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Abstract: This paper investigates the dynamic hedging performance of the high 4 

frequency data based realized minimum-variance hedge ratio (RMVHR) approach. 5 

We comprehensively examine a number of popular time-series models to forecast the 6 

RMVHR for the CSI 300 index futures, and evaluate the out-of-sample dynamic 7 

hedging performance in comparison to the conventional hedging models using daily 8 

prices, as well as the vector heterogeneous autoregressive model using intraday prices. 9 

Our results show that the dynamic hedging performance of the RMVHR-based 10 

methods significantly dominates that of the conventional methods in terms of both 11 

hedging effectiveness and tracking error volatility in the out-of-sample forecast period. 12 

Furthermore, the superiority of the RMVHR-based methods is robust in different 13 

market structures and different volatility regimes, including China’s abnormal market 14 

fluctuations in 2015 and the US financial crisis in 2008. 15 
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1 Introduction 19 

Futures contracts are one of the most popular instruments for hedging risk 20 

exposures. Naturally, the optimal hedging strategy is principally of interest for both 21 

investors and researchers, and the core issue in improving the effectiveness of a 22 

hedging strategy is to accurately estimating the optimal hedge ratio – the optimal 23 

proportion of the futures contract held to offset the risks from spot position.  24 

Ideally, when the spot and future prices are perfectly correlated, investors can 25 
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take a naïve one-to-one hedging strategy (hedge ratio = 1) that holds the opposite 26 

positions with equal magnitude in spot and futures and eliminate all price risks as a 27 

perfect hedge. In reality, however, perfect hedge may not exist due to basis risks and 28 

cross hedging. Therefore, many optimal hedging strategies have been proposed in the 29 

literature. The conventional strategies of constructing a constant minimum variance 30 

hedge ratio originates from Johnson (1960) and Stein (1961), who choose an optimal 31 

futures position to minimize the variance of the spot-futures portfolio. Following them, 32 

Ederington (1979) proposes to estimate the constant hedge ratio using an ordinary 33 

least squares (OLS) regression of spot returns on futures returns. However, the OLS 34 

procedure has been criticized for not taking into account of cointegration and 35 

therefore resulting in downward bias in hedge ratios, i.e., under-hedging (c.f. Hill and 36 

Schneeweis 1981; Cecchetti et al. 1988; Lien 1996). Later, Ghosh (1993) proposes the 37 

error correction model (hereafter, ECM) to estimate the constant hedge ratio based on 38 

the cointegration theory. The ECM procedure considers both the long-term 39 

equilibrium and the short-term dynamics between spot and futures, and yields better 40 

performance over those derived from the OLS procedure (Ghosh, 1995; Ghosh and 41 

Clayton 1996). Although still used in some practice for simplicity, an obvious 42 

disadvantage of these static hedging models is that they assume the relationship 43 

between spot and futures are timeless and therefore ignore the time-varying 44 

characteristic of the (co)variance between the spot and futures returns, contradicting 45 

the well-known dynamic nature of asset returns.  46 

As evident from many empirical studies (c.f. Koutmos and Tucker 1996; Meneu 47 

and Torro 2003), the distribution of spot and futures returns is time-varying, therefore 48 

dynamic hedge ratios may be more appropriate for greater risk reduction than the 49 

traditional constant hedge ratios (Baillie and Myers 1991; Park and Switzer 1995). 50 
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With the development of the generalized autoregressive conditional heteroscedasticity 51 

(GARCH) models and its various extensions (Engle 1982; Bollerslev 1986), an 52 

extensive framework of bivariate GARCH-type dynamic hedging models have been 53 

designed to capture the time-varying (co)variance structure. For instance, the 54 

ECM-GARCH model (Kroner and Sultan 1993; Yang and Awokuse 2003) considers 55 

the cointegration relationship and characterizes the time-varying covariance of spot 56 

and futures; the BEKK-GARCH model (Engle and Kroner 1995) provides a simple 57 

extension of the popular univariate GARCH model in Bollerslev (1987); the constant 58 

conditional correlation (CCC)-GARCH model (Bollerslev 1990) restricts the 59 

correlation structure between spot and futures for computational advantages; the 60 

dynamic conditional correlation (DCC)-GARCH model (Engle 2002) provides more 61 

flexible correlation structure and simplifies the estimation procedure; and the 62 

copula-GARCH model (Hsu et al. 2008; Lai et al. 2009) captures the asymmetric 63 

dependency between spot and futures. Overall, the general consensus is that these 64 

GARCH-type dynamic hedge ratios outperform the constant hedge ratios both 65 

in-sample and out-of-sample, and thus has gained wide applications in practice and 66 

rising attention in the literature. However, these GARCH-type models are likely to 67 

overestimate the persistence in volatility since relevant sudden changes and regime 68 

switches in variance are often ignored (Wei et al. 2011). In addition, the early studies 69 

mainly use relatively low frequency data (daily in most cases) to latently characterize 70 

the time-varying covariance of spot and futures. Therefore, they cannot capture the 71 

intraday variation of prices and are relatively slow in catching up the covariance 72 

changes.  73 

The harnessing of high-frequency information and the new development in 74 

financial econometrics have enabled significant progress in direct measuring and 75 
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modeling of covariance, which can be applied to further benefit the dynamic hedge 76 

ratios estimations. Koopman et al. (2005) provided evidence of superior informational 77 

content of the realized measures using intraday high-frequency data when compared 78 

to estimators derived from daily returns. For instance, the realized volatility (RV) 79 

calculated as the sum of squared intraday returns provides an unbiased estimator of 80 

the quadratic variation (Andersen and Bollerslev, 1998). As a natural extension of the 81 

RV into the multivariate case, the realized covariance (RCov) matrix calculated as the 82 

sum of the cross products of high-frequency intraday return vectors provides an 83 

unbiased estimator of the quadratic covariation (Barndorff-Nielsen and Shephard, 84 

2004). Because the RCov matrix calculation may suffer from market microstructure 85 

noise and nonsynchronous trading, some more complicated estimators have been 86 

proposed, such as the multivariate realized kernel (Barndorff-Nielsen et al., 2011) and 87 

the two-time scale covariance (Zhang, 2011). Unfortunately, the computational 88 

complexities of these models impede wide applications in practice. As a more 89 

practical alternative, the easily implementable sparse sampling method using high 90 

frequencies of data has been employed in empirical applications. Lai and Sheu (2010) 91 

proposed the DCC-GARCH-RV model using 15-minutes frequency of data, which 92 

encompasses the realized volatility (covariance) in the conditional variance 93 

(covariance) functions for spot and futures and shows substantial improvement in 94 

hedging performance for the S&P 500 index futures.  95 

Most recently, Markopoulou et al. (2016) proposed the realized 96 

minimum-variance hedge ratio (RMVHR) as the ratio of the realized covariance 97 

between spot and futures returns divided by the realized variance of futures. Although 98 

Markopoulou et al. (2016) show some promising results that RMVHR could improve 99 

hedging performance by using high frequency data and finer volatility (covariance) 100 
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proxies when compared with the conventional low-frequency models, the strength of 101 

its potential implications is significantly mitigated, however, by at least three factors. 102 

First, they mainly examine the developed market structures such as the United States 103 

and the United Kingdom. Given the obvious difference in market structures between 104 

the developed and developing markets (c.f. Miao et al. 2017), it is unclear whether 105 

this type of approach can also provide improved hedging performance in developing 106 

market structure such as China. Second, they only examine a relatively short sample 107 

period from 2009 to 2012 without major market crashes or regime switches. Since 108 

hedging strategies would be the most important to weather market turbulence, a more 109 

thorough examination of the RMVHR-based models under different market 110 

conditions is warranted. Third, it would be interesting to comprehensively explore if a 111 

combined extension of the GARCH-type models and the RMVHR-based models can 112 

provide superior performance than each type of models alone.  113 

In this research, we believe the special characteristics of market structure in 114 

China, combined with the market crash and turbulent nature of the Chinese index 115 

futures in 2015, provide a unique test bed for investigating the dynamic hedging 116 

performance of the RMVHR-based models. In contrast to the dominance of 117 

institutional investors in most developed markets such as the United States, retail 118 

investors represent a large portion of the investment holdings in China's markets (c.f. 119 

Ng and Wu, 2007; Miao et al. 2017). Moreover, China’s market is tightly controlled 120 

with numerous trading restrictions such as price-limit rules, margin trading, short 121 

selling restrictions and T+1 trading constraints. Growing very rapidly, the Shanghai 122 

and Shenzhen Stock exchanges combined has become the second largest stock market 123 

in the world by early 2015. Right after China’s market claimed its second place in the 124 

world, during a dramatic market crash from June 2015 into early 2016, around $2 125 
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trillion of market capitalization was erased, nearly one-third of its value. Following 126 

then, intense scrutiny from government and regulators has fiercely questioned the 127 

hedging roles of the equity index futures in China’s financial market. 128 

The launch of the CSI 300 equity index futures on April 16, 2010 marked a 129 

milestone development in the evolution of China’s financial market. For the first time, 130 

China’s financial market provides investors with an essential tool to hedge the 131 

systemic risk of holding the market, proxied by the underlying CSI 300 equity index, 132 

a free-float weighted index comprises 300 of the largest and most actively traded 133 

A-share stocks on the Shanghai and Shenzhen Stock exchanges. While its inception 134 

was widely hailed as an effective hedging tool and even a stabilizing force in China’s 135 

financial markets among both investors and regulators
1
, the China Securities 136 

Regulatory Commission (CSRC) openly blamed the 2015 stock market collapse on 137 

“malicious short-selling” of index futures as “weapons of mass destruction” by 138 

speculators and questioning its conventional role as a hedging instrument.  139 

Despite its obvious importance and the rising importance of China’s market, the 140 

effectiveness of hedging strategy using the CSI 300 index futures contracts has been a 141 

subject of very limited research. Yang et al. (2012) pioneered in a closely related 142 

research field by examining the then newly established CSI 300 index futures 143 

surrounding its inception period in 2010. They use a bivariate ECM-GARCH model 144 

to study the intraday volatility transmission between the spot and futures markets and 145 

show the existence of cointegration, which carries important implications for hedging 146 

strategies. Only a limited number of studies have examined the hedging performance 147 

of CSI 300 index futures. For instance, Hou and Li (2013) suggest the GARCH-type 148 

                             
1 On December 5, 2014, Xiao Gang, chairman of the China Securities Regulatory Commission (CSRC) 

remarked, stock index futures are “sophisticated risk management tools for improving the stock market 

operation mechanism, providing hedging instruments, improving the investment product market system 

and promoting stable development of great significance.” 
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models and constant hedge ratio outperform each other in short and long horizons, 149 

respectively. More recently, Yan and Li (2018) use the BEKK-GARCH model and 150 

show regime switching exists in China’s market. Unfortunately, these researches 151 

mainly focus on daily data, short examination windows, and provide limited 152 

discussion on CSI 300 index futures’ hedging performance under different market 153 

conditions.2 154 

The unique market structure in China and the information-rich environment in 155 

2015 motivate us to examine the information content of intraday data in a dynamic 156 

hedging context. Our results show that the RMVHR-based methods significantly 157 

dominate that of the conventional methods in terms of hedging effectiveness and the 158 

tracking error volatility both in and out-of-sample. The superiority of the 159 

RMVHR-based methods is robust during different volatility regimes of China’s 160 

financial markets, including China’s abnormal market fluctuations in 2015. 161 

Furthermore, our robustness tests with the S&P 500 index futures confirm that these 162 

findings are consistent across different market structures.  163 

This research contributes to the existing literature in at least three important ways. 164 

First, China represents a very unique market structure for testing dynamic 165 

hedging performance. In addition to hedging tools, investors in China often view 166 

index futures as a vehicle to circumvent onerous trading restrictions in China’s stock 167 

market such as same-day trading and short-sale ban. To our best knowledge, this is the 168 

first study to examine the dynamic hedging performance of CSI 300 index futures by 169 

applying intraday high frequency data and the newly proposed realized 170 

minimum-variance hedge ratio. We use the intraday five-minute data of CSI 300 171 

                             
2 Yan and Li (2018) cover a sample period up to June 30, 2015 and only the very beginning of the 2015 futures 

market turbulence in China.  
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index and index futures to construct the RMVHR, and employ a variety of time-series 172 

models to directly forecast the ratio. The model confidence set test (hereafter MCS 173 

test, Hansen et al., 2011) shows that hedging with the directly forecasted hedge ratios 174 

is significantly more efficient than with hedge ratios calculated from forecasts of 175 

conventional low-frequency models in terms of both the hedging effectiveness and the 176 

volatility of tracking errors criteria.  177 

Second, our research provides new insights on the marginal benefits of dynamic 178 

hedging performance by incorporating high-frequency information in the realized 179 

measures. More specifically, we propose a new method to directly measure the 180 

marginal benefits of using the RMVHR and show that directly forecasting it is a more 181 

efficient way to utilize the high-frequency intraday information content. In addition to 182 

the conventional low-frequency models in the comparison group, we also assess the 183 

hedging performance of the DCC-RV-ECM model (Lai and Sheu 2010) and the 184 

vector heterogeneous autoregressive (VHAR) model (Busch et al., 2011) that utilize 185 

high-frequency data. Because the VHAR model of the realized covariance (RCov) 186 

matrix and the heterogeneous autoregressive (HAR) model (Corsi, 2009) of RMVHR 187 

utilize exactly the same information set (intraday five-minute returns of spot and 188 

futures) and have similar structures, the comparison provides direct measure of the 189 

marginal benefit of the RMVHR and illustrates its superiority in utilizing the 190 

high-frequency intraday information.  191 

Third, we examine the robustness of our results to different market conditions in 192 

the out-of-sample forecast period. Using the nonparametric change point model (Ross 193 

et al. 2011), we detect different volatility regimes of the underlying index and show 194 

that the superiority of the RMVHR-based methods is robust across different volatility 195 

regimes. In addition, we also perform the hedging performance comparisons using the 196 
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S&P 500 index futures for robustness tests. Our results confirm that the superiority of 197 

the RMVHR-based methods is not restricted to specific market structures.  198 

The remainder of the paper is organized as follows. Section 2 presents the 199 

methodology of the RMVHR-based models and its comparison models. Section 3 200 

explains the data and the results are discussed in Section 4. This is followed by a 201 

discussion of robustness tests in Section 5. Section 6 concludes the paper. 202 

2. Methodology 203 

2.1 Realized Measures 204 

Let the discretely sampled Δ-period log return be denoted by rt+j·Δ,Δ = lnpt+j·Δ - 205 

lnpt+(j-1)·Δ, j = 1, 2, …, M, t = 0, 1, 2, …, where pt+j·Δ is the high-frequency price 206 

observed at time j·Δ within day t+1 and M = 1/Δ is the number of sampling intervals 207 

per day. The daily realized volatility is defined by the summation of the squared 208 

intraday returns as 
1/ 2

-1 ,1
( )

Δ

t t j Δ Δj
RV Δ r  

 (Andersen and Bollerslev, 1998), which 209 

converges uniformly in probability to the quadratic variation as Δ→0. 210 

Let rt+j·Δ,Δ = [rS
t+j·Δ,Δ, rF

t+j·Δ,Δ]' be the column vector of returns, where rS
t+j·Δ,Δ is the 211 

day (t+1) Δ-period log return of the CSI 300 index and rF
t+j·Δ,Δ is the day (t+1) 212 

Δ-period log return of the CSI 300 index futures. The daily realized covariance matrix 213 

is defined by the summation of the cross products of intraday return vectors as 214 

1/,

-1 , -1 ,1
( )

ΔS F

t t j Δ Δ t j Δ Δj
Δ    

 RCov r r (Barndorff-Nielsen and Shephard, 2004), 215 

which converges uniformly in probability to the quadratic covariation as Δ→0. 216 

The minimum-variance hedge ratio of day t can be calculated as217 
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,( , )

( )

SS F
tS Ft t

t tF F
t t

HCov R R
HR

Var R H
   , where Rt

S and Rt
F

 are the day t log returns of the spot 218 

and the futures, respectively. ρt
S,F is the day t correlation between the spot and the 219 

futures returns, and HS
t and HF

t are the day t variances of the spot and the futures, 220 

respectively. According to this, the day t realized minimum-variance hedge ratio 221 

(RMVHR) is defined as 
, ( )

( )
( )

S F

t
t F

t

RCov Δ
RMVHR Δ

RV Δ
 (Markopoulou et al., 2016), where  222 

, ( )S F

tRCov Δ  is the sub-diagonal element of , ( )S F

t ΔRCov , and ( )F

tRV Δ  is the day t 223 

realized variance of the futures. For notational simplicity, we omit the notation ( )Δ  224 

in the realized measures when presenting the forecasting models. 225 

2.2 Forecasting Models  226 

We consider the following time-series models for RMVHR forecasting:  227 

1) The ARMA model: 
1 1

p q

t i t i j t j ti j
RMVHR c RMVHR     

     . 228 

2) The ARMA-GARCH model: 229 

1 1

2 2 2

1 1

,

,

.

p q

t i t i j t j ti j

t t t

m n

t k t k l t lk l

RMVHR c RMVHR

e

   

 

     

  

  

   

  

 

 

=  230 

3) The Regime-switching (RS) model: 1t tt s s t tRMVHR c RMVHR    ,  231 

where st is the state variable that takes the values 1 and 2. The state transitions are 232 

given by a Markov chain with transition probabilities  , 1|i j t tp P s j s i   , i, j = 233 

1,2. 234 
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4) The ARFIMA model:       1 1
1 1 1

p qdi j

i t j ti j
L L RMVHR L   

 
      , 235 

where d is the differencing order and L is the lag operator. 236 

5) The HAR model: ( ) ( )

0 1 1 1 ,w m

t d t w t m t tRMVHR RMVHR RMVHR RMVHR            237 

where 
5( )

1 1

1

5

w

t t ii
RMVHR RMVHR = ,

22( )

1 1

1

22

m

t t ii
RMVHR RMVHR = are the past 238 

weekly and monthly RMVHRs. 239 

6) The HAR-GARCH model:  240 

( ) ( )

0 1 1 1 ,w m

t d t w t m t tRMVHR RMVHR RMVHR RMVHR          241 

2 2 2

1 1

,

,

t t t

m n

t k t k l t lk l

e 

       
   

=
 242 

where 
te  follows skewed-t distribution. 243 

As for the conventional hedging approaches, we include the static OLS and ECM 244 

models, the dynamic DCC-GARCH-ECM model, DCC-RV-ECM model and the 245 

VHAR model. The former three models completely rely on the daily log returns of the 246 

spot (Rt
S) and the futures (Rt

F). The DCC-RV-ECM model incorporates high-frequency 247 

based realized covariance matrix (volatilities and correlation) in the DCC framework; 248 

while the VHAR model directly models the high-frequency based realized covariance 249 

matrix.  250 

7) The OLS model: 
S F

t t tR R     . 251 

8) The ECM model:  1 1

S F S F

t t t t tR R R R        - , 252 
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where  1 1

S F

t tR R -  is the error correction term that characterizes the long-term 253 

equilibrium between spot and futures. 254 

The OLS model and the ECM model are static models, and the estimated parameter 255 

β is the (constant) hedge ratio. 256 

9) The DCC-GARCH-ECM model: 257 

 

 

1 1

1 1

1

,

,

| ~ (0, ),

S S S S F S

t t t t

F F F S F F

t t t t

S

t

t tF

t

R R R

R R R

ψ N

   

   











   

   

 
 
 

-

-

H

 258 

where ψt-1 is the information set up to day (t-1) and Ht is the conditional covariance 259 

matrix modeled as: 260 

   

, ,

, ,

2

0 1 1 2 1

2

0 1 1 2 1

1 1

2 2

1 1 1

0 01
,

10 0

+ , (*)

+ , (*)

,

(1 ) , (

S SS S F S F
t tt t t

t t t tS F F S FF F
t t tt t

S S S S S S

t t t

F F F F F F

t t t

t t t t

t t t t

H HH H

H H H H

H H

H H

diag diag





   

   

   

 

 

 

  

      
          
         

 

 



    

H D R D

R Q Q Q

Q Q z z Q *)

 261 

where 
S S

t t

t
F F

t t

H

H





 
 
 
 

z  is the standardized residual vector, and Q  is the 262 

unconditional correlation matrix of the spot and the futures returns. α and β are 263 

nonnegative scalars with 1   . 264 

10) The DCC-RV-ECM model has similar formulation compared to the 265 

DCC-GARCH-ECM model, with modifications in the three equations of 9) that are 266 
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marked with (*): 267 

0 1 1 2 1

0 1 1 2 1

,

1 1

+ , (*)

+ , (*)

(1 ) , (*)

S S S S S S

t t t

F F F F F F

t t t

S F

t t t

H RV H

H RV H

  

  

   

 

 

 

 

 

    Q Q RCorr Q

 268 

where ,S F

tRCorr is the realized correlation matrix whose sub-diagonal element is 269 

calculated as 
,

,
S F

S F t
t

S F

t t

RCov
RCorr

RV RV



. 270 

11) The VHAR model:  271 

The matrix logarithm transformation method is adopted to guarantee the positive 272 

definiteness of the forecasted covariance matrix. Specifically, define 273 

,logm( )S F

t tA RCOV and define  ,vech( ) , ,S S F F

t t t t tX X X A
'

X . The VHAR 274 

model is constructed as: 275 

( ) ( ) ( )

11 12 13 1

, , ( ) ( ) ( ) ,

21 22 23 1

( ) ( ) ( )

31 32 33 1

( ) ( ) ( )

11 12 13

( ) ( ) ( )

21 22 23

( ) ( ) ( )

31 32 33

S S d d d S

t t

S F S F d d d S F

t t

F F d d d F

t t

w w w

t

w w w

w w w

X X

X X

X X

X

   

   

   

  

  

  









      
      

       
      
      

 
 

 
 
 

( ) ( ) ( ) ( ) ( )

1 11 12 13 1

, ( ) ( ) ( ) ( ) , ( ) ,

1 21 22 23 1

( ) ( ) ( ) ( ) ( )

1 31 32 33 1

,

S w m m m S m S

t t

S F w m m m S F m S F

t t t

F w m m m F m F

t t t

X

X X

X X

   

   

   



 

 

      
      

      
      
      

+

 276 

where 
5( )

1 1

1

5

S w S

t t ii
X X = ,

5( )

1 1

1

5

F w F

t t ii
X X = ,

22( )

1 1

1

22

S m S

t t ii
X X = ,277 

22( )

1 1

1

22

F m F

t t ii
X X =  

5, ( ) ,

1 1

1

5

S F w S F

t t ii
X X = , 

22, ( ) ,

1 1

1

22

S F m S F

t t ii
X X = . 278 

The inverse of the vech() function and the matrix exponential transformation is 279 

then applied to get the prediction of the covariance matrix. 280 
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3. Data Description 281 

Our empirical data are five-minute (1/Δ = 48) prices of the CSI 300 index and 282 

index futures from January 4, 2012 to December 29, 2017, covering a total of 1456 283 

trading days in China’s market.3 We chose the five-minute sparse sampling approach 284 

following the majority of previous studies (c.f. Lai and Sheu 2010) as it provides a 285 

good trade-off between accuracy and market microstructure noise (nonsynchronous 286 

trading). The trading time of the CSI 300 index futures was 9:15am – 11:30am, 287 

13:00pm – 15:15pm before 2016. Since January 1, 2016, China Financial Futures 288 

Exchange has adjusted the opening and closing times for the CSI 300 index futures to 289 

9:30am and 15:00pm, respectively, to match those of the CSI 300 index. Thus in this 290 

empirical research, we use the five-minutes prices between 9:30am – 11:30am and 291 

13:00pm – 15:00pm for both the CSI 300 index and the CSI 300 index futures, 292 

deleting all price records in the non-overlapping periods.  293 

[Insert Figure 1 Here] 294 

Figure 1 displays the time series plots of the log daily prices for the CSI 300 index 295 

and the CSI 300 index futures in the whole sample period. It shows that the log daily 296 

prices of the CSI 300 index futures are very close to those of the CSI 300 index in 297 

most of the trading days, and that the Chinese stock market has observed both relative 298 

tranquil and extremely volatile periods during our sample period. This observation 299 

inspires us to test the robustness of our results to different market conditions, which 300 

will be explained later. 301 

                             
3 There are 1458 trading days from January 4, 2012 to December 29, 2017. However, trading on January 4, 2016 

and January 7, 2016 closed much earlier, due to the circuit breaker mechanism being triggered. Thus these two 

days are deleted from our sample. 
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[Insert Figure 2 Here] 302 

Figure 2 displays the time series plots of the realized volatilities for the CSI 300 303 

index (RVt
S) and the CSI 300 index futures (RVt

F) as well as the realized covariance 304 

between the spot and the futures (RCovt
S,F) in the whole sample period. It shows that 305 

the realized volatility of the CSI 300 index futures has a similar pattern as that of the 306 

CSI 300 index, although it is more volatile. Both the realized volatility series and the 307 

realized covariance series are relatively tranquil during the period from January 4, 308 

2012 to the end of 2014, but are very turbulent around the year of 2015. Such pattern 309 

necessitates our robustness check in different volatility regimes. 310 

[Insert Table 1 Here] 311 

Table 1 reports descriptive statistics for the realized volatilities (RVt
S and RVt

F), 312 

the realized covariance (RCovt
S,F), and the realized minimum-variance hedge ratio 313 

(RMVHRt) of the CSI 300 index and index futures over the entire sample period. We 314 

can see that the realized volatility of the CSI 300 index futures has higher standard 315 

deviation than that of the CSI 300 index, indicating that the CSI 300 index futures is 316 

more volatile. The ADF and PP test statistics show that these four realized measures 317 

are all stationary, and thus can all be directly modeled. The Ljung-Box test statistics 318 

show that these four realized measures all exhibit up to 20th order serial correlation, 319 

and thus the long-memory models may be appropriate choices to model the RMVHR 320 

and the RCov matrix.  321 

4. Hedging Performance Comparison 322 

We set the period from January 2, 2014 to December 29, 2017 (975 trading days) 323 

as the out-of-sample forecast period, and perform one-step-ahead rolling window 324 
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forecast. That is, we use the period from January 4, 2012 to December 31, 2013 (2 325 

years, 481 trading days) as the first estimation window, to make forecasts for January 326 

2, 2014. The estimation window is then rolled forward, and we use the period from 327 

January 5, 2012 to January 2, 2014 as the second estimation window, to make 328 

forecasts for January 3, 2014. The estimation window keeps rolling forward, until we 329 

have made forecasts for all the 975 out-of-sample trading days.  330 

Based on these forecasts, we perform dynamic hedging of the CSI 300 index 331 

futures, and calculate the following two hedging performance indicators: 332 

(1) Hedging Effectiveness (HE) (Ederington, 1979):  tHE E HE , where E() 333 

means taking expectation. 
2

,

2

,

1
HP t

t

UP t

HE



  , where 

2

,UP t  is the day t variance of 334 

the unhedged portfolio, and is calculated as the realized variance of the CSI 300 335 

index ( S

tRV ); 
2

,HP t  is the day t variance of the hedged portfolio, and is 336 

calculated using the realized variances of the CSI 300 index and index futures  337 

( F

tRV ), and the realized covariance of the spot and the futures ( ,S F

tRCov )4: 338 

2 , 2

,
ˆ ˆ2S S F F

HP t t t t t tRV RCov RV     , with ˆ
t  being the forecasted 339 

minimum-variance hedge ratio for day t.  340 

HE assesses the hedged risk reduction relative to the unhedged portfolio 341 

variance. Higher HE is preferred since it means that the portfolio risk has been 342 

largely reduced. It is closely related to the tracking error measures (c.f. Kofman 343 

and McGlenchy 2005) and is commonly used for hedging performance measure 344 

                             
4 Following Markopoulou et al. (2016), we utilizes high-frequency data to generates the HEt series, which enables 

statistical significance tests such as the multi-model MCS test (Hansen et al., 2011) and the pairwise DM test 

(Diebold and Mariano, 1995). 
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in the literature (Lee and Chien 2010, Hou and Li, 2013, Sheu and Lee 2014).  345 

(2) Tracking Error Volatility (TEV) (Roll, 1992):  tTEV std TE , where std() 346 

means taking standard deviation, HP S

t t tTE R R   is the day t tracking error, 347 

HP

tR and S

tR  are day t return of the hedged portfolio and day t return of the 348 

index, respectively.  349 

TEV assesses how close the hedged portfolio is to a perfect hedge and is widely 350 

used in the industry. It measures the volatility of the difference between the 351 

performance of spot and the hedged portfolio. A high TEV value indicates a less 352 

hedged portfolio. Therefore, a lower TEV is preferred to remain neutral to the 353 

risk of the underlying index as the benchmark. In the extreme case of a perfect 354 

hedge when the spot and future prices are perfectly correlated, the TEV would 355 

be equal to 0.  356 

Table 2 reports the hedging performance of all the models in the out-of-sample 357 

forecast period from January 2, 2014 to December 29, 2017. It is divided into two 358 

panels. Panel I displays results for those models that directly model the RMVHR. 359 

Panel II displays results for those models that model the daily returns (covariance 360 

matrix). The performance of the naïve method that uses a hedge ratio equal to 1 is 361 

also reported in Panel II. In each panel, the hedging performance indicators are listed 362 

in the first column, while the models are specified in the second row. In addition, we 363 

perform the model confidence set (MCS test, Hansen et al., 2011) using the HEt series 364 

and the TEVt series 5  to identify models with significantly superior hedging 365 

                             
5 We calculate TEV every 22 days in the forecast period so as to construct the TEVt series for the statistical 

significance tests (MCS test and DM test). 
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performance (significantly higher HE and significantly lower TEV). The 366 

corresponding MCS test p-values are reported in parenthesis, and those greater than 367 

0.1 indicate that the corresponding method survives in the model confidence set 368 

90%M̂  and is significantly superior than the other methods. 369 

[Insert Table 2 Here] 370 

Our results show that the HE measure and the TEV measure lead to consistent 371 

conclusions. From Table 2 we can see that when HE is considered, the numeric 372 

numbers in Panel I are mostly larger than those numbers in Panel II. When TEV is 373 

considered, the numeric numbers in Panel I are mostly smaller than those numbers in 374 

Panel II. Therefore, the dynamic hedging performance of the CSI 300 index futures 375 

using RMVHR dominates that of the conventional methods in the out-of-sample 376 

forecast period in general. Specifically, the ARMA model and the ARMA-GARCH 377 

model of RMVHR have the largest HE among all the twelve hedging methods. These 378 

two models, together with the ARFIMA model of RMVHR, have significantly higher 379 

hedging effectiveness than the other methods, evidenced by their MCS test p-values. 380 

Therefore, when larger variance reduction is preferred, these three ARMA-type 381 

models of RMVHR significantly dominate the other models. On the other hand, the 382 

RS model of RMVHR has the lowest TEV among all the twelve hedging methods. 383 

Furthermore, its corresponding MCS test p-value is 1, while all the other methods 384 

have p-values of 0. Therefore, when the volatility of tracking errors is considered, the 385 

RS model of RMVHR significantly dominates the other methods.  386 

Additional insights include: 1) In Panel II, the DCC-RV-ECM model has higher 387 

HE than the DCC-GARCH-ECM model. We perform the Diebold-Mariano test (DM 388 
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test, Diebold and Mariano 1995) to check the statistical significance of the hedging 389 

performance difference. The DM-statistic of 19.42 shows that incorporating the 390 

information in the realized covariance matrix can significantly improve the variance 391 

reduction effectiveness of the DCC-GARCH-ECM model. 2) In Panel II, the VHAR 392 

model has higher HE and lower TEV than the DCC-RV-ECM model. While 393 

performing the DM test to compare these two models, we calculate the statistics of 394 

19.60 and 5.53 with the HEt series and the TEVt series, respectively. Thus, the VHAR 395 

model significantly outperforms the DCC-RV-ECM model in terms of the variance 396 

reduction effectiveness and the volatility of tracking errors. Since these two models 397 

both utilize the realized covariance matrix, we argue that directly modeling the 398 

realized covariance matrix can better utilize the intraday information and further 399 

improve the hedging performance. 3) The HAR model of RMVHR in Panel I has 400 

higher HE than the VHAR model of RCov in Panel II. We perform the DM test and 401 

the DM-statistic of 2.35 indicates that the difference is significant at the 5% 402 

significance level. Since these two models utilize exactly the same information set 403 

(intraday five-minute returns of spot and futures) and have similar structures, we 404 

conclude that constructing the RMVHR and directly forecasting it is significantly 405 

superior in utilizing intraday information in terms of variance reduction effectiveness.  406 

5. Robustness Checks 407 

5.1 Different Market Conditions 408 

To further test the robustness of the above results to different market conditions, 409 

we use the nonparametric change point model (NPCPM) (Ross et al. 2011) to detect 410 

the different volatility regimes of the CSI 300 index in the forecast period. The 411 

NPCPM detects the shifts in the volatility by sequential application of Mood’s test 412 
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(Mood, 1954), which is a nonparametric test for comparing the variances of two 413 

samples. Since the Mood’s test assumes the independence of observations, we filter 414 

the original return series using a GARCH(1,1) model with student-t innovations 415 

following Ross (2013), and use the standardized residuals for the sequential Mood’s 416 

tests.   417 

Assume the two samples for variance comparison are  1,1 1,2 1,, ,..., ar r r  and 418 

 2,1 2,2 2,, ,..., br r r , where a+b=T. The Mood’s test statistic can be calculated as: 419 

 
2

1,1

1

2

a

ii

T
M rank r



 
  

 
 , where  1,irank r  is the rank of r1,i in the combined 420 

sample of length T. By comparing the standardized Mood’s test statistic with the 421 

simulated thresholds reported in Ross et al. (2011), we can decide whether the null 422 

hypothesis of equal variance is rejected. The NPCPM applies sequential Mood’s tests 423 

in the following manner to detect the volatility change points: 424 

1) Divide the out-of-sample period into two contiguous samples. The first 425 

sample contains the initial 22 (a month) observations, and the second sample 426 

contains the remaining 953 (975-22=953) observations. 427 

2) Perform the Mood’s test on these two samples. 428 

3) If the null hypothesis of equal variance is not rejected, prolong the first 429 

sample by 1 observation, and thus the second sample contains the remaining 430 

952 observations. Perform the Mood’s test on these two updated samples. 431 

4) Repeat procedure 3) until the null hypothesis is rejected, which means a 432 

volatility change point has been detected. Flag this change point and repeat 433 

procedures 1)-3) starting from the first observation after the change point. 434 
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 [Insert Figure 3 Here] 435 

Figure 3 displays the volatility regimes detected by the NPCPM in the 436 

out-of-sample period from January 2, 2014 to December 29, 2017. There are three 437 

volatility regimes. The first regime is from January 2, 2014 to November 3, 2014, 438 

altogether 203 trading days. We refer to it as the low volatility regime (L) since the 439 

CSI 300 index is very tranquil during this period. The second regime is from 440 

November 4, 2014 to August 31, 2016 (448 trading days). We refer to it as the high 441 

volatility regime (H) since the CSI 300 index is extremely volatile during this period. 442 

This regime corresponds to China’s abnormal market fluctuations in 2015. The last 443 

regime is from September 1, 2016 to December 29, 2017 (324 trading days). We again 444 

refer to it as the low volatility regime (L) due to its similarity with the first regime. 445 

[Insert Table 3 - 4 Here] 446 

We perform hedging performance comparison on each of these three volatility 447 

regimes and report the results in Tables 3-4. Comparing these two tables, we can see 448 

that the hedging effectiveness is always lower during the low volatility regime than 449 

during the high volatility regime, with the only exception of the naïve method. This 450 

observation confirms the appropriateness of our partition of volatility regimes to some 451 

extent. Inspecting each of these two tables, we confirm that our observations in Table 452 

2 are all supported in Table 3 for the low volatility regimes, and are mostly supported 453 

in Table 4 for the high volatility regime, which we summarize as follows. 454 

1) The RMVHR based models have higher HE and lower TEV than those of the 455 

conventional methods in general in both the low volatility regimes and the high 456 

volatility regime. 457 
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2) The ARMA-type models of RMVHR and the RS model of RMVHR are 458 

significantly superior in terms of the variance reduction effectiveness and the 459 

volatility of tracking errors respectively, regardless of the volatility regime 460 

considered.  461 

3) Incorporating the information in the realized covariance matrix into the 462 

DCC-GARCH-ECM model significantly improves the variance reduction 463 

effectiveness, regardless of the volatility regime considered.  464 

4) Directly modeling the realized covariance matrix with the VHAR model can 465 

better utilize the intraday information than the DCC-RV-ECM model and further 466 

significantly improve the hedging performance, regardless of the volatility regime 467 

considered.  468 

5) Constructing the RMVHR and directly forecasting it is significantly more 469 

efficient in utilizing the intraday information during the low volatility regimes. 470 

However, this conclusion does not hold in the high volatility regime. Nevertheless, by 471 

replacing the normal innovations in the HAR model with the GARCH-skewed-t 472 

innovations, the HAR-GARCH model in Panel I has lower TEV than the VHAR 473 

model. The significance of the improvements in 3) - 5) is justified by the DM test 474 

statistics. To conserve space, the results are not tabulated and are available upon 475 

request. 476 

5.2 Different Market Structures 477 

To examine whether the above results are extendable to different market 478 

structures, we use the S&P 500 index and index futures for robustness test. 479 

Five-minute prices from January 2, 2004 to December 31, 2015 are used as sample 480 
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data, altogether 2915 trading days. The out-of-sample forecast period starts from 481 

January 3, 2006, covering 2452 days. Accordingly, the fixed-length rolling window is 482 

463 days, and the first window is from January 2, 2004 to December 30, 2005. The 483 

time series plots of the log daily prices and the realized volatilities and covariance are 484 

displayed in the Appendix.  485 

[Insert Figure 4 Here] 486 

Furthermore, we applied the nonparametric change point model to detect the 487 

different volatility regimes of the S&P 500 index in the forecast period. Figure 4 488 

displays the three detected volatility regimes. The first regime is from January 3, 2006 489 

to April 9, 2007, altogether 295 trading days. We refer to it as the low volatility 490 

regime (L) since the S&P500 index is very tranquil during this period. The second 491 

regime is from April 10, 2007 to October 30, 2009 (641 trading days). We refer to it 492 

as the high volatility regime (H) since the S&P 500 index is extremely volatile during 493 

this period. This regime corresponds to the subprime crisis. The last regime is from 494 

November 2, 2009 to December 31, 2015 (1516 trading days). We again refer to it as 495 

the low volatility regime (L) due to its similarity with the first regime.  496 

 [Insert Tables 5-7 Here] 497 

Tables 5-7 report the hedging performance comparisons in the whole 498 

out-of-sample forecast period and in different volatility regimes, respectively. We can 499 

see that the observations from China’s market also hold in the US market. Specifically, 500 

1) The RMVHR-based models have higher HE and lower TEV than those of the 501 

conventional methods in general in all the volatility regimes. 2) The HAR model of 502 

RMVHR is significantly superior in terms of both the variance reduction effectiveness 503 



23 

 

and the volatility of tracking errors, regardless of the volatility regime considered. 3) 504 

The DCC-RV-ECM model significantly outperforms the DCC-GARCH-ECM model 505 

in terms of both the variance reduction effectiveness and the volatility of tracking 506 

errors, regardless of the volatility regime considered. 4) The VHAR model 507 

significantly outperforms the DCC-RV-ECM model in terms of both the variance 508 

reduction effectiveness and the volatility of tracking errors, regardless of the volatility 509 

regime considered. Therefore, we conclude that the superiority of the RMVHR based 510 

methods are robust to different market structures, although the superior model in 511 

different markets might differ.  512 

As evidenced by the Ljung-Box Q-statistics in Table 8 and the autocorrelation 513 

plots in Figure 5, there exist different levels of long-term serial correlation of the 514 

realized minimum-variance hedge ratio (RMVHRt) in US and China’s markets. We 515 

can clearly see that although the RMVHR in both markets exhibit up to 30th order 516 

serial correlation, the level of autocorrelation is much stronger in US than in China’s 517 

market. A possible explanation is that as a developed market, the US market has much 518 

smaller volatility,6 and requires less adjusting of the hedge ratio.7 Accordingly, the 519 

RMVHR-based models that characterize the long-memory property (ARFIMA, HAR 520 

and HAR-GARCH) have better hedging performance than that of the other models in 521 

US market, among which the HAR model is superior. On the other hand, the 522 

long-memory RMVHR-based models do not have clear superiority in China’s market.  523 

6. Concluding Remarks 524 

                             
6 The mean of RVt

S and RVt
F in US market is 0.8653 and 1.2878 in our empirical period, much smaller compared 

to that of 1.6101 and 2.1515 (see Table 1) in China’s market. 
7 The standard deviation of RMVHRt in US market is 0.1056 in our empirical period, much smaller compared to 

that of 0.1724 (see Table 1) in China’s market. 
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The optimal hedge ratio is crucial for investors and portfolio managers. This 525 

paper evaluates the performance of the dynamic hedging methods that employ 526 

information content from high-frequency prices of spot and futures over the 527 

conventional hedging models. We examined a number of popular time-series models 528 

and used forecasts of the RMVHR to perform dynamic hedging on the CSI 300 index 529 

futures and the S&P 500 index futures. We also included the static OLS and ECM 530 

models, the VHAR model, the dynamic DCC-GARCH-ECM model based on daily 531 

returns, and the DCC-RV-ECM model using five-minute prices for comparison. In 532 

addition, we detected different volatility regimes in the forecast period using the 533 

nonparametric change point model (Ross et al. 2011). Using the hedging effectiveness 534 

and the tracking error volatility as criteria, we conducted hedging performance 535 

comparison in the out-of-sample forecast period as well as in each detected volatility 536 

regime.  537 

Our results show that the dynamic hedging performance of the RMVHR-based 538 

models dominates that of the conventional methods in different market structures and 539 

in all the volatility regimes, including China’s abnormal market fluctuations in 2015 540 

and the US financial crisis in 2008. Our research also shed new lights on the 541 

conventional hedging models. For instance, incorporating information in the realized 542 

measures from high-frequency data improves the dynamic hedging performance. In 543 

addition, the VHAR model that directly models the realized covariance matrix better 544 

utilizes the intraday information and outperforms the DCC-RV-ECM model.  545 

Our research provides insightful information for investors, risk managers, and 546 

researchers and shows that dynamic hedge ratios with intraday high frequency 547 

information can provide substantial benefits to risk managers and hedgers. Future 548 

work would involve exploring forecast combination techniques to further improve the 549 
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forecasting capability of RMVHR and the dynamic hedging performance. 550 
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 672 

Figure 1. Time series plots of the log daily prices for the CSI 300 index and the CSI 673 

300 index futures from January 4, 2012 to December 29, 2017. 674 

  675 



31 

 

 676 
Figure 2. Time series plots of the realized volatilities for the CSI 300 index and the 677 

CSI 300 index futures, and the realized covariance between the spot and the futures 678 

from January 4, 2012 to December 29, 2017. 679 

  680 
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 681 

Figure 3. Volatility regimes detected by the NPCPM in the out-of-sample period from 682 

January 2, 2014 to December 29, 2017. (CSI 300) 683 
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 685 

Figure 4. Volatility regimes detected by the NPCPM in the out-of-sample period from 686 

January 3, 2006 to December 31, 2015. (S&P 500) 687 
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 689 

Figure 5. Autocorrelation of the RMVHR in US and China’s markets for lags 1 to 690 

200. 691 

 692 

 693 

694 
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Table 1. Descriptive statistics for the realized volatilities (RVt
S and RVt

F), the realized 695 

covariance (RCovt
S,F), and the realized minimum-variance hedge ratio (RMVHRt) of 696 

the CSI 300 index and index futures from January 4, 2012 to December 29, 2017. 697 

 698 

  RMVHRt RVt
S RVt

F RCovt
S,F 

Mean 0.6600 1.6101 2.1515 1.3713 

Standard Deviation  0.1724 3.3081 5.6002 3.4555 

Skewness 0.1303 7.2779 10.7185 10.0274 

Kurtosis 3.4574 76.4803 172.1786 146.6007 

ADF -3.1386*** -10.7050*** -12.7407*** -12.4644*** 

PP -30.4818*** -16.8493*** -17.3488*** -16.5660*** 

LB(5) 1007.8*** 2719.2*** 2627.6*** 2695.7*** 

LB(10) 1698.6*** 3847.8*** 3708.5*** 3668.4*** 

LB(20) 2891.2*** 5575.6*** 5015.1*** 5007.5*** 

Note: JB represents the Jarque-Bera normality test statistics, ADF represents the 699 

Augmented-Dickey-Fuller test statistics, PP represents the Phillips-Perron test 700 

statistics, LB(k) represents the Ljung-Box Q-statistics for kth order serial correlation, 701 
*** represents the significance level of 1%. The orders of magnitude for the mean and 702 

the standard deviation of RVt
S, RVt

F and RCovt
S,F are 10-4. 703 

  704 
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Table 2. Hedging performance comparison in the out-of-sample forecast period from 705 

January 2, 2014 to December 29, 2017 for CSI 300.  706 

 707 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 
58.3634% 

（0.014） 

58.7288% 

（0.656） 

58.7288% 

（1.000） 

58.6469% 

（0.554） 

58.5888% 

（0.057） 

58.5556% 

（0.057） 

TEV 
1.1758% 

（1.000） 

1.2302% 

（0.000） 

1.2303% 

（0.000） 

1.3151% 

（0.000） 

1.3266% 

（0.000） 

1.3063% 

（0.000） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAIVE 

HE 
55.2131% 

（0.006） 

55.2960% 

（0.014） 

45.0022% 

（0.000） 

49.5666% 

（0.000） 

58.5016% 

（0.014） 

43.4252% 

（0.000） 

TEV 
1.5308% 

（0.000） 

1.5258% 

（0.000） 

1.2859% 

（0.000） 

1.4721% 

（0.000） 

1.3213% 

（0.000） 

1.8932% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 708 

effectiveness. The numbers in parenthesis are MCS test p-values. 709 

 710 

 711 

 712 

 713 
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Table 3. Hedging performance comparison in the low volatility regime from January 715 

2, 2014 to November 3, 2014, and from September 1, 2016 to December 29, 2017 for 716 

CSI 300.  717 

 718 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 58.0378% 

（0.068） 

58.3540% 

（0.602） 

58.3542% 

（0.602） 

58.3797% 

（1.000） 

58.3610% 

（0.602） 

58.3191% 

（0.602） 

TEV 0.5681% 

（1.000） 

0.6000% 

（0.000） 

0.6001% 

（0.000） 

0.6347% 

（0.000） 

0.6362% 

（0.000） 

0.6234% 

（0.000） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAÏVE 

HE 54.1327% 

（0.068） 

54.1596% 

（0.068） 

37.4661% 

（0.000） 

44.9733% 

（0.000） 

58.1988% 

（0.068） 

44.7205% 

（0.000） 

TEV 0.7864% 

（0.000） 

0.7851% 

（0.000） 

0.9570% 

（0.000） 

0.8919% 

（0.000） 

0.6547% 

（0.000） 

0.9052% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 719 

effectiveness. The numbers in parenthesis are MCS test p-values.  720 

 721 

 722 
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Table 4. Hedging performance comparison in the high volatility regime from 724 

November 4, 2014 to August 31, 2016 for CSI 300. 725 

 726 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 
58.7464% 

（0.016） 

59.1696% 

（1.000） 

59.1696% 

（0.834） 

58.9614% 

（0.194） 

58.8569% 

（0.016） 

58.8339% 

（0.006） 

TEV 
1.6221% 

（1.000） 

1.6948% 

（0.000） 

1.6950% 

（0.000） 

1.8148% 

（0.000） 

1.8323% 

（0.000） 

1.8055% 

（0.000） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAÏVE 

HE 
56.4839% 

（0.005） 

56.6327% 

（0.006） 

53.8673% 

（0.005） 

54.9698% 

（0.006） 

58.8577% 

（0.006） 

41.9014% 

（0.000） 

TEV 
2.0920% 

（0.000） 

2.0847% 

（0.000） 

1.6890% 

（0.000） 

1.9449% 

（0.000） 

1.8161% 

（0.000） 

2.6158% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 727 

effectiveness. The numbers in parenthesis are MCS test p-values.  728 
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Table 5. Hedging performance comparison in the out-of-sample forecast period from 732 

January 3, 2006 to December 31, 2015 for S&P 500. 733 

 734 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 
76.1409% 

（0.005） 

77.2818% 

（0.005） 

77.2768% 

（0.005） 

78.2452% 

（0.020） 

78.2574% 

（1.000） 

78.1892% 

（0.005） 

TEV 
1.0749% 

（0.000） 

1.0770% 

（0.000） 

1.0772% 

（0.000） 

1.0384% 

（0.000） 

1.0343% 

（1.000） 

1.0427% 

（0.000） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAIVE 

HE 
70.7956% 

（0.000） 

70.5539% 

（0.000） 

69.3481% 

（0.000） 

72.1657% 

（0.000） 

78.2285% 

（0.020） 

68.0626% 

（0.000） 

TEV 
1.2826% 

（0.000） 

1.2866% 

（0.000） 

1.2889% 

（0.000） 

1.1670% 

（0.000） 

1.0355% 

（0.000） 

1.3347% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 735 

effectiveness. The numbers in parenthesis are MCS test p-values.  736 
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Table 6. Hedging performance comparison in the low volatility regime from January 738 

3, 2006 to April 9,2007, and from November 2, 2009 to December 31, 2015 for S&P 739 

500.  740 

 741 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 
70.1863% 

（0.008） 

71.6688% 

（0.008） 

71.6624% 

（0.008） 

72.9252% 

（0.014） 

72.9394% 

（1.000） 

72.8630% 

（0.008） 

TEV 
0.7883% 

（0.007） 

0.7838% 

（0.000） 

0.7840% 

（0.000） 

0.7401% 

（0.007） 

0.7388% 

（1.000） 

0.7392% 

（0.407） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAIVE 

HE 
64.3656% 

（0.000） 

64.0526% 

（0.000） 

63.5997% 

（0.000） 

65.4364% 

（0.000） 

72.9009% 

（0.014） 

61.3731% 

（0.000） 

TEV 
0.9436% 

（0.000） 

0.9461% 

（0.000） 

0.9317% 

（0.000） 

0.9278% 

（0.000） 

0.7452% 

（0.000） 

0.9761% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 742 

effectiveness. The numbers in parenthesis are MCS test p-values.  743 
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 745 

  746 



41 

 

Table 7. Hedging performance comparison in the high volatility regime from April 10, 747 

2007 to October 30, 2009 for S&P 500.  748 

 749 

Panel I: modeling the RMVHR 

 RS ARMA ARMA-GARCH ARFIMA HAR HAR-GARCH 

HE 
92.9642% 

（0.003） 

93.1400% 

（0.218） 

93.1391% 

（0.176） 

93.2756% 

（0.460） 

93.2822% 

（1.000） 

93.2370% 

（0.224） 

TEV 
1.6333% 

（0.000） 

1.6445% 

（0.000） 

1.6448% 

（0.000） 

1.6064% 

（0.000） 

1.5977% 

（1.000） 

1.6182% 

（0.000） 

Panel II: modeling the daily returns (covariance matrix) 

 OLS ECM DCC-GARCH-ECM DCC-RV-ECM VHAR NAIVE 

HE 
88.9621% 

（0.000） 

88.9218% 

（0.000） 

85.5887% 

（0.001） 

91.1779% 

（0.003） 

93.2802% 

（0.679） 

86.9622% 

（0.000） 

TEV 
1.9448% 

（0.000） 

1.9514% 

（0.000） 

1.9767% 

（0.000） 

1.6676% 

（0.000） 

1.5925% 

（0.000） 

2.0317% 

（0.000） 

Note: TEV represents the tracking error volatility, HE represents the hedging 750 

effectiveness. The numbers in parenthesis are MCS test p-values.  751 
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Table 8. Ljung-Box Q-statistics for kth order serial correlation of the realized 753 

minimum-variance hedge ratio (RMVHRt) in US and China’s markets. 754 

Lags 1 5 10 15 20 25 30 

US 1036.2*** 4576.6*** 8860.3*** 12930.3*** 16987.5*** 21027.6*** 24969.1*** 

China 244.3*** 1007.8*** 1698.6*** 2337.6*** 2891.2*** 3375.2*** 3820.8*** 

Note: *** represents the significance level of 1%.  755 
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Appendix 757 

 758 

 759 

Figure A.1. Time series plots of the log daily prices for the S&P 500 index and the 760 

S&P 500 index futures from January 2, 2004 to December 31, 2015 761 

 762 

 763 

Figure A.2. Time series plots of the realized volatilities for the S&P 500 index and 764 

the S&P 500 index futures, and the realized covariance between the spot and the 765 

futures from January 2, 2004 to December 31, 2015 766 


