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1. INTRODUCTION

While an enqrmous_amount of 1it§rature (especialiy in aerodynamics)
is concerned with the flow created by an obstacle immerged in a
unifdrm stream, a relatively little amount of work has been done
on flow about obstacles immerged in a non-uniform stream, such as

a boundary layer near the walls of a duct.

In this case, in addition to the "primary flow" (namely the flow
that should take place if the approach velocity was uniform), a
transversal "secondary fiow" arises which is the cause of several
interesting phenomena. The secondary flow is responsible for the
displacement of the stagnation streamlines in the direction of the
lower velocity, with a consequent alteration of the drag coefficient
of the immerged body; in the case that the immerged body is a
Pitot tube, this "shift effect" is the cause of errorsvin the
velocity evaluation. Another important feature related to the
secondary flow is the formation of the "horseshoe vortex" at the
foot of piers and abutments in rivers, responsible for the scour

(Lig. 1).

The purpose of this research is to determine the pressure and
velocity distribution in the vicinity of a‘circular cylinder
pPlaced vertically in a channel with a non—uniform vertical
distribution of the approach velocity; Numerical techniques

for the integration of the flow equation have been considered.



/ :
No definitive solution has been achieved as yet, but some preliminary
results are given with a suggested program for research continuation.
r :
2. REVIEW OF THE LITERATURE

The non-uniform velocity distribution of the undisturbed stream

approaching the obstacle is generally that corresponding to a
boundary layer: in other words, it is generated by frictional
effects. However, the presence of shear stresses in the
vicinity of the obstacle is not at all, in itself, a necessary
factor for the cropping-up of the secondary flow: diréct cause
of the secondaryvelocity component is rather the lower dynamic
pressure near the wall of the channel, due, in its turn, to
the lower approach velocity. In front of the obstacle, the
friction forces can be neglected in comparison with the
pressure forces; therefore, once thé approach velocity dis-
tribution is prescribed far upstream from the obstacle, the
flow field should be described with sufficient accuracy by the
equations of the ideal (inviscid) fluid, even if, of coufse,

the flow cannot be treated as irrotational Eﬂ .

Because of the complexity of the inviscid flow equations, ap-
proximations are always required if an analytical solution is
sought. According to a classification of Hawthorne [?], the
approximate solutions of secondary flow may be divided into

three types:
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1. Flow with small shear (i.e. small velocity gradient)

and small disturbance (i.e. small stagnation-pressure variation);

2. Flow with small shear but large disturbance;

3, Flow with large shear but small disturbance.

Only a limited number of solutions, in very particular cases of
two-dimensional or axi-symmetrical flow, are available with large

"shear and large disturbance.

It is noted that solutions of types (1) and (3) do not allow for
the presence of stagnation points (the disturbance is assumed to
be small); therefore, they do nmot apply but for thin airfoils and

slender bodies.

Solutions of type (2) (known as "secondary flow" approximation)
may be applied to the flow around thick bodies like cylinders,
provided that the approach velocity distribution is only weakly

sheared;

Lightill [3] has calculated the velocity field about an infinitely
long circular cylinder immerged in a stream having a weak linear
velocity gradient in the spanwise direction: Lightill's solution
is rerroduced in fig. 2. In the assumed hypothesis the velocity

field results from the superposition of:.

i) a primary flow, contained in each plane perpendicular to the
cylinder and coinciding with the two-dimensional potential-

flow solution;
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ii) a secondary flow, consisting in a velocity distribution ex-

clusively in spanwise direction.

This approximéte solution presents two major limitations. The
_first is that the magnitude of the secondary (spanwise) velocity
tends to infinity on the surface of the body and on the plane of sym-
metry behind it; as a consequence, the drag of the body results
to be infinite. The second is that the cylinder is considered
infinitely long; no information is given about the flow at its
end, where the vertical velocity gives rise to the horseshoe
vortex. Although the first limitation may be somehow ovefcome
by introducing a boundary layer close to the surface of the

body E{] , the approximate hypothesis of a uniformly and weakly
sheared oncoming flow does not lead, in practice, to a satis-

factory description of the phenomenon.

Therefore, instead of looking for an analytical but approximate
solution, it is thought that more information could be’'obtained
by the numerical integration of the inviscid flow equations

(Euler's and continuity equations).

A large number of articles are available abéut numerical solutions
of the flow equations, both in the inviscid and viscous flow case,
especially in axisymmetric situation.  The aim of most of the
articles, however, is to predict the evolution of the flow field
during the time, starting from known initial conditions prescribed
all over a certain region of space. (The first important contri-

bution in this direction has probably been the paper by



Richardson [5] on meteorological forecasting). The problem
being considered in this paper, instead, is to find the steady
flow field over a certain region of space with specified

conditions on its boundaries.

This latter type of problem has received a rather intensive
investigation with reference to the flow within the turbomachines.
In a recent paper [E] s, Boyd and Rice apply the three-dimensional
Navier-Stokes' equations to determine the steady flow between
parallel co-rotating disks; a finite-difference technique for
solving these equations (in cylindrical coordinates) is developed

which will be reconsidered later.

Finite difference integration of the three-dimensional Euler's
equations (in rectangular coordinates) has also been performed
by Stephan [7] to predict the (steady) free-surface shape of a

Jjet issuing from a culvert outlet.

In both of these problems velocity and pressure distributions
were preécribed at the upstream boundary, and the cbmputation
was carried out toward successively downstream positions, where
pressure and velocity components were determined by their known
values upstream. In the case of the co-rotating disks [6], the
velocity distribution of the entering flow was arbitrarily pres-
cribed on the outer periphery, while the external pressure was
assumed constant; the velocity distribution and the (constant)
value of the pressure was calculated successively for each inner
radius (fig. 3a). In the case of the free jet issuing from a

culvert [7] , the velocity and pressure distribution were pres-
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cribed in the outlet cross section, based on experimental results;
fhe velqéity and pressure distribution, as well as the Jjet-shape,
was suc#essively calculated for each downstream section (fig. 3b).
/ _
In our problem, however, the situation is still quite different.
Qur boﬁndary conditions are theoretically defined only at irfinite
distance upstream from the cjlinder, where the streamlines are
supposed to be parallel (no transversal velocity component end
a hydrostatic pressure-distribution exists); at any other finite
distance from the cylinder the velocity and pressure distribution
is unknown; (a secondary flow, no matter how small it is, is cer-
tainly present). The lack of knowledge of the boundary conditions
at any finite distance led Dalton and Mash 8] to think that
finite difference method is unfit to obtain a solution for this
problem; (on the other hand, an attempt to solve it by a perturbta-

tion technique, referred to in the same paper, was also unsuccesful).

However, starting from a tentative condition at finite distance from
the cylinder, some iterative procedure could probably be found able
to reach a solution which is consistant with the asymptotic behaviour
of the flows at the upstream infinity. Let us observe, by the way,
thet also the flow studied by Stephan [7] may be conveniently des-
cribed by its asymptotic behaviour in the duct at infinite distance
upstream from the outlet. In this case, the pressure and velocity
distribution on the outlet cross section should ensue from the

computation, instead of being prescribed on the base of experiments.
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A_question arises whether the asymptotic behaviour at the up-
stream/infinity, assumed as a boundary condition, is able to
garantee the existance and uniqueness of the solution. In other
words, the question is whether the problem is mathematically

"welllposed" [9].

In his interesting paper on secondary flow [i], Kronauer stated
that the uniqueness of rotational flow solutions from given
boundary values'is complicated by the possitility of having closed
interior regions of circulating fluid; however, this possibility
is eliminated if one is interested is a.solution where each

particle traverses the entire duct length.

The horseshoe vortex at the foot of the cylin&er is not, very
likely, a closed region of circulating fluid; nevertheless, it

is not sure that the solution of the inviscid flow equations
(even if unique) will reveal the presence of the horseshoe vortex,
since its formation may perhaps be due to some instability of the
motion or to some effect neglected by the equations. An answer

to the question cannot be given at this stage.

In the same paper, Kronauer suggests an iterative technique for
calculating the flow field past a body with a non-uniform approach
velocity. The technique is based on the repeated integration of .
Cauchy's vorticity equations, and it has been applied to the flow
about a cascade of symmetric airfoils. As the above applicétion
is based upon some assumptions valid oniy for slender bodies,

an eventual rearrangement of this technique for bluff bodies will

require further investigation.



In the next paragraph an iterative procedure based on the repeated
integration by finite differences of Euler's and continuity equations

is suggested; the fluid is supposed to be incompressible.

3, FORMULATION CF THE PROBLEM

A vertical cylinder of radius r;is placéd befweéﬂ.two horizontal
planes; coﬁstituting the bottom and the top of a infinitely wide duct;
the lower half of the arrangement is shown in fig. 4.

The undisturbed oncoming flow at the upstream infinity is assumed

to be parallel to the axis y, uniform in each horizontal plane,

but with a prescribed velocity distribution along the vertical

axis z; let vo(z) be the undisturbed velocity in each horizontal

plane and v__ the maximum value of vo(z).

oo
As the plane (x,y) is a plane of symmetry, it will be chosen as
the upper boundary of the flow region; (neglecting the effects
near the surface, it may also approximately represent the water
surface of an open cﬁannel). The lower boundary is set on the
bottom of the flume, at a depth z=h below the plane Ly ),
Because of symmetfy, a lateral boundary has been set at 6 - 0°;
another one has been set at 0= 90°., The computations are not
carried beyond © = 90° since the inviscid flow equations do not
apply because of separation effects. The outer boundary haé been

fixed at an arbitrary distance rp from the cylinder axis.

Cylindrical coordinates have been employed, after some unsatisfacto-
ry results with rectangular coordinates. In.cylindrical coordi-

nates, the Euler and continuity equations describing the flow are



ull 4 ¥ gg.-;_.w?_g:-% Kpryh) |
u%¥-+ % %g + %X + W 2% = - %; ziEggiﬁl ;
:9¥+¥%g+wgizv=_%9(p’;th) ,
%% - % - % lg + 2% =0 H

where u, v, w are the velocity components on the r, 0, 2
directions, g is the fluid density and (p+,'h) is the piezometric

pressure.

After having defined the following non-dimensional ratios

h
R:L'Zzz—-'H:...Qo
. X Y _zo o r ) 7
u v W
U= 5 V=l ;Ww=22;
Voo Voo Voo ’
+¥h
P =B
Voo
the flow equations become
g0, v qu_v2 L9u_ e 0
R*R % "R 3% - T IR ;
av v ooy UV av._ _ 13 :
U%R*R 26" ®R "V~ "R (2)
W LV W, _ 9P .
Usg + R w0 w_az = %7 ; (3)
W, U, 1 v v .
WR*P*RYR 99t = 5 (4)
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4, DIFFERENCE FORM OF THE FLOW EQUATIONS

. In order to write the above equations in finite difference form,
the region around the cylinder has been marked by a grid, as

shown in fig. 5. Grid points were designated by i, j, k subscripts,
respectively at the R,8 , Z coordinate.
k

If the subscripts io, iF’ jo, jF’ k are respectively used

o’ °F
for designating the points at R =R, =1, R =Rg, 6=0, 0=T/2,

Z =0, Z = H,, the mesh sizes in R, @, Z directions respectively

are
N B Sk .
- 9 - 'y -- ’
1o 1F lo
™
T = = /2 $
Jp < Jdo
¢ = 0 ;
- ]
kF ko
and thg coordinates
R = 1iD 3
8=(j- 3T ;

“-e

Z = (k - ko)C

At any point i, j, k, not lying on the boundaries, the derivatives
with respect to R,8 , Z of any quantity Q may be replaced by the’
following "central differences" [10] [11] :
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3 ~ Qi""l j k - Q.- j
b ‘.73\ 1,4,k " 2y i-1,4,k

2D ;

U . - Q. .
%8 |i,j’k ¢ MLk - %, -1,k

9 I o kel T Y
7% 1,4,k S 1y s X+ 3 i,j,k=1

Therefore, equations (1) (2) (3) and (4), written in "difference

form", are:

(U ., = U ) V.o
I TS 00 B Sl T i,] Uy, 5 e W ]
2
Vs . (U
i,d.k , y i,3,0+1 = Ui, 4.%-1) (P, =
. N ol . P. . . -
0 7 L, 0k - R - - SEAL 3 (1a)
(v, N ) '
. tetoade = Vit 400 Wi,z . . = W
i3,k D) o 1 ds + liggk . l,J+l,k2T 103‘1,k) +
U, ..V
1,3,k Vi,g,k s et = Vi, 50-)
_ + W, . i,j,k+1 1,J,k~1
iD i, J.k - =
P, . - |
_ %ﬁ (P g1,k = Pi,4-1.60 .
‘ > ’ ’ (22)
(W o =0 =W )y v
. tel.dk = Yicti)  Vaig. (i - W, .
1yd,k T e i S il Ll
v M e oY1) Bagie — Py geen) '
i . L = o 2 S =
Jdsk 2C Sy ; (32)
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U, = Yica,g00  Bige 1 Yagene =Y 501,00
/2D ib— 7 1D 2T e
(W, oopiq = Wi oz ) R , e
BRI A L ~ (4a) .

Solving successively egs. (4a) (2a) (3a) (la) for the unknown

quantities, the following system of equations follows:

Vi,i41,0 - ViL3-1,0) D
- — - (w

Usi1, 5, = Yio1,4,x iT 1,9,k " Vi, 5,10 "
80y iy -
i : (5
Vilix = Vil 4k - zi,j,k (Vi,j+1,k_; vi,j—l,k) _

1+l,d, i-1,J, i, g,k 1
D Mgk oy oy Ly o Py i, = Piga0d - 250k : 1€)

Ui,j,k i,j,k+1 i,j,k=1 lTUi,j,k i
L T 1 A P15 16 Sl P S

141, .k i-1,J,k Ui,j,k 1T
D ik (y v y oD P "B o (o
S U, i,d,k¢1 ~ Yi,5,k-1) © T T ;

i,J3,k i j,k




U

Pivl, g,k = Fi-1,3,0 ~ Ui,3,6 Uav1, 5,6 = Vi1, 4,60 =

o (Ui,j+l,k.' Ui 4-1,K) D il = i 5 y 4
1,3,k T T Yi5,% Ui 5,041 - Vi, 5,51
2 .
2v° . , |
.__%4445 . | . (8)

The above system allows the computation of the velocity components
and pressure at the radius (i+l), from the known values at the
previous two radii (i) and (i—i). The procedure is then repeated

for the next ring, and so on.

This scheme, called "direct difference" scheme, failed to yield

' satisfactory results in the problem of Boyd and Rice [6] ¢ in
that case the indirect or "inverse-difference" scheme was then
used and proved successful. Unlike the direct difference scheme,
the indirect scheme does not allow one to calculate separately
the field values at different positions on the ring (i+l);
instead, all the values on the ring (i+l) are simultaneously
provided by the sélution of a system of (3n + 1) equations, where

- n is the number of grid points in the ring.

This second procedure requires much more‘computation time than

the direct scheme, but it does not seem necessary to be applied to
our problem. It is necessary to point out that the Navier-Stokes
equations solved by Boyd and Rice involve second~order derivatives

‘which are

15.



14,

probably more sensitive to accumulative errors. On the other
hand, for the first-order equations of the inviscid fluid, the
direct scheme was proved succesful by Stephan [7] ; even if he
used the lesé precise "forward difference" instead of’fhe
"central difference” as has been done here; satisfactory results
have also been achieved in some preliminary computations in this
research (see paragraph 6). At any rate, the inverse difference
scheme may be kept in mind if an alternative computational

method is to be tried.

5. SPECIAL CONDITIONS ON THE BOUNDARIES

The system (5) (6) (7) (8) cannot be directly employed on the
boundaries because some of the quantities in the equations turn
out to be unknown. These quantities will be replaced in the

équationsvas it follows.

On the plane 8 = 0 (j=jo), because the symmetry, it is

v -V

i g-1,k - i,J+1,k ,
Ui i-1,x = Ui, 441,k ,
Wis-1,k = Yigelkx ,
Pi 51,0 = Fi jel,x .

On the plane Z =0 (k:ko), because the symmetry, it is



15.

-

/ wi,j,k;l =Wi 5.kl ,

/ Us 3,k-1 = Ui, 3,k .
_/ Vi1 T Vi kel
Py 5,0-1 = Fi,3,ke1 :

On zhe plare @8- T (j:jF),‘which is not a plan of symmetry,
the central difference does not apply-anymore and it is replaced
by the backward difference; it is equivalent to put in the

equations, for each quantity Q, -

Q 5+l,k = Rk - YU, 51,k

The same is it on the plamZ = H  (k = k

QU gkel T R 5,0 - U k-1

The equations (6) and (7) also do not apply where the quantity

U x 1s equal to zero. It happens on the plane e = mT/2 (J=3p)»

i
wh;i; the velocity is supposed to be tangéntial. In this case

eqs. (6) and (7) will be replaced by the following ones, obtained
by the eqs. (2) and (3) written in difference form at the point
(i-1,3-1,k) (the’backward difference is used fd: the derivatives

with respect to R here).

Ve o
_ : _TD .. i+l, j-1,k
il ik = Tial,ge2,k = T Ual) s

i+l, j-1,k

U
- 27 (i+l)
Vil j-1,k

© Vi, -1,k T

141, j-1,k-1’

.V v - 27 (U,

i+1,4-1,k = Vi,3-1,% i+1,§-1,%) =
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Fionge = Piar,ge20)
5 : : 3 (6a)
i+1,3-1,k
| : W oo .
w g _ D (i+1)  Yi4d,4-1,k
| i+l,j,k i+l, j-2,k C Vi+l,j-l,k
U, . .
. - : 141, 3-1,k
e (W1, 5-1,041 = Wis1, 5-1,%-17 — 2T (1+1) Vi1 j-l’k
9 ’
e (W1, 5-1,6 = Wi, 4-1,6) -
(P. . - P, : Y. :
%? (i+l) i+l, 1,$+1 i+l, j=-1,k=1 : (7a)
i+1,3-1,k

Finally, the geometric boundary conditions have to be stated
for the velocity compdnents, on the cylinder surface (i+i°)

and on the planes j=jo,k=k

o? and k=kF; they will be respectively
Vi dok =0 | ©)
Vi3 =9 -
.. * = O .
wlaJak

)

6. CALIBRATION OF THE PROGRAM - PRELIMINARY RESULTS

A computational program has been written for Egs. (5) (6) (7)
(8) and for all the special conditions on the boundaries mentioned

above,
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This program is now being calibrated in the simple case of

_uniform approach velocity, comparing the computed results

with the wellknown vaiues of the two-dimensional potential
flow theory; The velocity components and the pressure distri-
_Bﬁtion corresponding to a uniform apprcach velocity, Voo? 2Te
given, according to the potential flow theory, by the following

expressions:

U=-cos O - (1 - lﬁ)
. R
1
V = senB(1 + —2)
R
W=20

1 2 2
P=5(1-1U°-v).

The main purpose of these calibration tests is to determine the
ﬁore apprépriate mesh sizes of the grid. In the first tests
performed, computation has been carried out starting from the
cylinder surface up to a distance of n = 3 radii from the
cylinder axis (RF = 3). The mesh size ih the radial direction

has been assumed uniform and equal to 1/m = 1/4 of the radius;

therefore, it follows:

i m = 4 (subscript on the cylinder surface);

(o)
i

p = DR.m = 12 (subscript on the outer boundary).

The number of steps in radial direction is then
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It =as been then assumed that the same number of steps will

alsc be in tangential and vertical directions, namely:

kp -k, =dp-Jdp=1ip-1, =8

Putting jb =2 and k = 2 (for computer requirements, Jo and kg

muss be larger than 1), it follows:

(n-1) m+2 = 10

'JF

kp

(n-1) m+2 10

The computation has then been started from preséribed values of
pressure and velocity components on the cjlinder surface (i=io)
and on the next outer ring (i=io+1), computed by the two-
dimeﬁsional potential flow; the unknown values in the successive
oubter rings have then been computed by the finite difference
equations. Comparisbn with the potential-flow values is satis-

factory, but it seems that a still finer mesh should be used.

.~ 7. RESEARCH CONTINUATION

The calibration of the program, by means of potential flow theory,
will be continued untill a suitable mesh size of the grid will be

siagled out.

Th= mesh sizes, as well as the distance from the cylinder up to
which the computation is carried on, may easily be varied on the
program. This can be done either by changing the values n and m
(that is, keeping an equal number of steps in the three directions)

or, directly, by changing the values i, i kp (if different

S
numbers of steps in each direction are required).
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»,

We will mention that Boyd and Rice [6] performed their compu-
tation using 21 steps in the vertical direction and 1500 in the
radial direction (the flow was axi-symmetric), but in our case

a much coarser grid can probably be used.

The next stage, and the most important one, will be to find a
suitable iterative procedure for solving the problem in the case

of a non-uniform approach velocity.

It has already been said that, with a non-uniform approach
velocity, the flow conditions are unknown everywhere but at the

infinite distance upstream (parallel flow to the axis y and

hydrostatic pressure distribution).

We will tentatively assume that, at a sufficient distance from
‘the cyliﬁder, the undisturbed flow will be affected only by
lateral displacement of streamline. In other words, we will
suppose that, far enough from the cylinder, the pressure and
velocity values are still provided, in each horizontal plan,

by the two-dimensional potential flow theory. Under this
assumption, if the approach-velocity has a vertical distribution,
vo(z), the velocity components and the pressure in each plane z

are given by the following expressions:

v, (2)

-

U=-cos9-(1 -;)'('ﬁo—')

V=sen®.-( + 1—2-)-(v?(2) )
R 00

W=20
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: (z)
T A

/ 00

In ﬁééticular; if theapproach4veldcity diStribution'is linear, the
abov; starting conditions far from the cylinder could probably

be i;proyed'adding a nonzero vertical component, W, according

“the results of Ligthill (fig. 2). It is recalled, however,

thaﬁ the Ligthill solution refers to an infinitely long

cylinder and, consequently, the value of W does not vary in

the spanwise direction; in our case, as the vertical velocity
component must be zero both on the top and bottom planes, an

appropriate variation of W versus z has to be assumed (an ex-

ponential.function is probably the most proper:

W=(Q1 - e-z*)‘_w if 0«< z<H°
i g o . w -3
(Z-H ) H
- - (o] B (o]
W=(1-¢e ).wL if .2—<z<Ho

where W; (R, 0 ) is the value provided by Ligthill).

In any case, after having fixed the starting conditions, we can
begin our computation from the known values at the outermost
two rings (iF and iF-l) and go on toward the cylinder. As our
starting conditions were not completely correct, we will very
likely obtain an incorrect pressure and velocity distribution
on the cylinder surface; (for instance, if we should not impose
a zero-radial velocity according to eq. (9), we may find from

eq. (5) a value of U different from zero). Anyway, the field



values obtained on the innermost rings (i) and (i°+l) will

be empioyed again és starting conditions for a new outward com-
putation. If the values resulting from this last computation
show an écceptable asymptotic behaviour (that is, they tend to
the desired parallel flow), this may be considered the final
'solution; otherwise the computed values on the outermost rings
will be used for correcting the assumed starting values, and the
prodedure will be repeated. A question arises about the con-
vergence-and the stability of this procedure, but an answer

can probably be given only after having tested it.

If the suggested procedure is unsuccesful, another possibiiity
is to assﬁme a reasonable velocity and pressure distribution
on thé twa innermost rings near the cylinder surfgce, possibly
with the aid of some experimental information (see, for instance,
ref; [8]). The outward computation will then supply thé up-
stream oncoming flow corresponding to the assumed pressure

and Qelocity distribution on the cylinder surface. Although
fhe resulting oncoming flow will not possess the desired
asymptotic characteristics,'tentative alterations of the
starting conditions may always provide some useful insight

on the consequence of different types of approach velocity

on the flow field near the cylinder.



| LR
/ ' REFZRENCES ' '
Sdi= o |
<{1J Kronauer, R.E. - Secondary flow in fluid dynamics -
]

/ Proc.lst. U.S. Nat. Congress of Applied
Mechanics, Chicago, 1951.

[2] ‘Hawthorne, W.R. - The applicability of secondary flow
analysis to the solution of internal flow
protlems - Proc. of the Symposium on the
Fluid Mechanics of Internal Flow, General
Motcrs Research Laboratories, Warren,
Michigan, 1965.

[3] Ligthill, M.J. - Drift - Journal of Fluid Mechanics, 1,
May - Dec. 1956.

[4] Toomre, A. - The viscous secondary flow ahead of an infinite
cylinder in a uniform parallel shear flow -
Journal of Fluid Mechanics, 7, 1959.

[5] Richardson, L.F. - Weather prediction by numerical process -
Cambridge University Press, 1922.

[6] Boyd, K.Z. and Rice, W. - Laminar inward flow of an incompres-
sible fluid between rotating disks, with
full peripheral admission. Journal of Applied
Mechanics, June 1968.

[7] Stephan, R.K. - The geometry of the expanding Jjet downstream
of culverts. Master of Science Thesis,
Colorado State University, March 1968.

[8] Dalton, C. and Masch, F.D. - The influence of secondary flows
on drag forces. Techn.Rep.HYD 04 - 6503,
Hydraulic Engineering Laboratory, University
of Texas, July 1965.




[9ﬂ Forsythe, G.E. and Wason, W.R. - Finite difference methods
- for partial differential equations -
J. Wiley and Sons, Inc., New York, 1960.

[;O] Collatz, L. - The numerical treatment of differential
equations - (transl. from German), Berlln
1960.

[i;] Panov, R. - Formulas for the numerical solution of partial
‘ differential equations by the method of
difference - New York 1963.

Z5.




/3
e L NI S R
e, B

By e

. S et . W b . ey KIS
" oy

PINPOS

ot ——

R

A 1 oy WA A2+ 10

= ~—— T
e g e e i

(..

APIER WITH  NON-UNIFORH  APPROACH VELOCITY

HG.1 - PRIMARY (~>) M) SECONBARY (m») FLOY  AROUND

s



Figurcz. Primary and sccondary flow about a circular cylinder of radius a, with axis the y-axis,
. . when the upstream velocity is (U+ Ay, 0, 0).
—— Streamlines of the primary flow (note that the velosity components in the x and = directions
follow these streamlines even when the secendary flow is included).
=== Contours of constant v/4a (note that the negative values, which predominate, denote
secondary {low in the direction of decreasing primary flow velocity).
(Flow is from Ieft to right and only the upper half is shown.) Lighthill (1936a).
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