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ABSTRACT

SINGLE MOLECULE FLUORESCENCE MEASUREMENTS OF COMPLEX SYSTEMS

Single molecule methods are powerful tools for investigating the properties of complex

systems that are generally concealed by ensemble measurements. Here we use single molecule

fluorescent measurements to study two different complex systems: 1/f noise in quantum dots

and diffusion of the membrane proteins in live cells.

The power spectrum of quantum dot (QD) fluorescence exhibits 1/fβ noise, related to

the intermittency of these nanosystems. As in other systems exhibiting 1/f noise, this power

spectrum is not integrable at low frequencies, which appears to imply infinite total power.

We report measurements of individual QDs that address this long-standing paradox. We

find that the level of 1/fβ noise for QDs decays with the observation time. We show that

the traditional description of the power spectrum with a single exponent is incomplete and

three additional critical exponents characterize the dependence on experimental time.

A broad range of membrane proteins display anomalous diffusion on the cell surface.

Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal

space, but the underlying structure inducing anomalous diffusion has never been visualized

due to experimental challenges. We addressed this problem by imaging the cortical actin

at high resolution while simultaneously tracking individual membrane proteins in live mam-

malian cells. Our data show that actin introduces barriers leading to compartmentalization

of the plasma membrane and that membrane proteins are transiently confined within actin

fences. Furthermore, superresolution imaging shows that the cortical actin is organized into

a self-similar fractal.
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CHAPTER 1

INTRODUCTION

In the past few decades single molecule microscopy methods have evolved into extremely

successful tools for revealing concealed properties and mechanisms in a broad range of com-

plex systems throughout various scientific disciplines. These methods are particularly useful

for analyzing stochastic processes where the state of individual molecules changes. For ex-

ample, in cell biology, proteins transit between various folded and unfolded states [1, 2, 3],

enzymatic reactions occur in multiple conformational sub-states [4, 5], trans-membrane pro-

teins alter between different diffusive states [6, 7, 8], and many other multi-state stochastic

phenomena happen, which all are crucial for proper cell functioning. Ensemble measure-

ments, which study the average properties of systems, are unable to distinguish between

subpopulations of single molecules in different states. Therefore we need single molecule

measurements to identify, sort and study these subpopulations. Here we use single mole-

cule methods to study two different systems which exhibit stochastic alternation between

different states: 1/f noise in quantum dots with random switching between dark and bright

states and diffusion of the membrane proteins in live cells which switches between different

modes of motion.

We start with the definition of the 1/f noise and related long-standing non-integrability

paradox. Then we discuss diffusion on the cell membrane and some of the potential compo-

nents of cell that can effect the diffusion of the membrane proteins. Lastly, an overview of

this thesis is given.

1



1.1. The 1/f noise in intermittent quantum dots

quantum dots (QDs) are very small semiconductor nanocrystals, a few nanometers in

diameter, with interesting optical properties. Characteristics such as high photostability,

brightness, size-tunable emission and excitation spectra and high quantum yield resulted in

widespread applications of QDs ranging from light emitting diodes [9] to biological labeling

[8]. QDs show random transitions between dark, “off”, and bright, “on”, states upon exci-

tation (intermittency or “blinking”). It has been observed that the distribution of waiting

times, or sojourn times, in theses states have a heavy tailed distribution which means the

tail of the distribution is not exponentially bounded [10, 11, 12]. The underlying mechanism

for the blinking phenomenon with power-law sojourn time remains unclear [13]. We are

interested in characterizing the statistics of alternation between states which will eventually

help us in understanding this heavily studied but still poorly understood system.

An important property of QD intermittency is that its power spectrum, in low frequencies,

scales as

(1) S(f) ∼ A

fβ
,

where f is frequency [14]. This type of spectrum, which is usually called 1/f noise or pink

noise, appears in an extensively large array of physical signals. In fact, 1/f noise is so

widespread that it is considered ubiquitous [15, 16, 17]. The integral of the power spectral

density over a given frequency band computes the average power in the signal over that

frequency band. Since the total power of a physical signal can not be infinite and, for β ≥ 1,

the power spectrum is not integrable,
∫∞

0
S(f)df =∞, the existence of this type of noise is

a paradoxical issue [16, 18]. Such behavior led to the suggestion that 1/f noise is related to
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non-stationary processes [15]. However, others dismiss these ideas, for example, by assuming

that there exist some low-frequency cutoff fc under which the non-integrable 1/f spectrum

should not be observed [19]. Despite very long time measurements, the transition frequency

could not been found [20, 21]. Further, measurements of 1/f noise in macroscopic systems,

where a large number of subunits are intrinsically averaged, do not exhibit any evidence of

non-stationarity [22, 23, 17], hence this famous paradox remains open.

In addition to non-integrability of the power spectrum, there is another open question

regarding fluorescence intermittency of QDs and any other intermittent systems: theory pre-

dicts that the power spectrum of two-state systems with power-law sojourn times remains a

random variable in the limit of long time measurements [18]. Thus large fluctuations should

be observed between different power spectra of identical particles. Specifically, the distribu-

tion of PSD amplitudes converges to a Mittag-Leffler (ML) distribution. Nevertheless, the

field is lacking experimental evidence for the predicted large fluctuations in these spectra.

1.2. Single molecule measurements in the plasma membrane of the cells

In mammalian cells, the surface consists of a lipid membrane that not only provides

a boundary to enclose cell components, but also controls cellular intake and secretions,

and organizes platforms that transmit environmental signals. The diffusive state of the

cell membrane proteins can be altered by different mechanisms, including interaction with

macromolecular complexes, bouncing against a barrier or getting captured by a well. For

example, using single molecule methods, it has been observed that the outer or cortical layer

of actin acts as a barrier for the diffusion of trans-membrane proteins, causing formation

of transient protein clusters [24, 25, 26]. According to the “picket-fence” model, describing

this type of behavior, the mobility of membrane-bound molecules is hindered by proteins
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anchored to the actin cytoskeleton [27], leading to their temporary confinement and anoma-

lous diffusion [28, 29, 30]. The resulting organization of molecules into specific regions is

beneficial for local interactions [31] and also alters diffusion-limited biochemical interactions

[32, 33]. In spite of all the evidence that has accumulated over the last 20 years, a direct

observation of the dynamic compartmentalization of membrane proteins by underlying actin

fences is extremely challenging due to the spatial and temporal resolutions required for its

visualization.

Another structure that could be an important player in the alteration of the diffusive dy-

namics of cell membrane proteins is the endoplasmic reticulum/plasma membrane (ER/PM)

junction. In animal cells, ER is the primary storage site for intracellular Ca2+ that can be

released as Ca2+ signals. The generation of Ca2+ signals is typically controlled by commu-

nication mechanisms between the ER and the surface of the cell, i.e., the plasma membrane

(PM) [34]. As a consequence, endoplasmicER/PM contact sites are prevalent structures

across different cell types, and they have essential functions in Ca2+ signaling and lipid traf-

ficking [35]. The ER/PM junctions also function as trafficking hubs for insertion and removal

of plasma membrane proteins suggesting a coupling mechanism between Ca2+ signals and

protein traffic regulation [36]. Furthermore, it has been observed that the voltage gated

potassium channel Kv2.1 aggregates and interacts with the endoplasmic reticulum, dra-

matically increasing ER/PM junction surface area and structurally changing the junction

morphology [37]. Interactions of the potassium channel Kv2.1 with the ER/PM junctions

on the cell membrane brings up an interesting question : whether other membrane proteins

also interact with the ER/PM junctions.
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1.3. Overview of this dissertation

In the second chapter we measure the power spectra of blinking QDs, namely we investi-

gate individual nanoscale systems avoiding ensemble averaging. We address the fundamental

question, whether the standard picture of blinking, found also in organic fluorophores, is char-

acterized by a single exponent? We show that the description of QD power spectrum with a

single exponent is incomplete since it hides rich physical phenomena. We also show that the

power spectrum of blinking dots is nonstationary and ages with experimental time. Roughly

speaking, the longer is the observation time, the level of noise decreases. More specifically,

the power spectrum ages as t−z where t is the measurement time and z > 0 is the aging

exponent.

In the third chapter we report more analysis on 1/f noise in semiconductor QD fluo-

rescence. We find that the power spectrum of their fluorescent emission remains a random

variable even in long time experiments and its distribution converges to a function with finite

width.

In chapter 4 we employ superresolution imaging and single-particle tracking of membrane

proteins to elucidate the compartmentalization of the plasma membrane by intracellular

structures. We track individual potassium channels and find that their diffusion pattern is

best modeled by obstructed diffusion instead of fractional Brownian motion. We directly

visualize the transient confinement of potassium channels by cortical actin in live cells. In

order to characterize the cortical actin meshwork structure, we employ stochastic optical

reconstruction microscopy (STORM) and photo-activated localization microscopy (PALM)

to obtain superresolution images of the cortical actin in fixed and live cells. We find a

non-integer dimension for the actin cortex and a broad distribution of compartment sizes as
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expected for a self-similar structure. These observations consistently explain the anticorre-

lated subdiffusive motion of membrane proteins and provide new insights on the hierarchical

organization of the plasma membrane.

In chapter 5 we obtain a theoretical form for the MSD of diffusion in a distribution of com-

partment sizes assuming zero escape probability from the compartments. Then we calculate

the MSD for three specific distributions of confinement sizes, namely exponential, power-law

and log-normal distributions with linear (one dimensional) and circular (two dimensional)

geometries. We also compare our theoretical results with simulations for validation. Finally,

we argue that scale-free diffusion observed in several experiments can be explained by the

broad distribution of the confinement sizes.

In the last chapter we study the regulation of the cortical actin-myosin meshwork and ob-

served that the inhibition of the myosin proteins decreases the mobility of the Kv2.1/ER/PM

junctions. Furthermore, using single particle tracking and imaging Kv2.1 enriched ER/PM

junction, we show that two membrane proteins, adrenergic receptor beta-2 (ADRB2) (a G

protein-coupled receptor that mediates cellular responses) and the glycoprotein CD4, aggre-

gate at Kv2.1/ER/PM junctions.
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CHAPTER 2

1/F NOISE FOR INTERMITTENT QUANTUM DOTS EXHIBITS

NONSTATIONARITY AND CRITICAL EXPONENTS

2.1. Introduction

The power spectrum of many natural signals exhibits 1/f noise at low frequencies [38, 39].

This noise appears in an extremely broad range of systems that includes electrical signals

in vacuum tubes, semiconductor devices, and metal films [40, 23], as well as earthquakes

[41], network traffic [42], evolution [43], and human cognition [44]. All these systems are

characterized by a power spectrum of the universal form S(f) ∼ A/fβ, where the exponent

β is between 0 and 2 [40, 45, 46]. The long time that has passed from the first discovery

of this phenomenon [47] led to multiple theories, competing schools of thought and many

unresolved problems. One of the major problems lies in the fact that the spectrum is not

integrable at low frequencies if β > 1, i.e.,
∫∞

0
S(f)df =∞. This is a paradoxical issue since

the total power cannot be infinite, as implied by the divergence of the integral to infinity.

In order to solve this paradox, Mandelbrot suggested that 1/f noises are related to non-

stationary processes [40]. However, 1/f noise in macroscopic systems, where a large number

of subunits are intrinsically averaged, do not exhibit evidence of non-stationarity [46], hence

this famous paradox remains open. Moreover, these ideas have been often contested, for

example, by assuming that there exist some low-frequency cutoff fc under which the non-

integrable 1/f spectrum is no longer observed. For this reason, several groups have increased

The work presented in this chapter has been performed in collaboration with Prof. Eli Barkai (Bar-Ilan
University, Israel). Philip Fox and Elizabeth Akin helped me with imaging QDs in their TIRF setup (Tamkun
laboratory,Colorado State University). This chapter has been published in New J. Phys. [48].
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the measurement time in an attempt to find this evasive low-frequency cutoff. For example,

spectral estimations have been obtained for one cycle in three weeks in operational amplifiers

[49] and one cycle in 300 years in weather data [21]. Despite such long measurements, no

low-frequency cutoff was found in these systems.

During the last two decades, experimental work has shown that 1/f noise is also observed

in a vast array of nanoscale systems. For example, such noise was observed in individual ion

channel conductivity [50, 51], electrochemical signals in nanoscale electrodes [52], biorecogni-

tion processes leading to the formation of a complex [53], and graphene devices [54]. Noise in

nanoscale systems is particularly intriguing due to their sensitivity to environmental condi-

tions. Furthermore, the characterization of noise properties in nanomaterials is an important

challenge with direct applications in the stabilization of these materials for nanotechnology

devices.

A well investigated but still poorly understood case is blinking in nanocrystals. These

systems exhibit intermittency, namely random switching between dark and bright states,

with sojourn times distributed according to power laws with heavy tails [55, 56, 57]. This

power-law behavior was shown by Brokmann et al. [58] to induce unusual phenomena such

as ergodicity breaking and non-stationary correlation functions, which are discussed here in

the summary. Physical models underlying a power-law sojourn time distribution are based

on distributed tunnelling mechanisms or diffusion controlled reactions [56, 59, 60]. Blinking

dynamics is usually quantified with an exponent that describes the power law sojourn time

(see details below). This characterization is obtained by thresholding the data in order to

distinguish between “on” and “off” states. However, thresholding is sometimes scrutinized

since the threshold value is rather arbitrary and hence a power spectral analysis is postulated
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to be a preferred tool [61, 62, 57]. Power spectrum is of course the most typical tool used to

quantify noise.

Quantum dot (QD) intermittency has attracted considerable attention due to the in-

triguing optical properties of zero-dimensional materials as well as the power law statistics

of “on” and “off” times [63, 59]. Due to the scale-free properties of power law statistics,

intermittency naturally yields a power spectrum of the form 1/fβ [64]. In this report we mea-

sure the power spectra of blinking QDs, namely we investigate individual nanoscale systems

avoiding ensemble averaging. We address the fundamental question, whether the standard

picture of blinking, found also in organic fluorophores, is characterized by a single exponent?

We show that the description of QD power spectrum with a single exponent is incomplete

since it hides rich physical phenomena. Instead, the power spectrum of these systems is

characterized by four exponents denoted β, z, ω, and γ and, importantly, we explain the

physical meaning of these critical exponents. The power spectrum of blinking dots turns out

to be unusual in the sense that it ages with experimental time. Roughly speaking, the longer

is the observation time, the level of noise decreases. More specifically, the power spectrum

ages as t−z with z > 0 and t is the measurement time. In this sense, the power spectrum is

non-stationary, in the spirit of Mandelbrot suggestion [40]. While the focus of this report is

on blinking QDs, we believe that the underlying non-stationary behavior describes a large

number of self-similar intermittent systems at the nanoscale, including to name a few, liquid

crystals [65], biorecognition [53], nanoscale electrodes [52], and organic fluorophores [66].

2.2. Theoretical model

The simplest way to model intermittency is within the assumption of a two-state process.

The QD switches between an active state where the intensity of the signal is I0 to a passive
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state where the intensity is zero. This model is sketched in Fig. 2.1A. The sojourn times {τ}

in states “on” and “off” are independent and identically distributed (i.i.d.) random variables

with, for the sake of simplicity, a common probability distribution function ψ(τ) ∼ τ−(1+α).

A particularly interesting situation arises when 0 < α < 1 because then the mean sojourn

time diverges and thus the process lacks a characteristic time. Otherwise, for α > 1, the

mean sojourn time is finite. Diffusion controlled mechanisms of QD blinking lead to α = 1/2,

though measurements show deviations from this behavior, suggesting that a wider spectrum

of exponents 1/2 < α < 1 is more suitable. For the two-state process, the system yields a

power spectrum

(2) St(f) ∼ At
fβ
,

with the exponent β = 2− α when 0 < α < 1 [67, 68, 69, 70]. When the signal is measured

over a finite experimental time t, the power spectral density (PSD) is typically estimated

using the periodogram method,

(3) St(f) = Ĩ(f, t)Ĩ(−f, t)/t,

where Ĩ(f, t) is the Fourier transform of the intensity, Ĩ(f, t) =
∫ t

0
I(τ) exp(−i2πfτ)dτ . Using

this method, it was shown theoretically that the power spectrum decays with experimental

time [69]. The time dependence of the spectrum can be found from simple scaling arguments.

Because both states are assumed to be identically distributed, the total power is a constant.

Thus,

(4)

∫ ∞
1/t

St(f)df = At
(1/t)−β+1

|β − 1|
= const,
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where integration is performed from 1/t, which is the lowest measured frequency. Therefore,

(5) At ∼ t−z

with z = β − 1. Given the relation β = 2− α, we have

(6) z = 1− α.

The exponent z is termed the aging exponent. The time dependence of the power spectrum

reflects the non-stationarity of the process as it indicates that the longer the observation

time, the smaller the amplitude of the power spectrum. In other words, the longer one ob-

serves the system, the QD gets trapped in longer and longer dark or bright states, thus the

switching rate is effectively reduced and 1/f noise goes down. To the best of our knowledge,

these predictions were not yet experimentally tested. This simple theoretical model bears

non-negligible limitations in the analysis of QD intermittency. First, the system is assumed

to consist of two identical states. Second, noise in the experimental system, beyond the

switching events, is neglected [Fig. 2.1(a), (b)]. As we shall see in our results, these simplifi-

cations fail to capture some of the observed physics. However, these theoretical predictions

are an excellent starting point in the analysis of blinking power spectrum.

2.3. Results

Figure 2.2(a) shows the first 600 seconds of the normalized intensity trace of a typical QD.

Usually, QD blinking is analyzed by using a threshold that defines bright and dark states

[55, 56, 58]. As mentioned, the threshold determination is rather arbitrary, and in that

sense power spectrum analysis is preferred [62]. In agreement with previous observations,
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Figure 2.1. Simplified model for QD intermittency. (a) An individual QD
alternates between states “on” and “off” with intensities I0 and zero. The
sojourn times are τj where j is respectively odd and even for “on” and “off”
states. The measurement time is t. (b) Additional Gaussian noise in the “on”
and “off” levels is depicted so that the intensity in these states is not constant
but it fluctuates around the mean.

the distribution of “off” times is well described by a power law ψoff(τ) ∼ τ−(1+α); whereas,

the distribution of “on” times shows truncated power-law behavior ψon(τ) ∼ τ−(1+α)e−τ/τon

[56]. In our data we find α = 0.63± 0.10 and τon = 8.5 s, a time scale that will soon become

important.

A representative power spectrum from an individual QD is shown in Fig. 2.2(b). The

experimental time of the time trace employed in the computation of this spectrum is 1311

s, i.e., the whole available time. Since the normalized intensity is dimensionless, the PSD

has units of Hz−1. Figure 2.2(c) shows power spectral densities obtained from averaging the

spectra of 1, 200 individual QDs for experimental times of 10 and 1311 s. The spectrum of the

long-time trace exhibits two regimes with distinctive 1/fβ behavior. For frequencies below a

transition frequency fT we have St(f) ∼ f−β< with β< = 0.76±0.02 (n = 1, 200 traces) while

above this frequency we have St(f) ∼ f−β> with β> = 1.393 ± 0.002. The separation into
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two regimes is caused by the cutoff that characterizes the “on”-time distribution. Hence, the

transition frequency fT is, not surprisingly, of the order of 1/τon. We will soon compare our

experimental findings with the theory for β> and β<, but let us first discuss the transition

frequency.

2.3.1. The transition frequency fT . The existence of a transition frequency implies that

the measurement time is crucial. The PSD of the short-time trace (Fig. 2.2(c) with t = 10

s) displays 1/fβ spectrum with a single spectral exponent β>. On the other hand, long

enough measurements yield the transition to a different behavior. Importantly, an observer

analyzing short-time traces would reach the conclusion that the power spectrum is non-

integrable, since β> > 1. If we wait long enough we eventually observe integrable 1/f noise,

since β< < 1. In some sense we are lucky to observe this transition: it is detected since the

cutoff time τon is on a reasonable time scale.

Previously, Pelton et al. have reported a transition frequency in the power spectrum of

blinking QDs [71]. However, that transition has a different nature from the one reported

here. In our measurements, a cutoff in “on” sojourn times introduces a transition from

1/f 2−α to 1/fα at low frequencies, i.e., long time behavior, with fT of the order of 0.06 Hz.

On the other hand, Pelton et al. find a high frequency transition, i.e., short time behavior,

where the spectrum shifts from 1/f 2−α to 1/f 2 at frequencies above the transition. This

high frequency transition was found to be of the order of 100 Hz. The transition to 1/f 2

spectrum was interpreted as short time carrier diffusion yielding, at high frequencies, the

power spectrum characteristic of Brownian motion [71].

2.3.2. Spectral exponents β< and β>. Both exponents β< and β> are related to α. The

exponents measured in this study are reported in Table 1 for the benefit of the reader.
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Figure 2.2. Power spectral density of QDs fluorescence emission. (a) Nor-
malized fluorescence intensity of an individual CdSe-ZnS QD, i.e., maximum
intensity is unity. (b) PSD of the emission from a single QD measured for
1311 s. (c) Average PSD from the emission of 1, 200 individual QDs. The
experimental times are 10 and 1311 s. The short-time spectrum is shifted for
clarity. The lines show linear regression of the log-log plot for high and low
frequencies according to Eq. (2), and the red arrows point to the transition
frequency fT .

For frequencies f > fT , the cutoff time is of no evident relevance and both states are

effectively distributed with power law statistics ψ(τ) ∼ τ−(1+α). In this regime, theory

predicts β> = 2−α as mentioned above. Since α = 0.63± 0.10, we expect β> = 1.37± 0.10,
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Figure 2.3. Aging of the power spectrum. (a) Average of 1200 QD power
spectral densities for four different experimental times: 5.1, 20.5, 82, and 1311
s. (b) When the power spectral density is multiplied by an aging factor tz with
z = 0.12, where t is the experimental time, the spectra collapse to a single
trace.

which is similar to the measured exponent. In contrast, for f < fT we must consider the

effect of the cutoff time. Thus, we define a modified model, which includes a cutoff in the

distribution of “on” times, so that the probability density functions of “on” and “off” sojourn

times are different. The important feature of this model is that the mean “on” sojourn time

is finite, which modifies the underlying exponents that describe the power spectrum. For

this case, one finds β< = α. Experimentally we find β< = 0.76± 0.02 while α = 0.63± 0.10,

so small deviations are found. The theoretical sum rule β< + β> = 2 is insensitive to the

value of α provided that α < 1, since this implies the divergence of the mean “off” sojourn

time, which is the main condition for the observed self-similar behavior.

2.3.3. Aging exponent z. Since the “off” sojourn times are scale free, i.e., mean time

is infinite, we expect the amplitude of the power spectrum At to depend on measurement

time. Figure 2.3(a) shows averaged power spectra computed for trajectory lengths of 5.1,

20.5, 82, and 1311 s. As the experimental time t increases, the magnitude of the PSD is not
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constant but it decreases. To the best of our knowledge, this is the first experimental report

explicitly showing that 1/f noise in nanoscale systems ages and the concept of stationary

1/f noise, so popular in a vast literature, breaks down. Figure 2.3(b) shows that the PSD

data collapse to a single master trace when multiplied by t0.12. According to the theory [69],

the power spectrum amplitude scales as At ∼ t−z with the exponent z = 1 − α both below

and above the transition frequency. Thus we expect z = 0.37± 0.10, which is slightly larger

than the measured value of the aging exponent z = 0.12. We will address this deviation with

simulations showing that additional noise in the “on” state (see Fig. 2.1) is important.

2.3.4. The zero frequency exponent ω. Next, we define the spectrum at zero frequency

with

(7) St(0) = St(f)|f=0 =
(
∫ t

0
I(τ)dτ)2

t
,

and the corresponding exponent St(f)|f=0 ∼ tω. Notice that St(0)/t is merely the square

of the time average
∫ t

0
I(τ)dτ/t and its experimental evaluation does not require a fast

Fourier transform. For stationary and ergodic processes with non-zero mean intensity we

have normal behavior ω = 1. On the other hand, if ω < 1 the average intensity decays to

zero. As shown in Fig. 2.4(a), our measurements yield ω ' 0.85, which is a second indication

of non-stationarity.

In our system, for long experimental times, the “on” time distribution displays a cutoff

and thus the mean “on” time is finite. Therefore, the expected area under the intensity time

trace can be estimated to be

(8) 〈
∫ t

0

I(τ)dτ〉 = 〈n〉τonIon,
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where Ion is the intensity in the “on” level and 〈n〉 is the average number of renewals up to

time t, i.e., the number of switchings, which is known to increase as tα for waiting “off” times

distributed according to power laws [72, 73]. Hence we see that theoretically St(f)|f=0 ∼

t2α−1 ' t0.26. Within this model, ω = 2α − 1 = 0.26. The measurements in Fig. 2.4(a)

give ω = 0.85, which is surprising since we expect that, at least for long times compared

with τon, the cutoff in the “on” times dictate the behavior of the zero frequency spectrum.

We will soon remove this mystery by detailed consideration of the effects of noise in the

“on” and “off” states using numerical simulations. What becomes clear is that the standard

description of blinking systems with a single exponent α, so popular in the literature, does

not describe aging accurately and needs to be expanded. Namely, in our measurements, ω is

not obtained from α in a straightforward way. Hence the standard picture of these systems

is challenged.

2.3.5. The crossover frequency fc ∼ t−γ. The transition between the zero frequency

spectrum St(0) and the small but finite frequency behavior St(f) ∼ f−β, defines a crossover

or cutoff frequency fc. A crossover frequency is many times assumed to be time independent,

though its observation may require extremely long measurement times. For example, in spin

glasses the inverse of the cutoff frequency was estimated to be of the order of age of the

universe [46], and hence it cannot be directly investigated. Given that the PSD ages, we

hypothesize the cuttoff frequency also changes with experimental time. We investigate the

time dependence of fc within our observation window, which is long in the sense that we

measure thousands of transitions between “on” and “off” states. In order to estimate fc, we

extrapolate Eq. (2) to the intersection with the zero-frequency spectrum, given by Eq. (7), as

shown in Figs. 2.4(b) and 2.4(c). According to the two state model with i.i.d. sojourn times,
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Figure 2.4. Additional critical exponents describing QD intermittency. (a)
Zero-frequency spectrum vs. experimental time. (b-c) Examples showing how
the crossover frequency fc is found from the average power spectrum. The
horizontal line shows St(0) = St(f)|f=0. The crossover frequency fc is found
by extrapolating St(f) ∼ Atf

−β to the intersection with St(0). In b the
experimental time is t = 5.1 s, thus St(f) ∼ Atf

−β> . On the other hand,
in c the time is t = 1311 s, thus the spectrum shows two different frequency
regimes, with St(f) ∼ Atf

−β< for f < fT . Note that fc shifts by more than
three orders of magnitude between 5.1 and 1311 s. (d) Crossover frequency
vs. experimental time. We find that St(0) ∼ tω with ω = 0.85 and, for short
times, fc ∼ t−γ with γ = −0.79.

fc ∼ t−γ, and γ = 1 [69]. Again this behavior can be derived using scaling arguments. First,

we use idealized models, which, by noting that at the crossover frequency Atf
−β
c = St(0),

give t−zf
−(2−α)
c ∼ t for short times and t−zf−αc ∼ t2α−1 for long times. Surprisingly, these

scaling arguments predict fc ∼ 1/t for all times, independent of τon. Hence, in this case
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γ = 1. However, since we already observed deviations in ω and z from the idealized two-

state model, we now use a more general approach using scaling arguments. Here, a second

scaling approach relates the various exponents that characterize the process. As before, we

employ the relation Atf
−β
c = St(0), which yields t−zf−βc ∼ tω from the definitions of the

various critical exponents. Thus we find

(9) γ =
ω + z

β
.

Using measured values for ω, z, and β, we have γ = 0.70 for short times (see Table 1,

ω = 0.85, z = 0.12, and β> = 1.39) and γ = 1.27 for long times (β< = 0.76).

For short times, we observe in experiments that the crossover frequency scales with

experimental time as fc ∼ t−0.79 (Fig. 2.4(d)). Thus γ = 0.79, which is in good agreement

with our general scaling argument approach (Eq. 9) and is consistent with the other critical

exponent measurements. For longer measurement times, as seen in Fig. 2.2(c), the low

frequency spectrum shifts from St(f) ∼ 1/fβ> to St(f) ∼ 1/fα where β> > α. As a

consequence of this effect, a transition is observed roughly on the cutoff time τon and fc

decays faster, namely, γ > 1 for t > τon. The behavior can be qualitatively understood,

by comparing Figs. 2.4(b) and 2.4(c). As the slope of the power spectrum becomes less

steep, the crossover is rapidly shifted to smaller frequencies. The value for γ at long times is

difficult to estimate from our measurements, but it is roughly γ = 1.24. Again, this value is

consistent with the measured values of ω and z as predicted by scaling arguments (Eq. 9).

2.3.6. Numerical simulations. Deviations between experiments and theory can arise from

at least three sources: experimental noise, finite measurement time, and model assumptions

not being realistic. Recall that the models neglect any physical noise beyond the switching
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events (see Fig. 2.1A) and only attempt to solve for convergences in the long time limits. In

particular, the intensity in the “on” and “off” states are not constant; the signal is always

fluctuating. To address this issue we turn to numerical simulations. We estimated the four

exponents β, ω, γ, and z based on numerical simulations. In simulations we add noise to the

0/1 signal (idealized model). Hence, simulations provide additional insight on the analysis.

The performed simulations are: PL: Power law; PLN: Power law with noise; PLC: Power

law with cutoff (truncated “on” times); and PLCN: Power law with cutoff and noise.

Initially, we generated time series of on/off states with random waiting times drawn

from a power-law distribution ψ(τ) = αtα0/(τ + t0)−(1+α). The constant t0 was chosen to

be equivalent to the experimental binning time, t0 = 20 ms, and α = 0.63. We refer to

this simulation as PL. In order to add Gaussian noise to the realizations (PLN), the “on”

and “off” intensities were transformed at each sampling time into normal random variables

N(0.7, 0.04) and N(0.2, 0.0064), respectively. The sampling time was chosen to be 20 ms.

The variance difference reflects the increased level of noise in the “on” state due to shot noise.

To simulate sojourn times distributed according to a power law with cutoff (PLC), the “on”

times were drawn from a distribution ψ(τ) ∼ τ−(1+α)exp(−τ/τon) and τ ≥ t0. The cutoff

time was chosen to be τon = 15 s. Additionally, we performed simulations with both cutoff

“on” times and added noise (PLCN). Once noise is added the sojourn time distributions

change and estimations of α and τon generally shift toward lower values. Therefore we chose

τon = 15 s in our simulations instead of 8.5 s as measured in experiments.

The combination of a cutoff time and Gaussian noise has significant effects on the zero-

frequency spectrum St(0) and the crossover frequency fc [Fig. 2.5]. In these simulations,

fc ∼ t−γ with γ < 1 at short times and γ > 1 at times t > τon, as observed in the experimental

20



Figure 2.5. Numerical simulations. Three types of simulation results are
shown: power law with noise (PLN), power law with cutoff (PLC), and power
law with cutoff and noise (PLCN). (a) Average PSD for PLN and PLC. (b)
Crossover frequencies fc vs. realization time. (c) Zero-frequency spectra
St(f)|f=0 vs. realization time. The data corresponding to simulations with
cutoff time are shifted down ten fold for clarity. (d) Average PSD for PLCN.
(e) Crossover frequencies fc vs. realization time. (f) Zero-frequency spectra
St(f)|f=0 vs. realization time.

data, and the zero frequency spectrum scales as St(0) ∼ t0.84 as well. Table 1 summarizes the

exponents found in both experimental data and numerical simulations. Simulation results

from a power law distributed two-state model with i.i.d. sojourn times and without noise

(PL) are also shown in the Table along with this model’s theoretical predictions. We observe

that, while basic non-stationary features of 1/f noise agree with recent theory [69], our

experimental work shows that introducing noise in the “on”/“off” levels and a finite mean

“on” sojourn time is crucial for a complete picture of the power spectrum of blinking QDs.
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Table 2.1. Exponents that describe 1/f noise for QD emission (experimental
data) and simulations. Results from numerical simulations of two dichotomous
random processes are shown: power-law distributed waiting times (PL) and
power law with cutoff in “on” times and noise (PLCN). The exponents describe
the power spectrum, aging, crossover frequency, and zero-frequency spectrum.

Experimental data Numerical simulations
Theory QD PL PLCN

β> St(f) ∼ 1/fβ β> = 2− α 1.39 1.38 1.35
β< β< = α 0.76 NA 0.62
z At ∼ 1/tz z = 1− α 0.12 0.36 0.31
γ fc ∼ 1/tγ γ = 1 0.79a 0.99 0.72a

ω St(0) ∼ tω ω = 1b 0.85 0.99 0.84
a These results hold for t < τon. For longer times γ > 1.
bFor long times we have ω = 2α− 1.

As seen in Table 2.1, the addition of noise and cutoff on the “on”-time distribution mod-

ifies the exponents in such a way that now we obtain better agreement between simulations

and measurements. Jeon et al. discussed theoretically the strong influence of noise on the

evaluation of physical parameters from data exhibiting power law distributed sojourn times

[74]. While that work focused on diffusion of individual molecules in living cells, we can

infer the relevance of noise also in our blinking system. Roughly speaking, when power law

sojourn times are so broad, the system remains in a state (e.g, “off”) for a time that is of

the order of the measurement time. Therefore, the noise level in this long state is of utmost

importance for a detailed analysis.

2.4. Discussion

Our data show that the power spectrum of blinking quantum dots crucially depends on

measurement time. We present the first experimental evidence for Mandelbrot’s suggestion

that 1/f noise is related to non-stationary signals. Our measurements were performed at

the nanoscale by measuring single particles, thus removing the problem of averaging a large
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number of particles, typically found in macroscopic systems. The most common description

of macroscopic 1/f electronic noise, commonly referred to as the McWhorter model [54, 46],

stems from the observation that a superposition of Lorentzian spectra with a broad distribu-

tion of relaxation times yield 1/f noise. If this philosophy would hold at the nanoscale, by

probing an individual molecule, one would expect to measure a Lorentzian spectrum with a

well-defined relaxation time. This scenario is not found for blinking quantum dots. Instead,

1/f is observed at the nanoscale. Further, the noise exhibits clear non-stationary behavior,

i.e., dependence on measurement time. We quantify this non-stationarity with critical expo-

nents. In particular, the aging exponent z shows that the amplitude of the noise decreases

as a power law with time. This effect should also be found in other intermittent systems.

The key finding in our work shows that 1/f power spectrum of intermittent QDs decays

with experimental time, i.e., it ages, and thus the spectrum does not converge in long time

measurements as typically assumed for standard stochastic processes. These results agree

with previous observations that analyzed blinking in semiconductor quantum dots as a non-

stationary process [58, 75]. The description of non-stationary 1/fβ noise we present is vastly

different from traditional approaches that characterize it with a single exponent. Besides β,

three additional exponents give the dependence on the measurement time. These exponents

describe aging of the power spectrum At ∼ t−z, the zero-frequency spectrum S(f)|f=0 ∼ tω,

and the low cutoff frequency fc ∼ t−γ. Importantly, the appearance of a transition frequency

due to a finite mean “on” sojourn time, modifies the underlying exponents that describe the

power spectrum.

In an observation time t, the total power of the process is
∫∞

1/t
St(f)df where 1/t is the

lowest measured frequency. For a process with power spectrum S(f) = A/fβ with 1 < β < 2
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the total power diverges as time increases, due to the low frequency behavior. In contrast, if

S(f) = A/fβ and 0 < β < 1, the total power diverges due to the high frequency behavior of

the spectrum. We observe that in QDs, two different phenomena limit the increase of total

power. First, below the transition frequency fT , we find β < 1 due to the cutoff in the “on”

sojourn times and hence the spectrum is integrable at low frequencies. For large frequencies

β > 1 hence it is integrable also at high frequencies. Second, as the observation time

progresses, the amplitude of the power spectrum decreases with At ∼ t−z, so that St(f)→ 0

in the limit t → ∞. Both these findings maintain the total power finite. More precisely, if

one measures for times that are shorter than τon and hence the transition to an integrable

spectrum is not detected at low frequencies, the decrease of the spectrum with time ensures

that the total area under the power spectrum does not diverge. This will become particularly

important in the limit of weak laser field excitation and low temperatures, where τon becomes

extremely large [56] and a single regime in the power spectrum holds for all observable time

scales, i.e., the transition frequency fT is not observed within the available frequency range.

We measure the total power by integrating the power spectral density as defined above and

indeed, we obtain a finite value which is not diverging, i.e. it is bound, though convergence

is slow (Fig. 2.6). The aging of the spectrum ensures that total power of the system will not

diverge, hence, our observations help in removal of a long-standing paradox of physics [40].

By resorting to numerical simulations, we find that a model that includes both a cutoff

in “on” sojourn times and noise in each state (PLCN model) describes more accurately the

experimental results obtained. These simulations emphasize the influence of noise within the

“on” and “off” states and power low with a cut-off distribution. However, the value of the

aging exponent z still remains somewhat far from our experimental observations. The aging
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Figure 2.6. Total power vs. experimental time in blinking QDs. The total
power is found by integrating over the power spectrum

∫∞
1/t
St(f)df . The power

increases to a finite value, showing that the total power is bounded.

exponent in simulations is estimated to be z = 0.31, while in experiments z = 0.12. We can

speculate there are two reasons responsible for the observed discrepancy. First, these models

still assume the existence of solely two levels. Recent experiments point to the existence of

intermediate states in the emission from core-shell QDs [76, 77]. The occurrence of multiple

states has been described both in terms of blinking processes that are faster than the time

resolution of the experiment (as is the case in our experiments) [78] and in terms of multiple

physical states within the core-shell quantum dot [77, 79]. Nevertheless, the main aspects

of the non-stationarity described here are expected to hold for the multiple level system as

long as at least one of the states is governed by a scale-free power law distribution. Second,

a different phenomenon that could affect the measured critical exponents is noise in the QD

levels that is not Gaussian. The influence of non-Gaussian noises can of course have striking

consequences in the properties of a stochastic process.

In our approach the exponents were analyzed in a way that is reminiscent of critical

behavior, with scaling relations showing the exponents are dependent on each other and with

different behaviors below and above a transition frequency fT ' 1/τon. These results are

relevant to a broad range of systems displaying power law intermittency [80, 81, 65, 53, 52].
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Further, power law sojourn times, which is the basic ingredient leading to the observed

non-stationary spectrum in blinking quantum dots, are widespread and are found in glassy

systems [82, 83] and anomalous diffusion in live cell environments and other complex systems

[84, 85, 86, 87, 88]. Therefore, the measured exponents could be a general feature of many

noisy signals. Finally, the traditional characterization of blinking quantum dots with a single

exponent α is shown to be limited and to hide interesting physics described by different

critical exponents.

2.5. Conclusions

Our experiments show how the analysis of noise in blinking quantum dots reveals rich

physical behavior described by four critical exponents. This is vastly different from tradi-

tional approaches that characterized power spectrum of 1/fβ noise with a single exponent

β. The exponent z describes the aging of the spectrum with measurement time, showing a

decrease of the noise level as the measurement time increases. The exponent β describes the

1/fβ noise as in many previous studies, however we find two such exponents β< and β>, be-

low and above the transition frequency fT . The zero frequency exponent ω describes the time

average of the intensity, which is essentially related to ergodicity and yields further infor-

mation on the non-stationarity of the process. The exponent γ describes the crossover from

zero frequency to 1/fβ. We hope that our work will promote measurements of exponents of

1/fβ spectrum, since they reveal the true complexity of the observed phenomena.

2.6. Experimental methods: quantum dot imaging

Core-shell CdSe-ZnS quantum dots were purchased from Life Technologies (Qdot 655,

Invitrogen). In order to avoid aggregation, the QDs were dispersed in a 1% (w/v) bovine
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serum albumin solution to a final concentration of 1 nM. A 20-µL drop of this solution

was placed on a glass coverslip (Warner Instruments, Hamden, CT) that had been cleaned

by sonication in acetone and ethanol. After a 10-minute incubation period the coverslip

was thoroughly rinsed with deionized water and dried with nitrogen. We recorded the

fluorescence from 1,200 QDs for 22 min at room temperature in a Nikon Eclipse Ti total

internal reflection (TIRF)/widefield fluorescence microscope. QDs were excited by a 488-nm

laser line and the emission was collected with a bandpass filter. Images were acquired in a

frame-transfer electron multiplying charge-coupled device (EMCCD iXon DU-897, Andor,

Belfast UK) at 50 frames per second (exposure time of 20 ms).

QD intensities were measured using an automated algorithm implemented in LabView,

which computes the total intensity of each QD. Due to spatial inhomogeneities in excitation

power and dot-to-dot variations in quantum yield, different QDs can have varying fluores-

cence intensities. Thus, we normalize the data so that all intensities lie between zero and

one, allowing us to work with a more convenient dimensionless intensity system. For this

purpose, we first subtract the minimum value of the intensity along each QD trace and then

divide it by the maximum (after subtraction) intensity value.
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CHAPTER 3

FLUCTUATIONS OF 1/F NOISE IN INTERMITTENT QDS

3.1. Introduction

In the previous chapter we showed that the PSD of QD emission exhibits aging and

the ensemble averaged PSD depends on experimental time, in agreement with theoretical

predictions for the non-stationarity of 1/f spectra in intermittent systems. Also we observed

two regimes with different 1/f behavior for frequencies greater or less than a transition

frequency fT . The existence of a transition frequency is due to the cutoff in the “on”- time

distribution. Both regimes exhibit 1/fβ with β > 1 for f > fT and β < 1 for f < fT . Given

that β < 1 for low frequencies the spectrum is integrable and the non-integrability paradox

of 1/f noise is solved.

We observed that the sojourn times of QD emission is power-law distributed. Power-law

statistics lead to diverging moments and, therefore, the time-averaged observables remain

random variables in the long time limit. Theory predicts that the power spectrum of two-

state systems with power-law sojourn times also remains a random variable in the limit of

long measurements [18]. Thus large fluctuations should be observed between different power

spectra of identical particles. Nevertheless, the field is lacking experimental evidence for the

predicted large fluctuations in these spectra.

In this chapter we report experiments on 1/f noise in semiconductor QD fluorescence.

We find that the power spectrum of their fluorescent emission remains a random variable

even in long time experiments and its distribution converges to a function with finite width.

The work presented in this chapter has been performed in collaboration with Prof. Eli Barkai (Bar-Ilan
University, Israel).
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3.2. Results

Similar to chapter 2, the core-shell CdSe/Zns nanocrystals (Qdot 655, Invitrogen) were

deposited on glass coverslips and excited by a 488-nm laser line. We recorded the room

temperature fluorescence from 470 QDs for long times (22 min) at 50 frames per second.

Due to spatial variations, different QDs can have varying intensities while they are in the

on state. For normalization purposes, we first subtract the minimum value of the intensity

along each QD trace and then divide it by the maximum (after subtraction) intensity value.

This procedure assures all intensities lie between zero and one. Figure 3.1(a) shows the first

10 s of the normalized intensity trace of five individual QDs. Both “on” and “off” states are

accompanied by experimental noise with non-negligible contributions to the power spectrum.

In order to study the component of the PSD originating from transitions between “on” and

“off” states, we thresholded the intensity of QD emission and considered each time trace as

a sequence of zeros and ones such that I2(t) = 1 if I(t) ≥ Ith and I2(t) = 0 if I(t) ≤ Ith[89].

In chapter 2 we used an arbitrary threshold value, but here we apply a more sophisticated

method in order to evaluate the threshold value. As shown in Fig. 3.2, we fitted two Gaussian

to the histogram of individual QD normalized intensities, which are usually two overlapping

normal distributions centered at “on” or “off” levels, then we chose the threshold to be

the intersection point of these two Gaussian. Figure 3.1(b) shows the thresholded intensity

traces for the same QDs shown in Fig. 3.1(a). The distribution of “off” times derived by

this method is well described by a power law ψoff(τ) ∼ τ−(1+α1); whereas, the distribution of

“on” times shows truncated power-law behavior ψon(τ) ∼ τ−(1+α2)e−τ/τon . For our data, 470

QDS, we found α1 = 0.64, α2 = 0.5 and τon = 5.5 s [Fig. 3.3(a), (b)].
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Figure 3.1. Intensity of individual QD fluorescence emission. (a) Fluores-
cence intensity from five individual quantum dots as a function of time. All
intensities are between zero and one and are shifted by a constant value. (b)
Time series of the same five QDs after thresholding the intensities.
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Figure 3.2. Thresholding the intensity of QDs fluorescence emission. His-
togram of normalized intensities of one QD fluorescence emission with two
Gaussian fits, the threshold has chosen to be the intersection point of these
two Gaussian (black dashed line).

Since, similar to chapter 2, signal is measured over a finite experimental time t, the PSD

is estimated using Eq. 3. We observed two regimes of PSD with different 1/f behavior

for frequencies greater or less than a transition frequency fT [Fig. 3.4(a)]. This result is

in agreement with our previous observations shown in the chapter 2. Both regimes exhibit

1/fβ with β > 1 for f > fT and β < 1 for f < fT . Although the PSDs of different QDs

have similar exponents for two regimes, their amplitudes exhibit a broad scatter [Fig. 3.4(b),

(c)]. The high frequency domain exponents in all measured 470 QD traces are observed to

be similar with a mean β = 1.41 and a standard deviation 0.06 and for low frequencies the

average exponent is β = 0.89 with a standard deviation 0.32 [Fig. 3.4(d)].

For ergodic systems individual PSDs converge to the ensemble-averaged PSD in the long

time limit. In our measurements, the amplitude of the PSD shows large fluctuations. In order

to investigate these fluctuations, we consider the amplitude A of the PSD, S(f) = A/fβ,

and we examine the distribution of the PSD amplitude, A, and also the normalized PSD
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Figure 3.3. Distribution of sojourn times. (a) Distribution of “on” times
for 470 QDs. The red line shows the following fit: ψon(τ) ∼ τ 1.5e−τ/5.5. (b)
Distribution of “off” times for 470 QDs. The red line shows the following fit:
ψoff(τ) ∼ τ−1.64.

amplitude ξ = A/〈A〉, where the angle brackets represent ensemble average. To estimate

A in the low and high frequency regime, we select the section of the PSD before and after

the transition frequency respectively. As shown in Fig. 3.5(a) and (b) , we observe a broad
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Figure 3.4. Variations of power spectral density of QDs fluorescence emis-
sion. (a) PSD of the emission from a single QD. The red lines show linear
regression of the log-log plot for high and low frequencies, and the arrow points
to the transition frequency fT (b) Power spectral density of the 100 individual
QDs at low frequency region (f < fT ) calculated for experimental time: 1311
s. (c) Power spectral density of the same 100 individual QDs at high frequency
region (f > fT ) calculated for experimental time: 1311 s. (d) Distribution of
the exponent of PSD of individual QDs fluorescence emission, β, calculated
for high and low frequency regimes.

distribution of PSD amplitudes for both regimes. We also looked at the distribution of the

PSD amplitude for different measurement times. If the process were ergodic, the PDF of

ξ would converge to a delta-function centered at one by increasing the measurement time.

However, as shown in Fig. 3.5(c), the distribution of normalized PSD amplitudes for high

frequency regime converges to a distribution with finite variance, which is a consequence of

weak ergodicity breaking. Since transition to low frequency regime only happens for long
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Figure 3.5. The spectra of different quantum dots scatter broadly. (a) His-
togram of the PSD amplitude, A, of QDs intensity traces calculated for ex-
perimental time: 1311 s, for low and high frequency regimes. Each count is
computed from the spectrum of a single quantum dot trace. (b) Histogram of
the normalized PSD amplitude, ξ = A/〈A〉, calculated for experimental time:
1311 s, for low and high frequency regimes. (c) Histogram of the normalized
PSD amplitude, measured over different experimental times (d) Ergodicity
breaking parameter, Eq. 10, as a function of experimental.

measurements, t > 500s, we were not able to look at the amplitude distribution convergence

for the low frequency regime.

34



The variance of the distribution of ξ is usually called the ergodicity breaking (EB) pa-

rameter [90]

(10) EB =
〈A2〉 − 〈A〉2

〈A〉2
.

Figure 3.5(d) shows that the EB parameter first decreases with time and then converges to

a finite value. It has been shown that for a one dimensional CTRW with power-law waiting

times, ψ ∝ τ−(1+α), the EB parameter is related to the power-law exponent, α, by

(11) EB =
2Γ2(1 + α)

Γ(1 + 2α)
− 1,

where Γ(z) is the gamma function [90]. For the distribution of the amplitudes of the power

spectrum of QDs, we have EB = 0.41 for α = 0.63. Our experimental results show the EB

parameter converges to EB ' 0.18.

Furthermore, it has been shown that the distribution of ξ for a renewal process with

power-law sojourn times, ψ ∝ τ−(1+α), converges to a Mittag-Leffler (ML) distribution :

(12) (ξ1, ξ2, ..., ξn)→ Yα(η1, η2, ..., ηn)

where the ηi are independent random variables with a unit mean and the pre-factor Yα is a

random variable of normalized Mittag-Leffler distribution with exponent α whose moments

are 〈Y n
α 〉 = n!Γ(1 + α)n/Γ(1 + nα). We observe in our experimental results that the distri-

butions of A/〈A〉 can not be approximated by ML distribution [Fig. 3.6] and, the α value

for closest ML distribution, α = 0.82, is different than theoretical prediction, which is 0.64

for our case.
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Figure 3.6. Distribution of normalized amplitude of PSD. Distribution of
normalized amplitude of PSD for 1311 s total experimental time. Dashed line
is the closest ML distribution with α = 0.82.

Figure 3.7. Normalized PSD amplitude of numerical simulation. Histogram
of the normalized PSD amplitude of 1311 s time trace for two simulated models.
In the first model, the “on” times are exponentially truncated. In the second
model Gaussian noise is added to each realization of the first model. Histogram
of the normalized PSD amplitude of 1311 s time trace for both models. The
red line shows the Mittag-Leffler distribution for α = 0.63.

As mentioned before, both “on” and “off” levels are accompanied by Gaussian noise

[Fig. 3.3(b)]. Also the “on” times distribution is not a power-law and has an exponential
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cutoff. We hypothesized that the Gaussian noise and/or cutoff in waiting times can explain

the observed deviation from theoretical predictions. In order to study the extent of Gaussian

noise in 1/f fluctuations, we compare our experimental results to simulations that include

the effects of truncation in the sojourn times and noise. In the simulation (power law with

cutoff, PLC), the “on” times were drawn from a distribution ψ(τ) ∼ τ−(1+α)exp(−τ/τon) with

τon = 15 s and the “off” times were drawn from a power-law distribution with α = 0.63. In

the second case, we performed simulations with cutoff and added Gaussian noise to each point

in the time series (PLCN). For PLC, the distribution of ξ converges to ML distribution with

α = 0.63 [Fig. 3.7] indicating that the truncation in the sojourn times of one of the states

does not alter distribution of fluctuations of 1/f noise. This is expected because the “off”

times are power law distributed and thus the process is scale-free for times longer than the

truncation time. For PLCN, some deviations from theoretically predicted ML distributions

are observed, albeit these deviations are much smaller than those seen in [Fig. 3.5(b)].

These results suggest that simple Gaussian noise or cutoff of the “on” times cannot explain

the discrepancies between experiment and the theory of intermittent two state processes.

Thus non-Gaussian noise effects are assumed to cause the observed discrepancies. Non-

Gaussian noise may be in part caused by binning. The smallest dwell time is usually orders

of magnitude smaller than the exposure time, which results in averaging over several “on”

and “off” times and, in turn, generates artificial intermediate states.

3.3. Discussion

In summary, by considering the QDs intermittent fluorescence as a system with power

law distributed sojourn times showing 1/f noise, we observed weak ergodicity breaking in

1/f noise. We find that the power spectrum of their fluorescent emission remains a random
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variable even in long time experiments and its distribution converges to a function with finite

width. Our data indicates that deviations of the EB parameter from theoretically predicted

value and distribution of PSD amplitude from ML can not be explained by simple Gaussian

noise in the on/off levels.
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CHAPTER 4

THE PLASMA MEMBRANE IS COMPARTMENTALIZED BY A SELF-SIMILAR

CORTICAL ACTIN MESHWORK

4.1. Introduction

The plasma membrane is a complex fluid where lipids and proteins continuously interact

and generate signaling platforms in order to communicate with the outside world. One of

the key mechanisms by which membrane molecules search reaction sites is based on lateral

diffusion. Quantitative imaging methods, such as single-particle tracking [91, 30, 92], spa-

tiotemporal image correlation spectroscopy [93], fluorescence correlation spectroscopy (FCS)

[94, 95], and STED-FCS [96], show that the dynamics of proteins and lipids in the plasma

membrane often deviate from normal diffusion. In particular, the mean square displacement

(MSD) does not grow linearly in time as expected for Brownian motion [97, 98, 99, 100]. This

behavior suggests processes that hinder diffusion. Since the formation of protein complexes

is governed by diffusion-mediated encounters, hindered diffusion plays fundamental roles in

cell function.

Unveiling the underlying mechanisms leading to the observed anomalous diffusion on the

cell membrane is critical to understanding cell behavior. Anomalous diffusion in the plasma

membrane can be caused by macromolecular crowding [102], transient binding [86], hetero-

geneities [103, 104], and membrane compartmentalization by the underlying cytoskeleton

The work presented in this chapter has been performed in collaboration with Prof. Michael Tamkun (Col-
orado State University). Jenny Higgins initially worked on this project. She performed the initial experiments
which some of the results are used here, she also wrote several codes for data analysis and developed some of
the experimental protocols. Patrick Mannion helped with experiments and data analysis. Kv2.1 and Kv1.4
plasmids used in this project were provided by Tamkun lab (Colorado State university). PALM reconstruc-
tion code was provided by Dr. Keith Lidke (University of New Mexico). Dr. Maxime Dahan (Institut Curie,
Paris) provided the plasmids to express ABP-tdEos. This chapter has been published in Phys. Rev. X [101]
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[105, 30]. In recent years it has become evident that a single mechanism cannot account for

the complex dynamics observed in the plasma membrane [100]. It has been shown that inter-

actions with clathrin coated pits (CCPs) cause anomalous diffusion and ergodicity breaking

[86, 106]. However, it was observed that this process coexisted with a different anomalous

diffusion mechanism attributed to diffusion within a fractal topology. Experimental evidence

for the organization of the plasma membrane by the cortical actin cytoskeleton has been pro-

vided by measurements in cell blebs, spherical protrusions that lack actin cytoskeleton [107],

and in the presence of actin-disrupting agents [25, 26, 108]. The picket-fence model explains

these observations by postulating that the mobility of membrane-bound molecules is hin-

dered by the actin-based cytoskeleton in close proximity to the plasma membrane, leading

to transient confinement [27, 28, 29, 30]. Confinement and segregation of membrane com-

ponents can have important physiological properties in allowing the formation of functional

domains on the cell surface. However, in spite of the vast evidence that has accumulated over

the last two decades, a direct observation of the dynamic compartmentalization of membrane

proteins by underlying actin fences is challenging due to the spatial and temporal resolutions

required for its visualization.

Here we employ superresolution imaging and single-particle tracking of membrane pro-

teins to elucidate the compartmentalization of the plasma membrane by intracellular struc-

tures. We track individual potassium channels and find that their diffusion pattern is best

modeled by obstructed diffusion instead of fractional Brownian motion. We directly vi-

sualize the transient confinement of potassium channels by cortical actin in live cells. In

order to characterize the cortical actin meshwork structure, we employ stochastic optical

reconstruction microscopy (STORM) to obtain superresolution images of the cortical actin
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in fixed cells. We find a non-integer dimension for the actin cortex and a broad distribution

of compartment sizes as expected for a self-similar structure. These observations consis-

tently explain the anticorrelated subdiffusive motion of membrane proteins and provide new

insights on the hierarchical organization of the plasma membrane.

4.2. Results

4.2.1. Kv1.4 and Kv2.1 ion channels undergo subdiffusion in the plasma membrane.

Voltage-gated potassium channels Kv1.4 and Kv2.1 were expressed in human embryonic

kidney (HEK) cells, labeled with quantum dots (QDs) [86], and imaged using total internal

reflection fluorescence (TIRF) microscopy at 50 frames/s, so that individual molecules could

be detected on the cell surface. Kv1.4 and 2.1 are similar in size, 654 and 853 amino acids,

respectively, but share less than 20% overall amino acid identity [109]. They are placed into

distinct gene subfamilies because of this low identity. They are most similar within a central

core domain composed of six transmembrane alpha helices and the ion conducting pore. In

contrast, they share no amino sequence identity within the cytoplasmic N- and C-terminal

regions; each Kv1.4 subunit has 402 cytoplasmic amino acids while the Kv2.1 subunits have

624. Both channels exist as homotetrameric structures giving the functional channel 24

membrane spanning domains and a total of either 1608 or 2496 cytoplasmic amino acids.

Figure 4.1(a) shows representative trajectories of Kv1.4 channels. The motion of the ion

channels was initially evaluated in terms of their time-averaged MSD,

(13) δ2(∆) =
1

T −∆

∫ T−∆

0

|r(t+ ∆)− r(t)|2dt,
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Figure 4.1. Voltage-gated potassium channels Kv2.1 and Kv1.4 undergo
subdiffusion in the plasma membrane. (a) Four Kv1.4 representative trajecto-
ries obtained by single-particle tracking. (b) Time averaged MSD as a func-
tion of lag time ∆ for 20 individual Kv1.4 trajectories. (c) Ensemble average
time averaged MSD averaged over 1,312 Kv1.4 trajectories (n = 10 cells).
(d) EATAMSD averaged over 6,385 Kv2.1 trajectories (n = 14 cells). The
dashed lines in b and c are visual guides for linear behavior (free diffusion),

i.e.,
〈
δ2(∆)

〉
∼ ∆. Error bars show standard deviation. (e) Sketch illustrating

the construction of turning angles from a particle trajectory. (f)-(g) Turning
angle distributions for Kv1.4 (10 cells, 1,312 trajectories) and Kv2.1 (14 cells,
6,385 trajectories). Turning angle distributions are constructed for lag times
between 20 ms and 1 s. (h) Turning angle distributions for fractional Brownian
motion simulations with Hurst exponents 0.3 and 0.4. (i) Turning angle dis-
tribution for simulations of obstructed diffusion with obstacle concentrations
33% and 41%. (j) MSD averaged over 3,114 ∆C318 trajectories (n = 5 cells).
The dashed lines is visual guides for linear behavior (free diffusion). Error
bars show standard deviation. (k) Turning angle distributions for Kv2.1 and
∆C318 (5 cells, 3,114 trajectories) measured with lag time of 200 ms.

where T is the total experimental time, r the particle position, and ∆ the lag time, i.e.,

the time difference over which the MSD is computed. When a particle displays Brownian

diffusion, the MSD is linear in lag time, i.e., δ2(∆) ∼ ∆. In contrast, anomalous diffusion

is characterized by a different MSD scaling, namely MSD ∼ ∆α, where α is the anomalous
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exponent. Anomalous diffusion is classified as subdiffusion when 0 < α < 1 and superdif-

fusion when α > 1. Figure 4.1(b) shows the MSD of 20 individual trajectories. The MSDs

of Kv1.4 as well as Kv2.1 channels show subdiffusive behavior, albeit with large apparent

fluctuations. Figures 4.1(c) and 4.1(d) show the MSDs averaged over 1,312 Kv1.4 (n = 10

cells) and 6,385 Kv2.1 (n = 14 cells) trajectories, respectively,
〈
δ2(∆)

〉
. Throughout the

manuscript we employ overlines to denote time averages and brackets to denote ensemble

averages. The anomalous exponent α of Kv1.4 was found to be 0.89 and that of Kv2.1 was

0.74, indicating subdiffusion in both cases.

Several distinct mathematical models lead to subdiffusion [98, 99, 100]. Among the

most well-accepted types of subdiffusion in biological systems, we encounter (i) obstructed

diffusion, (ii) fractional Brownian motion (fBM), and (iii) continuous time random walks

(CTRW). Both fBM [110, 111] and obstructed diffusion [112, 113, 114] are models for

subdiffusive random walks with anticorrelated increments that have been extensively used

in live cells. fBM describes the motion in a viscoelastic fluid [115, 116], which can be caused

by macromolecular crowding [117, 118]. fBM is a generalization of Brownian motion that

incorporates correlations with power-law memory. It is characterized by a Hurst exponent

H that translates into an anomalous exponent α = 2H. Obstructed diffusion describes the

motion of a particle hindered by immobile (or slowly moving) obstacles, e.g., percolation. As

the concentration of immobile obstacles increases, the availability of space decreases. Near

a critical concentration known as percolation threshold, the obstacles form a fractal with

dead ends in all length scales. In particular, the reduction of the available space results in

anomalous diffusion with a recurrent exploration pattern. A CTRW is a generalization of a

random walk where a particle waits for a random time between steps [119]. When the waiting
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times are asymptotically distributed according to a power law such that the mean waiting

time diverges, the CTRW is subdiffusive. These three models describe very distinct physical

underlying mechanisms but they can yield similar sublinear MSD scaling, particularly in

obstructed diffusion and fBM models. Thus the MSD analysis is insufficient to elucidate the

type of random walk.

Different tests beyond the MSD have been employed to distinguish among types of sub-

diffusive random walks, including p-variations [120], first passage probability distribution

[121], mean maximal excursion [122], Gaussianity [123], and fractal dimensions [124]. Here

we employ the distribution of directional changes, i.e., the turning angles, a tool that probes

correlations in the particle displacements and has been shown to contain information on the

complexity of a random walk [88]. Figure 4.1(e) illustrates the construction of turning angles

from a particle trajectory. In simple Brownian motion, the turning angles are uniformly dis-

tributed. Contrastingly, when the steps are correlated the distribution of turning angles is

not uniform [88]. Figures 4.1(f) and 4.1(g) show the distribution of turning angles of Kv1.4

and Kv2.1 for different lag times (1,312 Kv1.4 tracks, 10 cells and 6,385 Kv2.1 tracks, 14

cells). Both distributions peak at θ = 180◦ indicating the particles are more likely to turn

back than to move forward. In other words, Kv channels have a preference to go in the

direction from where they came rather than to persist moving in the same direction. This

property is a fingerprint of subdiffusive random walks with anticorrelated increments. Be-

sides the shape of the distribution, the dependence on lag time bears valuable information.

Strikingly, we observe that the distribution is independent of lag time, i.e., we measure the

same distribution of directional changes whether the lag time is 20 ms or 1 s.
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We examined numerical simulations of fBM and obstructed diffusion and found that

they have distinctive fingerprints in their distribution of directional changes. Figure 4.1(h)

shows the distribution of directional changes for subdiffusive fBM simulations with Hurst

exponents H = 0.3 and 0.4. Even though the distributions peak at 180◦, the probability

density function is clearly different from the experimental data [Figs. 4.1(f) and 4.1(g)]. In

Kv measurements, the turning angle distributions increase sharply as θ approaches 180◦ and

most of the deviations from a uniform distribution are above 90◦. However, fBM gives rise to

a gradual increase that takes place mainly in the range 45◦ < θ < 135◦. Further, the turning

angles of fBM reach a plateau, in contrast to our measurements. Conversely, obstructed

diffusion, strongly resembles our experimental results. Figure 4.1(i) shows the turning angle

distribution for obstructed diffusion simulations in a square lattice with obstacle concentra-

tions 33% and 41% [114]. Note that 41% is slightly above the percolation threshold. These

results show that the motion of Kv channels in the plasma membrane is better modeled

by percolation, i.e., obstructed diffusion, rather than motion in a viscoelastic medium, i.e.,

fBM.

Potential obstacle candidates for obstructed diffusion in the plasma membrane are the

cortical cytoskeleton, lipid rafts, and extracellular glycans. By evaluating the MSD and

turning angle distribution of ∆C318, a mutant in which the last 318 amino acids of the C-

terminus of Kv2.1 channel had been deleted [125], we found that the anticorrelated diffusion

originates from interactions with intracellular structures. We observed that ∆C318 channels

diffuse freely in the plasma membrane, α = 1 with a diffusion coefficient D = 0.19 µm2/s

[Fig. 4.1(j), n=3114 tracks, 5 cells]. Further, the distribution of turning angles of ∆C318

was flattened, as expected for Brownian diffusion [Fig. 4.1(k)], indicating the intracellular
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C terminal domain of Kv2.1 plays a key role in the anticorrelations within the particle

trajectory. Even though the distribution of turning angles in the ∆C318 mutant is close

to that in Brownian motion, a small peak is still noticeable at 180◦ suggesting additional

complexities in the plasma membrane.

In contrast to Kv1.4, which is homogeneously distributed on the cell membrane, a subpop-

ulation of Kv2.1 channels forms micron-sized clusters that localize to endoplasmic reticulum

(ER)-plasma membrane junctions [36, 37]. Thus, we expect both the ER and the cortical

cytoskeleton introduce intracellular interactions with Kv2.1 channels. To identify the ori-

gin of the observed anticorrelated diffusion, we analyzed the motion of non-clustered Kv2.1

channels, i.e., the channels that reside outside ER-plasma membrane junctions. We labeled

Kv2.1 channels both with green fluorescent protein (GFP) and QDs [37]. While all the

channels were labeled with GFP, only a small fraction included QDs in order to enable both

single-particle tracking and cluster identification [fig. 4.2]. We observed that the distribution

of directional changes of non-clustered channels is indistinguishable from that of the overall

population [fig. 4.3]. Thus, we can exclude interactions with the ER as the cause for anticor-

related subdiffusion. These observations suggest that diffusion is hindered by intracellular

components, possibly the cortical cytoskeleton, in agreement with a membrane-skeleton fence

model [30].

We observed that the distribution of turning angles were independent of lag times

[Figs. 4.1(f) and 4.1(g)] within the probed spatial and temporal scales. These observations

indicated the anticorrelated subdiffusion of Kv channels did not have an evident charac-

teristic time scale. This type of random walk is consistent with diffusion on a self-similar

structure, i.e., a fractal subspace. In order to visualize the difference between diffusion on
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Figure 4.2. Detection of Kv2.1 clusters. (a) TIRF image of GFP-Kv2.1.
Bright spots show Kv2.1 clusters, which colocalize to endoplasmic reticulum-
plasma membrane junctions [36, 37]. (b) The images are framed-averaged over
50 frames in order to increase signal-to-noise ratio. (c) Background noise is
reduced using a top-hat filter. (d) Kv2.1 clusters are detected by thresholding
the filtered image. Scale bar is 5 µm.

a fractal structure, and diffusion on a meshwork with a characteristic length scale, we per-

formed simulations of motion of a particle in the presence of permeable fences that introduce

compartments with a well-defined length scale [Fig. 4.4]. In these simulations, we observed

that the distribution of turning angles is not time invariant; the peak at 180◦ grows as

we increase the lag-time up to a characteristic time, and then it decays when the lag-time

increases further [Figs. Fig. 4.4(b) and Fig. 4.4(c)]. Thus, hop-diffusion with a narrow

distribution of confinement sizes exhibits a time-dependent turning angle distribution (with

a well-defined characteristic time scale), in contrast to our experimental results where the

turning angle distribution is time-invariant.
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Figure 4.3. Turning angle distributions for non-clustered Kv2.1 chan-
nels.Turning angle distributions for non-clustered Kv2.1 channels, i.e., chan-
nels that lie outside of endoplasmic reticulum-plasma membrane junctions (5
cells, 2,851 trajectories).

4.2.2. Cortical actin transiently confines Kv1.4 and Kv2.1 channels. We observed that

Kv channels undergo obstructed diffusion as shown in Fig. 4.1. The ∆C318 mutant data

indicated that hindering of the particle motion originated within cytoplasmic structures in

close proximity to the plasma membrane, in agreement with previous experimental evidence

of transient confinement by the actin-based cytoskeleton [107, 126, 127, 29, 128, 108]. Thus

we examined the cortical actin as a candidate for the observed obstructed diffusion in the

plasma membrane.

We imaged the cortical actin in live HEK cells using the photoactivatable probe tdEosFP

[129] via an actin binding peptide (ABP) that reversibly binds to F-actin [130]. Previous

studies showed that expression of ABP-tdEosFP does not affect the organization of the cy-

toskeleton [130, 131]. By activating a sparse subset of ABPs and individually localizing their

center with high precision, we generated photoactivated localization microscopy (PALM) re-

constructed images using localizations from 100 frames (2 s), yielding a smooth video of the
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Figure 4.4. Simulations in a permeable fence model. (a) An example of
a numerical simulation for random walks in the presence of permeable fences.
The fences are sketched as actin filaments. The random walk simulation is
performed off-lattice with step sizes drawn from a normal distribution with
standard deviation σ = 5 in both x and y directions. the fences are placed a
distance of 20 units from each other. All trajectories are 10,000 steps. The
fences are permeable with 5% probability of permeation. Turning angle dis-
tributions are calculated for 1,000 trajectories for lag times (b) ∆ = 2, 4, 16,
and (c) ∆ = 25, 36, 64, 100.

dynamic actin meshwork. The dissociation of ABP-tdEosFP occurs with a time constant on

the order of 40 s [130], thus the exchange within 2-s imaging is negligible.

Figure 4.5(a) shows a representative PALM reconstruction of actin. Although the number

of localizations in 100 frames is not adequate to fully resolve the cortical actin and some

faint fluorescent single-filament structures might be missed in the images, we could use the
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Figure 4.5. Cortical actin transiently confines Kv channels. (a) Trajectories
of individual Kv2.1 channels (shown in cyan) overlaid on actin PALM image
(shown in red). Scale bar 2 µm. (b) Enlargements of the areas indicated
with yellow arrows in a. Scale bar is 500 nm. The left trajectory shows
confinement in a large compartment, the middle one shows hoping between two
compartments and the right one shows confinement in a nanoscale domain. (c)-
(e) Mean square displacements 〈r2〉 covered by Kv1.4 and Kv2.1 and ∆C318
channels in 200 ms as a function of their maximum distance from nearest actin
feature. Error bars indicate standard errors.
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Figure 4.6. Cortical actin does not confines ∆C318 channels. Mean square
displacements 〈r2〉 covered by ∆C318 channels in 200 ms as a function of their
maximum distance from nearest actin feature. Error bars indicate standard
errors.

reconstructed PALM image to study the interactions of the potassium channels with the

actin cortex in live cells. Previous breakthrough experiments have reported simultaneous

imaging of cortical actin cytoskeleton and single-particle tracking [128, 132, 133]. Here, to

the best of our knowledge, we perform for the first time simultaneous single-particle tracking

measurements and imaging cortical actin with superresolution.

In order to find out whether actin-delimited domains as identified by PALM hinder

the diffusion and compartmentalize the cell surface, we imaged and tracked Kv1.4, Kv2.1

channels on the cell surface while simultaneously imaging the cortical actin. Channels often

remained confined within the areas enclosed by actin indicating actin acted as a barrier to

channel diffusion. To visualize the confined diffusion of the channels, we show Kv2.1 channel

full tracks for one movie (2000 frames) on the last reconstructed image of the cortical actin

in Figs. 4.5(a) and 4.5(b). However, this visualization method suffers from overlaying long

trajectories on a single reconstruction image of the actin meshwork.
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In addition to being constrained by actin structures, some trajectories exhibit confine-

ment within small nanoscale domains that do not appear to be enclosed by actin. We have

previously shown that Kv channels exhibit frequent immobilizations when the channels are

captured within clathrin-coated pits [106]. Thus, the cortical actin cytoskeleton is evidently

not the sole mechanism by which the mobility of Kv channels is hindered. In order to deal

with these complexities, we evaluated the MSDs as a function of actin proximity.

Given that actin hinders channel motility, we expect the particles to explore smaller areas

when they are confined within smaller compartments. To test the actin fence hypothesis,

we overlaid channel trajectories on the corresponding PALM image of actin obtained in

2 s, a time scale in which the actin structure is fairly persistent [supplementary video 1],

with a sliding time window 0.2 s. For example, trajectories of the channels from 0 to 2

s were overlaid on the first reconstructed actin frame and the trajectories in the interval

200 ms to 2.2 s were overlaid on the second actin PALM frame. Then we partitioned the

trajectories into 200-ms intervals and classified each segment according to the maximum

distance d of the particle to the nearest actin feature, calculated using an Euclidean distance

map algorithm. We evaluated the ensemble-averaged MSD 〈r2〉 of all the segments located

at a specific distance away from actin, i.e., we averaged the squared displacements in 200

ms of the particles transiently located a given distance from actin. Figures 4.5(c) and 4.5(d)

show the MSD as a function of distance-to-actin for Kv1.4 and Kv2.1. For both channels we

observed that as molecules dwell closer to actin their MSD decreases.

As a control of our method, we performed the same experiment and analysis for ∆C318

channels. Because of lack of intracellular domain, these channels should not have any in-

teraction with the cortical cytoskeleton. We observed that the MSD of ∆C318 channels is
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independent of distance from actin [Fig. 4.6], which proves the effect of intracellular structure

in the transient confinement of Kv channels.

4.2.3. Visualization and characterization of Fractal structure of actin in fixed cells. When

imaging live cells with PALM, the number of frames used in the reconstruction is restricted

by the cell dynamic nature. A low number of frames results in insufficient detected particles

to accurately determine the structure, also having a deleterious effect on resolution. In

contrast, very high spatial resolution can be obtained in fixed cells by collecting data over

long times [134, 135, 136]. Therefore, we used TIRF-STORM to visualize the compartments

formed by cortical actin in fixed cells. Actin was labeled with phalloidin conjugated to Alexa

Fluor 647, which binds actin filaments with high specificity without significantly enlarging

them [136]. A total of 50,000 frames where used in the reconstruction. In our STORM

reconstructions we observed both thick and thin actin structures, Fig 4.7(a). The finest

structures that we observed had a cross section standard deviation of 20 nm (FWHM=48

nm). Figure 4.7(d) shows the average cross section profile of 20 lines aligned by the center of

each line. The thickness of these lines in the reconstruction is governed by the localization

accuracy, 20±8 nm (mean ± SD, Fig. 4.8), which sets a lower bound on STORM resolution.

Thus we are unable to determine whether these structures are individual filaments (10 nm

in diameter) or actin bundles.

We employed a watershed segmentation algorithm [137] to identify actin-delimited com-

partments in the STORM reconstructions [Figs. 4.7(b) and 4.7(c)] across the whole cell.

The average percentage of the watershed meshwork covered by actin was 84 ± 4% (mean

± SD, n=9 cells). Figure 4.7(e) shows the distribution of compartment areas (n = 2, 500

compartments). The areas of the compartments are fitted well by a log-normal distribution,
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Figure 4.7. Characterizations of actin compartments. (a) Superresolution
STORM image of the cortical actin in a HEK cell represented in false colors.
The inset shows the TIRF image of the same field of view. Scale bar is 2 µm.
(c) Average cross-sectional profile of 20 filaments aligned by the center of each
line. Red line, Gaussian fit with FWHM of 48 nm. (d) Watershed segmentation
(shown in green) of the boxed area in a overlaid on the STORM image. (e)
Compartments determined by watershed are designated with different colors.
Scale bars in c and d are 1 µm. (e) Distribution of compartment areas for fixed
cells (9 cells, n=2,500 compartments). Red line is a log-normal distribution
with the shape parameter σ = 0.8 µm.
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Figure 4.8. Localization uncertainty. Histogram of the localization uncer-
tainties for one actin STORM reconstruction using Alexa Fluor 647-phalloidin.

which is a subexponential heavy-tailed distribution in the sense that it decays more slowly

than any exponential tail [138]. The log-normal distribution is in good agreement with

Kolmogorov’s model for the distribution of particle sizes after repeated breakage [139, 140].

When a particle is divided into fragments in such a way that the fragment proportions are

independent of the original particle size, a log-normal distribution emerges in the particle

sizes after random repeated fragmentation. Analogously, actin-delimited compartments are

split into smaller compartments by growing actin filaments and thus their distribution is

predicted to be log-normal.

In addition to the compartment area distribution, the relation between perimeter and

area contains valuable information. Perimeter-area relations have been extensively used to

investigate the properties of complex planar shapes [141, 142]. As expected, we observe that

areas and perimeters of the different compartments are highly correlated [Fig.4.9(a)]. This

correlation indicates shape homogeneity among different compartments [143]. Furthermore,

the area exhibits the same scaling over the whole observed range, A ∼ L1.8, where A and L
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Figure 4.9. Probing fractality of the cortical actin meshwork. (a) Double
logarithmic scatter plot of compartment perimeter vs compartment area. The
fitted curve corresponds to the equation = 0.55x + 0.68 (Pearson correlation
coefficient= 0.98). (b) Representative example of box counting algorithm in
one cell where the exponent yields df = 1.75.

are compartment area and perimeter, indicating the same statistical character at different

scales, and suggesting that compartments formed by cortical actin are scale-invariant in the

observed range. Such scale invariance is a hallmark of a self-similar fractal structures.
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Fractals are characterized by scaling properties governed by a non-integer dimension df ,

i.e., an anomalous dependence of the “mass” on the linear size of the system with M ∼ ldf .

In a regular object such as a line, square, or cube, we would refer to its mass M as the

length, area or volume, respectively. In these regular cases the mass scales as M ∼ ld,

where the l is the linear size and d = 1, 2, 3 is the spatial dimension. On the other hand,

fractals such as a Sierpinsky gasket or a percolation cluster differ from Euclidean spaces

and display a fractional dimension [141, 144]. Usually the capacity dimension is obtained

using a box-counting algorithm that quantifies the mass scaling. In brief, the structure is

placed on a grid, the number of occupied “boxes” are counted, and the process is iterated

for finer grids. The number of occupied boxes scales as N ∼ ε−df , where ε is the box length.

Figure 4.9(b) shows the computation of the fractal dimension of the cortical actin meshwork

from the STORM image in a representative cell. The box counting analysis shows the actin

structure exhibits statistical self-similarity over more than three decades. Our data indicate

the fractal dimension of the meshwork is df = 1.75± 0.02 (n = 9 cells).

4.3. Discussion

Our current understanding of the plasma membrane is that of a complex partitioned fluid

where molecules often undergo anomalous diffusion and can be segregated according to their

function. We observe that K+ channels perform a random walk with antipersistent nature,

i.e., a random walk with an increased probability of returning to the site it just left. However

elucidating the mechanisms that cause anomalous diffusion is not trivial because several

different subdiffusion models lead to similar MSD scaling. The analysis of K+ channel motion

is further complicated by the occurrence of immobilizations with power law sojourn times,

which introduce deviations from Gaussian functions in the distribution of displacements
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[86, 106]. Thus, we cannot employ Gaussianity-based tests to distinguish among complex

antipersistent random walks. We find that the distribution of directional changes provides

a robust test for the type of random walk. The measured channel trajectories are shown to

be well described by obstructed diffusion but not by fBM.

We observed that the Kv2.1 intracellular domain played a key role in the anomalous diffu-

sion, in agreement with previous observations showing that the depth at which a membrane

protein extends into the cytoplasm determined how frequently it encountered mechanical bar-

riers [127]. The obvious candidate to obstruct the motion of proteins with large intracellular

domains is the actin cytoskeleton. Thus, we visualized the cortical actin with high temporal

and spatial resolution and evaluated its effect on membrane protein dynamics. Considering

that some faint single-filament actin structures might not be accurately detected by PALM

imaging, we can miss some interactions between actin and membrane proteins. Notwith-

standing, we found that Kv channels are transiently confined by permeable actin fences,

confirming existing models for membrane compartmentalization as an organizing principle

of the actin cytoskeleton [30]. By studying the diffusion of Kv2.1 channels outside ER-plasma

membrane junctions, we verified that the observed subdiffusion is not due to interactions

with ER. Other intracellular components such as intermediate filaments could also hinder

protein diffusion and further compartmentalize the cell membrane, but these cytoskeletal

filaments were not studied in the present work. Previous single-particle tracking works using

lipids labeled with 40-nm gold nanoparticles have observed the compartmentalization of the

plasma membrane of HEK293 cells, with 70-nm mean compartment size [91]. However, this

compartmentalization occurs with molecules having virtually no cytoplasmic domains and

with a residence time close to 3 ms. At time scales above 50 ms, gold-labeled lipids were
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found to exhibit Brownian diffusion with an effective diffusion coefficient D = 0.41 µm2/s

[91], similar to our observations for ∆C318 Kv2.1 mutant.

Ion channels are observed to undergo anticorrelated anomalous diffusion over at least

two orders of magnitude in time. In terms of percolation theory, this hints the cell surface is

maintained close to criticality, i.e., near the percolation threshold. However, this hypothesis

seems highly unlikely. A more feasible explanation stems from the emergence of a scale-

invariant structure under the plasma membrane. We directly observed that, within the

probed spatial scale, the actin cortex has in fact a self-similar nature. It is possible to

speculate that actin fractality develops from its branching structure. Hierarchically branched

structures have a fractal dimension df such that Rb = R
df
r , where Rb is the bifurcation ratio

and Rr is the length-order ratio [145]. The bifurcation ratio can be interpreted as the average

number of branches that emerge after a bifurcation and the length-order ratio is defined as

the ratio between incoming branch length and the length of the emerging branches until

the next bifurcation [146]. Actin branching is driven by the Arp2/3 complex [147] with

a bifurcation ratio Rb = 2. Here we measure a meshwork fractal dimension df = 1.75,

which can arise from a branching pattern with Rr = 1.5 or, in other words, the daughter

branch being on average 1/3 shorter than the mother branch. The fractal dimension of the

cytoskeleton is in line with a broad range of fractal geometries found in biology ranging

from the lung alveoli to subcellular structures such as mitochondrial membranes and the

endoplasmic reticulum [141].

We propose that the fractal nature of the actin cortex is employed by the cell to organize

the plasma membrane. The complexity of this structure leads to a hierarchical organization

with domains in multiple length scales and the development of nested compartments. Such a
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dynamic hierarchical organization facilitates the active segregation of domains with different

functions and the maintenance of reactants near reaction centers. Furthermore, the fractal

nature of the cortical actin has broad implications for anomalous diffusion, for instance it

could bridge the gap between the plasma membrane hop diffusion models and diffusion in

a fractal that leads to anomalous dynamics over broad time scales. We foresee that a self-

similar cytoskeleton structure also influences active actomyosin-mediated organization of the

plasma membrane [148] in such a way that these processes can take place over multiple length

scales.

In conclusion, our findings show that the plasma membrane is compartmentalized in a

hierarchical fashion by a dynamic cortical actin fractal. We find that the anomalous diffusion

of potassium channels is best modeled by obstructed diffusion or diffusion in a fractal. By

combining PALM imaging with single-particle tracking we were able to directly visualize the

hindering effect of cortical actin on the diffusion of the membrane proteins. We characterized

the compartments formed by cortical actin using superresolution imaging in fixed cells and

found evidence for the self-similar topology of this structure.

4.4. Materials and methods

4.4.1. Cell transfection and labeling. HEK 293 cells (passage 42-49; American Type Cul-

ture Collection) were cultured in phenol red Dulbeccos Modified Eagles Medium (DMEM),

supplemented with 10% fetal bovine serum (FBS; Gibco) at 37 ◦C. Transfection was per-

formed in a 0.2-cm gap cuvette via electroporation using a 110 V, 25 ms pulse (Genepulser

Xcell; BioRad Laboratories) with: 3 µg of BirA and either 3 µg of Kv2.1-loopBAD, Kv1.4-

loopBAD or Kv2.1-∆C318-loopBAD as previously described [149]. Cells were transfected

to express a Kv2.1 or Kv1.4 construct with an extracellular biotin acceptor domain that,
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when coexpressed with a bacterial biotin ligase, results in biotinylated Kv channels on the

cell surface [149]. For live-cell actin imaging cells were transfected with 3 µg of ABP-tdEos.

ABP is the actin-binding sequence of ABP140 from S. cerevisiae consisting of 17 amino acids

[130, 131]. Kv2.1-loopBAD-GFP (3 µg) was employed to identify Kv2.1 clusters on the cell

surface. Cells were incubated overnight in phenol red free DMEM with 10% FBS at 37 ◦C

and imaged 12-24 hours after transfection. Transfected cells were cultured and imaged on

round, glass-bottom dishes coated with Matrigel (BD Biosciences). Prior to imaging, the

medium was replaced with HEK imaging saline (146 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2,

0.6 mM MgSO4, 1.6 mM NaHCO3, 0.15 mM NaH2PO4, 0.1 mM ascorbic acid, 8 mM glucose,

and 20 mM HEPES, pH 7.4).

For single-particle tracking, biotinylated channels were labeled with QDs. Cells were

incubated for 10 minutes in HEK imaging saline with 1 nM streptavidin-conjugated QD705

or QD655 (Invitrogen) and 10 mg/mL bovine serum albumin (BSA) [86] at 37 ◦C. Following

incubation the cells were rinsed again six times with HEK imaging saline to ensure the

removal of any unbound QDs. The diameter of the QDs is in the range 10-15 nm, thus

given that Kv channels are similar in size to the QDs, it is highly unlikely that the Kv:QD

stoichiometry is higher than 1:1. We have previously shown that QD conjugation does not

alter Kv diffusion [86, 106].

4.4.2. Live cell imaging. Imaging was performed in an objective-based TIRF microscope

built around an IX71 Olympus body. An antireflection-coated achromatic 400-mm lens

focused the beams on the back aperture of the objective (100x PlanApo N.A. 1.45; Olympus).

The position of this focusing lens was manually adjusted so that TIRF was achieved. The

laser power before the objective was 20 mW for the blue laser, and 80 mW for the yellow laser.
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To maintain an appropriate density of activated molecules, the intensity of the activation

laser was adjusted between 0.01 and 0.1 mW using neutral density (ND) filters. Typically,

the laser power was increased as the density of photoactivatable fluorophores decreased

during imaging. Fluorescence emission was captured in an electron multiplying charged-

coupled device (EMCCD, iXon DU-888, Andor). Images were acquired using IQ2.3 software

(Andor) at 50 frames per second. The emissions of the ABP-tdEos (or GFP) and the

QDs were separated with a Cairn Optosplit II (Cairn Research) using a dichroic beam

splitter (Semrock). Sample temperature was kept at 37 ◦C using objective and stage heater

(Bioptechs). A 405 nm laser was used to activate the photoswitchable tdEos fluorophore,

while 473 nm and 561 nm lasers were used to excite it in its inactive and active states,

respectively. Setup detail in supplementary information.

4.4.3. Single-particle tracking. QD labeling was controlled so that QDs remained at low

density to allow for single-particle tracking [86]. Particle detection and tracking were per-

formed in MATLAB using u-track [150].

4.4.4. Distribution of turning angles. We define the turning angle θt(∆) at time t and

lag time ∆, from successive displacements δ(t,∆) = r(t+ ∆)− r(t)

(14) θt(∆) = arccos

(
δ(t,∆) · δ(t+ ∆,∆)

|δ(t,∆)| |δ(t+ ∆,∆)|

)
,

where the angles are defined between 0◦ and 180◦.

4.4.5. PALM reconstruction. Post-imaging processing was implemented in MATLAB us-

ing a script provided by Keith Lidke [151]. A sliding time window of 2 s was used in the
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PALM reconstruction so that the image is refreshed at every frame yielding a smooth video

(supplementary Video S1).

4.4.6. Euclidean distance maps. Euclidean distance maps (EDMs) were employed to cal-

culate the distance from a Kv channels to actin at any given time. EDMs were generated

from a binary image, where the features of interest were set to 1 and the background pixels

were set to 0. The algorithm created a new image where each pixel had a pixel value that

corresponded to the Euclidean distance of that pixel from the nearest feature. Thus, pixels

that neighbored actin structure were assigned a pixel value of 1, pixels that neighbored pixels

with value 1 were assigned a value of 2, etc. [152].

4.4.7. Analysis of ion channel displacement as a function of actin-based confinement.

The distance of Kv channels from actin was calculated at each point of their trajectories

using Euclidean distance mapping (EDM) [152]. Then the squared distance traveled by the

channel in 200 ms was obtained. A 2D histogram of the channel displacement vs its maximum

distance from actin during the same time was constructed, with bin size equal to 20 nm for

EDM and 2000 nm2 for the squared displacement. To investigate the correlation between

mean square displacement and actin confinement, we averaged the square displacement for

all the channels that were located within a given distance range from actin (d± 10 nm).

4.4.8. Kv2.1 cluster detection. GFP-Kv2.1 images were segmented in order to identify

the areas covered by ER-plasma membrane junctions [37]. To increase signal to noise ratio,

the videos were frame averaged so that one image is obtained every 50 frames (1 s). Visual

inspection indicated Kv2.1 clusters did not change size or location over this time scale.

Since background noise was not homogeneous across the cell, we applied a top-hat filter to

reduce local variations in intensity. At last, the filtered image was thresholded to identify
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Kv2.1 clusters. A representative image and the corresponding processing steps are shown

in supplementary Fig. S2. Using the binary image of GFP-Kv2.1 clusters we split the

trajectories of individual QD-Kv2.1 into regions inside or outside the clusters.

4.4.9. Numerical simulations. Obstructed diffusion was modeled by a Monte Carlo sim-

ulation in a square lattice. Obstacles were placed on the lattice at random sites drawn from

a uniform distribution. The random walk was implemented in MATLAB using a “blind ant”

algorithm [114]. A walker is placed in the center of the lattice and it is only allowed to

move into non-blocked sites. If the chosen site (any of the four adjacent sites) is blocked,

the walker remains at the original position and the clock ticks independent of whether the

jump is successful. A lag time ∆ = 500 steps was employed to lessen the effect of the matrix

geometry. When ∆ = 1 step, only four angles are possible. Even when ∆ = 500 steps, small

artifacts can be seen around 0◦, 45◦, 90◦, 135◦, and 180◦ due to the square symmetry.

For the fence models, random walk simulations were performed off-lattice with step sizes

drawn from a normal distribution with standard deviation σ = 5 in both x and y directions.

Fences were placed a distance of 20 units from each other as illustrated in supplementary

Fig. S3. Each time a tracer attempted to cross a fence it remained in place with probability

95%, i.e., the permeability of the fences was set to 5%.

Fractional Brownian motion was generated in MATLAB using the function wfbm in two

independent dimensions.

4.4.10. Image registration. To determine the offset between the left (QD) and the right

(tdEosFP) image channels, a white light image of immobilized 1-µm polystyrene beads (Poly-

sciences, Warrington, PA) was obtained prior to imaging cells (supplementary Fig. S5a).

Beads were localized in both channels with an accuracy of 8 nm through a cross-correlation
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algorithm implemented in LabView (National Instruments, Austin, TX). Since each bead

appeared in both sides of the image, the offset was determined from the differences in their

x and y locations. This process revealed astigmatism induced by the dichroic mirror used to

split the imaging channels. In order to overlay the channels, a linear fit of the bead correction

was employed to adjust the localization of the tdEosFP (supplementary Fig. S5b).

4.4.11. Cell fixation and labeling. Cells were plated on Matrigel coated 35 mm petri

dishes. After 12 hours the cells were fixed and labeled according to established protocols

known to preserve the actin cytoskeleton [153, 136]. Cells were first fixed for 12 min using

a solution of 0.3% glutaraldehyde and 0.25% Triton X-100 in cytoskeleton buffer (CB, 10

mM MES, pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM glucose and 5 mM MgCl2), and

then postfixed for 15 min in 2% glutaraldehyde in CB. The sample was treated with freshly

prepared 0.1% NaBH4 for 7 min to reduce background fluorescence. Actin filaments were

labeled with Alexa Fluor 647-phalloidin (Invitrogen A22287) overnight at 4 ◦C. A concentra-

tion of 0.5 µM phalloidin in phosphate buffered saline (PBS, pH 7.4) was used. To minimize

the dissociation of phalloidin from actin, the sample was briefly washed once with PBS and

then immediately mounted for imaging. Imaging buffer was 50 mM Tris-HCl (pH 8.0), 10

mM NaCl, 10% glucose, 0.56 mg/ml glucose oxidase, 34 µg/ml catalase, 10% glucose, and

1% β-mercaptoethanol.

4.4.12. Fixed cell imaging. Image stacks were obtained using the same setup as live cell

imaging. A continuous illumination of 638 nm laser was used to excite the Alexa Flour 647.

The laser power before the objective was 30 mW. To maintain an appropriate density of

activated molecules, 405 laser was used for some movies. Fifty thousand (50,000) frames

were collected to generate a super-resolution image.
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4.4.13. STORM reconstruction. Post-imaging processing, including drift correction using

autocorrelation function, was performed with ThunderSTORM, an ImageJ plugin [154].

Each reconstruction was obtained using 50, 000 frames (imaged at 50 frames/s).

4.4.14. Characterization of compartments. We employed watershed segmentation [137]

to identify and characterize compartments as seen by STORM. Once watershed images

were generated, compartment areas were found using MATLAB function regionprops. The

watershed principle can be understood by considering an image to be a topographic region

of valleys and hills. First the region is flooded, filling the valleys and, as they overflow,

the water follows a path along the nearest minima. Watersheds create lines that follow the

path of the water. The results are effective at segmenting an image based on the intensity

information. The watershed algorithm has been previously applied to fluorescence imaging,

particularly in the segmentation of cell nuclei [155, 156]. We use watershed segmentation to

outline actin-based compartments. Watersheds were generated from STORM images of the

actin cytoskeleton. Images were segmented via thresholding and converted to binary images

using ImageJ. Watersheds were then generated in MATLAB. This image processing yielded

compartment outlines based on the available actin cytoskeleton information.

4.4.15. Fractal dimension. The fractal dimension of the actin cortex was computed using

a box-counting algorithm. The thresholded binary actin image was placed on a grid of square

boxes of size ε and the number of occupied boxes was counted. The process was repeated

for grids of boxes with different sizes. The number of occupied boxes scales as

(15) N ∼ ε−df ,
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where df is the capacity dimension, or simply the fractal dimension.

4.4.16. Statistics. Results show mean and s.e.m. unless indicated otherwise. All ex-

perimental results were obtained from multiple different dishes and days. The number of

distinct imaging regions, i.e., different cells is indicated in the text. P values were calculated

using Origin software with two-tailed Students t-test and and results with P value ¡0.01 were

considered as statistically significant.
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CHAPTER 5

CONFINED LATERAL DIFFUSION: ROLE OF THE DISTRIBUTION OF

CONFINEMENT SIZES

5.1. Introduction

In the previous chapter we showed that the cell plasma membrane is compartmentalized

by the cortical actin skeleton. We observed that the size of the compartments formed by actin

have a log-normal distribution [Fig. 4.7(e)]. Although this was the first direct observation

of the compartmentalization of the plasma membrane in live cells, there are other excellent

experimental characterization of the cell membrane compartments. Compartments were

studied for various cell types by either segmenting trajectories obtained by single particle

tracking (SPT) to different modes of motion [157, 158, 30], measuring barrier-free path (BFP)

by dragging the membrane proteins across the cell surface with a laser tweezers until they

encountered a barrier [159, 160], or directly observing the membrane skeleton by electron

microscopy [161].

Table 5.1 summarizes some of the key experimental results obtained for various cell

types using different techniques. As discussed in the previous chapter and also in table 5.1,

a high percentage of the membrane proteins exhibit confined motion. Theory of the confined

diffusion has been mostly studied by either running Monte-Carlo analysis or solving the

related diffusion equation. Solution for diffusion equation in different confinement geometries

was first derived in the context of heat conduction problem [162], which was later used to

obtain an analytical form for the MSD of confined diffusion [162, 157, 163, 164].

The work presented in this chapter has been performed in collaboration with Frashad Abdollah-Nia (Colorado
State University).
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Table 5.1. Summary of the previous experimental results for characteri-
zations of compartmentalization of the cell plasma membrane

Cell type Molecule Technique Main results
Year

Ref.

HEPA-
OVA

MHC a Laser
tweezers

The BFPs of Qa2 and H-2Db are
1.7± 0.2 and 0.6± 0.1
(micrometers ± SEM),

respectively. Barriers to lateral
movement are primarily on the

cytoplasmic half of the membrane
and are dynamic.

1991
[159]

NRK b TfR c SPT

Most of the movement trajectories
are of the confined diffusion type,

within domains of =0.25 µm2

(500-700 nm in diagonal length).

1994
[158]

NRK b TfR c Laser
tweezers

Boundaries are elastic structures.
Confinement size is 600-800 nm in

diagonal length.

1995
[160]

NRK b,* TfR c,* SPT

More than 80% of the receptors
exhibit confined+hopped diffusion.

TfR diffusion was found to be
doubly compartmentalized into
710 nm compartments and then

into 260 nm compartments.

2002
[105]

NRK band
FRSK d -

Electron
tomography

Almost the entire cytoplasmic
surface of the upper cell membrane

is covered with the actin-based
membrane skeleton. The median
values of the compartments area
and its square root are 3.9× 104

nm2 and 200 nm, respectively, for
NRK cells and 2.7× 103 nm2 and

52 nm, respectively, for FRSK
cells.

2006
[161]

a Major histocompatibility complex (MHC) class 1 molecules that were either
transmembrane- (H-2Db) or glycosylphosphatidylinositol (GPI)-anchored (Qa2) were
labeled with antibody coated gold particles.

b Normal rat kidney fibroblastic cell
c Transferrin receptors
* Other molecules diffusion on other cell type membrane are investigated in the same

paper
d Fetal rat skin keratinocytes.
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Predictions of scape time, number of visited sites before scape based on the confinement

size and shape was derived using Monte-Carlo calculations [165]. In addition to diffusion

in a single confined domain, diffusion in a lattice with periodic or random barriers with or

without permeation has also been studied [166, 112, 167, 168, 169]. Here we investigate the

problem of diffusion in a distribution of confinement sizes, which have been partially studied

before for a specific distribution of confinement sizes [169], but needs a more detailed work

and generalization to other distributions.

In this chapter first we briefly review the theory for confined diffusion. Then using some

of the previous findings as a base of our model, we obtain a theoretical form for the MSD of

diffusion in a distribution of compartment sizes assuming zero escape probability from the

compartments. Then we calculate the MSD for three specific distributions of confinement

sizes, namely exponential, power-law and log-normal distributions with linear (one dimen-

sional) and circular (two dimensional) geometries. We also compare our theoretical results

with simulations for verification purpose.

5.2. Theoretical model

First we review confined diffusion in a d-dimensional domain L with volume V and

characteristic length L and reflecting boundary condition. Probability of finding a particle

at position r at time t is shown by P (r, t). This probability depends on the initial position

of the particle r′ at time t = 0 and the confinement size L. The conditional probability,

P (r, t|r′, L), satisfies the diffusion equation

(16)
∂P

∂t
= D∇2P,
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where D is the diffusion coefficient. Initial condition for this problem is given by P (r, t =

0|r′, L) = δ(r − r′). The solution for this diffusion equation with reflecting boundaries

is known for some specific geometries. For example for linear 1D confined diffusion with

coordinate x and initial position x′, the solution is written as the following series [162]

(17) P (x, t|x′, L) =
1

L
+

2

L

∞∑
n=1

exp

[
−
(
nπ

2

)2
4Dt

L2

]
cos

(
nπx

L

)
cos

(
nπx′

L

)
.

For confined diffusion in a 2D circular domain with radius R, coordinate r = (ρ, φ) and

initial position r′ = (ρ′, φ′), the solution for the diffusion equation is also known and is

written as a series [162]

(18)

P (r, t|r′, R) =
1

πR2

+
1

πR2

∞∑
n=−∞

cosn(φ− φ′)
∞∑
m=1

α2
nm

α2
nm − n2

exp

[
− α2

nm

Dt

R2

]
Jn(αnm

ρ
a
)Jn(αnm

ρ′

a
)

Jn(αnm)2
,

where α1m are the (non-zero) zeros of the derivative of the Bessel function of the first kind,

j′1(α1m) = 0.

Ensemble-averaged (EA-MSD) for diffusion in a d-dimensional compartment with char-

acteristic length L and volume V is given by

(19)

〈
δ2(t)|L

〉
=
〈
(r(t)− r′)2|L

〉
=

∫ ∫
P (r′)P (r, t|r′, L)(r− r′)2 ddr ddr′

=
1

V

∫ ∫
P (r, t|r′, L)(r− r′)2 ddr ddr′,

where we assume a uniform probability distribution for the initial position, P (r′) ddr′ =

ddr′/V . Therefore the MSD for a 1D linear confined diffusion in compartment with size L
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and reflecting boundaries is obtained by substituting Eq. 17 in Eq. 19 [157],

(20)
〈
δ2(t)|L

〉
=
L2

6

(
1− 96

π4

∞∑
n=0

exp

[
− π2(2n+ 1)2DT

L2

]
1

(2n+ 1)4

)
,

where the initial position is assumed to be uniformly distributed inside the linear domain,

P (x′) = 1/L. Equation 20 can be approximated by

(21)
〈
δ2(t)|L

〉
≈ L2

6

(
1− exp

[
−12Dt

L2

])
.

For short times, t� L2/D, we have 〈δ2(t)|L〉 ≈ 2Dt, and diffusion is a normal Brownian

motion. For long time limit, t � L2/D, the MSD converges a constant value, 〈δ2(t)|L〉 ≈

L2/6. Therefore the confinement size can be calculated using the MSD of the motion.

Similarly EA-MSD for 2D diffusion confined in circular compartments is obtained by

substituting Eq. 18 in Eq. 19 [170, 164]

(22)
〈
δ2(t)|R

〉
= R2

(
1− 8

∞∑
m=1

exp
[
− α2

1m

Dt

R2

] 1

α2
1m(α2

1m − 1)

)
,

where the initial position is assumed to be uniformly distributed inside the circular domain.

Equation (22) can be approximated by

(23)
〈
δ2(t)|R

〉
≈ R2

(
1− e

−4Dt

R2

)
.

For short times, t � R2/D, we have 〈δ2(t)|R〉 ≈ 4Dt, and diffusion is a normal Brownian

motion. For long time limit, t� R2/D, the MSD converges a constant value, 〈δ2(t)R〉 ≈ R2,

that depends on the confinement size.
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Figure 5.1. Illustration of the modeled system. (a) Trajectories of confined
diffusion in circular domains with different confinement lengths. (b) Mean
square displacement of the trajectories shown in (a). The dashed line shows
the ensemble-averaged MSD for the illustrated trajectories.

Here we wish to study the diffusion in a meshwork with a distribution of confinement

sizes, P (L). Figure 5.1(a) illustrates the modeled system. Each trajectory is confined within

a domain with a specific size and the escape probability is zero. Even if in a real system

the particles are able to escape from confinement, the zero scape probability assumption is

still reasonable if the average survival time of the particles inside compartments is larger

than the measurement time. For this case the EA-MSD of 1D diffusion in a distribution of

confinement sizes is

(24)
〈
δ2(t)

〉
=

∫ ∞
0

〈
δ2(t)|L

〉
P (L) dL.

and for 2D case the only difference is that the L needs to be replaced by R. Figure 5.1(b)

shows the MSD of each trajectory shown in fig. 5.1(a) as well as the EA-MSD of the four

individual MSD trajectories. In this manuscript we calculate the EA-MSD for diffusion in

linear and circular domains with a exponential, Pareto and log-normal size distributions.

From now on we will refer to EA-MSD as MSD for simplicity of notation.
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5.3. One dimensional (1D) diffusion

The exact form of the MSD for 1D diffusion in a distribution of confinement sizes, P (L),

is obtained by substitution of the Eq. 20 in Eq. 24

(25)
〈
δ2(t)

〉
=

∫ ∞
0

L2

6

(
1− 96

π4

∞∑
n=0

exp[−π2(2n+ 1)2DT

L2
]

1

(2n+ 1)4

)
P (L)dL

and the approximate form is given by substitution of the Eq. 21 in Eq. 24

(26)
〈
δ2(t)

〉
=

∫ ∞
0

L2

6

(
1− exp

(
−12Dt

L2

))
P (L)dL.

In the next three sections we compare the obtained theoretical MSD with the simulation

result for three distribution of confinement sizes: exponential, Pareto and log-normal. We

also obtain the asymptotic behavior of the MSD in each case.

Exponential distribution of confinement sizes (1D) : The first distribution that

we investigate is exponential distribution of confinement sizes:

(27) P (L) =
1

λ
e−L/λ

By substituting this distribution into either the exact or approximate form of the MSD,

given by Eq. (25) and Eq. (26) respectively, we can obtain the MSD. Both integrals can

be solved numerically. In Fig. 5.2(a) we compare the exact and approximate theoretical

MSDs to the simulation results and observe good agreement between theory and simulation

(Parameters used in simulation and theory: time interval for each step ∆t = 1 ms, standard

deviation of step size σ = 20 nm, diffusion coefficient D = σ2/2∆t = 200 nm2/ms, λ = 450
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Figure 5.2. MSD for confined diffusion in linear domains. MSD for confined
diffusion in linear domains for (a) exponential (λ = 0.005, Lmin = 20σ), (b)
Pareto (α = 0.6, Lmin = 20σ) and (c) log-normal (γ = 0.25, µ = 6.4) distri-
bution of confinement sizes. Red line: the approximate solution (Eq. (38)).
Green line: exact solution using the first 100 terms of Eq. (37). Circles: Sim-
ulation results (105 trajectories). Dashed line in (a), (b) and (c): Asymptotic
behavior of the MSDs. (d) Comparison of the MSDs of diffusion in the three
distribution of confinement sizes. The dashed line shows MSD for the normal
diffusion, MSD∝ t.

nm. Although the exact solution is closer to the simulation results, the approximate solution

is only slightly off and can be used in empirical applications.

We also obtain the asymptotic behavior of the MSD using Eq. (26). We define a relaxation

time τ1 = 〈L〉2 /12D where 〈L〉 = λ = 450 nm is the average confinement size For short times,
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t� τ1, e
−12Dt

L2 ≈ 1− 12Dt
L2 and the MSD becomes:

(28)
〈
δx2(t)

〉
=

2Dt

λ

∫ ∞
0

e−L/λdL = 2Dt.

Since for short times the random walker does not feel the effect of the walls and diffusion is

normal Brownian motion, this result is not surprising. For long time limit, t� τ1, we have

1− e
−12Dt

L2 ≈ 1 and MSD becomes:

(29)
〈
δx2(t)

〉
=

1

6λ

∫ ∞
0

L2e−L/λdL =
λ2

3
,

this means for long times the MSD converges to a constant value that depends on the system

parameter λ.

Pareto distribution of confinement sizes 1D : Another interesting distribution with

possible empirical applications is power-law or Pareto distribution:

(30) P (L) =


0, if L < Lmin

αLαmin
L1+α , if L ≥ Lmin,

where 0 < α ≤ 1. Similar to the exponential distribution, the exact and approximate MSD

for 1D diffusion in this distribution of compartment sizes could be found using Eq. (25),

Eq. (26) respectively, the results are shown in Fig. 5.2(b). Investigating the asymptotic

behavior of MSD could also be very informative. For short times MSD becomes:

(31)
〈
δx2(t)

〉
= 2Dt

∫ ∞
Lmin

αLαmin
L1+α

dL = 2Dt,
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as expected for a short time limit where the particle does not feel the effects of the barriers. In

order to obtain the asymptotic behavior of the MSD for long times, we look at the analytical

solution for MSD using the approximate form of the MSD, Eq. (26):

〈
δ2(t)

〉
=
αLαmin

6

∫ ∞
Lmin

L1−α(1− e
−12Dt

L2 )dL

=
αLminα

12
(12Dt)β

(
− Γ[−β] + Γ[−β, 12Dt

L2
min

]

)
+

α

2− α
L2

min,

(32)

where Γ(z) and Γ(z, a) are the complete and incomplete gamma functions respectively and

β = 1−α/2. In Eq. (32) for t� L2
min

4D
the incomplete gamma function converges to zero and

the MSD can be approximated by

(33)
〈
δ2(t)

〉
≈ −αL

α
min

12
(12Dt)βΓ[−β],

therefore, for long times the MSD scales as tβ = t1−α/2.

Log-normal distribution of confinement sizes 1D : The log-normal distribution is

characterized as a sub-exponential or heavy-tailed distribution in the sense that the tail of

the distribution decreases more slowly than any exponential tail [138].

(34) P (L) =
1

Lγ
√

2π
exp

[
− (ln(L)− µ)2

2γ2

]
.

Exact and approximate forms of the MSD is obtained using Eq. (25), Eq. (26) respectively.

Theoretical and simulation results are shown in Fig. 5.2(c). The parameters used in sim-

ulation and theory are: ∆t = 1 ms, σ =
√

2D∆t = 20 nm, µ = 5.8, γ = 0.8. For this

distribution the average confinement size is 〈L〉 = exp (µ+ γ2/2) ' 450 nm.
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For short times, t� τ , we have e
−4Dt

L2 ≈ 1− 4Dt
L2 and the MSD becomes:

(35)
〈
δ2(t)

〉
=

2Dt

γ
√

2π

∫ ∞
0

exp(− (ln(L)−µ)2

2γ2
)

L
dL = 2Dt.

For t >> τ we have : 1− e
−4Dt

L2 ≈ 1 and the MSD is:

(36)
〈
δ2(t)

〉
=

1

6γ
√

2π

∫ ∞
0

L exp(−(ln(L)− µ)2

2γ2
)dL =

exp (2γ2 + 2µ)

6
,

this means that for long times the MSD converges to a constant value that depends on the

distribution parameters γ and µ.

5.4. Two dimensional (2D) diffusion

The exact form of the MSD for confined diffusion in circular domain with a distribution

of confinement radii, P (R), is obtained by substitution of the Eq. 22 in Eq. 24

(37)
〈
δ2(t)

〉
=

∫ ∞
0

R2

(
1− 8

∞∑
m=1

exp
[
− α2

1m

Dt

R2

] 1

α2
1m(α2

1m − 1)

)
P (R)dR.

And the approximate form is obtained by substitution of the Eq. 23 in Eq. 24

(38)
〈
δ2(t)

〉
=

∫ ∞
0

R2

(
1− e

−4Dt

R2

)
P (R)dR.

In the next three sections we compare the obtained theoretical MSD with the simulation

result for three distribution of confinement sizes: Normal, Pareto and log-normal. We also

obtain the asymptotic behavior of the MSD in each case.
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Figure 5.3. MSD for confined diffusion in circular domains. MSD for con-
fined diffusion in circular domains for (a) exponential (λ = 0.01, Rmin = 10σ),
(b) Pareto (α = 0.6, Rmin = 10σ) and (c) log-normal (µ = 5.5, γ = 0.66) dis-
tribution of confinement sizes. Red line: the approximate solution (eq. (38)).
Green line: exact solution using the first 100 terms of eq. (37). Circles: Sim-
ulation results (105 trajectories). Dashed line in (a), (b) and (c): Asymptotic
behavior of the MSDs. (d) Comparison of the MSDs of diffusion in the three
distribution of confinement sizes. The dashed line shows MSD for the normal
diffusion, MSD∝ t.

Exponential distribution of confinement radii : The first case that we investigate

is diffusion in an exponential distribution of radii of circular confinement domains:

(39) P (R) =
1

λ
e−R/λ.

By substituting this distribution into either the exact or approximate form of the MSD, given

by Eq. (37) and Eq. (38) respectively, we can obtain the MSD. Both integrals can be solved
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numerically. In Fig. 5.3(a) we compare the exact and approximate theoretical MSDs to the

simulation results and observe good agreement between theory and simulation (Parameters

used in simulation and theory: time interval for each step ∆t = 1 ms, standard deviation

of step size in x and y direction= 20 nm, diffusion coefficient D = σ2/2∆t = 200 nm2/ms,

λ = 200 nm. Although the exact solution is closer to the simulation results, the approximate

solution is only slightly off and can be used in empirical applications.

We also obtain the asymptotic behavior of the MSD using Eq. (38). We define a relaxation

time τ = 〈R〉2 /4D where 〈R〉 = λ = 200 nm is the average confinement size. For short times,

t� τ , we have e
−4Dt

R2 ≈ 1− 4Dt
R2 and the MSD becomes:

(40)
〈
δ2(t)

〉
=

4Dt

λ

∫ ∞
0

e−R/λdR = 4Dt.

Since for short times the particle does not feel the effect of the confinement and diffusion is

a free Brownian motion, this result is not surprising. For long time limit, t � τ , we have :

1− e
−4Dt

R2 ≈ 1 and the MSD becomes:

(41)
〈
δ2(t)

〉
=

1

λ

∫ ∞
0

R2e−R/λdR = 2λ2.

This means for long times the MSD converges to a constant value that depends on the

distribution parameter λ.
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Pareto distribution of confinement radii : Another interesting distribution that has

potential for empirical applications is the power-law or Pareto distribution:

(42) P (R) =


0, if R < Rmin.

αRαmin

R1+α , if R ≥ Rmin,

where α ∈ (0, 1]. Similar to the exponential distribution, the exact and approximate MSD

for diffusion in this distribution of compartment sizes can be obtained by substituting P (R)

in Eqs. (37) and (38). The results are shown in Fig. 5.3(b).

Investigating the asymptotic behavior of MSD can also be very informative. For short

times, t << R2
min/4D, MSD becomes:

(43)
〈
δ2(t)

〉
= 4Dt

∫ ∞
Rmin

αRα
min

R1+α
dR = 4Dt,

as expected for a short time limit where the particle does not feel the effects of the barriers. In

order to obtain the asymptotic behavior of the MSD for long times, we look at the analytical

solution for MSD using the approximate form of the MSD, Eq. (38):

〈
δ2(t)

〉
= αRα

min

∫ ∞
Rmin

R1−α(1− e
−4Dt

R2 )dR

=
αRminα

2
(4Dt)β

(
− Γ[−β] + Γ[−β, 4Dt

R2
min

]

)
+

α

2− α
R2

min,

(44)

where Γ(z) and Γ(z, a) are the complete and incomplete gamma functions respectively and

β = 1 − α/2. In Eq. (44) for t >>
R2

min

4D
the incomplete gamma function converges to zero

and the MSD can be approximated by

(45)
〈
δ2(t)

〉
≈ −αR

α
min

2
(4Dt)βΓ[−β],
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therefore, for long times the MSD scales as tβ = t1−α/2.

Log-normal distribution of confinement radii : The log-normal distribution is

characterized as a sub-exponential or heavy-tailed distribution in the sense that the tail of

the distribution decreases more slowly than any exponential tail [138].

(46) P (R) =
1

Rγ
√

2π
exp

[
− (ln(R)− µ)2

2γ2

]
.

Exact and approximate forms of the MSD is obtained by replacing this distribution into

Eqs. (37) and (38) respectively. Theoretical and simulation results are shown in Fig. 5.3(c).

The parameters used in simulation and theory are: ∆t = 1 ms, σ =
√

2D∆t = 20 nm, µ =

4.7, γ = 1.1. For this distribution the average confinement size is 〈R〉 = exp (µ+ γ2/2) ' 200

nm.

For short times, t� τ , we have e
−4Dt

R2 ≈ 1− 4Dt
R2 and the MSD becomes:

(47)
〈
δ2(t)

〉
=

4Dt

γ
√

2π

∫ ∞
0

exp(− (ln(R)−µ)2

2γ2
)

R
dR = 4Dt.

For t >> τ we have : 1− e
−4Dt

R2 ≈ 1 and the MSD becomes:

(48)
〈
δ2(t)

〉
=

1

γ
√

2π

∫ ∞
0

R exp(−(ln(R)− µ)2

2γ2
)dR = exp (2γ2 + 2µ)

this means that for long times the MSD converges to a constant value that depends on the

distribution parameters γ and µ.
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5.5. Discussion

Here we obtain a theoretical form for the MSD of diffusion in a distribution of confinement

sizes. We calculated the MSD for three different distributions : exponential, Pareto and log-

normal. We observed that for diffusion in circular domains the exponential and log-normal

distribution of confinement sizes would result to different MSD curves even if they have the

same average value. However for the case of the confined linear diffusion the tail of the

log-normal distribution did not have a considerable effect on the MSD. By investigating the

role of distribution of confinement sizes, we hope to assist future works which aim to obtain

a full theoretical model for the highly complex problem of diffusion on the cell membrane.

5.6. Methods

5.6.1. Simulation. In order to verify the obtained theoretical model, we performed simu-

lations of diffusion in various distributions of confinement sizes. In our simulations, written

in MATLAB, each trajectory is a 1D or 2D random walk where the x and y components

of each step are drawn from a normal distribution N(0, σ2). Each trajectory is confined in

a linear domain with size L drawn from the distribution P (L) for 1D case or in a circular

domain with radius R drawn from the distribution P (R) for 2D diffusion. Distribution of

confinement sizes were generated using the inverse transform sampling method. Since our

theory is developed starting from a continues diffusion equation, Eq. (16), the minimum

compartment size has to be much larger than the standard deviation of the simulation step

size. In this work we assume Lmin and Rmin is 10σ. The diffusion coefficient, D, is calcu-

lated from σ using the equation σ2 = 2D∆t where ∆t is the time length for one step. In

order to make the results generally applicable, all of the lengths and times are given in units

of σ and σ2/2D respectively. Every trajectory starts from a uniformly distributed random
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initial position inside the confinement domain. Reflective boundary conditions were applied

to impose confined diffusion.

84



CHAPTER 6

PLASMA MEMBRANE PROTEIN DYNAMICS AT THE KV2.1/ER/PM JUNCTION

6.1. Introduction

The endoplasmic reticulum (ER) is the largest organelle in the cell stretching from the

nuclear envelope to the cell cortex in a system of tubules and sheets (cisterns) [171]. Mor-

phology of the ER complex in animal cells is shaped by several mechanisms including the

association with microtubules and molecular motors and it is stabilized by integral ER mem-

brane proteins [172]. Even though the interface between ER and actin cytoskeleton is not

very well understood, it is recognized that the actin cytoskeleton plays important roles in

the regulation of ER morphology [173, 174, 175]. More importantly, it has been shown that

a dense cortical actin network is crucial to stabilize the ER/PM junctions [176, 177]. Fur-

thermore, the actin-associated motors myosin-Ic (myo1c) and myosin-Va have been shown to

play important roles in the ER-actin interface in mammalian cells [178]. Therefore it seems

possible that in addition to directly compartmentalizing the plasma membrane, which was

studied in chapter 4, actin skeleton and associated proteins have a indirect role in regulating

membrane dynamics by shaping the ER/PM junctions morphology.

In animal cells, ER is the primary storage site for intracellular Ca2+ that can be released

as Ca2+ signals. The generation of Ca2+ signals is typically controlled by communication

mechanisms between the ER and the surface of the cell, i.e., the plasma membrane (PM) [34].

As a consequence, endoplasmicER/PM contact sites are prevalent structures across different

cell types, and they have essential functions in Ca2+ signaling and lipid trafficking [35]. The

The work in this chapter has been performed in collaboration with Michael Tamkun. The CD4 experiments,
used in section 6.2.2, were performed by Yaping Moshier.
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ER/PM junctions also function as trafficking hubs for insertion and removal of plasma mem-

brane proteins suggesting a coupling mechanism between Ca2+ signals and protein traffic

regulation [36]. Furthermore, it has been observed that the voltage gated potassium chan-

nel Kv2.1 aggregates and interacts with the endoplasmic reticulum, dramatically increasing

ER/PM junction surface area and structurally changing the junction morphology [37]. In-

teractions of the potassium channel Kv2.1 with the ER/PM junctions on the cell membrane

brings up an interesting question : whether other membrane proteins also interact with the

ER/PM junctions.

In this chapter we first study the regulation of the cortical actin-myosin meshwork and ob-

served that the inhibition of the myosin proteins decreases the mobility of the Kv2.1/ER/PM

junctions. Furthermore, using single particle tracking and imaging Kv2.1 enriched ER/PM

junction, we show that two membrane proteins, ADRB2 (a G protein-coupled receptor that

mediates cellular responses) and the glycoprotein CD4, aggregate at Kv2.1/ER/PM junc-

tions.

6.2. Results

6.2.1. Inhibition of the Myosin II motor protein decreases the mobility of Kv2.1 clus-

ters. The actin cytoskeleton is a highly dynamic structure where remodeling is continuously

taking place by the concerted action of nucleators (e.g., formin and Arp2/3 complex), molec-

ular motors that induce contractility (e.g., myosin II), cross-linkers (e.g., filamin) severing

proteins (e.g., ADF/cofilin), and proteins that regulate actin assembly (e.g., profilin). The

mechanistic roles of the actin cytoskeleton in shaping the ER and regulating its dynam-

ics in mammalian cells remain mostly unclear. Two types of proteins have been identified

as key players in linking the actin cytoskeleton to the ER: formins [179, 180] and myosins
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[175, 181]. The actin-associated motors myosin-Ic (myo1c) and myosin-Va have been shown

to play important roles in the ER-actin interface in mammalian cells [178]. Comparison of

the wide-field images of the ER before and after myo1c depletion, has shown that myo1c

manipulations lead to loss of sheets and ER network distribution deficiency in Huh-7 cells

[181].

Here we study the effect of inhibiting the activity of the myosin II motor protein by using

the pharmacological reagent blebbistatin that specifically inhibits myoII activity [182]. We

labeled the Kv2.1 channels with GFP and imaged the Kv2.1 clusters in control cells and also

the cells treated with 10 µM blebbistatin [Figs. 6.1 (a) and (b)]. We did not observe any

noticeable change in size distribution of the Kv2.1 clusters upon blebbistatin treatment as

shown in Figs. 6.1 (c) and (d). We tracked the center of mass of the Kv2.1 clusters. Only

the clusters that were clearly separated from other clusters during the movie were tracked

as shown in Figs. 6.1 (a) and (b). Time average MSD, TA-MSD, was calculated using the

following equation:

(49) δ2(∆) =
1

T −∆

∫ T−∆

0

|r(t+ ∆)− r(t)|2dt,

where T is the total experimental time, r the particle position, and ∆ the lag time, i.e., the

time difference over which the MSD is computed. Figures 6.1 (e) and (f) show the TA-MSD

of the individual Kv2.1 clusters computed for lag times up to 100 frames or 3000 ms. When

a particle displays Brownian diffusion, the MSD is linear in lag time, i.e., δ2(∆) = 2dD∆,

where D is the diffusion coefficient and d is the space dimension. In contrast, anomalous

diffusion is characterized by a different MSD scaling, namely MSD = 2dKα∆α, where α is

the anomalous exponent and Kα is the generalized diffusion coefficient. Anomalous diffusion
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Figure 6.1. Effect of the myosin II depletions on morphology and mobility
of Kv2.1/ER/PM junctions. (a) Kv2.1 cluster trajectories (in red) overlaid on
the cluster image in control cells. Scale bar is 2 µm. (b) Kv.1 cluster trajec-
tories (in red) overlaid on Kv2.1 cluster image in the same cell shown in (a)
after treatment with 10 µ blebbistatin. Scale bar is 2 µm. (c) Distribution of
Kv2.1 cluster in control cells (4 cells, 211 clusters) and cells treated with 10
µ blebbistatin (3 cells, 201 clusters). (d) Average Kv2.1 cluster area in con-
trol and blebbistatin treated cells. (e) TA-MSD of Kv2.1 clusters in control
cells (4 cells, 20 clusters). (f) TA-MSD of Kv2.1 clusters in cells with 10 µM
blebbistatin treatment (3 cells, 30 clusters). (g) Average diffusion coefficient
of the trajectories shown in (e) and (f) for Kv2.1 clusters in control and bleb-
bistatin treated cells. Error bars are standard error of the mean. Asterisks
indicate differences with p < 0.001. (h) Average anomalous exponent, α, of
the trajectories shown in (e) and (f) for Kv2.1 clusters in control and bleb-
bistatin treated cells. Error bars are standard error of the mean. Asterisks
indicate differences with p < 0.001. (i) Ensemble averaged TA-MSD of Kv2.1
clusters in control (4 cells, 20 clusters) and blebbistatin treated cells (3 cells,
30 clusters). Error bars indicate 95% confidence interval. Red lines show the
fit of the first 1s, 33 frames, of the EA-TA-MSDs to the anomalous diffusion
MSD equation plus error, 4Kα∆α + σ2, where σ is the localization accuracy.
For control cells α = 0.778, Kα = 0.0007 µm2/s0.778 and σ = 0.002 µm2. For
cells treated with 10 µ of blebbistatin α = 0.190, Kα = 0.0002 µm2/s0.190 and
σ = 0.003 µm2.
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is classified as subdiffusion when 0 < α < 1 and superdiffusion when α > 1. Mobility of the

Kv2.1 clusters was characterized by diffusion coefficient and anomalous exponent. Diffusion

coefficients were obtained by fitting a linear function to the first 10 points of the TA-MSDs,

obtained from trajectories with minimum length equal to 20 frames, in linear MSD versus

lag time plot, where the slope is 4D. Anomalous exponent, α, was obtained by fitting a

linear function to first 10 points of the TA-MSD versus lag time log-log plot where the

slope is α. We observed that the diffusion coefficient and anomalous exponent of the Kv2.1

clusters dramatically decreases upon treatment with blebbistatin [Figures 6.1 (g) and (h)].

We obtained EA-TA-MSD by averaging over TA-MSD of all Kv2.1 cluster tracks before,

211 clusters in 4 cells, and after blebbistatin treatment, 201 clusters in 3 cells, as shown in

Fig. 6.1 (i). In experimental data the MSD is always accompanied by a noise component

originating from localization accuracy, namely, EA-TA-MSD= 4Kα∆α + 4σ2, where σ is

the localization accuracy. To find the noise level, we perform a linear extrapolation of the

EA-TA-MSDs to the ∆ = 0 axis to find the y-axis intercept. We found that 4σ2 = 0.002

µm2 for EA-TA-MSD of KV2.1 cluster tracks in control cell and 4σ2 = 0.003 µm2 for EA-

TA-MSD of cluster tracks in blebbistatin treated cells which corresponds to σ = 22 nm

and σ = 27 nm cluster localization accuracy in these cells. Then we subtracted the noise

level from the EA-TA-MSDs. Finally we fitted a linear function to EA-TA-MSD versus lag

time log-log plot where slope is the anomalous exponent α and intercept is the logarithm

of the generalized diffusion coefficient Kα multiplied by 4. We found that α = 0.778 and

Kα = 0.0007 µm2/s0.778 for kv2.1 cluster EA-TA-MSD in control cells which were higher

than α = 0.190 and Kα = 0.0002 µm2/s0.190 for kv2.1 cluster EA-TA-MSD in blebbistatin

treated cells.
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6.2.2. Aggregation of the membrane proteins on the Kv2.1/ER/PM junctions. As dis-

cussed in the introduction, we know that at least one membrane protein, Kv2.1 potassium

channels, interact with the ER/PM junctions. The question that we want to address in this

section is that whether other membrane proteins interact with the junctions as well. We

chose two membrane proteins in order to study their interactions with th ER/PM junctions:

the adrenergic receptor beta-2 (ADRB2) and cluster of differentiation 4 (CD4) which is a

glycoprotein. ADRB2, is a well-characterized member of the G protein-coupled receptor

family. ADRB2 senses epinephrine, a hormone and neurotransmitter, whose signaling, via a

downstream L-type Ca2+ channel (Cav1.2) interaction, mediates physiologic responses such

as smooth muscle relaxation [183]. It is known that the beta adrenergic receptors assemble

with Cav1.2 channels to start the signaling cascade but the dynamics of this association and

how these complexes relate to the Kv2.1/ER/PM junction is unknown. CD4 is a transmem-

brane receptor glycoprotein found on the surface of immune cells. CD4 has a very short

cytoplasmic/intracellular tail [184]. Therefore, comparison between diffusion of CD4 with

other membrane proteins with longer intracellular domains is a good control measurement

for investigation of the effect of the intracellular structures, such as ER/PM junctions, on

the membrane proteins diffusion. We simultaneously imaged Kv2.1 clusters, labeled with

green fluorescent protein (GFP), and individual membrane proteins, either ADRB2 or CD4,

labeled with either CF640 fluorescent protein or QDs, in order to study the interactions

between the Kv2.1/ER/PM junctions and the membrane proteins. Figure 6.2 (a), (b) and

(c) show a snapshot of the GFP tagged Kv2.1 clusters, a snapshot of the beta-2 adrenergic

receptors and overlay of these two snapshots in one HEK293 cell respectively. Filtered and

thresholded Kv2.1 cluster image in the cell shown in Fig. 6.2 (a) is shown in Fig. 6.2 (d).
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Figure 6.2. Kv2.1 clusters and beta receptors. (a) A snapshot of the GFP
tagged Kv2.1 clusters in one HEK293 cell. (b) A snapshot of the beta-2 adren-
ergic receptors, ADRB2, labeled with CF640 in the same cell as (a). (c) Snap-
shot of Kv2.1 clusters shown in (a) overlaid on ADRB2 snapshot shown in
(b). (d) Kv2.1 clusters shown in (a) detected using top-hat filter and a hard
threshold. (e) Trajectories of the ADRB2. (f) Trajectories of ADRB2 overlaid
on Kv2.1 clusters shown in white. Scale bars are 5 µm.

Individual membrane proteins were image and tracked in every frame. Trajectories of the

beta-2 receptors in the cell shown in Fig. 6.2 (a) are shown in Fig. 6.2 (e). Then the trajec-

tories were overlaid on the thresholded Kv2.1 cluster image [Fig. 6.2 (f)]. Similarly, Figs. 6.3

(a), (b) and (c) show a snapshot of the GFP tagged Kv2.1 clusters, a snapshot of the CDF

glycoproteins and overlay of these two snapshots in one HEK293 cell respectively. Filtered

and thresholded Kv2.1 cluster image in the cell shown in Fig. 6.3 (a) is shown in Fig. 6.3

(d). Individual CDF glycoproteins were image and tracked in every frame. Trajectories of

the CD4 in the cell shown in Fig. 6.3 (a) are shown in Fig. 6.3 (e). Then the trajectories

were overlaid on the thresholded Kv2.1 cluster image [Fig. 6.3 (f)].
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Figure 6.3. Kv2.1 clusters and CD4 glycoproteins. (a) A snapshot of the
GFP tagged Kv2.1 clusters in one HEK293 cell. (b) A snapshot of the CD4
glycoproteins labeled with QDs in the same cell as (a). (c) Snapshot of Kv2.1
clusters shown in (a) overlaid on CD4 snapshot shown in (b). (d) Kv2.1
clusters shown in (a) detected using top-hat filter and a hard threshold. (e)
Trajectories of the CD4 glycoproteins. (f) Trajectories of CD4 overlaid on
Kv2.1 clusters shown in white. Scale bars are 5 µm.

Figure 6.4. Concentration of the ADRB2 (4 cells) and CD4 (6 cells) mem-
brane proteins on ER/PM junctions and outside the junctions. Error bars
indicate standard error of mean.
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Detected positions of membrane proteins were characterized as “on” and “off” cluster

if the detected positions were inside or outside clusters respectively. We observed that the

concentration of both ADRB2 and CD4 proteins are higher on the Kv2.1 clusters, 0.25±0.07

µm−2, compared to 0.08± 0.01 µm−2 off cluster for the beta receptors and 0.28± 0.05 µm−2

on cluster compared to 0.16± 0.03 µm−2 off cluster for the CD4 glycoproteins, which means

that these proteins aggregate within Kv2.1/ER/PM junctions [Fig. 6.4]. The observed

difference between the concentration of the membrane proteins on and off Kv2.1 cluster is

higher for ADRB2 compared to CD4 proteins. This could be caused by the longer ADRB2

intracellular domain in comparison to the short CD4 intracellular tail.

We also compared the mobility of the beta receptors inside and outside clusters. Figures

6.5 (a) and 6.5 (b) show the TA-MSD for ADRB2 inside and outside Kv2.1 clusters which

were calculated using Eq. 49 for trajectories with minimum length equal to 20 frames or

1s. Figure 6.5 (c) shows the distribution of on and off cluster trajectory lengths. Average

trajectory length is 2.5 ± 0.4 s , mean ± SE, for on cluster tracks (n = 661 tracks) and

2.6± 0.3 s for off cluster tracks (n = 1440 tracks). We obtained EA-TA-MSD by averaging

over TA-MSD of all on cluster tracks, 661 trajectories in 4 cells, and off cluster tracks, 1440

trajectories in 4 cells, as shown in Fig. 6.5 (d). As explained before, we calculated the

noise for the EA-TA-MSD and found that 4σ2 = 0.003 µm2 for both on cluster and cluster

tracks which corresponds to σ = 27 nm localization accuracy. Then we subtracted the noise

level from the EA-TA-MSDs and fitted a linear function to EA-TA-MSD versus lag time

log-log plot where slope is the anomalous exponent α and intercept is the logarithm of the

generalized diffusion coefficient Kα multiplied by 4. We found that α = 0.95 and Kα = 0.09

µm2/s0.95 for off cluster tracks and α = 0.90 and Kα = 0.05 µm2/s0.90 for on cluster tracks.
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Figure 6.5. Comparison of diffusion of the beta receptors on and off Kv2.1
clusters. (a) TA-MSD of 20 ADRB2 trajectories that are outside, off, Kv2.1
cluster. (b) TA-MSD of 20 ADRB2 trajectories that are inside, on, Kv2.1
cluster. (d) Ensemble averaged TA-MSD of ADRB2 trajectories on (4 cells,
661 trajectories) and off (4 cells, 1440 trajectories) Kv2.1 cluster. Error bars
indicate 95% confidence interval. Red lines show the fit of the EA-TA-MSDs
to the anomalous diffusion MSD equation plus error, 4Kα∆α + 4σ2, where
σ is the localization accuracy. (e) PDF of the MSDs of ADRB2 trajectories
calculated at lag time ∆ = 200 ms for the trajectories on cluster (4 cells, 661
trajectories) and off cluster (4 cells, 1400 trajectories). (f) Average MSD at lag
time ∆ = 200 ms for the same trajectories as (e). (g) PDF of the anomalous
exponent, α, for the same ADRB2 trajectories as (e). (h) Average α for
the same ADRB2 trajectories as (g). (i) PDF of the generalized diffusion
coefficient, Kα or the same ADRB2 trajectories as (e). (j) Average Kα for
the same ADRB2 trajectories as (i). (k) PDF of the displacements during
one frame, 50 ms, for the trajectories on cluster (4 cells, 661 trajectories,
29149 displacements in total) and off cluster (4 cells, 1400 trajectories, 75340
displacements in total). (l) Average displacement for one frame, 40 ms, for the
same trajectories as (k). Error bars are standard error of the mean. Asterisks
indicate differences with p < 0.001.
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Figures 6.5 (e) and 6.5 (f) show that the time average MSD, Eq. 13, calculated at lag time

∆ = 200 ms is significantly lower for trajectories that are inside clusters. We fit a linear

function to first 10 points of the TA-MSD versus lag time log-log plot of the individual tracks,

the slope gave us the α value and the intercept was the logarithm of the 4Kα. Anomalous

exponent α is similar for trajectories on and off Kv2.1 clusters [Figs. 6.5 (g) and 6.5 (h)]

which means that the beta receptors undergo the same type of diffusion on and off clusters.

We also observed that the generalized diffusion coefficient, Kα, is significantly lower for

the receptors on cluster [Figs. 6.5 (i) and 6.5 (j)]. Moreover, the distribution of the beta

receptor displacement shift significantly towards lower values for the receptors that are on

Kv2.1 clusters, as shown in Figs. 6.5 (k) and 6.5 (l).

6.3. Discussion

We found that the mobility of the Kv2.1 clusters is drastically affected by inhibition of

the myosin II motor protein. This finding proves the direct effect of the actin structure,

and associated proteins, on formation and dynamics of the Kv2.1/ER/PM junctions. We

also observed that different membrane proteins aggregate on the Kv2.1/ER/PM junctions,

probably functioning as sites where endocytic cargoes are sorted. There are different possible

reasons for this observation. One of the possible mechanisms is that the diffusion is slower

within the junctions causing the membrane proteins to spend more time inside the clusters

compared to outside. We proved this possibility by looking at the diffusion rate inside and

outside junctions. Further experiments are necessary in order to elucidate the mechanism

behind diffusion hindrances on ER/PM junctions.
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Parajo, “Power-law blinking in the fluorescence of single organic molecules,” Chem.

Phys. Chem., vol. 8, no. 6, pp. 823–833, 2007.

[67] M. Niemann, I. G. Szendro, and H. Kantz, “1/fβ noise in a model for weak ergodicity

breaking,” Chem. Phys., vol. 375, no. 2, pp. 370–377, 2010.

[68] G. Margolin and E. Barkai, “Nonergodicity of a time series obeying Lévy statistics,”
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APPENDIX A

PROTOCOLS

This appendix provides protocols used for the experiments presented in this thesis, in-

cluding setup alignment and sample preparation. Protocols A.1, A.2, A.3 and A.4 were

adopted from Aubrey Weigel’s thesis. Protocols A.5 and A.6 were written in part by Xinran

Xu.

A.1. TIRF microscope alignment

Most of experiments presented in this thesis were performed in our custom-built TIRF

setup. The setup needs to be properly aligned before each experiment in order to obtain the

best quality images of the sample.

(1) Turn on lasers

(2) Check beam alignment before the last telescope. Make sure it is centered on each

mirror, lens, scope, and is not being clipped. Do this for each laser being imple-

mented

(3) All lasers need to be co-aligned at the last telescope

(4) Choose one laser in order to align the last two stirring mirrors and the focusing lens

so that the laser is enters the objective centered and perpendicular

(5) Remove focusing lens from path

(6) Untighten main adjustment mirrors (S1 and S2)

(7) Place an iris on last stand of scope before S1. Close the iris to reduce beam size to

allow for easier beam alignment
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Figure A.1. General schematic of TIRF microscope. Mirrors S1 and S2 steer
the beam into the focusing lens and then into the microscope. The focusing
lens is on a micrometer for fine tune adjusting.

(8) Attach alignment tube to threads by which the objective attaches

(9) Close bottom iris of the alignment tube, adjust S1 such that the highest beam

brightness on ceiling is achieved.

(10) Open bottom iris and close the top iris of the alignment tube. Adjust S2 such that

the highest beam brightness is achieved.

(11) Continue alternating the adjustment between tube irises and corresponding mirrors

until an optimal brightness is achieved with both iris closed.

(12) Remove alignment tube, center the cross-hair on the ceiling to aligned beam as a

marker for later steps. Do not touch the steering mirrors until after the focusing

lens is in place.

(13) Replace the focusing lens back in its positions.

(14) Make sure that the reflection of the beam off the focusing lens aligns to the original

beam on mirror S2

(15) Use an aperture on the focusing lens and make sure the beam passes through the

center using only the micrometer (do not use the steering mirrors)
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(16) Mount the objective. If using the objective heater you can put this on the objective

now as well.

(17) Re-center the laser on the ceiling using S2

(18) Adjust mirror S1 to center the beam on the lens

(19) Repeat steps 17 and 18 until the beam is going through the center of the focusing

lens and aligned to the cross-hair on the ceiling

(20) Tighten the screws on the mirror adjustment knobs to hold mirror placement. Be

careful not shift the beam or mirror position while doing this

(21) Remove irises

(22) Check filter box to ensure the proper dichroic and filters are in place for the exper-

iment

A.2. Splitting cells

The experiments presented in chapter 3, 4, and 5 of thesis were performed in HEK293

cells (American Type Culture Collection). We only use cellls between passage 42 and 50 in

our experiments. The cells confluence level need to be checked everyday. Once the cells are

∼ 80% confluent we split the cells:

(1) Label 4 dishes with

(a) Your name/initials

(b) Date

(c) Cell type

(d) Passage number

(2) UV new sterile culture dishes that cells will be split into.

120



(3) Add10 mL DMSO + 10% FBS (with phenol red) with 10x antibiotic media into

each dish

(4) Place dishes in incubator until ready to start step 7

(5) Aspirate media from dish of confluent cells

(6) Pipette 4mL of Trypsin EDTA into dish

(7) Once cells have lifted from bottom of dish split into new sterile cell culture dishes

(1 mL in each dish)

A.3. Cell transfection

Transfection means introducing foreign DNA into an eukaryotic cell. There are different

methods to do transfection including chemical-based transfection and non-chemical methods.

The transfection method that we use is electroporation which is a non-chemical methods.

In the electroporation method a transient increase in the permeability of cell membrane is

achieved by exposing the cells to short pulses of an intense electric field. Here is a step by

step protocol:

(1) Put tansfection media (DMEM + 10% FBS, without phenol red, with 10x antibiotic)

and Trypsin in 37◦C water bath 30 min before starting the transfection

(2) UV the 35 mm petri dishes

(3) Add 1 mL Matrigel to each dish and incubate them in the incubator for 30 minutes

(4) Remove Matrigel coated dishes from the incubator. Aspirate Matrigel from dishes.

Replace with 1 mL of DMEM + 10% FBS (no phenol red, with antibiotic)

(5) Prepare the plasmid solution (200 µL Optimem and plasmids) and put the solution

in water bath

(6) Aspirate media from dish of confluent cells
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(7) Pipette 4mL of Trypsin EDTA into dish

(8) Once cells have lifted from bottom of dish add 10 mL of transfection media to the

dish

(9) Pipette up and down once or twice to wash off any remaining cells stuck to the dish

(10) Place 14 mL mixture of cells, Trypsin and media into a 15 mL conical

(11) Centrifuge at 1.5 rpm for 3 min

(12) Bring Optimem-plasmid solution prepared in step 5 into the biosafety cabinet

(13) Aspirate media/Trypsin from 15mL conical tube with cell pellet, take care not to

disturb the pellet of cells

(14) Re-suspend the cells with the Optimem-plasmid solution and pipette up and down

once or twice using shear force to break up any clumps of cells

(15) Place suspended cells into electroporator cuvette

(16) Electroporate

(a) Pre-set protocols

(b) Mammalian cells

(c) HEK293 cells

(d) Pulse

(17) Place ∼ 10− 20 mL of transfected cells into the center of the imaging dishes (This

varies depending on how long the cells have to grow until imaging and how confluent

the dish of cells was to start with. i.e. the more cells to start with the less needed

in each dish - or - the longer they have to grow the less cells in each dish)

(18) Gently vortex the dish so that the cells are evenly dispersed throughout the dish

(19) Place cells back in the incubator
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A.4. Live cell imaging preparation

(1) Heat the Imaging Saline in water bath at 37 ◦C

(2) If not labeling with QDs simply rinse 3-6x with Imaging Saline and leave 1 mL of

Imaging Saline on final rinse in dish for imaging.

(3) If labeling with QDs prepare QD solution: 1:10000 QD in 1% BSA in Imaging Saline

(a) 1% (by volume) BSA and Imaging Saline

(i) Measure out ∼ 10 mg BSA

(ii) Place BSA and Imaging Saline into micro-centrifuge tube. iii. Vor-

tex until BSA is completely dissolved.

(b) 1:10000 QD in 1% BSA

(i) 5 µL of 1:100 QD in 1% BSA in Imaging Saline

(A) 1 µL QD

(B) 100 µL Imaging Saline

(C) Vortex

(ii) 500 µL of Imaging Saline

(iii) Vortex

(c) Place QD solution in water bath.

(4) Aspirate media from dish of cells and rinse 6x with Imaging Saline to remove media.

(a) Be careful not to suck all the media off the dish, leaving the cells dry.

(b) Do not suck off media from middle, suck from the sides where there are no

cells.

(c) When rinsing do not add Imaging Saline too quickly or with too much force

or directly the middle of the dish. These actions can wash away the cells.
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(d) On last rinse remove ALL Imaging Saline.

(5) QUICKLY place 500 µL of the QD solution into the dish of cells and place in the

incubator for 10 minutes.

(6) Remove the QD solution then rinse 3x with Imaging Saline to remove any unbound

QDs.

(7) On the final rinse leave 1 mL of Imaging Saline in the dish for imaging.

A.5. Cell fixation and labeling

In chapter 3 we used STROM images of fixed cells in order to charachterize the cortical

actin structure. Here is the proocol that we used to fix the cells:

(1) Aspirate the media, fix and permeabilize the cells using ∼ 1000 µL of 0.3% glu-

taraldehyde and 0.25% Triton X-100 in cytoskeleton buffer (CB) for 1-2 min at RT

(room temperature).

(2) Wash with CB three times for 5 min each at RT

(3) Add 2% Glutaraldehyde in CB for 15 min

(4) Wash with CB two times for 10 min each at RT

(5) Treat samples with ∼ 1000 µL of 0.1% NaBH4 (freshly-prepared in PBS) for 7 min

at RT to reduce background fluorescence.

(6) Wash with PBS two times, each time allowing for 5 min incubation at RT

(7) Prepare diluted Phalloidin staining solution right before use. Dilute 50 µL of the

Alexa 647-Phalloidin stock solution into 1000 µL PBS and apply ∼ 1000 µL to each

coverslip.

(8) Place the stained samples in aluminum foil wrapped container to protect from light.

Incubate at 4 ◦C for overnight (Moisture chambers are recommended).

124



A.6. STORM imaging

(1) Briefly wash the fixed and labeled, with Alexa 647-Phalloidin, sample once with

PBS. Immediately mount the sample for STORM imaging with GLOX imaging

buffer. Glox imaging buffer preparation:

(a) Prepare buffer A (10 mM Tris (pH 8.0) + 50 mM NaCl) and buffer B ( 50

mM Tris-HCI (pH 8.0) + 10 mM NaCl + 10 % Glucose)

(b) Prepare Glox solution (250 µL):

(i) 14 mg Glucose Oxidase + 50 µL Catalase (17 mg/ml) + 200 l

Buffer A

(ii) Vortex to dissolve Glucose Oxidase

(iii) Spin down 14,000 rpm

(iv) Only use supernatant

(v) Store at 4◦C for up to 2 weeks

(vi) In case of reusing spin down at 14,000 rpm again

(c) On ice, add 14 µL GLOX, 14 µL 2-mercaptoethanol and 1380 µL Buffer B

(2) A continuous illumination of 638 nm laser, full power, is used to excite the Alexa

Flour 647.

(3) if the density of blinking fluorophores is not adequate use violet laser, with ND2

usually, to excite more fluorophores.
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APPENDIX B

SOFTWARE

This appendix provides protocols used for the data analysis presented in this thesis,

including single particle tracking, MSD analysis and image registration. Protocol B.5 was

written in part by Xinran Xu.

B.1. Single particle tracking using u-track

Particle detection and tracking were performed in MATLAB using u-track [150]. Here is

a step by step protocol to use this code for single particle tracking:

(1) Add the u-track folder and sub-folders to MATLAB directory

(2) Run the code scriptDetectGeneral.m

(a) Inputs

(i) movieParam.imageDir (the path to the folder of images to be

tracked)

(ii) movieParam.filenameBase (base name of the images)

(iii) movieParam.firstImageNum (number of the first frame to be de-

tected)

(iv) movieParam.lastImageNum (number of the last frame to be de-

tected)

(v) detectionParam.visual (1 if want to check the detections in each

frame, 0 otherwise)
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(vi) detectionParam.alphaLocMax (between 0 and one, smaller values

would detect particles with higher signal to noise ratio (SNR) and

vice versa)

(vii) saveResults.dir (the path to the folder where the detection results

would be saved)

(viii) saveResults.filename (name of output mat file)

(b) Outputs

(i) A mat file with detection parameters and results

(3) Run the code scriptTrackGeneralold.m

(a) Inputs

(i) gapCloseParam.timeWindow (maximum number of frames allowed

for gap closing)

(ii) gapCloseParam.mergeSplit (flag for merging and splitting, 0 for no

merging and splitting of tracks and 1 for allowing merge and split)

(iii) gapCloseParam.minTrackLen (minimum track segment length used

in the gap closing, merging and splitting step)

(iv) parameters.linearMotion (flag for linear motion, 0 or 1)

(v) parameters.minSearchRadius (minimum search radius lower limit,

the distance in pixel that code search in each step to find the next

position of the particle)

(vi) parameters.maxSearchRadius (maximum search radius lower limit,

the distance in pixel that code search in each step to find the next

position of the particle)
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(vii) saveResults.dir (the path to the folder where the tracking results

would be saved)

(viii) saveResults.filename (name of output mat file)

(b) Outputs

(i) A mat file with tracking parameters and results

(4) Copy and paste the following into the command window directly:

[trackedFeatureInfo, trackedFeatureIndx, trackStartRow, numSegments]

= convStruct2MatIgnoreMS(tracksfinal);

(5) When finished, save trackedFeatureInfo from the workplace as trackedFeatureInfo.mat

(6) Run the code write trajectories utrack.m.

(a) Inputs

(i) A mat file output of previous step : trackedFeatureInfo

(ii) fid (file name that the output is saved into)

(b) Outputs

(i) A text file with tracks (XYI)

B.2. MSD analysis

In chapters 4 and 5 we use MD analysis in order to characterize diffusion. Here is a step

by step protocol for calculating MSD (TA-MSD) and EA-TA-MSD:

(1) Delete the trajectories that are shorter than some specif length using the code

FindLongTrajectories-2.vi

(a) Inputs:

(i) XYI trajectory text file output of u-track
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(ii) Minimum size in frames

(b) Output:

(i) Trajectories with length longer than the minimum size as a text

file

(2) Run the code MSD-UTrack-NoLastFrame.vi

(a) Inputs:

(i) Number of intervals (number of intervals used for MSD calcula-

tions, usually one third of the minimum length used in the first

step is a good number)

(ii) frame time (s) (movie exposure time)

(iii) Camera pixel size (nm)

(iv) XYIfile (output of UTrack). Example:

(b) Output:

(i) A text file of lengths of trajectories

(ii) A text file of MSDs (St Dev is the error of calculated MSD)

(3) Run the code analyze automatic linear MSDs no first row linear.vi

(a) Inputs:

(i) MSD file (3.b.ii)

(ii) Number of points to perform the fitting on (usually 10)

(iii) Method of fitting (Usually least square) second column is the in-

tercepts and the third column is the residues). Example:

(b) Outputs:
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(i) Diffusion coefficients text file. The first column is the diffusion co-

efficients, the second column is the intercepts and the third column

is the residues).

(4) Run the code select and average MSDs.vi to calculate EA-TA-MSD

(a) Inputs:

(i) Lengths (3.b.i)

(ii) MSDs (3.b.ii)

(iii) Diffusion coefficients (4.b.i)

(iv) Minimum acceptable diffusion coefficient (minimum D)

(v) Minimum acceptable length (minimum length)

(b) Outputs:

(i) EA-TA-MSD

(5) Run the code Weighted Average MSD.m to calculate weighted average MSD of all

your movies

(a) Input:

(i) Directory (path to the folder containing all (and only) EATAMSDs

of different movies)

(b) Output:

(i) A matrix with 5 columns:

(ii) t

(iii) Weighted average MSD

(iv) Standard deviation

130



Figure B.1. Bead image example.

(v) Total number of tracks

(vi) Standard error of the mean

B.3. Image registration

There are different methods to register the images of two channel of the camera. In this

work we registered images using bead images or white-light images.

B.3.1. Image registration using bead images.

(1) The first step in overlaying different channels is having a good white light bead

image. A drop of bead solution (1-1000 of 1.7µm polystyrene beads in de ionized

water) is placed on imaging dish and is dried using nitrogen gas. Quick drying is

necessary so that the beads don’t get aggregated. The bead image is taken only

using white light in a region that has high number of well separated beads. Take

the images slightly out of focus so you have two or three clear ring pattern around

the beads as shown in Fig. B.1.

(2) The offset equation is found by first localizing the beads in two channel and then

finding the offset between corresponding beads as a function of position in one of
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Figure B.2. An example of Xoffset vs xright and Yoffset vs yright scatter plots.

the channels (right):

xoffset(xright) = xright − xleft

yoffset(yright) = yright − yleft.

(50)

Figure B.2 shows an example of xoffset vs xright and yoffset vs yright scatter plot. The

equation can now be found by fitting appropriate function to the offset data. We

call these equations f(xr) and g(yr). Steps to calculate these equations:

(a) Open Autocorrelation Moving multiple ROI 2- BWS v2.vi code

(b) Drag and put the bead image folder in the input file location. Change the

start frame and end of frames to what you need and ROI size to size of your

beads (It should include all of the ring patterns around the bead). Run the

code.

(c) Select the first bead in the left channel and click ”check ROI” button then

select the same bead in the right channel and check ROI and do the same

steps for the other beads. Note that it is important to keep this sequence
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in selecting the bead: bead in left channel then the same bead in the right

channel. After selecting all of the beads hit ”continue”.

(d) The output of this code is a text file including X,Y,I of the first bead in the

left channel (coordinate in nm), XYI of the first bead in the right channel,

XYI of the second bead in the left channel and so on.

(e) Open the MATLAB code (find-offset.m). Use the output of the previous

code as input and change the ROI size to what you have used in step 2 and

camera pixel size to your camera pixel size. Output of this code is X-offsets

vs x-right and Y-offsets vs y-right. The output also shows a equation for

fit to x-offsets and the average value of Y-offset. You could use the output

text files to find the best fit (for example in Origin) or use the output

values of the code for mean Y-offset and X-offset equation. For my case

because I had a parabolic shape in my Y-offset data I used a polynomial

fit Ay2 +By + C and a linear fit for X-offset.

(3) If the image has height=h and width=w pixels, then we split the image such that

right and left channels has height=h and width=w/2. I used ImageJ software to

perform this part, steps:

(a) Import the two channel images to ImageJ

(b) Open Cairn Image Splitter (Instructions to install this plugin

(c) draw a rectangle with these coordinates: width=w/2, height=h, X coordi-

nate=0, Y coordinate=0. (To make a rectangle in ImageJ: Edit¿selection¿specify)

(d) Click on ”select first channel” button in Cairn plugin.
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(e) Draw another rectangle with the same height and width as first rectangle

and X coordinate=w/2 and Y coordinate=0.

(f) Click on ”select second channel” button in Cairn plugin. Then click OK in

the plugin.

(g) three set of images will appear: first channel, second channel and overlay

of these two channels. Save the first and second channel image sequence.

(h) detect and track the particles in two channels using Utrack software as

usual.

(4) Run the LabVIEW code to perform this part: offset correction.vi. Input for this

code is XYI trajectory files of the particles in the right channel and parameters from

offset equation: A,B,C from Y-offset equation and x-offset-slope, x-intercept from

X-offset equation and total width of the images before splitting (w) divided by two.

The output is offset corrected trajectories of the right channel trajectories.

B.3.2. Image registration using white-light images.

(1) take a two channel white light image of the cell prior to experiment, then perform the

experiment without changing any camera alignment. Repeat this for every imaged

cell.

(2) Open the white-light image in imageJ and divide to half and save each half (right

and left)

(3) Open the movie that is going to be registered based on this white-light image in

imageJ, divide to half and save each half (right and left halves)

(4) Run the code ImageRegistration.m

(a) Inputs:
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Figure B.3. Image registration using white-light images. Left: overlaid right
and left channels, in green and red colors, of a white-light image of a cell before
image registration. Right: overlaid right and left channels, in green and red
colors, of white-light image of the same cell after image registration.

(i) Fixed (the left half of the white-light image, tif)

(ii) Moving (the right half of the white-light image, tif)

(iii) Fname (path to the right half of the movie to be registered based

on the white-light image)

(iv) outputMovieName (.tif) (Name for registered right half of the

movie)

(v) outputDICimageName (.tif) (Name for the registered right half of

the white-light image)

(vi) optimizer parameters (you can change these parameters if image

registration does not look good enough)

(b) Outputs:

(i) An image of the left and right channels of the white light image

along with the overlaid image before and after image registration

(ii) Registered right half of the movie (tif)

(iii) Registered right half of the white-light image
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Note: I usually overlay the left half of the white-light image with the registered

right half in imageJ to make sure the code works fine as shown in Fig. B.3 ( you

could also to compare it to the overlaid image of left half and right half before image

registration)

B.4. PALM reconstruction

This is for the purpose of creating a reconstructed PALM image using raw TIRF images.

(1) Run the code BuildRC8input.m which converts the tiff files to reconstruction code

input

(a) Inputs

(i) folder path (path to the tiff files folder)

(ii) tif file (tif image name)

(iii) ROI (size of the tiff file)

(b) Outputs

(i) A mat file that is the input for the next step

(2) Run the code SR demo Sanaz RC8.m

(a) Inputs

(i) movie path (path to save the reconstructed movie)

(ii) movie name (name of the output reconstructed movie)

(iii) palm frames (number of frames used in reconstruction)

(iv) palm gap (number of gap frames)

(v) frameEnd (end frame for reconstruction)

(vi) x and y offsets (from bead based image registration code)
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(vii) FileList (mat file output of the previous step)

(b) Outputs

(i) reconstructed movie

B.5. STORM reconstruction

(1) Install ThunderSTORM plugin if needed (http://zitmen.github.io/thunderstorm/ ).

(2) Open the movie in imageJ.

(3) open the ThunderSTORM plugin (Plugins-ThunderSTORM-Run Analysis)

(4) Click“Camera setu” at the top of “Run Analysis”, and choose the correct EM Gain

for the analysis.

(5) In the “Run Analysis” tab, make sure the correct parameters are chosen. Wavelet

filter is recommended with order 3 and scale 2. Gaussian is chosen for sub-pixel

localization of molecules. For connectivity 8-neighbourhood is recommended.

(6) After all of the Run Analysis settings are configured, hit OK at the bottom to start

reconstruction. (Depending on RAM usage, this could take anywhere from 20 to 40

minutes).

(7) After the initial reconstruction is finished, a results table should appear with options

at the bottom. These are settings that are used in post processing, and some will

be utilized. Before any post processing is done, “Export” the original data table to

the desired folder.

(8) The first step in post processing is to “remove duplicates” from the data. The

distance threshold that is used is “uncertainty”.

(9) The next step in post processing is drift correction, which is under the Drift Cor-

rection tab.

137



(a) When correcting the drift, either “Cross correlation” or “Fiducial marker”

method is used. “Cross correlation” if there id no bead image and Fiducial

markers if you have a bead image.

(b) With cross correlation selected, select “>>” just to the right, and a tab

will appear. This is used to select the number of bins for drift correction

and the magnification used in reconstruction. Hit “Apply” and observe the

change of the preview of reconstruction which displays automatically after

the drift correction. Sometimes, there are some artifacts occur even though

you have right drift curve. In that case, the try other bin values, otherwise

avoid any drift correction.

(c) With fiducial markers method selected, select “>>” just to the right, and

a tab will appear. “Max distance” controls the lateral tolerance for iden-

tification of a marker. “Min marker visibility ratio” controls the fraction

of frames wherein the molecule must be detected to be considered as a

fiducial marker. “Trajectory smoothing factor” controls smoothness of the

drift trajectory. Typical values for these three parameters are 50, 0.1, 0.25

separately.

(d) The final post processing step is to merge the data. This is simply done

hitting the “Merge” tab and selecting Merge.

(e) Now, export this post-processed results table just like the original.

(f) After the second export, hit “Visualization” on the bottom of your post-

processed results table.
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(g) Save the image that is produced from the visualization as a Tiff file in the

same folder as the exported result tables.

B.6. Generating Mittag-Leffler distribution

In chapter 3, I compared my experimental data to the Mittag-Leffler distribution. Prob-

ability density function of this distribution is [see equation 7 of the reference [90]]:

(51) f(x) =
Γ1/α(1 + α)

αx1+1/α
lα

[
Γ1/α(1 + α)

x1/α

]
,

where α is the distribution parameter, Γ(s) is the gamma function and lα(t) is the one-sided

Lévy stable PDF. I wrote a code called ML.m in MATLAB which generates this distribution

for a given α value:

1 % ML code

2 N=190;

3 alpha =0.8;

4 x = 0 . 0 1 : 0 . 0 1 : 2 . 5 ;

5 A=(gamma(1+alpha ) ˆ(1/ alpha ) ) / alpha ;

6 [Q,M]= s i z e ( x ) ;

7 f o r i =1:M

8 B( i )=A/( x ( i ) ˆ(1+1/ alpha ) ) ;

9 Lx( i )=(gamma(1+alpha ) ˆ(1/ alpha ) ) ∗(1/x ( i ) ˆ(1/ alpha ) ) ;

10 C( i )=levy (Lx( i ) ,N, alpha ) ;

11 MLD( i , 1 )=B( i )∗C( i ) ;

12 end
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1 % Code f o r the l evy func t i on

2 f unc t i on [ y ] = levy (x ,N, alpha )

3 Levy=0;

4 f o r j =1:N

5 l ( j ) =((−1) ˆ( j +1)/( f a c t o r i a l ( j )∗xˆ(1+ alpha∗ j ) ) )∗gamma(1+alpha∗ j )

∗ s i n ( p i ∗alpha∗ j ) ;

6 Levy=Levy+l ( j ) ;

7 end

8 y=Levy/ p i ;

9 end

B.7. Box counting fractal dimension

This protocol is for calculating the Hausdorff dimension for the PALM images of actin

with box counting method.

(1) Reconstruct the PALM movie (reconstruction protocol)

(2) Open the reconstructed movie in ImageJ

(3) Convert to 8bit

(4) Crop the image and save the ROI and cropped image (if necessary)

(5) Subtract the background in ImageJ (process-subtract background)

(6) Save the image as tif file

(7) Run the code: DetectActinStructure.m to threshold the image and save the image

(a) Inputs:
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(i) Filtered reconstructed 8bit actin image (output of step 6)

(ii) Threshold value (0 < th < 1)

(b) Outputs:

(i) Binary actin image

(8) Run the code: FractalDimension.m to calculate the fractal dimension using box

counting method

(a) Inputs: Binary filtered reconstructed 8bit actin image (output of step 7)

(b) Outputs: Fractal dimension

B.8. Turning angle distribution

In chapter 4 the turning angle distribution was used to probe the anti-correlation in

motion. Here is a step by step protocol for calculating the distribution.

(1) Put all the trajectory text files (output of UTrack) of all the movies that need to

be included in the turning angle analysis in one folder.

(2) Run the turn angles.m code

(a) Inputs:

(i) Directory (to the folder created at step 1)

(ii) Delta (a matrix of the lag times in frames to calculate the turning

angles)

(b) Outputs:

(i) Text files for the turning angles for every entry of delta. Note: I

have noticed that when I run the code for all of the movies at the
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same time it introduces a lot of zeros in the turning angles but it

does not happen if run the code separately for each movie.

(3) Import the turning angle file one by one to an origin file.

(4) Compute the PDF:

(a) Select the angles column and compute the frequency count: statistics-

frequency count open dialog. Then use these parameters (you could play

with parameters until results are satisfying)

(i) Specify Binning range by = Bin centers

(ii) Minimum bin beginning = 5

(iii) Maximum bin center = 175

(iv) Bin size = 10

(v) And add relative frequency to quantities to compute.

(b) Calculate the PDF by dividing the relative frequency by bin size.

B.9. MSD vs distance from actin

In chapter 4 the MSD versus distance from actin was used to show the confinement of the

membrane proteins within the actin domains. Here is a step by step protocol for calculating

the MSD vs distance from actin.

(1) Run the code DisplacementVsDistanceFromActin.m

(a) Inputs:

(i) EDM file (from actin, output of EDM Sanaz.m with th=0.01)

(ii) Tracks (output of utrack)
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(iii) sliding time window ( sliding time window used for original PALM

movie)

(iv) PALM end frame number

(v) pixel size=13; (nm (in the reconstructed movie))

(vi) delta (time lag to calculate the displacement (in frames), the code

calculates the

(vii) displacement and also the average EDM and MAX EDM during

these number of frames)

(b) Output:

(i) A text file of displacement, average EDM and maxEDM.

(2) Then I calculate the 3D histogram of square displacement vs maxEDM in origin.

Finally for each EDM I calculate the weighted average square displacement (the

counts are the weights)

B.10. Obtaining Kv2.1 cluster intensity and morphological properties using ImageJ

In chapter 6 we compared the kv2.1 cluster size before and after blebbistatin treatment.

Here is step by step protocol to find cluster intensity and morphological properties:

(1) Detect clusters:

(a) Open the Kv2.1 cluster image in ImageJ

(b) Convert to 8 bit

(c) Save the image as tif file

(d) Run the code ClusterDetection.m

(i) Inputs
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(A) 8 bit cluster image

(B) Output file name

(C) Threshold value (between 0 and 1)

(ii) Output

(A) Detected cluster image (tif)

(2) Create non-binary cluster image:

(a) Open both detected cluster image and the 8 bit raw cluster image in ImageJ

(b) Divide the detected cluster image by 255 to make sure that the clusters in

the detected image have intensity equal to 1 and everywhere else is zero.

(c) Multiply the detected binary image with the raw image (Process-Image

Calculator-Multiply (Create new window))

(3) Analyze clusters:

(a) Duplicate the non-binary cluster image. Threshold one of the images. We

duplicate the image so that the binary mask that we create from the copy

can be used to sample the original image to obtain intensity.

(b) Invert the thresholded image so that the clusters be zero and everywhere

else 255 (Edit-Invert) and then convert to binary (Process-Binary-Make

Binary).

(c) Select “Set Measurements” to tell ImageJ what data to collect. For example

area and intensity. “Redirect To” instructs ImageJ to use the ROI data from

the binary image, but gather intensity values from a different window. In

this case the non-binary cluster image.

(d) Select “Analyze Particles” and fill in the remaining required information.
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(e) Click “OK” and the ImageJ finds the ROIs on the original image and

generates a data results window.

B.11. Separating tracks to on and off clusters

In chapter 6 we separated the membrane protein track to inside, “on”, or outside “off”

Kv2.1 clusters. Protocol to perform this separation:

(1) Register the Kv2.1 cluster movie using white light image registration method de-

scribed in section B.3.2.

(2) Detect Kv2.1 clusters:

(a) Open the registered Kv2.1 cluster movie in image J.

(b) Average every 50 frames in image J (Image-stacks-tools-Grouped Z project-

group size is 50)

(c) Convert to 8 bit.

(d) Save the averaged movie.

(e) In the averaged image using freehand selection tool make a ROI around the

cell.

(f) Save the ROI (Analyze-tools-ROI manager-save)

(g) Clear outside the ROI (Edit-Clear outside)

(h) Save the image as tif.

(i) Run the code ClusterDetection2.m

(i) Inputs

(A) The averaged registered Kv2.1 cluster movie

(B) Output File Name

(ii) Outputs:
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(A) Detected Cluster movie

(j) Open the filtered image in image J and also the ROI and clear outside then

save with the same name.

(3) Track the membrane protein movie (BAR or CD4)

(a) Open the protein movie in image J

(b) Open the saver ROI and clear outside

(c) Save the movie (Save as image sequence)

(d) Detect and track using U-Track

(4) Separate tracks to on/off cluster

(a) Run the code SeperateTracks-on-off-clusters-2.m

(i) Inputs

(A) Fname (Averaged, registered, cleared, detected Kv2.1 clustter

movie)

(B) tracks-file (output of U-Track)

(C) N (number of frames that the cluster movie was averaged)

(ii) Outputs

(A) An image showing the on/ off cluster tracks along with clusters

(for the first N frames) and percentage of channels on clusters

and the same image but with corrected orientation.

(B) Two text file of tracks on and off clusters.
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