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ABSTRACT 

 

OBSERVATIONS OF AEROSOL PARTICLES AND DEEP CONVECTIVE UPDRAFTS 

AND THE MODELING OF THEIR INTERACTIONS  

 

Within cloud updrafts, cloud droplets form on aerosol particles that serve as cloud 

condensation nuclei (CCN). Varying the concentrations of CCN alters the concentrations of 

cloud droplets, which in turn modifies subsequent microphysical processes within clouds. In this 

dissertation, both observational and modeling studies are presented that reduce the uncertainties 

associated with these aerosol-induced feedback processes in deep convective clouds.  

In the first study, five years of observations of aerosol particle size distributions from 

central Oklahoma are compared, and useful metrics are provided for implementing aerosol size 

distributions into models. Using these unique, long-term observations, power spectra analyses 

are also completed to determine the most relevant cycles (from hours to weeks) for different 

aerosol particle sizes. Diurnal cycles produce the strongest signals in every season, most 

consistently in the accumulation mode and the smallest (diameters < 30 nm) particles. The latter 

result suggests that these smallest particles may play a more important role in the CCN budget 

than previously thought. Ultimately, in understanding which, when and why different aerosol 

particles are present in the atmosphere, we can better assess the impacts that they have on clouds.  

The types and number of aerosol particles that can serve as CCN depend on the amount 

of supersaturation, and thus the magnitude of the cloud updraft vertical velocities. However, in 

situ updraft observations in deep convective clouds are scarce, and other vertical velocity 

estimates often have uncertainties that are difficult to characterize. In the next study, novel, in 
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situ observations of deep convective updraft vertical velocities from targeted radiosonde 

launches during the CSU Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex) 

are presented. Vertical velocities of over 50 m s-1 are estimated from radiosonde observations 

taken in Colorado. Radar data are used to contextualize the radiosonde measurements and to 

provide an independent estimate of the updraft magnitudes for comparison. These observations 

are valuable in that they: 1) contribute novel estimates of the vertical velocities within deep 

convective clouds, 2) demonstrate that in situ observations of vertical velocities complement 

estimates from other platforms and 3) will allow for better assessments of the supersaturation 

magnitudes, and thus the amount of CCN that are present within deep convective clouds. 

While the first two studies focus on observing aerosol particles and updrafts separately, 

the third study within this dissertation presents simulations of their interactions from an 

international model intercomparison project. Seven models from different institutions simulated 

the same case study of isolated deep convective clouds with both high and low CCN 

concentrations. The range of the responses in updrafts to varying CCN concentrations are 

calculated for this model suite. Despite the various physical parameterizations that these models 

utilize, all the models simulate stronger updrafts in the High-CCN simulations from near cloud 

base through ~8 km AGL, with diverging results above this altitude. The vertical velocity 

tendency equation is analyzed to explain which processes are causing the consistent and 

inconsistent updraft responses to varying CCN concentrations amongst the models. 

The three studies in this dissertation each reduce the uncertainties related to aerosol 

effects on deep convective cloud updrafts. This work also assisted in motivating the DOE 

Tracking Aerosol Convection Interactions Experiment (TRACER), which will further connect 

observational and modeling research to reduce the uncertainties in aerosol-cloud interactions.  



 
 

iv 
 

ACKNOWLEDGEMENTS 

 

My procurement of a Ph. D. in atmospheric science has been both trying and rewarding, 

and I am grateful for all those individuals who played a role in my journey. First and foremost, I 

thank my advisors, Dr. Susan van den Heever and Dr. Sonia Kreidenweis, for accepting me into 

the CSU graduate program, challenging me and providing me with support, advice and countless 

opportunities to learn. I would also like to thank the other members of my Ph. D. committee, Dr. 

Michael Bell and Dr. Richard Eykholt, for their time and thoughts on my research. 

Throughout my graduate degree, I have had the opportunity to work on a variety of topics 

and with many collaborators. While my M. S. research primarily utilized atmospheric models, 

during my Ph. D. I have had several opportunities to venture into the world of observations, and I 

am thankful for those who assisted me with that transition, including Dr. Don Collins, Dr. Sonia 

Kreidenweis, Dr. Ezra Levin, Dr. Pat Kennedy, Dr. Michael Bell, Dr. Susan van den Heever, Dr. 

Leah Grant, Sean Freeman and Aryeh Drager. Your patience, instruction and enthusiasm has 

been extremely helpful and motivating. One of these opportunities was serving as the Operations 

Manager for the C3LOUD-Ex field campaign. Through this role, I learned about managing a 

field campaign and the challenges associated with observational platforms, and I thank the entire 

C3LOUD-Ex science team for their tremendous efforts and persistent high spirits. I would also 

like to thank Dr. Susan van den Heever for involving me in the Aerosol-Cloud-Precipitation-

Climate (ACPC) working group. Through this international collaboration, I have had the 

opportunity to meet with and learn from incredible scientists and students. I am grateful for all 

the interactions that I have had at the ACPC meetings, particularly with those individuals who 

stimulated engaging discussions and made that working group a worthwhile enterprise.  



 
 

v 
 

The CSU Department of Atmospheric Science has been a welcoming and enriching 

community to be a part of, with many opportunities to develop as a student, researcher, teacher, 

mentor, colleague, manager and friend. Therefore, I thank the faculty, students and staff that I 

have interacted with at CSU. In particular, I acknowledge Dr. Susan van den Heever for 

providing me with several opportunities to be a teaching assistant. These roles have confirmed 

my passion for teaching and advanced my understanding of cloud processes. 

My graduate education in atmospheric science would have never happened without the 

support of my family and friends and the individuals who first opened their doors to an ex-

investment-banker looking for a more rewarding career. Specifically, I thank, Dr. Brian Colle, 

Dr. Chandra Venkatachalam, Dr. Pat Kennedy and Dr. Joseph Hardin for giving me my first 

chance to learn about atmospheric science research. However, without the support of my family 

and friends, this journey would not have been possible. I am most grateful for my partner in life, 

Leah, for your patience, kindness, laughter, and all of our times together that have made this 

adventure so much more enjoyable. I would also like to thank my family and friends for their 

unwavering support.  

My research could not have been completed without the support from several funding 

agencies and fellowships. I acknowledge the National Science Foundation (NSF) Graduate 

Fellowship Program (Grant No. DGE-1840343), the CSU Monfort Excellence Fund, NSF Grant 

No. AGS-1409686, and NASA Grant No. 80NSSC18K0149 that in part supported me 

throughout the Ph. D. program. These programs are essential for the education of future 

scientists, and I am grateful for the work and people that uphold these programs.  



 
 

vi 
 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

Chapter 1 : Introduction .................................................................................................................. 1 

1.1 Aerosol particles and their roles in clouds ............................................................................ 1 

1.2 Interactions between CCN and deep convective clouds ....................................................... 4 

1.3 Dissertation outline: motivation and science questions ........................................................ 7 

Chapter 2 : Quantifying Aerosol Size Distributions and Their Temporal Variability in the Southern 

Great Plains, USA ......................................................................................................................... 10 

2.1 Introduction ......................................................................................................................... 10 

2.2 Data ..................................................................................................................................... 12 

2.3 Seasonal variations in aerosol concentrations .................................................................... 14 

2.4 Sub-seasonal cycles within aerosol number concentrations ............................................... 23 

a. Methods ............................................................................................................................. 23 

b. Hourly-to-daily cycles of aerosol number concentrations ................................................ 25 

c. Daily-to-weekly aerosol cycles ......................................................................................... 39 

2.5 Conclusions ......................................................................................................................... 42 

Chapter 3 : Updraft Vertical Velocity Observations and Uncertainties in High Plains Supercells 

Using Radiosondes and Radars ..................................................................................................... 45 

3.1 Introduction ......................................................................................................................... 45 

3.2 C3LOUD-Ex observations .................................................................................................. 48 

a. Radiosondes ...................................................................................................................... 48 



 
 

vii 
 

b. Radars ............................................................................................................................... 51 

3.3 C3LOUD-Ex cases .............................................................................................................. 54 

a. 26 May 2017 case study .................................................................................................... 54 

b. 17 July 2016 case study .................................................................................................... 56 

3.4 Radiosonde-derived updraft vertical velocities (wair) ......................................................... 57 

a. 2017 case ........................................................................................................................... 60 

b. 2016 case ........................................................................................................................... 65 

3.5 Comparisons of radiosonde wair to other platforms ............................................................ 69 

a. Comparisons with dual-Doppler estimates ....................................................................... 69 

b. Comparisons with simple parcel theory ............................................................................ 72 

3.6 Implications for future in situ observations of wair within storms ...................................... 73 

3.7 Conclusions ......................................................................................................................... 75 

Chapter 4 : The Impacts of Varying Concentrations of Cloud Condensation Nuclei On Deep 

Convective Cloud Updrafts – A Multimodel Assessment ............................................................ 78 

4.1 Introduction ......................................................................................................................... 78 

4.2 ACPC Model Intercomparison Project (MIP) .................................................................... 83 

a. Case study simulations ...................................................................................................... 83 

b. Aerosol initialization ......................................................................................................... 85 

c. Models ............................................................................................................................... 86 

4.3 CCN effects on the deep convective updrafts ..................................................................... 92 

a. Frequency .......................................................................................................................... 92 

b. Intensity ............................................................................................................................. 94 

4.4 Vertical velocity tendency equation and terms ................................................................... 97 



 
 

viii 
 

a. Thermal buoyancy (BTH) ................................................................................................. 100 

b. Water vapor buoyancy (BWV) ......................................................................................... 101 

c. Condensate loading buoyancy (BCL) ............................................................................... 104 

d. Vertical perturbation pressure gradient (VPPG) ............................................................. 108 

e. Advection terms .............................................................................................................. 111 

4.5 Conclusions ....................................................................................................................... 114 

Chapter 5 : Dissertation Conclusions .......................................................................................... 117 

5.1 Summary of studies .......................................................................................................... 117 

5.2 Implications of this research and future work .................................................................. 121 

References ................................................................................................................................... 126 

Appendix 1: Merged Aerosol Size Distributions ........................................................................ 146 

Appendix 2: Analysis of the Uncertainties Associated with Drag Forces on the C3LOUD-Ex 

Updraft Estimates ........................................................................................................................ 154 

Appendix 3: ACPC MIP Model Details ..................................................................................... 156 

Appendix 4: ACPC MIP Base State Calculations ...................................................................... 159 



 
 

1 
 

CHAPTER 1: INTRODUCTION 

 

1.1 Aerosol particles and their roles in clouds 

Aerosols are solid or liquid particles suspended in the atmosphere. Their sizes range from 

on the order of nanometers (e.g., newly formed particles from combustion or photochemical 

processes) to the order of millimeters (e.g., windborne dust). An example of an aerosol size 

distribution is shown in Figure 1.1. These data were obtained from the United States Department 

of Energy's Atmospheric Radiation Measurement's Southern Great Plains (SGP) site and are 

representative of a rural, North American, continental location. Generally, there are higher 

number concentrations of the smaller particles (diameters < 100 nm) and relatively few large 

particles (diameters > 1 micron). However, these larger particles play a more substantial role in 

Figure 1.1. An example of the typical aerosol (a) number size distribution and (b) volume size 
distribution from the SGP site for springtime months (March, April and May). Data shown are 
the median value (solid) and the 25th and 75th percentiles (dotted) from the 5-year period 
between 2009 – 2013. Data from Marinescu et al. (2019). 
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terms of their volume and mass (Figure 1.1b). Aerosol particles also have varying composition, 

depending on their sources and any chemical reactions they undergo in the atmosphere.  

An aerosol particle’s impact on a cloud depends on both its composition and size. One 

way that aerosol particles interact with clouds is via radiation processes. For example, aerosol 

particles that are composed of black carbon or mineral dust absorb solar radiation effectively and 

therefore warm the atmosphere around them. If these aerosol particles are within clouds, their 

induced warming could lead to the evaporation, sublimation or melting of hydrometeors or 

change the thermodynamic stability within clouds (e.g., semi-direct aerosol effects; Hansen et al. 

1997). Outside of clouds, high concentrations of radiatively-active aerosol particles can also alter 

the atmospheric temperature profile, change the atmospheric stability and impact cloud 

development. For example, large layers of biomass burning aerosol particles from central 

American fires are often advected into the southern United States (e.g., Rogers and Bowman 

2001; Gebhart et al. 2001). Utilizing cloud-resolving model simulations, Saide et al. (2016) 

found that these biomass burning aerosol particles can change the thermodynamic environment 

prior to severe weather outbreaks, making them more or less conducive for the formation of 

tornadoes for different case studies. Grant and van den Heever (2014) also demonstrated that 

increased concentrations of aerosol particles reduce the shortwave radiation reaching the surface 

and in turn decrease boundary layer instability, moisture and convergence. These impacts result 

in weaker convective clouds in their tropical sea breeze simulations.  

 Aerosol particles also act as the primary formation nuclei for cloud droplets and ice 

crystals. Indeed, without aerosol particles on Earth, there would be no clouds resembling those 

that are currently observed. In the atmosphere, the air can become supersaturated with respect to 

liquid water. In these situations, aerosol particles lower the thermodynamic energy barriers for 
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the formation of cloud droplets to surpassable levels (Köhler 1936). Aerosol particles that act in 

this way and on which cloud droplets form are termed cloud condensation nuclei (CCN). An 

aerosol particle’s ability to serve as a CCN depends on both its size and its hygroscopicity, the 

latter of which depends on its composition. Figure 1.2 shows the atmospheric supersaturation 

needed to form a cloud droplet for varying aerosol particle sizes and hygroscopicity, based on k-

Köhler theory (Petters and Kreidenweis, 2007). Larger particles and more hygroscopic particles 

require lower supersaturations to form cloud droplets. Clouds with relatively weak updrafts (e.g., 

less than 1 m s-1) typically have peak supersaturations near cloud base that are less than 0.5%, 

while deep convective clouds that have stronger updrafts attain higher maximum 

supersaturations (e.g., Reutter et al. 2009), although it is unclear how large supersaturations can 

become due to the inability to observe or estimate supersaturations throughout deep convective 

clouds. As such, aerosol particles that act as CCN in a deep convective cloud may not act as 

CCN in a shallow cloud. Similar to their roles in the formation of cloud droplets, aerosol 

particles can also serve as ice nucleating particles (INPs), making it easier to form ice crystals in 

the atmosphere at modest supercoolings via a number of mechanisms (Vali 1996). However, 

Figure 1.2. Critical supersaturations (shaded) required for aerosol particles for specified 
diameters (abscissa) and hygroscopicity parameters (k, ordinate), based on k-Köhler theory 
(Petters and Kreidenweis 2007). 
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many questions about the types of particles that can efficiently serve as INPs and the relative 

contributions of the different ice nucleation mechanisms remain unanswered. The impacts of 

aerosol particles on clouds via these nucleation pathways are also known as aerosol indirect 

effects. 

 The multiple roles played by aerosol particles make it important to understand the 

temporal and spatial variability of aerosol particles and their subsequent impacts on clouds. In 

other words, when clouds are exposed to higher concentrations of aerosol particles, how do the 

clouds respond? One of the first concepts towards answering this question was developed by 

Twomey (1974, 1977), who suggested that when holding liquid water content fixed, clouds that 

are exposed to higher number concentrations of CCN have higher number concentrations of 

smaller cloud droplets, which increases the brightness or albedo of the cloud. Albrecht (1989) 

took this concept even further by proposing that these clouds, which were exposed to high 

concentrations of CCN and have higher concentrations of small cloud droplets, are less effective 

at forming precipitation-sized hydrometeors and therefore, have longer lifetimes. Since these 

landmark studies, researchers have been attempting to better quantify these aerosol-cloud 

interactions. One key finding over the past decade is that magnitude and sign of the cloud 

response to increased concentrations of CCN varies depending on the cloud type (e.g., Seifert 

and Beheng 2006b; Khain et al. 2008; van den Heever et al. 2011). In this dissertation, the 

primary focus will be on CCN indirect effects on deep convective clouds. 

 

1.2 Interactions between CCN and deep convective clouds 

 Deep convective clouds are especially important in the Earth system. They produce 

intense precipitation, severe weather and expansive anvil clouds, and thus have far-reaching 
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impacts on both weather and climate. It is therefore imperative to understand how these clouds 

respond to varying CCN concentrations. Deep convective clouds are typically driven by 

buoyancy and pressure gradients and have depths of several kilometers, often reaching the 

tropopause. Because of their depths, these clouds usually traverse the freezing level in the 

atmosphere, invoking both liquid and ice microphysical processes.  

The primary pathway for CCN effects in deep convection is rooted within the updraft, 

where the atmosphere can become supersaturated due to the adiabatic cooling associated with the 

upward vertical motions. Within updrafts, CCN control the number concentrations of cloud 

droplets that form (recall Figure 1.2) and from this initial response, subsequent adjustments to 

the microphysical and dynamical processes ensue. For example, the initial responses within the 

updrafts can result in changes to the precipitation and resulting cold pools (e.g., van den Heever 

et al. 2006; Tao et al. 2007; Marinescu et al. 2017) and changes to the anvils (e.g., Saleeby et al. 

2016), which can both feed back to new cloud development. These feedback processes 

complicate the net impact of CCN on the Earth system.  

 One of the primary concepts in CCN impacts in deep convective updrafts is often termed 

invigoration, whereby higher concentrations of cloud droplets that form in high-CCN conditions 

suppress precipitation processes (e.g., Albrecht 1989) and result in more latent heating within the 

cloud via either condensation, deposition or freezing processes (e.g., Andreae et al. 2004; Khain 

et al. 2005; Wang 2005; van den Heever et al. 2006). This increased latent heating results in 

more buoyant air and stronger vertical velocities within the updrafts, thereby invigorating the 

cloud. While the majority of studies have generally corroborated these initial studies, suggesting 

stronger updraft vertical velocities when increasing the CCN concentrations (e.g., van den 

Heever and Cotton 2007; Li et al. 2008; van den Heever et al. 2011; Fan et al. 2012), others 
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studies have shown negative or no responses in updraft velocities to increased CCN 

concentrations (e.g., Tao et al. 2007; Fan et al. 2009). These varying results have been attributed 

to differences in the environmental conditions in which the clouds form, such as differences in 

the convective available potential energy (CAPE; Lee et al. 2008; Storer and van den Heever, 

2010; Storer et al. 2010), wind shear (e.g., Khain et al. 2008; Lee et al. 2008; Fan et al. 2009; 

Marinescu et al. 2017) and boundary-layer moisture (e.g., Khain et al. 2005; Tao et al. 2007; 

Khain et al. 2008), or to differences in microphysical parameterizations (e.g., Seifert et al. 2006; 

Lebo and Seinfeld, 2011). As can be seen, even for one of the more-established concepts in 

aerosol indirect effects in deep convective clouds, the results are muddled.  

 One underlying problem with understanding aerosol effects in deep convective clouds 

stems from a lack of comprehensive observations within deep convective updrafts. Due to the 

hazardous observing conditions within deep convective updrafts, the last U.S. research, storm-

penetrating aircraft was decommissioned in 2005 (Geerts et al. 2018), and more recent in-situ 

measurements within deep convective updrafts have been scarce. Furthermore, the interpretation 

of observations of aerosol effects in deep convection present additional challenges. It is difficult 

to directly attribute changes in observed cloud features (i.e., updraft strength, cloud top height, 

precipitation) to changes in aerosol concentrations, because aerosol concentrations covary with 

many of the other thermodynamic variables that will also impact those same cloud features (e.g., 

Varble 2018). Modeling studies have led much of the discourse on aerosol-cloud interactions 

within deep convective clouds because they can better circumnavigate observational difficulties, 

particularly in their ability to better account for and assess the cloud’s environment in simulation 

data and to systematically test the sensitivities in their results. In fact, some of the modeling-

based research presented in Chapter 4 of this dissertation assisted in the development of a 
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proposal for a field campaign to provide better observations of aerosol impacts within deep 

convective clouds. TRACER (Tracking Aerosol Convection Interactions Experiment) takes place 

in Houston, Texas from April 2021 through April 2022 and aims to provide a more 

comprehensive observational dataset of convective clouds and their environments, which will 

assist in validating the current theories on aerosol impacts on deep convective clouds (Jensen et 

al. 2019). 

  

1.3 Dissertation outline: motivation and science questions 

 The dissertation is a compilation of three studies that focus on improving the 

understanding of aerosol and deep convective updraft processes and their interactions. Chapters 

2 and 3 present novel observations of aerosol particles and updrafts, respectively, while Chapter 

4 shows the results from a model intercomparison study of aerosol-updraft interactions in deep 

convective clouds. 

In Chapter 21, the following questions are addressed: 1) What are the typical aerosol 

particle size distributions for a rural, North American, continental location? 2) How do these 

typical size distributions vary be season?, and 3) What are the most important temporal cycles in 

aerosol particle concentrations, and do they vary as a function of particle size? The physical and 

chemical processes that govern the variability of aerosol particles determine the types and 

concentrations of aerosol particles that are available to interact with clouds. Furthermore, 

through quantifying the cycles in aerosol particle concentrations, their covariability with 

 
1 This study, titled “Quantifying aerosol size distributions and their temporal variability in the 
Southern Great Plains, USA,” has been published in Atmospheric Chemistry and Physics 

(Marinescu et al. 2019a; © 2019 Copernicus); the pre-typeset and copyedited version appears in 
this dissertation. 
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different cloud types and environmental conditions can be assessed, which will bolster our 

understanding of the potential impacts that aerosol particles have on clouds. What is particularly 

unique about this study is the use of long-term observations (5 years) of size-resolved aerosol 

number concentrations, on which robust statistical analyses were completed. One of the primary 

findings of this study was that the smallest particles (diameters < 30 nm) have clear diurnal 

cycles that peak in the early afternoon hours. Both the timing of these diurnal cycles, which 

varies by season, and their consistent presence throughout the year, suggest that small particles 

may play a larger role in aerosol-cloud interactions than has been previously suggested. For 

longer time scales (days - weeks), aerosol number concentrations have cycles similar to those of 

synoptic weather patterns, which also vary based on the season. Further, statistics on typical 

seasonal aerosol size distributions were provided to assist in future modeling efforts. 

 Due to observing difficulties, in situ observations of vertical velocities within deep 

convective updrafts have been scarce, and most of the recent estimates of vertical velocities in 

deep convection are based on remotely sensed methods or cloud-resolving models, both of which 

have hard-to-characterize uncertainties (e.g., Nelson and Brown 1987; Oue et al. 2019). As part 

of the C3LOUD-Ex field campaign (van den Heever et al. 2020), which took place in Colorado, 

Wyoming and Nebraska in 2016-2017, in situ observations of supercell updraft vertical 

velocities via targeted radiosonde launches were collected. These measurements are presented in 

Chapter 32,. Observations of vertical velocities on the order of 40-50 m s-1 were observed within 

two different supercell case studies. This research suggests that commonly used observations 

 
2 This study, which is co-authored by P. C. Kennedy, M. M. Bell, L. D. Grant, S. W. Freeman, 
A. J. Drager and S. C. van den Heever, is called “Updraft Vertical Velocity Observations and 
Uncertainties in High Plains Supercells Using Radiosondes and Radars” (Marinescu et al. 2020a, 
submitted) and is in review at Monthly Weather Review. 
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based on remote sensing (i.e., dual-Doppler analyses) may not be able to capture the most 

intense, localized vertical motions in storms, that can be captured by in situ measurements. 

Furthermore, this work has shown how the coordination of remotely sensed observations with in 

situ observations can provide the most value in future field campaigns (e.g., TRACER). 

Chapter 43, addresses the interactions between aerosols and updrafts in deep convection. 

These interactions are complex, and different modeling studies have shown conflicting results in 

terms of the impact of increased aerosol particle concentrations within deep convective updrafts, 

as described above. In this study, results from a model intercomparison study are shown, 

whereby data from seven cloud-resolving models from research institutions around the world 

were used to answer the following question: for the same case study of deep convective clouds, 

what is the range of responses in deep convective cloud updrafts to similar changes in CCN 

concentrations within different models? The models generally produce consistent results in the 

warm-phase and mixed-phase regions of the updraft but begin to diverge at the higher levels 

where the ice phase is dominant. The different terms of the vertical velocity tendency equation 

are used to provide insights into the physical mechanisms causing the consistent and inconsistent 

trends amongst the different models. Finally, Chapter 5 provides a summary of the dissertation, 

as well as remarks on future work that directly stems from the research presented here. 

  

 
3 This study titled “The Impacts of Varying Concentrations of Cloud Condensation Nuclei On 
Deep Convective Cloud Updrafts – A Multimodel Assessment” (Marinescu et al. 2020b, in 
prep.) will be submitted to Journal of Geophysical Research: Atmosphere. 
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CHAPTER 2: QUANTIFYING AEROSOL SIZE DISTRIBUTIONS AND THEIR TEMPORAL 

VARIABILITY IN THE SOUTHERN GREAT PLAINS, USA 

 

2.1 Introduction 

Aerosol particles play a number of roles in the Earth-Atmosphere system, including 

impacting warm and cold cloud formation, solar and terrestrial radiation budgets, and human and 

environmental health. These impacts depend strongly on particle size, composition, and 

abundance. Aerosol number and mass concentrations arise from numerous sources and 

processes, including in situ chemical conversion, that shape the resulting chemical compositions 

and size distributions of the particle populations. Long-term observations provide insights to 

these processes by creating datasets that enable robust statistics regarding the typical temporal 

variations in aerosol properties. One such site with long-term aerosol measurements is the United 

States Department of Energy’s Atmospheric Radiation Measurement’s Southern Great Plains 

(SGP) site. Located in north central Oklahoma, the ARM-SGP site (Sisterson et al. 2016) is 

influenced by a variety of aerosol types, sources, and transport pathways (e.g., Peppler et al. 

2000; Sheridan et al. 2001; Andrews et al. 2011), making it an ideal location to study a wide 

range of aerosol processes and to characterize aerosol properties for a typical North American, 

rural, continental site.  

Several studies have utilized the long-term aerosol data at the SGP site to study aerosol 

temporal variability. Sheridan et al. (2001) provided a climatology using 4 years of data of 

aerosol optical properties at SGP, as well as monthly, daily, and hourly statistics of total aerosol 

number concentrations for particles with diameters (Dp) between ~10 nm and 3 μm. They found 

a diurnal cycle in total aerosol number concentrations that reached a minimum between 09 and 
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16 UTC, equivalent to 04 and 11 Central Daylight Time (CDT; CDT = UTC-5), and reached a 

maximum between 19 and 22 UTC (14 and 17 CDT). They also found a weak weekly cycle in 

aerosol number concentrations, with minimum concentrations on Sunday. However, their study 

did not assess the diurnal or weekly variability on a seasonal basis. Most recently, Sherman et al. 

(2015) assessed the temporal variability of aerosol optical properties at 4 different sites in the 

United States, including SGP. They found that aerosol optical properties (e.g., scattering and 

absorption coefficients of aerosol with Dp < 1 μm) had higher amplitude variations associated 

with seasonal time scales than with weekly or diurnal timescales at the individual sites, and that 

the seasonal variations at individual sites were larger than regional variations for the same 

season. Both findings support the need to understand aerosol processes on a seasonal basis. 

Sherman et al. (2015) was a follow-up study to, and generally consistent with, the results of 

Delene and Ogren (2002) and Sheridan et al. (2001), with all three studies focusing on aerosol 

optical properties at the SGP site. These studies demonstrated weak diurnal and weekly cycles of 

aerosol scattering and absorption that were significant depending on the season, with absorption 

having a stronger signal. Parworth et al. (2015) also provided some evidence of diurnal cycles in 

aerosol properties at the SGP site using 18 months of speciated aerosol mass concentration data 

(Dp between 100 nm and 1 μm). Jefferson et al. (2017) related some of the results from these 

prior studies to the seasonal variability in aerosol scattering coefficient hygroscopic growth with 

7 years of SGP data. 

None of these prior studies of long-term variability in aerosol properties at the SGP site 

exploited the multiyear datasets of number size distributions available for the site, which allow 

for specific size ranges of aerosol particles to be studied. Number size distributions have been 

used to understand a variety of aerosol processes, such as new particle formation and growth 
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(e.g., Dal Maso et al. 2005; Hallar et al. 2011; Pierce et al. 2014; Yu et al. 2015; Niemenen et al. 

2018) and cloud processing of aerosol size distributions (e.g., Weingartner et al. 1999), at long-

term aerosol observing sites around the world. Here, we present and analyze 5 years of aerosol 

number size distribution data (Dp between 7 nm and 14 μm) from the SGP site. Specifically, we 

develop descriptions of annually and seasonally averaged sub- and super-micron size 

distributions and quantify their variability. Such descriptions are useful for validating aerosol 

models on a variety of scales, and for selecting aerosol properties representative of the SGP site 

and the region. Representative aerosol size distributions at SGP are especially important for 

guiding the characteristics, location, and life cycle of aerosol particles in numerical modeling 

studies that try to represent the impacts of aerosol particles on the Earth system (e.g., Fridlind et 

al. 2017; Marinescu et al. 2017; Saleeby et al. 2016). Further, the long-term time series contain 

information on temporal cycles that can lead to insights into the aerosol sources and processes at 

SGP. In this work, we apply power spectral analysis to the time series of aerosol size 

distributions to determine the presence of significant temporal cycles in the aerosol data.  

 

2.2 Data 

The data presented here were collected at the SGP central facility (lat = 36.605, lon = -

97.485), representing a typical North American, rural, continental site. This site has many 

atmospheric science observations platforms, all located within an approximately 1 km2 area 

(Sisterson et al. 2016). This site is located within a large agricultural region in the central United 

States, which grows a variety of crops such as winter wheat, soybeans, cotton, corn and alfalfa 

and has open pasture land (USDA-NASS Oklahoma Field Office). Therefore, agricultural 

aerosol sources frequently impact the aerosol conditions observed at the SGP site. There are a 
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few local power plants (e.g., a coal-fired power plant in Red Rock, Oklahoma, 30 km to the 

southeast) and oil refineries (e.g., near Ponca City, Oklahoma, 35 km to the east), and Oklahoma 

City is approximately 130 km to the south. Besides local sources, the SGP site often encounters 

large concentrations of aerosol particles via long-range transport. High concentrations of aerosol 

particles associated with biomass burning in Central America and Mexico have been well 

documented in the spring and summer months (e.g., Peppler et al. 2000; Sheridan et al. 2001), 

although localized agricultural burning is also present (e.g., Parworth et al. 2015). Dust aerosol 

particles from both local sources and long-range transport have been observed at the SGP, as 

well (e.g., Andrews et al. 2011). 

A scanning mobility particle sizer (SMPS), which was part of the tandem differential 

mobility analyzer system (TDMA), measured particle size distributions between approximately 

12 and 750 nm (Collins 2010) during the 2009-2013 period at the SGP site. The size 

distributions were typically measured in 42-49-minute time intervals, which was longer than 

typical SMPS measurements due to simultaneous operation of the instrument as a TDMA to 

measure aerosol hygroscopicity. In this study, the data were binned into 2-hour intervals to create 

a more robust and evenly spaced dataset for analysis. For most of this time period, observations 

from an aerodynamic particle sizer (APS; TSI model 3321) were combined with the SMPS data 

to construct a number size distribution from ~12 nm to ~14 μm with 215 size bins (SMPS+APS; 

ARM Climate Research Facility, 2010, 2015). An assumed particle density of 2 g cm-3 was used 

to convert the aerodynamic diameter measured by the APS to mobility diameter prior to merging 

the two size distributions. A condensation particle counter (CPC; TSI model 3010; ARM Climate 

Research Facility, 2007, 2011), which has a ~10% detection efficiency for particles of 7 nm 

diameter (Mertes et al. 1995), was connected to the same inlet as the SMPS+APS. The CPC data 
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were used to augment the size distribution data at the smallest particle sizes, as described in the 

Appendix, to result in number concentrations for Dp ranging from 7 nm to ~14 μm. The details of 

the ARM data streams used, the multiple quality control tests performed, the size distribution 

adjustments made that incorporated the CPC data, and a validation of these adjustments are also 

included in the Appendix, and the final data product is archived (Marinescu et al. 2019). Of the 5 

years of archive data that were processed, over 3 years of data (15,202 2-hour samples) passed 

our quality control process and were used in the subsequent analyses. The resulting dataset that 

was utilized in this study is shown in Figure 2.1. Gaps in the data timeline represent time periods 

with unavailable data or data that did not pass quality control tests. The largest gap in the data 

(October 2010 through April 2011) was due to an internal leak in the CPC that was documented 

in the ARM dataset. While the SMPS+APS data were available during this period, the CPC 

adjustments could not be made and therefore, these data were excluded from this study. 

 

2.3 Seasonal variations in aerosol concentrations 

Several previous studies have found seasonal differences in aerosol properties at the SGP 

site (e.g., Andrews et al. 2011; Parworth et al. 2015; Sherman et al. 2015), and we therefore used 

the same season definitions (MAM, JJA, SON, DJF) as these prior studies in order to facilitate 

comparisons. Throughout this manuscript, the terms MAM, JJA, SON, and DJF can be used 

interchangeably with spring, summer, autumn and winter, respectively. The 25th, 50th, and 75th 

percentile aerosol number (N) size distributions were computed for each season as well as for the 

entire 5-year period (ALL) and are shown in Figure 2.2a; these number distributions were 

converted to surface area (S) and volume (V) size distributions as shown in Figure 2.2b and c. 

While similarities are evident in the seasonal size distributions’ shapes and modes, several 
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differences between the seasons can be seen in Figure 2.2. JJA had a higher fractional 

contribution of particles with diameters larger than 50 nm as compared to the other seasons, 

which led to higher total surface area and volume concentrations in JJA. MAM and SON more 

Figure 2.1 Time series of the final aerosol dataset used in this study following the quality 
control and the aerosol number size distribution adjustments, as described in Appendix 1. Each 
row represents one year from 2009 through 2013. The shading represents the value of the 
number size distribution, dN dlnDp

-1, as a function of diameter (left axis), and the black dots 
represent the total integrated number concentrations (NT, right axis). 
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frequently had larger concentrations of the smallest particles (Dp< 20nm), while DJF often had 

very few small particles. Four lognormal distribution modes were found to best fit the median 

size distributions (Fig 2.3), where the lognormal distribution was defined as: 

Figure 2.2. Aerosol size distributions for the entire time period and by season. (a) represents the 
number size distributions (# cm-3), (b) represents the surface area size distributions (µm2 cm-3), 
and (c) represents the volume size distributions (µm3 cm-3). The solid colored lines depict the 
median values, and the dotted lines depict the 25th and 75th percentiles. (d) represents the 
percentage difference in the median size distributions for each season with respect to the entire 
period (ALL). The vertical grey lines demarcate the four separate regions of the size distribution 
that were used for further analyses in this study. 
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where N0 is a total number concentration within the mode (# cm-3), ,3 is the geometric 

standard deviation, and '4 is the median diameter (μm). One lognormal mode, as opposed to 

two, was chosen to fit the coarse mode because the decrease in concentrations around 3 μm was 

a data artifact, which is believed to have been caused by inaccurate size bin boundaries 

determined from the initial instrument calibration. The fitting was completed such that the mode 

parameters (Table 1) were converted between the number, surface area, and volume size 

distributions, and the integrated number and surface area were within 1% of the observed median 

values. The integrated volume values from the fitted distributions were ~2-4% higher than the 

median distributions values due to the aforementioned data artifact. The parameters for the 

number size distributions are shown in Table 2.1. The persistent but highly variable presence of a 

sub-30 nm mode, not completely resolved by the instrumentation at SGP, was likely associated 

Figure 2.3. Median distributions from each season (black) fitted with 4 lognormal distributions 
(modes). The columns (left to right) represent the time periods ALL, MAM, JJA, SON, and DJF, 
respectively. The rows (top to bottom) represent the number, surface area, and volume size 
distributions, respectively. The vertical grey lines demarcate the four separate regions of the size 
distribution that were used for further analyses in this study 



 
 

18 
 

with the growth of newly formed aerosol particles into the size ranges that were observed by the 

instrument suite used here. The next two modes approximate Aitken and accumulation modes 

with lognormal number distribution median diameters of 50-65 nm and 150-175 nm, 

respectively. Finally, one coarse mode represents the supermicron aerosol particles. It is 

important to note that the location and steepness of the drop-off in the largest aerosol mode may 

be related to the upper limit of the APS, as well as the decrease in inlet transmission efficiency 

Table 2.1. Parameters for each mode of the fitted lognormal distributions for the number size 
distributions shown in Figure 3. N0 represents the amplitude of the lognormal distribution and 
the total number concentration within the mode (# cm-3), Dm represents the median diameter 
(µm), and sg represents the geometric standard deviation, all as denoted in Equation 2.1 in the 
text. 
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for the largest particles, which was not corrected for in this dataset. The resulting 4 regions of the 

aerosol size distribution are demarcated by the vertical grey lines in Figure 2.2 and Figure 2.3 

and represent particles with Dp between 7 and 30 nm, 30 and 140 nm, 140 and 800 nm, and 800 

nm and 14 μm. The integrated number concentrations within these 4 size ranges (N7-30nm, N30-

140nm, N140-800nm, and N800nm+) are used for further analyses in this study. While the focus of this 

study is primarily on number concentrations, we have performed the same analyses for the same 

aerosol modes for integrated surface area and volume concentrations. Generally, the results were 

consistent amongst the integrated number, surface area, and volume distributions. These analyses 

are included in the supplement for completeness.  

To better quantify the variability within a season as well as the differences between 

seasons, Figure 2.4 shows the distributions of total measured aerosol number concentrations of 

particles between 7 nm and 14 μm (NT) for the entire period (ALL) and for each season, as well 

as the integrated number concentrations for each of the 4 size ranges. To estimate the statistical 

significance of the differences between the seasonal distributions, a simple bootstrapping 

technique was used. For each season, the effective sample size was estimated using lag-1 

autocorrelations (Leith 1973; Wilks, 2011) since the 2-hour samples were not independent. This 

typically reduced the sample size by a factor of 0.04-0.29, depending on the lag-1 autocorrelation 

of each integrated variable in each season. 10,000 random samples of a size equal to the effective 

sample size for each season were drawn, with replacement, from the ALL distribution. For each 

of the 10,000 random samples, the mean, median, interquartile range (IQR), and the 5% and 95% 

percentile range (R595) were calculated, resulting in a distribution of these summary statistics 

for the 10,000 ALL random samples. Then, the mean, median, IQR and R595 were computed for 

each season’s data and were compared to the distribution of the same statistic for the 10,000 
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ALL random samples. For example, the DJF mean concentration for NT (5195 cm-3) was equal to 

the 1st percentile of the 10,000 ALL random sample means (grey diamond in the top row of Fig. 

2.4f). In other words, when 10,000 random samples of the ALL NT data were taken with the 

effective sample size of the DJF NT data, only 1% of those 10,000 samples had means smaller 

than the DJF mean, suggesting the DJF mean value is significantly different from (in this case 

significantly less than) the ALL mean value. The same process was completed for the median, 

IQR, and R595 statistics for each season. Bolded distribution characteristics in Figure 2.4a-e 

represent instances where that key statistic was less than the 5th percentile or greater than the 95th 

Figure 2.4. Distributions of integrated number concentrations for the entire size distribution (a) 
and for the 4 size ranges (b-e, N7-30nm, N30-140nm, N140-800nm, and N800nm+), shown as box-plot 
diagrams. Data are shown for the entire time period (ALL) and by season. The boxes represent 
the interquartile ranges separated into two boxes by the median values, the diamonds represent 
the mean values, and the lines extending from the boxes represent the 5th and 95th percentiles. 
Bolded lines and solid symbols in panels (a) through (e) represent differences between the 
seasonal and ALL variables that are statistically significant at the 95% level, as described in the 
text and shown in panel (f). The vertical grey lines in (f) are the 5th and 95th percentiles. 
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percentile of the distribution of random samples from the ALL data (Fig. 2.4f), suggesting 

significantly lower and higher values than the ALL data, respectively. It is important to note that 

these are arbitrary levels of significance, and Figure 2.4f shows the entire range of percentile 

values for each distribution statistic for all the integrated number variables. We have also 

included the same analysis for surface area and volume distributions in the Supplement. 

In terms of total aerosol number concentrations (NT, Figure 2.4a), the DJF mean (5195 

cm-3) and median (3808 cm-3) concentrations were significantly lower than ALL, while the 

median SON value (4572 cm-3) was significantly higher than the other time periods. MAM was 

the most variable season, with a significantly different IQR and R595, while JJA was 

significantly less variable than the other time periods, with a lower IQR and R595. For example, 

the R595s were 14286 cm-3, 16889 cm-3, 11957 cm-3, 14072 cm-3, and 13772 cm-3 for ALL, 

MAM, JJA, SON, and DJF, respectively. These R595 results are consistent with the results of 

Sheridan et al. (2001), particularly their Figure 5, which showed the largest breadth of number 

concentrations in the spring months and smallest breadth in the summer months. These results 

suggest the importance of seasonal synoptic scale weather variability with respect to NT 

variability. For example, Andrews et al. (2011) used back trajectories to determine the transport 

pathways of aerosol to the SGP site, and in the MAM, SON and DJF periods, there were high 

frequencies of pathways coming both from the northwest and from the south or southeast, while 

in JJA the pathways were primarily from the same direction (southerly), resulting in lower 

variability in observed aerosol properties. Furthermore, several studies have documented 

episodically high concentrations of aerosol particles at SGP in MAM from both local agricultural 

/ wildfire sources and from the transport of biomass burning aerosol into this region from various 

parts of North America (e.g., Peppler et al. 2000; Wang et al. 2009). 
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For N7-30nm, the MAM mean value (3512 cm-3) was the largest of all seasons, while the 

SON median value (1669 cm-3) was the largest, demonstrating the MAM had the most extreme 

high concentrations of particles within this smallest size mode, while high concentrations were 

more frequent during SON. JJA had a significantly lower mean (2639 cm-3) value for total 

concentrations within this mode, as well as significantly lower variability in terms of lower IQR 

(2196 cm-3) and R595 (10315 cm-3), as compared to the other time periods, which may have been 

a result of a consistent coagulation sink due to the higher concentrations of larger aerosol (Fig. 

2.2). DJF had the highest frequency of low concentrations, which lowered the median 

concentration (1080 cm-3). This smallest size mode was also associated with the highest 

variability of all the aerosol modes (in terms of absolute values) as seen by the breadth of the 

R595 (spanning several orders of magnitude). This large variability was likely caused by the 

frequent bursts of high concentrations associated with new particle formation and the growth of 

these newly formed particles into the size ranges observed in this study, although uncertainties 

associated with the observations of particles within this smallest mode may have also contributed 

to this variability, as discussed in Appendix 1.  

For N30-140nm, a shift in seasonal trends occurred. JJA, which had significantly lower 

concentrations than ALL for N7-30nm, had a significantly larger mean (2315 cm-3) and median 

(2037 cm-3) concentration, which could be related to enhanced precursor concentrations in the 

summer months (e.g., Parworth et al. 2015). A similar reversal of trends occurred for MAM, 

which had a significantly lower mean (1959 cm-3) and median (1523 cm-3) concentration for N30-

140nm as compared to ALL. As was the case for N7-30nm, JJA was the least variable season for N30-

140nm. The seasonal trends for N140-800nm were similar to N30-140nm, albeit with smaller differences 

between the seasons.  
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There was large seasonal variability associated with concentrations of the largest particles 

(N800nm+). JJA had a significantly higher mean (1.53 cm-3) and median (0.85 cm-3) concentration 

and had significantly higher variability (R595 of 5.32 cm-3), as compared to the other seasons. 

On the other hand, SON had a significantly lower mean (0.69 cm-3) and median (0.44 cm-3) 

concentration and significantly lower variability (R595 of 1.79 cm-3), as compared to ALL. 

MAM also had significantly lower variability (R595 of 2.07 cm-3). Interestingly, while DJF had a 

significantly low median concentration (0.50 cm-3) as compared to ALL, its mean concentration 

(1.27 cm-3) was larger than the ALL data mean (1.06 cm-3), due to the presence of a few time 

periods with very high concentrations within this mode. These N800nm+ results are generally 

consistent with prior studies (Sheridan et al. 2001; Andrews et al. 2011), which have attributed 

the seasonal presence of coarse mode aerosol particles to dust, both from local sources and 

transported into the region. 

 

2.4 Sub-seasonal cycles within aerosol number concentrations  

a. Methods 

While the prior section was focused on seasonal differences in the aerosol size 

distribution, the focus of this section is the investigation of the sub-seasonal variability on time 

scales from several hours to several weeks using power spectral analysis. Power spectral analysis 

is a computational tool that fits a range of harmonic functions of varying frequencies to a data 

series using Fourier sums, and then calculates the amount of total variance in a data series that 

can be explained by each harmonic function, each associated with a specific frequency and 

period. The amount of variance explained by each frequency is often termed the power spectrum. 

The length and resolution of the data series on which the power spectral analysis is computed 
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determines the frequencies of cycles within the dataset that can be resolved and tested. The cycle 

periods (T) and frequencies (f) that are resolved in such analyses are given by: 

- = 5
6
= 7

8
	 , /ℎ+1+	2 = 1,… , 7

0
       (2.2) 

where 5 is the length of the data series.  

The aerosol number concentration data were separated into the 4 seasons as was done in 

Section 2.3. Then, the data were further partitioned into years to ensure a continuous time series, 

a requirement for spectral analysis. This partitioning resulted in the following 21 data subsets JF-

2009, MAM-2009, JJA-2009, SON-2009, DJF-2010, …, SON-2013, D-2014. The DJF seasons 

included the December month of the prior year to create the continuous time period. For each of 

these 21 subsets, anomalies were first recalculated as differences from the subset mean and the 

anomalous data were then separated into smaller data chunks (7 days and 28 days in this study) 

for spectral analysis. Two choices for the length of the data series (M) were used in order to 

study different temporal scales. The resulting power spectra were averaged together by season 

for all the years and tested for significance. Separating each of the 21 seasonal subsets into 

smaller data chunks and averaging the resulting power spectra together increased the robustness 

of the analysis. Because of the difficulties in fitting harmonic functions at the edges of finite 

data, a Hanning window was applied to smooth the data. However, it should be noted that using 

such a smoothing method also limited the smallest frequency (largest period) that could be 

accurately detected. In order to account for this smoothing and to incorporate all the data, a 50% 

overlap window was also applied to the data. 

To determine the statistical significance of the averaged power spectra, red noise spectra 

were estimated from the data. For each length M data chunk without any missing values, the lag-



 
 

25 
 

1 autocorrelation (rlag1) was determined. The red noise power spectra were then computed for 

each data chunk using the following formula from Gilman et al. (1963): 

1+6	789:+(;, 1) = 52901#2
.

520901#2:;<(016)=901#2
.      (2.3) 

These red noise power spectra were averaged together for each season. The 99% 

confidence level was calculated using the F-distribution, with the test statistic being the ratio of 

variances (i.e., power) of the actual data to that of red noise at the same frequencies. The degrees 

of freedom used for calculating the 99% confidence level were based on the number of 

individual power spectra that were averaged together multiplied by 2.8 (Welch 1967) for the 

actual data spectra and 1000 for the red noise spectra. Choosing a relatively large value (1000) 

for the red noise degrees of freedom demonstrates confidence in our red noise spectrum 

formulation. However, other values (100, 500) were tested and resulted in no qualitative changes 

to the results presented herein.  

 

b.  Hourly-to-daily cycles of aerosol number concentrations 

To determine the hourly-to-daily power spectra, the data series were binned and averaged 

over 2-hour intervals, with a length of the data series (M) of 7 days, thus resolving 4-hour to 3.5-

day cycles in the data. Missing data for up to 6 hours were interpolated linearly from surrounding 

values. The resulting power spectra for total aerosol concentrations (NT), for the entire period 

and by season, are shown in Figure 2.5. The strongest cycle in this aerosol dataset was the 24-

hour or diurnal cycle. This was present in the average power spectrum for each season and for 

the entire dataset and always exceeded the 99% significance level as compared to red noise. In 

other words, we can state with very high confidence that the diurnal cycle in these data did not 

arise from random fluctuations as represented by a red noise time series. 48%, 37%, 42%, and 
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42% of the total number of weekly data chunks had power associated with the diurnal cycle 

greater than that of red noise for MAM, JJA, SON, and DJF, respectively. Therefore, while 

MAM had slightly more frequent diurnal cycles in NT, this diurnal cycle was a year-round 

Figure 2.5. Normalized power spectra for NT for the entire period (a) and by season (b-e). The 
dots represent power associated with the data. The dashed lines represent an estimate of the red 
noise power spectrum for each data set, and the solid lines represent the 99% significance 
testing level, as described in the text. The values in the parentheses are the number of weekly 
data chunks used in this analysis. 
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phenomenon at the SGP site. All seasons, except JJA, also exhibited a 12-hour cycle in NT at 

99% confidence. We will first focus on the 24-hour cycle and then examine the 12-hour cycle in 

the following sections. 

 

i. 24-hour (diurnal) cycle of aerosol particles 

The subset of weekly data chunks that had power associated with the diurnal cycle 

greater than that of red noise was used to calculate the timing of the maximum and minimum 

aerosol concentrations associated with the diurnal cycle. Although the focus here will be on the 

timing of the maximum concentrations, the timing of minimum concentrations can be calculated 

by shifting the maximum concentration timing by half of the period of interest (i.e., for the 

diurnal cycle, a 12-hour shift between maximum and minimum concentrations). Figure 2.6 

Figure 2.6. Normalized frequency of the daily time of peak concentrations associated with the 
24-hour cycle in NT. This figure only includes weekly data chunks that had normalized power 
associated with the 24-hour cycle greater than that of the corresponding seasonal estimate of the 
red noise spectrum power. The numbers in parentheses represent the number of weekly data 
chunks that met this criterion. 
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shows the normalized frequency of the maximum aerosol concentrations associated with the 

diurnal cycle as a function of time. The maximum aerosol number concentrations associated with 

the diurnal cycle primarily occurred between 18 and 02 UTC (13 and 21 CDT). While the timing 

of the diurnal cycle peak was generally in the local afternoon and evening hours for all seasons, 

the exact timing shifted between the seasons. The peak in the JJA diurnal cycle occurred several 

hours earlier (peak concentrations around 18-22 UTC or 13-17 CDT) than the peak in the annual 

average (20-22 UTC or 15-17 CDT), and the peak for DJF was shifted towards the later hours 

(peak concentrations from 20-02 UTC or 15-21 CDT) relative to the annual average.  

To better understand the aerosol processes related to this diurnal cycle in NT and to test 

whether there were size-dependent cycles, power spectra for the integrated aerosol number 

concentrations for each of the 4 modes of the aerosol size distribution (N7-30nm, N30-140nm, N140-

800nm, and N800nm+) were computed and are shown in Figure 2.7. There were statistically 

significant diurnal cycles for all seasons for N7-30nm and N140-800nm. For N30-140nm, JJA had the 

strongest diurnal cycle, although the diurnal cycles for N30-140nm were relatively weaker, as 

compared to red noise, than those for N7-30nm and N140-800nm. For the largest particles (N800nm+), 

there was no consistent diurnal cycle above that of red noise, although there was some enhanced 

power in JJA. These results were generally consistent for the integrated surface area and volume 

concentrations unless otherwise noted. 

As was done for the total integrated number concentration for the entire size distribution, 

NT, the timing of peak concentrations associated with the diurnal cycle was calculated for each 

of the 4 aerosol size ranges (Figure 2.8). Because small particles often accounted for the majority 

of the total number concentrations, N7-30nm was the primary driver of the diurnal signal in the 

total aerosol number concentrations (NT, Figure 2.5). This was further corroborated by the fact 
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that the timing of the diurnal cycle peak concentrations for N7-30nm occurred at approximately the 

same times as that for NT (compare Figure 2.8a with Figure 2.6). Aerosol particles in this 

smallest size range are typically presumed to have originated in new particle formation (NPF) 

events, followed by growth of those newly formed particles to sizes that can be detected by the 

instruments used in this study. Niemenen et al. (2018) assessed NPF at many sites around the 

world, including SGP, and found that the presence and growth of these small particles most 

frequently occurred in MAM (25% of the time) at SGP, but were much less frequent in the other 

seasons (10% in SON, 8% in DJF, and 4% in JJA). While our results corroborate the high 

concentrations of small particles in MAM, they also indicated consistent diurnal cycles of N7-30nm 

Figure 2.7. Normalized power spectra for N7-30nm, N30-140nm, N140-800nm, and N800nm+ for the entire 
period and by season. The descriptions of the symbols used are the same as in Figure 2.5. 
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throughout the year. 55%, 46%, 56%, and 48% of the weekly N7-30nm data chunks had 24-hour 

cycles with power above that of red noise for MAM, JJA, SON, and DJF, respectively. Reasons 

for differences between this study and Niemenen et al. (2018) are likely related to the 

Figure 2.8. Normalized frequency of the daily time of peak concentrations associated with the 
24-hour cycle in the different modes of the aerosol number size distribution. (a-d) represent N7-

30nm, N30-140nm, N140-800nm, and N800nm+, respectively. The description of the figure is the same as 
in Figure 2.6. 
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incorporation of the CPC data and the adjustments made to the aerosol size distribution at these 

smaller sizes in this study (see Appendix 1), but are also related to the metric used to assess the 

presence of these small particles.  

The broadly consistent timing of the diurnal cycle in N7-30nm throughout the year (local 

afternoon/evening) may suggest similar formation, growth, and/or transport mechanisms for 

aerosol with Dp between 7 and 30 nm. The several-hour seasonal shift in the timing of the peak 

concentrations between seasons may also help to elucidate some of the processes leading to 

observations of elevated N7-30nm at the SGP surface site. At SGP, the height of the atmospheric 

boundary layer reaches a specified altitude earlier in JJA and later in DJF, with MAM and SON 

falling in between (Liu and Liang, 2010; Delle Monache et al. 2004), which is consistent with 

the seasonal shift in the timing of the N7-30nm diurnal cycle. If the source region of these small 

particles were above the surface, then this shift in N7-30nm timing could also be impacted by the 

rate of vertical mixing and transport in the boundary layer in the different seasons. Chen et al. 

(2018) found that it took ~0.5-1.0 hour to vertically mix small aerosol particles from ~400 m 

above the ground to the surface during a new particle formation event on 12 May 2013 that 

occurred in an unstable atmosphere (lapse rate of 0.9-1.2oC per 100m up to 400m AGL). This 

vertical mixing of aerosol from heights above the surface to the surface would take longer in 

boundary layers that are more statically stable, such as those typical in winter, and hence may 

also help to explain the seasonal shift in the timing of the N7-30nm diurnal cycle. 

To assess the boundary layer evolution for the 5 years that are focused on in this study, 

boundary layer heights, estimated from radiosonde data, were examined (ARM Climate 

Research Facility, 2001). During 2009-2013, radiosondes were typically launched 4 times a day, 

at approximately 5:30, 11:30, 17:30, and 23:30 UTC. Boundary layer heights were estimated 
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using the bulk Richardson number and a threshold of 0.25 (Siebert et al. 2000); however, 

additional boundary layer height estimates (Sivaraman et al. 2013) were also tested and resulted 

in qualitatively similar statistics. The data were then filtered to only include the weekly data 

when the power associated with the N7-30nm diurnal cycle was within the top 25% of the data 

(high diurnal power, circles in Figure 2.9) and weekly data when the power associated with the 

N7-30nm diurnal cycle was within the bottom 25% of the data (low diurnal power, diamonds in 

Figure 2.9). Generally, the boundary layer at SGP reaches its maximum height between 20:00 

and 23:00 UTC (15:00 and 18:00 CDT; Delle Monache et al. 2004; Liu and Liang, 2010), and 

therefore, was not resolved in this dataset. However, these data do demonstrate that weekly 

Figure 2.9. Diurnal cycle of boundary layer heights at SGP for each season, as estimated from 
radiosonde data. The circles represent the median boundary layer height for the top 25% of the 
weekly data in terms of power associated with the diurnal cycle in N7-30nm (High Power). 
Similarly, the diamonds represent the median boundary layer height for the bottom 25% of the 
weekly data (Low Power). The horizontal lines above and below the circles and diamonds 
represent the 25th and 75th percentiles (interquartile ranges) for these data. The numbers in 
parentheses represent the number of weekly time periods used in this analysis. The abscissa 
offset for each radiosonde launch time is for viewing purposes and does not reflect any shift in 
timing for each of the 4 radiosonde launch times for the different seasons. 
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periods with more consistent diurnal cycles in N7-30nm were associated with deeper boundary 

layers that extended into the late afternoon and evening hours, as can be seen by the higher 

median heights at 23:30 UTC for all seasons. This suggests that boundary layer development 

may play an important role in the N7-30nm diurnal cycle. However, the significant overlap in the 

boundary layer height interquartile ranges between weekly periods with strong and weak diurnal 

power also suggests that there are other significant factors, such as synoptic weather events and 

aerosol sources, that will impact the occurrence of consistent diurnal cycles in N7-30nm. Both the 

evolution of the boundary layer at SGP and the shift in timing of the diurnal cycle of N7-30nm 

found in this present study corroborates earlier work that suggested nucleation of new particles 

sometimes occurs in the free troposphere or residual layer and is observed at the surface when 

mixing processes transport these aerosol to the surface (e.g., Weingartner et al. 1999; Hallar et al. 

2011; Chen et al. 2018). The seasonal shift in the timing of the N7-30nm diurnal cycle may also be 

related to the seasonal shifts in insolation, including both the variation in sunrise times and 

intensity, and the resulting impacts on photochemical processes leading to the formation and 

growth of small aerosol particles (e.g., O’Dowd et al. 1999).  

For N30-140nm, there was a weaker diurnal signal in all seasons (Figure 2.7f-j). The timing 

of the peak concentrations often occurred in the night and early morning hours, several hours 

after the peak in concentrations of N7-30nm. This signal could be representative of the growth of 

the N7-30nm aerosol mode to larger sizes. It is important to note that timing of peak concentrations 

of the diurnal cycle associated with these particles was more variable (Figure 2.8b) than for N7-

30nm, with peak concentrations occurring at almost all times of the day. Therefore, the timing of 

and processes associated with the diurnal cycle for N30-140nm were much less consistent 
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throughout this dataset and could be related to a wide range of aerosol, radiative, and dynamical 

processes.  

For N140-800nm, a more consistent diurnal cycle was present for all seasons (Figure 2.7k-o). 

The timing of the N140-800nm diurnal cycle was also generally consistent for all the seasons, with 

peak concentrations occurring between 08 and 16 UTC (03 and 11 CDT). These results are 

consistent with those for the integrated volume concentration for this mode (V140-800nm, Figure 

2.10k-o and Figure 2.11c), with volume concentrations providing a better comparison to prior 

studies that focused on optical properties and aerosol mass concentrations. For example, the 

timing of the diurnal cycle in N140-800nm (and V140-800nm) was similar to the reported diurnal cycle 

Figure 2.10. Normalized power spectra for V7-30nm, V30-140nm, V140-800nm, and V800nm+ for the 

entire period and by season. The descriptions of the symbols used are the same as in Figure 2.5. 
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in the light absorption coefficient for Dp < 10 μm (Sheridan et al. 2001) and nitrate and organic 

aerosol mass concentrations for submicron particles from December 2011 through May 2011 

Figure 2.11. Normalized frequency of the daily time of peak concentrations associated with the 
24-hour cycle in the different modes of the aerosol volume size distribution. (a-d) represent V7-

30nm, V30-140nm, V140-800nm, and V800nm+, respectively. The description of the figure is the same as in 
Figure 2.6. 
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(Parworth et al. 2015). To explain this diurnal cycle in particles between 140 and 800 nm, data 

from an Aerosol Chemical Speciation Monitor (ACSM) at the SGP site (Ng et al. 2011) from 

Figure 2.12. Diurnal cycle of aerosol mass concentration anomalies for sulfate, nitrate, 
ammonium, and organic aerosol species (left axis) and total mass concentrations (right axis) 
from the ACSM. The data were separated into seasons (a-d) and only included the weekly 
time periods where the power associated with the 24-hour cycle in integrated volume 
between 140 and 800nm (V140-800nm) was greater than that of red noise. The number of these 
weekly time periods is shown in the parenthesis in the panel titles. 
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August 2011 through December 2013 was used. The data was filtered to only include weekly 

data with power associated with the V140-800nm diurnal cycle that was greater than that of red 

noise. The ACSM measured non-refractory submicron aerosol mass concentrations for several 

species, including nitrate, sulfate, ammonium, and organic aerosol. The timing of peak ACSM 

total mass concentrations (Figure 2.12) aligns with the timing of peak concentrations in V140-

800nm and N140-800nm (Figure 2.11c and Figure 2.8c, respectively). The ACSM data demonstrate 

that the diurnal cycle in V140-800nm was related to nitrate and organic aerosol mass concentrations, 

although their relative contributions to the diurnal cycle varied by season. Organic aerosol had 

much stronger diurnal variations in JJA as compared to nitrate, while nitrate had stronger diurnal 

variations in DJF. Ammonium also had a similarly timed cycle in MAM, SON, and DJF, but 

with much lower anomalous concentrations. These trends represent a variety of aerosol 

processes, including temperature-dependent gas-to-particle partitioning, regional aerosol 

transport, and local emissions, and generally agree with the results of Parworth et al. (2015). 

Focused modeling studies and measurements are needed to further determine the specific and 

most important pathways leading to these diurnal cycles in aerosol concentrations.  

Lastly, while there were no significant diurnal cycles in N800nm+ (Figure 2.7p-t), there 

were significant peaks for the diurnal cycle associated with the integrated volume of particles 

within this size range (V800nm+, Figure 2.10p-t), with the strongest signals in MAM and DJF. The 

timing of peak concentrations associated with the diurnal cycle in V800nm+ was consistent 

amongst seasons and primarily occurred during the local evening hours, between 22-24 UTC 

(17-19 CDT, Figure 2.11d). The fact that this signal was weaker in N800nm+ suggests that the 

diurnal signal was primarily associated with the largest particles within the coarse aerosol mode. 

This result aligns with the results of Andrews et al. (2011), which documented low Ångström 
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exponent values in their spring and winter measurements at SGP, which is often a signal for 

large dust aerosol. Also, surface meteorology data from the SGP site (ARM Climate Research 

Facility 1995) during the same 5-year period demonstrate that surface winds, on average, reach a 

peak between 20 and 24 UTC, with stronger winds occurring in MAM and DJF. Therefore, we 

speculate that the timing of the V800nm+ diurnal cycle was related to the timing of strong wind 

conditions, which can loft large aerosol particles. 

 

ii. 12-hour cycle of aerosol particles 

The strongest cycle with respect to red noise in the NT data was the diurnal cycle (Figure 

2.5). However, there was also a statistically significant 12-hour cycle present in some of these 

data, particularly in MAM and DJF (Figure 2.5b,e). In general, the variability in NT was caused 

by variability in N7-30nm, due to the high concentrations and high variability of particles in this 

size range. The peak concentrations of the 12-hour cycle for all seasons occurred between 04 and 

12 UTC (23 and 07 CDT) and between 16 and 24 UTC (11 and 19 CDT) for both NT and N7-30nm 

Figure 2.13. N7-30nm for the weekly data chunk that had the highest power associated with the 12-
hour cycle (22-29 February 2012). The aerosol data are shown as a concentration anomaly from 
the seasonal mean (black). The anomaly data are broken down into the 12-hour cycle component 
(cyan), the 24-hour cycle component (yellow), and the combination of the 12- and 24-hour 
cycles (green), as computed by the power spectral analysis. 
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(not shown). The similarities between the timing of the peak concentrations of the 12-hour cycles 

for NT and N7-30nm further demonstrate that the variability in N7-30nm is the driving mechanism for 

the variability in NT.  

The latter of the two daily peaks in concentrations associated with the 12-hour cycle 

occurred at approximately the same time as the peak concentrations associated with 24-hour 

cycle (16-02 UTC or 11-21 CDT), suggesting that the 12- and 24-hour cycles are related. To 

explain this relationship between the 12- and 24-hour cycles, Figure 2.13 shows the weekly 

aerosol data (22-29 February 2012) that had the strongest 12-hour cycle, broken down into their 

12- and 24-hour cycle components. The peak concentrations of the 24-hour cycle (yellow) 

clearly aligned with the peak concentrations of the aerosol data (black). However, the minimum 

in aerosol concentrations typically occurred directly before peak N7-30nm, as opposed to the 12-

hour shift that would be associated with a purely diurnal cycle. When including the 12-hour 

cycle (cyan), the combination of the 12- and 24-hour cycles (green) much better represented the 

aerosol time series (black). Therefore, the power associated with the 12-hour cycle manifested 

from the different rates of growth and decay of aerosol number concentrations. The formation of 

N7-30nm occurred at a much faster rate than the loss of N7-30nm. While the 12-hour cycle primarily 

manifested from the sudden increase in number concentrations in this size range, it is important 

to note there were also time periods where a second peak in N7-30nm occurred in the 04-12 UTC 

(23-07 CDT) time frame (e.g., 26-27 Feb 2012 in Figure 2.13).  

 

c. Daily-to-weekly aerosol cycles 

Several prior studies have demonstrated weekly cycles in aerosol total number 

concentrations (Sheridan et al, 2001) and aerosol optical properties (Delene and Ogren, 2002; 
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Sherman et al. 2015) at the SGP site. Spectral analyses aimed at resolving cycles on the order of 

2 days to 14 days required re-partitioning of the data into daily samples and 28-day data chunks. 

In order to achieve a larger number of 28-day continuous samples, the dataset was doubled to 

include the time period between 1 January 2007 and 1 January 2017. However, since the 

SMPS+APS size distribution data were not available during this extended time range, only the 

total aerosol number concentrations from the CPC were used. The CPC data for this extended 

time range were screened in the same manner as was done for the earlier analyses and as 

described in Appendix 1. Figure 2.14 shows the power spectra for the entire period and by 

season for the expanded dataset. For the entire dataset, no cycles significant at the 99% 

confidence interval were found. However, the power spectra for MAM and SON had peaks just 

below this significance level for 7-day cycles, and the SON and DJF power spectra had peaks 

just missing this criterion for cycles lasting ~3.5-5 days. In JJA, there was no clear peak in the 

power spectrum above that of red noise on the time scales of 2-14 days. These results are 

possibly related to the temporal cycles of synoptic conditions and air masses in the southern 

United States. At the SGP site, JJA is typically associated with large-scale ridges and weak 

synoptic flows (Coleman and Rogers, 2007) that would lead to stagnant air masses and no 

consistent cycles on these time scales. Using four years of springtime data, Lanicci and Warner 

(1991) determined that changing synoptic patterns lead to an approximately one week cycle in 

elevated mixed layers in the southern United States, and therefore, this periodicity in synoptic 

patterns could help explain the weak weekly cycle in MAM. These results are also consistent 

with the higher intraseasonal variability observed in MAM, SON, and DJF for NT (Figure 2.2). 

Other studies have corroborated our hypothesis about the importance of synoptic scale variability 

on aerosol concentrations at SGP. For example, Power et al. (2006) demonstrated significant 
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differences in aerosol optical depth based on the classified air mass present at many locations 

across the United States, including at SGP. 

 

Figure 2.14. Normalized power spectra for 2-14 day cycles for the total aerosol number 
concentrations from the CPC for the entire period (a) and by season (b-e). The dots represent 
power associated with the data. The dashed lines represent an estimate of the red noise power 
spectrum for each data set, and the solid lines represent the 99% significance testing level, as 
described in the text. The values in the parentheses are the number of 28-day data chunks used in 
this analysis. 
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2.5 Conclusions 

The focus of this study is on 5-year (2009-2013) measurements from several instruments 

located at the Department of Energy’s Atmospheric Radiation Measurement’s Southern Great 

Plains (SGP) site. These instrument datasets were merged to provide aerosol number size 

distributions for particles with diameters between 7 nm through ~14 μm and were also converted 

to surface area and volume size distributions (Marinescu et al. 2019). This quality-controlled 

dataset was used for two purposes. First, we provided key characteristics of the size distributions, 

including fits for 4 lognormal modes, both for the entire period and on a seasonal basis for the 

SGP site (a North American, rural, continental site). These observational data and analyses may 

be useful for validating models that explicitly represent aerosol processes. Furthermore, the 

characteristic aerosol size distributions presented in this study could also be used in a variety of 

applications, including more realistic representations of aerosol activation, radiation, and ice 

nucleation, especially in models that do not have detailed aerosol processes. Second, we 

quantified the variability in aerosol concentrations, with a focus on number concentrations, for a 

range of time scales from hourly to seasonal. Variability in the total number concentrations, as 

well as the integrated concentrations within specified size ranges that were associated with the 

different aerosol modes, was assessed. 

In terms of seasonal differences, for total aerosol number concentrations (NT), spring 

(MAM) and autumn (SON) had the largest mean concentrations, and winter (DJF) had the lowest 

mean concentrations. Summer (JJA) had the lowest variability in NT, as compared to the other 

seasons, suggesting more consistent background aerosol conditions during the summer months. 

Comparing the integrated number concentrations within the aerosol modes, the variability in 

total number concentrations (NT) was driven by the large variability in the smallest particles (N7-
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30nm), which was likely related both to the presence of new particle formation events and the 

growth of these particles. JJA had the lowest mean concentrations of smallest particles (N7-30nm), 

possibly due to a coagulation sink that was associated with the fact that JJA had the highest mean 

concentrations of larger particles (N30-140nm, N140-800nm, and N800nm+). The distributions of N7-30nm 

and N800nm+ were more different between the seasons, as compared to N30-140nm and N140-800nm. 

Therefore, the formation mechanisms and/or transport pathways of the smallest and largest 

particles have significant seasonal dependencies. 

We used power spectral analyses to determine the presence of key temporal cycles, from 

hourly cycles through weekly cycles, within the aerosol data. A predominant 24-hour (diurnal) 

cycle in each season was observed for NT, driven by concentrations of the smallest particles (N7-

30nm). Peak concentrations associated with this diurnal cycle in N7-30nm and NT generally occurred 

in the afternoon and evening hours, with a slight seasonal shift in the timing that was associated 

with seasonal shifts in boundary layer development and insolation. There was also a consistent 

diurnal cycle in N140-800nm (and V140-800nm), with peak concentrations typically occurring between 

08 and 16 UTC (03 and 11 CDT) in all seasons, consistent with the prior studies that have 

focused on aerosol optical properties and mass concentrations and likely related to nitrate and 

organic aerosol mass concentrations. Because size-resolved measurements were limited to 5 

years, cycles in aerosol number concentrations for longer periods (several-day to several-week 

cycles) were only tested for NT, for which 10 years of observations were used. Although there 

was no cycle that was sufficiently consistent to pass our 99% significance testing, there were 

several temporal scales that exhibited enhanced power, which varied by season and were likely 

related to synoptic scale weather variability at SGP. 
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While this study provided key characteristics of aerosol size distributions at SGP and 

quantified the temporal variability of aerosol number concentrations within varying sizes and on 

a range of scales (hourly-to-seasonal), there are still uncertainties in attributing this variability to 

physical mechanisms, for which more in-depth analyses are required. For example, the recent 

New Particle Formation Study (NPFS) (Smith and McMurray, 2015; NPFS, 2017), which took 

place in April-May 2013 at the SGP site, was focused on understanding the pathways under 

which aerosol particles are formed and grow to larger sizes. Using the NPFS data, Hodshire et al. 

(2018) and Chen et al. (2018) presented several different growth pathways of newly formed 

particles during the 2013 spring period. Our study demonstrates with 5 years of observations that 

new particle formation and growth at SGP occur frequently throughout the year, and therefore, 

new particle formation and the subsequent growth pathways at SGP may be a more significant 

contribution to cloud condensation nuclei than previously appreciated. Classifying specific time 

periods when there are both consistent cycles in the data and hypotheses as to the mechanisms 

involved, as has been done in this study, can provide the temporal map for further detailed 

analyses using the wide range of instruments present at the SGP site or in future field campaigns. 
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CHAPTER 3: UPDRAFT VERTICAL VELOCITY OBSERVATIONS AND 

UNCERTAINTIES IN HIGH PLAINS SUPERCELLS USING RADIOSONDES AND 

RADARS  

 

3.1 Introduction 

 Supercell updrafts contain some of the most intense vertical air velocities (hereafter, wair) 

in the atmosphere (e.g., Musil et al. 1986; Lehmiller et al. 2001; DiGangi et al. 2016). The 

magnitude and vertical structure of wair within supercell updrafts control many atmospheric 

processes, including the production of severe hail (e.g., Browning and Foote 1976; Heymsfield 

and Musil 1982) and the transport of atmospheric constituents from the boundary layer to the 

upper troposphere and stratosphere (e.g., Foote and Fankhauser 1973; Mullendore et al. 2005). 

Due to the strong vertical velocities in supercell updrafts, cloud droplets do not have enough time 

to grow to sizes that can be observed by most radars. Supercell updrafts can therefore be clearly 

identified in radar data as regions with lower reflectivity in the lower and middle tropospheric 

levels, laterally and vertically bounded by higher reflectivity, known initially as vaults and later 

as weak echo regions (WERs; Browning and Ludlam 1962; Chisholm 1970; Marwitz and Berry 

1971). Despite supercell updrafts’ importance for atmospheric processes, they have seldom been 

observed in situ.  

  The first of these infrequent in situ observations of the magnitudes of supercell updraft 

velocities came from armored aircraft penetrations through the WERs (Marwitz and Berry 1971; 

Heymsfield and Musil 1982). These observations were usually made near cloud base and in the 

inflow air ahead of the supercell, were typically taken in the High Plains of the U.S. and Canada, 

and generally resulted in estimates of wair in the 15-30 m s-1 range. One research flight into the 
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WER of a supercell in Montana at ~7 km above mean sea level (AMSL) observed wair as high as 

50 ± 5 m s-1 (Musil et al. 1986). Despite the continued need for in situ observations of deep 

convection, the last U.S. storm-penetrating research aircraft was retired without replacement in 

2005 (Geerts et al. 2018). 

In situ estimates of updraft velocities can also be achieved via releasing sensors or 

trackable objects into supercell updrafts from the storm’s proximity. Chaff packets have been 

released from aircraft at thunderstorms’ cloud bases and tracked with radar to estimate vertical 

velocities within supercells. Results from this approach have generally been consistent with 

those from in situ aircraft penetrations (Marwitz 1972, 1973). Radiosondes have also been used 

throughout the past 50 years, albeit infrequently, to estimate the vertical velocities in supercells 

(Barnes 1970; Davies-Jones 1974; Davies-Jones and Henderson 1975; Bluestein et al. 1988; 

Bluestein et al. 1989; Marshall et al. 1995; Markowski et al. 2018). From these radiosonde 

observations, the greatest reported wair values were 49 m s-1 (Bluestein et al. 1988) and 53 m s-1 

(Markowski et al. 2018), which occurred in Texas and Oklahoma, respectively. 

Due to the challenges associated with in situ observations of updrafts, such as the 

hazardous sampling conditions and the difficulty of placing sensors directly within the updraft 

core, remotely-sensed observations have replaced in situ observations as the primary estimates of 

wair in deep convection in recent decades. The most common method for estimating wair with 

remote sensing utilizes data from multiple Doppler radars to determine the horizontal 

components of the wind, and then invokes the mass continuity equation to calculate the vertical 

component of the wind (e.g., Armijo 1969; Miller 1975; Kropfli and Miller 1976; Gal-Chen 

1978). Multi-Doppler retrievals can provide vertical velocities over a relatively large domain and 

are often conveniently gridded to Cartesian coordinates. However, multi-Doppler estimates also 
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have hard-to-characterize uncertainties due to their sensitivities to analysis specifications, such as 

how the data are filtered or gridded (e.g., Nelson and Brown 1987; Miller and Frederick 1998; 

Collis et al. 2010) or the temporal and spatial resolution of the data (e.g., Bousquet et al. 2008; 

Potvin et al. 2012; Oue et al. 2019). Because of their availability, these remotely-sensed 

observations have often been used to validate case study model simulations of deep convection 

in large field campaigns (Varble et al. 2014; Marinescu et al. 2016; Fan et al. 2017). These 

studies have shown that cloud-resolving models tend to produce stronger vertical velocities than 

their corresponding radar-derived estimates. However, the errors associated with multi-Doppler 

wair are largely case-specific and depend on the radar scanning strategy, the type of convection 

and location of convection with respect to the radars (Oue et al. 2019). Therefore, it is still 

challenging to attribute the differences in updraft magnitudes from radar-based analyses and 

cloud-resolving models. In situ observations can thus assist in providing independent estimates 

of wair.  

In this study, we present GPS-radiosonde-based in situ observations and uncertainties of 

wair within the updraft regions of two supercells. These observations were made during the 

Colorado State University Convective CLouds Outflows and UpDrafts Experiment (C3LOUD-

Ex) during 2016 and 2017 in the High Plains of Colorado, Wyoming, and Nebraska (van den 

Heever et al. 2020). Using the radiosonde data, along with radar observations within the 

C3LOUD-Ex domain, we (1) provide our best in situ estimates of wair within the two supercell 

updrafts, (2) contextualize and compare these observations to other available wair estimates for 

the two cases, and (3) offer insights for future efforts towards obtaining in situ observations 

within supercell updrafts.  
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3.2 C3LOUD-Ex observations 

a. Radiosondes 

 During C3LOUD-Ex, the iMet-1-ABxn radiosonde was used, which included a pressure, 

temperature and humidity sensor, as well as a GPS receiver (InterMet Systems 2016). The 

radiosonde package was attached via a dereeler (30 m length) to a 200-g balloon that was filled 

with enough helium to reduce the helium tank’s gauge pressure by approximately 3447 kPa (500 

psi). For this study, the most essential radiosonde data were from the GPS receiver, which has a 

horizontal position accuracy of 10 m and an altitude accuracy of 15 m. GPS positions were 

received from the radiosonde at a rate of 1 Hz. 

 Using the GPS altitude data, the vertical velocity of the radiosonde was estimated using a 

centered-in-time derivative: 

            /<;%"> = ∆@
∆A

 (3.1) 

where wsonde is the representative vertical velocity of the radiosonde system over the time interval 

∆=, and ∆> is the vertical distance traveled by the radiosonde during ∆=. For this study, ∆= is 

chosen to be 9 seconds, which for 10-60 m s-1 updrafts equates to vertical distances of 90-540 m, 

comparable to current numerical model simulation grid spacings and/or observational grids. The 

error in this wsonde, denoted ?B,<;%">, was calculated using error propagation methods (e.g., 

Palmer 1912). Because the relative error in the GPS time measurement was several orders of 

magnitude smaller than the error in GPS position measurement, ?B,DEF can be simplified to the 

following: 

            ?B,<;%"> = |/<;%">|	A√0G3∆@
B  (3. 2) 

where ?@ is the error in the GPS altitude from the radiosonde (15 m). For a fixed ∆= = 9 s and due 

to the linear relationship between /<;%"> and ∆>, ?B,<;%"> is always ± 2.3 m s-1
.  
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While wsonde was directly observed by the radiosonde, the vertical velocity of the air that 

the radiosonde sampled (wair) was desired. We decompose wsonde into the following components: 

            /<;%"> = /HI9 +/JK;L +/K!"2"9H3 +/K!"2ML"9;  (3.3) 

where wbuoy is the vertical velocity arising from the buoyancy of the radiosonde system (balloon 

and radiosonde) in clear-sky, still-air conditions; wupd-drag is the vertical velocity associated with 

changes to the drag force on the radiosonde system within an updraft as compared to clear, still 

air; and wupd-hydro is the forcing from hydrometeors impacting or accumulating on the radiosonde 

system. In this formulation, we do not consider changes to wsonde due to the pendulum effects of 

the radiosonde, “bobbing” or self-induced motions of the balloon (e.g., Wang et al. 2009; Söder 

et al. 2019), nor the effects related to deviations from terminal velocity balance, because these 

processes occur on time scales smaller than the 9 s interval used in this study, and thus, their 

contributions are small. Ultimately, by observing wsonde, whose uncertainty (?B,<;%">) is known, 

and estimating wbuoy, wupd-drag, wupd-hydro, and their associated uncertainties (?B,JK;L, ?B,K!"2"9H3, 

?B,K!"2ML"9;), an estimate of wair and its uncertainty (?B,HI9) can be determined. 

Implicit in these definitions is that in clear-sky, still-air conditions /HI9, /K!"2"9H3, and 

/K!"2ML"9; are all ~0 m s-1 and hence, wsonde = wbuoy. Therefore, we estimated wbuoy from the 

wsonde measurements obtained from thirteen radiosondes that were launched at the Colorado State 

University Foothills Campus in clear conditions with weak vertical motions throughout the 

troposphere. These radiosondes were launched during synoptic-scale ridges, which provided 

weak subsidence throughout the region. Seven launches took place overnight to minimize the 

influence of boundary layer vertical motions, as well as to eliminate the impacts of solar 

radiation on the balloon, which could affect the buoyancy of the radiosonde system (Farley 

2005). Vertical profiles of wbuoy for the clear-sky, still-air launches are shown in Figure 3.1a. The 
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radiosonde descent rates (red), which occur after the radiosondes’ balloons burst, vary with 

altitude and have a greater spread than the ascent rates (blue), which are approximately constant 

throughout the troposphere and lower stratosphere. Figure 3.1b shows a normalized histogram of 

the ascent rates from the rising radiosondes. The mean upward vertical velocity from these 

experiments is 4.8 m s-1 (wbuoy), with 90% of the data falling within ± 1.1 m s-1, which we define 

here as ?w,buoy. 

 It is unknown whether and how the drag force on the radiosonde system within supercell 

updrafts differs from that in clear air, and we therefore assume that the wupd-drag is 0 m s-1 (i.e., no 

systematic shifts in the radiosonde-based wair due to different drag forces within the updraft). 

Figure 3.1. (a) Mean wbuoy during the clear, still air launches from ascending radiosondes (blue) 
and from descending radiosondes, after the balloons burst (red). Light blue and red lines 
represent 1 standard deviation from the mean. Data are not available for most descending 
radiosondes below 4.5 km AMSL. (b) Normalized histogram counts from all wbuoy from 
ascending radiosondes shown in (a), with the vertical, solid line representing the mean value 
(4.8 m s-1) and dashed lines representing ± 1.1 m s-1 from the mean, between which 90% of the 
data falls. The bin width is 0.2 m s-1. 
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Using the relationship between terminal velocity and the drag coefficient, however, we estimate 

that the uncertainty associated with variable drag forces on the radiosonde system within updraft 

conditions (?w,upd-drag) is ±1.6 m s-1 (See Appendix 2).  

The forcing from hydrometeor impacts (wupd-hydro) will typically be downward and can be 

caused by collisions with or accumulation of condensate mass (e.g., riming) on the radiosonde 

system. Because of the uncertainties in quantifying the presence and magnitude of these 

processes from the data available during C3LOUD-Ex, we did not attempt to estimate wupd-hydro or 

its uncertainty in this study. Therefore, the radiosonde wair is expected to be most accurate in 

scenarios where there is little to no impact from hydrometeors on the radiosonde system (i.e., 

outside of regions with hydrometeors). In such situations, the radiosonde wair has an uncertainty 

(?B,HI9) of ±3.0 m s-1, where ?B,HI9 is the summation in quadrature of ?B,<;%"> (±2.3 m s-1), 

?B,JK;L (±1.1 m s-1), and ?B,K!"2"9H3 (±1.6 m s-1), following error propagation methods. In 

regions with hydrometeors, however, since wupd-hydro is negative for a rising balloon, the 

radiosonde wair represents a lower bound on the actual wair. It is important to note here that these 

estimates also assume that the balloon has not burst. Using the radiosonde accelerations and the 

radar observations (as described in Section 3.4), we estimated the times at which the balloons 

burst and made adjustments for those situations to provide a more realistic estimate of wair.  

 

b. Radars 

Because the radiosondes provided localized measurements within the broad supercell 

updrafts, we used radar data to contextualize the in situ observations. Additionally, the radar data 

provided an independent estimate of wair using dual-Doppler methods. Three radars were 

primarily utilized during C3LOUD-Ex: the CSU-CHILL radar (Brunkow et al. 2000), located in 
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Greeley, CO; the Cheyenne, WY NEXRAD (KCYS); and the Denver, CO NEXRAD (KFTG). 

KCYS is located ~79 km to the north of CSU-CHILL, and CSU-CHILL is located ~74 km to the 

north of KFTG. Plan position indicator (PPI) scans from all radars, as well as additional range 

height indicator (RHI) scans from CSU-CHILL, provided detailed views of the storm structure 

and the relative position of the radiosonde within the storms. During C3LOUD-Ex, the NEXRAD 

radars (KCYS and KFTG) had prescribed volume coverage patterns that each lasted ~5 minutes, 

while the CSU-CHILL radar was manually operated and synchronized with the relevant 

NEXRAD radar during updraft-targeted radiosonde launches. Figure 3.2 shows an example of 

radar elevation angles for the NEXRAD and CSU-CHILL radars for one radar volume for the 

two cases examined in this study.  

Reflectivity, velocity and some dual-polarization data from all three radars were used. 

These radar data were first quality-controlled using the dual-polarization data. Specifically, we 

Figure 3.2. Radar elevation angles for both the CSU-CHILL (a-b) and NEXRAD (c-d) radars 
during dual-Doppler analysis times for the two C3LOUD-Ex cases. Black lines represent the 
center of the beams, while gray shading represents the vertical distance covered by the beams. 
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excluded all radar gates where the standard deviation of the differential propagation phase was 

greater than 21 degrees over a range of 11 gates. We found that this threshold eliminated noise 

and ground clutter, while retaining more data near features of interest (e.g., the WER), which 

were otherwise eliminated when using correlation coefficient as a threshold. The radar velocity 

data were dealiased using the region-based method in the Python-ARM Radar Toolkit (Py-ART; 

Helmus and Collis 2016), and the storm motion for both cases was estimated for each 5-min 

radar volume scan using the Py-ART grid displacement algorithm on the radar reflectivity 

between 3 and 8 km AGL. These estimated storm motions were calculated for each radar volume 

and used for corrections related to storm translation in the dual-Doppler analyses, as well as for 

advecting the radar analyses in time for comparisons with the 1 Hz radiosonde data. Although 

these processing steps were largely automated, all quality-controlled and processed data were 

also manually checked. 

Two analysis programs were then used to synthesize the radial velocity data and produce 

radar-based wair estimates. These programs were the Custom Editing and Display of Reduced 

Information in Cartesian space (CEDRIC; Miller and Frederick 1998) and the Spline Analysis at 

Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI; Bell et al. 2012). While 

these programs both solve the basic radar equations, CEDRIC uses column-by-column vertical 

integration of the mass continuity equation to produce local solutions for each vertical column, 

while SAMURAI uses a 3D-variational approach (Gao et al. 1999) and produces a global 

solution for the entire analysis domain via a cost minimization function. The 3D-variational 

approach has been shown to produce better vertical velocity solutions for a supercell case than 

other methods (Potvin et al. 2012). These analyses were completed on 1-km and 500-m Cartesian 

grids for the 26 May 2017 and 17 July 2016 cases, respectively, due to the relative locations of 
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each storm with respect to the radars as shown in the following section. For the CEDRIC 

analyses shown here, the variational vertical integration method was used, whereby downward 

integration was first completed, residual errors were spread throughout the column in an iterative 

manner and lastly, variationally adjusted integration was applied (e.g., Wvar in Dolan and 

Rutledge 2010). A linear, least-squares two-dimensional filter was also used on the horizontal 

winds in the CEDRIC analyses (Miller and Frederick 1998). Low-pass filters with approximate 

scales of 4-km and 2-km for the 1-km and 500-m Cartesian grids, respectively, were applied in 

the SAMURAI analyses (Ooyama 2002, Purser et al. 2003).  

 

3.3 C3LOUD-Ex cases 

During C3LOUD-Ex, there were 7 cases in which the updrafts of supercell storms were 

successfully sampled with radiosondes (van den Heever et al. 2020). In this study, we focus on 

the two cases that had successful radiosonde sampling of updrafts within the regions where dual-

Doppler estimates of wair could also be made. These occurred on 26 May 2017 and 17 July 2016 

and are briefly described in the following two sections and summarized in Figure 3.3.  

 

a. 26 May 2017 case study 

 At 18:15 UTC, an environmental sounding (Fig. 3.3b) was launched at 39.72 °N, 104.22 

°W and showed 0-6 km shear of 26 m s-1, mixed-layer (0-90 hPa AGL) convective available 

potential energy (MLCAPE) of 491 J kg-1, and surface-based CAPE of 1882 J kg-1.4 By 20:00 

UTC (UTC = local time + 6 hours), terrain-induced scattered convection was moving eastwards 

over the Denver metropolitan region. The destabilized boundary layer and favorable 

 
4 The CAPE calculations in this study are based on Bryan (2008). 



 
 

55 
 

environmental conditions resulted in the development of an isolated supercell by 22:00 UTC, 

located within the dual-Doppler analysis region for the CSU-CHILL and KFTG radars (Fig. 

3.3a). At 21:58 UTC, a radiosonde (2017-1) was launched and sampled the updraft of the 

developing supercell, while 1.5 inch (3.8 cm) diameter hail was reported at the surface nearby 

(NCEI 2017). Around 22:00 UTC, the storm propagation slowed and took a rightward turn 

Figure 3.3. Case evolution and environmental soundings from the 2017 case (top row), and the 
2016 case (bottom row). The white dots represent updraft radiosonde launch locations. The blue 
diamonds are the radar locations, and non-overlapping regions of the black circles indicate where 
dual-Doppler analyses are possible. The color shading shows radar reflectivity at 1 km AGL at 
the approximate time of radiosonde launch. The gray shading represents MLCAPE from the 
21:00 UTC operational simulation of High Resolution Rapid Refresh (HRRR) model for both 
cases; 1000 J kg-1 is contoured in white. The right column shows skew T – log p diagrams of the 
environmental radiosonde launches as described in the text. Hodographs are inlaid and the 
different colors within the hodographs represent 500-m increases in altitude from the surface to 6 
km AGL.  
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towards the east-southeast. Over the next several hours, many instances of hail with diameters of 

1-1.5 inches (2.5-3.8 cm) were reported at the ground along the storm’s path, as were 2 weak 

tornadoes (NCEI 2017). Two additional radiosondes (2017-2 and 2017-3) sampled the supercell 

updraft between 22:00 and 24:00 UTC. This long-lived supercell continued into Kansas, outside 

of the C3LOUD-Ex became part of a mesoscale convective system.  

 

b. 17 July 2016 case study 

 On 17 July 2016 at ~20:30 UTC, convection that had initiated over the high terrain of 

southern Wyoming moved eastward onto the high plains to the northwest of Cheyenne, 

Wyoming, where it quickly organized into a supercell and subsequently turned towards the 

southeast (Fig. 3.3c). Earlier in the day, between 18:00 and 19:00 UTC, three radiosondes were 

launched (at 40.67 °N, 104.33 °W; 41.22 °N, 104.35 °W; and 41.24 °N, 103.70 °W) to better 

capture the environment ahead of this storm. These observations (Fig. 3.3d) indicate MLCAPE 

of ~950-1200 J kg-1 and 0-6 km shear of 21-25 m s-1. This supercell propagated southeastward 

across the C3LOUD-Ex domain, including through the region where dual-Doppler analyses could 

be conducted using the CSU-CHILL and KCYS radars. This storm had more intense radar 

reflectivity than did the 2017 case, and there were several reports of 2.0-inch (5.1-cm) diameter 

hail as well as a few baseball-sized hailstones (diameters of ~7.5 cm; NCEI 2016). As the 

supercell propagated southeastward, two radiosondes were launched into the supercell’s main 

updraft region (Fig. 3.3c). The first, 2016-1, was located within the dual-Doppler analysis region, 

while the second, 2016-2, was just outside the dual-Doppler lobes in a more unstable 

environment. By 01:30 UTC on 18 July 2016, the storm began to lose many of its supercellular 

characteristics, and it dissipated by 03:00 UTC. 
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 We note here that both of these High Plains supercells experienced environments with 

substantial vertical wind shear (0-6 km; ~21-26 m s-1) and moderate MLCAPE (~1000-1600 J 

kg-1). These environments had bulk Richardson numbers of ~10-15, well within the range 

favorable for supercells (Weisman and Klemp 1982), although the MLCAPE values are on the 

lower end of those conditions supporting weakly-tornadic and non-tornadic supercells within the 

broader United States (Thompson et al. 2003). Therefore, these C3LOUD-Ex observations of wair 

will likely be lower than similar observations of supercells in more unstable air masses, such as 

those present in the U.S. southern Great Plains.  

 

3.4 Radiosonde-derived updraft vertical velocities (wair)  

 The wair estimated from the 5 radiosondes that sampled the two supercells’ updrafts are 

shown in Figure 3.4, which for simplicity’s sake only depicts wair from when the radiosonde was 

launched to when the radiosonde reached its maximum altitude. These data represent point 

locations within the large supercell updrafts. Thus, radar data were essential for determining the 

position of the radiosonde within the updraft and elucidating whether each radiosonde was likely 

to have sampled the strongest wair within these storms. The radiosondes took many different 

trajectories throughout the supercells. Only one of these five radiosondes (2017-2) continued to 

rise into the stratosphere after sampling the supercell updraft. The other radiosonde systems 

likely experienced conditions within the updraft that robbed them of their positive buoyancy 

(e.g., radiosonde balloon bursting or significant riming). In order to identify these events, the 

radiosonde-derived accelerations were calculated from wair and were examined for the entirety of 

the radiosondes’ data transmissions (Fig. 3.5). A 5-second moving average was then applied to 

data to eliminate noise but still capture significant events. The most intense negative 
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accelerations were likely associated with the radiosonde balloon bursting, whereby wbuoy 

instantaneously changed from approximately +4.8 m s-1 to anywhere between -15 to -25 m s-1, 

depending on the radiosonde’s tropospheric altitude (Fig. 3.1a). The most intense negative 

accelerations are highlighted in yellow in Figure 3.5 and had values between -1.9 and -5.1 m s-2. 

These values were similar to those associated with the radiosonde balloon bursting during the 

clear-sky, still-air launches, which all occurred above 16 km AMSL and ranged from -2.5 to -5.5 

m s-2 (not shown). For radiosondes 2017-2 and 2016-1, the radiosondes’ balloons did not burst 

until right before their final descents to the surface. However, for radiosondes 2017-1, 2017-3, 

and 2016-2, it appears that the balloon burst within the radiosonde’s initial ascent through the 

updraft. As will be shown in the following sections, radar data suggest that the radiosondes were 

entering regions of large hail at these estimated burst times and altitudes. Therefore, for 

Figure 3.4. Radiosonde wair from radiosondes that sampled the two C3LOUD-Ex supercell 
updrafts. Data are only shown from the radiosondes’ launch times through to when the 
radiosondes reached their maximum altitudes. The smaller dots for 2017-1 and 2016-2 represent 
wair adjusted for a burst radiosonde balloon (see Fig. 5). 
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radiosondes 2017-1 and 2016-2, adjustments were made to the radiosonde-derived wair after the 

balloon burst (Fig. 3.4, smaller dots), taking into account the altitude-dependent, mean terminal 

velocities of the descending radiosonde system (Fig. 3.1a). For radiosonde 2017-3, data were 

unavailable after the balloon burst; therefore, no adjustments were necessary.  

Before the adjustments described above, the maximum wair values measured by the 

radiosondes for the 2017 and 2016 cases were 37.6 and 26.1 m s-1, respectively. After the 

Figure 3.5. Radiosonde accelerations from each launch (blue, left axis) and radiosonde altitude 
(red, right axis) as a function of seconds since launch. Yellow vertical lines indicate the strongest 
negative accelerations, likely associated with the radiosonde balloon bursting. 
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adjustments, the respective maximum radiosonde wair values were 46.1 and 50.3 m s-1. However, 

due to the large spread associated with the terminal velocities of radiosondes following balloon 

bursting (Fig. 3.1a), additional testing would be needed to develop the uncertainties for the 

adjusted wair estimates. In the next sections, we present the radiosonde wair for each launch in the 

context of the radar data. 

 

a. 2017 case  

Radiosonde 2017-1 was launched at 21:58 UTC, shortly after the supercell formed and 

within the dual-Doppler analysis region for the CSU-CHILL and KFTG radars. Figure 3.6 

depicts the radiosonde wair along with two snapshots of the radiosonde position within the storm 

based on the radar reflectivity and dual-Doppler-derived wair. Based on the radiosonde humidity 

data, the radiosonde entered cloud around 2.7 km AMSL, at which point wair, the updraft vertical 

velocity, was 5.5 m s-1. This corresponds to an average rate of acceleration from the ground level 

to cloud base of 0.034 m s-2. The radiosonde continued to accelerate within the cloudy updraft 

through ~7.5 km AMSL at an average rate of 0.086 m s-2, more than double the rate below cloud 

base.  

During this time period, the radiosonde was located within the main updraft, along the 

western edge of the weak echo region. At 7.5 km AMSL (Fig. 3.6b-g), the radiosonde 

decelerated for ~15-20 s as it entered a region of higher reflectivity (>50 dBZ) and low 

correlation coefficients (<0.9, not shown), suggesting large hail (e.g., Balakrishnan and Zrnic 

1990; Rhyzkov et al. 2013). At this point in time, both dual-Doppler analyses (Fig. 3.6e,g) 

demonstrate increasing wair with height, which would suggest positive balloon acceleration, not 

negative. This corroborates our hypothesis that the balloon most likely burst. As such, above 7.5  
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Figure 3.6. (a) Radiosonde wair for the 2017-1 launch with uncertainty estimates (gray). The shading from light to dark blue 

represents the time evolution of the radiosonde from launch to maximum altitude. The smaller dots take into account adjustments, 

assuming the radiosonde balloon burst. (b-m) demonstrate the position of the radiosonde (black dots) within the storm at two 

different times during the radiosonde ascent. The top row shows radar reflectivity plan views and vertical cross sections, as denoted 

by the grey lines in the plan views. The middle row shows the plan views and cross sections of CEDRIC wair, while the bottom row 

shows SAMURAI wair. The arrows represent storm-relative winds in their respective planes, and black contours indicate 10 m s-1 

intervals of wair, excluding the 0 m s-1 contour. 
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km AMSL, adjustments were made to the wair estimates using a wsonde corresponding to a burst 

radiosonde balloon, as described in the prior section. At 9.7 km AMSL (Fig. 3.6h-m), the wair 

after adjustments reached its peak value (46.1 m s-1). At this time, the radiosonde was within the 

primary updraft region but was nevertheless located ~5 km to the southwest of the most intense 

radar-derived updrafts (Fig. 3.6j,l), suggesting that the maximum wair in this storm was likely 

even higher than that estimated from the radiosonde. We note that the adjusted radiosonde wair 

values are more intense than those from the radar analyses, and the wair estimates from the 

different observing platforms are compared in Section 3.5a. The radiosonde reached its 

maximum altitude of 10.6 km AMSL and began to descend through the updraft periphery, where 

the wair was no longer strong enough to suspend the radiosonde system. 

Approximately 1 hour later (22:51 UTC), another radiosonde (2017-2) was launched into 

the supercell updraft. Although the supercell was no longer within the region where dual-

Doppler estimates could be made, both radar RHIs (not shown) and PPIs were used to 

contextualize the radiosonde measurements. Figure 3.7 shows PPI snapshots throughout the 

radiosonde trajectory at times when the radiosonde location was simultaneously sampled by one 

of the radars. The 2017-2 radiosonde was launched to the southwest of the WER (Fig. 3.7b), and 

accelerated to ~14 m s-1 before entering the cloud at 3.7 km AMSL, which was above cloud base. 

A maximum wair of 37.6 m s-1 was obtained at approximately 10.1 km AMSL (Fig. 3.7e). 

Despite observing strong wair throughout its trajectory, the radiosonde was consistently located 

~5-10 km to the southwest of where the strongest wair was likely located: the WER in the lower 

and middle troposphere (Fig. 3.7c,d) and the higher reflectivity regions in the upper troposphere 

(Fig. 3.7e). After reaching the top of the storm, the radiosonde underwent negative acceleration 

and sampled a minimum wair of -28.7 m s-1, which was likely associated with strong downdrafts 
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south of the main updraft (Fig. 3.7f). Unlike the 2017-1 radiosonde, 2017-2 eventually exited the 

storm (Fig. 3.7g) and rose to an altitude of 22.2 km AMSL before the radiosonde balloon burst. 

At 23:59 UTC, a third radiosonde (2017-3; Fig. 3.8) was launched and subsequently 

sampled the WER in the middle troposphere (Fig. 3.8b,c). This radiosonde experienced the 

strongest vertical velocities between the surface and 6.8 km AMSL of all three radiosondes from 

this case, accelerating at an average rate of 0.113 m s-2 from 4.6 m s-1 at 2 km AMSL to a 

maximum wair of 31.3 m s-1 at 7.0 km AMSL. Unfortunately, the thermodynamic sensors were 

Figure 3.7. Radiosonde-derived wair for the 2017-2 launch with uncertainty estimates (gray). The 

shading from light to dark blue represents the time evolution of the radiosonde from launch to 

maximum altitude. Panels (b-g) represents PPI scans of radar reflectivity that overlapped with 

the radiosonde within a 15 second window and within 500 m of the radiosonde’s position, as 

labeled in panel (a). 
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compromised during the radiosonde launch, and thus it is unclear at exactly which point the 

radiosonde entered cloudy conditions. Above 7.0 km AMSL, the radiosonde began to decelerate 

and likely encountered rain and/or hail (Fig. 3.8a,d); communication with the radiosonde was 

lost at 10.8 km AMSL.  

 

Figure 3.8. Same as Figure 3.7, but for the 2017-3 radiosonde launch. 
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b. 2016 case 

 Similar analyses were conducted for radiosondes 2016-1 and 2016-2 for the isolated 

supercell that occurred on 17 July 2016. Because the supercell passed closer to the radar network 

(Fig. 3.3c), the dual-Doppler analyses were conducted with 500 m grid spacing, which allowed 

for a more detailed structure in the wair values. 

At 22:24 UTC, the 2016-1 radiosonde (Figs. 9-10) was launched on the southern side of 

the supercell, shortly after the cold pool associated with the rear flank downdraft passed the 

launch location, resulting in negative wair near the surface (Fig. 3.9a). A radiosonde-based wair of 

~24 m s-1 was observed twice during the radiosonde’s ascent through the storm (at 6.7 km and 

9.1 km AMSL; Fig. 3.9). In both instances, the radiosonde was in the extreme southwest edge of 

the updraft region, and ~10 km to the west of the WER (Fig. 3.9b-c; Fig. 3.9h-i). The radiosonde 

continued to rise above 12 km AMSL and then underwent a 2.5 km descent, during which it 

observed a minimum wair of -27.0 m s-1 (Fig. 3.10b-g). This radiosonde, however, experienced its 

most intense negative acceleration immediately before the radiosonde’s final descent to the 

surface (Fig. 3.5d), and therefore, this first radiosonde descent was likely associated with nearby, 

strong upper-level downdrafts that were diagnosed by both dual-Doppler analyses (Fig. 3.10d-g) 

rather than with the balloon bursting. The radiosonde then experienced several vertical 

oscillations, ascending and descending 3 times around 10-11 km AMSL and ~15 km to the 

southeast of the main updraft (Fig. 3.10h-m). These oscillations were likely associated with 

gravity waves in the cloud anvil, which are evident in the CEDRIC analyses (Fig. 3.10j-k), but 

less so in the SAMURAI analyses (Fig. 3.10l-m) due to the filtering scales and different 

approaches used (Section 3.2b). The relatively weak vertical motions in the anvil (Fig. 3.10j-m) 

would not have been strong enough to suspend the radiosonde had the balloon burst, providing 
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Figure 3.9. Same as Figure 3.6 but for the radiosonde 2016-1 data. The light blue to dark blue shading in (a) represents the progression 

of time from launch to when the balloon likely burst. 
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Figure 3.10. Same as Figure 3.6 and Figure 3.9, but for two later times during the progression of radiosonde 2016-1. 
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further evidence that the balloon did not burst until right before the radiosonde’s final descent to 

the surface.  

At 23:41 UTC, radiosonde 2016-2 was launched to the south of the WER (Fig. 3.11b) 

and was likely closer to the regions with the most intense vertical motions than was radiosonde 

2016-1. At 8 km AMSL, however, the radiosonde experienced its most intense negative 

acceleration (Fig. 3.11a,c, Fig. 3.5e) while the radiosonde was entering a region to the north with 

high reflectivity (> 50 dBZ) and correlation coefficients < 0.94, which suggests large hail. Based 

Figure 3.11. Same as Figure 3.7 and Figure 3.8, but for radiosonde 2016-2. The smaller dots 

take into account adjustments assuming that the radiosonde balloon burst. 
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on this evidence, it is likely that the balloon burst at this time, and subsequent adjustments were 

made to wair. The radiosonde measured a maximum estimated wair of 50.3 m s-1 at 10.3 km 

AMSL (Fig. 3.11a). Shortly after this maximum value was reached, the radiosonde was located 

within the region of maximum reflectivity at 12.1 km AMSL (Fig. 3.11d). This suggests that the 

radiosonde was near some of the storm’s most intense vertical motions, which were able to loft 

large hydrometeors to these near-tropopause heights. Considering the assumptions and 

adjustments for balloon bursting, 50.3 m s-1 was the strongest vertical velocity observed by a 

radiosonde from these two C3LOUD-Ex cases, and when considering the impacts of 

hydrometeors, this value could be even larger. This result is consistent with the fact that this 

radiosonde was launched in the most unstable (i.e., highest CAPE) environment of all the 

radiosondes (Fig. 3.3c; Table 3.1), as will be discussed in Section 3.5b.  

 

3.5 Comparisons of radiosonde wair to other platforms 

a. Comparisons with dual-Doppler estimates 

In addition to contextualizing the radiosonde observations, the radar data also provide an 

independent estimate of wair for radiosondes 2017-1 and 2016-1. It is important to note the 

differences in the features that the two types of observing systems can resolve. The values in the 

dual-Doppler analyses represent the average vertical velocity over a cube with side lengths of 1 

km (500 m) for the 2017 (2016) case using data collected over a 5-minute interval. The 

radiosonde values, however, represent averages along a slantwise path corresponding to the 

radiosonde trajectory over the course of the 9 s averaging period (e.g., horizontal and vertical 

distances generally between 100 and 500 m). Such differences need to be considered when 

comparing these estimates of vertical velocity obtained using these different platforms. 
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 A comparison of radiosonde wair with the dual-Doppler wair from SAMURAI and 

CEDRIC is shown in Figure 3.12. The dual-Doppler analyses for each radar volume were 

calculated at the volume-scan midpoint time and were advected in time using the calculated 

storm motion for each radar volume to create a 4D dataset. These 4D data were interpolated in 

time and space to the same position as the radiosonde for this comparison. To account for shifts 

in position within the dual-Doppler analyses that may be due to small advection errors, we also 

show the range of values in the surrounding grid boxes that are 1 km from the radiosonde 

location in the horizontal plane. This spread does not, however, represent any underlying 

uncertainty in the radar dual-Doppler analyses, which would require additional observation 

system simulation experiments (OSSEs; e.g., Potvin et al. 2012; Oue et al. 2019; Dahl et al. 

2019).  

Comparisons cannot be made below 3.7 km AMSL (Fig. 3.12a) and 6.0 km AMSL (Fig. 

3.12b) for the 2017 and 2016 cases, respectively, due to the lack of quality radar data at the 

radiosonde locations. This demonstrates one benefit of the radiosonde observations, namely their 

ability to sample vertical motions where radars only observe very low signal-to-noise ratios, such 

as below cloud base and along cloud edges. Based on the C3LOUD-Ex radiosonde observations, 

wair can approach 20 m s-1 in these regions.  

Both dual-Doppler analyses show consistent trends and similar magnitudes of wair. In 

both cases and for both dual-Doppler analyses, at the locations where the radiosondes observe 

the strongest wair, the dual-Doppler wair values was generally 15-20 m s-1 less than those derived 

from the radiosondes. For radiosonde 2017-1 (Fig. 3.12a), right before the balloon likely burst at 

7.5 km AMSL, the difference between the radiosonde wair and those of both dual-Doppler 

analyses was ~15-20 m s-1. For radiosonde 2016-1 (Fig. 3.12b), similar differences were present 
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at 6.7 and 9.1 km AMSL. This dual-Doppler underestimation of wair as compared to the most 

intense radiosonde wair was at least partly due to the radiosonde capturing localized features that 

were unable to be resolved by the resolution of these radar analyses. However, without a detailed 

error estimation of the dual-Doppler syntheses obtained from OSSEs for these cases, we are 

unable to quantify how much of the differences are due to errors associated with the C3LOUD-

Ex radar network and scanning patterns (e.g., Oue et al. 2019) versus systematic differences in 

the observed quantities. Regardless, this comparison does demonstrate that a comprehensive 

analysis of wair would benefit from in situ measurements that can better capture highly localized 

conditions.  

Figure 3.12. Comparison of radiosonde and dual-Doppler wair for radiosondes (a) 2017-1 and (b) 

2016-1, as described in the text. The gray range for the radiosonde data represents the quantified 

uncertainty in wair. The green and blue dots represent the radar dual-Doppler analyses 

interpolated to the radiosonde position. The green and blue horizontal lines represent the range of 

values within 1 km in the horizontal direction of the radiosonde position within the dual-Doppler 

analyses. 
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b. Comparisons with simple parcel theory 

Parcel theory can also be used to estimate the theoretical maximum possible vertical 

velocity due to its relationship with CAPE (e.g., Weisman and Klemp 1984): 

            !!"#$%& = √2 ∙ &'()*+ (3.4) 

MLCAPE is chosen, as compared to other CAPE variants (e.g., surface-based or most-unstable), 

because it more realistically represents the air entering deep convective updrafts. The expression 

shown in Eq. 3.4 assumes that vertical accelerations are only forced by buoyancy and does not 

account for the negative impacts from condensate loading and entrainment. Eq. 3.4 also does not 

consider the impacts of perturbation pressure gradients, which have been shown to decelerate 

updrafts within the upper levels of supercells where the maximum vertical velocities are 

achieved (Peters et al. 2019). Therefore, Eq. 3.4 likely overestimates the maximum vertical 

velocities in supercell updrafts. 

To assess Eq. 3.4 with respect to the C3LOUD-Ex observations, MLCAPE (0-90 hPa 

AGL) is calculated for each radiosonde launch. These calculations assume pseudoadiabatic 

ascent and account for the latent heating associated with freezing above the 0 °C level by 

assuming that ice fraction linearly increases from 0 °C to -40 °C. While the sub-cloud-layer 

radiosonde data sampled by the updraft radiosondes are generally representative of the 

environmental air entering the supercell updraft, the data within the cloudy updraft are no longer 

representative of the environmental conditions needed to estimate MLCAPE. Therefore, the 

thermodynamic data from lowest levels of the updraft soundings were merged with data from the 

middle and upper levels of the environmental soundings (Fig 3b,d). This concatenation occurred 

at the altitude where the temperature profiles first overlapped for each pair of soundings, near the 

inversion of the environmental sounding between 700 and 800 hPa. In cases where the 
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radiosonde was launched in a cold pool or the thermodynamic data were not available 

(radiosondes 2016-1, 2017-1, and 2017-3), the closest, representative radiosonde launch in time 

and space was used as a better estimate of the inflow air for that radiosonde launch, since we are 

interested in estimating the theoretical maximum vertical velocities.  

 Overall, the wMLCAPE values calculated via parcel theory were larger than the wair values 

observed by the radiosondes (Table 1). Further, these results highlight the variability of wair 

within the primary supercell updraft. The percentage differences between wair and wMLCAPE range 

from -10% to -55%, largely due to the variability in the positions sampled within the supercell 

updrafts. The radiosonde with the largest difference (-55%, 2016-1) sampled the extreme western 

edge of the primary updraft, ~10 km from the WER (Fig. 3.9). The radiosonde with the smallest 

difference (-10%, 2017-1) sampled close to where the most intense vertical motions were likely 

located (Fig. 3.6). While the maximum vertical velocities estimated from these radiosonde data 

do not reach their theoretical maxima, as predicted by Eq. 3.4, a larger sample of observations, 

especially those similar to radiosonde 2017-1 that sampled near the most intense wair, is needed 

to better observationally assess the relationship shown in Eq. 3.4. 

 

3.6 Implications for future in situ observations of wair within storms 

This study has shown that GPS sensors aboard radiosondes can provide useful in situ 

observations of wair within storms, especially when used in conjunction with radar data. 

Understanding the position within the updraft being sampled by the radiosonde provided 

invaluable context for interpreting the radiosonde observations. Particularly with GPS 

radiosondes that can directly transmit their locations while sampling, coordinated scanning of 

radars through the use of PPIs and RHIs to the exact positions of airborne radiosondes should be  
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Table 3.1. 0-90 hPa AGL MLCAPE, the theoretical maximum wMLCAPE based on Eq. 3.4, and 

comparisons with the maximum radiosonde wair for each radiosonde launch. 

 

Radiosonde 

 

MLCAPE 

(J kg-1) 

wMLCAPE  

(m s-1) 

Maximum 

radiosonde 

wair (m s-1) 

% Difference  

(wair from 

wMLCAPE) 

2017-1 1313 51.2 46.1 -10.0 

2017-2 1172 48.4 37.6 -22.3 

2017-3 952 43.6 31.6 -27.6 

2016-1 1510 55.6 25.2 -54.7 

2016-2 2305 67.9 50.1 -26.2 

 

considered for future field campaigns. For example, using these collocated radar and radiosonde 

observations, we demonstrated that most of the radiosonde measurements were likely several km 

away from the strongest wair in these two supercell updrafts. Obtaining large samples of in situ 

observations in the locations of strongest wair within storms continues to be challenge, but 

forgoing cost constraints, this sampling difficulty can be alleviated by launching a high number 

of GPS sensors into storms (e.g., Markowski et al. 2018) so as to increase the probability of 

sampling the most intense vertical motions. This would also simultaneously improve the spatial 

coverage of these in situ measurements. 

While several of the uncertainties in the radiosonde-based wair were quantified in this 

study, we did not quantify the uncertainty associated with hydrometeor collisions and collection 

on the radiosonde system. Innovative techniques and technologies to minimize or quantify these 

hydrometeor impacts would improve radiosonde observations within cloud systems. For 

example, cameras have been placed on radiosondes to assess icing impacts on in situ 
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observations within winter storms (Waugh and Schuur 2018), and similar strategies could 

potentially be used to observe the possible accumulation of hydrometeors on the radiosonde 

system within updrafts. Furthermore, we analyzed balloon accelerations to estimate whether and 

when radiosonde balloons likely burst within the supercell updrafts in order to obtain a better 

estimate of wair, and additional sensors could be introduced to the radiosonde system to assist in 

assessing balloon burst events.  

 

3.7 Conclusions 

 One of the goals of the C3LOUD-Ex field campaign was to obtain in situ observations of 

the vertical velocities of supercell updrafts (wair) with targeted radiosonde launches. In situ 

observations of supercell vertical velocities have been limited, despite their importance for 

understanding physical processes within supercells and for verifying simulations as well as other 

observational platforms with difficult-to-characterize uncertainties. In this study, we present 

observations of wair from two isolated supercell cases observed during C3LOUD-Ex, which 

occurred in the High Plains of Colorado, Wyoming, and Nebraska. Radiosonde wair estimates 

were based on GPS data and were calculated with an uncertainty of ± 3.0 m s-1, which 

considered uncertainties associated with the GPS measurements themselves, the helium balloon 

buoyancy, and varying drag forces. These estimates, however, did not consider hydrometeor 

impacts on the radiosonde systems.  

 In three of the five updraft radiosonde launches assessed in this study, it was likely that 

the radiosonde balloon burst while within the updraft, based on the extrema in the radiosonde 

negative accelerations. In these instances, we adjusted the wair estimates to account for the loss of 

buoyancy associated with balloon bursting. Before these adjustments, the maximum radiosonde 
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wair was 37.6 m s-1 at an altitude of 10.1 km AMSL during the 2017 case. After these 

adjustments, the maximum wair that was observed was 50.3 m s-1 at an altitude of 10.3 km AMSL 

during the 2016 case, which occurred in the most unstable environment. At the lower and middle 

tropospheric levels, radiosonde 2017-3 captured the greatest wair and was located within the 

WER, reaching a maximum value of 31.3 m s-1 at 7.0 km AMSL. In most of the observations 

presented, the radar data suggested that the radiosondes were several km away from the strongest 

wair within the supercell updraft. This fact, along with the potential impacts of hydrometeors on 

the radiosonde systems, suggests that the maximum wair in these two supercells could have been 

even larger than the values reported here.  

 The C3LOUD-Ex radiosonde observations were also compared with other methods of 

obtaining wair. One radiosonde in each of the two supercell cases sampled the updraft within the 

regions where dual-Doppler analyses could be performed, allowing for an independent measure 

of wair. For the locations where the radiosondes observed the greatest wair, the dual-Doppler wair 

values were generally 15-20 m s-1 less than the radiosonde estimated wair values. This was at 

least partly due to the different scales being observed by these two platforms, although it was 

difficult to fully quantify these differences without a detailed assessment of the dual-Doppler 

errors, such as may be obtained through the use of OSSEs, and which is left for future work. 

However, these comparisons did demonstrate that radiosondes provide complementary data to 

multi-Doppler analyses in terms of their ability to sample regions with low signal-to-noise ratios 

and to provide localized, high-resolution observations, both of which can be challenging in 

multi-Doppler analyses. The maximum radiosonde-based wair values were also 10-55% less than 

the theoretical maximum wair from parcel theory. The variability in these differences was 
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primarily due to the locations within the broad supercell updrafts that were sampled by the 

radiosondes, which were gleaned through utilizing collocated radar data.  

Some of the challenges associated with making radiosonde observations of updrafts were 

highlighted here, and additional ideas on how these challenges can be surmounted were 

provided. There continues to be large uncertainty in the vertical velocities within deep 

convection, which are important for understanding many atmospheric processes and improving 

models. In situ observations of wair can complement remotely-sensed estimates both by 

providing both an independent measure of wair for comparison and by observing finer-scale 

motions that often cannot be resolved using remote sensing. As such, despite their relative 

scarcity, in situ observations of wair can contribute to a more comprehensive understanding of 

storm vertical motions and hence should be considered for future field campaigns. 
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CHAPTER 4: THE IMPACTS OF VARYING CONCENTRATIONS OF CLOUD 

CONDENSATION NUCLEI ON DEEP CONVECTIVE CLOUD UPDRAFTS – A 

MULTIMODEL ASSESSMENT 

 

4.1 Introduction 

One of the primary and most studied pathways in which aerosol particles interact with 

deep convective clouds is via their ingestion into convective updrafts. Within these updrafts, 

supersaturated conditions develop, which can allow aerosol particles to serve as cloud 

condensation nuclei (CCN), becoming the seeds for cloud droplet formation (Köhler 1936). By 

altering the number concentrations of CCN that enter a cloud’s updraft, the number 

concentrations and sizes of the cloud droplets within the updraft will also vary, which can have 

many subsequent feedbacks on a cloud’s characteristics and evolution (e.g., Twomey 1977; 

Albrecht 1989). Typically, the majority of CCN are ingested through the bases of deep 

convective clouds within the atmospheric boundary layer, although several studies have shown 

that some fraction of CCN in the middle troposphere can also become entrained within deep 

convective updrafts, form cloud droplets, and subsequently impact the cloud development 

(Fridlind et al. 2004; Lebo 2014; Marinescu et al. 2017). 

When the number concentrations of CCN that are ingested into an updraft are increased, 

the initial response is an increase in the cloud droplet number concentration, which results in 

smaller cloud droplet sizes due to increased competition for the available water vapor (e.g., 

Twomey and Squires 1959). While this first step in the chain of aerosol-updraft interactions is 

well-understood, many studies have shown that the subsequent responses in deep convective 
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cloud updrafts are complex and have had conflicting results (e.g., Khain et al. 2005; van den 

Heever et al. 2006; Tao et al. 2007; Fan et al. 2009; and as reviewed by Tao et al. 2016). 

One of the most prevailing theories on these subsequent processes within deep convective 

updrafts is the concept of CCN-induced convective invigoration, originally reported in both 

observational and modelling studies (e.g., Andreae et al. 2004; Khain et al. 2005, Wang 2005; 

van den Heever et al. 2006). Generally, CCN-induced convective invigoration refers to the 

increase in the vertical velocity magnitudes within convective cloud updrafts when exposed to 

higher concentrations of CCN. Due to higher number concentrations of cloud droplets that form, 

more latent heating occurs, resulting in more buoyant (i.e., invigorated) updrafts. However, the 

specific process that causes the enhanced latent heating and more buoyant updrafts has been 

shown to vary. For example, some studies have reported that this increased latent heating within 

deep convective updrafts under relatively high CCN concentrations is primarily the result of 

increased condensation due to the higher number concentrations of cloud droplets (e.g., Wang 

2005; Fan et al. 2007; Seiki and Nakajima 2014; Sheffield et al. 2015). Other studies have 

shown, however, that when a deep convective cloud is exposed to higher concentrations of CCN, 

more of the cloud’s liquid water reaches the mixed-phase region and freezes, and the additional 

latent heating induced by enhanced freezing processes is the primary factor driving the increased 

latent heating and intensified updrafts (e.g., Rosenfeld et al. 2008; Li et al. 2008; van den Heever 

et al. 2011; Fan et al. 2012a). Furthermore, other studies have shown that when exposed to 

higher concentrations of CCN, some deep convective updrafts remain unchanged or weaken 

(e.g., Tao et al. 2007; Fan et al. 2009; Lebo and Seinfeld 2011), contradictory to the invigoration 

concepts described above. For example, increased condensate mass can form within updrafts that 

are exposed to higher concentrations of CCN and can weaken updraft vertical velocities (e.g., 
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Storer and van den Heever 2013). Even for one of the most established concepts on the 

interactions of aerosol particles with deep convective clouds, the results appear to be muddled 

due to the complex kinematic and microphysics processes and feedbacks in deep convection. 

These seemingly conflicting results have been attributed to the many differences between 

the various studies. For example, the type of deep convective cloud system under consideration 

can alter the effect that aerosol particles have within deep convective updrafts (e.g., Seifert and 

Beheng 2006b; Khain et al. 2008; van den Heever et al. 2011). Supercells that are primarily 

driven by dynamical forcings have been shown to have lesser impacts from varying CCN 

concentrations than other types of deep convection (e.g., Grant and van den Heever 2015). For 

the same type of convection, however, the updraft magnitude response to increased CCN 

concentrations have been shown to be sensitive to the environmental conditions in which the 

clouds form. Case study simulations of mesoscale convective systems in environments with 

different relative humidity (Khain et al. 2005; Fan et al. 2007; Tao et al. 2007) and shear 

conditions (Marinescu et al. 2017; Chen et al. 2020) have shown different responses to the 

updraft magnitude for similar perturbations in CCN concentrations. Idealized simulations, in 

which these environmental parameters can be more systematically varied and assessed, have also 

demonstrated that the response in deep convective updraft magnitudes to increased CCN 

concentrations is sensitive to boundary layer moisture (e.g., Fan et al. 2007), convective 

available potential energy (CAPE; Lee et al. 2008; Storer et al. 2010), and wind shear (Lee et al. 

2008; Fan et al. 2009).  

In addition to different deep convective cloud types and atmospheric conditions, 

modeling studies on the effects of CCN on deep convective clouds have also used a diverse set 

of models with varying physical parameterizations and dynamical cores. As compared to those 
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studies that have explored aerosol-cloud interactions with just one model, relatively few studies 

have explored the impacts of CCN in deep convective updrafts using a range of different models. 

These few studies have typically utilized the same dynamical model and substituted different 

microphysical parameterizations to assess the dependency of the CCN-induced deep convective 

updraft response to the microphysical parameterization. Some of these studies use the same 

kinematic fields for each simulation in order to better isolate the specific microphysical 

processes that drive different results between the parameterizations (e.g., piggybacking approach 

(in Grabowski 2015; Grabowski and Morrison 2017; or kinematic driver approach in Hill et al. 

2015) but consequentially cannot examine CCN-induced impacts on the cloud microphysical-

dynamical feedback processes. Other studies perform multiple simulations with the same 

numerical model, changing only the microphysical parameterization at each simulation’s 

initialization and allowing each simulation to evolve individually (e.g., Seifert et al. 2006; Khain 

et al. 2009). These latter studies primarily compared aerosol effects on deep convection with 

bulk and bin microphysical schemes (e.g., Seifert et al. 2006; Khain et al. 2009; Khain and Lynn 

2009; Lebo et al. 2012; Fan et al. 2012b), which fundamentally differ in how they represent 

hydrometeor size distributions. (For a comprehensive comparison of bulk and bin microphysical 

parameterizations, see Khain et al. 2015.) These studies found both consistencies (Seifert et al. 

2006; Khain et al. 2009) and inconsistencies (Khain and Lynn 2009; Lebo et al. 2011; Lebo et al. 

2012; Fan et al. 2012b) in the deep convective updraft response to increased CCN 

concentrations, and some of these differences were attributed to use of saturation adjustment 

(Khain and Lynn 2009; Lebo et al. 2012) and the representation of aerosol nucleation sinks (Fan 

et al. 2012b).  
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These complex interaction between CCN concentrations and deep convection motivates 

the need for systematic multi-model comparisons to provide better insights into the range of 

aerosol-impacted deep convective cloud responses from different models. Such an effort has 

been completed through multi-institutional collaborations via the coordinated efforts of the 

Aerosol-Cloud-Precipitation-Climate initiative (ACPC). ACPC was first developed in 2007 and 

is an international working group focused on aerosol-cloud interactions (Rosenfeld et al. 2014; 

www.acpcinitiative.org ). This group is focused on reducing the uncertainties associated with 

aerosol-cloud interactions and has recently organized a model intercomparison project (MIP) in 

order to assess the robustness of deep convective cloud responses to increased CCN 

concentrations in a wide range of models (van den Heever et al. 2018).  

The research reported here is focused on the results obtained from the ACPC MIP,  

whereby seven different models from different institutions simulated the same case study of 

scattered deep convective clouds near Houston, Texas. Simulating the same case study forces all 

the models to produce similar types of clouds in comparable environments, while still allowing 

the models to freely evolve and produce their own realizations of the event, including the critical 

feedbacks between cloud dynamical and microphysical processes. A recent case study MIP was 

completed to assess the robustness of the impacts of aerosol particles on arctic stratocumulus 

clouds (Stevens et al. 2018). The ACPC MIP represents the first time that a model 

intercomparison study has been used to study the effects of CCN on deep convective clouds. 

While the model responses in many cloud characteristics and processes (e.g., precipitation, 

anvils, cold pools) to varying CCN concentrations will be highlighted in a complementary study 

(van den Heever et al. 2020), the goals of the current study are 1) to quantify the range of 

responses in deep convective updraft velocities to increased CCN concentrations amongst a suite 
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of state-of-the-art models and 2) to present and physically explain the consistent and inconsistent 

updraft trends amongst these models. 

 

4.2 ACPC Model Intercomparison Project (MIP) 

a. Case study simulations 

 The ACPC MIP simulations are based on a case of scattered convective clouds that 

developed near Houston, Texas on 19-20 June 2013. Figure 4.1 shows several snapshots of the 

radar reflectivity during this event from the Houston NEXRAD radar (KHGX). In the late 

morning hours, there were weak, scattered, isolated convective clouds along a trailing front that 

extended zonally across the southeastern United States, into southern Louisiana and eastern 

Texas. With increased insolation in the late morning and early afternoon hours, the convection 

associated with this trailing front became more intense. Together with the deepening boundary 

Figure 4.1. Evolution of KHGX radar reflectivity at approximately (a) 1800 UTC, (b) 2100 

UTC, (c) 2400 UTC, centered around Houston, Texas. Radar reflectivity is gridded and shown 

at ~3.0 km AGL. Panels (d-f) show the evolution of outgoing longwave radiation from the 

NOAA GOES satellite at the same times as in (a-c). 
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layer and a sea breeze, widespread scattered convective clouds were generated throughout the 

region surrounding Houston. Isolated convective clouds continued to initiate, develop and 

dissipate for several hours, with a few cells becoming intense, reaching the tropopause and 

creating anvils. 

 To reproduce the scattered nature of convection that was associated with this event, 

simulations were conducted using atmospheric conditions representative of this case study. To 

assist in comparisons between the models, all modelling teams tried to adhere as closely as 

possible to a set of previously tested simulation specifications (Table 4.1; van den Heever et al. 

2018). Simulations utilized three nested domains in order to capture the synoptic-scale influences 

(e.g., trailing front), while still resolving the deep convective clouds that formed. The focus of all 

of the analyses was on the innermost grid (Figure 4.2a), which had 500 m horizontal grid spacing 

and covered an area of approximately 62,500 km2. The simulations were conducted for 27 hours 

Table 4.1. ACPC MIP simulation specifications, as defined in the ACPC Deep Convective Cloud 

Roadmap (van den Heever et al. 2018). 
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to capture the impacts of the CCN concentrations on the entire diurnal cycle. The model output 

was saved at a high frequency (every 5 minutes) during the 12-hour period (1600 UTC – 0400 

UTC) when deep convective clouds were present in the observations and simulations. This 12-

hour period will also be the focus of the analyses presented here. While all the participants in the 

ACPC MIP attempted to follow the specifications in Table 1, some models were not equipped to 

adhere with all the specifications. These details of each model and the major discrepancies 

between them are discussed in the next sections and are displayed in Appendix 3. 

 

b. Aerosol initialization 

 For each participating model, two simulations were conducted with relatively high and 

low initial CCN concentrations (Figure 4.2b). These vertical profiles were based on both 

satellite-based CCN estimates near Houston on 19 June 2013 via the methodology described in 

Rosenfeld et al. (2012), as well as aerosol observations in the boundary layer and free 

troposphere from aircraft during the Deriving Information on Surface conditions from Column 

and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field 

Figure 4.2. (a) ACPC Simulation Grid 2, with nested domain, Grid 3, shown in blue. All 

analysis computed within a subset of Grid 3, (red dashed line) in order to avoid boundary 

impacted model grid cells. (b) Horizontally homogeneous aerosol initialization profiles for the 

Low-CCN and High-CCN simulations. 
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campaign, which had operations near Houston, Texas in September 2013 (DISCOVER-AQ 

Science Team). In addition to the aerosol number concentration profiles, uniform aerosol number 

size distributions were also specified using a log-normal distribution with a geometric mean 

diameter of 100 nm, a geometric standard deviation of 1.8, and a uniform hygroscopicity 

parameter of 0.2. These additional aerosol distribution characteristics were also based on data 

from DISCOVER-AQ. While aerosol number concentrations were initialized in a horizontally 

homogenous manner across all the model domains at the beginning of each simulation, the 

aerosol field was allowed to evolve in each model through processes such as advection, 

diffusion, activation and wet deposition, if the model had that capability (e.g., Figure 4.3). 

Furthermore, aerosol particles were restricted from interacting with radiation in order to isolate 

the microphysical effects of increased aerosol concentrations on convective clouds. The manner 

in which each model parameterized ice nucleation was also kept constant from the low to high 

CCN simulations, and these parameterization details are provided in Appendix 3. 

 

c. Models  

 Seven models participated in the ACPC MIP (Table 4.2). Several important differences 

between these models are highlighted here, with additional details provided in Appendix 3. 

Firstly, six of the models utilized two-moment (2M) bulk microphysical parameterizations, 

except for WRF-SBM which used a spectral bin microphysics scheme (SBM; Khain et al. 2004; 

Shpund et al. 2019). While the other six models utilized 2M bulk schemes, these schemes have 

varying levels of sophistication in their representations of microphysics processes. For example, 

three models either prognose or diagnose supersaturation (RAMS, NU-WRF, WRF-SBM), while 

the other models all utilize saturation adjustment, whereby any supersaturation that develops is 
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eliminated at each time step via condensation onto already formed hydrometeors. The use of 

saturation adjustment in microphysical schemes has been shown to weaken the response of deep 

Figure 4.3. Evolution of domain-mean aerosol concentrations in the High-CCN simulation 

(left column), Low-CCN (center column), and the percent difference of High-CCN from Low-

CCN (right column) for all the models. Note the difference in scales between the High-CCN 

and Low-CCN columns. 
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convective updrafts to varying CCN concentrations (e.g., Khain and Lynn 2009; Lebo et al. 

2012). 

 

All of the models represent aerosol activation, although via different formulations (see 

Appendix 3 for the details). Two models (COSMO and WRF-Morr) have fixed aerosol profiles, 

while the other five models allow aerosol particles to be tracked and advected by the wind. The 

latter five models, however, have differences in terms of their aerosol sources and sinks (e.g., 

aerosol regeneration via evaporation and sublimation, activation sinks, wet and dry deposition). 

These aerosol sinks and sources can have impacts on interpreting aerosol effects in deep 

convective clouds (e.g., Siefert et al. 2006; Fan et al. 2012b). Because of the differences in 

aerosol processes, each model’s ACPC MIP simulations have aerosol concentrations that evolve 

differently (Figure 3, left and middle columns). However, the relative differences between the 

High-CCN and Low-CCN simulations amongst the models are generally quite similar (Figure 

4.3, right column). Six of the seven models’ high-CCN simulations have, on average, between 

Table 4.2. Participating models in the ACPC MIP. 
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7.0-7.5 times more particles than the low-CCN simulations in the boundary layer (0-1km AGL). 

The WRF-SBM simulations (Fig 4.3s-u) had more significant sinks of aerosol concentrations 

than the other models, which resulted in larger differences in aerosol concentrations between the 

High-CCN and Low-CCN simulations, as compared to the other models. 

Two of the ACPC MIP participants (UM and MesoNH) were unable to ingest the GDAS-

FNL data, and therefore, simulated the event with the ERA-Interim reanalysis and ECMWF real-

time forecasting system data, respectively. Despite the different initialization data, the MesoNH 

model produced very similar environmental conditions to the other models that initialized with 

the GDAS-FNL data, while the UM simulations had slightly warmer and drier boundary layers 

but similar wind shear conditions (Figure 4.4a-c). While the COSMO model was initialized with 

the GDAS-FNL data, this initialization resulted in significantly warmer and moister boundary 

layers compared to the other models. Despite these differences between the models, differences 

in the environmental conditions between the High-CCN and Low-CCN simulations were 

generally small and had consistent trends amongst the models (Figure 4.4d-f). For example, 

Figure 4.4. Evolution of (a) boundary layer, below cloud base (0-1 km AGL) potential 

temperature, (b) boundary layer, below cloud base water vapor mixing ratio, and (c) 2-8 km layer 

wind shear. (d-f) depict the differences between the High-CCN and Low-CCN simulations for 

the variables in (a-c), respectively. 
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generally, the High-CCN simulations were marginally warmer and drier, and resulted in slightly 

stronger wind shear than the Low-CCN simulations, with the warmer and drier boundary layer 

conditions in the High-CCN simulations being likely due to less widespread precipitation, a 

consistent signal in all the models. These differences in the environmental conditions between 

the models were typically less than 0.3 K, 0.2 g kg-1 and 1 m s-1 for the average boundary layer 

potential temperature, boundary layer water vapor mixing ratios, and 2-8 km wind shear, 

respectively.  

While the preceding paragraphs have focused on comparisons of the model and simulation 

characteristics that have been shown to modulate the impacts of aerosol particles on deep 

convective cloud updrafts in previous research, it is important to note that each model is also 

integrated with various other physical parameterizations (e.g., surface, radiation and turbulence) 

that might impact the model solution. These additional model details are provided in Appendix 3. 

Due to the many differences in the models, it is difficult to attribute the variability in the CCN 

effects to specific microphysical and/or aerosol parameterizations and processes; rather, the goal 

of this study is to quantify the spread in the CCN effects on convective updrafts in the standard 

model configurations of the ACPC MIP models and to present the consistent and inconsistent 

trends.  

Despite these model differences, all the models produce scattered deep convective clouds 

near Houston, Texas in both the High-CCN and Low-CCN simulations during the 12-hour period 

(Figure 4.5). In this study, deep convective updrafts are determined as follows. All simulation 

data are screened to only include columns where 75% of the grid points between 3 and 10 km 

AGL have total condensate mixing ratios greater than 0.1 g kg-1 and vertical velocities greater 

than 3 m s-1. Any other grid points within these columns that have total condensate mixing ratios 
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greater than 0.1 g kg-1 are also included in the analysis in order to include the updraft boundaries 

that may not meet the vertical velocity threshold but are still part of the updraft. Several 

additional thresholds were also considered, tested and found to produce qualitatively similar 

results. While there are differences in the timing and longevity of the periods when deep 

Figure 4.5. Temporal evolution of mean updraft velocities for deep convective columns, as 

defined in the text. The left column represents the High-CCN simulations, while the right 

column represents the Low-CCN simulations. 
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convective clouds are present amongst the models, the convective cloud periods are similar in 

the High-CCN and Low-CCN simulations for each individual model, meaning that varying CCN 

concentrations in each model does not affect the initiation and lifecycle of deep convection as 

much as the differences in the model parameterizations and initialization datasets. Of note, the 

COSMO model produces much less convection than the other models, which is likely due to its 

different environmental conditions. As such, due to the lower sample size of deep convective 

updrafts in COSMO, the analyses between its High-CCN and Low-CCN simulations may be less 

statistically robust. Using these identified deep convective cloud updrafts, their differences under 

the High-CCN and Low-CCN conditions will now be assessed. 

  

4.3 CCN effects on the deep convective updrafts 

a. Frequency 

In order to assess the variations in the amount and vertical distribution of the deep 

convective updrafts in the High-CCN and Low-CCN simulations, contour frequency by altitude 

diagrams (CFADs) are used (Figure 4.6). All of the High-CCN simulations have a higher 

frequency of the most extreme updraft vertical velocities, particularly from ~2-7 km AGL, than 

the Low-CCN simulations. Also, six of the seven models simulate more frequent deep 

convective updrafts for most of the updraft magnitudes in the High-CCN simulations compared 

to the Low-CCN simulations (Figure 4.6o-u), although the magnitude of this response was 

variable amongst the models. For example, the WRF-SBM and UM models have a total of 3-3.5 

times more convective updrafts (of the same magnitudes) in their High-CCN simulations, while 

the other models show more moderate responses of 1.1-1.5 times. These CCN-induced changes 

in deep convective updraft amounts are likely due to the reduced cloud droplet collision-  
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Figure 4.6. Counter frequency by altitude diagrams (CFADs) of vertical velocities within the deep convective updrafts, as defined in 

the text. Panels (a-g) represent the Low-CCN simulations, panels (h-n) represent the High-CCN simulations, and panels (o-u) 

represent the percentage difference of the High-CCN from the Low-CCN simulations. The black contours in (o-u) are the frequency 

counts from the Low-CCN simulations for each model, respectively and are plotted for reference. CFADs are binned at 2 m s-1 

intervals, starting at 3 m s-1. The gray dashed lines represent the altitudes where the base state temperatures are 0°C and the -38°C , 

respectively. 



 

 

94 

 

coalescence and warm-rain precipitation in the High-CCN simulations, which allows more 

clouds to become deeper (e.g., Sheffield et al. 2015) and meet the deep convective updraft 

criteria. 

 

b. Intensity 

The mean vertical velocity profile within the deep convective updrafts, as well as the 

percentage difference between the High-CCN and Low-CCN profiles, are shown in Figure 4.7. 

Firstly, the mean profiles for all the model simulations have similar shapes, peaking between 7 

and 9 km AGL, suggesting that comparable updrafts magnitudes and structures are being 

assessed, both between the models and between the High-CCN and Low-CCN simulations 

(Figure 4.7a). All the models produce stronger updrafts (5-15% in 5 of the 7 models) between 3 

Figure 4.7. (a) Profiles of mean vertical velocities over deep convective updrafts in all the 

simulations. The solid lines represent the Low-CCN simulations, and the dashed lines represent 

the High-CCN simulations. (b) Vertical profiles of the percent difference in the High-CCN 

simulations’ mean vertical velocities from the Low-CCN simulations’ mean vertical velocities, 

as show in (a).  
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and 5 km AGL in the High-CCN simulations compared with their Low-CCN counterparts 

(Figure 4.7b). The WRF-SBM has the most extreme response (up to 28% stronger updrafts at 5 

km AGL), which may be related to the larger differences in the WRF-SBM aerosol 

concentrations between the High-CCN and Low-CCN simulations (Figure 4.3). The signal of 

more intense updrafts in the High-CCN simulations wanes in the majority of the models above 4-

5 km AGL, but still remains neutral to weakly positive (0-10% stronger) in all the models 

through ~8 km AGL, near where the peak vertical velocities are achieved. Above 8-9 km AGL, 

the models’ results diverge, with 4 models showing weaker updrafts and 3 models having 

stronger updrafts in the High-CCN simulations.   

To better understand the trends in the mean deep convective updraft magnitudes, 

normalized CFADs are also calculated (Figure 4.8), which eliminate the CFADs’ dependence on  

absolute number and thus can be used to more easily compare the shapes of the vertical velocity 

distributions at each altitude. The shift to more frequent occurrences of the most intense updrafts 

and less frequent occurrences of the weaker updrafts in the High-CCN simulations from ~2-7 km 

AGL, as was noted in Figure 4.6, becomes even more evident in Figure 4.8o-u. The three models 

(UM, NU-WRF, WRF-Morr; Figure 4.8r-t) that demonstrate this shift throughout the depth of 

the convective updrafts also have stronger mean updrafts above 8 km AGL in the High-CCN 

simulations (Figure 4.7b). The other four models (COSMO, MesoNH, RAMS, WRF-SBM), 

which have weaker mean updrafts above 8 km AGL in the High-CCN simulations (Figure 4.7b), 

depict a more irregular signal in the normalized CFAD differences in the upper tropospheric 

levels (Figure 4.8o-q,u). To better understand the physical processes that are associated with 

these updraft responses to the varying CCN concentrations, the terms of the vertical velocity 

tendency equation are assessed. 
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Figure 4.8. Normalized CFADs. Same as Figure 6, except that the CFAD value at each altitude are normalized for the total number 

of grid points at that altitude. 
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4.4 Vertical velocity tendency equation and terms 

Each model utilizes different prognostic variables and approximations to predict how the 

vertical velocity (w) changes with time during the model integration. Because each model’s 

representation and calculation of the vertical momentum equation are different, we use a basic 

form of the vertical momentum equation (Eq. 4.1) and approximate the various terms for each 

model’s native grid and standard variable outputs. 
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  (4.1) 

In Eq. 4.1, the term on the left-hand side is the local time derivate of w, which represents 

how w changes with each model time step at each grid point. On the right-hand side (RHS), the 

first three terms represent the buoyancy (B) acceleration terms. The first RHS term is the 

buoyancy acceleration associated with changes in temperature, where /& is the perturbation 

potential temperature, /8 is the base state potential temperature, and g is the gravitational 

acceleration of 9.8065 m s-1. The second RHS term is the buoyancy acceleration associated with 

changes in the amounts of water vapor in the air, where %%& is the perturbation water vapor mixing 

ratio, and 0 is the ratio of dry air to water vapor gas constants (~0.622). The third RHS term is 

the buoyancy acceleration associated with the amount of water condensate mass, where %, is the 

total condensate mixing ratio. These three terms, when summed, represent the net buoyancy 

acceleration (Bnet) and have been the primary focus of most assessments of aerosol effects on 

deep convective updrafts (e.g., Khain et al. 2005; Rosenfeld et al. 2008; Lebo and Seinfeld 2011; 

Storer and van den Heever 2012). 

The fourth RHS term is the vertical perturbation pressure gradient (VPPG) acceleration, 

where 1 is the air density, and 
¶.!

¶/
 is the vertical gradient in the perturbation pressure. The fifth 
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RHS term is the acceleration due to vertical advection (VADV), where 
¶!

¶/
 is the vertical gradient 

in w. Finally, the last two terms on the RHS of Eq. 4.1 represent the acceleration due to 

horizontal advection (HADV), where - and . are the zonal and meridional wind components, 

and 
¶!

¶5
 and 

¶!

¶6
 are the horizontal gradients in w. Typically, Eq. 4.1 would also include a diffusion 

term, but because of the larger discrepancies on how diffusion is represented in these models, the 

diffusion term is not considered in this study.  

Some of the terms in Eq. 4.1 require a perturbation and/or base state variable. This 

perturbation value is calculated by subtracting a time-varying, altitude-dependent base state 

value from the full variable value. A base state profile was calculated for each simulation as an 

average value based on the non-cloudy grid points (total condensate < 0.1 g kg-1) at the varying 

model altitudes. Additional details on the calculation of these terms and the base state profiles 

are provided in Appendix 4.     

To test these approximations for the various terms, a brief closure assessment was 

conducted. For one of the models (RAMS), the model data were outputted for three consecutive 

model times (the time step is 3 s), such that an accurate approximation of 
¶!

¶"
 could be made using 

a centered-in-time difference. Each of the terms from Eq. 4.1 was calculated for the middle of 

the three times, based on the approach described in the preceding paragraph. Figure 4.9a-g shows 

these various term calculations for a horizontal slice through a deep convective updraft at 7.6 km 

AGL. The terms have varying signs and distributions within the updraft. The sum of the terms 

(RHS of Eq 4.1; Figure 4.9h) is compared to the 
¶!

¶"
, which is calculated from the w field in the 

model (Figure 4.9i). The residual from this comparison (Figure 4.9j) is much smaller than the 

sum of the terms (Figure 4.9h) and most of the individual terms (Figure 4.9a-g). The largest 
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residual values are present along the strongest horizontal gradients in w (Figure 4.9j), which was 

likely related to the exclusion of the diffusion term which would have the strongest impacts in 

these high-gradient regions. Although Figure 4.9 only depicts one horizontal slice through one 

convective updraft in one of the models, this closure was calculated for all the cloudy updrafts at 

this time with the RAMS model output and produced similar results. This closure exercise 

therefore demonstrates that the terms of the vertical velocity tendency equation (Eq. 4.1) can be 

accurately calculated in this manner using these simulation data. In the following sections, we 

Figure 4.9. Horizontal slice at 7.6 km AGL through a deep convective cloud from the RAMS 

Low-CCN simulation at 21:00:03 UTC. Panels (a-g) represent the vertical velocity tendency 

terms in Eq. 1., using the approach defined in the text. Panel (h) is the sum of these terms, which 

represents an estimate of 
9!

9"
. Panel (i) is the 

9!

9"
, estimated using centered-in-time differencing 

from the model w from the timesteps directly before and after 21:00:03 UTC. (j) is the residual in 
9!

9"
 (h minus i). The black contours represent vertical velocities of 5 and 15 m s-1. 
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compare these terms in the High-CCN and Low-CCN simulations for all the models in order to 

explain the trends in the mean updrafts.  

 

a. Thermal buoyancy (BTH) 

 Figure 4.10 depicts the mean thermal buoyancy term for the deep convective updrafts 

averaged for each model vertical level and for 2 m s-1 intervals of w (the same bins as the CFADs 

in Figures 4.6 and 4.8). Since all of the terms in Eq. 4.1 are either directly or indirectly 

dependent on the magnitude of w, this analysis allows for the comparison of the High-CCN and 

Low-CCN simulations at the same values of w. 

 The thermal buoyancy term (BTH) is positive for almost all convective updraft regions 

(Figure 4.10a-n), except for the convective updraft tops (above ~10 km AGL) where evaporation 

and / or sublimation may be resulting in cooler temperatures with respect to the environmental 

base state. The most intense accelerations due to thermal buoyancy are generally found between 

6 and 11 km AGL, in the mixed-phase regions of the clouds. When comparing the High-CCN 

and Low-CCN simulation updrafts (Figure 4.10o-u), several patterns emerge. First, between ~2 

and 3 km AGL, three models (COSMO, RAMS, WRF-SBM) depict weaker BTH in the High-

CCN simulations, two of which (RAMS, WRF-SBM) do not use saturation adjustment schemes. 

However from ~3-5 km AGL, most models show larger, positive BTH in the High-CCN 

simulation, which is associated with more condensation and latent heat release onto the greater 

number concentrations of cloud droplets. This signal is most likely associated with stronger 

mean updrafts in the High-CCN simulations amongst all the models at these altitudes (Figure 

4.7b). Directly above this region of stronger BTH, there is a deep layer (2-5 km) of weaker BTH 

near and above the 0°C level in the High-CCN simulations, consistent with weaker condensation 
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rates and latent heat release. In other words, the convective updrafts in the High-CCN 

simulations are colder than those in the Low-CCN simulations with respect to their respective 

environments near and above the freezing level, a trend that is evident in all models. The altitude 

and magnitude of this signal reversal also corresponds to the waning of the differences in the 

mean updrafts between the High-CCN and Low-CCN simulations (Figure 4.7). At higher 

altitudes (8-12 km AGL), this signal is generally reversed again in most of the models, with the 

High-CCN simulations having larger, positive thermal buoyancy accelerations. 

 

b. Water vapor buoyancy (BWV) 

Because water vapor is lighter than dry air, regions of air with greater amounts of water 

vapor compared to the base state are more buoyant and lead to positive accelerations. The BWV 

term is positive throughout the updrafts, meaning that these deep convective updrafts have 

greater water vapor amounts as compared to the base state, with the most intense values in the 

lower troposphere (Figure 4.11a-n). The magnitude of this term and its difference between the 

High-CCN and Low-CCN simulations is significantly lower than the thermal buoyancy term, 

and thus the BWV term plays a lesser role in explaining the trends in updrafts magnitudes. The 

BWV term does, however, assist in explaining the physical processes associated with the thermal 

buoyancy term. In Figure 4.11o-u, there is a several-km deep layer of weaker BWV (e.g., drier 

updrafts) in the High-CCN simulations, which begins anywhere between 2 and 5 km AGL, 

depending on the model. These regions of weaker BWV in the High-CCN simulations generally 

overlap and are slightly offset to lower altitudes when compared to the regions of weaker thermal 

buoyancy (Figure 4.10o-u). Because this analysis is focused on deep convective updrafts, these 

processes at lower altitudes are precursors to processes at their adjacent higher altitudes. In the 
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Figure 4.10. Average thermal buoyancy (BTH) term for the Low-CCN simulations (top row) and for the High-CCN simulations 

(middle row). Values averaged over deep convective updrafts, as defined in the text, and subset by altitude and w using 2 m s-1 

increments. Black contours represent the number of grid points used for the Low-CCN and High-CCN simulations respectively. The 

bottom row shows the difference in the absolute values between the High-CCN and Low-CCN results. The black contours in the 

bottom row represent the values from the Low-CCN simulations. The dashed, gray lines represent the altitudes where the mean 

temperatures are 0ºC and -38ºC. Note that in the bottom row, data are only shown for regions where data were present and had the 

same sign in both the Low-CCN and High-CCN simulations, where such comparisons are sensible. 
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Figure 4.11. Same as Figure 4.10, but for moisture buoyancy (BWV). Note the change in colorbar scale from Figure 4.10. 
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High-CCN simulations, enhanced condensation that drives the larger positive thermal buoyancy 

in first few kilometers above cloud based (~2-5 km AGL, Figure 4.10o-u) robs the updraft of its 

water vapor and results in drier updrafts in the altitudes above this level (Figure 4.11o-u). 

Therefore, near and above the 0°C level (~4-8 km AGL), the High-CCN simulations have lower 

water vapor amounts, and thus weaker condensation rates and weaker thermal buoyancy than the 

Low-CCN simulations at these altitudes. This mechanism seems to have an oscillatory nature, 

with higher water vapor amounts and more positive thermal buoyancy in the High-CCN 

simulations above 8 km AGL being evident in some of the models (particularly WRF-Morr and 

WRF-SBM). This reversal may also be related to the freezing processes. While this relationship 

between water vapor and thermal buoyancy is likely the dominant process at play in describing 

the trends in thermal buoyancy accelerations and the associated mean updraft trends below ~8 

km AGL, we cannot rule out the impacts of entrainment on altering the water vapor and thermal 

buoyancy in these simulations. 

  

c. Condensate loading buoyancy (BCL) 

 Opposing the positive thermal and moisture buoyancy terms within the updraft, the 

condensate loading buoyancy term (BCL) is negative throughout the updraft and increases in 

magnitude with height (Figure 4.12a-n). Below the 0°C level, most of the models depict weaker 

condensate loading in the High-CCN simulation, meaning that there is less condensate in the 

High-CCN updrafts at these levels. This is a result of reduced amounts of liquid water mass 

(primarily rain) in these lower updraft levels. Above the 0°C level (~5 km AGL), five of the 5 

models show a clear increase in condensate loading in the High-CCN simulations, as the lofted 

amounts of liquid water mass increase.  
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Despite these relatively consistent signals in condensate loading amongst the models, the 

condensate loading appears to play a lesser role than the thermal buoyancy in these simulations 

in terms of the differences between the High-CCN and Low-CCN simulations. Figure 4.13 

shows the sum of the all three buoyancy terms (Bnet), and it is clear that the primary differences 

between the High-CCN and Low-CCN simulations (Figure 4.13o-u) resemble the thermal 

buoyancy term responses (Figure 4.10o-u) better than the condensate loading term responses 

(Figure 4.12o-u). Therefore, in these simulations, updraft thermal buoyancy is more important 

than the updraft condensate loading in terms of explaining changes in w between the High-CCN 

and Low-CCN simulations. We compared this result to several recent studies that have also 

explicitly assessed the different terms of the vertical velocity tendency equation. The ACPC MIP 

results are similar to those of a midlatitude squall line case study (Tao and Li 2016) but differ 

from idealized, tropical, oceanic deep convective clouds (Storer and van den Heever 2012), 

which typically have weaker updrafts than those in midlatitude convection. This comparison 

between these studies provides further evidence that aerosol effects on updrafts are dependent on 

environmental conditions and type of convective cloud system.  

 While the buoyancy terms can be used to explain the majority of the mean updraft trends 

below 8 km AGL, they do not explain the diverging trends above 8 km AGL. As such, the next 

three sections focus on the VPPG, VADV and HADV terms in Eq. 4.1, which do assist in 

explaining these trends and have all received much less focus in prior research conducted on the 

CCN impacts on deep convective clouds. 
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Figure 4.12. Same as Figure 4.10, but for condensate loading (BCL). 
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Figure 4.13. Same as Figure 4.10, but for the sum of the buoyancy terms – thermal buoyancy, moisture buoyancy and condensate 

loading (BNET, BTH+BWV+BCL). 
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d. Vertical perturbation pressure gradient (VPPG) 

 The VPPG term is generally weakly positive below ~6 km AGL, more strongly negative 

above ~6 km AGL in all of the Low-CCN and High-CCN simulations (Figure 4.14a-n). 

Importantly, it also has a similar magnitude to the BTH and BCL terms. This term has both 

buoyant and dynamic components (e.g., Klemp 1987). In the mixed-phase regions of the updrafts 

in these simulations, this term acts to oppose the net buoyancy (Figure 4.13a-n), which 

demonstrates a significant contribution from the buoyant component to the total VPPG term in 

these regions. As such, in many locations throughout the profiles, the VPPG differences between 

the High-CCN and Low-CCN simulations (Figure 4.14o-u) offsets the High – Low CCN 

differences in the net buoyancy term. However, these interactions between the VPPG and 

buoyancy terms vary amongst the models, and the relative contributions of these terms assist in 

explaining the diverging mean updraft response above 8 km AGL amongst the models. 

 Figure 4.15 shows the sum of the buoyancy and VPPG accelerations (B+VPPG). When 

assessing the differences between the High-CCN and Low-CCN simulations, four models have 

deep layers of weaker accelerations due to the B+VPPG term in the High-CCN simulations 

between 5 and 9 km AGL (MesoNH, RAMS, UM, WRF-SBM), three of which (MesoNH, 

RAMS, WRF-SBM) also have weaker mean updrafts above 8-9 km AGL in the High-CCN 

simulations (Figure 4.7). Alternatively, the NU-WRF and WRF-Morr models, which have 

similar patterns to the other models when only considering the net buoyancy, have a much 

noisier response to increased CCN concentrations in this 5-9 km AGL layer, as compared to the 

other models. These two models also have stronger updrafts above 8 km AGL. This result 

demonstrates that the VPPG term is important in terms of affecting the mean updraft response to 

varying CCN concentrations. This result is consistent with a recent study by Tao and Li (2016), 
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Figure 4.14. Same as Figure 4.10, but for the vertical perturbation pressure gradient (VPPG). 
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Figure 4.15. Same as Figure 4.10, but for the sum of the buoyancy terms and the vertical perturbation pressure gradient (B+VPPG). 
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which also concluded that the VPPG term needs to be considered when assessing aerosol impacts 

on deep convective clouds. 

 

e. Advection terms 

 For completion, the analyses are shown for accelerations due to horizontal advection 

(HADV) and vertical advection (VADV) in Figures 4.16 and 4.17, respectively. The horizontal 

advection term (Figure 4.16) has negative values below and positive values above ~10 km AGL 

in both the Low-CCN and High-CCN simulations in all of the models and is generally weaker 

than most of the other terms. This is due to the counteraction of both positive and negative 

HADV accelerations, which are caused by the opposite gradients in w on the upwind and 

downwind sides of the updraft, respectively. Therefore, while locally this term can play a very 

significant role (see Figure 4.9) within the updraft when assessing the mean updraft response, 

this HADV term has a limited overall impact, except for the extreme upper levels of the updrafts. 

 In the mean updrafts, the accelerations associated with vertical advection (Figure 4.17) 

are much stronger than the accelerations associated with horizontal advection, a situation that is 

true for all of the models. The vertical advection term is negative below and positive above the 

altitude of the maximum updraft, where 
¶!

¶"
 is positive and negative, respectively, in both the 

High- and Low-CCN cases. This term neutralizes the sum of the buoyancy and VPPG terms 

(Figure 4.15). This is due to the fact that the full lifecycle of updrafts is being assessed in this 

study, which captures both decaying and intensifying stages. Therefore, in the mean, 
¶!

¶#
 will be 

close to zero, and thus, the VADV term will act to balance the sum of the other terms. While 

these advection terms are locally strong and are essential for closing the vertical velocity 

tendency equation, their interpretations in this analysis framework are extraneous.  
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Figure 4.16. Same as Figure 4.10, but for the accelerations due to horizontal advection (HADV). 
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Figure 4.17. Same as Figure 4.10, but for accelerations due to vertical advection (VADV). 
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4.5 Conclusions 

 As part of the ACPC initiative, a MIP was organized and completed in order to assess the 

consistency of CCN impacts on deep convective clouds amongst seven state-of-the-art cloud-

resolving models. The ACPC MIP represents the first time that an international, coordinated 

intercomparison study has been used to determine the robustness of simulated aerosol impacts on 

deep convective clouds. Seven models were used to simulate the same case study of isolated 

deep convective clouds near Houston, Texas with both relatively high and low initial CCN 

concentrations. Despite the many differences between the models and simulations (e.g., physical 

parameterizations, initial conditions), all the models produced deep convective clouds around 

Houston during the 12-hour period when convective clouds were observed for this case. Deep 

convective cloud updrafts were identified and compared between the High-CCN and Low-CCN 

simulations with the ultimate goal of determining the range of responses amongst the models in 

updraft amounts and intensity due to varying CCN concentrations. The terms of the vertical 

velocity tendency equation were also calculated and compared in order to attribute physical 

processes to the aerosol-induced updraft responses.  

 There were several consistent trends amongst the majority of models. Six of the seven 

models produced more frequent deep convective updrafts in the High-CCN simulations. All of 

the models produced stronger updrafts from 3-5 km AGL in the High-CCN simulations, which 

was due to enhanced condensational latent heating. Above 5 km AGL, the mean updraft 

differences between the High-CCN and Low-CCN simulations in most models waned. This was 

found to be due to the drying of the updrafts that resulted from the enhanced condensation and 

associated water vapor loss in the regions below. Because of this waning effect, all of the models 

either had no differences or slightly stronger mean updrafts in the High-CCN simulations 
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between ~5-8 km AGL. The condensate loading buoyancy term had similar signals in 5 of the 7 

models, with enhanced condensate loading above the freezing level in the High-CCN 

simulations; however, all the models revealed that differences in condensate loading 

accelerations between the High-CCN and Low-CCN simulations were much smaller in 

magnitude than the differences in thermal buoyancy accelerations, and therefore, less impactful 

on the updraft responses to varying CCN concentrations.  

 Above 8 km AGL, the mean updraft response diverged in the models, with some models 

producing stronger updrafts and others weaker updrafts. To best explain this result, we had to 

consider the vertical pressure perturbation gradient (VPPG) term. Generally, while this term 

offsets the net buoyancy term, the relative magnitudes of the VPPG and buoyancy terms at the 

upper levels varied amongst the models, which resulted in the high variability of the mean 

updraft responses (both stronger and weaker updrafts in High-CCN conditions) at these upper 

levels. This result confirms the importance of assessing the VPPG term in aerosol-impact studies 

(Tao and Li 2016) and demonstrates the complex interactions associated with aerosol effects in 

the upper levels of deep convective updrafts. 

While this study focused on mean updrafts over a 12-hour period, many studies have 

shown that the most significant and consistent CCN effects are at the initial stages of cloud 

development and that feedbacks to cold pools, convective anvils and the environment may 

modulate CCN effects at later times in a cloud’s lifecycle (e.g., van den Heever et al. 2006; Tao 

et al. 2007). To assess the consistency of the aerosol impacts on cloud evolution and lifecycles in 

these ACPC MIP data, individual clouds should be identified and tracked. Recent software 

(Tracking and Object-Based Analysis of Clouds; tobac) has been developed for this purpose and 

tested with some of the ACPC MIP simulation data (Heikenfeld et al. 2019). Through tracking 
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individual clouds in this dataset, the robustness of aerosol impacts on the evolution of clouds for 

the ACPC MIP could be assessed. 

In this study, each model was allowed to freely evolve through its model integration. 

While this better represents reality and how these models would typically operate, methods that 

fully constrain the dynamics (e.g., Grabowski 2015; Hill et al. 2015) would help address the 

question as to which processes in the various model parameterization are causing differences in 

the model responses. While this has been studied with a few model microphysical 

parameterizations, a more comprehensive model intercomparison study under such a framework 

would also be useful endeavor.  

Lastly, while research focused on model comparisons is useful in determining the 

consistency of model responses, comprehensive observations of aerosol effects on deep 

convective clouds are needed to validate the complex mechanisms and responses proposed in 

modeling studies. This ACPC MIP assisted in motivating the Tracking Aerosol Convection 

Interactions ExpeRiment (TRACER, Jensen et al. 2018), which will take place in Houston, 

Texas in 2021-2022. The data from this field campaign will be very useful to assess the 

mechanisms proposed in this study.  
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CHAPTER 5: DISSERTATION CONCLUSIONS 

 

5.1 Summary of studies 

Uncertainties remain in the understanding and the model representation of processes 

governing aerosol-cloud interactions, particularly in deep convective clouds. Continued, 

innovative research in both modeling and observational areas will be needed in order to make 

advancements. In this dissertation, three studies related to aerosol particles, deep convective 

updrafts, and their interactions have been presented. The focus of the first two studies was on 

novel observations of aerosol particles and deep convective updrafts, respectively. In the third 

study, a comprehensive analysis of aerosol impacts within deep convective updrafts was 

performed in the framework of a model intercomparison study. 

In Chapter 2, long-term observations of aerosol particle size distributions from the United 

States Department of Energy's Atmospheric Radiation Measurement’s SGP site were utilized. 

Using the comprehensive aerosol observing platform available at the SGP site, the available 

aerosol size distribution data were harmonized and augmented to glean more information, 

particularly about the smallest particles (i.e., particles with diameters less than 30 nm). Unlike 

most intensive, in situ observations, which are typically only available during field campaigns 

that occur on the time scales of weeks and months, the five-year dataset that was analyzed in this 

study allowed for robust statistical analyses that fully described the aerosol particle size 

distributions and their temporal variability at a rural, continental, North American site. Seasonal 

size distributions were quantified and made available for future modeling studies that require 

representative aerosol size distributions in order to reproduce realistic aerosol-related processes. 

Analyses of these data’s power spectra demonstrated that the smallest particles have consistent 
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diurnal cycles in every season, and therefore, these particles could play a more significant role in 

cloud processes than had previously been suggested. These smallest particles had their highest 

concentrations (on the order of 103-104 cm-3) in the early afternoon and evening hours, and these 

cycles were more prevalent when afternoon and evening boundary layers were deeper. These 

long-term data corroborate recent field campaign results at the SGP site whereby new particle 

formation was initially observed in the free troposphere, and these newly-formed, small particles 

then mix down to the surface (Chen et al. 2019). This 5-year dataset also showed that particles 

with diameters between 140 and 800 nm had consistent diurnal cycles, which had their peak 

number concentrations overnight and were driven by organic and nitrate aerosol mass 

concentrations. Weaker cyclic signals were present for longer time scales (several day and week-

long cycles). It was hypothesized that these cycles were related to the temporal variability of 

synoptic weather patterns, which follow similar cycles in this region.  

 While Chapter 2 was focused on surface in situ observations, Chapter 3 elevated the 

discourse to in situ observations above the surface, specifically within deep convective updrafts. 

Due to the hazardous sampling conditions, in situ observations within deep convective updrafts 

are scarce, and many of the current estimates of vertical velocities within deep convective 

updrafts are based on multi-Doppler analyses from ground-based radars and modeling studies, 

both of which have hard-to-characterize uncertainties. In Chapter 3, in situ observations from 

targeted radiosonde launches into the updrafts of supercellular deep convection during C3LOUD-

Ex (van den Heever et al. 2020) were presented. This field campaign occurred in 2016 – 2017 in 

Colorado, Wyoming and Nebraska. Updraft vertical velocities of up to 51 m s-1 were estimated 

from these radiosonde observations for the moderately unstable atmospheric conditions that were 

observed during C3LOUD-Ex, suggesting that the vertical velocities within supercell updrafts in 
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more unstable regions (e.g., the U.S. southern Great Plains) are likely to be even higher than 

those observed during C3LOUD-Ex. Radar data were used to provide important contextual 

information about the locations and conditions that were being sampled by the radiosondes. 

These radiosonde-based estimates of vertical velocities were also briefly compared to other 

methods that are often used to estimate the vertical velocities within deep convective updrafts. 

Comparisons between the radiosonde-based vertical velocity estimates with those from radar-

based, dual-Doppler analyses suggest that the vertical velocities estimated from the C3LOUD-Ex 

radars may not be able to capture the localized, most intense vertical velocities that were 

observed by the radiosondes. This study also demonstrated the benefits of coordinating radar 

scans with in situ observations, which not only provides important context for the in situ 

observations within updrafts but also contributes complementary estimates of vertical velocities 

within deep convective storms. 

 In Chapter 4, data from a model intercomparison project (MIP) that focused on aerosol 

effects on deep convective clouds were utilized to assess the range of responses in deep 

convective updrafts from increased CCN concentrations from seven state-of-the-art cloud-

resolving models (van den Heever et al. 2018; www.acpcinitiative.org). This comparison study 

was organized within the Aerosol-Cloud-Precipitation-Climate Initiative, an international 

working group that is supported by the International Geosphere–Biosphere Programme (IGBP) 

and the World Climate Research Programme (WCRP) and focuses on reducing the uncertainties 

associated with aerosol-cloud interactions (ACPC Initiative; Rosenfeld et al. 2014). Seven 

modeling research groups participated in the ACPC MIP, and their models had many differences, 

including a wide range of physical parameterizations. For example, one of the seven models used 

spectral bin microphysics, while the rest of the models used two-moment microphysical 
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schemes. Furthermore, several models utilized supersaturation adjustment schemes, while the 

other models either diagnosed or prognosed supersaturation. All the models were used to 

simulate the same case study of isolated, scattered deep convective clouds near Houston, Texas 

with both high and low CCN concentrations within the boundary layer, the initial amounts of 

which were based on local observations. While the model simulations differed in terms of the 

timing, intensity, and frequency of convective clouds, all the simulations produced scattered 

deep convective clouds in the afternoon and evening hours.  

The characteristics of these convective updrafts in the high-CCN and low-CCN 

conditions were compared for each model. Despite the significant differences in the 

microphysical, aerosol, land surface, radiation and turbulence parameterizations within these 

seven models, there were many consistent results. Six of the seven models produced more 

frequent convective updraft columns in high-CCN conditions throughout the simulation. In terms 

of the magnitude of convective updraft vertical velocities, in the simulations with relatively high 

CCN concentrations, all models produced stronger updraft vertical velocities (range of 5-25%) in 

the lower and middle tropospheric levels. However, in the upper levels of the updrafts (above ~8 

km AGL), the models’ responses to the high-CCN conditions diverged, with four models 

producing weaker updrafts and three models producing stronger updrafts. The terms of the 

vertical velocity tendency equation were analyzed to understand the processes causing these 

consistent and inconsistent signals. In all the models, the thermal buoyancy term was the 

dominant term in the lower and middle troposphere, while the condensate loading term played a 

secondary role in terms of differences between the high-CCN and low-CCN simulations. 

However, in the upper levels (above ~8 km AGL), the pressure gradient term, which has often 

been neglected in aerosol impact studies, played a significant role and helped to explain the 
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divergence in the mean updraft velocities amongst the models at these altitudes. The ACPC MIP 

is the first of its kind to examine the aerosol indirect effects on deep convective clouds (van den 

Heever et al. 2020), and its results have helped motivate the TRACER field campaign, which 

will take place in Houston, Texas in 2021-2022 (Jensen et al. 2019).  

 

5.2 Implications of this research and future work 

Building from the results presented in this dissertation, several additional research 

investigations could be pursued toward further advancements in the understanding of aerosol-

cloud interactions within deep convective clouds. The SGP aerosol observations presented in 

Chapter 2 showed that throughout the year, there were consistent diurnal cycles in the 

concentrations of the smallest particles (particles with diameters < 30 nm) that peaked in the 

early afternoon and evening hours. Interestingly, this diurnal cycle is concurrent with the diurnal 

cycle of deep convective clouds over land (e.g., Soden et al. 2000), and therefore, it is possible 

that these high concentrations of small particles could have large impacts on deep convective 

clouds. It is unclear, however, whether deep convective clouds can produce the supersaturations 

needed for these small aerosol particles to form cloud droplets. For example, an aerosol particle 

with a diameter of 10 nm, which can sometimes be composed of ammonium sulfate (e.g., 

Hodshire et al. 2019), which has a hygroscopicity parameter of ~0.6 (e.g., Petters and 

Kreidenweis 2007), would require a supersaturation of over 5.0% (recall Figure 1.2 in the 

Introduction). Less hygroscopic substances can also be found in these small particles (e.g., 

Hodshire et al. 2019), which would require even larger supersaturations.  

However, due to the inability to observe supersaturation values throughout deep 

convective clouds with in situ or remotely-sensed observations, models have been the primary 
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tools that have been used to estimate these supersaturation values. Idealized models, such as 

parcel models, have been most often used due to their simplicity and Lagrangian framework, 

which allow them to simulate processes at high spatial and temporal resolutions and produce 

accurate solutions. However, many parcel models do not represent the full spectrum of relevant 

processes with deep convective clouds (e.g., ice processes, collision coalescence, and 

precipitation scavenging), have not attempted to simulate very intense updraft conditions, and 

have prescribed vertical velocities, which do not allow for feedback processes (e.g., Reutter et al. 

2009; Ghan et al. 2011). For example, results from Chapter 3 of this dissertation demonstrated 

that vertical velocities within deep convective clouds can reach 50 m s-1, much larger than the 20 

m s-1 tested in Reutter et al. (2009). A recent modeling study using a Eulerian cloud-resolving 

model suggested that deep convective updrafts can create high supersaturations that can nucleate 

these small aerosol particles (Fan et al. 2019). While cloud-resolving models, such as that used in 

Fan et al. (2019) include many of the complex cloud processes that are often neglected in parcel 

models, these complex models are limited by computational constraints and cannot represent the 

fine scales that can be represented in Lagrangian frameworks and that may be needed to 

reproduce realistic supersaturations (e.g., Morrison and Grabowski 2008). For example, the 

simulations in Fan et al. (2019) utilized a 3-s model time step and horizontal grid spacings of 500 

m. As such, additional simulations that can better capture both the complexity of cloud processes 

and the localized updraft conditions with high temporal and spatial resolution are needed to 

better assess the amount of supersaturation that can develop in deep convective clouds and thus 

whether small aerosol particles can serve as CCN. 

In Chapter 3, a comparison of supercell updraft vertical velocity estimates from the 

radiosonde data and from the radar-based, dual-Doppler analyses from the C3LOUD-Ex field 
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campaign was presented. This comparison demonstrated that for those locations where the 

radiosonde observed the most intense vertical velocities, the dual-Doppler analyses generally 

produced vertical velocity estimates that were 15-20 m s-1 lower than the radiosonde-based 

estimates. The errors in the dual-Doppler analyses, however, were not assessed in this 

dissertation, and it is therefore difficult to determine how much of these differences were due to 

systematic biases between the two observational platforms as opposed to errors within the 

analyses. Observation system simulation experiments (OSSEs) have been shown to be a 

powerful tool towards determining the errors associated with multi-Doppler analyses in deep 

convective clouds (e.g., Potvin et al. 2012; Oue et al. 2019), but require producing realistic, case 

study simulations of the clouds of interest, including accurate representations of the structure, 

intensity and location of the convective clouds. One of the C3LOUD-Ex cases presented in 

Chapter 3 has been recently simulated (van den Heever et al. 2020), and utilizing these 

simulation data in an OSSE framework would provide additional insights into the magnitude of 

the errors associated with dual-Doppler analyses of supercell updrafts, particularly with respect 

to the C3LOUD-Ex results. 

 In Chapter 4, statistics from the ACPC MIP were used to gain insights into the range of 

responses in deep convective updrafts to increased CCN concentrations within different cloud-

resolving models. While this study showed both consistencies and inconsistencies in the mean 

updraft responses throughout the duration of the convective event, it did not consider the 

evolution of individual clouds and updrafts and how this evolution may have changed with the 

varying CCN conditions. The concept that high concentrations of CCN would prolong the 

lifetime of warm-phased clouds with weak vertical motions due to suppressing precipitation 

processes was first suggested by Albrecht (1989), but it is unclear whether this concept holds for 
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deep convective clouds due to the more complicated processes and feedbacks present in deep 

convective clouds. To study the impacts of varying aerosol concentrations on the evolution of 

clouds, individual clouds must be identified and tracked within these simulation data. Recently 

advancements have been made in developing such tracking tools. For example, the tobac 

(Tracking and Object-Based Analysis of Clouds) software package has been developed and 

tested with both simulation and observational data from the ACPC model intercomparison study 

and made available via open-source platforms (Heikenfeld et al. 2019). An example of the cloud 

tracks from one of the ACPC MIP simulations is shown in Figure 5.1. With this tool or other 

similar tools, this extensive simulation dataset that has been created as part of the intermodal 

comparison study could be used to answer many additional questions including: 

Figure 5.1. Tracks of convective clouds that were identified and tracked within one of the 

ACPC MIP simulations using tobac v1.2 (Heikenfeld et al. 2019). Figure provided by Max 

Heikenfeld. 
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1) What is the range of responses to increased CCN concentrations amongst the cloud-

resolving models, in terms of cloud and updraft lifetimes? 

2) When during the cloud lifetime are the most intense updrafts present, how does this 

change under the different CCN conditions, and how does the CCN response vary 

amongst the various models? 

3) Similarly, when during the cloud lifetime is the most intense surface precipitation 

achieved, how does this change under the different CCN conditions, and how does 

the CCN response vary amongst the various models? 

The results from the ACPC MIP dataset could provide both confidence in the robust signals that 

are simulated by the majority of models and guidance to where additional research is needed 

based on those inconsistent responses to the varying CCN concentrations. 

 While simulation data, such as those presented in Chapter 4, can answer many questions, 

particularly about the robustness of simulated responses to varying aerosol concentrations within 

a wide range of models, observations of aerosol-cloud interactions in deep convective clouds are 

also needed. The ACPC MIP assisted in motivating TRACER, a field campaign focused on deep 

convective cloud processes, including aerosol-cloud interactions (Jensen et al. 2019). TRACER 

will utilize a network of radars and other observational platforms to track individual convective 

clouds, similar to the tracking described above for the simulation data, and to develop 4-

dimensional (i.e., three spatial dimensions and time) observational datasets of the evolution of 

individual clouds and their environments. The observations collected during TRACER will 

provide a unique dataset that is expected to either corroborate or contradict many of the model-

based concepts of aerosol-cloud interactions within deep convective clouds and to ultimately 

reduce the uncertainties associated with the understanding of these processes.  
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APPENDIX 1: MERGED AEROSOL SIZE DISTRIBUTIONS 

 

Five years (2009-2013) of data from three aerosol instruments at the ARM-SGP site were 

merged in order to create the aerosol size distribution dataset used in this study. One dataset was 

the aerosol size distribution data from the scanning mobility particle sizer (SMPS), part of the 

TDMA system, which were combined with size distribution data from the aerodynamic particle 

sizer (APS). The merged size distribution from those two instruments spanned the diameter 

(mobility) size range between ~12 nm and ~14 μm with 215 bins (Collins, 2010; ARM Climate 

Research Facility, 2010, 2015). The other dataset contained total aerosol number concentrations 

from a TSI 3010 condensation particle counter (CPC; ARM Climate Research Facility, 2007, 

2011). Therefore, total aerosol number concentrations can be obtained from both the integrated 

SMPS+APS size distributions and the CPC measurements. Because there were very few particles 

larger than the upper limit of the SMPS+APS measurements and the CPC measured smaller 

particles than the SMPS+APS, concurrent CPC data were used to extend the SMPS+APS size 

distributions from ~12 nm down to 7 nm and to improve the representation of the aerosol size 

distribution at the smallest sizes, where the largest SMPS observation uncertainties exist. The 

details of the processing of these data are described here.  

First, the CPC data were quality controlled. Data that were flagged by the ARM quality 

control as suspect or incorrect due to faulty instrumentation or operation were removed. Also, 

CPC data that were consistently lower than the concentrations from a collocated cloud 

condensation nuclei counter (single column, DMT Model 1) at the highest supersaturation 

available (typically ~1%) and CPC data with unrealistically small (< 200 cm-3) or unrealistically 

large (> 100,000 cm-3) aerosol number concentrations were removed. The quality-controlled 
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CPC data were then time-interpolated to the midpoint time of each SMPS+APS measurement 

period (~45 min). Then, the SMPS+APS data were quality controlled. Here, it is important to 

note that estimated corrections were made to the SMPS size distributions to account for potential 

particle losses due to diffusion in the inlet and system tubing. Corrections were not made to the 

APS size distribution data for possible particle losses within the inlet and system tubing, but it is 

expected that these losses are likely small for most of the APS size distribution. For example, 

experiments have shown approximately unit transmission efficiencies for particles with 

diameters up to 4 μm for the SGP inlet system. For larger sizes where low particle counts make it 

difficult to characterize transmission efficiencies experimentally, modeled transmission 

efficiencies predict significantly increasing biases for particles with diameters greater than ~10 

μm (Bullard et al. 2017). During the quality-control process, suspect or incomplete SMPS+APS 

data were removed. Suspect or incomplete SMPS+APS data included instances when 1) the CPC 

data were unavailable or incorrect during a given SMPS+APS measurement period, 2) the 

integrated number concentration from the SMPS+APS was unrealistic, as noted above, 3) large 

portions of the SMPS+APS size distribution were missing, which occurred sporadically due to 

shifts in the instrument voltage, 4) there were unrealistic peaks in the size distribution, 

particularly at large particle sizes, and 5) there were peaks in integrated number concentrations in 

the first measurement after the daily calibration, which were likely due to contamination from 

residual particles from the atomized calibration aerosol. These checks resulted in the removal of 

~25% of the SMPS+APS distributions, with the majority of data removal due to not having 

simultaneous CPC and SMPS+APS measurements. Despite this reduction in data quantity, over 

31,700 size distributions remained, which equate to ~3 years of data during the 2009-2013 time 

period. 
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In order to synthesize the quality-controlled CPC and SMPS+APS measurements into 

one merged dataset, five steps were taken (Figure A1.1). First, the SMPS+APS size distributions 

Figure A1.1. Three examples of the adjustments made to the original TDMA aerosol number 

size distributions and the final aerosol number size distribution post-adjustments (red).  
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were extrapolated from their smallest size bin (usually ~12 nm) down to 7 nm, the approximate 

smallest size for which the CPC observes a significant fraction of aerosol particles (~10%; 

Mertes et al. 1995). The five smallest available size bins in the SMPS+APS size distribution 

were fit with a polynomial of the functional form:  

!"#$!% = '$!" + ),         (A1.1) 

where a and b are coefficients and Dp is the particle size bin diameter in μm. The coefficients, a 

and b, were determined via least-squares regression for each SMPS+APS size distribution, and 

the resulting polynomial was used to extrapolate the size distribution down to 7 nm (Figure A1.1, 

Step 1). Several functional forms were tested for this extrapolation, and the form in Eq. A1.1 

produced the best results. Since the CPC only detected a fraction of the particles less than 28 nm, 

we also applied the CPC detection efficiencies from Mertes et al. (1995) to scale down the 

extrapolated size distributions (Step 2 in Figure A1.1) in order to represent the size-resolved 

distribution that the CPC would observe. Therefore, the integrated number concentration from 

the resulting SMPS+APS size distribution represents an estimate of the same quantity reported 

by the CPC. The integrated number concentrations from the SMPS+APS size distributions after 

Step 2 were compared to the CPC total number concentrations. Since these two instruments were 

generally unmonitored during their deployments, a number of unreported issues (e.g., clogging 

or a leak in the air flow) may have caused the derived concentration measurements from either 

one of the instruments to drift for some extended periods of time. Therefore, in Step 3, the 2-

week rolling median percentage difference between the two instruments was calculated for the 

entire time series and used to correct for any systematic drifts between the two instruments. This 

2-week rolling median calculation excluded times between 1800 and 2400 UTC, when we would 

potentially expect large differences between the instruments due to new particle formation events 
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and growth. Because of the higher uncertainties associated with the SMPS+APS total integrated 

number concentrations, the SMPS+APS size distribution was always scaled up or down to the 

CPC concentrations. This scaling factor was typically within 50% (median value of 7.3% for the 

entire dataset), except for two periods (January-February 2009 and September-December 2013) 

when the median percentage differences were consistently greater than 50%.  

After correcting for this systematic bias (Step 3), the remaining difference between the 

CPC and SMPS+APS total number concentrations was used to adjust the SMPS+APS number 

size distribution, such that the integrated number concentration from the SMPS+APS size 

distribution equaled the CPC value. This difference in the total number concentration was 

applied to the SMPS+APS size distribution using an exponential function, only for sizes below 

the diameter associated with the 95th percentile of the cumulative integrated number 

concentration (median value of ~200 nm), and taking into account the CPC detection efficiencies 

(Error! Reference source not found.). An exponential function was chosen because there were 

much larger uncertainties in the observed number concentrations and diameters of the smallest 

Figure A1.2. Fraction of particles to either add or remove from the size distribution during 

Step 4 of the adjustments (black), which was based on the multiplication of an exponential 

function (cyan) and CPC detection efficiencies (magenta, right axis). 
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particles in the size distribution and therefore, the need to correct particle counts was most likely 

associated with errors in the data for the smallest particle sizes. These uncertainties were 

associated with the possible loss of small particles within the inlet, sampling lines, and/or 

instrument due to evaporation or deposition to walls, the extrapolation of the SMPS+APS size 

distribution, uncertainties associated with the charging probabilities of the smaller particles in the 

SMPS+APS system, and small errors in the high voltage supplied in the SMPS, which can lead 

to substantial uncertainties in the sizing of the smallest particles observed. The aerosol size 

distribution above ~200 nm was not changed in this step. The final correction function (Error! 

Reference source not found., black line) was applied in an iterative manner, nudging the size 

distribution up or down in order to match the integrated number from the SMPS+APS size 

distributions to the CPC total number concentration (Step 4). The resulting aerosol size 

distributions after Step 4 were scaled back up by the reciprocal of the CPC detection efficiencies 

(Step 5) to represent an estimate of the true aerosol particle size distribution and number 

concentration at each time.  

To validate the adjustment algorithm described above, the original and adjusted size distributions 

were compared to data from the New Particle Formation Study (NPFS) (Smith and McMurray, 

2015; NPFS, 2017). NPFS took place at the SGP site for ~6 weeks in April-May 2013, and 

during this study, measurements of aerosol particle size distributions were measured down to ~3 

nm in the SGP Guest Facility, a few hundred meters away from the CPC and SMPS+APS 

measurements. We compared the integrated number concentrations for aerosol with diameters 

between 7 and 30 nm from the NPFS to the adjusted SMPS+APS size distributions during this 

period, since the majority of changes to the SMPS+APS size distributions occurred in this size 

range (e.g., Figure A1.2). By incorporating the CPC data via the steps described above, the 
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adjusted SMPS+APS distributions better captured the timing and magnitude of aerosol 

concentrations at these small particle sizes (Figure A1.3). The correlation coefficient for this 

comparison improved from 0.37 to 0.89 from the original data to the adjusted data. The 

SMPS+APS size distribution data above 30 nm remained relatively unchanged, since the 

majority of the adjustments were applied below 30 nm. This improvement of the SMPS+APS 

aerosol number size distribution data demonstrates the utility of having a suite of related aerosol 

instruments at the same site that can be compared and combined to provide a more 

comprehensive representation of aerosol characteristics
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Figure A1.3. Time series of the integrated aerosol number concentrations between 7 and 30 nm in the New Particle Formation Study 

(red) and the SMPS+APS size distributions both before the adjustments (Original, black) and after the adjustments (Adjusted, grey). 

The dates included were 19 Apr. 2013 through 17 May 2013. 
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APPENDIX 2: ANALYSIS OF THE UNCERTAINTIES ASSOCIATED WITH DRAG 

FORCES ON THE C3LOUD-EX UPDRAFT ESTIMATES 

 

!!,#$%&%'() is the uncertainty in the wair estimate arising from changes in the drag force 

on the radiosonde system within an updraft as compared to still air conditions. Because 

radiosonde systems typically reach their terminal velocity within a couple of seconds and are 

often close to terminal-velocity balance, we can use the formula for the terminal velocity and its 

dependence on the drag coefficient (CD) to estimate the uncertainty. 

The terminal velocity (vT) of the radiosonde system can be determined as follows 

(following, e.g., Wang et al. 2009; Gallice et al. 2011):  

            "* =	%+)(-./_1'.._231/)

56!7
 (A2.1) 

 In Eq. A2.1, net free lift (units of kg), when multiplied by acceleration due to gravity & ~ 9.81 m 

s-2, is the upward buoyant force acting on the radiosonde system. Net free lift is calculated as the 

difference of two quantities: (1) the mass measured when the helium-filled balloon is attached to 

a spring scale (typical value of 1.03 kg; range from 0.86 kg to 1.40 kg); and (2) the combined 

mass of the radiosonde and dereeler attached to the balloon (0.24 kg). These measurements were 

taken during the clear-sky, still-air launches described in Section 3.2a. The other variables in Eq. 

A2.1 include the ambient air density ', the drag coefficient (8, and balloon cross-sectional area 

). The helium inside the balloon is assumed to expand adiabatically as the balloon rises. The 

initial ) of the balloon is approximately 1.33 m2, obtained from the clear-sky, still-air launches. 

Based on prior laboratory studies using perfect spheres (Achenbach 1972; Son et al. 2010) and 

on radiosonde observations during relatively calm, nighttime conditions (Gallice et al. 2011), 

drag coefficients for tropospheric conditions generally fall between 0.2 and 0.5. The drag 
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coefficient within a supercell updraft may fall outside of this range, but we have no way of 

knowing whether this is the case due to the lack of observations. Using the known range of 

tropospheric drag coefficients from relatively calm conditions and using a range of tropospheric 

air densities, we can estimate the uncertainty of vT, and thus wair, due to variations in CD based on 

Equation A2.1 (Fig. A2.1). The range of vT as a function of air density (gold line) is at most 3.1 

m s-1, which occurs at the lowest density included (0.3 kg m-3 , representative of the upper 

troposphere). Therefore, we estimate that !!,#$%&%'() is ± 1.6 m s-1, which is half of the 

maximum range (3.1 m s-1). 

 

 

Figure A2.1. Terminal velocity calculations (m s-1) for ascending C3LOUD-Ex radiosondes 

with varying drag coefficients and densities (shaded, left axis) and the range (maximum minus 

minimum) of terminal velocities for each density. 
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APPENDIX 3: ACPC MIP MODEL DETAILS 

 

We present the details and the associated references for the models that participated in the 

ACPC MIP and the parameterizations that they used for these simulations in Table A3.1. 
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Table A3.1. Details and references for the varying physical parameterizations and simulation differences between the models that 

participated in the ACPC MIP. 
 

Model  

Abbreviation Microphysics Hydrometeors  

Calculation of 

Hydrometeor Fall Speeds 

Saturation 

Adjustment? Aerosol Activation Aerosol Processes 

Heterogenous Ice 

Nucleation  

COSMO 

2M: Seifert and Beheng 

(2006a), Seifert 

et al. (2012) 

c, r, g, h, s, i;  

(2M in all 

hydrometeors ) 

Number and mass weighted 

mean fall speeds, assuming 

different DSDs and power 

laws for different 

hydrometeors  Yes 

Based on COSMO-

ART3.1: Vogel et al. 

(2009) 

N/A (domain-wide, 

temporally constant 

aerosol profile) Phillips et al. (2008) 

MesoNH 

2M, LIMA: 

Vié et al. (2016)  

c, r, g, s, i 

(2M in c, r, i) 

Fall speed-diameter power 

law, different for each 

hydrometeor type Yes 

Based on the Köhler 

theory with a 

diagnostic of the 

maximum 

supersaturation. 

Aerosol transport 

(resolved & sub-grid), 

activation, regeneration 

through droplets 

evaporation Meyers et al. (1992) 

RAMS 

2M, RAMS: 

Meyers et al. (1997), 

Saleeby and Cotton 

(2004) 

c, d, r, g, h, a, s, i 

(2M in all 

hydrometeors) 

Fall speed of hydrometeors 

depends on size (smaller 

particles fall slower; larger 

particles fall faster) No 

Aerosol activation 

via bin parcel model 

look-up table: 

Saleeby and Cotton 

(2004) 

Aerosol advection, dry 

deposition, wet 

deposition, regeneration 

from 

evaporated/sublimated 

hydrometeors: 

Saleeby et al. (2013)  

DeMott (2010), 

particles greater than 

500 nm 

UM 

2M, CASIM: 

Shipway and Hill, 

(2012), Hill et al. (2015), 

Grosvenor et al. (2017), 

Miltenberger et al. 

(2018) 

c, r, g, s, i  

(2M in all 

hydrometeors) 

Fall speed-diameter relation, 

different for each 

hydrometeor type (see Tab. 

2, Miltenberger et al. 2018, 

except for graupel which is 

500*pi/6) Yes Shipway (2015)  

Aerosol transport 

(resolved & subgrid), 

considered in activation 

(but not depleted) Meyers et al. (1992) 

NU-WRF 

 

2M, P3: 

Morrison and Milbrandt 

(2015) 

c, r, ix1,;  

(2M in c, r, i; i 

has explicit rime 

ice mass and 

density, this is 

single ice 

version) 

Droplet and rain drops 

depends on size, ice depends 

on mass dimension: 

Heymsfield et al. 2007, 

Morrison and Milbrandt 

2015  No 

Abdul-Razzak and 

Ghan (2000) using 

minimum 

supersaturation from 

Morrison and 

Grabowski (2008, 

their Eq. A10) 

Aerosol transport 

(resolved & sub-

grid)activation, removal 

by droplet coalescence, 

regeneration from 

droplet evaporation: 

Fridlind et al. (2017) Cooper (1986) 

WRF-Morr 

 

2M Morrison: 

Morrison et al. (2005), 

Morrison et al. (2009) 

c, r, h, s, i;  

(2M in all 

hydrometeors) 

Droplet and rain drops 

depends on size, ice depends 

on mass dimension: 

Heymsfield et al. 2007 Yes 

Abdul-Razzak and 

Ghan (2000) 

N/A (domain-wide, 

temporally constant 

aerosol profile) 

 

Cooper (1986), 

Rasmussen et al. (2002) 

WRF-SBM 

 

SBM: 

Khain et al. (2004), 

Shpund et al. (2019) 

c, r, h, s, i;  

(explicitly 

calculates mass 

and number of 

particles in each 

bin) 

Fall speed of hydrometeors 

depends on types and size  No 

Based on the Köhler 

theory 

Aerosol is prognostic 

with advection, 

activation, and 

regeneration considered: 

Shpund et al. (2019) 

Deposition freezing: 

Meyers et al. (1992); 

Heterogenous and 

homogeneous drop 

freezing: Bigg (1953)  
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Table A3.1. Continued. 
 

Model  

Abbreviation Model version Grid 

Vertical 

Coordinate Land Surface Boundary Layer / Turbulence Radiation 

Init. / Boundary 

Conditions Dataset 

COSMO 

v5.1: Schättler et 

al. (2016) Arakawa-C 

Terrain-following 

height coordinate: 

Gal-Chen and 

Sommerville (1975) 

TERRA: Heise et al. 

(2006) 

3-D Smagorinsky-Lilly closure: 

Langhans et al. (2012) Ritter and Geleyn (1992) 

 

NCEP Global Data 

Assimilation System 

(GDAS)/FNL 

MesoNH 

v5.4.1: Lac et al. 

(2018) Arakawa-C 

Terrain-following 

height coordinate: 

Gal-Chen and 

Sommerville (1975) 

SURFEX: Masson 

et al. (2013)  

3D (1D in the low-res domain) 

turbulence scheme using a 

prognostic TKE and a mixing-

length closure: Cuxart et al. 

(2000) 

SW: Fouquart and Bonnel 

(1980); LW, RRTM: 

Iacono et al. (2008)  

 

 

 

ECMWF real-time 

forecasting system 

RAMS 

v6.2.09: Cotton et 

al. (2003), Saleeby 

and van den 

Heever (2013) Arakawa-C 

Terrain-following 

sigma-Z coordinate 

LEAF-3: Walko et 

al. (2000) 

3D deformation K: 

Smagorinsky (1963) 

Two-stream: Harrington 

(1997) 

 

NCEP Global Data 

Assimilation System 

(GDAS)/FNL 

UM 

v.10.8: Walters et 

al. (2017) Arakawa-C 

Charney-Phillips 

grid, terrain-

following close to 

surface 

JULES: Best et al. 

(2011), Clark et al. 

(2011) 

Blended boundary layer 

scheme: Lock et al.(2015)  

and a 3D Smagorinsky-type 

turbulence scheme: Halliwell 

(2015), Stratton et al. (2015) 

SOCRATES: based on 

Edwards and Slingo 

(1996) 

 

 

ERA interim reanalysis 

data at a resolution of 

0.6 degrees 

NU-WRF 

 

WRF ARW 

v3.9.1: Skamarock 

et al. (2008) Arakawa-C 

Terrain-following 

eta pressure 

coordinate 

Noah-MP land-

surface model: Chen 

and Dudhia (2001) MYNN 2.5 level TKE scheme 

Goddard radiation 2017: 

Matsui et al. (2018) 

NCEP Global Data 

Assimilation System 

(GDAS)/FNL 

WRF-Morr 

 

WRF ARW 

v3.7.1: Skamarock 

et al. (2008) Arakawa-C 

Terrain-following 

eta pressure 

coordinate 

Noah-MP land-

surface model: Chen 

and Dudhia (2001) YSU: Hong et al. (2006) 

RRTMG scheme, SW & 

LW: Iacono et al. (2008) 

NCEP Global Data 

Assimilation System 

(GDAS)/FNL 

WRF-SBM 

 

WRF ARW 

v4.0.3: Skamarock 

et al. (2008) Arakawa-C 

Terrain-following 

eta pressure 

coordinate 

Noah-MP land-

surface model: Chen 

and Dudhia (2001) YSU: Hong et al. (2006) 

RRTMG scheme, SW & 

LW: Iacono et al. (2008) 

NCEP Global Data 

Assimilation System 

(GDAS)/FNL 
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APPENDIX 4: ACPC MIP BASE STATE CALCULATIONS 

 

The terms of Eq. 4.1 are calculated from each model’s output on their native grids and at 

the center of each model grid box. In some instances, variables are interpolated by ½ of the 

model grid spacing in either the x, y, or z direction in order to calculate each term’s value at the 

center of the grid box. Similarly, w, which is prognosed at the top and bottom faces of a model 

grid box, is interpolated to the center of each model grid box, such that the analyses presented in 

this study all occur at the center of each model grid box. 

Because all the models calculate their base states differently, we make the same 

approximation for the base state for each model’s data to allow for more comparable results. This 

base state is calculated as follows. At each model output time, all non-cloudy model grid points 

and their respective model altitudes are collected. A 5th order polynomial function, with altitude 

being the independent variable, is then fitted to this data using least squares regression to 

estimate the base state. A 5th order polynomial was used because it best captured the shape of the 

base state profiles from the range of functions that were tested. 


