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1. IN'i'RODUCTION 

\.lhile an enormous amount of literature (especially in aerodynamics) 

is concerned with the flow created by an obstacle immerged in a 

uniform strea.~, a relatively little amount of work has been done 

on flow about obstacles immerged in a non-uniform stream, such as 

a boundary layer near the walls of a duct. 

In this case, in addition to the "primary flow" (namely the flow 

that should take place if the approach velocity was uniform), a 

transversal "secondary flow" arises which is the cause of several 

interesting phenomena. The secondary flow is responsible for the 

displacement of the stagnation streamlines in the direction of the 

lower velocity, with a c9nsequent alteration of the drag coefficient 

of the immerged body; in the case that the immerged body is a 

Pitot tube, this "shift effect" is the cause of errors in the 

velocity evaluation. Another important feature related to the 

secondary flow is the formation of the "horseshoe vortex" at the 

foot of piers and abutments in rivers, responsible for the scour 

(fig. 1). 

The purpose of this research is to determine the pressure and 

velocity distribution in the vicinity of a circular cylinder 

placed vertically in a channel with. a non-uniform vertical 

distribution of the approach velocity. Numerical techniques 

for the integration of t he flow equation have been considered. 
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No definiti_ve solution has been achieved as yet, but some preliminary 

results are_ given wi th a suggested pr_ogram for research continuation. 

r . 
2. REVIEW OF THE LITERATUctE 

The non-uniform velocity distribution of the undistur bed stream 

approaching the obstacle is generally that corresponding to a 
boundary layer: in other words, it is generated by frictional 

effects. However, the presence of shear stresses in the 

vicinity of the obstacle is not at all, in itself, a necessary 

factor for the cropping-up of the secondary flow: direct c ause 

of the secondaryvelocity component is rather the lower dynamic 

pressure near the wall of the channel, due, in its turn, to 

the lower approach velocity. In front of the obstacle, the 

friction forces can be neglected n comparison with the 

pressure forces; therefore, once the approach velocity dis­

tribution is pr escribed far upstream from the obstacle, the 

flow field should be described with sufficient accuracy by the 

equations of the ideal (inviscid) fluid, even if, of course, 

the flow cannot be treated as irrotational [JJ. 

Because of the complexity of the inviscid flow equa tions, ap­

proximations are always required if an analytical solution is 

sought. According to a classification of Hawthorne [2], the 

approximate solutions of secondary flow may be divided into 

three types: 

-

2. 
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1. Flow with small shear (i.e. small velocity gradient) 

an:i s.Jall disturbance (i.e. sCTall stagnation-pressure I -
2. Flow with small shear but large disturbance; 

3. Flow with large shear but small disturbance. 

variation); 

Only a limited number of solutions, in very particular cases of 

two-dimensional or axi-symmetrical flow, are available with large 

· shear and large disturbance. 

It is noted that solutions of types (1) and (3) do not allow for 

the presence of stagnation points (the disturbance is assumed to 

be small); therefore, they do not apply but for thin airfoils and 

slender bodies. 

Solutions of type (2) (known as "secondary flow" approximation) 

may be applied to the flow around thick bodies like cylinders, 

provided that the approach velocity distribution is only weakly 

sheared. 

Lightill [3] has calculated the velocity field about an infinitely 

long circular cylinder immerged in · a stream having a weak linear 

velocity gradient in the spanwise direction: Lightill's solution 

is re~roduced in fig. 2. In the assumed hypothesis the velocity 

field res~lts from the superposition of: . 

i) a primary flow, contained in each plane perpendicular to the 

cylinder and coinciding with the two-dimensional potential­

flow solut:i,.on; 

3. 



ii) a secondary flow, consisting in a velocity distribution ex­

clusively in spanwise direction. 

This approximate solution presents two major limitations. The 

4. 

. first is that the magnitude of the secondary (spanwise) velocity 

tends to infinity on the surface of the body and on the plane of sym­

metry behind it; as a consequence, the drag of the body results 

to be infinite. The second is that the cylinder is considered 

infinitely long; no information is given about the flow at its 

end, where the vertical velocity gives rise to the horseshoe 

vortex. Although the first limitation may be somehow overcome 

by introducing a boundary layer close to the surface of the 

body [4] , the approximate hypothesis of a uniformly and weakly 

sheared oncoming flow does not lead, in practice, to a satis-

factory description of the phenomenon. 

Therefore, instead of looking for an analytical but approximate 

solution, it is thought that more information could be 1 obtained 

by the numerical integration of the inviscid flow equations 

(Euler 's and continuity equations). 

A large number of articles are available about numerical solutions 

of the flow equations, both in the inviscid and viscous flow case, 

especially in axisymmetric situation • . The aim of most of the 

articles, however, is to predict the evolution of the flow field 

during the time, starting from known initial conditions prescribed 

all over a certain region of space. (The first important contri­

but ion in this direction has probably been the paper by 
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Richardson [5] on meteorological forecasting). The problem 

being considered in this paper; instead, is to find the steady 

flow field over a certain region of space with specified 

conditions on its boundaries. 

This latter type of problem has received a rather intensive 

investigation with reference to the flow within the turbomachines. 

In a recent paper (6] , Boyd and Rice apply the three-dimensional 

Navier-Stokes' equations to determine the steady flow between 

parallel co-rotating disks; a finite-difference technique for 

solving these equations (in cylindrical coordinates) is developed 

which will be reconsidered later. 

Finite difference integration of the three-dimensional Euler's 

equations (in rectangular coordinates) has also been performed 

by Stephan [7] to predict the ( steady) free-surface shape of a 

jet issuing from a culvert outlet. 

In both of these problems velocity and pressure distributions 

were prescribed at the upstream boundary, and the computation 

was carried out toward successively downstream positions, where 

pressure and velocity components were determined by their known 

values upstream. In the case of the co-rotating disks [6}, the 

velocity distribution of the entering flow was arbitrarily pres­

cribed on the outer periphery, while the external pressure was 

assumed constant; the velocity distribution and the (constant) 

value of the pressure was calculated successively for each inner 

radius (fig. 3a). In the case of the free jet issuing from a 

culvert (7] , the velocity and pressure distribution were pres-

5. 
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cribed in the outlet cross section, based on experioental results; 

the velq~ity and pressure distr ibution, as well as the jet-shape, 

was suc6essive ly calculated for each downstream section (fig. 3b). 
I . 
I 

In our- problem , however, the situation is still quite different. 

Our boundary conditions are theoretically defined only at iLfinite 

distance upstr eam from the cylinder, where the streamlines are 

suppo s ed to b e para llel (no transversa l velocity component and 

a hydrostatic press ure-distribution exists); at any other finite 

distance frohl the cylinder the velocity and pressure distribut i on 

is unknown; ( a secondary flow, no matter how small it is, is cer­

tainl y present). The lack of knowl edge of the boundary conditions 

at any finite distance led Dalton and Mash [8] to think that 

6. 

fini te difference method is unfi t to obtain a ·solution for t h i s 

prob lem ; (on the ot her hand,an a tte~pt to solve i t by a pert urba­

tion t echnique , r eferred to in the s ame paper, was also unsucc esful ) . 

However, starting fro m a tentat i ve c ondition at f i nite distance fro ra 

t he cylinder, some iterative pr ocedure could probably -be fo und able 

t o r each a solution which is consistant wi th the asymp t otic be haviour 

of t he flo ws a t t he ups t re am i nfinity . Let us observe , by t he way, 

t hE.t also the flo w studi ed by St ephan [7] may be c onveni ent l y des­

cr ibed by its asymptotic behaviour i n the duct at inf inite distance 

upstream f ro~ the outle t . In t hi s c ase, t h~ pressure and ve loc ity 

d i stribut i on on t he out l et cro ss s ec tion should ensue f r om the 

computation , i nstead of be i ng presc ribed on t he base of exf er i ments . 

ti#¾ ¥, I< J i , • :;zc; • . R •~~◄ --,; €4 _.S ~ <SpPJ. ( 



.. 

• 

A _questf on arises whether the asymptotic behaviour at the up­

stream/ infinit;y, assumed as a boundary condition, is able to 

garantee the existance and uniqueness of the solution. In other 

words, the question is whether the problem is mathematically 
I 

"well posed" [9]. 

7. 

In his interesting paper on secondary flow [1), Kronauer stated 

that the uniqueness of rotational flow solutions from given 

boundary values is complicated by the possibility of having closed 

interior regions of circulating fluid; however, this possibility 

is eliminated if one is interested is a solution where each 

particle traverses the entire duct length. 

The horseshoe vortex at the foot of the cylinder is not,very 

likely, a closed region of circulating fluid; nevertheless, it 

is not sure that the solution of the invisc ~d flow equations 

(even if unique) will reveal the presence o~ the horseshoe vortex, 

since its formation may perhaps be due to some instability of the 

motion or to some effect neglected by the equations. An answer 

to the question cannot be given at this stage. 

In the same paper, Kronauer suggests an iterative technique for 

calculating the flow field past a body with a non-uniform approach 

velocity. The technique is based on the repeated integration of 

Cauchy's vorticity equations, and it has been applied to the flow 

about a cascade of synmetric airfoils. As the above application 

is based upon some assumptions valid only for slender bodies, 

an eventual rearrangement of this technique for bluff bodies will 

require further investi~ation. 
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In the next paragraph an iterative procedure based on the repeated 

integration by finite differences of Euler's and continuity equations 

is suggested; the fluid is supposed to be incompressible. 

3 •. FORI'1ULATION OF THE PROBLEM 

A vertical cylinder of radius r is placed between two horizontal 
O · 

' ~ 

planes, constituting the bottom and the top of a infinitely wide duct; 

the lower half of the arrangement is shown in fig. 4. 

The undisturbed oncoming flow at the upstream infinity is assumed 

to be parallel to the axis y, uniform in each horizontal plane, 

but with a prescribed velocity distribution along the vertical 

axis z; let v
0

(z) be the undisturbed velocity in each horizontal 

plane and v
00 

the maximum value of v
0
(z). 

As the plane (x,y) is a plane of symmetry, it will be chosen as 

the upper boundary of the flow region; (neglecting the effects 

n,ear the surface, it may also approximately represent the water 

surface of an open chan.nel). The lower boundary is set on the 

bottom of the flume, at a depth Z=h
0 

below the plane (x,y). 

Because of symmetry, a lateral boundary has been set at 9 = 0°; 

another one has been set at 9 = 90°. The computations are not 

carried beyond tJ = 90° since the inviscid flow equations do not­

apply because of separation effects. The out~r boundary has been 

fixed at an arbitrary distance rF from the cylinder axis • 

Cylindrical coordinates have been employed, after some unsatisfac to­

ry results with rectangular coordinates. In cylindrical coordi­

nates, the Euler and continuity equations describing the f ow are 



• 

• 

.. 

u ~u + .! ')u _ v
2 

+ w 'Ju = 1 
)r r ~a r 3 z s ?(p+ X h) 

3r 

~(p+ r h) 
~e 

U iv + y: ~w ~w = 1 ?(p+ '1 h) rr r N + w )Z .f ? z 

. 
' 

. 
' 

. ,. 

where u, v, ware the velocity components on the r, 0 , z 

directions, ! is the fluid density and (p+ 0 h) is t he piezometric 

pressure. 

After having defined the follo wing non-dimensional ratios 

the f low 

. 
1 

u u V V w w 
= . = . = -j 

voo ' voo ' voo 

p = :e+ 1 h . 
2 ' voo 

equations .become 

'JU V 1!! v2 'JU 1P 
U )R + R ae - '.R + w az = - }R 

~V V ?U UV 'lV 1 'IP 
U ~R + R + w az = 39 -R - R )0 

U ~w v ~w u ~w 
3R + R ,e + w az 

= 0 

. 
' 

(1) 

(2) 

(3) 

(4) 

9. 
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4. DIFFERENCE FORM OF THE FLOW EQUATIONS 

In order to write the above equations in finite difference form, 

the region around the cylinder has been marked by a grid, as 

10. · 

shown in fig. 5. Grid points were designated by i, j, k subscripts, 

respectively at the R,0, Z coordinate. 

If the subscripts i
0

, iF' j
0

, jF, k
0

, kF are respectively used 

for designating the points at R = R = 1, R = RF, 0 = 0, . 0 
I 

Z = O, Z = H
0

~ the mesh sizes in ·R, 0, Z directions respectively 

are 
1 RF - 1 

D = i = 
iF io -0 

. 
' 

T = . Tr /2 
jF - Jo 

. 
t 

C 
Ho 

= k ko -F 
. 
t 

and the coordinates 

R = iD . 
' . , 

Z = (k . 
' 

At any point i, j, k, not lying on the boundaries, the derivatives 

with r ·espect to R, 8, Z of any quantity Q may be replaced by the· 

followi!!_g_ "central differences" [10] [11] 

,-✓ 
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Q. 1 . k - Q. 1 . k 
~ 1+ ,J, 1- ,J, 

2D 
. , 

h ~ 1,J+, 1,J-, . 'lO I Q. . 1 k - Q. . 1 k 
30 i,j,k - 2T 

JCt I '::! Qi,j,k+l-: Qi,,j,k-1 
JZ. i,j,k - . 2C • 

Therefore, equations (1) (2) (3) and (4), written in "difference 

form", are: 

(U. 1 · k - U. 1 . k) 
U 1+ ,J. i- ,J, 

. . k 2D l., J, 

V. -. . k 
+ 1,J, 

iD • 
(U · · 1 k - U. . 1 k) 1,J+ , 1,J-, 

2T 

Vi,j,k n (ui,j,k+l - ui,j,k-1) --
iD + wi,j,k 2C 

(P. 1 . k - P. 1 . k) 1+ ,J,. 1- ,.1, 
2D 

(V. 1 · k - V. 1 . k) 
U 1+ ,J, 1- ,J,-
.. k 2D i,J, 

V .. k 
+ 1,J, 

iD • 
(V. ·. 1 k - V. . 1 k) 1,J+ , 1,J-, 

2T + 

U · · k. V · · k (V. . k 1 - . V. . k 1) 1,J, 1,J, lT 1,J, + 1,J, .-
. iD + w i, j , k 2C = 

1 (P. . 1 k - p. : 1 k) 1,J+, i,J-, 
- . iD 2T 

(1J. 1 . k - W. 1 . k) V. . k 
U 1+ ,J, 1- ,J, + 1,J, · 
i, j ,k 2D iD • 

(\.I. . 1. k - \.I. . 1 k) 1,J+, 1,J-, + 
2T 

(\.1. • k 1 - W. . k 1) 
W 1,J, + 1,J, -
i,j,k 2C = 

(P. · k 1 - P. . k 1) 1,J, + i,,J, -
2C 

11. 

(la) 

(2a) . 

(3a) 
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(U. 1 · ~ - U. 1 . k) 

l.+ • I . 2D i- , J • + 

(W · · k 1 - w:. . k 1) 1,J, + 1,J, -
· . 2C 

U .. k 1 l7J, + 
iD iD 

= 0 • 

(V · · 1 k - V. . 1 k) 1,J+, 1,J-, 
2T + 

I 

Solving successively eqs. (4a) (2a) (3a) (la) for the unknown 

quantities, the following system of equations follows: 

12. 

(4a) 

U = U (Vi , ,j + 1, k - Vi, j-1 , k) _ D ( 1 r t r ) 

i+l,j,k i-1,j,k - iT C wi,j,k+l - wi,j,k-1 , -

2 U. .· k 1,J, 
i 

V. . k 1,J, (V · · 1 k - V. . 1 k) 1,J+, 1,J-, 
U. . k i,J, iT 

D W · · k (P. . 1 k - p. . 1 k) 1,J, (V V ) 11 J+, 1,J-, 
CU . . k i,j,k+l - i,j,k-1 - iTU .. k 1,J, 1,J, 

V · · k (W. . 1 k - W. . 1 k) 
u tr 1,J, 1,J+ , 1,J- , _ 
wi+l,j,k = wi-1,j,k - U .. k iT i,J, 

D W. · k D _ 1,J, ( tr tr ) 
C u .. k wi,j,k+l - wi,j,k-1 - C 

l.' J' 

(P. · k 1 - P. . k 1) 1,J, + 1,J, -
U. . k l.,J, 

(5) 

2V .. k l.iJ, ; (6) 

(7) 
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P. 1 . k = P. 1 . k - U .. k (U. 1 . k - U. 1 . k) -. 1+ ,J, i- ,J, 1,J, i+ ,J, i- ,J, 

(U.- · 1 k - U. . 1 k) 
V i,J+, 1,J-, 

. . k 1'T . 1,J, 

2 
2 V. . k i,J, 

i • 

D 
- C W · · k (U · . k 1 - U. . k 1) + i,J, i,J, + i,J, -

:... 

(8) 

The above system allows the computation of the velocity components 

and pressure at the radius (i+l), from the known values at the 

previous two radii (i) and (i-1). The procedure is then repeated 

for the next ring, and so on. 

This scheme, called "direct difference" scheme, failed to yield 

satisfactory results in the problem of Boyd and Rice [6] ; in 

that case the indirect or "inverse-difference" scheme was then 

used and proved successful. Unlike the direct difference scheme, 

the indirect scheme does not allow one to calculate separately 

the field values at different positions on the ring (i+l); 

instead, all the values on the ring (i+l) are simultaneously 

provided by the solution of a system of (3n + 1) equations, where 

n is the number of grid points in the ring. 

This second procedure requires mu·ch more computation time than 

the direct scheme, but it does not seem necessary to be applied to 

our problem. It is necessary to point out that the Navier-Stokes 

equations solved by Boyd and Rice involve second-order derivatives 

·which are 

13. 
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probably more sensitive to accumulative errors. On the other 

hand, for the first-order equations of the inviscid fluid, the 

direct scheme was proved succesful by Stephan [7] , even if he 

used the less precise "forward difference" instead of the 

"central dif.ference" as has been done here; satisfactory results 

have also been achieved in some preliminary computations in this 

research (see paragraph 6). At any rate, the inverse difference 

scheme may be kept in mind if an alternative computational 

method is to be tried. 

5. SPECIAL CONDITIONS ON THE BOUNDARIES 

The system (5) (6) (7) (8) cannot be directly employed on the 

boundaries because some of the quantities in the equations turn 

out to be unknown. These quantities will be replaced in the 

equations as it follows. 

On the plane G = 0 (j=jo), because the symmetry, it is 

V. . 1 k = - V .. 1 k 
1.' J- ' l.' J+ ' ' 

U ♦- • 1 k = U .. 1 k . 1., J- ' l.' J+ ' , 

W. . 1 k = W .. 1 k 1.,J-, l.' J+ , 

P. . 1 k = P .. 1 k 1.,J-, 1.' J+ ' • 

On the plane Z=O (k=k
0
), because the symmetry, it is 

14. 
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W. . k 1 1.,J, - =-Wi,j,k+l 
' 

U. . k 1 = u. · k 1 1.,J, - 1, J' + 
' 

V. . k 1 = V .. k 1 : 1.,J, - 1, J' + 
' 

P. . k 1 = P. . k 1 1.,J, - 1,J, + • 

On he plare 9 = 1T/2 ( j=jF), which is not a plan of symmetry, 

the central difference does not app y anymore and it is replaced 

by he backward difference; it is equivalent to put in the 

eqt2=1tions, for each quantity Q, · 

Q · · 1 k = 2Q. . k - Q. . 1 k 1.,J+ ' 1.,J, 1,J-' • 

Th same is it on the plane Z = H
0 

(k = kF): 

Qi,j,k+l = 2~,j,k - Qi,j,k-1 ii 

The equations (6) and (7) also do not apply where the quantity 

Ui j,k is equal to zero. It happens on the plane 9 = 1f/2 (j=jF), 

whEre the velocity is supposed to be tangential . In this case 

eqc . (6) and (7) will be replaced by the following ones, obtained 

by the eqs. (2) and (3) written in difference form at the point 

(i l,j-1,k) ; (the backward difference is used for the derivatives 

wi h respect to R here). 

.. 
i+l, j ·,k 

= V · TD (i+l) Wi+l,j-1,k 
i+l,j-2,k - C 

Vi+l,j-1,k 

V V ) 2T ( . l) Ui+l,j-1,k 
• i+l,j-1,k+l - i+l,j-1,k-l - i+ V 

i+l,j-1,k 

15. 
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(Pi+l,j,k - pi+l,j-2,k) 

Vi+l,j-1,·k 

. 
' 

W. 1 . k 1+ ,J, 
· TD (i+l) 

= Wi+l,j-2,k - C 
w: 1~ . 1 k 

1+ 'J- ' 
Vi+l,j-1,k 

(W W ) - 2T (i+l) Ui+l,j-1,k 
• i+l,j-1,k+l - i+l,j-1,k-l Vil · 1 k 

+ ,J-' 

• (W · 1 . 1 · k - W. . 1 k) -1+ ,J-, i,J-, 

DT (P. 1 . 1 k 1 - P. 1 . 1 k 1) C (i+l) 1+ ,J-' + i+ ,J-' -
Vi+l,j-1,k 

. 
' 

Finally, the geometric boundary conditions have to be stated 

for the velocity com~onents, on the cylinder surface (i+i
0

) 

(6a) 

(7a) 

and on the planes j=j
0

,k=k
0

, and k=kF; they will be respectively 

U. . k = 0 , l~) 
1,J, 

V. . k = 0 , Qo) 1,J, 

W. . k = 
1, J' 

0 • 
~') 

6. CALIBRATION OF THE PROGRAiv. - PRELIMINARY RESULTS 

A computational program has been written for Eqs. (5) (6) (7) 

(8) · and for all the special conditions on the boundaries mentioned 

above. 

16. 
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This program is now being calibrated in the simple case of 

unifor□ approach velocity, comparing the computed results 

with the wellknown values of the two-dimensional potential 

flow theory. The velocity components and the pressure distri­

bution corresponding to a uniform approach velocity, v
00

, are 

given, according to the potential flow theory, by the following 

expressions: 

u = - cos e. <1 - 1
2) 

R 

1 V = sen G·( 1 + ~) 
R 

W=O 

P = ! (1 - u2 - v2) • 

The main purpose of these calibration tests is to determine the 

more appropriate mesh sizes of the grid . In the first tests 

performed, computation has been carried out starting from the 

cy!inder surface up to a distance of n = 3 radii from the 

cylinder axis (RF= 3). The mesh size in the radial direction 

has been assumed uniform and equal to 1/m = 1/4 of the radius; 

therefore, it follows: 

i = m = 4 (subscript on the cylinder surface); 
0 

iF = n.m = 12 (subscript on the outer boundary) • 

The number of steps in radial direction is then 

17. 
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It bas been then assumed that the same number of steps will 

alsc be in tangential and vertical directions, namely: 

Put ing ~ 2 and k = 2 (for computer requirements, j o and Jo = 0 

mus be larger than 1) , it f ollows: 

j F = (n-1) m+2 = 10 

kF = (n-1 ) m+2 = 10 

ko 

The computation has then been s t arted from prescribed values of 

pre~sure and velocity components on the cylinder surface (i=i
0

) 

and. on the next outer ring (i=i
0
+1), computed by the two­

dimensional potential flow; the unknown values in the successive 

outer rings have then been computed by the finite difference 

eq~ations . Comparison with the potential-flow values is satis­

·fa t ory , but it seems that a still finer mesh should be used. 

?. RESEARCH CONTINUATION 

18. 

The calibration of the program, by means of potential flow theory, 

wi: l be continued untill a suitable mesh size of the grid will be 

si~gled out. 

Tl:B mesh sizes, as well as the distance from the cylinder up to 

which the computation is carried on, may easily be varied on the 

program. This can be done either by changing the values n and m 

(tb.at is, keeping an equal number of steps in the three directions) 

o~ , directly , by c hanging the values i
0

, iF' jF' kF (if different 

nLmbers of steps in each direction are required). 
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We will mention that Boyd and Rice [6] performed their compu­

tation using 21 steps in the vertiqal direction and 1500 in the 

radial direction (the flow was axi-symmetric), but in our case 

a much coarser grid can probably _be used. 

The next stage, and the most important one, will be to find a 

suitable iterative procedure for solving the problem in the case 

of a non-uniform approach velocity. 

It has already been said that, with a non-uniform approach 

velocity, the flow conditions are unknown everywhere but at the 

inf inite distance upstream (parallel flow to the axis y a.rid 

hydrostatic pressure distribution) • 

We will tentatively assume that, at a sufficient distance fro:::n 

the cylinder, the undisturbed flow will be affected only by 

lateral displacement of stream.line. In other words, we will 

suppose that, far enough from the cylinder, the pressure and 

velocity values are still provided, in each horizontal plan, 

by the two-dime~sional potential flow theory. Under this 

assumption, if the approach-ve l ocity has a vertical distribution, 

v
0
(z), the velocity components and the pressure in each plane z 

are given by the following expressions: 

1 . vo(z) 
u = - cos e. c1 - -) · c-- ) 

R2 voo 

1 vo(z) 
V = sen G · (1 + 2 ) • ( . ) 

R oo 

W = 0 
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1 V (z) 2 - ] 
P = 2 [ C o ) - u2 - v2 - - w2 • 

voo . 

- . -/ - . . - . . . . - - - - . 
In prticular, if the approach-velocity distribution is linear, the 

above starting conditions far from the cylinder could probably I . 
be improved adding a nonzero vertical component , W, according 

_the results of Ligthill (fig. 2) . It is recalled, however, 
I 

that the Ligthill solution refers to an infinitely long 

cylinder and , consequently, the value of W does not vary in 

the spanwise direction; in our case , as the vertical velocity 

component _must be zero both on the top and bottom planes, an 

appropriate variation of W versus z has t o be assumed (an ex­

ponential function is probably the most proper: 

- H 
'W ( 1 

_z•) • I 
i f o<z<7 = - e •. .JL -~ 

(Z- H
0

) H . 
.w = ( 1 - e ) . wL if 7 <Z<Ho 

where WL (R, e ) is the value provided by Ligthill). 

In any case, after having fixed the starting conditions, we can 

begin our computation from the known values at the outermost 

two rings (iF and iF-1) and go on toward the cylinder . As our 

starting conditions were not completely c orrect, we will very 

likely obtain an incorrect pressure and velocity distribution 

on t he cylinder surface; (for instance, if we should not impose 

a zero-radial velocity according to eq. (9), . we may find from 

eq. (5) a value of U different from zero). Anyway, the field 



• 

• 

values obtained on the innermost rings (i ) . and (i +l) will . 
. 0 0 

be employed again as starting conditions for a new outward com-

putation. If the values resulting from this last computation 

show an acceptable asymptotic behaviour (that is, they tend to 

the desired parallel flo~, this may be considered the final 

solution; otherwise the computed values on the outermost rings 

will be used for correcting the assumed starting _values, and the 

procedure will be repeated. A question arises about the con­

vergence and the stability of this procedure, but an answer 

can probably be given only after having tested it. 

If the suggested procedure is unsuccesful, another possibility 

is to assume a reasonable velocity and pressure d~stribution 

on the two innermost rings near the cylinder surface, possibly 

with the aid of some experimental information (see, for instance, 

ref. [8]). The outward computation will then supply the up­

stream oncoming flow corresponding to the assumed pressure 

and velocity distribution on the cylinder surface. Although 

the resulting oncoming flow will not possess the desired 

asymptotic: characteristics, tentative alterations of the 

starting conditions may always provide some useful insight 

on the consequence of different types of approach velocity 

on the flow field near the cylinder • 
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-- Stream ines of the prim.iry now (note that the ve'.odty components in the x ::nc! = direetio.is 
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' secondary flow in the direction of dccrcnsinf! pri r:mry flow \'clocity) . 
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