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ABSTRACT 

 

 

 

RESPONSE OF MUNICIPAL WATER USE TO WEATHER ACROSS THE CONTIGUOUS US 

 

 

 

Municipal water demand exhibits seasonal patterns in response to summer withdrawals for 

landscape irrigation, particularly in dry regions of the western US. Outdoor water use can account for 

more than half of annual household water use, and therefore is a critical aspect of urban water planning 

under scarcity. Water use for landscape irrigation is responsive to local weather changes and drought 

restriction policies and therefore is targeted by demand management programs. Previous studies estimate 

the impact of climatic, socio-economic, and landscape factors on residential water use, but commonly 

focus on a single municipality.  This nationwide study identified the response of municipal water use to 

weather variables (i.e., temperature, precipitation, evapotranspiration) using monthly water deliveries for 

230 cities in the contiguous US. Using city-level multiple regression and regional-level fixed effects 

models, we investigated what portion of the variability in municipal water use was explained by weather 

across cities, and also estimated responses to weather across seasons and climate regions. Our findings 

indicated that municipal water use was generally well-explained by weather, with median adjusted R2 

ranging from 63 to 95% across climate regions. Weather was more predictive of water use in dry climates 

compared to wet, and temperature had more explanatory power than precipitation or evapotranspiration. 

Climate regions and seasons were found to have significantly different water use responses to weather. In 

regional-level models, we found that relative seasonality in water use across regions corresponds to water 

use responses to changes in temperature.  In response to a 1⁰ C change in monthly maximum temperature, 

municipal water use was shown to increase by 1.1 to 3.9% on average, with greater responses in cold, dry 

regions and during summer. Climate change and population growth amplify the importance of 

understanding the impact of climate on water demand in the context of urban water supply. 
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Chapter 1: Introduction 
 

 

 

Ensuring resiliency of freshwater resources is a major 21st century challenge. Managing water to 

meet human and environmental demands has become increasingly difficult under population growth, land 

use change, and climate change (Brown et al., 2013; MacDonald, 2010; Roy et al., 2012). While solutions 

to water scarcity previously targeted engineering approaches to increase supply, there has been a recent 

shift towards conservation to reduce demand (Gleick, 2010; MacDonald, 2010). Even with efficiency 

advances across sectors, climate change projections suggest that water supplies may be threatened by 

rising temperatures and often decreasing precipitation, with water supplies for over 70 percent of US 

counties projected to be at risk by 2050 (Roy et al., 2012). Arid and semi-arid regions of the western US 

are disproportionately susceptible to water challenges, as limited water resources are often fully 

appropriated and characterized by extreme drought vulnerability (MacDonald, 2010; Sabo et al., 2010). 

Furthermore, these arid and semi-arid regions are experiencing rapid population growth, leading 

municipalities to acquire water rights from agriculture (MacDonald, 2010; Sabo et al., 2010). 

Municipal water use is driven by residential use, and in particular residential outdoor use, for 

landscape irrigation, swimming pools, and car washing. Outdoor water use can account for 22 to 65 

percent of annual residential use (DeOreo et al., 2016), and therefore plays a major role in the urban water 

budget. Municipal conservation initiatives often target reductions in outdoor use, since it is responsive to 

policy restrictions (Anderson et al., 1980; Kenney et al., 2004, 2008; Mini et al., 2014) and is not vital to 

sustaining human health.  

Understanding water use drivers in urban settings can help inform conservation strategies.  

Municipal water demand is influenced by a diverse set of climatic, socioeconomic, demographic, and 

landscape factors. Predictive models typically incorporate combinations of these factors to explain 

variations in water use across different temporal and spatial scales. However, accurately estimating and 
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forecasting water demand remains elusive due to limitations in data accessibility and difficulty isolating 

the influence of simultaneous drivers, such as restriction policies and drought conditions.  

Weather affects residential water use because of the large fraction of municipal water used 

seasonally for landscape irrigation. However, there is no consensus on which weather variables are the 

best predictors across cities. Temperature and precipitation are the most commonly used variables in 

urban water demand studies, since data are widely available and significantly explanatory, particularly for 

estimating seasonal or summer-isolated water use (Grimmond and Oke, 1986; Gutzler and Nims, 2005; 

Maidment and Miaou, 1986). Studies have found that increased water use is related to higher 

temperatures and lower precipitation (Balling et al., 2008; DeOreo et al., 2016; Grimmond and Oke, 

1986; Gutzler and Nims, 2005; Kenney et al., 2008; Mini et al., 2014). Using regression models, 

temperature and precipitation have been shown to explain 59 to 66% of the variance in residential water 

use across study sites (DeOreo et al., 2016; Grimmond and Oke, 1986; Gutzler and Nims, 2005). 

In addition to weather effects, socioeconomic characteristics and utility-controlled factors within 

cities or neighborhoods have been shown to influence water demand. Physical characteristics of 

residences including household size, lot size, presence of a swimming pool, and land cover factors have 

been shown to have significant effects on water use (Balling et al., 2008; Gage and Cooper, 2015; Mayer 

et al., 1999; Wentz and Gober, 2007). Water use has been found to have spatial clustered patterns 

according to household and income characteristics (Gage and Cooper, 2015; Wentz and Gober, 2007). In 

addition to household characteristics, studies have described the impact of household income, measures of 

water price, and billing structure-type, with binary variables for restriction periods, rebates, and other 

utility-controlled factors on water use (Kenney et al., 2008; Zapata, 2015).  

Previous work on identifying factors influencing urban water demand has focused mostly on 

single municipalities, with fewer studies including multi-city or nationwide analyses. DeOreo et al. (2016) 

assessed outdoor water use drivers across 26 US and Canadian water utilities, determining that annual 
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precipitation alone explained 59% of the variance in total annual water use for single-family homes.  

Other factors of irrigated area, net evapotranspiration (ET), water price, use of in-ground sprinklers, and 

excess irrigation together explained 45% of the variation outdoor water use (DeOreo et al., 2016). In nine 

cities across Texas, Florida, and Pennsylvania, urban seasonal water use was responsive to temperatures 

above a threshold of 70⁰ F and precipitation events greater than 0.05 inches, with precipitation effects 

that were nearly 6 times greater in Florida and Texas compared to Pennsylvania (Maidment and Miaou, 

1986). An analysis using USGS county-level water use data found that climate region groupings were 

more explanatory than primary economic activity or urban gradient, and emphasized that predictive 

capabilities of social and environmental variables differ across climate regions (Worland et al., 2018). 

Mean annual precipitation had the largest effect out of environmental variables included, with an effect in 

the Southwest three times that of the national average. Water price structure, conservation policies, and a 

combined aridity index were included in city-level models for 83 cities, which overall improved 

predictions compared to county-level models.  

Overall, the majority of multi-city analyses remain limited to a small number of locations, and 

often group data into a single model without addressing spatial variation. While focusing on single 

municipalities is useful to inform city-specific management efforts, regional water management requires 

quantifying how urban water use drivers vary across broader climatic regimes. City-specific demand 

models with fine-scale irrigated area information and coefficient estimates can be developed but require 

significant investments of data collection and time. Patterns of water use response across regions and 

regionalized coefficient estimates for water use change with weather can be used as a planning-level tool 

when more detailed demand models are not available.  Our approach considers the influence of long-term 

climate in addition to short-term weather effects on municipal water withdrawals. By taking a national 

approach, we can learn how urban water use varies across cities based on responses to weather changes. 

This paper uses a statistical approach to characterize the relationship between weather and municipal 

water use for 230 cities in the contiguous US and aims to answer the following research questions:  
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(1) What portion of the variability in municipal water use is explained by weather, and how does 

this vary across US cities? 

(2) How does the response of municipal water use to weather compare across seasons and climate 

regions?  

We address these questions using city-level multiple regression and regional-level fixed effects 

modeling approaches to characterize effects of weather on municipal water use. Temperature, 

precipitation, and actual ET were included as explanatory variables to estimate changes in water use 

corresponding to weather variability nationwide. 
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Chapter 2: Data 

 

 

 

2.1 Municipal water delivery data 

 

Monthly water deliveries were collected from 232 municipal water suppliers across the 

contiguous US by Foti et al. (2012). Monthly municipal water deliveries include residential, commercial, 

and industrial uses. Since the residential sector dominates municipal water use (Maupin et al., 2014), we 

used total municipal deliveries to estimate weather responses  characteristic to the residential sector. The 

original dataset included 9,118 monthly observations across all cities, with a median value of 24 months 

of data per city. The majority of city records included 1 to 4 years of data between 2000 and 2007, 

however, 20 cities contain records from the 1990s that account for more than a quarter of total 

observations. Records from the 1990s were used only for exploratory analyses, and were omitted from 

multiple regression models to allow identical temporal scales for all explanatory and response variables. 

The subset of post-2000 data contained 6,581 observations across 230 cities (Figure 1), and is referred to 

as the full dataset in this paper. 

In the extensive effort to collect water delivery records nationwide, it was difficult to ensure 

certainty and consistency in recorded units. The full dataset containing cities with both known and 

unknown units was used in city-level models since model fits but not coefficients were analyzed (more 

information about models in methods section). Regional-level models, however, required standardization 

of units across cities since coefficients were directly interpreted to estimate changes in water use 

corresponding to weather changes. For the regional-level models therefore, we eliminated 33 cities where 

units were missing, and assessed accuracy of units for remaining cities by computing a standardized z-

score for each monthly observation based on the full dataset sample mean and standard deviation. 

Monthly observations were removed in cases where the absolute value of the z-score was greater than 2, 

which eliminated 4 additional cities (131 records) from the analysis, leaving 5,518 total observations 

remaining across 193 cities for regional-level analyses. Despite the limitations discussed, this dataset was 



 
 

6 
 

uniquely suited to capture seasonal variability in water deliveries across climatically and geographically 

diverse regions. 

 

Figure 1. Map of six climate classification groupings and 230 study cities with N/A denoting other 

climate regions which did not contain study cities  

 

2.2 Temperature, precipitation, and ETa data 

 

We assessed several measures of each weather variable based on significance in previous studies 

and to capture the behavioral nature of landscape irrigation, which may be based on perceived weather 

conditions.  Weather variables included temperature (mean, maximum, and difference from 30-year 

normal), precipitation (depth, number of days, and difference from 30-year normal), and actual ET 

(details in Table 1). All temperature and precipitation records were obtained from PRISM Climate Group 

in 4 km monthly grids for 2000 to 2007. Monthly actual evapotranspiration (ETa) estimates were from the 

Operational Simplified Surface Energy Balance (SSEBop) model, which provides a robust approach to 
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estimating ETa by combining remote-sensing thermal imagery, surface-energy-balance, and local weather 

data (Senay et al., 2013). Each weather variable was obtained in raster format and processed in GIS using 

Zonal Statistics to obtain monthly averages within each city boundary. Municipal boundaries were used to 

approximate utility service areas and were represented using shapefiles from TIGER 

(https://www.census.gov/geo/maps-data/data/cbf/cbf_place.html). 

Table 1. Explanatory weather variable short names, description of explanatory variables, variable 

sources, and time periods. 

 

 
 

  

Variable Description Source Temporal

tmean Monthly average of daily mean temperatures in ⁰C PRISM 2000-2007

tmax Monthly average of daily maximum temperatures in ⁰C PRISM 2000-2007

tmean30

Difference between mean monthly temperature and 30-year 

monthly normal (1981-2010) temperature in ⁰C PRISM 2000-2007

pptdepth Monthly rainfall as depth in mm PRISM 2000-2007

pptdaily Monthly rainfall as percentage of days > 0.1 inch PRISM 2000-2007

ppt30

Difference between monthly rainfall depth and 30-year monthly 

normal (1981-2010) rainfall depth in mm PRISM 2000-2007

ETa

Actual evapotranspiration in mm using Operational Simplified 

Surface Energy Balance (SSEBop) Approach SSEBop 2000-2007
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Chapter 3: Methods 

 

 

 

3.1 Climate classification groupings 

 

Long-term climate regimes are hypothesized to affect water use in addition to short-term weather 

effects. To identify patterns across broader climatic regimes, cities were grouped based on the Köppen 

climate classification system, which is an empirical, vegetation-based system with subgroups identified 

by long-term temperature and precipitation thresholds (Kottek et al., 2006). We grouped cities into six 

climate regions (Figure 1), based on the first two criteria of the classification system. Table 2 summarizes 

the method for grouping classifications, including only the climate regions which corresponded to study 

city locations. Several municipal boundaries fell within two or more climate regions, in which case the 

classification containing the majority area was chosen.  

Table 2. Original Koppen classification groupings (Koppen ID) and descriptions; modified Koppen 

classification groupings (modified ID) used in this study; and number of cities in each modified ID 

grouping 

 

 

 

 

 

Koppen ID Description Modified ID Sample Size

BWh Arid/Desert/Hot

BWk Arid/Desert/Cold

BSh Arid/Steppe/Hot

BSk Arid/Steppe/Cold

Csa Temperate/Dry Summer/Hot Summer

Csb Temperate/Dry Summer/Warm Summer

Cfa Temperate/Without dry season/Hot Summer

Cfb Temperate/Without dry season/Warm Summer

Dsa Cold/Dry Summer/Hot Summer

Dsb Cold/Dry Summer/Warm Summer

Dfa Cold/Without dry season/Hot Summer

Dfb Cold/Without dry season/Warm Summer

n=11

n=42

n=14

n=69

n=5

n=88

Arid desert

Arid Steppe

Temperate dry

Temperate wet

Cold dry

Cold wet
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3.2 City-level regression models 

 

City-level regressions were used to determine what portion of the variability in municipal water 

use was explained by weather at the city-scale (research question 1), and ultimately to inform regional 

groupings and interaction terms in subsequent regional-level models. City-level regression models for 

municipal water deliveries were estimated using combinations of six possible explanatory weather 

variables, as given in Equation 1,   

𝑦𝑖,𝑡 = 𝛽0 + 𝛽1𝑡𝑚𝑎𝑥𝑖,𝑡
2 + 𝛽2𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽3𝑠𝑒𝑎𝑠𝑜𝑛 ∗ 𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽4𝑡𝑛𝑜𝑟𝑚𝑖,𝑡 

+𝛽5𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝛽6𝑝𝑝𝑡𝑑𝑎𝑖𝑙𝑦𝑖,𝑡 + 𝛽7𝑝𝑝𝑡𝑛𝑜𝑟𝑚𝑖,𝑡 + 𝛽8𝐸𝑇𝑎𝑖,𝑡 + 𝜀𝑖,𝑡   (1) 

where yi,t is estimated municipal water use (in original units from full dataset) for city i in month t, β0 is 

the intercept, β1-8 are coefficients for the weather variables defined in Table 1, season is a binary with 

winter (October-March) as 0 and summer (April-September) as 1, and ɛi,t is the error term. We subsetted 

the data by city to allow a unique model to represent each location. We observed linear, piece-wise linear 

(two segments), and quadratic responses to maximum temperature across cities.  Therefore to improve 

residual diagnostic plots, Equation 1 contains linear terms, as well as quadratic and seasonal interaction 

terms for maximum temperature. The effects of mean temperature were also explored, but were ultimately 

eliminated from multiple regression models due to extreme collinearity since mean and maximum 

temperature were over 99% correlated. Maximum temperature was chosen since it is more prevalent in 

the literature (Kenney et al., 2008; Maidment and Miaou, 1986; Worland et al., 2018). This approach 

allowed for city-specific models to capture variable responses to weather changes across cities 

nationwide. 

The best multiple regression model for each city was selected to include a subset of the terms in 

Equation 1 based on the corrected Akaike Information Criterion (AICc), a model selection tool used to 

balance the tradeoff between model fit and simplicity, with a correction for small sample sizes to prevent 

overfitting. We tested all possible candidate models for each city using dredge in R (Kamil Bartoń, 
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2018),providing an iterative, exhaustive approach to select the best model based on the minimum AICc. 

AICc values were used only for model selection within a city, and were not compared between cities. 

Variance inflation factor (VIF) is a diagnostic used to assess collinearity among explanatory variables, an 

important consideration for weather variables. After selecting models based on minimum AICc, models 

with two or more parameters were tested for collinearity using VIF. There is no standard VIF threshold, 

but values greater than 10 are of major concern (Helsel and Hirsch, 1992). We used a conservative 

approach to eliminate variables with VIF greater than 4 using a backwards selection process.  

3.3 Regional-level regression models with fixed effects 

 

Regional-level regression models were developed to allow data to be represented by a single 

model and explore how response to weather varies across climate regions and season (research question 

2). These regional-level models included city fixed effects, time trends, interaction terms for climate 

regions and seasons, and maximum temperature and precipitation depth as explanatory variables.  The 

other weather variables were not included because of their correlation with maximum temperature and 

precipitation depth. Fixed effects are incorporated to control for endogeneity bias resulting from exclusion 

of unobserved factors relevant to the regression (e.g., population, infrastructure age, irrigation efficiency, 

socioeconomic factors) by allowing for city-specific intercepts. Temporal trends were included to account 

for unobserved factors that may be changing over time. Log-level regression was used to simplify 

interpretation of coefficients, allowing a one unit change in temperature or precipitation to be interpreted 

as a fractional change in water use.  

 We used seasonal and climatic interaction terms to estimate differences in water use response 

between summer and winter months (Equation 2), across six long-term climate regions (Equation 3), and 

for wet and dry climate regions (Equation 4), given as:  

log (𝑦𝑖,𝑡) = 𝛼𝑖 + 𝑔(𝑡) + 𝛽𝑎𝑡,𝑇𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽𝑎𝑡,𝑃𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝜀𝑖,𝑡   (2) 

log (𝑦𝑖,𝑡) = 𝛼𝑖 + 𝑔(𝑡) + 𝛽𝑏𝑖,𝑇𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽𝑏𝑖,𝑃𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝜀𝑖,𝑡   (3) 
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log (𝑦𝑖,𝑡) = 𝛼𝑖 + 𝑔(𝑡) + 𝛽𝑐𝑖,𝑇𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽𝑐𝑖,𝑃𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝜀𝑖,𝑡  (4) 

𝑤ℎ𝑒𝑟𝑒 yi,t is municipal water use (gallons) for city i in month t, αi is the city-specific intercept, g(t) is a 

linear time trend, ɛi,t is the error term, and βT’s and βP’s are a set of maximum temperature (T) and 

precipitation (P) coefficients with: 

a different coefficient for winter and summer, where 𝑎𝑡 = {
𝑊𝑖𝑛𝑡𝑒𝑟
𝑆𝑢𝑚𝑚𝑒𝑟

  depending on the season of month 

t, with April-September defined as summer and October-March defined as winter (Eq 2);  

a different coefficient for each climate region, where 𝑏𝑖 = 

{
 
 

 
 

𝐴𝑟𝑖𝑑 𝑑𝑒𝑠𝑒𝑟𝑡
𝐴𝑟𝑖𝑑 𝑠𝑡𝑒𝑝𝑝𝑒
𝐶𝑜𝑙𝑑 𝑑𝑟𝑦
𝐶𝑜𝑙𝑑 𝑤𝑒𝑡

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑒 𝑑𝑟𝑦
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑒 𝑤𝑒𝑡

 depending on the climate 

region of city i (Eq 3);  

a different coefficient for each grouped climate region of city i, where 𝑐𝑖 = {
𝐷𝑟𝑦
𝑊𝑒𝑡

 (Eq 4), with wet 

corresponding to cold/wet and temperate/wet; and dry corresponding to arid/desert, arid/steppe, cold/dry, 

and temperate/dry.  

Seasonal and climate region interaction terms were tested for significance by regression 

hypothesis tests and ANOVA F-tests for nested models. The significance of results from 2-way 

interaction models (discussed in the results section) were used to inform 3-way interaction terms used in 

the final models (Equations 5 and 6), defined as:  

log (𝑦𝑖,𝑡) = 𝛼𝑖 + 𝑔𝑏𝑖(𝑡) + 𝛽𝑎𝑡,𝑏𝑖,𝑇𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽𝑎𝑡,𝑏𝑖,𝑃𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝜀𝑖,𝑡  (5) 

log (𝑦𝑖,𝑡) = 𝛼𝑖 + 𝑔𝑐𝑖(𝑡) + 𝛽𝑎𝑡,𝑐𝑖,𝑇𝑡𝑚𝑎𝑥𝑖,𝑡 + 𝛽𝑎𝑡,𝑐𝑖,𝑃𝑝𝑝𝑡𝑑𝑒𝑝𝑡ℎ𝑖,𝑡 + 𝜀𝑖,𝑡  (6) 

where terms are the same as described for earlier equations. Linear time trends g(t) in Equations 5 and 6 

are interacted with regional groupings to allow temporal trends to vary by region. Equation 5 describes 
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average effects for the six climate groupings over two seasons, in this case resulting in twelve 

𝛽𝑎𝑡,𝑏𝑖  coefficients for each weather variable. Equation 6 describes average effects for two groupings (wet 

versus dry regions) over two seasons, resulting in four 𝛽𝑎𝑡,𝑐𝑖 coefficients for each weather variable. 
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Chapter 4: Results 

 

 

 

4.1 Seasonality in municipal water use across climates 

 

Figures 2a and 2b show the relative seasonality in annual water use across climate regions. 

Seasonal variability in water use was apparent across all regions, with increased withdrawals in the 

summer months often attributed to outdoor water use. Cold/dry cities had greater seasonality in water use 

compared to cold/wet cities, and the same pattern can be seen for temperate/dry and temperate/wet.  

However, arid desert regions showed less seasonality than steppe (or semi-arid) regions. Figure 2b also 

shows the within-group spread in summer use for individual cities, demonstrating that summer use over 

six months (April – September) accounted for more than half of total water use in 221 cities. We next 

investigate whether regions with strong seasonality in water use are more responsive to weather changes. 

a.)  
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b.)

 
 

 Figure 2. a.) Monthly water use as a percentage of total annual use, averaged by climate region 

(Table 2). To calculate the percentage of total annual use we retained the most recent records in 12-

month increments. b.) Percentage of summer water use (six months of April – September) out of 

annual water use across climate regions, with points for individual cities. 

 

 

4.2 City-level regression outputs 

 

We analyzed model fit for city-level regressions in two ways. Figure 3 presents adjusted R2 for 

each city-level model (Equation 1).  Cities with adjusted R2 greater than 85% were commonly located in 

the western arid and semi-arid US, which was explored further by grouping cities by climate region 

(Figure 4).  Figure 4 summarizes the variability in adjusted R2 across regions. Using Tukey-adjusted 

pairwise comparisons, the differences in mean adjusted R2 between climate regions were significant at 

5% for arid steppe and cold wet, arid steppe and temperate wet, and temperate dry and temperate wet.  

Median adjusted R2 values ranged from 63 to 95% across regions, with higher values in dry climates than 

wet. Thirteen cities were not appropriately explained by weather according to the AICc selection criteria, 
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therefore these cities are represented by negative or zero values in Figures 3 and 4. Notable differences in 

weather responses between dry and wet regions were used to inform climatic interaction terms used in 

regional-level models. 

 In addition to evaluating model fit, we also assessed which weather variables were most 

commonly chosen in regression models based on AICc selection (Figure 5). Maximum temperature (as 

linear, quadratic, or seasonal) was selected for over 80% of cities, whereas temperature differences from 

normal and actual ET were only selected for 17 and 22% of cities, respectively. Differences from normal 

precipitation (pptnorm) was the most commonly selected precipitation variable, and was included in 

models for 23% of cities. Precipitation represented as depth and percentage of days were included for 13 

and 16% of cities, respectively. 
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Figure 3. City-level adjusted R2 model fit (Equation 1) across the contiguous US 
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Figure 4. Adjusted R2 across 6 climate regions, with points for individual cities.  

 

Figure 5. Percentage of cities with variable selected in city-level regression models, with ssn:tmax 

representing an interaction with a seasonal binary 
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4.3 Regional-level regression outputs 

 

Seasonal and climatic interaction terms were found highly significant in regional-level fixed 

effects models based on regression hypothesis testing and ANOVA F-tests (Table 3). Interaction terms for 

summer/winter (Equation 2) and wet/dry (Equation 4) were found significantly different from zero at 5% 

based on regression outputs, and were also found significant when testing nested interaction versus non-

interaction models using ANOVA F-tests. Regional interactions including six levels for climate regions 

(Equation 4) could only be appropriately tested using ANOVA F-tests, which showed highly significant 

differences in models with and without climate region interactions (F=33.83, p≈0***). These significance 

tests were used to inform 3-way interactions used in subsequent regional-level models. 

Table 3. Coefficients for tmax, pptdepth, and differences from winter (summer:tmax and 

summer:pptdepth for Equation 2) or wet regions (dry:tmax, dry:pptdepth for Equation 4), 

standard errors, and significance tests (** indicates significance at 1% and *** at 0.1%) for 2-way 

interaction models represented in Equations 2 and 4.  The intercept is not given since it was 

locational, seasonally, and regionally dependent. 

 

The results from regional regression models given by Equation 5 and 6 are summarized in Table 

4, and also represented visually in Figures 5a and 5b. In the majority of cases, coefficients showed the 

expected patterns in terms of sign and magnitude. The coefficients for maximum temperature were in all 

cases positive and greater in summer months than winter months (within groups). Across six climate 

regions, maximum temperature had the largest coefficient value in the summer within cold dry regions, 

with a 1⁰ C increase corresponding to a 5.3% increase in water use. The smallest effect of maximum 

intercept N/A intercept N/A

tmax 0.0159(0.011)*** tmax 0.0160(0.0007)***

pptdepth 0.0005(0.0002)*** pptdepth -0.0002(0.0001)

summer:tmax 0.0174(0.0015)*** dry:tmax 0.0215(0.0012)***

summer:pptdepth -0.00189(0.0002)*** dry:pptdepth -0.0008(0.0003)**

Summer/winter interaction (Equation 2) Wet/dry interaction (Equation 4)

ANOVA F-test for nested models with and 

without seasonal terms gives F=74.13, p≈0***

ANOVA F-test for nested models with and 

without regional terms gives F=156.89, p≈0***
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temperature occurred in cold wet regions during winter, with a 1⁰ C increase corresponding to 0.71% 

increase in water use. 

Maximum temperature responses across dry/wet regions (Equation 6) showed that average 

coefficients in dry regions in both summer and winter are greater than wet regions. On average in dry 

regions, a 1⁰ C increase in maximum temperature accounted for a 3.2 and 3.9% increase in winter and 

summer months, respectively. Wet regions showed comparatively smaller responses to maximum 

temperature, with a 1.1 and 3.0% increase in winter and summer months. 

 Coefficients for precipitation exhibited the expected sign (negative) in the majority of cases, 

however, positive coefficients were observed in the winter months in cold/dry, cold/wet, and 

temperate/wet regions. A 1 mm increase in precipitation had the greatest effect on water use in cold dry 

regions (-0.33%) in the summer. Focusing on summer precipitation effects, which exhibited the expected 

coefficient sign in all cases, a 1 mm increase in precipitation corresponded to a 0.06 and 0.15% decrease 

in water use in wet versus dry regions, respectively.  

Table 4. Coefficients and standard errors for regional-level regression models. Coefficients for six 

climate regions from Equation 5, dry/wet coefficients from Equation 6 

 

 

 

  

Arid desert 0.0339 (0.0070) 0.0322 (0.0066) -0.0009 (0.0018) -0.0021 (0.0015)

Arid steppe 0.0436 (0.0029) 0.0302 (0.0025) -0.0016 (0.0005) -0.0008 (0.0007)

Cold dry 0.0525 (0.0153) 0.0268 (0.0158) -0.0033 (0.0031) 0.0012 (0.0026)

Cold wet 0.0331 (0.0022) 0.0071 (0.0018) -0.0011 (0.0002) 0.0006 (0.0003)

Temperate dry 0.0413 (0.0066) 0.0156 (0.0081) -0.0018 (0.0009) -0.0008 (0.0005)

Temperate wet 0.0285 (0.0037) 0.0107 (0.0027) -0.0002 (0.0002) 0.0005 (0.0002)

Dry 0.0388 (0.0023) 0.0319 (0.0020) -0.0015 (0.0004) -0.0007 (0.0003)

Wet 0.0297 (0.0018) 0.0113 (0.0013) -0.0006 (0.0002) 0.0007 (0.0002)

tmax pptdepth

Summer Winter Summer Winter
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a.) 

  

b.) 

 

Figure 6. a.) Maximum temperature coefficients, and b) precipitation coefficients (Table 4) across 

six climate regions and two seasons, with bars representing standard errors 
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Chapter 5: Discussion 

 

 

 

Seasonality in municipal water use is driven by withdrawals for outdoor water use and landscape 

irrigation.  In general, dry regions of the US exhibited greater seasonality in water use (Figure 2), which is 

expected in areas where existing green urban landscapes would have large summertime water deficits 

without irrigation. We found that regions with more seasonal water use (Figure 2) also had larger 

responses to summertime changes in maximum temperature (Table 4; Figure 6a).  The exception in 

relative ordering of climate regions between Figure 2b and Figure 6a is arid desert, which is discussed 

below.  The correspondence between seasonality and water use response to maximum temperature would 

be expected in areas with large differences between summer and winter temperatures.  Therefore, relative 

differences in seasonal municipal water use may be used to infer to the magnitude of water use change in 

response to weather changes. 

Except for arid desert cities, we observed a consistent pattern in the relative ordering of climate 

regions in terms of water use seasonality (Figure 2b), explanatory power of weather (Figure 4), and 

responses to changes in maximum temperature (Table 4; Figure 6a). For cold and temperate areas, drier 

regions had greater seasonality and response to temperature changes. In contrast, in arid climates, steppe 

regions had greater seasonality (Figure 2b) and water use response to changes in temperature (Table 4) 

compared to arid desert regions. The regions with the lowest seasonality in water use were arid desert, 

cold wet, and temperate wet regions. Low seasonality in water use could be caused by either year-round 

irrigation, or adequate summer precipitation to support lawns without irrigation. Year-round irrigation is 

more likely in areas with warm winters and desert climates. Another noteworthy result within arid regions 

is the small difference in summer and winter responses to maximum temperature (Table 4; Figure 6a), 

especially for arid desert regions.  The responsiveness of water use to weather all year in desert and 

steppe climates provides support that lack of seasonality in desert regions is likely driven by year-round 
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irrigation, rather than absence of irrigation. To best separate outdoor use in areas of year-round irrigation, 

dual-metering of indoor and outdoor water use would be needed.  

City-level regression models selected by AICc indicate the relative importance of weather 

variables in predicting water demand nationwide. In general, maximum temperature had the most 

explanatory power and was selected in over 80% of cities. Actual ET did not provide much additional 

explanatory power, and was often eliminated from city-level regressions due to high collinearity with 

temperature. Precipitation was much less important for explaining variability than temperature, which was 

also observed in regional-level models, where responses to precipitation were less predictable, and in 

several cases, exhibited an unexpected positive relationship with water use. In regional-level models, all 

summer precipitation coefficients were negative, with relative magnitudes (Figure 6b) that again seem to 

be related to seasonality (Figure 2b). Arid desert cities, however, had a negligible response to 

precipitation, possibly due to extremely low summer precipitation or automated sprinkler systems. 

Overall, the importance of temperature over other weather variables in explaining water use may be due 

to seasonality in temperature, suggesting that irrigators are more likely to respond to seasonal, continuous 

changes in temperature than stochastic, discrete precipitation events. The finding that temperature had the 

most substantial effect on water use is consistent with other studies using monthly data (Zapata, 2015), 

however, precipitation has been shown to be more important when modeling daily data (Gutzler and 

Nims, 2005). 

In addition to determining the relative importance of weather variables, city-level regression 

results showed that water use was generally well-explained by weather, particularly in the western US 

(Figures 3 and 4), with median adjusted R2 ranging from 63% (temperate wet) to 95% (cold dry). The 

lower end of this range is comparable with R2 from other water demand studies (Anderson et al., 1980; 

DeOreo et al., 2016; Grimmond and Oke, 1986; Gutzler and Nims, 2005), and improvements in upper 

range values in this study may be attributed to allowing city-specific models, predictions of aggregated 

municipal use, and the application to many locations. Cities with low adjusted R2 indicate areas in which 
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urban irrigation was minimal, or irrigation occurred irrespective of weather changes. The within-region 

variability in adjusted R2 between cities implies that other factors in addition to weather, such as 

socioeconomic, demographic, household, and landscape characteristics, have variable levels of 

explanatory power for water use within a climate region.  

Responses to weather would be expected to be different for daily water use as compared to 

monthly water use as presented here.  For example, lag responses to previous day’s weather has been 

found to be important (Anderson et al., 1980; Maidment and Miaou, 1986).  We used total, monthly 

municipal deliveries to characterize weather responses driven by the residential sector, therefore, a 

limitation of this dataset is that monthly water deliveries were not separated by residential, commercial, 

and industrial uses.  Deliveries in some cases also may include significant leakage that is not use. 

Changes in service area population and land use over the study period were not accounted for, but are 

assumed to be uncorrelated with stochastic weather changes. Water price was also not included due to 

data limitations, however, if utilities respond in similar ways in the future as in the past, our results would 

still be applicable. 
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Chapter 6: Conclusions 
 

 

 

This study used a nationwide approach to characterize municipal water use drivers at both city- and 

regional-level scales. Using monthly municipal water deliveries, temperature, precipitation, and ET, we 

demonstrated that variability in water use was generally better explained by weather in dry regions of the 

western US. In addition, we estimated average responses to weather across seasons and climate regions, 

concluding that water use changes to weather are typically higher in summer months in dry climates. 

Noteworthy conclusions from this study are as follows: 

1. Seasonality in water use across climate regions was generally related to summertime changes in 

temperature. Climate regions with increased summer withdrawals (Figure 2), which can be 

mainly attributed to landscape irrigation, had greater changes in water use in response to summer 

changes in monthly maximum temperature (Table 4; Figure 6a). 

2. Weather variables alone (temperature, precipitation, and ET) explained most of the variation in 

monthly municipal water use across the US, with median adjusted R2 ranging from 63% 

(temperate wet) to 95% (cold dry) (Figure 4). Adjusted R2 was generally higher in dry climates 

than wet, indicating that weather was more predictive of water use in areas that irrigate to reduce 

water deficit under high temperatures and low precipitation.  

3. City-level regression models suggest that maximum temperature was highly predictive of water 

use compared to other weather variables (selected in models for over 80% of cities). Actual ET 

and precipitation variables were much less explanatory in comparison, with each included in less 

than ¼ of city-level models (Table 5). 

4. The response to temperature and precipitation variations was found to significantly change across 

seasons and climate regions of the US (Table 3).    

5. Across all climate regions, water use increased with maximum temperature.  Furthermore, water 

use responses to maximum temperature increased in the summer months, and were greater in dry 

climates compared to wet (Table 4; Figure 6a). On average in dry regions, a 1⁰C increase in 
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maximum temperature accounted for a 3.2 and 3.9% increase in water use in winter and summer 

months, respectively. Comparatively in wet regions, a 1⁰C increase corresponded to a 1.1 and 

3.0% increase in water use in winter and summer months, respectively. 

6. Water use responses to precipitation were less predictable, especially in winter where increases in 

water use was sometimes observed with increased precipitation (Table 4; Figure 6b). Summer 

responses to precipitation exhibited the expected sign in all but one region (arid desert), with a 1 

mm increase in precipitation corresponding to a 0.06 to 0.15% decrease in summertime water use 

in wet and dry regions, respectively (Table 4). 

7. Arid regions of the US were found to be distinct from others in a few ways. First, arid desert 

regions exhibited less water use seasonality than steppe (semi-arid) regions (Figure 2), and 

second, desert and steppe regions showed the smallest differences in summer and winter water 

use responses to maximum temperature (Figure 6a). Both of these results indicate arid regions 

have cities where irrigation is occurring year-round and therefore have similar responses to 

weather in both seasons.  

While management efforts have previously focused on predicting and securing municipal water 

supplies, the effects of climate change and population growth require a better understanding of urban 

water use drivers to inform conservation efforts. Results from this study can be used to inform 

management decisions on water use variation with weather and initial coefficient estimates when more 

detailed models are not available. Future work in modeling urban water demand could be improved by 

incorporating more recent datasets covering drought and normal periods, including variables in addition 

to weather, and separating indoor vs. outdoor use quantities for a subset of locations.  Using weather to 

describe water use variability and response differences in city-and regional-level water use habits raises 

additional questions about water demand. For example, what other factors are contributing to variability 

within regions or neighboring cities? Such future work could inform regional-level water management 

with improved predictive capabilities for demand to complement supply predictions.   
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