X is an n × p matrix, α and β are both p × k matrices. For

the ridge penalty term, the parameter λ stays fixed for all entries of β. However, for

21

the LASSO penalty, the λ1,j can change for each entry of β. In cases where the number

of variables is much larger than the number of observations, the problem is solved using

soft thresholding rather than regression methods. Finally, in [73] they solve the following

optimization problem

minimize
∥∥X − ũṽT∥∥2

F
+ Pλ(ṽ) (3.4)

Which is equivalent to minimizing the Frobenius error of a rank one approximation while

enforcing a sparsity penalty on ṽ using the penalty term pλ(ṽ). In the algorithm used to

solve this problem, ũ continually changes as the iterations progress, and is also scaled at

each step to have unit norm. Thus, from an interpretation standpoint, the basis vectors

on which the sparse loading vector, ṽ is based, are constantly changing throughout the

algorithm. They also offer three different penalties to use for Pλ(ṽ), soft-thresholding,

hard thresholding and the SCAD (smoothly clipped absolute deviation) [33].

3.1 Bregman Sparse PCA

To formulate our sparse PCA problem we begin by constructing the optimization problem

to be solved. For the approximation to the kth Sparse PCA loading vector (LV) vk we will

solve the problem

minimize
v

‖v‖1 +
λ1

2

∥∥X − σkukvT∥∥2

F
+
µ

2
‖v‖2

2 (3.5)

where σk and uk are the kth left singular value and singular vector (basis vector) from

the SVD of X respectively. The way our optimization problem is structured utilizes the

Frobenius error as in [73], but also adds in the ridge penalty as in [102]. Also, as will be

seen when the algorithm is detailed, uk stays fixed during the iterations and the sparse

principal components (PC) are calculated using the sparse loading vectors as Ũ = XṼ S−1

where the SVD of X is given by X = USV T and Ṽ is the set of sparse loading vectors

calculated during the algorithm.

In order for this problem to satisfy the theorems given above, we need to show convexity1

1See Appendix A for the definition of convexity

22

of all the terms and differentiability of the last two terms. For the first term, it is known

that the `1 norm is not differentiable anywhere where one of the components is equal to

zero. However, it is easily shown to be convex.

If f is defined to be the `1-norm, then we aim to show that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (3.6)

‖tx+ (1− t)y)‖1 ≤ t ‖x‖1 + (1− t) ‖y‖1

Which, since we are dealing with a norm, is true by the triangle inequality. For the

Frobenius norm portion, a similar approach will show convexity, however, convexity and

differentiability can be shown by expanding the norm itself. The Frobenius norm for an

m× n matrix X is defined as

‖X‖F =
∑
i,j

x2
i,j (3.7)

This can be viewed as a function from Rmn → R. Expansion of the Frobenius norm term

in Equation (3.5) shows that the optimization problem is twice differentiable and that the

Hessian is diagonal with positive entries and hence postive semidefinite. Hence that term is

also convex. A similar approach will show that the final `2 norm term is also differentiable

and convex.

In the Split Bregman framework, using the simplification presented, this will be solved

as

minimize
v,d

‖d‖1 +
λ1

2

∥∥X − σkukvT∥∥2

F
+
µ

2
‖v‖2

2 +
λ2

2
‖d− v‖2

2 (3.8)

This will give the following iterations:

vk+1 = arg min
v

λ1

2

∥∥X − σkukvT∥∥2

Fro
+
µ

2
‖v‖2

2 +
λ2

2
‖dk − v − bk‖2

2 (3.9)

dk+1 = arg min
d

‖d‖1 +
λ2

2
‖d− vk − bk‖2

2 (3.10)

bk+1 = bk + vk+1 − dk+1 (3.11)

23

To solve for vk+1 we differentiate with respect to v i.e.

∂vk+1

∂v
=

∂

∂v

(
λ1

2

∥∥X − σkukvT∥∥2

F
+
µ

2
‖v‖2

2 +
λ2

2
‖dk − v − bk‖2

2

)
(3.12)

=
∂

∂v

(
λ1

2

∑
i,j

(
Xi,j − (σkukvT)i,j

)2
+
µ

2
‖v‖2

2 +
λ2

2
‖dk − v − bk‖2

2

)

=
∂

∂v

(
λ1

2

∑
i,j

X2
i,j − 2Xi,j(σ

kukvT)i,j + (σkukvT)2
i,j +

µ

2
‖v‖2

2 +
λ2

2
‖dk − v − bk‖2

2

)

=
∂

∂v

(
λ1

2
(‖X‖2

F −
∑
i,j

2Xi,j(σ
kukvT)i,j +

∥∥σkukvT∥∥2

F
) +

µ

2
‖v‖2

2 +
λ2

2
‖dk − v − bk‖2

2

)

= −λ1σ
kXTuk + λ1σ

k2

(uk)Tukv + µv − λ2(dk − bk − v)

Setting this equal to zero gives

vk+1 =
λ1σ

kXTuk + λ2(dk − bk)
λ1σk

2 + λ2 + µ
(3.13)

For dk+1 we find the subdifferential with respect to d due to the `1 terms. Thus we look

for

∂dk+1

∂d
=

∂

∂d

(
‖d‖1 +

λ2

2
‖d− vk+1 − bk‖2

2

)
(3.14)

= Γ + λ2d− λ2vk+1 − λ2bk (3.15)

where Γ is defined as

Γi =

1 if di > 0,

[−1, 1] if di = 0,

−1 if di ≤ 0.

(3.16)

According to [40, 70], d is a solution to Equation (3.15) if and only if the subdifferential of

Equation (3.15) is 0 when evaluated at d. Equation (3.15) can be solved componentwise,

and will require three cases. Note that using simple algebra on the components we get that

di = (vk+1)i + (bk)i −
1

λ2

Γi. (3.17)

If di > 0 then Γi = 1 which gives that

vk+1i + bki −
1

λ2

Γi > 0 (3.18)

24

which implies that vk+1i + bki >
1
λ2

. We get an analogous result when d1 < 0. In that case

Γi = −1 and therefore we get that vk+1i + bki <
1
λ2

. If di = 0, we have that Γi ∈ [−1, 1].

Thus, using the previous two results we get that −1
λ2
≤ vk+1i + bki ≤ 1

λ2
. If we combine all

three results, we get the shrinkage operator mentioned in section two, namely that

di = sign(vk+1i + bki) ∗max(|vk+1i + bki | −
1

λ2

, 0) (3.19)

The iteration for bk+1 is just given by

bk+1 = bk + vk+1 − dk+1 (3.20)

When solving for subsequent loading vectors vk, we enforce orthogonality by looking

at the complementary projection of X onto v1, . . . , vk−1 where vi is the ith sparse loading

vector. For example, after solving for the first loading vector, the data matrix used to solve

for the second loading vector would be X̂ defined by

X̂ = XT
(
I − v1v

T
1

)
.

Since the optimization problem is based on Frobenius error, and by definition the first PC

and loading vector will explain a maximum amount of that error, any deviation from that

combination will result in some of that initial variance remaining. Hence, when solving for

the second vector, some of the original variance that would have been explained by the first

traditional PCA pair remains and will at times cause some non-orthogonality in the sparse

loading vector solutions. The extent to which this is the case depends on many factors,

including parameter selection and the data being analyzed. If the calculated sparse loading

vectors are sufficiently sparse, for example, each picking out one variable, then there can

be orthogonality at the expense of variance explained.

The algorithm for computing the first N sparse loading vectors is given below. For

each iteration of the inner while loop, the operations count for the calculation of vk+1

is dominated by the matrix-vector multiplication, which if the data matrix X is m × n

25

will mean that each loop will be on the order of O(mn). Computation of both dk+1 and

bk+1 will be O(n), meaning that the inner loop will be dominated by the matrix-vector

multiplication with order O(mn).

To calculate the first N loading vectors for a data matrix X of size m× n:

Bregman Sparse PCA

1: Select parameters λ1, λ2 and µ

2: Set V = zeros(N, n)

3: for i = 1:N do

4: Initialize v0, d0, b0 and set k = 0

5: while ‖vk − vk−1‖ ≥ δv do

6: vk+1 = minimize
v

λ1

2

∥∥X − σiuivT∥∥2

F
+ µ

2
‖v‖2

2 + λ2

2
‖dk − v − bk‖2

2

7: dk+1 = minimize
d

‖d‖1 + λ2

2
‖d− vk − bk‖2

2

8: bk+1 = bk + vk+1 − dk+1

9: k = k + 1

10: end while

11: v = v
norm(v,2)

12: V (:, i) = v

13: X = XT (I − vvT).

14: end for

3.2 Numerical Example

As a numerical example, a 10 × 10 matrix with uniform random values from the interval

[0, .5] was constructed. Two vectors v1 and v2 that had the first five entries equal to one,

and the last five entries equal to one respectively were inserted into the second and seventh

column of the matrix. The result is seen in figure 3.1. A sparse PCA algorithm will

hopefully identify columns 2 and 7 as the variables of interest, in spite of the noise. As

is seen in Figure 3.2, the Bregman sparse PCA algorithm does in fact identify these two

26

variables. Note specifically, that all values other than those of the second and seventh

position are equal to zero. When compared to the PC found by the traditional SVD

approach, it is clear that the sparse PCA has set a large number of inconsequential variables

to zero. In the next section, the benefit of enforcing sparsity on the left singular vectors

as well will be shown. This comes from the fact that the sparse PCs are still working with

dense basis vectors. Specifically, with such a high level of noise, the first singular vector is

devoted to capturing this mean level of noise, see figure 3.3.

Figure 3.1: The original data matrix X

3.3 Sparse PCA Application: Face Data

In this section, we focus on the ability of the sparse PCA algorithm to select features/variables

of interest in a real-world setting. For this example, we will use images of faces and analyze

the selection of faces made by the Sparse PCA algorithm.

Data Description and Experiments

The data used consists of 98 different face images of dimension 1440× 1080. These images

are turned into vectors of size 1555200×1 and used to form a data matrix of size 1555200×

27

Figure 3.2: The first sparse loading vector and the first PCA loading vector.

Figure 3.3: The basis vectors as determined by the SVD of X. Note that the first basis vector (in blue) is devoted to

capturing the high level of noise in the data.

28

98. For these examples, in order to center the data, it is mean subtracted prior to any

analysis.

The first experiment is a sparse PCA of the data matrix. The goal is to find the sparsest

loading vectors (LV)/right singular vectors as possible. The first five loading vectors are

found via the sparse PCA algorithm. In order to obtain the sparsest vectors, it was

necessary to change the parameters for each subsequent vector. Explicitly, λ1 changed for

each sparse loading vector that was found. The ideal parameter was chosen to maximize

sparsity, i.e., the algorithm was repeated until it either found one face or could not be

forced to be more sparse. The associated eigenfaces for each of the sparse loading vectors

was found via the following calculation, where X is the original, mean subtracted data

matrix, Ṽ is the matrix with the sparse loading vectors as its columns, and Ũ is the matrix

with the calculated sparse eigenfaces as its columns.

XṼ = Ũ (3.21)

These eigenfaces will be compared to those calculated using the traditional PCA, which

are the left singular vectors found during the calculation of the SVD of the data matrix X.

The first figure shows the first five loading vectors from the traditional PCA and the

sparse PCA algorithms. Note that there is only one spike in each sparse loading vector,

indicating only one non-zero entry and thus, a unique face chosen as an eigenface when

the above formula is implemented. The following five figures show the difference between

the traditional PCA based eigenfaces and the sparse PCA based eigenfaces.

29

Figure 3.4: The first five loading vectors

Figure 3.5: The first sparse PCA and traditional PCA based eigenface

30

Figure 3.6: The second sparse PCA and traditional PCA based eigenface

Figure 3.7: The third sparse PCA and traditional PCA based eigenface

31

Figure 3.8: The fourth sparse PCA and traditional PCA based eigenface

Figure 3.9: The fifth sparse PCA and traditional PCA based eigenface

32

From Figures 3.5- 3.9, it is clear that the sparse PCA based loading vectors are choosing

unique faces, rather than combinations of faces. However, it is unclear what this means

in a geometric sense. The images lie in a dimension much too high to visualize, thus,

the algorithm Laplacian Eigenmaps or (Lmaps) was used to map the images to a lower

dimensional manifold [8]. Laplacian Eigenmaps was chosen in place of a distance preserving

mapping such as ISOMAP [81] for its emphasis on local distances and the natural link

to spectral clustering that exists via its use of the Laplacian Matrix. The results are in

Figure 3.10. As can be seen, the sparse eigenfaces chosen by the sparse PCA algorithm each

correspond to one of the three clusters seen in the figure. While it is tempting to append

the three eigenfaces chosen by the traditional PCA approach to the data and then do

the low dimensional embedding, this is ill-advised. Since these eigenfaces are aggregates

of actual faces, they lie perhaps not on the face manifold itself and thus an embedding

including these eigenfaces would be artificially skewed.

Figure 3.10: The graph associated with the 2D Laplacian Eigenmaps embedding. Note the three clusters and the green

dots representing the embedding of the first three sparse Eigenfaces.

33

3.4 Simultaneous Rank K Approximations

In an attempt to speed up the calculations, simultaneous rank K approximations were at-

tempted. Meaning that instead of solving for one sparse loading vector at a time, K vectors

are solved for simultaneously. This changes the given algorithm for sparse PCA in many

ways. For one, instead of inputting a vector and getting a vector out, we input a matrix

with K appropriately sized vectors as its columns. Also, the method of complimentary

projection to enforce orthogonality is no longer valid. Instead, a QR factorization was put

in place during each iteration to enforce orthogonality between the columns.

If we let our data matrix X be m× n with an SVD of X = USV T , then the algorithm

used to calculate a rank K approximation can be detailed as follows.

Bregman Sparse PCA Simultaneous Rank K

1: Select parameters λ1, λ2 and µ

2: Set v0 = zeros(n,K)

3: Initialize d0, b0

4: while ‖vk − vk−1‖F ≥ δv do

5: vk+1 = (λ1 ∗S(1 : K, 1 : K)∗XT ∗U(:, 1 : K)+λ2 ∗ (dk−bk))./(ss∗ones(size(vk))+

λ2 ∗ ones(size(vk)))

6: vk+1 = QR(vk+1)

7: dk+1 = sign(bk + vk+1) ∗max(abs(bk + vk+1)− (eta/lam2), 0)

8: bk+1 = bk + vk+1 − dk+1

9: k = k + 1

10: end while

Using the face data, a simultaneous rank 5 solution was achieved in 50 iterations and

approximately one minute. The same data was analyzed using subsequent solutions (the

original Sparse PCA) in approximately 175 seconds. The solutions were found in 13 - 23

iterations of the algorithm. However, for the simultaneous rank K approach, strict con-

vergence criteria was not satisfied and the vectors returned were not as sparse as those

34

returned using subsequent solutions. The solutions returned after 50 iterations were con-

sistent, meaning it returned the same solution when the experiment was run 10 times.

Also, the eigenfaces returned did not correspond to cluster centers as clearly as those re-

turned when using subsequent solutions. This could be due to the lack of control presented

by using the QR algorithm to enforce orthogonality. While the QR algorithm can be re-

moved, since its main use is to enforce orthogonality, it does result in significant overlap of

the calculated loading vectors up to and including duplication. Since the speed gains are

attractive, future work in this area should focus on convergence results and control while

enforcing orthogonality.

3.5 Summary

In this chapter the Split Bregman algorithm was applied to the Sparse Principal Component

Analysis problem. We formulated an optimization problem, provided numerical examples

as to the benefits of a sparse approach to PCA, applied the technique to images of faces

and explored the geometric meaning of the Eigenfaces chosen by the algorithm.

Novel contributions in this section include the optimization problem chosen to produce

the Sparse PCA which combines the `1-norm penalty as well as a ridge regression penalty

and holds the PCs (left singular vectors) static during calculation of the sparse loading

vectors. We also applied the Split Bregman framework to this problem, which gives a

proof of convergence since the objective functions meet the assumptions of the proofs

given in Chapter Two and also gives the option for further refinement of the objective

function through the addition of penalty terms as needed. Finally, the technique was

applied to images of faces and the connection to cluster centers was explored via the

Laplacian Eigenmap embedding of the data.

35

4 The Bisparse SVD

Given the link between the SVD and PCA, it is only natural to extend the notion of

sparsity to both sets of singular vectors and not just the loading coefficients. This gives

the effect of feature selection not only in the variable space, but also in the observation

space. Enforcing sparsity in both the variable and observation spaces is useful as it will

naturally identify correlations between variables and observations and set to zero variables

and observations that do not have a significant impact on the overall variance explained by

a pair of sparsity constrained singular vectors. However, the literature here is much more

limited.

In a 2008 PhD thesis, Elena Parkhomenko calculates a sparse SVD in the process

of calculating a sparse canonical correlation analysis (SCCA) [65]. While never giving

an explicit optimization problem, her algorithm combines soft-thresholding with a power

method to converge to sparse left and right singular vectors. The vectors are calculated

using an alternating approach, meaning v is fixed while u is calculated and then the updated

u is used to solve for the next iterate of v. The algorithm is given below for a correlation

matrix K.

Sparse SVD for Sparse CCA Algorithm

1: Select sparseness parameters λu and λv

2: Initialize U0 and V0 and set i = 0

3: while ‖ui − ui−1‖ ≥ δu and ‖vi − vi−1‖ ≥ δv do

4: ui+1 = Kvi

5: Normalize: ui+1 = ui+1

‖ui+1‖

6: Apply soft-thresholding: ui+1 = sign(ui+1)(|ui+1| − 1
2
λu)+

7: Normalize: ui+1 = ui+1

‖ui+1‖

8: vi+1 = Kui+1

9: Normalize: vi+1 = vi+1

‖vi+1‖

10: Apply soft-thresholding: vi+1 = sign(vi+1)(|ui+1| − 1
2
λv)+

36

11: Normalize: vi+1 = vi+1

‖vi+1‖

12: i = i+ 1

13: end while

In this algorithm, the soft-thresholding operator, denoted by (·)+ is identical to the

thresholding operation defined in Chapter 2 of this paper, namely, the thresholding used in

the Split Bregman algorithm. Convergence is unclear in the case when sparsity constraints

are added and her method is generally used for rank one approximations. There is no clear

method with which to add additional terms including additional smoothness and sparsity

constraints.

Witten et al. also used a penalized matrix decomposition (PMD) that is in fact a sparse

version of the SVD in their 2009 paper for the purpose of sparse canonical correlation

analysis and sparse principal components [93]. The rank one optimization problem they

solve is given by

maximize
u,v

uTXv (4.1)

subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2

The penalty functions P1 and P2 that are suggested are the well known LASSO penalty [82]

and the fused lasso penalty, which enforces smoothness in the produced singular vec-

tors [83]. The algorithm they use to solve this problem again is primarily used for a

rank one approximation and as with the algorithm of [65] it alternates between u and v.

PMD for Sparse SVD and CCA

1: Initialize v to have `2-norm 1.

2: Iterate until convergence

3: u = argmaxuu
TXv subject to P1(u) ≤ c1 and ‖u‖2

2 = 1

4: v = argmaxvu
TXv subject to P2(v) ≤ c2 and ‖v‖2

2 = 1

37

5: d = uTXv

Steps 3 and 4 are carried out using soft thresholding. It is unclear whether or not

the algorithm they use to solve this optimization problem is flexible enough to accept

other penalty terms. Finally, their algorithm is not guaranteed to find a global optimum.

The solutions are generally interpretable, but convergence to an optimal solution is not

guaranteed.

The first directly named sparse singular value decomposition (SSVD) came from Lee

et al. in 2010 [51]. They again use an iterative thresholding approach to solve a rank one

problem, employing deflation to solve for subsequent approximations. For their sparsity

penalization they use the adaptive lasso, which uses different weightings to threshold each

entry of a singular vector [100]. In contrast to the approach taken by Witten et al. [93],

the following algorithm minimizes Frobenius norm error with a penalty term for sparsity

rather than maximizing variance. The optimization problem is given below, followed by

the algorithm. In the optimization problem, note that they are minimizing a rank one

approximation to X via the constant s, and the vectors u,v, while enforcing sparsity using

an adaptive LASSO penalty on both u and v. The two λ parameters stay fixed while the

two sets of w parameters are allowed to change for each entry.

minimize
u

∥∥X − suvT∥∥2

F
+ sλu

n∑
i=1

w1,iui + sλu

d∑
j=1

w2,j|vj| (4.2)

Sparse SVD Algorithm

1: Step 1: Apply the standard SVD to X. Let {sold, uold, vold} denote the first SVD triplet.

2: Step 2: Update:

3: vnew = XTuold

4: Perform component-wise soft thresholding on vnew using the

parameters λv and w2. Normalize the new vnew to have unit norm.

38

5: unew = Xvnew

6: Perform component-wise soft thresholding on unew using the

parameters λu and w1. Normalize the new unew to have unit norm.

7: set uold = unew and repeat the step 2 until convergence.

8: Step 3: Set u = unew, v = vnew, s = uTXv at convergence.

The algorithm does not appear to adapt easily to different penalty functions. In 2011,

Sill et al. extended the algorithm of [51] by incorporating the stability selection criteria

of [56], [76].

Finally, in 2011 Allen et al. introduced a Generalized Least Squares Matrix Decompo-

sition [3]. The method equates to sphering the data relative to the covariance structure

found in both the rows and the columns, and taking the SVD of the resulting data. Their

method of optimization allows for non-iid noise assumptions in the matrix decomposition.

Namely, they assume that the column and row noise need not be iid Gaussian, but that

they are separable. The method does need to approximate this noise structure and they

supply guidance and logic for doing so. In their paper, they not only search for sparsity,

but they also give ways to enforce smoothness in the singular vectors. The method will

allow penalty terms that are convex and homogeneous of order one, or that are convex and

satisfy P (cx) = cP (x). The algorithm again uses soft-thresholding using the given penalty

functions.

4.1 Bisparse SVD

Like the majority of the prior references, to formulate the Bisparse SVD (BSSVD) we will

use the `1-norm to induce sparsity in our solutions. We begin with a rank one decomposition

for the data matrix X. We propose to solve for u and v that

minimize
u,v

‖u‖1 + ‖v‖1 +
λ1

2

∥∥X − uvT∥∥2

F
+
µ

2
‖u‖2

2 +
ν

2
‖v‖2

2 (4.3)

39

where X ∈ Rm×n matrix which has been mean subtracted and the columns (variables)

have been normalized to have unit variance, and F indicates the Frobenius norm. The two

vectors u and v are of size m× 1 and n× 1 respectively. Therefore, in the above equation,

we have the classic Frobenius norm minimization that would lead to the SVD, however,

we have added two penalty parameters, namely ‖u‖1 and ‖v‖1 to enforce sparsity on our

solution. Also note that the norm of the solution is also kept from trivially iterating to

the zero vector by the Frobenius penalty term. If both u and v are zero, and λ1 is chosen

sufficiently large, then this is a less optimal solution than nonzero vectors would give.

In the Split Bregman framework, the optimization problem above would be given by

minimize
u,v,du,dv

‖du‖1 + ‖dv‖1 +
λ1

2

∥∥X − uvT∥∥2

F
+
µ

2
‖u‖2

2 +
ν

2
‖v‖2

2 (4.4)

+
λ2

2
‖du − u‖2

2 +
λ3

2
‖dv − v‖2

2 (4.5)

For a fixed u, note that the above optimization problem, Equation (4.5), is equivalent

to the sparse PCA formulation. Since the algorithm alternately optimizes u and then v

while holding the other parameters fixed, the iterations for u and v can be modeled after

those found for the sparse PCA algorithm. Therefore, Equation (4.5) would have iterations

defined by

uk+1 =
λ1Xvk + λ2(duk − buk)
λ1vTk vk + λ2 + µ

(4.6)

vk+1 =
λ1X

Tuk+1 + λ3(dvk − bvk)
λ1uTk+1uk+1 + λ3 + ν

duk+1 = shrink(uk+1 + buk , λ2)

dvk+1 = shrink(vk+1 + bvk, λ3)

buk+1 = buk + uk+1 − duk+1

bvk+1 = bvk + vk+1 − dvk+1

The majority of the operations for this algorithm are found in the matrix multiplica-

tions, which will be 2 ∗ O(m · n). This is performed in each loop of this algorithm, until

convergence, and is performed for each set of vectors to be found. Thus, if h is the number

40

of pairs of singular vectors to be found, and jk is the number of iterations it takes to get

to convergence for the kth pair of sparse singular vectors, then the operations would be on

the order of 2∗O(h ·jk ·m ·n). As a comparison, the largest term in an SVD decomposition

for a complete set of n vectors, assuming n ≤ m would be of order O(m · n2).

When solving for subsequent pairs of singular vectors, we enforce orthogonality by

looking at the complementary projection of X onto both u1, . . . , uk−1 and v1, . . . , vk−1

where ui and vi are the ith sparse left and right singular vectors respectively. For example,

after solving for the first pair, the data matrix used to solve for the second pair of vectors

would be X̂ from below, computed as

X̃ =
(
I − u1u

T
1

)
X (4.7)

X̂ = X̃T
(
I − v1v

T
1

)
.

To illustrate the effectiveness of the algorithm, we use the same matrix structure as

with sparse PCA, see Figure 3.1. The goal here is two-fold. First, we would like to show

the benefit of enforcing sparsity on the basis vectors as well as the loading vectors (left

and right singular vectors). Second, when compared to the normal SVD, we will show the

benefits of our approach.

Tom demonstrate this, we propose three experiments with increasing levels of noise,

and in the final experiment higher dimensions as well. In the first example we begin with

a smaller level of noise than in the PCA example, the noise is within the interval of [0, .1].

This will allow us to increase the noise in the next experiment and show the increasing

difference between the sparse singular vectors and the traditional singular vectors. The two

vectors v1 and v2 are defined identically as in the PCA example in section 3.2. The original

data is shown in Figure 4.1. The rank 2 SVD approximation is shown in Figure 4.2. Note

that the noise is beginning to be captured in the approximation. As expected, the BSSVD

version of the rank 2 approximation does not contain any noise and is shown in Figure 4.3

To understand why the BSSVD takes the noise out of the approximation, it helps to

41

compare the left singular vectors. Figure 4.4 shows that the first singular vector is again

used to capture variance associated with the noise in the data. When compared to the first

two BSSVD left singular vectors in Figure 4.5 the benefits of the sparsity constraints is

clear. Both vectors are used to capture signal and not noise. Note that the two vectors are

complementary in the signal they capture, illustrating the orthogonality via complementary

projections.

Another benefit of the sparse left singular vectors is made clear by comparing the right

singular vectors. Figure 4.6 shows the right singular vectors from the SVD. It is clear that

the second and seventh variables are the important variables to keep. However, the BSSVD

vectors in Figure 4.7 are much cleaner due to the sparsity in the solutions.

Figure 4.1: The original data matrix X with noise in the interval [0, .1]

42

Figure 4.2: The rank 2 SVD approximation to X with noise in the interval [0, .1]

Figure 4.3: The rank 2 BSSVD approximation to X with noise in the interval [0, .1]

43

Figure 4.4: The first two left singular vectors from the rank 2 SVD approximation

Figure 4.5: The first two left singular vectors from the rank 2 BSSVD approximation

44

Figure 4.6: The first two right singular vectors from the rank 2 SVD approximation

Figure 4.7: The first two right singular vectors from the rank 2 BSSVD approximation

45

In Figures 4.8 - 4.14 are the same sets of results, however the matrix X has uniform

noise from the interval [0, .3] instead of [0, 0.1].

Figure 4.8: The original data matrix X with noise in the interval [0, .3]

The next set of figures deals with a much larger data set. This data is 1000× 1000 and

the noise comes from the interval [0, 1.3]. The two vectors are defined similarly, except that

the first 500 entries of v1 are set to 1, and the last 500 entries of v2 are set to one. They

are set to be the 200th and 700th columns of the data matrix X. This construction of the

matrix means that the surrounding noise actually can be greater than the entries in the

two inserted vectors. In this scenario, both the BSSVD and the classical SVD identified

the noise with the first basis vector. Note, for this experiment only, the data has been

mean subtracted prior to running both algorithms. Perhaps not surprisingly, the BSSVD

identifies the two columns without noise. However, in this instance, we only use the rank

one approximation, as the needed information is captured using only the first left and right

singular vectors from the BSSVD.

46

Figure 4.9: The rank 2 SVD approximation to X with noise in the interval [0, .3]

Figure 4.10: The rank 2 BSSVD approximation to X with noise in the interval [0, .3]

47

Figure 4.11: The first two left singular vectors from the rank 2 SVD approximation

Figure 4.12: The first two left singular vectors from the rank 2 BSSVD approximation

48

Figure 4.13: The first two right singular vectors from the rank 2 SVD approximation

Figure 4.14: The first two right singular vectors from the rank 2 BSSVD approximation

49

Figure 4.15: The original data matrix X with noise in the interval [0, 1.3]

Figure 4.16: The rank 1 SVD approximation to X with noise in the interval [0, 1.3]

50

Figure 4.17: The rank 1 BSSVD approximation to X with noise in the interval [0, 1.3]

Figure 4.18: The first left singular vector from the rank 1 SVD approximation.

51

Figure 4.19: The first left singular vector from the rank 1 BSSVD approximation

Figure 4.20: The first right singular vector from the rank 1 SVD approximation

52

Figure 4.21: The first right singular vector from the rank 1 BSSVD approximation

4.2 Fabry-Perot Hyperspectral Imagery

In order to illustrate the applicability of the BSSVD on real world data we will use Hyper-

spectral Imagery data obtained via a Fabry-Perot Interferometer1. Hyperspectral imagery

means that the image is taken over many, nearly contiguous wavelengths. Meaning that

the image is a data cube including the two-dimensional classical notion of the image, along

with a third dimension indicative of the multiple wavelengths at which the image was

taken. The image below taken from [7] shows both the two spatial dimensions and the

wavelength dimension.

Hyperspectral imagery has been used for many applications including the mapping of

nonnative plants [86], mineral mapping [69], mapping of invasive plants [50], planetary

exploration [16, 22] and military applications such as target detection [54]. Generally,

applications utilizing hyperspectral imagery are taking advantage of the fact that each ma-

terial in an image will have a distinct signature along the wavelength dimension. Meaning

that each pixel, if it were a pure material, would match to a distinct signal vector indicating

the material present. However, in practice most hyperspectral imagers do not capture only

1This data was made available through the NSF and Defense Threat Reduction collaboration on Algo-

rithms for Threat Detection

53

Figure 4.22: Example of hyperspectral image, with two spatial dimensions and one wavelength/color dimension

pure materials within one pixel thus, demixing/unmixing techniques or transformations of

the coordinates are needed [20, 10, 92, 80, 4, 5, 6]

The data analyzed for this example are images of size 256 × 256 taken at 20 different

wavelengths. There is also a time component to the data, as the purpose is to track an

artificial plume created by detonating certain chemicals into the air and taking hyperspec-

tral images of the plume as it disperses. Thus, there are 561 hyperspectral images of size

256× 256× 20 to analyze.

The images are first trimmed in the first dimension to 51, in order to capture the region

of most interest in the data. Then, the wavelength is limited to one wavelength that is

known to capture the signature of the chemical of interest released in this dataset. In this

instance it is Triethyl-phosphate. The data is then reshaped into a dataset where each

column is an image, thus the resulting dataset is 51∗256×561 = 13, 056×561. Given that

the first 100 frames are known to not contain a plume, they are used to construct a basis

for the background of the image and the data is then projected on the compliment of this

data, effectively removing a large portion of the background. However, a large amount of

noise remains and the BSSVD is used to remove as much of this noise as is possible. In

the figures that follow, we compare the original image, the complementary projected image

54

and the rank 10 BSSVD filtered image for several snapshots in time. Specifically, the 50,

130, 150, 170, 190, 210, 220, 230 and the 250th frames. No frames after 250 were chosen

as the plume has generally run its course through the image. Note the colorbar inserted

in the first figure. Since it is the 50th frame and part of the basis used for the background

removal,the projected data image is entirely zero. However the BSSVD image does not

appear to be zero, the colorbar indicates however, that the entries are near zero. Of note is

that the plume is not visible in the original image, is obvious in the projected image, and

is less noisy in the BSSVD image. In some cases, the BSSVD plume may appear smaller,

this is not unexpected, particularly close to detonation since there will be noise in the form

of dust and smoke that the BSSVD may filter out.

Figure 4.23: The 50th frame of Fabry Perot data. No plume present yet. Original image at top, background removed image

in the middle, rank 10 BSSVD approximation at the bottom.

55

Figure 4.24: The 130th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

Figure 4.25: The 150th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

56

Figure 4.26: The 170th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

Figure 4.27: The 190th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

57

Figure 4.28: The 210th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

Figure 4.29: The 230th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

58

Figure 4.30: The 250th frame of Fabry Perot data. Original image at top, background removed image in the middle, rank

10 BSSVD approximation at the bottom.

To understand why the BSSVD decomposed images are less noisy than the projected

images it helps to compare the BSSVD Left singular Vectors and Right Singular Vectors

to those obtained via the SVD of the projected data. Below are the first four left and right

singular vectors for the BSSVD and the SVD. Note the strong plume found as the fourth

left singular vector by the BSSVD.

Figure 4.31: The first left vector in image form. BSSVD on top, SVD on bottom

59

Figure 4.32: The second left vector in image form. BSSVD on top, SVD on bottom

Figure 4.33: The third left vector in image form. BSSVD on top, SVD on bottom

60

Figure 4.34: The fourth left vector in image form. BSSVD on top, SVD on bottom

Figure 4.35: The first right vector.

61

Figure 4.36: The second right vector.

Figure 4.37: The third right vector.

62

Figure 4.38: The fourth right vector.

4.3 BSSVD with Dynamic Parameters

The ability to change the parameter attached to the `1 penalty term was explored for the

BSSVD algorithm. Specifically, it was used to attempt to only keep the largest magnitude

component in each iteration of the algorithm while setting the rest to zero. This was

done by explicitly changing the penalty associated with the `1-norm to be such that the

entries in dk+1 would be set to zero unless they were of equal or greater magnitude to the

largest possible entry. Meaning, that in the shrinkage operator, the thresholding level was

manually set to the largest possible value so that all but one entry (or multiple entries

with magnitude equal to that computed) of dk+1 would be set to zero. While in theory,

this seemed like it would work and allow us to obtain only the most important/largest

component in each vector, the results were highly mixed. There are some nuances during

the updating of the Bregman parameter and the subsequent optimization of several other

variables that for now it is unclear how they are reacting to this type of dynamic parameter

selection. This is an area of future research, including the possibility of a more continuation

like approach, where the algorithm is allowed to converge, or nearly converge and then the

parameter is changed in order to focus on a single component.

63

4.4 Summary

In this chapter the Split Bregman algorithm was applied to the Bisparse Singular Value

Decomposition. We formulated an optimization problem, provided numerical examples as

to the benefits of a sparse approach to the SVD, extending the idea beyond Sparse PCA and

showing why that extension is necessary. We also applied the technique to Hyperspectral

Imagery in an attempt to find further information in a sparse component of a hyperspectral

image.

Novel contributions in this section include the application of the Split Bregman frame-

work to this problem. This gives a proof of convergence since the objective functions meet

the assumptions of the proofs given in Chapter Two and also gives the option for further

refinement of the objective function through the addition of penalty terms as needed. Fi-

nally, the technique was applied to frames of Hyperspectral Images in order to denoise and

identify plumes of interest.

64

5 `1-Constrained BSSVD Classifier

In this section we explore the problem of incorporating an `1-constrained classifier into

the algorithm for the BSSVD. The goal is to show that the inclusion of the classifier further

aids in the beneficial properties of the BSSVD including denoising, variable selection and

robustness to outliers.

5.1 A Sparse `1-Constrained Classifier

The first requirement is to formulate the optimization problem for the `1 constrained

classifier. In this section we will explore two different classifiers, an elastic net support

vector machine with a squared loss function and a naive elastic net classifier [89, 97, 101,

87, 25, 11]. If we let ŷ, b̂, 1̂ be vectors of the training labels, a constant vector of the bias

correction and a vector of ones respectively, and we let Y be defined to be a diagonal

matrix with ŷ on the diagonal, then the elastic net SVM is given by,

minimize
w,b̂

‖w‖1 +
1

2
‖w‖2

2 +
λ1

2

∥∥∥Y · (Xw + b̂)− 1̂
∥∥∥2

2
(5.1)

where X is a matrix containing the data. For the naive elastic net classifier, the optimiza-

tion problem is given by,

minimize
v

‖v‖1 +
1

2
‖v‖2

2 +
λ1

2
‖Av − f‖2

2 (5.2)

In Equation (5.2) A is a data matrix and f is a training vector. When tested on sample

data, as will be shown below, these optimization problems have performed well, both in

terms of separating the data and enforcing sparsity. The majority of the time to run these

algorithms is spent finding a pseudoinverse needed for each of the iterations which is of

size n× n where n is the number of variables. This computation takes O(n3) operations.

65

Equation (5.1) is written in the Split Bregman framework as

minimize
d,w,b̂

‖d‖1 +
1

2
‖w‖2

2 +
λ1

2

∥∥∥Y · (Xw + b̂)− 1̂
∥∥∥2

2
(5.3)

+
λ2

2
‖d− w − β‖2

2

where the Bregman parameter is written as β instead of the usual b to avoid confusion with

the vector of biases b̂. To find the iterations needed to solve this optimization problem,

we first separate into differentiable and non-differentiable portions. Thus, we first look at

differentiating terms involving w. Keeping in mind that Y is symmetric, in this case we

have a function f given by,

f(w) =
1

2
wTw +

λ1

2

(
Y · (Xw + b̂)− 1̂

)T (
Y · (Xw + b̂)− 1̂

)
(5.4)

+ (d− w − β)T (d− w − β)

=
1

2
wTw +

λ1

2
wTXTY Y Xw +

λ1

2
· 2 · wTXTY Y b̂

− λ1

2
· 2 · wTY XT 1̂ +

λ1

2
b̂TY Y b̂− λ1

2
· 2 · b̂TY 1̂

+
λ1

2
1̂T 1̂ +

λ2

2
dTd+

λ2

2
wTw +

λ2

2
βTβ

− λ2

2
· 2 · dTw − λ2

2
· 2 · dTβ +

λ2

2
· 2 · βTw

If we note that the expression Y Y equals the identity and find ∂f
∂w

and set it equal to zero,

we end up with the linear system,

[
(1 + λ2)I + λ1X

TX
]
w = λ1

(
XTY 1̂−XT b̂

)
+ λ2 (d− β) .

If we define

A = (1 + λ2)I + λ1X
TX

then we have that the iteration for wk+1 based on b̂k, dk and βk is given by

wk+1 = A† ·
[
λ1

(
XTY 1̂−XT b̂k

)
+ λ2 (dk − βk)

]
.

where A† stands for the pseudoinverse of A.

66

To find the iterations for b̂ we first look in the above equations for terms ultimately

including b̂. To this end we find,

h(b) =
λ1

2
· 2 · wTXT b̂+

λ1

2
b̂T b̂− λ1

2
· 2 · b̂TY 1̂ (5.5)

∂h

∂b̂
= λ1 · 2 ·Xw + λ1b̂− λ1Y 1̂ = 0

b̂ = Y 1̂−Xw

b · 1̂ = Y 1̂− wTXT

b · 1̂T 1̂ = 1̂TY 1̂− 1̂TXw

mb = 1̂TY 1̂− 1̂TXw

b =

∑
i yi −Xiw

m
.

where Xi represents the ith row of X. Accordingly, the iteration for bk+1 is defined to be

bk+1 =

∑
i yi −Xiwk+1

m
. (5.6)

The variable d is found identically as in the Sparse PCA and BSSVD algorithms, being

defined as

(dk+1)i = sign((wk+1)i + (βk)i) ∗max(|wk+1)i + (βk)i| −
1

λ2

, 0). (5.7)

The Bregman parameter is updated in the usual manner i.e.,

βk+1 = βk + wk+1 − dk+1. (5.8)

The final algorithm is as follows.

Bregman Elastic Net SVM

1: Select parameters λ1, λ2

2: Calculate A−1.

3: Initialize w0 = 0, d0 = 0, b̂0 = 0, β0 = 0 and set k = 0

4: while ‖wk − wk−1‖ ≥ δw do

67

5: wk+1 = A−1 ·
[
λ1

(
XTY 1̂−XT b̂k

)
+ λ2 (dk − βk)

]
6: bk+1 =

∑
i yi−wT

k+1X
T
i

m

7: dk+1 = sign(wk+1 + βk) ∗max(|wk+1 + βk| − 1
λ2
, 0)

8: βk+1 = βk + wk+1 − dk+1

9: k = k + 1

10: end while

For the elastic net classifier, the derivation is more straightforward. Recall that the

elastic net classifier is defined as

minimize
v

‖v‖1 +
1

2
‖v‖2

2 +
λ1

2
‖Av − f‖2

2 (5.9)

In the Split Bregman framework this optimization problem becomes

minimize
d,v

‖d‖1 +
1

2
‖v‖2

2 +
λ1

2
‖Av − f‖2

2 +
λ2

2
‖d− v − b‖2

2 (5.10)

To find the iterations for v we again focus on the terms involving v, i.e.

f(v) =
1

2
vTv +

λ1

2
(Av − f)T (Av − f) +

λ2

2
(d− v − b)T (d− v − b) (5.11)

vterms =
1

2
vTv +

λ1

2

(
vTATAv − 2fTAv + fTf

)
+
λ2

2

(
dTd− 2dTv + vTv + 2bTv + bT b− 2dT b

)
So

∂f

∂v
=v + λ1A

TAv − λ1A
Tf − λ2d+ λ2b+ λ2v = 0[

(1 + λ2)I + λ1A
TA
]
v = λ1A

Tf + λ2(d− b)

Thus, if B is defined as (1 + λ2)I + λ1A
TA the algorithm for the elastic net will be as

follows.

Bregman Elastic Net

1: Select parameters λ1, λ2

2: Calculate B−1.

68

3: Initialize v0, d0, b0 and set k = 0

4: while ‖vk − vk−1‖ ≥ δv do

5: vk+1 = B−1b · λ1A
Tf + λ2(d− b)

6: dk+1 = sign(vk+1 + bk) ∗max(|vk+1 + bk| − 1
λ2
, 0)

7: bk+1 = bk + vk+1 − dk+1

8: k = k + 1

9: end while

In order to test the performance of these classifiers, they were first tested on separable

data. The test data used was constructed as follows, there were 500 observations for ten

experiments, the first ten variables for 250 of these observations was uniformly distributed

data on the interval [0,1], the first ten variables for the remaining 250 observations are on

the interval [0,-1]. The remaining variables were uniformly distributed on the interval [0,1].

Thus, the first ten variables were the decision variables, while the remaining variables were

noise. The ten experiments were separated by the number of variables included, increasing

from 100 - 1000 variables in increments of one hundred. Table 5.1 gives the results for both

classifiers. Note the constant nature of the elastic net classifier’s iterations to convergence.

It is also faster in most cases than the SVM, particularly as the number of variables

increases. Both classifiers consistently use the ten decision variables for the classification,

setting the rest to zero. Also, the times to convergence include the calculation of the needed

pseudoinverse which is of size P × P .

69

Table 5.1: Separable Data Classifier Results

Metrics Elastic Net SVM Elastic Net Classifier

N = 500, P = 100

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 30 57

Seconds to Convergence 0.26 0.11

N = 500, P = 200

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 35 54

Seconds to Convergence 0.44 0.16

N = 500, P = 300

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 46 59

Seconds to Convergence 0.68 0.32

N = 500, P = 400

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 52 58

Seconds to Convergence 1.02 0.51

N = 500, P = 500

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 56 56

Seconds to Convergence 1.11 0.63

N = 500, P = 600

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 59 54

Seconds to Convergence 1.99 0.77

N = 500, P = 700

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 72 60

Seconds to Convergence 2.60 1.04

N = 500, P = 800

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 74 58

Seconds to Convergence 2.965 1.37

N = 500, P = 900

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 71 51

Seconds to Convergence 3.35 1.65

N = 500, P = 1000

Number Incorrectly Classified 0 0

Number of Non-Zero Components 10 10

Iterations to Convergence 83 55

Seconds to Convergence 4.44 1.90

70

In the next set of experiments, the sizes were kept the same, and the data remained

largely unchanged. The two major differences were that the data were shifted away from

the origin, and were made to overlap slightly in order to create a linearly non-separable

data set. Pseudo-matlab code to construct the data is found in the Appendix. Results are

found in table 5.2. Again, the elastic net classifier is generally faster than the elastic net

SVM, however the performance of the two classifiers was very similar with this data. The

elastic net SVM held a slight edge in the number of non-zero components.

To run this classifier on data that has been decomposed via the BSSVD, we simply

replace X above with the decomposed version of X from the BSSVD, denoted by X̃

minimize
w,b̂

‖w‖1 +
1

2
‖w‖2

2 +
λ1

2

∥∥∥diag(ŷ) · (X̃w + b̂)− 1̂
∥∥∥2

2
(5.12)

Since both classifiers performed similarly, the next examples will be run using the SVM.

The naive elastic net could easily be substituted, however, the purpose of the examples

to follow is not to compare classifiers, but rather to illustrate the technique of using the

BSSVD to denoise the data prior to and concurrently with the fitting of the classifier.

The data used with Equation (5.12) consists of 100 observations and 10 variables. The

first fifty observations have labels of 1, and the next fifty have labels of -1. For the first

five variables, the first fifty observations have a value of one, the second fifty have random

gaussian values with a mean of zero and a variance of 0.4. For variables six through ten,

the first fifty observations have the random values, and the second fifty observations have

a value of -1. The data is represented as a mesh plot in Figure 5.1. Directly below that, in

Figure 5.2 is the rank two approximation to the data based on the SVD. Finally, the third

figure, Figure 5.3 shows the rank two BSSVD approximation to the data. It is clear that

the BSSVD data not only has much less noise in the random value areas, but even in the

constant value areas of the data as well.

After the BSSVD decomposition, the data was fitted with a classifier using Equation

(5.12). Figure 5.4 is a plot of both the original data based decision vector as well as

the BSSVD based decision vector. The values for the BSSVD based decision vector for

71

Table 5.2: Non-Separable Data Classifier Results

Metrics Elastic Net SVM Elastic Net Classifier

N = 500, P = 100

Number Incorrectly Classified 3 5

Number of Non-Zero Components 74 83

Iterations to Convergence 25 40

Seconds to Convergence 0.18 0.08

N = 500, P = 200

Number Incorrectly Classified 2 3

Number of Non-Zero Components 82 89

Iterations to Convergence 42 57

Seconds to Convergence 0.46 0.16

N = 500, P = 300

Number Incorrectly Classified 3 5

Number of Non-Zero Components 89 92

Iterations to Convergence 52 64

Seconds to Convergence 0.68 0.32

N = 500, P = 400

Number Incorrectly Classified 4 4

Number of Non-Zero Components 98 107

Iterations to Convergence 59 70

Seconds to Convergence 1.11 0.46

N = 500, P = 500

Number Incorrectly Classified 12 13

Number of Non-Zero Components 99 108

Iterations to Convergence 61 68

Seconds to Convergence 1.19 0.71

N = 500, P = 600

Number Incorrectly Classified 24 22

Number of Non-Zero Components 108 113

Iterations to Convergence 60 59

Seconds to Convergence 1.82 0.88

N = 500, P = 700

Number Incorrectly Classified 25 25

Number of Non-Zero Components 133 133

Iterations to Convergence 56 50

Seconds to Convergence 2.04 1.21

N = 500, P = 800

Number Incorrectly Classified 23 23

Number of Non-Zero Components 156 156

Iterations to Convergence 63 53

Seconds to Convergence 2.69 1.68

N = 500, P = 900

Number Incorrectly Classified 19 17

Number of Non-Zero Components 120 119

Iterations to Convergence 68 56

Seconds to Convergence 3.55 1.53

N = 500, P = 1000

Number Incorrectly Classified 8 8

Number of Non-Zero Components 96 102

Iterations to Convergence 80 64

Seconds to Convergence 4.03 2.35

72

Figure 5.1: Mesh plot of the data used to test Equation (5.12)

Figure 5.2: Mesh plot of the rank two SVD approximation to the data used to test Equation (5.12)

73

Figure 5.3: Mesh plot of the rank two BSSVD approximation to the data used to test Equation (5.12)

variables one through five are actually a small constant, negative number, while the original

data based decision vector has only one nonzero value for the same set of variables. Thus,

the original data based decision vector is actually sparser than the BSSVD based vector.

However, after applying the decision vector back to the original data, the model trained

on the original data makes three errors. In these cases, having only one small non-zero

component (in the third component) for the first five variables is not sufficient to overcome

applying the large nonzero values found in the eighth and ninth components to the noise

found in the original data. This scenario does not occur with every random data set that

is created, but is a good example of the benefits of denoising the data prior to building the

model.

74

Figure 5.4: Plots of the decision vectors for the model trained on the original, noisy data, and the denoised BSSVD

decomposed data.

Figure 5.5: Plot of the errors from the model based on the original data. Note that they all occur within the first 50

observations where the small decision weight was unable to overcome larger weights applied to noisy data.

75

5.2 BSSVDl1

For the optimization problem where we are simultaneously running the BSSVD and the

`1-constrained classifier (BSSVDl1), the proposed rank one approximation is given by

minimize
u,v,w

‖u‖1 + ‖v‖1 + ‖w‖1 +
1

2
‖u‖2

2 +
1

2
‖v‖2

2 +
1

2
‖w‖2

2 (5.13)

+
λ1

2

∥∥X − uvT∥∥2

F
+
λ2

2

∥∥∥Y (uvTw + b̂)− 1̂
∥∥∥2

2

In the Split Bregman framework, we solve the following problem.

minimize
du,dv ,dw,u,v,w

‖du‖1 + ‖dv‖1 + ‖dw‖1 +
1

2
‖u‖2

2 +
1

2
‖v‖2

2 +
1

2
‖w‖2

2 (5.14)

+
λ1

2

∥∥X − uvT∥∥2

F
+
λ2

2

∥∥∥Y (uvTw + b̂)− 1̂
∥∥∥2

2

+
λ3

2
‖du − u− bu‖2

2 +
λ4

2
‖dv − v − bv‖2

2 +
λ5

2
‖dw − w − bw‖2

2

If we focus on the term ∥∥∥Y (uvTw + b̂)− 1̂
∥∥∥2

2
(5.15)

we see that this expands to

=wTvuTY Y uvTw + 2wTvuTY TY b̂ (5.16)

− 2wTvuTY T 1̂ + b̂TY TY b̂− 2b̂TY + 1̂T 1̂

=wTvuTuvTw + 2wTvuT b̂− 2wTvuTY 1̂

+ b̂T b̂− 2b̂TY 1̂ + 1̂T 1̂

Note that the simplification is possible due to the facts that Y Y equals the identity and

that it is also symmetric. To find the optimal values for u, v, w and b̂ we fix two of the

variables and differentiate with respect to the third. First, we focus on terms including u.

Then, the optimal value for uk+1 based on the values of vk, wk and b̂k is given by minimizing

the following:

uk+1 =arg min
u

1

2
‖u‖2

2 +
λ1

2

∥∥X − uvTk ∥∥2

F
(5.17)

+
λ2

2

∥∥∥Y (uvTk wk + b̂k)− 1̂
∥∥∥2

2
+
λ3

2
‖duk − u− buk‖

2
2 .

76

Differentiating with respect to u gives,

∂uk+1

∂u
= u+ λ1

(
vTk vku−Xvk

)
(5.18)

+ λ2

(
wTk vkv

T
k wku+ b̂kv

T
k wk − wTk vkdiag(ŷ)1̂

)
+ λ3 (u− duk + buk) .

Taking ∂uk+1

∂u
= 0 we obtain

α = 1 + λ3 + λ1v
T
k vk + λ2w

T
k vkvkv

T
k wk (5.19)

αu = λ1Xvk + λ2(wTk vk1̂
TY − b̂kvTk wk) + λ3(duk − buk)

Note that the left side results in a scalar multiple of u, which implies that

uk+1 =
1

α

(
λ1Xvk + λ2(wTk vk1̂

Tdiag(ŷ)− b̂kvTk wk) + λ3(duk − buk)
)
. (5.20)

The optimal value for vk+1 based on the values of uk+1, wk and b̂k is given by minimizing

the following.

vk+1 =arg min
v

1

2
‖v‖2

2 +
λ1

2

∥∥X − uK+1v
T
∥∥2

F
(5.21)

+
λ2

2

∥∥∥Y (uk+1v
Twk + b̂k)− 1̂

∥∥∥2

2
+
λ4

2
‖dvk − v − bvk‖

2
2

Differentiating with respect to v gives,

∂vk+1

∂v
= v + λ1

(
uTk+1uk+1v −XTuk+1

)
(5.22)

+ λ2

(
wTk u

T
k+1uk+1w

T
k v + wku

T
k+1b̂k − wkuTk+1diag(ŷ)1̂

)
+ λ4 (v − dvk + bvk)

which, when set equal to zero results in the equation below,

A = (1 + λ4 + λ1u
T
k+1uk+1)I + λ2wku

T
k+1uk+1w

T
k (5.23)

Av = λ1X
Tuk+1 + λ2(wku

T
k+1diag(ŷ)1̂− wkuTk+1bk) + λ4(dvk − bvk).

Note that the left side this time results in a matrix multiple of v ,which implies that

vk+1 = A†
(
λ1X

Tuk+1 + λ2(wku
T
k+1diag(ŷ)1̂− wkuTk+1bk) + λ4(dvk − bvk)

)
(5.24)

77

where A† again stands for the pseudoinverse of A. Solving this linear system can be done

using many different solvers, however, for a small problem such as the example that is

displayed at the end of this section, the pseudoinverse works well.

The optimal value for wk+1 based on the values of uk+1, vk+1 and b̂k is given by mini-

mizing the following.

wk+1 =arg min
w

1

2
‖w‖2

2 +
λ2

2

∥∥∥Y (uk+1v
T
k+1w + b̂k)− 1̂

∥∥∥2

2
+
λ5

2
‖dwk − w − bwk ‖

2
2 (5.25)

Differentiating with respect to w gives,

∂wk+1

∂w
= (5.26)

w + λ2

(
vk+1u

T
k+1uk+1v

T
k+1w + vk+1u

T
k+1b̂k − vk+1u

T
k+1Y 1̂

)
+ λ5 (w − dwk + bwk)

Which, when set equal to zero results in the equation:

B = (1 + λ5)I + λ2vk+1u
T
k+1uk+1v

T
k+1 (5.27)

Bw = λ2(vk+1u
T
k+1Y 1̂− vk+1u

T
k+1b̂k) + λ5(dwk − bwk).

Note that the left side again results in a matrix multiple of w, which implies that

wk+1 = B†
(
λ2(vk+1u

T
k+1Y 1̂− vk+1u

T
k+1b̂k) + λ5(dwk − bwk)

)
(5.28)

Finally, for b̂k+1 we have that

b̂k+1 =

∑
i yi − (uk+1v

T
k+1)iwk+1

m
· 1̂ (5.29)

where (uk+1v
T
k+1)i represents the ith row of uk+1v

T
k+1.

For the rank one `1-BSSVD classifier, we implement the following algorithm. For the

parameter selection of variables λ1 − λ5, the decision is based on different criteria. To

choose λ2, the left vector of the BSSVDl1 is visually inspected to find a split of the data

which may result in a reasonable number of observations being labeled as ambiguous. From

there, λ2 is held fixed. The three parameters λ3 − λ5 are increased until convergence and

78

sparsity reach reasonable levels. Finally, λ1 is varied to balance variance explained versus

sparsity in the three variables u, v, w.

`1-BSSVD Classifier

1: Select parameters λ1, λ2, λ3, λ4, λ5

2: Calculate the SVD of X = Û ŜV̂ T

3: Calculate A†, B†.

4: Initialize u0, v0, w0, b̂0, d
u
0 , d

v
0, d

w
0 and set k = 0

5: while
[
d(uk, uk−1), d(vk, vk−1), d(wk, wk−1), d(b̂k, b̂k−1)

]
≥ εu,v,w,b̂ do

6: uk+1 = 1
α

(
λ1Xvk + λ2(wTk vk1̂

TY − b̂kvTk wk) + λ3(duk − buk)
)

7: vk+1 = A−1
(
λ1X

Tuk+1 + λ2(wku
T
k+1Y 1̂− wkuTk+1b̂k) + λ4(dvk − bvk)

)
8: wk+1 = B−1

(
λ2(vk+1u

T
k+1Y 1̂− vk+1u

T
k+1b̂k) + λ5(dwk − bwk)

)
9: b̂k+1 =

∑
i yi−(uk+1v

T
k+1)iwk+1

m
· 1̂

10: duk+1 = sign(uk+1 + buk) ∗max(|uk+1 + buk| − 1
λ3
, 0)

11: dvk+1 = sign(vk+1 + bvk) ∗max(|vk+1 + bvk| − 1
λ4
, 0)

12: dwk+1 = sign(wk+1 + bwk) ∗max(|wk+1 + bwk | − 1
λ5
, 0)

13: buk+1 = buk + uk+1 − duk+1

14: bvk+1 = bvk + vk+1 − dvk+1

15: bwk+1 = bwk + wk+1 − dwk+1

16: k = k + 1

17: end while

To test the algorithm, we use the same data construct as was used to test the classifiers

on data that had been denoised via the BSSVD. The data consists of 100 observations

and 10 variables and is represented as a mesh plot in Figure 5.6. The second figure,

Figure 5.7 shows the rank one SVD approximation to the data. Directly below that, in

Figure 5.8 is the rank one approximation to the data based on the BSSVDl1. Note that it

79

has decomposed the data into largely one variable, which describes the split in the data.

The decomposition is less focused on capturing the variance and more focused to capture

the split in the classification. This can of course be tuned using the parameters so that

more emphasis is put on capturing variance. However, for demonstration, the rank one

approximation was tuned to so as to split the training data without error.

Of the most interest is the plot of the left singular vectors. As seen in Figure 5.9

the BSSVDl1 left vector is a clean classification of the data into categories, while the

SVD based left singular vector used in the same manner would provide poor results. The

structure of the BSSVDl1 vector is a factor of having the classifier built into the optimization

problem. With the classifier included, the observations are automatically used in an optimal

sense to represent the data for classifying the data. Figure 5.10 shows the BSSVDl1 right

singular vector and the SVD based right singular vector. The thing to note in this figure

is the emphasis placed by the BSSVD right vector on the variable used for classification.

Again, this is an artifact of including the classifier into the optimization problem. This is

made even more clear by Figure 5.11, which shows the BSSVD right vector and the very

similar `1 classifier decision vector. Note how the BSSVD right vector mimics the classifier,

identifying the variable created for classification.

This example shows is that the utility of including the classifier in the optimization

problem is not solely its effect on the classifier, but also the effects it has on the decompo-

sition of the data.

However,the results involving the classifier constrained left vectors indicate that the

vector just trains itself to follow the labels presented to the algorithm. To verify this,

a test data set was constructed which would illustrate whether or not this phenomenon

was occurring. The data consists of 10 variables, all of which were random Gaussian with

zero mean and variance equal to one. There were 100 observations with the first fifty

being assigned a label of one and the next fifty assigned a label of negative one. Thus,

the variables and the labels themselves are constructed to be entirely unrelated, and the

influence of the classifier on the total optimization problem and the left vectors in particular

80

Figure 5.6: Mesh plot of the data used to test the BSSVDl1 algorithm

Figure 5.7: Mesh plot of the rank one SVD approximation to the data used to test the BSSVDl1 algorithm

81

Figure 5.8: Mesh plot of the rank one BSSVDl1 approximation to the data used to test the BSSVDl1 algorithm

Figure 5.9: Plot of the BSSVDl1 left singular vector, the SVD left singular vector and a green line at zero. Note how the

BSSVDl1 left singular vector provides a classification of the data.

82

Figure 5.10: Plot of the BSSVDl1 right singular vector and the SVD right singular vector.

Figure 5.11: Plot of the BSSVDl1 right singular vector and the `1 weighting/decision vector

83

can be made clear. Figure 5.12 shows the classifier constrained left vector as the penalty

parameter associated with the classifier increases. It is clear that the vector can be made

to exactly mirror the labels associated with the observations given a parameter that is

sufficiently large. It is also clear that it can be made to mirror the left singular vector

found from the unconstrained SVD of the data if the parameter is sufficiently small.

Figure 5.12: Plot of the classifier constrained left vector for the test data. The penalty parameter associated with the

classifier increases from left to right and top to bottom.

However, the most interesting results are found in between these two extremes. In this

case, the left vector is optimizing the balance between variance explained in the data set

for a rank one decomposition, and mimicking the labels supplied. To show this, a simple

experiment was constructed. The data was comprised of 50 observations with gaussian

random noise with mean 2 and unit variance, N (2,1), in the first five variables. The next

five variables were N (0,.5). The next 50 observations were N (-2,1) for the first five variables

and N (0,.5) for the second five. To introduce ambiguous records, three observations were

altered in the first fifty observations and in the second 50 observations. Specifically, for

the altered records in the first fifty observations, the values of the first five variables were

set to -2. For the altered records in the second fifty observations, the values of the first

five variables were set to 2. The BSSVDl1 algorithm was then run with increasing penalty

parameters attached to the classifier term.

84

In Figures 5.13 and 5.14, we see the difference between what the classical SVD will

calculate as its first left singular vector and what the BSSVDl1 will calculate as its first

left singular vector. In particular, we see that as the penalty parameter for the classifier is

increased, the BSSVDl1 left vector goes from approximating the SVD based left vector, to

producing a nice split of the data with visuals of the anomalistic records in the top right

and bottom left records, to the split based solely on label as the parameter continues to

increase. The records of interest are those in the middle that provide evidence and a means

of removing the ambiguous records.

Figure 5.13: The first left singular vector of the example data based on the classic SVD

85

Figure 5.14: The first left singular vector of the example data based on the BSSVDl1 algorithm. The penalty parameter

increases left to right and top to bottom.

5.3 Arrhythmia Data

According to the National Heart, Lung, and Blood Institute and the National Institution

of Health, Arrhythmia is a condition where there is a problem with either the rate or

the rhythm of the heartbeat. This means that it can be too slow, fast or just beating

irregularly [63]. Arrhythmia can be life threatening at times and can be quite costly to

treat [71, 49]

The data used for this section contains information on 452 patients, of which a portion

have been diagnosed with an Arrhythmia [1]. There are 279 variables included with the data

that are used to construct the classifier. In order to test the BSSVD with `1-constrained

classifier, in particular, Equation (5.14) we will use this data and compare results to the

stand-alone elastic net SVM classifier and several other classification methods [24, 66, 39].

As noted in the BSSVDl1 section, the application of this algorithm to this data will

illustrate the use of the algorithm to remove observations or rows of the data from the data

prior to building the classifier. We will analyze the effects of removing observations from

both a geometric perspective and also see how it impacts a classifier constructed using the

86

restricted data.

Geometric Analysis of Removed Observations

As shown in chapter five, the BSSVD with `1 Classifier algorithm (BSSVDl1), produced a

left vector that was shown to model, based on parameter selection, the labels of the data

provided. However, this was only the case when the classifier penalty was set high enough.

When the classifier penalty was set at a level that was balanced between a very small value,

resulting in the BSSVD left vector, and a very high value, which resulted in mirroring the

provided labels, it appeared that it may be removing observations where the label and

the optimal variance level value were at odds. It was hypothesized that the algorithm

may be removing observations which were ambiguous in their labeling, meaning, it was

removing observations where the variables provided were not consistent with the provided

label. This was shown using a simple example with two different Gaussian distributions

and observations that had been manually altered to be anomalies when compared to other

records with the same label. We will now apply this same technique to real world data,

namely the Arrhythmia data mentioned at the beginning of this chapter.

The data starts with 16 different classes into which the data is classified. There is one

normal heart rate class, 14 different Arrhythmia classes, and one undetermined class. For

the following experiments the data corresponding to the undetermined class is dropped,

which leaves 430 observations. The response variable is formed by setting it equal to one

for the normal heart rate class and to negative one for the remaining classes. In this data

set 0.33% of the data is missing [39], to handle this, the missing data is set to zero, then

the mean for that variable is used to fill in the missing values.

Again, the data is put through the BSSVDl1 algorithm with an increasing penalty

parameter on the classifier term. This is done in order to gain a visual look at what levels

of the parameter will provide optimal splitting of the data. Figure 5.15 shows the possible

splits for 10 different values of the penalty parameter. Again, towards the top right and

bottom left of the figure there seem to be the best balance of data removal and retention.

87

However, since the purpose of this section is to explore any geometric insights gained from

removing data points, we will focus on penalties that will in general remove a larger number

of points.

Figure 5.15: The first left singular vectors as determined by the BSSVDl1 algorithm for increasing classifier penalties.

Data points are removed from the data if the label provided does not match the sign

of the corresponding entry of the first left vector from the BSSVDl1 algorithm. In order

to visualize the effects of this removal, we put the data through the Laplacian Eigenmaps

algorithm to produce a low-dimensional embedding [8]. The first figure below, Figure 5.16

shows the 3D embedding prior to any rotation, with data points in blue corresponding to

observations with a class of ”normal”, and the data points in green corresponding to the

”Arrhythmia” data points. Figure 5.17 shows the initial embedding rotated and while much

of the data is clumped on the left side of the image, there is a concentration or distribution

of green data points on the right. Note in particular the set of points toward the top,

with little to no blue points present. Figure 5.18 shows the points in red that represent

the ”Normal” data points that would be removed based on the BSSVDl1 algorithm. See

how the removed points are concentrated within the right side mainly in the distribution of

green points. Figure 5.19 show in black, the data points that have a class of ”Arrhythmia”,

but would be removed based on the BSSVDl1 algorithm. This figure has been rotated in

the opposite direction 180 degrees as the black points were generally found below the data

88

from the vantage point of the first two figures. Again, note that these points are heavily

concentrated in the ”Normal”, blue points. Finally, Figure 5.20 shows what the original,

rotated data would look like if the points that were to be removed, switched their class.

The split between the two sets of data becomes much more evident.

Figure 5.16: The 3D Laplacian Eigenmaps embedding. Normal data points in blue, Arrhythmia data points in green.

89

Figure 5.17: The 3D Laplacian Eigenmaps embedding after rotation. Note the concentration/distribution of green points

to the right.

Figure 5.18: In red are the Normal data points that are indicated for removal. Note the location of the points within the

distribution of the green Arrhythmia data points.

90

Figure 5.19: In black are the Arrhythmia data points that are indicated for removal. These are generally found in the

concentration of blue Normal points.

Figure 5.20: The original, rotated data after the points indicated for removal have had their classes switched, revealing a

better split between the data.

91

Next was an experiment to test whether or not removing these observations would

improve the accuracy of a classifier. For choosing the parameter that would indicate the

points to be removed, the plots in Figure 5.15 were used, meaning that the parameter

chosen was based on a visual inspection. Two classifiers were constructed, one that was

based on restricted training data, and a normal elastic net SVM. The algorithm used to test

and compare the two classifiers was K-fold cross validation with K = 10. The algorithm

details are as follows.

1. Separate the data into 10 mutually exclusive, identically sized data sets.

2. Remove one of the 10 data sets and set aside for testing.

3. For the BSSVDl1 classifier, run the algorithm on the remaining 9 data sets (training

data), using the visually chosen parameter to determine which points to remove from

the training data.

4. Using the remaining 9 data sets train and optimize both classifiers.

5. Test the classifiers on the tenth data set, which had been set aside

6. Repeat until all 10 data sets have been used for testing.

By taking the means of the results of all ten tests, the results of the K-fold cross

validation show that both classifiers have overall accuracy rates that are identical since

the accuracies on the diagonal sum to the same number. See the confusion matrices in

Table 5.3.

However, the BSSVDl1 classifier identifies a higher number of Arrhythmia cases, and

a higher number of false positives. Meaning, the BSSVDl1 classifier is predicting more

people to have Arrhythmia than are labeled that way. It is important to keep in mind

that the labels for this data were created in 1998 by a medical doctor using their expert

opinion based on the variables present. This means that there is some ambiguity as to the

validity of some of the labels. In either regard, while the accuracy was identical overall,

92

Table 5.3: BSSVDl1 Confusion matrix

BSSVDl1 Predicted Arrhythmia Predicted Normal

Arrhythmia 11
43

7.5
43

Normal 5.7
43

18.8
43

Normal SVM Predicted Arrhythmia Predicted Normal

Arrhythmia 10.5
43

8
43

Normal 5.2
43

19.3
43

the BSSVDl1 classifier did show promise in identifying more Arrhythmia cases, and in the

medical setting, false positives can at times be more favorable than false negatives.

In terms of accuracy, the both classifiers predicted on average 69.3% of the cases cor-

rectly. This is higher than the original accuracy of 63% found in the original paper [39],

below what is found in [66], and below the 84% accuracy found in [24].

The accuracy results show that there is still quite a bit of work to do for this algorithm,

however, the geometric and confusion matrix results point to promising results. Therefore,

future work will be focused on optimal, automated parameter selection and additional

penalty terms that may improve the overall accuracy of the classifier. Applications of the

geometric interpretations presented in this chapter also deserve more in-depth analysis as

they could point to manners in which to identify anomalies or incorrectly labeled data.

5.4 Summary

This section covered the fitting of two `1-constrained classifiers, namely an Elastic Net

SVM and a Least Squares SVM to data using the Split Bregman algorithm. Next, the

Elastic Net SVM classifier was fit to data that had been decomposed using the BSSVD

and it was shown that in some cases the lack of denoising seen using the SVD rather than

the BSSVD led to errors. The Elastic Net SVD and BSSVD were then combined into

one optimization problem and it was shown that the BSSVD left vectors could be used

to identify ambiguous records within the data being classified. Carrying this notion to

real-world data, namely Arrhythmia data, the geometry of the removed observations was

93

analyzed by visualizing the data in a low dimensional space. Finally, the overall affect of

removing the ambiguous observations on a classifier were explored.

Novel contributions in this section include fitting these classifiers to the Split Bregman

framework, and the inclusion of the classifier into the BSSVD algorithm. We explored the

geometric meaning of the classifier constrained decomposition, specifically, we tied iden-

tification of ambiguous results to the left vector of the BSSVD decomposition when the

classifier was included in the objective function. This algorithm (BSSVDl1) was applied to

Arrhythmia data and it was shown, using low-dimensional embeddings that the observa-

tions being removed could be interpreted as overlapping, and hence confusing to a classifier

being applied to the data. We also tested a classifier on the data with these observations

being removed and compared the results to a non-restricted classifier, and existing results

from the literature.

94

6 Modularity Maximization in Networks and Anomaly Detection

A network, or graph of data is a group of nodes (points) and edges (lines) connecting

them. The edges can be directed or undirected, weighted or unweighted, and not all nodes

need be connected to another. A network where each node is connected to at least one

other node is referred to as complete.

Networks are used to model many real world applications including social networks [84],

disease networks [79], citation networks [75], brain function [72], climate networks [85], and

cellular tower data analysis [31] among many others.

Of particular interest is finding subgraphs or communities within a larger network [30,

61, 60, 59, 62, 91, 68, 23, 9, 67]. Many of the techniques to find smaller communities within

a larger network are based on Newman’s Modularity metric [61, 60, 59, 62]. The modularity

metric aims to maximize the number of edges that are found within communities versus

the number of edges connecting the communities. In other words it attempts to maximize

internal connectedness versus external connectedness.

Formally, let G be a graph with a set of vertices V and edges E. An adjacency matrix

A is formed from G, V,E as follows: if two vertices in V are connected by an edge from E,

then Aij = 1, else Aij = 0. Let k be a vector containing the total number of connections

(degree) of each node, i.e. if node 1 is connected to 7 other nodes, then the first entry in

k would be 7. Then, if we let gi be the community to which node i belongs, and define

δ(gigj) to be 1 when i = j and 0 otherwise, then the modularity is given as

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(gigj) (6.1)

where m is the number of edges in the network. The modularity matrix is defined to be

B = A− kkT

2m
(6.2)

The modularity matrix gives a measure at each node of the actual connections A minus

the expected number of connections kkT

2m
.

95

Much as with the Laplacian within spectral clustering, an exhaustive search to optimize

the modularity is intractable for all but the smallest networks. Again, as with the Laplacian

and spectral clustering, it has been shown in [62] that the eigenvectors of the modularity

matrix are a good approximation to the optimal split via a relaxation of the dichotomous

set of values that indicate community membership. Namely, the sign of the entries of the

eigenvectors can be used to split the network into communities based on optimizing the

modularity metric.

In Figure 6.1 a sample social network is displayed. The clusters in this group are formed

using the modularity metric. In this instance, with a small number of nodes and high levels

of community structure, large and small subgraphs/communities are apparent. However, in

many networks, the community structure is not nearly as strong and anomalistic subgraphs

can remain hidden inside the network. For example, in Figure 6.2 a 1024 node graph created

by the RMAT algorithm is shown [21]. The graph is again clustered based on modularity,

but with much less success. Also, there is an eight node subgraph embedded in this graph

which is not visible to the naked eye. More sophisticated techniques are needed to tease

out the nodes of this subgraph.

Figure 6.1: A sample social network clustered using modularity. Clusters correspond to different groupings of family and

friends based on chronological and other factors.

96

Figure 6.2: A sample RMAT network clustered using modularity, with a hidden eight node subgraph embedded within the

graph.

Recently, Miller et al. [57] found that the `1-norm of the eigenvectors of the modular-

ity matrix could indicate the presence of an anomalistic subgraph. They found this by

creating graphs using the RMAT algorithm [21] and analyzing the curve of one norms of

the eigenvectors. In the presence of a small, highly interconnected subgraph, one of the

eigenvectors tended to have a statistically significantly lower than expected one-norm. In

practice, the eigenvectors that corresponded to the subgraphs had large weights for the

nodes of the subgraph and smaller weights for the rest of the graph. This strongly suggests

that a sparse approximation to this vector could be used to identify unambiguously the

nodes of the subgraph.

Given the fact that the modularity matrix is symmetric, the task of finding eigenvectors

is equivalent to a PCA or SVD decomposition of this matrix. Singh, Miller et al. [77]

applied a semidefinite programming relaxation [26] to calculate a Sparse PCA of an RMAT

generated modularity matrix with good results. They were able to detect these small,

anomalistic subgraphs using this technique. In this paper they do not calculate more than

one sparse eigenvector and the task of calculating subsequent eigenvectors is mentioned in

their conclusions as a future problem to be analyzed. Also, it is unclear if the algorithm

97

they have chosen can accept additional penalty terms to adapt to different types of network

data. Both of these issues can be addressed using the Split Bregman Sparse PCA algorithm.

6.1 Detecting Graph Anomalies using Bregman Iterations

Firstly, the Split Bregman Sparse PCA algorithm was tested to see if it could identify the

eight nodes in the embedded subgraph from Figure 6.2. Figure 6.3 shows the first loading

vector when the algorithm is applied to the modularity matrix. The eight nodes are clearly

identifiable from the vector.

Figure 6.3: The first loading vector from the sparse pca of the modularity matrix associated with Figure 6.2

Next, a second seven node subgraph was embedded using different nodes than in the

first. A rank two sparse PCA was performed on the modularity matrix, and as expected, the

second sparse loading vector distinctly picks out the seven nodes comprising the subgraph,

see Figure 6.4.

Finally, to illustrate the benefit of the sparsity of the solutions found using the sparse

PCA, we embed the nodes into R2 using the coordinates as determined by the rows of the

matrix formed by using the sparse loading vectors as columns, see Figures 6.5 and 6.6.. This

is exactly how the eigenvectors are used in many spectral clustering algorithms, including

98

Figure 6.4: The first and second loading vector from the sparse pca of the modularity matrix associated with Figure 6.2,

with two embedded subgraphs

Laplacian Eigenmaps. The difference is clear, the sparse version of the embedding sends

all nodes not included in one of the subgraphs to zero while both of the subgraphs lie on

orthogonal axes. In the traditional PCA embedding, without prior knowledge that there

were only two subgraphs, it would be easy to falsely identify some of the smaller green

clusters as anomalistic subgraphs.

Figure 6.5: A 2D embedding of the graph using the sparse PCA vector rows as coordinates.

99

Figure 6.6: A 2D embedding of the graph using the traditional PCA vector rows as coordinates.

6.2 Summary

In this section we gave an overview of Modularity and how it is calculated using the

Modularity matrix. Sample networks were explored and the through these sample networks,

the need for methods identifying subgraphs in large networks was demonstrated. It was

shown that the sparse eigenvectors of the Modularity matrix corresponded to an eight node,

and a seven node anomalistic subgraph that had been embedded into a sample network.

Work in this area thus far generally has not used sparsity when looking for solutions,

and this is the first work to be able to solve for multiple subgraphs using the Sparse PCA

technique. Also, by using the Bregman version of the Sparse PCA algorithm to find the

sparse eigenvectors of the modularity matrix additional penalty terms can be added if

needed for a given network of data.

100

7 Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have presented the Split Bregman framework for solving several

multivariate analysis problems with applications. The convergence of the Split Bregman

algorithm was shown under modest conditions on the terms in the optimization problems,

namely convexity. It has been demonstrated in this thesis to easily optimize problems

with non-differentiable terms, accept new penalty terms and have promising directions for

future research.

The algorithms presented include Sparse PCA, the BSSVD and the BSSVD with an

`1 constrained classifier. All of these algorithms fit the conditions of the Split Bregman

algorithm and thus fit nicely into the class of problems that are able to be solved using

this technique. For the Sparse PCA, images of faces were used to show how the algorithm

selected faces that were linked to the clusters created naturally by the Laplacian Eigen-

maps algorithm. For the BSSVD, Hyperspectral Imagery was denoised, allowing clear

identification of the plume present in the frames. For the BSSVD with `1 constrained

classifier, Arrhythmia data was used to demonstrate the observation and variable selection

done by this technique and was shown via low-dimensional embeddings that it removed

observations of interest that geometrically provided a more visually accessible data set.

Finally, anomalistic subgraphs were detected using the sparse eigenvectors of a network’s

modularity matrix.

7.2 Future Work

In terms of future work, there are many options. Firstly, for the multivariate algorithms

in which scaling was required, for example in the Sparse PCA where the final answer

needed to have unit norm, the parameters for the Split Bregman were very sensitive.

This tended to be true in general, but specifically for the multivariate problems, a future

direction would be to determine methods for determining optimal penalty parameters.

101

Also, there is the possibility of improving sparsity or stepsize by allowing change in the

penalty parameters as the algorithm iterates. Following the theory in [98] there could

be benefit in terms of increased control of sparsity levels and convergence by changing

parameters as the algorithm approaches convergence. Next, we can look to add sparsity

to existing algorithms such as Laplacian Eigenmaps which has a very similar optimization

problem to the modularity problem. We can also expand the data to which these problems

are applied. Within modularity, it would be informative to attach hypothesis testing to the

detected subgraphs, perhaps using prior information to identify the activity of the nodes

as truly anomalistic.

102

References

[1] D. N. A. Asuncion, UCI machine learning repository, 2007.

[2] N. N. Abdelmalek and N. Otsu, Restoration of images with missing high-

frequency components by minimizing the l1 norm of the solution vector, Appl. Opt.,

24 (1985), pp. 1415–1420.

[3] G. Allen, L. Grosenick, and J. Taylor, A generalized least squares matrix

decomposition, Rice University Technical Report No. TR2011-03, (2011).

[4] C. Bachmann, T. Ainsworth, and R. Fusina, Exploiting manifold geometry

in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, 43

(2005), pp. 441–454.

[5] , Improved manifold coordinate representations of large-scale hyperspectral

scenes, IEEE Transactions on Geoscience and Remote Sensing, 44 (2006), pp. 2786–

2803.

[6] C. Bachmann, T. Ainsworth, R. Fusina, M. Montes, J. Bowles, D. Kor-

wan, and D. Gillis, Bathymetric retrieval from hyperspectral imagery using mani-

fold coordinate representations, IEEE Transactions on Geoscience and Remote Sens-

ing, 47 (2009), pp. 884–897.

[7] BaySpec, Hyperspectral imaging. ”http://www.bayspec.com”. Accessed August 3,

2012.

[8] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and

data representation, J. Amer. Statist. Assoc., 15 (2003), pp. 1373–1396.

[9] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast un-

folding of communities in large networks, Journal of Statistical Mechanics: Theory

and Experiment, (2008), pp. 1–12.

103

[10] J. Boardman, F. Kruse, and R. Green, Mapping target signatures via partial

unmixing of aviris data, Summaries of the Fifth Annual JPL Airborne Earth Science

Workshop. Volume 1: AVIRIS Workshop, 5 (2009), pp. 63–26.

[11] B. Boser, I. Guyon, and V. Vapnik, A training algorithm for optimal margin

classifiers, Fifth Annual Workshop on Computational Learning Theory, (1992).

[12] P. S. Bradley and O. L. Mangasarian, Feature Selection via Concave Mini-

mization and Support Vector Machines, vol. pages, Morgan Kaufmann, 1998, pp. 82–

90.

[13] L. M. Bregman, The relaxation method of finding the commong points of convex

sets and its application to the solution of problems in convex optimization, USSR

Comput. Math. and Math. Phys, 7 (1967), pp. 200–217.

[14] M. Burger, G. Gilboa, S. Osher, and J. Xu, Nonlinear inverse scale space

methods, Communications in Mathematical Sciences, 4 (2006), pp. 175–208.

[15] J. Cai, E. Cands, and Z. Shen, A singular value thresholding algorithm for matrix

completion, SIAM Journal on Optimization, 20 (2010), pp. 1956–1982.

[16] B. Campbell, Radar Remote Sensing of Planetary Surfaces, Cambridge University

Press, 2002.

[17] E. Candes and B. Recht, Exact matrix completion via convex optimization, Foun-

dations of Computational Mathematics, 9 (2009), pp. 717–772.

[18] E. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on

Information Theory, 51 (2005), pp. 4203–4215.

[19] E. J. Candes, X. Li, Y. Ma, and J. Wright, Robust Principal Component

Analysis?, ArXiv e-prints, (2009).

104

[20] T.-H. Chan, C.-Y. Chi, and Y.-M. Huang, A convex analysis-based minimum-

volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Transactions

on Signal Processing, 57 (2009), pp. 4418–4432.

[21] D. Charkrabarti and C. Faloutsos, R-MAT : A recursive model for graph

mining, Proc. Fourth SIAM Int’l Conference on Data Mining, 6 (2004), pp. 442–446.

[22] R. Clark, G. Swayze, K. Livo, R. Kokaly, S. Sutley, J. Dalton, R. Mc-

Dougal, and C. Gent, Imaging spectroscopy: Earth and planetary remote sensing

with the usgs tetracorder and expert systems, Journal of Geophysical Research, 108

(2003), pp. 5–44.

[23] A. Clauset, N. M, and C. Moore, Finding community structure in very large

networks, Phys. Rev. E, 70 (2004), p. 066111.

[24] S. Cohen, G. Dror, and E. Ruppin, A feature selection method based on the

Shapley value, Proceedings of the International Joint Conference on Artificial Intel-

ligence, (2005).

[25] C. Cortes and V. Vapnik, Support vector networks, Machine Learning, 20 (1995),

pp. 273–297.

[26] A. D’Aspremont, F. Bach, and L. El Ghaoui, Optimal solutions for sparse

principal component analysis, Journal of Machine Learning Research, 9 (2008).

[27] C. Ding, D. Zhou, X. He, and H. Zha, R1-pca: Rotational invariant l1 norm

principal component analysis for robust subspace factorization, Proceedings of the

23rd International Conference on Machine Learning, (2006).

[28] D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52

(2006), pp. 1289–1306.

[29] D. Donoho and J. J, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81

(1994), pp. 425–455.

105

[30] J. Duch and A. Arenas, Community detection in complex networks using extremal

optimization, Phys. Rev. E, 72 (2005), p. 027104.

[31] N. Eagle, J. Quinn, and A. Clauset, Methodologies for continuous cellu-

lar tower data analysis, in Pervasive Computing, H. Tokuda, M. Beigl, A. Friday,

A. Brush, and Y. Tobe, eds., vol. 5538 of Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, 2009, pp. 342–353.

[32] E. Esser, Applications of lagrangian-based alternating direction methods and con-

nections to split bregman, CAM Technical Report, (2009), pp. 1–32.

[33] J. Fan and L. R, Variable selection via nonconcave penalized likelihood and its

oracle properties, J. Amer. Statist. Assoc., 96 (2001), pp. 1348–1360.

[34] G. Fung, S. Sandilya, and R. R.B., Rule Extraction from Support Vector Ma-

chines, Springer-Verlag, 2008, pp. 83–107.

[35] D. Gabay and B. Mercier, A dual algorithm for the solutions of nonlinear vari-

ational problems via finite-element approximations, Comp. Math. Appl., 2 (1976),

pp. 17–40.

[36] J. Gao, Robust l1 principal component analysis and its bayesian variational infer-

ence, Neural Computation, 20 (2008), pp. 555–572.

[37] T. Goldstein, X. Bresson, and S. Osher, Geometric applications of the split

bregman method: Segmentation and surface reconstruction, Journal of Scientific Com-

puting, 45 (2010), pp. 272–293.

[38] T. Goldstein and S. Osher, The split bregman method for l1 regularized problems,

SIAM Journal on Imaging Sciences, 2 (2009), pp. 323–343.

[39] A. Guvenir, B. Acar, G. Demiroz, and A. Cekin, A supervised machine

learning algorithm for arrhythmia analysis, Computers in Cardiology 1997, (1997),

pp. 433–436.

106

[40] E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for l1-

regularized minimization with applications to compressed sensing, CAAM Technical

Report, TR07-07 (2007), pp. 1–45.

[41] R. E. Hausman, Constrained multivariate analysis, Studies in the Management

Sciences, 19 (1982), pp. 137–151.

[42] J. N. R. Jeffers, Two case studies in the application of principal components,

Applied Statistics, 16 (1967), pp. 225–236.

[43] R. Jenatton, O. Guiallaume, and B. Francis, Structured sparse principal

component analysis, arXiv.org Machine Learning, (2009).

[44] H. Jiang, S. Fels, and J. Little, A linear programming approach for multiple

object tracking, Computer Vision and Pattern Recognition, 2007, (2007), pp. 1–8.

[45] I. Jolliffe, Principal Component Analysis, Springer-Verlag, 2nd ed., 2002, pp. 150–

160.

[46] I. Jolliffe, N. Trendafilov, and M. Uddin, A modified principal component

technique based on the lasso, Journal of Computational and Graphical Statistics, 12

(2003), pp. 531–547.

[47] M. Kirby, Geometric Data Analysis: An Empirical Approach to Dimensionality

Reduction and the Study of Patterns, John Wiley and Sons, 2001.

[48] M. Kirby and L. Sirovich, Application of the Karhunen-Loève procedure for the

characterization of human faces, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990),

pp. 103–108.

[49] N. L. Kleinman, N. J. Rohrbacker, S. A. White, J. L. March, and M. R.

Reynolds, Economic impact to employers of treatment options for cardiac arrhyth-

mias in the US health system, Journal of Occupational and Environmental Medicine,

53 (2011), pp. 405–414.

107

[50] R. Lawrence, S. Wood, and R. Sheley, Mapping invasive plants using hyper-

spectral imagery and breiman cutler classifications (randomforest), Remote Sensing

of the Environment, 100 (2006), pp. 356–362.

[51] M. Lee, H. Shen, J. Z. Huang, and J. S. Marron, Biclustering via sparse

singular value decomposition, Biometrics, 66 (2010), pp. 1087–1095.

[52] Z. Lu and Y. Zhang, An augmented lagrangian approach for sparse principal com-

ponent analysis, Mathematical Programming, (2010), pp. 1–45. 10.1007/s10107-011-

0452-4.

[53] S. Ma, D. Goldfarb, and L. Chen, Fixed point and bregman iterative methods

for matrix rank minimization, Mathematical Programming, 128 (2011), pp. 321–353.

10.1007/s10107-009-0306-5.

[54] D. Manalokis, D. Marden, and S. Gary, Hyperspectral image processing for

automatic target detection algorithms, Lincoln Laboratory Journal, 14 (2003), pp. 79–

116.

[55] A. Marquina and S. Osher, Image super resolution by tv-regularization and breg-

man iteration, Journal of Scientific Computing, 37 (2008), pp. 367–382.

[56] N. Meinshausen and P. Buhlmann, Stability selection, Journal of the Royal

Statistical Society Series B, 72 (2010), pp. 417–473.

[57] B. Miller, N. Bliss, and P. Wolfe, Subgraph detection using eigenvector l1

norms, NIPS 2010, (2009).

[58] G. Mohler, A. Bertozzi, T. Goldstein, and S. Osher, Fast tv regulariza-

tion for 2d maximum penalized likelihood estimation, Journal of Computational and

Graphical Statistics, 20 (2011), pp. 479–491.

[59] M. Newman, Detecting community structure in networks, European Physical Jour-

nal B, (2004), pp. 321–330.

108

[60] , Fast algorithm for detecting community structure in networks, Physical Review

E, (2004), pp. 1–16.

[61] , Finding and evaluating community structure in networks, Physical Review E,

(2004), pp. 1–16.

[62] , Finding community structure in networks using the eigenvectors of matrices,

Physical Review B, (2006).

[63] NHLBI, Arrhythmia. ”http://www.nhlbi.nih.gov/health/health-

topics/topics/arr/”. Accessed September 23, 2012.

[64] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regular-

ization method for total variation-based image restoration, Multiscale Model. Simul.,

4(2) (2005), pp. 460–489.

[65] E. Parkhomenko, Sparse canonical correlation analysis, PhD Thesis University of

Toronto, (2008).

[66] S. Perkins, K. Lacker, and J. Theiler, Grafting: Fast, incremental feature se-

lection by gradient descent in function space, Journal of Machine Learning Research,

3 (2003), pp. 1333–1356.

[67] M. A. Porter, J.-P. Onnela, and P. J. Mucha, Communities in networks,

Notices of the AMS, (2009), pp. 1082–1097.

[68] J. Reichardt and S. Bornholdt, Statistical mechanics of community detection,

Phys. Rev. E, 74 (2006), p. 016110.

[69] R. Resmini, M. Kappus, W. Aldrich, J. Harsanyi, and M. Anderson,

Mineral mapping with hyperspectral digital imagery collection experiment (hydice)

sensor data at cuprite, nevada, u.s.a., International Journal of Remote Sensing, 18

(2010), pp. 1553–1570.

109

[70] R. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[71] N. J. Rohrbacker, N. L. Kleinman, S. A. White, J. L. March, and M. R.

Reynolds, The burden of atrial fibrillation and other cardiac arrhythmias in an em-

ployed population: Associated costs, absences, and objective productivity loss, Journal

of Occupational and Environmental Medicine, 52 (2010), pp. 383–391.

[72] M. Rubinov and O. Sporns, Complex network measures of brain connectivity:

Uses and interpretations, NeuroImage, 52 (2010), pp. 1059 – 1069.

[73] H. Shen and Z. Huang, Sparse principal component analysis via regularized low

rank matrix approximation, Journal of Multivariate Analysis, 99 (2008), pp. 1015–

1034.

[74] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22 (2000), pp. 888–905.

[75] N. Shibata, Y. Kajikawa, Y. Takeda, I. Sakata, and K. Matsushima,

Detecting emerging research fronts in regenerative medicine by the citation network

analysis of scientific publications, Technological Forecasting and Social Change, 78

(2011), pp. 274 – 282.

[76] M. Sill, S. Kaiser, A. Benner, and A. Kopp-Schneider, Robust biclustering

by sparse singular value decomposition incorporating stability selection, bioinformat-

ics, 27 (2011), pp. 2089–2097.

[77] N. Singh, B. Miller, N. Bliss, and P. Wolfe, Anomalous subgraph detection

via sparse principal component analysis, IEEE Statistical Signal Processing Work-

shop, (2011), pp. 485–488.

[78] L. Sirovich and M. Kirby, A low-dimensional procedure for the characterization

of human faces., J. of the Optical Society of America A, 4 (1987), pp. 524–529.

110

[79] J. Stehle, N. Voirin, and A. Barrat et al., Simulation of an seir infec-

tions disease model on the dynamic contact network of conference attendees, BMC

Medicine, 9 (2011), p. 87.

[80] A. Szlam, G. Zhaohui, and S. Osher, A split bregman method for non-negative

sparsity penalized least squares with applications to hyperspectral demixing, Image

Processing (ICIP), 2010 17th IEEE International Conference on, (2010), pp. 1917–

1920.

[81] J. T. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric frame-

work for nonlinear dimensionality reduction, Science, 290 (2000), pp. 2319–2323.

[82] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal

Statistical Society– Series B, 58 (1996), pp. 267–288.

[83] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity

and smoothness via the fused lasso, Journal of the Royal Statistical Society Series B,

67 (2005), pp. 91–108.

[84] A. L. Traud, P. J. Mucha, and M. A. Porter, Social structure of facebook

networks, Physica A: Statistical Mechanics and its Applications, 391 (2012), pp. 4165

– 4180.

[85] A. Tsonis, G. Wang, K. Swanson, F. Rodrigues, and L. Costa, Community

structure and dynamics in climate networks, Climate Dynamics, 37 (2011), pp. 933–

940.

[86] E. Underwood, S. Ustin, and D. Dipietro, Mapping nonnative plants using

hyperspectral imagery, Remote Sensing of Environment, 86 (2003), pp. 150–161.

[87] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.

[88] S. Vines, Simple principal components, Journal of the Royal Statistical Society–

Series C, 49 (2000), pp. 441–451.

111

[89] L. Wang, J. Zhu, and H. Zou, The double regularized support vector machine,

Statistic Sinica, 16 (2006), pp. 589–615.

[90] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization al-

gorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences,

1 (2008), pp. 248–272.

[91] S. White and P. Smyth, A spectral clustering approach to finding communities in

graphs, Proceedings of the 5th SIAM International Conference, (2005), pp. 274–285.

[92] M. Winter, N-findr: An algorithm for fast autonomous spectral end-member deter-

mination in hyperspectral data, Proceedings of SPIE - The International Society for

Optical Engineering. Vol. SPIE-3753, (1999), pp. 266–275.

[93] D. M. Witten, R. Tibshirani, and T. Hastie, A penalized matrix decompo-

sition, with applications to sparse principal components and canonical correlation

analysis, Biostatistics, 10 (2009), pp. 515–534.

[94] J. Xu and S. Osher, Iterative regularization and nonlinear inverse scale space ap-

plied to wavelet-based denoising, IEEE Transactions on Image Processing, 16 (2006),

pp. 534–544.

[95] J. Yang, D. Zhang, A. Frangi, and J.-y. Yang, Two-dimensional pca: A new

approach to appearance-based face representation and recognition, IEEE Transactions

on Patter Analysis and Machine Intelligence, 26 (2004), pp. 131–137.

[96] G. Ye and X. Xie, Split bregman method for large scale fused lasso, Computational

Statistics and Data Analysis, 55(4) (2011), pp. 1552–1569.

[97] G.-B. Ye, Y. Chen, and X. Xie, Efficient variable selection in support vector

machines via the alternating direction method of multipliers, Proceedings of the 14th

International Conference on Artificial Intelligence and Statistics, 15 (2011), pp. 832–

840.

112

[98] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algo-

rithms for l1-minimization with applications to compressed sensing, SIAM Journal of

Imaging Sciences, 1 (2008), pp. 143–168.

[99] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework

based on bregman iteration, Journal of Scientific Computing, 46 (2011), pp. 20–46.

[100] H. Zou, The adaptive lasso and its oracle properties, Journal of the American Sta-

tistical Association, 101 (2006), pp. 1418–1429.

[101] H. Zou and T. Hastie, Regularization and variable selection via the elastic net,

Journal of the Royal Statistical Society Series B, 67 (2005), pp. 301–320.

[102] H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis,

Journal of Computational and Graphical Statistics, 15 (2006), pp. 265–286.

113

A Definitions

Definition 1. A function f : Rn → R is defined to be convex if for any convex set V in

the domain of f and for any x, y ∈ V we have that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

where t ∈ [0, 1]. Equivalently, if f is twice differentiable, f is convex if the Hessian of f is

positive semidefinite.

Definition 2. A function f is a nonnegative convex functional if f : Rn → R,

meaning f has a range of the real numbers, is convex and is nonnegative on its domain.

Definition 3. A vector g is called a subgradient of f at y if for any x ∈ U , we have that

f(x)− f(y)− (g(y), x− y) ≥ 0

The set of all subgradients of f at y is called the subdifferential of f at y. If the subdif-

ferential contains only one element, the function is differentiable at y and the subgradient

is equal to the gradient.

Below is the algorithm for constructing the data needed to test the classifiers on sepa-

rable data as footnoted in Chapter 5. The data is moved away from the origin and overlaps

by construction.

Non-Separable Data Construction

1: for i = 1 : 10 do

2: p = i*100;

3: c1 = rand(250,10) + 2 - i/10;

4: c2 = -rand(250,10) + 2.25;

5: c3 = rand(500,p - 10);

6: X = [c1; c2];

7: X = [X c3];

8: y = [ones(250,1); -ones(250,1)];

9: end for

114

