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ABSTRACT 

FLAVIVIRUS CONTROL OF LIPID METABOLISM: IMPLICATIONS FOR VIRION FORMATION, 

FUNCTION AND PATHOGENESIS

Dengue viruses (DENV) are the most aggressive arthropod-born viruses worldwide with 

no currently available antivirals. There is a clear need to understand host viral interactions that 

can be exploited for therapeutic options. DENV are members of the Flaviviridae family with a 

positive sense single-stranded RNA genome surrounded by a virally encoded capsid protein, a 

host cell derived lipid envelope and an icosahedral shell of virally encoded glycoproteins. Its 

genome is replicated in virally–induced invaginations in the endoplasmic reticulum of the host 

cell that consistently develop in a time-dependent manner. These invaginations display a highly 

curved architecture and seem to increase the membrane contact sites within the ER and its 

vicinity. Functionally, these membranes condense the replication machinery, provide a scaffold 

to coordinate replication, and hide the viral double stranded RNA intermediate from the host 

cellular defenses. It has been shown that fatty acid synthesis is increased during infection to 

provide substrates for this membrane expansion. To identify further changes to cellular 

metabolism, we have profiled the metabolome of DENV serotype 2 (DENV2) infected Human 

Hepatoma cells (Huh7) cells at key time-points in virus replication. We have found time-

dependent changes in cellular essential fatty acid metabolism. Furthermore, we have interrogated 

a library of siRNAs directed at the unsaturated fatty acid biosynthesis pathway to determine key 

enzymes involved in viral replication. We have identified that stearoyl Co-A desaturase 1 

(SCD1), the rate-limiting enzyme responsible for converting stearic to oleic acid, is critical for 
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viral replication, maturation and infectious particle formation. Finally, we have profiled the 

serum metabolome of acute-phase patients with dengue diseases, chikungunya virus infection, or 

an unknown febrile illness to identify metabolic changes with potential use as prognostic 

biomarkers. Hypothesis: Since dengue viruses are enveloped viruses, lipid metabolites in the 

human host are a critical resource hijacked by these viruses for their replicative advantage. 

Important metabolites will be altered during infection in a time dependent manner and can be 

quantified and correlated directly to their role in viral genome replication and infectious particle 

assembly and release. These metabolic changes could also be identified in human bio-fluids and 

could function as early biomarkers of disease manifestation.  
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CHAPTER 1. LITERATURE REVIEW 
 
 
 

1.1 Introduction  

Positive-strand RNA viruses share a common need for expansion and rearrangement of 

cellular membranes utilized for their propagation. These membranes serve as a platform for the 

replication of viral genomes, to concentrate resources, and to protect the replication intermediate 

from the immune response. In order for these membrane changes to occur, cellular metabolism 

must be altered to produce biomass for membrane expansion. Here, we have discussed what is 

currently known about changes to cellular metabolism induced by multiple flaviviruses. Since 

membranes also serve as sites of virion assembly and are the source of the viral lipid envelope, 

the lipid content of the virion has direct implications for its stability outside of the cell and ability 

to fuse with a new cell. Thus, we have also discussed what is currently known about the lipid 

content of envelope viruses and the challenges of these investigations. Additionally, given the 

need for highly curved membranes in virus infected cells, we have discussed unsaturated fatty 

acid biosynthesis and its implication in human disease as a preface to discussion of its 

importance for flavivirus infection investigated in this dissertation. Finally, we address the link 

between cellular metabolism and dengue disease pathology and the current state of biomarker 

discovery across various cohorts of DENV-infected patients. Therefore, this chapter introduces 

the major thematic elements of this dissertation and provides evidence from the literature that 

serves as a basis for each of our experimental approaches.  
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1.2 The Flavivirus lifecycle 

Flaviviruses 

The family Flaviviridae is composed of enveloped positive strand RNA viruses. Flavus is 

the Latin word for yellow, giving name to this virus family based on the prototypic member 

yellow fever virus. The four genera belonging to the Flaviviridae are: Pestivirus, Hepacivirus, 

Pegivirus, and Flavivirus. Pestiviruses cause diseases in animals and have bovine viral diarrhea 

virus (BVDV) as the prototypical member (1). Hepatitis C virus is the prototype of the 

Hepaciviruses and typically causes a persistent disease in humans. The Pegiviruses are less well 

understood and contain some viruses previously known as GB-viruses. The Flavivirus genus is 

composed of arthropod-borne viruses that cause diseases in humans. Among them are: dengue 

viruses (DENVs), yellow fever virus (YFV), West Nile virus (WNV), Zika virus (ZIKV) and 

Japanese encephalitis virus (JEV), which are highly pathogenic and contribute to significant 

global health problems. They can be broadly separated into encephalitic viruses and hemorrhagic 

viruses. Flaviviruses share similar genomic organization and a similar replication strategy.  

Dengue viruses (DENV) 

The DENVs are composed of 4 serotypes (DENV1-4). Infection with one virus provides 

life-long immunity, however this immunity is serotype specific and there is no cross protection 

(2). A secondary infection is often associated with more severe diseases (3–5). It is hypothesized 

that a common ancestor to the four serotypes of DENV emerged about 1000 years ago and 

maintained a cycle between non-human primates and mosquitoes (6,7). Then, four independent 

spill-over events, potentially as recent as a few hundred years ago, generated the four serotypes 

we have today. Despite previous outbreaks, it was not until the early 1940’s that isolates of 
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DENV were generated for research purposes.  DENV1 was isolated in Japan in 1943 and 

DENV2 was isolated in Hawaii in 1945 (8).   

Initially, the four serotypes had distinct geographical distributions, however with 

increased globalization and vector spread, we have seen co-endemicity of all of them (9). 

However, in some locations we observe sequential endemicity, where one year will have an 

outbreak of, for example, DENV3 followed by DENV1 the next year. Young children who are 

naïve to the current outbreak are susceptible to severe infection due to this constant cycling of 

serotypes. Infection with DENV can range from asymptomatic to life-threatening (4,10,11). 

Dengue fever (DF) begins with a fever, pain, vomiting, and malaise, which can last for 

approximately 7 days. This can resolve or it can progress to a more severe form of disease, 

dengue hemorrhagic fever (DHF). At this stage supportive care and fluid replacement is critical 

for survival. Some patients will progress to dengue shock syndrome (DSS), which typically 

results in death. 

 In 2009 the World Health Organization (WHO) switched the case definition for dengue 

diseases in order to help clinicians better manage patients (12). The new definition emphasizes 

the signs of severe disease more than the current symptoms (12,13). It is estimated that this new 

definition has led to a significant over-reporting of severe disease (13). The over-reporting 

caused by the new case definition is likely beneficial for patient care by ensuring that patients 

with severe disease get the care they need. However, there is a co-incident strain on hospitals in 

resource-poor settings where staffing and supplies are limited and not equipped to deal with the 

increase in patient numbers. Additionally, this definition has not been adopted by many research 

groups and clinicians, due to the need for cohesive definitions across years of studies and the 

difficulty in implementation.  
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Despite many efforts, there are currently no US Food and Drug Administration (FDA) 

approved antivirals and only a sub-optimal vaccine for dengue (14–16). Prevention, through 

vector control, remains the best strategy for a global reduction in dengue diseases.  

Stages of the virus life cycle 

Attachment and entry 

Unfortunately, the field has yet to find a consensus on the receptor required for DENV 

attachment and entry into a cell. It is likely that the virus is promiscuous and able to use a variety 

of receptors on different cell types. Prior to internalization, the virion moves randomly along the 

cell surface and then binds to attachment molecules via non-specific interactions (virion 

adhesion) (17). These attachment molecules include but are not limited to several C-type lectins, 

the mannose receptor, dendritic cell-specific intercellular adhesion molecule-grabbing non-

integrin (DC-SIGN), liver/lymph node-specific intercellular adhesion molecule-3-grabbing 

integrin (L-SIGN), as well as TIM (T cell/transmembrane, immunoglobulin, and mucin) and 

TAM (Tyro3, Axl, and Mer) receptors (18–21). After attachment the virus is loaded onto a pre-

existing clathrin-coated pit for internalization (22,23). 

Once the virion is internalized, it traffics through the endocytic pathway.  Beginning in 

the early endosome (EE), cargo contents are sorted into intraluminal vesicles and transported to 

late endosomes via endosomal carrier vesicles (ECVs) along microtubules. The ECVs undergo 

an additional sorting step in the late endosome where they are targeted to the trans-Golgi 

network (TGN), degradation in the lysosome, or released into the cytoplasm. DENV is 

transported in an ECV into the late endosome where it escapes the endocytic pathway through 

fusion with a Rab7-positive endosome (24).  Fusion independent of Rab7 has also been observed, 

thus this may be strain specific. Fusion appears to be an event distinct from genome delivery into 
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the cytoplasm, which may require additional host proteins to accomplish (25). Hence, the virion 

may fuse with the ECV completely or as an intermediate state and subsequently the ECV back-

fuses with the late endosome (LE), resulting in the final release of the genome into the cytoplasm 

(25). This process is depicted in Figure 1.  

 

Figure 1 DENV2 entry and travel through the endocytic pathway. As described in the text, DENV2 
enters the cell through clathrin-mediated endocytosis, then enters an early endosome (EE) filled with 
endosomal carrier vesicles (ECV). It fuses with an ECV, and is targeted to a Rab7 endosome. When the 
endosome develops into a late endosome, the ECV will fuse with the endosomal membrane and release 
the viral RNA into the cytoplasm. Adapted from (22-25) 
 

The structural changes that occur to the virion envelope glycoprotein (E) to allow for 

fusion are well characterized (26–28). The E glycoprotein has 3 domains (D): DI, DII and DIII. 
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In the mature virion, E glycoproteins lay flat on the surface as homodimers. The drop in pH in 

the late endosome disrupts these homodimers into monomers (26). This causes the monomers to 

project outward from the surface of the particle, exposing the fusion loop at the distal end of the 

DII domain. The fusion loop inserts into the target membrane and three E glycoproteins in close 

proximity form a trimer. The hemi-fusion intermediate then forms and the DII domains folds 

back against the trimer. Initially the outer leaflets of the membranes begin to mix, then the inner 

membranes mix as the fusion pore forms. Then the capsid protein and RNA complex are released 

into the cytoplasm, or into the ECV depending on the membrane used for the fusion event.  

 
 
 
 
 
 
 

 
Figure 2 Flavivirus Genome Organization. The organization of the flavivirus genome is depicted with 
the location of each structural and non-structural gene. UTR: untranslated region, C- capsid, 
prM:premembrane/membrane, E: envelope, NS1: Non-structural protein 1, NS2a: Non-structural protein 
2a, NS2b: Non-structural protein 2b, NS3: Non-structural protein 3, NS4a: Non-structural protein 4a, 
NS4b: Non-structural protein 4b, NS5: Non-structural protein 5. [Adapted from (29,30)].  
 
Translation and polyprotein processing  

Since flaviviruses have a positive sense RNA genome it is ready to be translated as soon 

as the genome is released into the cytoplasm and encounters a ribosome. The viral genome has 

one open reading frame and is translated into a polyprotein that is co- and post- transnationally 

cleaved by viral and host proteases into 10 individual proteins. The genomic organization is 

depicted in Figure 2.   

Structural proteins: 

The capsid protein interacts with the viral genome as it packs into the virion. No 

icosahedral symmetry of the capsid structure has ever been observed (31). Furthermore, 
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populations of capsid protein localize to the nucleus of the cell, where they are implicated in 

nucleosome disruption and induction of apoptosis (32–34). Capsid is anchored to ER membranes 

through its C-terminal sequence, however it also takes on a dimeric form in solution (35). The 

functional importance of this dimerization is still unclear due to its functional flexibility, but 

mutations that are structurally predicted to disrupt dimerization prevent virion assembly (36). 

The pre-membrane (prM) protein is a key structural protein that takes on a heterodimeric 

form and associates with the E glycoprotein to make up the virion glycoprotein shell (37). The pr 

portion of the prM protein acts to cover the fusion loop of E to prevent a premature fusion event 

within infected cells, while the M portion is membrane bound and anchors the heterodimer in the 

virion envelope (38,39). A pH change as the virion transits through the TGN triggers a structural 

change that exposes a furin cleavage cite on prM. After cleavage the pr peptide remains 

associated with the virion until it returns to a neutral pH in the extracellular milieu.  

The envelope (E) glycoprotein provides much of the structure of the protein shell and 

contains the fusion loop allowing the virion to penetrate a host cell (40). The E glycoprotein is a 

class II fusion protein. It is also the primary source of structural heterogeneity of flavivirus 

particles (37,41–43). Hence, it has a critical role in viral transmission and evolution.  

The non-structural proteins 

The non-structural proteins are numbered according to their genomic organization. 

Intracellularly, NS1 is in a membrane bound dimeric form that aids in viral replication (44). In its 

secreted form it is hexameric and is found in association with lipids. This proteo-lipid particle is 

found circulating in patient serum and is an antigen used in diagnostic tests for DENV infections 

(45). NS1 plays a role in severe disease forms of dengue by enhancing degradation of the 
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endothelial glycocalyx (46,47). The recent structure of WNV and DENV NS1 as a hexamer and 

dimer provided insight into membrane interactions and immunogenicity (48,49).  

NS2A is a transmembrane protein that has been implicated to function in both viral 

replication as well as assembly. The structure of NS2A has not been solved but extensive 

biochemical analysis implicates 5 membrane spanning domains. It is speculated that it may exist 

in different forms to mediate its roles in replication and assembly (50). NS2B is required as a co-

factor for the protease activity of NS3.  NS3 is the helicase and nucleotide triphosphatase 

required for RNA replication. It is also a serine protease that post-translationally cleaves the viral 

polyprotein (51). NS3 is also implicated in the disruption of many different cellular pathways 

(52). For example, NS3 cleaves the antiviral protein, stimulator of interferon genes (STING), and 

thereby suppresses interferon production and the immune response (53,54). 

NS4A and NS4B are membrane bound proteins with no known enzymatic activity. Early 

studies demonstrated that they alone are sufficient for membrane rearrangements in the ER 

(55,56). The C-terminal region of NS4A (referred to as 2K) is a signal sequence that assists in 

the localization of NS4B in the ER lumen to facilitate these membrane changes. Interactions 

between the two proteins may be through 2 helices in the N-terminal region of NS4B and are 

important for viral replication (57) and may also suppress the innate antiviral response (58,59). 

NS5 is a multifunctional protein possessing methyltransferase, RNA-dependent RNA 

polymerase and guanylyltransferase activities (60–62). The N-terminal one-third of the protein is 

responsible for capping the viral RNA and internal methylation of the RNA. An alpha-helical 

linker region with a nuclear localization signal connects the capping region to the C-terminal 

two-thirds of the protein responsible for RNA-dependent RNA polymerase activity that 

replicates the viral genome. Interestingly, there may be two populations of NS5 in cells where 
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the nuclear localization signal directs a large population of the protein to the nucleus (63). This 

population is hyperphosphorylated and transits to the nucleus immediately after translation. 

Given its role in RNA replication, another population of NS5 remains in the cytoplasm to 

replicate the viral RNA.  

 Replication on the ER membranes 

Ultrastructural characterization of flavivirus infected human and mosquito cells have 

demonstrated massive expansion and rearrangement of ER membranes. Flavivirus infected cells 

demonstrate three distinct types/structures of membranes: convoluted membranes (CM), 

paracrystalline arrays (PC) and vesicle packets (Vp) housing internal smaller vesicles (Ve). The 

CM and PC are proposed as sites of translation and polyprotein processing due to the presence of 

NS3 and NS2B within the structures (64,65). The Ve structures are connected to the cytoplasm 

through neck-like open pores and are packaged within the Vps. Viral RNA-dependent RNA 

polymerase and double stranded RNA (dsRNA) intermediates are observed in the Vp/Ve 

structures suggesting that this is the location of viral replication. The lack of single-stranded 

RNA in these locations suggests that after it is capped it exits the Ve and interacts with capsid in 

a neighboring location.  

Assembly/ budding 

Flaviviruses do not possess a packaging signal and so encapsidation of viral RNA is not 

well understood. However, only complete and actively replicated viral RNA is packaged (66). 

This occurs in close proximity to the Vp/Ve sites of viral replication. These sites appear to be 

directly opposed to the neck-like structures of the Ve. Hence, newly replicated RNA may exit the 

Ve and immediately interact with viral structural proteins and assemble. The capsid protein aids 

in packaging of the viral RNA on the cytoplasmic side of the ER, where the capsid interacts with 
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prM and E in the membrane. Together, the particle forms and buds into the ER lumen. The 

assembled particle has T=3 icosahedral symmetry due to the arrangement of the glycoproteins 

(37). These proteins are anchored in the host-derived lipid-bilayer that encircles the capsid and 

RNA.  

Maturation  

As the virion transits through the TGN it undergoes a maturation process involving 

significant structural rearrangements in its glycoprotein shell. Initially, the particles are 

considered “immature” where 90 prM-E heterodimers are arranged in 60 trimeric spikes that 

protrude orthogonally from the particle surface. As the particle transits through the TGN, the pH 

drops which induces a rearrangement of E into 90 homodimers that lay flat on the particle 

surface. This is a reversible rearrangement. This transition exposes the furin cleavage site on prM 

and allows processing of pr from M. The pr peptide however, remains associated with the virion, 

likely to cover the fusion loop of E and prevent pre-mature fusion. It dissociates from the virion 

when it encounters a neutral pH external to the cell. Virions that are free of the pr peptide are 

fusogenic and can enter new cells.  

1.3 Flavivirus manipulation of cellular metabolism 

Cellular metabolism is a tight balance between anabolic and catabolic processes that are 

necessary for cells to function and proliferate. Viruses usurp these processes to meet their 

metabolic needs [reviewed in (67)]. These needs broadly range from production of new virions 

to immune evasion. Substrates needed for progeny production include nucleic acids for RNA 

replication, amino acids for protein synthesis and lipids to build virion envelopes. In addition to 

the substrates that viruses gain through cellular synthesis or degradation pathways, they can also 

gain energy to drive replication. In the midst of building new virions, viruses must evade the host 
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immune system that is seeking to destroy them [reviewed in (68)]. Metabolic manipulation can 

enable viruses to obtain their substrate needs and avoid the immune response.  

Metabolomics-based studies have provided significant insight into biochemical pathways that 

viruses rely on or change during the course of infection. However, when we observe 

accumulation of certain lipid species, it is difficult to determine if these species come from a 

synthesis or degradation pathway. Metabolic flux experiments, using isotope tracers coupled to 

high-resolution mass spectrometry, can help us to tease these pathways apart. Flux analyses 

allow us to determine the distribution of metabolites in a pathway under steady-state conditions 

and quantify the response of the metabolic network to perturbation. This technique has been used 

to elucidate metabolic control mechanisms of certain viruses but has not yet been used for 

flaviviruses (69).  Detailed flux analysis of flavivirus infections would answer many of the 

questions outlined below.  

Cellular metabolism is often a limiting factor in viral infections, thus every virus family uses 

novel strategies to replicate at their own optimal rate. Different virus families manipulate many 

different branches of metabolism [reviewed in (70)]. Thus far, it has been demonstrated that 

flaviviruses manipulate glycolysis, the pentose phosphate pathway and lipid biosynthesis. We 

will discuss each of these pathways below, the current understanding of virion lipid composition 

and explore how manipulation of these metabolic pathways alters virion function.  

Central Carbon Metabolism 

Under standard conditions mammalian cells undergo mitochondrial oxidative 

phosphorylation to produce ATP. However, certain conditions can drive cells to uptake excessive 

glucose and “ferment” it into lactate, despite the presence of sufficient oxygen. Typically, this 

occurs in cancer cells due to oncogenic mutations that drive the need for an increase in biomass 
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necessary for proliferation. This phenomenon is known as the Warburg effect and has been 

studied for many years in the context of cancer cell metabolism and proliferation (71–73). The 

precise reason for cancer cell utilization of this route of metabolism is unclear, the original 

hypothesis was that it is due to mitochondrial dysfunction, however many have shown that this is 

not the case [reviewed in (71)]. This “aerobic glycolysis” is an interesting phenomenon that also 

occurs in some virus-infected cells implying that it is not unique to cancer cells. The Warburg 

effect impacts central carbon metabolism (CCM), or the enzymatic transformation of carbon via 

glycolysis, the PPP, or the tricarboxcylic acid (TCA) cycle. There is still much to be understood 

regarding CCM and its uses by flaviviruses, with the current understanding being limited and 

controversial. Here we present an update on what is known about flaviviruses DENV, HCV and 

ZIKV and their ability to manipulate CCM. 

Glycolysis: 

Glycolysis is a series of enzymatic reactions that convert glucose to pyruvic acid, NADH 

and ATP. Viruses manipulate glycolysis to obtain these resources. Briefly, the glycolytic process 

is increased in HCV-infected cells to provide ATP for replication (74,75). DENV increases 

glycolytic processes, but it is not clear if this is uniform throughout the pathway. For example, 

the activity of some glycolytic enzymes, the downstream fates of the carbons from glucose and 

the source of energy production in infected cells are still unclear (76,77). Finally, it was recently 

demonstrated that ZIKV enhanced levels of multiple genes involved in regulation of cellular 

metabolism, specifically glycolysis (78). 

In order for glycolytic activities to proceed, there must be a supply of glucose in the cell. 

This is accomplished by a variety of glucose transporters that import exogenous glucose. GLUT1 

is widely expressed and responsible for basal uptake in all cells, with increased expression in 
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erythrocytes and endothelial cells in barrier tissues (i.e. blood brain barrier) (79). During 

infection of primary human foreskin fibroblasts (HFFs), DENV increases GLUT1 expression 

(76). It is unclear if other glucose transporters are additionally impacted, perhaps different cell 

types or different flaviviruses may result in various glucose transporter usages.  

It is important to note that increased glucose uptake does not imply an increase in 

glycolysis since glucose can feed into multiple metabolic pathways. Hence, the entire pathway 

must be characterized to identify the fate of glucose. The first step in glycolysis is the 

phosphorylation of glucose by hexokinase 2 (HK2) to convert it into glucose-6-phosphate. The 

addition of the charged phosphate group directs glucose-6-phosphate towards glycolysis and 

depletes cellular pools of glucose maintaining a gradient and allowing for its continued 

facilitated import into the cell. In DENV-infected cells hexokinase expression is increased, 

effectively stimulating the import and retention of glucose (76).  No dengue viral protein was 

found to be responsible for the increased HK2 activity, but in HCV infected cells, the D2 or D3 

domain of NS5A modifies the catalytic parameters of HK2 to stimulate its activity (74). Further 

characterization of this interaction may implicate other flaviviral proteins in this process. This 

pool of modified glucose in the cell can now be shunted towards glycolysis or the pentose 

phosphate pathway (PPP). These carbons may flux completely through either one of these 

pathways or may be diverted depending on the regulation of key enzymes in the pathway. A 

profiling of the metabolites in glycolysis found that the first few metabolites produced in the 

glycolytic pathway build up during DENV infection, while the later metabolites appeared to 

decrease (76). This could indicate that there is increased flux through the pathway where the 

final metabolites are shunted elsewhere and thus decreased. Or the decrease in downstream 

metabolites could be due to inhibition of the final enzymatic reactions. Interestingly, the DENV 
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NS1 protein increases glyceraldehyde 3-phosphate dehydrogenase (GAPDH) activity, which is a 

downstream enzyme in glycolysis and its increased activity suggests that carbon fluxes all the 

way through glycolysis in DENV-infected cells (80).  

In order to complete the Warburg effect there must be an increase in lactate 

dehydrogenase activity and extracellular lactate. This both completes the cycle and produces 

NAD+ to support continued glycolysis. One group found that this was not the case in DENV-

infected cells suggesting that flux is not the true role of the increased glucose supply, but that it 

is diverted elsewhere (77). This contradicts findings from our lab, where we do see an increase in 

lactate dehydrogenase expression and extracellular lactate production (Steel et al, unpublished). 

Furthermore, others have observed increased lactate production in HCV infected cells and 

inhibition of lactate dehydrogenase leads to a reduction in DENV replication, suggesting that 

glucose flux is important in flavivirus infected cells (74,76). These findings are not mutually 

exclusive, as increased glucose supply may lead to some percentage of glycolytic intermediates 

being diverted and some completing the glycolytic pathway to lactate. Further work is needed to 

define the relative role of these pathways, the cell-type specificity and the control points in 

regulating these processes.  

TCA cycle/mitochondria: 

In addition to the question of whether carbon fluxes through glycolysis in virus infected 

cells, there are other important questions: 1) where could carbon divert instead of through 

glycolysis and 2) what is the main source of ATP? These are still largely unclear. However 

Fernandes-Siqueira et al shed light on this phenomenon using high-resolution respirometry to 

evaluate the contribution of fatty acids (FAs), glutamine, glucose and pyruvate to mitochondrial 

oxygen consumption in the presence of dengue infection (77). They found viral inhibition of the 
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Crabtree effect, a phenomenon where cellular respiration is inhibited in the presence of glucose 

(81). Hence, the excess glucose that flavivirus infected cells take up does not inhibit 

mitochondrial respiration to favor glycolysis as one might expect. Instead they found that 

oxidized FA are the main energy source in infected cells and that glucose plays an anapleurotic 

role (replenishes unspecified intermediates in the pathway) in the use of these FAs. Hence, 

glucose utilization favors oxidation of endogenous substrates. Thus the increase in glucose 

uptake results in more pyruvate that shunts into the TCA cycle in order to oxidize endogenous 

fatty acids (77). This is again in contrast to what was found with HCV infection where it causes 

severe impairment of mitochondrial oxidative phosphorylation and a switch to reliance on non-

oxidative glucose metabolism (75). 

The critical role of β-oxidation in energy production during dengue infection is supported 

by the increase in autophagy to degrade TGs from lipid droplets for β-oxidation (82). Multiple 

groups have demonstrated that DENV causes mitochondria to elongate, increasing respiration, 

thus corroborating the idea that DENV is dependent on oxidative metabolism (83,84). However, 

it was demonstrated that DENV causes cellular respiration to uncouple from ATP synthesis (85). 

This indicates that ATP production from β-oxidation is not efficient and not the primary source 

of ATP in DENV-infected cells. These studies would imply that glycolysis is a likely route of 

ATP production, similar to the Warburg effect. Higher resolution techniques and comparisons 

across cell types are needed to clearly define this unique energy balance in DENV-infected cells.  

Pentose phosphate pathway: 

Tightly coupled to and running in parallel with glycolysis is the PPP, an anabolic process 

that takes glucose derivatives and generates pentose rings to be used in purine, pyrimidine and 

histamine synthesis among others. During the initial oxidative phase of the pathway NADPH is 
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produced, which is required for lipid biosynthesis and prevention of oxidative stress. Both the 

NADPH and the pentose rings are substrates needed by the virus to replicate its genome, make 

proteins and synthesize lipids to expand membranes. Given the significance of this pathway, 

flaviviral control of it seems inevitable. One hypothesis is that the increase in glucose uptake 

during DENV infection is primarily shunted towards the PPP to drive nucleotide and fatty acid 

biosynthesis (77). One way to accomplish this channeling of glucose is for the rate-limiting 

enzyme to be enhanced in some manner to drive metabolism. Glucose 6-phosphate 

dehydrogenase (G6PD) is the enzyme that catalyzes the first and rate-limiting step in the 

oxidative branch of the PPP and produces NADPH.  

Very little evidence supports the idea of G6PD involvement in PPP channeling in DENV 

infection. However, some have taken advantage of the fact that many humans have a 

spontaneous mutation causing a deficiency in G6PD. To explore the impact of this deficiency 

primary monocytes from these patients were cultured and infected with DENV. This resulted in 

an increase in viral replication compared to control cells (86,87). The impact on viral replication 

was hypothesized to be due to lowered levels of NO and O2 and increased oxidative stress (86). 

Hence, G6PD may not be involved in shunting substrates towards the PPP in DENV-infected 

cells, or it may be that the impacts on oxidative stress mask the effects of G6PD on the PPP. 

Further mechanistic detail of this enzyme will likely tease this apart and demonstrate the 

importance of the PPP. 

On the other hand, metabolomics experiments of HCV infected cells over time observed 

increased nucleotide synthesis and PPP intermediates (88). Proteomic profiling of HCV infected 

cells coupled to lipidomic analysis highlighted an early perturbation in the non-oxidative PPP to 

sustain viral replication (89). Clearly, both branches of the PPP are important to generate species 
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for flavivirus genome replication. Whether the viruses achieve control of this pathway or if it is a 

cellular response to stress is still unclear. 

Importantly, many of these processes can be inhibited to control viral infection. There are 

inhibitors that target most steps in central carbon metabolism and their use can demonstrate the 

significance of each branch point in metabolism during dengue virus infection. However, many 

of them lack specificity and thus need to be corroborated with other means of experimentation. 

Currently, it has been published that inhibition of lactate dehydrogenase and hexokinase both 

reduce dengue virus replication (76). Interestingly, ZIKV replication can be inhibited with 

nucleoside analogues, implicating another arm of central carbon metabolism in replication (78). 

Ideally, with further understanding of viral control of these pathways and the impact on the cell 

we can identify host-targeted therapeutics to control viral infection. 

Lipid biosynthesis: 

Despite the ambiguous destination and usage of increased glucose uptake in flavivirus 

infected cells, there is clearly added carbon in these cells that can be used as substrates for 

complex organic compounds. Currently, the best-characterized reductive biosynthetic process 

manipulated by flaviviruses is lipid synthesis. This represents a likely destination for these 

carbons, however a complete picture of the biosynthetic processes perturbed by these viruses is 

still being explored.  

Fatty Acids: 

The first class of lipid we will discuss is a fatty acid chain. These provide hydrophobicity and 

are primarily responsible for maintaining the bi-layer nature of membranes in cells. Fatty acids 

can be synthesized de novo in the cell, scavenged from the environment or recycled from 
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existing lipid species. Here we will discuss their synthesis in relation to flaviviruses and 

replication complex formation.  

At the top of the fatty acid biosynthetic pathway is acetyl Co-A carboxylase (ACC) that 

catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and commits these carbons to the 

production of fatty acids.  Knockdown of ACC results in inhibition of DENV replication (90). 

Furthermore, ACC is important for WNV replication and is hypothesized to play a key role in 

the rearrangement of cellular ER membranes (91). Inhibition of ACC disrupts the formation of 

membranous complexes in virus infected cells as seen in EM images (91). Presumably, this is 

due to depletion of fatty acid substrates preventing membrane expansion. Without the expansion 

of these membranes, WNV cannot sufficiently protect and replicate its genome. Whether there is 

a dose-dependent relationship between membrane expansion and viral genome copies produced 

is unclear, however intriguing.  

Immediately downstream of ACC is fatty acid synthase (FAS), which takes malonyl-CoA 

and turns it into palmitic acid. FAS is recruited to replication complexes in the ER in DENV-

infected cells where it produces fatty acids (90). Inhibition of FAS is well recognized to limit the 

genomic replication of multiple flaviviruses in multiple cell types (90–93). However, a recent 

report stated that ZIKV was not sensitive to FAS inhibition, this was unexpected and more work 

needs to be done to validate this observation (95). Together, ACC and FAS generate fatty acid 

species that serve as a biomass for the expansion and rearrangement of ER membranes into viral 

replication factories.  
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Complex lipids: 

Complex lipid species can be broadly classified as glycerophospholipids, sphingolipids or 

sterols. They play critical roles in cellular signaling events and structural organization of 

membranes, further discussed below. 

Glycerophospholipids (GPLs):  

GPLs are the most abundant component of cellular membranes, with phosphatidylcholine 

(PC) representing the most abundant of the GPLs (45-55% of all lipid species) (96). PCs have 

cylindrical geometry and act as the skeleton of the membrane giving a stabilizing force with 

neither positive nor negative curvature (97,98). PC is synthesized via the Kennedy pathway in 

the ER and Golgi or via a scavenger pathway that breaks down phosphatidylethanolamine (PE) 

to PC (99). Due to the massive overall expansion of membranes in flavivirus infected cells, one 

would assume that cells would display a significant increase in PC levels. Many metabolomic 

profiling studies using various flaviviruses and cell types have indeed found increases in PC and 

total GPL content compared to uninfected cells as expected (88,89,92,100,101). When looking 

more specifically at PC localization in virus infected cells Zhang et al found that many plus-

strand RNA viruses recruit PC to their replication complexes and inhibition of this process is 

detrimental to their replication (102). However, they did not observe this phenomenon in DENV-

infected human cells, calling into question the significance of increased PC content in flavivirus 

infected cells. Perhaps location may explain this seemingly contradictory finding, where DENV-

infected cells may have an overall expansion of membranes containing PC, while they 

specifically recruit other lipid species to their replication complexes.  

Not many large-scale metabolomics experiments have been carried out with ZIKV thus far, 

presumably it is quite similar to DENV. A MALDI Mass Spectrometry Imaging (MALDI-MSI) 
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approach to characterize the lipidome in ZIKV infected mosquito cells (103).  Similar to 

previous work on the lipidome of DENV-infected mosquito cells, they found an increase in 

glycerophospholipid metabolism in ZIKV infected compared to uninfected cells. Furthermore, 

they found one putative sphingolipid molecule previously implicated in antiviral defense. Few 

other changes were observed, likely due to the low-resolution methods used.   

Another interesting GPL species is the lysophospholipid (LPL), key to many signaling 

pathways and instrumental in membrane structure. LPLs consist of a glycerol backbone 

esterified to a variable head group and one variable fatty acid chain. These species have an 

inverted cone-shape that promotes positive curvature. Lysosphospholipase enzymes: PLA1 and 

PLA2 in conjunction with lysophospholipase D (lysoPLD) or phospholipase D (PLD), remove a 

fatty acid from phosphatidic acid (PA) to generate LPLs [reviewed in (104,105)]. 

Lysophosphatidic acid (LPA) acts as an extracellular signaling molecule by binding to G protein-

coupled receptors (GPCRs). The pathways impacted by LPA stimulation have been implicated in 

cancer, obesity, and diabetes [reviewed in (104)]. Many of the metabolic pathways impacted by 

these diseases are also altered by flaviviruses [reviewed in (70)]. Perera et al found elevation of 

multiple lysophosphocholine (LPC) and lysophosphoethanolamine (LPE) species in DENV-

infected mosquito cells (92). Simultaneously, they found that PLA2 activity was increased in 

these cells. When looking closer at replication complex associated membranes they found 

elevation of an LPE species (PE P-16:0e). Enrichment of this lipid near replication complexes is 

likely due to the need for highly curved membranes surrounding the replication intermediate. 

These sites are also close to viral assembly sites and incorporation of LPLs into virions could 

support their high degree of curvature. A similar increase in LPL content in total cells was also 

seen in WNV infected cells (100). However, this was not found in a recent metabolomics study 
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of DENV-infected mosquitoes, who primarily had decreases in LPLs compared to uninfected 

controls (106). This may reflect a difference in biological systems, cell type or timing of 

infection. Further interrogating the role of PLA2 in DENV-infected cells such as its cell type 

specificity, timing of action, and the role of its enzymatic products in the infection process may 

shed light on this process.  

Sphingolipids (SL):  

SLs are the second key membrane lipid species. They contain a common sphingoid backbone 

that is N-acylated with a fatty acid to form ceramide (Cer). Complex SLs are formed through 

modifications to ceramide such as phosphorylation, or glycosylation (107). These bioactive 

molecules act in signaling pathways throughout the cell such as signal transduction, cell growth, 

differentiation, and apoptosis (108–110). They also provide key structural support to cellular 

membranes and are particularly enriched in lipid rafts in conjunction with cholesterol. The 

dysregulation of genes in sphingolipid biosynthesis is implicated in diseases such as, type 2 

diabetes, Alzheimer’s disease, and hepatocellular carcinoma [reviewed in (111)]. 

Sphingolipid biosynthesis includes both de novo synthesis and salvage pathways, providing 

for multiple control points (112). WNV causes an increase in both ceramide and sphingomyelin 

in cells (100). The high levels of SLs in the cell are utilized both in the virion envelope 

(discussed in detail in section 1.4), and in formation of the replication complexes (100,113). 

Prolonged inhibition of serine palmitoyltransferase, the rate limiting enzyme in the de novo 

biosynthesis of sphingolipids, reduces levels of ceramide in the cell and leads to a reduction in 

WNV replication (113). The salvage pathway to generate ceramide involves the removal of the 

phosphocholine group of SM by acid sphingomeylinase to generate ceramide. Inhibition of acid 

sphingomeylinase results in a reduction in the release of viral particles from infected cells (100).   
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DENV similarly increases sphingolipids in infected mosquito cells (92). However, 

sphingolipids seem to be utilized differently for these two flaviviruses.  For instance, DENV-

infected cells do not recruit ceramide to RCs. Additionally, DENV replication is increased when 

ceramide synthesis is inhibited (113). However, these studies were carried out in mammalian 

cells. Therefore, it is possible that DENV may utilize sphingolipids differently in mosquito 

versus mammalian cells.  

Cholesterol:  

The final class of membrane lipids is sterols. Cholesterol is a ubiquitous component of 

cellular membranes with significant interest across biological disciplines. It is typically found 

highly concentrated in the plasma membrane of the cell where it provides a rigid structure and 

presumably aids in the formation of lipid rafts by associating with certain lipid species that have 

high-melting temperatures. Lipid rafts function as key initiators of signaling cascades in the cell 

by concentrating receptors and other signaling proteins (114). Misdistribution of cholesterol in 

the cell is typically indicative of a disease state and contributes to varying shapes of membranes 

[reviewed in (115)]. Cholesterol, its synthesis, location, trafficking and role in replication of 

many different viruses have been widely studied and many unique ways to alter cholesterol 

homeostasis have been discovered.  

Huh7 cells infected with DENV display an early increase in cellular cholesterol and lipid raft 

formation (116). Specifically, an increase in the activity of the rate limiting enzyme in the 

mevalonate pathway (which is part of cholesterol biosynthesis), 3-hydroxy-methylgluteryl-COA 

reductase (HMG-CoA reductase) was shown by an increase in its phosphorylation and an 

increase in cholesterol levels (116). Additionally, Fluvastatin treatment, which inhibits HMG-

CoA reductase, reduced viral replication, which could be partially rescued with mevalonate, 
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geranylgeranyl pyrophosphate (GGPP), or farnesyl pyrophosphate (FPP), three downstream 

metabolites (117). Loss of function of mevalonate diphospho decarboxylase (MVD), another key 

enzyme in this pathway, also reduced DENV replication (117).   

During ZIKV infection, an interferon stimulated gene (ISG): cholesterol-25-hydroxylase was 

upregulated to produce 25-hydroxycholesterol, which is a strong antiviral agent (118). The 

protective effects of 25-hydroxycholesterol against ZIKV were further demonstrated in brain 

organoids, fetal mice and macaques.  

WNV infection also increased the biosynthesis of cholesterol via control of HMG-CoA 

reductase. This enzyme and pools of cholesterol were re-located to sites of viral replication (119). 

The re-distribution of cholesterol lead to a depletion of lipid rafts and the down-regulation of 

interferon-stimulated Jak-STAT antiviral signaling (119). These observations, collectively 

demonstrate a role for cholesterol in flavivirus replication.  

1.4 Lipid content of Flavivirus Virions 

Thus far we have discussed metabolic changes in host cells caused by viral infection with 

structural or signaling implications for the host cell. However, the impact of metabolic changes 

on the final product of replication, the virion is also of significance due to the direct inclusion of 

a host-derived lipid envelope as a structural component of the virion. Additional components of 

the virion include the viral genome and viral glycoproteins. While the manipulation of host cell 

lipids by flaviviruses is a clear phenomenon, the criteria that govern the inclusion of these lipids 

into the virion envelope has not been investigated.  

Some virus families bud from lipid rafts and so control the lipid content of their envelope 

(120–122). Flaviviruses do not appear to bud from lipid rafts but they may control their lipid 

content in other ways. Perhaps the virion incorporates specific lipids into the envelope to achieve 
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stability or functionality (i.e. fusion with the target cell). This could be controlled by altering the 

lipid content of the ER in a localized manner, i.e. near the site of assembly, through localized 

metabolism or lipid organizational enzymes (flipases/flopases). Alternatively, sites of assembly 

could be targeted by the virion based on their existing lipid content. Profiling the lipid content of 

viral envelopes can provide significant insight into these processes. If the lipid content of the 

virion differs significantly from that of the cellular membrane from which it originates, it would 

indicate selectivity. Here we will discuss the current understanding of the biogenesis of the 

flavivirus lipid envelope.  

 One of the largest difficulties faced in profiling the lipid content of virions is the inclusion of 

proper controls and sufficient replicates. Virus purification can be a complex process and the 

final prep is often a mixture of viral particles, sub-viral particles, exosomes and other cellular 

debris depending on the type of purification. As such comparison to uninfected cellular 

supernatant and the originating cellular membranes need to be included as important controls. 

For flaviviruses this is the ER membrane, which is very difficult to clearly separate from other 

cellular membranes. With the use of these controls the lipid content of virions can be accurately 

queried and compared to the originating cellular membranes.  

Most studies of the lipid composition of enveloped viruses have focused on more complex 

lipid species and have not characterized the fatty acid content. It is clear that certain lipid species 

are enriched in viral envelopes and are functionally relevant for virion infectivity (100,123–126). 

Here, we will describe the lipid content of flaviviruses that have thus far been characterized.  

West Nile virus (WNV): 

To characterize the WNV particle lipidome, sucrose gradient purified virions were 

compared to recombinant subviral particles (RSPs) and total HeLA cellular membranes (100). 
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The comparison to RSPs is useful as they come from the same cellular membrane, however 

comparing to total cellular membranes is less than ideal since the lipid content varies between 

cellular membranes (i.e. Golgi vs. ER vs. PM) under normal conditions. Differences found 

between total cellular membranes and the virus may reflect the re-distribution of lipid species 

from replication, rather than a specific control of lipid content in the virion. Nonetheless, 

profiling total lipids is informative. For this experiment they looked specifically at 

glycerophospholipid and sphingolipid content. They found less PC in virions and RSPs 

compared to the cellular membranes, meanwhile, SM was enriched in virions and RSPs 

compared to cellular membranes. More specifically, they found 4 PE, a dihydroCer and 3 SM 

species that were enriched and one PE that was reduced. When comparing virions, RSPs, and 

infected cell membranes, they only found 5 lipid species that were enriched in all of these. These 

species were annotated as PEs and SMs. They hypothesized that enrichment of these species in 

the cell provides for their increase in the virion envelope (100).   

Bovine viral diarrhea virus (BVDV): 

The second flavivirus we will discuss here is bovine viral diarrhea virus (BVDV). This 

virus is from the pestivirus family in the genus Flaviviridae. It is a pathogen of livestock with 

similar biology to HCV (127). To characterize the lipidome of BVDV, Callens et al purified 

particles from Madin-Darby Bovine Kidney Epithelial (MDBK) cells and using standards, 

profiled 20 specific classes of lipid species: 13 GPLs, 3 SLs, 3 neutral lipids, and cholesterol 

(126). They identified 398 total unique molecular features that were quantified within this list. 

They found a ~2.3-3.5 fold increase in cholesterol, SM and hexosylCer in the virion envelope 

compared to the originating cellular membrane. Collectively these three species account for ~70 

mol% of the lipid envelope while they account for 30 mol% of the cellular membranes, 
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representing a significant increase in the virions. Furthermore, there was a 1.5-5% decrease in 

GPL species in the virions. Interestingly, when profiling the PC species, they found a tendency 

towards saturated PC species and shorter acyl chains in virions. Taking together, they concluded 

that the total lipid composition of BVDV is most similar to influenza virus and surprisingly quite 

dissimilar to HCV.  

Hepatitis C virus (HCV): 

The lipid envelope of the flavivirus, HCV, the archetypal hepacivirus, has also been 

profiled. Merz et al used Huh7.5 cells to produce the Jc1 chimera strain of HCV as well as 

Jc1E2FLAG, with a tagged envelope protein for affinity purification (128). This enabled separation  

of the virus from other lipid membranous debris. Additionally, they were able to subtract out the 

lipid content of the WT virus preparation from the affinity purified virus to subtract out cellular 

debris. They determined that the major lipid composition of the virus was PC, SM and 

cholesterol esters. Other lipids were also measured, but not determined to be above background 

(cell debris) levels. They compared the virus lipidome to that of the originating Huh7.5 cells and 

found that the virus had lower levels of phospholipids and higher levels of cholesterol esters. 

Finally, compared to vesicular stomatitis virus (VSV) and Semliki Forest virus, HCV was 

enriched in cholesterol esters (128). 

Functional consequences of lipid content: 

The lipid envelope of a virion is a multifunctional entity, which serves to protect the 

genome from extracellular dangers, assist its transport to new cells and release when a favorable 

environment (late endosome) is encountered.  

The process of fusion was described briefly in section 1.2 and is reviewed here (129). 

Here we will discuss the impact of lipid content on virion fusion. Studies on lipid content 
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functionality and relevance for fusion have largely been carried out in liposome systems. 

Primarily people have looked at the requirements for specific lipid content in the target (cellular) 

membrane for fusion to occur. There is still limited understanding about flavivirus virion lipid 

content requirements, however some progress has been made. 

Cellular membrane lipid requirements: 

The endocytic pathway displays an overall gradient in lipid composition, where early 

endosomes are rich in cholesterol, phosphatidylserine (PS) and phosphatidylinositols (PI), and 

cholesterol content gradually decreases in vesicles along the pathway (130,131). Late endosomes 

are enriched in ceramide, which maintains membrane fluidity. Additionally, 

bis(monoacylglycero)phosphate (BMP) is an anionic lipid that is enriched in the inner 

membranes of late endosomes and is absent in early endosomes. This gradient of lipid 

composition may be an important control feature to prevent pre-mature fusion and direct the viral 

entry process.  

Alphaviruses have an absolute dependence on cholesterol and sphingolipids in the target 

membrane for fusion to occur. The need for these specific lipids is not quite shared by 

flaviviruses, however the process is enhanced by their presence in the membranes used for fusion. 

Specifically the membrane binding and trimerization steps of the viral fusion protein are 

enhanced by cholesterol and sphingolipids (132). The 3β-hydroxyl group of cholesterol is the 

key moiety in these interactions similar to alphavirus fusion (132,133). JEV entry but not 

attachment is dependent on cholesterol-rich microdomains (134). HCV also fuses with 

membranes in a pH dependent manner and its fusion with liposomes was enhanced with both 

cholesterol and sphingomeylin in the target membrane (135). Despite this enhancement, 

flavivirus fusion is quite flexible and will still proceed even when cholesterol and sphingolipids 
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are absent from the target membrane (132,136). Interestingly, a more recent study demonstrated 

that DENV requires anionic lipids, such as BMP and PS, in order to fuse with the cellular 

membrane (137). As mentioned above, BMP in enriched on the internal late endosomal 

membrane and there it regulates membrane sorting and dynamics. Interestingly, BMP may be 

more specifically required for delivery of the viral RNA into the cytoplasm, an event distinct 

from membrane fusion (Figure 1) (25). PS may be responsible for the upstream event of virion 

fusion with the endosomal carrier vesicle membrane inside of the late endosome (25). The 

distribution of these lipids in the cell enables DENV to specifically fuse with the late endosome 

under low pH conditions, thus delaying its actual entry into the cell. Whether these lipids are 

necessary and sufficient for DENV fusion is still unclear [reviewed in (129)]. 

Virion envelope lipid requirements: 

Initial studies of lipid content in virions were carried out by simply correlating the density 

of particles with their functional impact. For example, infectious HCV found in patient sera has a 

low density (138). It was determined that the low density fractions produced in cell culture were 

more successful at fusion and thus more infectious (135). Improvements in purification methods 

have produced high quality purified virions that have increased our understanding of not only 

their lipid content, but also the significance of specific lipids within their envelopes. For example, 

purified BVDV was treated with sphingomyelinase to degrade sphingomeylin in the lipid 

envelope and this reduced the infectivity of the virions (1). This implied that SM is a critical 

component of the envelope and may stabilize it or play a role in the fusion process.  Similarly, 

treatment of BVDV virions with methyl-β-cyclodextrin (MCD), a cholesterol scavenger, resulted 

in a dose dependent decrease in virus release from cells. This effect was not seen when cells 

were treated with MCD (1). Furthermore, exposure of DENV virions to MCD reduced infectivity 
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in a dose-dependent manner. A reduction in infectivity was not seen when cholesterol was 

depleted from the cellular target membrane. This finding indicates that the cholesterol in the 

DENV virion envelope was critical for infection (139). Partial rescue of virion infectivity was 

achieved following incubation with fetal bovine serum (FBS) after MCD treatment (139).  

Addition of exogenous cholesterol to BVDV virions that had partial removal of cholesterol from 

their virion envelopes resulted in a partial rescue of infectivity. This rescue was not seen when 

virions were incubated with higher levels of MCD (to extract more of the envelope cholesterol) 

and then incubated with exogenous cholesterol. These studies indicated that when most of the 

cholesterol was removed from the envelope an irreversible change occurred to the virion 

structure, but when it was partially removed infectivity was just lowered (126). These findings 

are significant and interesting, however they do not necessarily implicate cholesterol in the 

fusion process, since the defects in fusion could be due to alterations in the structure of the virion 

and not its reduced cholesterol content. It is truly remarkable that cholesterol could be re-

integrated into the virion envelope to restore infectivity, increasing the plausibility that it does 

play a functional role in the fusion process. 

Clearly, lipids play significant roles in in the functionality of flavivirus virions and their 

ability to fuse with a target membrane. Whether the requirement for particular lipid species is 

due to the need for efficient lipid mixing of the particle and the cellular membrane or for the 

interactions of the fusion loop of E with the cellular membrane is unclear. Future work on lipid 

requirements and functionality will shed light on these processes and likely reveal potential 

antiviral targets.  
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1.5 Unsaturated fatty acid biosynthesis 

As described above, fatty acids (FA) play key roles in the cell and have functions in 

signaling and structural support. The regulation of the synthesis of diverse FAs determines many 

cellular functions and has been implicated in a variety of diseases. Furthermore, unsaturated fatty 

acids (UFAs) drive curvature and fluidity of membranes. Given the complex structure of the ER 

membrane in virus infected cells (described in section 1.2) UFAs are likely to be involved in 

enabling this high degree of curvature. As such, we carried out an siRNA screen of the UFA 

biosynthesis pathway to identify control points used during DENV replication (described in 

Figure 16A). Here, we will describe the function of these various enzymes and their roles in 

human diseases. 

 FA synthesis and modifications take place in the cytosol, mitochondria, peroxisomes and 

ER. In the cytosol, de novo FA synthesis is carried out by FAS described in section 1.4. We will 

primarily discuss FA elongation and unsaturation in the ER, peroxisomes and the mitochondria. 

Substrates for the elongation of fatty acids can be synthesized by FAS or from a dietary source. 

FAs are elongated through a four-step cycle in the ER that adds two carbons to a growing FA 

chain each cycle. The four steps are: condensation, reduction, dehydration, and reduction. These 

four reactions are outlined in Figure 3 and details regarding the enzymes are outlined in Table 1. 

We will discuss the enzymes that perform these reactions below and highlight those that were 

included in our siRNA screen. 
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Figure 3 Fatty acid chain elongation. The reaction sequence for the 
elongation of fatty acids in the endoplasmic reticulum. Adapted from 
(140 - 142). 
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Table 1 Enzymes in fatty acid chain elongation (Adapted from (140–142)) 

 

 

Condensation (elongases): 

The rate limiting step in elongation of unsaturated fatty acids is a condensation step 

carried out by members of the elongation of very long chain fatty acids family (ELOVLs), also 

referred to as elongases. There are 7 human elongase enzymes that differ in their substrate 

specificity and tissue distribution. The details of each enzyme are included in Table 1.  Given 

these characteristics we included ELOVL2, 5 and 6 in our siRNA screen described in Figure 16A.  

Elongase family members are ER membrane-bound 3-keto acyl-CoA synthase enzymes. 

They catalyze the condensation of malonyl CoA with a variable fatty acid precursor. In so doing, 
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they add 2 carbons to the fatty acid per cycle. This reaction is shown in Figure 3 and substrate 

specificity is shown in Table1. 

ELOVL2 is specific for polyunsaturated fatty acid (PUFA) elongation. It shows a 

preference for 20 and 22 carbon PUFAs (143). The highest expression of ELOVL2 is in liver, 

placenta, testis, and brain. Single nucleotide polymorphisms (SNPs) in ELOVL2 in human 

populations have been associated with increased plasma n-3 PUFA levels and this is correlated 

with protection from cardiovascular disease (144,145). PUFAs are important signaling molecules 

that regulate the balance between pro-inflammatory and anti-inflammatory states, lending 

support to the significance of ELOVL2.  

ELOVL5 most often uses the PUFA, C18:3(n-6) acyl-CoA as a substrate, but can work 

on both n-3 and n-6 family members. Given the significance of PUFAs in many diseases, it is not 

surprising that ELOVL5 has been implicated in a variety of diseases. For example, gene 

expression of ELOVL5, along with 1 and 6, was increased in an aggressive form of breast cancer 

(146) yet had transcriptional repression in a specific colorectal cancer (147). Many types of 

cancer show differential metabolic profiles and perhaps ELOVL5 plays a role in these different 

profiles.    

The final elongase we profiled is ELOVL6 which elongates fatty acids with 12, 14 and 16 

carbons and has a higher activity toward C16:0 acyl-CoAs. Hence, ELOVL6 is associated with 

the de novo fatty acid synthesis pathway and indeed works with SCD1 (delta 9 desaturase) to 

generate oleic acid. Likely due to its involvement in de novo fatty acid synthesis and the 

tendency for these fatty acids to be incorporated into storage lipids, ELOVL6 is implicated in 

obesity induced insulin resistance (148). Interestingly, we have found that ELOVL6 gene 

expression is increased at early time points of DENV infection, again likely due to its 
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involvement in de novo fatty acid synthesis and the need for increased biomass during infection 

(Read et al, unpublished).  

Reductase: 

The second step in fatty acid elongation in the ER is a reduction step carried out by a 3-

keto-acyl carrier protein reductase (KAR). Hydroxysteroid 17-beta dehydrogenase 12, very-long-

chain 3-oxoacyl-CoA reductase (HSD17B12) was identified as the human analogue of yeast 

KAR that uses NADPH to reduce 3-ketoacyl-CoA to 3-hydroxyacyl-CoA (149). Given that this 

is currently the only known enzyme in humans that can carry out this reaction it is likely very 

important. Indeed, knockout of KAR in mice results in embryonic lethality due to disruption of 

organogenesis (150). It has widespread tissue distribution, but is most highly expressed in tissues 

such as liver, kidney, heart, and skeletal muscle that are responsible for much of lipid 

homeostasis (151). Interestingly, this enzyme also catalyzes the final step in steroid biosynthesis 

and converts estrone into estradiol in ovarian tissue (151,152). Most studies of this enzyme have 

focused on its role in steroid biosynthesis rather than fatty acid elongation, but it has been 

implicated as a prognostic biomarker in certain cancers due to its role in fatty acid elongation 

(152,153). More work is needed to understand this enzyme and the diverse roles that it plays in 

cells. 

Dehydratase: 

Once a 3-hydroxyacyl-CoA is formed it has to be dehydrated into a trans-2,3-enoyl-CoA. 

Two enzymes that carry out this reaction will be discussed here: 3-Hydroxyacyl-CoA 

Dehydratase 1 and 2 (HACD1/2). Previously these enzymes were called, Protein-Tyrosine 

Phosphatase-Like Member A and B (PTPLA/)B and are labeled in our siRNA screen as such 

(Figure 16A). In fact, there are four enzymes in this family all in the ER, HACD1-4, but HACD3 
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and HACD4 were only recently recognized as processing 3-hydroxyacyl-CoA dehydratase 

activity (154). Even more recently still was the identification of their substrate specificity (155). 

HACD4 still has no identified substrate specificity, while HACD3 displayed weak activity 

towards both saturated and monounsaturated FAs. HACD1 and 2 have broad specificities, 

capable of acting on both saturated and polyunsaturated FAs of varying chain length. HACD 1 

and 4 are restricted to muscle tissues and leukocytes (154,155). HACD2 is ubiquitously 

expressed and HACD3 is widely expressed with highest expression in the brain, kidney, liver, 

and placenta (154,156). 

Reductase: 

The final reaction to complete the 2-carbon elongation of a FA chain is carried out by a 

member of the oxidoreductase family: trans-2,3-enoyl-CoA reductase (TECR).  The ER resident 

enzyme reduces trans-2,3-enoyl-CoA to a saturated acyl-CoA, while consuming NADPH and 

producing NAD+. TECR was identified as the yeast homologue of Tsc13p, the trans-2,3-enoyl-

CoA reductase, and found to possess the same activity (149). Mutation of this gene in yeast is 

lethal (157). The TER P182L mutation in the human TECR gene is associated with 

nonsyndromic mental retardation. This is likely due to the reduction in VLCFAs and the impact 

of this reduction on the sphingolipid profile (158). 

Desaturases: 

De novo synthesized or exogenously obtained fatty acids can undergo further 

modifications and be shuttled to various cellular destinations. Here, we will discuss the 

desaturase enzymes in the ER that act on endogenously synthesized or dietary derived FAs. The 

desaturation reaction is depicted in Figure 4. Mammalian fatty acid desaturases are composed of 
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an N-terminal cytochrome B5-like domain and a C-terminal membrane-spanning domain with 

conserved histidine motifs and desaturase activity.  

 

Figure 4 Fatty acid elongation and desaturation. The biochemical reactions that can occur to modify 
fatty acid chains include elongation and desaturation. Elongation includes the addition of two carbons 
(Shown in Figure 3). Desaturation is the incorporation of a double bond in the carbon chain. [Adapted 
from (142,159,160)]. 
 

Polyunsaturated fatty acid desaturases: 

 PUFAs are essential components of complex lipid species, particularly phospholipids. 

Arachidonic acid (20:4n-6) can be released from phospholipids either in a membrane-bound 

form or secreted [reviewed in (161,162)]. The membrane bound form subsequently acts on 

signaling pathways and the secreted form primarily acts as an inflammatory molecule.  

Mammals cannot synthesize n-3 or n-6 fatty acids independently and so derive them from 

their diet giving them the name “essential fatty acids”. Mammals can consume simple n-3 and n-

6 species and use them to synthesize longer PUFAs. Fatty acid desaturase 1 and 2 (FADS1/2) are 

the rate limiting enzymes in PUFA biosynthesis. FADS1 is a delta-5 desaturase, as it desaturates 

the 5th carbon from the carboxylic end of a fatty acid chain (163). The delta-6 desaturase, FADS2, 

acts primarily on the 6th carbon, but also has activity towards the 4th and 8th carbons. FADS2 is 

rate-limiting in generating arachidonic acid from a linoleic or α-linoleic acid precursor. More 

specifically, it catalyzes the desaturation of dihomo-gamma-linoleic acid (DHGLA) (20:3n-6) 

and eicosatetraenoic acid (20:4n-3) to generate arachidonic acid (AA) (20:4n-6) and 

eicosapentaenoic acid (EPA) (20:5n-3). 
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Despite the shared metabolic pathway and similar structure, circulating n-3 and n-6 FAs 

display distinct effects. n-3 PUFAs tend to be anti-inflammatory while n-6 PUFAs, such as 

arachidonic acid, are pro-inflammatory. Furthermore, n-3 are associated with reduced risk of 

cardiovascular disease (CVD), while increased n-6 in adipocyte phospholipids is associated with 

an increase in CVD [reviewed in (164)]. More specifically, n-3 FAs in the serum reduces 

circulating TG levels which are implicated in CVD (165). Consumption of foods high in n-3 FAs 

such as marine products is associated with cardioprotective and anti-inflammatory effects. 

However, results of dietary interventions are variable likely due to genetic polymorphisms in 

human populations (164,166–169). 

FADS1/2 levels are associated with circulating levels of PUFAs, and so are implicated in 

many disease processes. Given the significance of FADS1/2 in regulating serum FA levels, it is 

not surprising that their polymorphisms in human populations are associated with obesity, type 2 

diabetes and coronary artery disease (170–173).  

de novo FA synthesis desaturase: 

The initial desaturation event to a new FA chain is the rate-limiting and key step in UFA 

biosynthesis and is catalyzed at the Δ9 position by stearoyl-CoA desaturase 1 (SCD1) (174,159). 

The preferred substrates for this enzyme are stearic and palmitic acid, which are converted into 

oleic or palmitoleic acid respectively. SCD1 is a 40kD integral membrane bound protein in the 

ER and is a highly conserved enzyme from bacteria to mammals (175). In humans, it is encoded 

on chromosome 10 and has two isoforms, SCD1, which is ubiquitously expressed, and SCD5, 

which is expressed in the liver (176). SCD1 regulates the balance between saturated and 

monounsaturated fatty acids in the cell. Monounsaturated fatty acids are the preferred building 

blocks for complex lipids such as phospholipids, sphingolipids, or triglycerides. SCD1 knockout 
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animals display decreased fat stores and are resistant to diet-induced weight gain (177). As such, 

SCD1 is a potential therapeutic target for obesity and metabolic syndrome. SCD1 and its role in 

flavivirus infection will be discussed extensively in Chapter 3.  

Thioesterases: 

Free FAs are toxic to a cell since their hydrophobic nature causes them to act as 

detergents. As such, cells attach a coenzyme A (CoA) molecule to one end of a fatty acid chain 

to protect and activate it. Once the CoA is attached, then FA can move through the cell, undergo 

further enzymatic processes and be incorporated into complex lipid species. However, in order 

for FAs to enter the mitochondria and undergo β-oxidation for ATP production, the CoA group 

must be removed. Acyl-CoA thioesterase enzymes carry out the removal of the CoA from the 

fatty acid, by breaking the thioesterase bond between the sulfur atom and the carbonyl group. 

Thus, these enzymes regulate the balance between free and activated fatty acids in the cell. 

This enzyme family is highly diverse with differences in structure and substrate 

specificity. There are two types of ACOTS: type I and type II and the only similarity is their 

shared enzymatic reaction. For our screen we used type I ACOT 1 and 2 and type II ACOT 7. 

ACOT 1 and 2 are highly similar only differing by the N-terminal mitochondrial localization 

sequence on ACOT2. ACOT1 is cytosolic and has a preference for long chain saturated and 

monounsaturated acyl-CoAs [reviewed in (178)]. Through regulating the balance and 

distribution of FFAs and acyl-CoAs, ACOT1 may play a cardioprotective role (179,180). 

ACOT2 also prefers long chain acyl-CoAs and due to its localization in the mitochondria, seems 

to increase oxidative phosphorylation (181).  ACOT4 localizes to peroxisomes and acts on both 

short-chain dicarboxylyl-CoAs and medium- to long-chain acyl-CoAs. It is hypothesized that 
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ACOT4 acts to direct acyl-CoAs that have been shortened in the peroxisome to a new location or 

for their recycling within the peroxisome (182).  

Type II ACOTs have a completely different structure, composed of a “HotDog” domain 

and tend to be oligomeric in structure. ACOT7 is highly expressed in the mammalian central 

nervous system and was originally termed brain acyl-CoA hydrolase (BACH) (183) (and is 

referred to as such in our siRNA screen Figure 16A). ACOT7 is also expressed in macrophages. 

It has a preference for long chain acyl-CoAs and when overexpressed leads to a reduction in 

prostaglandins, indicating a key role in PUFA metabolism and inflammatory pathways (184).  

Peroxisomes 

A peroxisomal FA chain elongation system has been controversial, however there is good 

evidence for its existence. β-oxidation consists of the catabolic process of removing 2 carbons to 

produce acetyl-CoA, NADH and FADH2. This can occur in the mitochondria or the peroxisome 

(for longer chain FAs) and represents a key downstream processing event of UFA biosynthesis 

and metabolism.  β-oxidation of long-chain FAs is crucial to synthesize shorter long chain FAs 

that mammals can’t synthesize any other way. For example, it is hypothesized that 

eicosapentaenoic acid (C20:5) can be elongated and desaturated at the delta-6 position to 24:6 in 

microsomes and then β-oxidized to DHA in peroxisomes (163). The lack of a delta-4-desaturase 

in mammals prevents this pathway from proceeding through a simpler process. Hence mammals 

are able to use peroxisomal β-oxidation to generate a variety of diverse and necessary FAs that 

may be in short dietary supply. 

Acyl-CoA oxidase 1 (ACOX1) is the first enzyme in the peroxisomal FA β-oxidation 

pathway. It catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs (185). It is widely 
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expressed, with the highest abundance in the liver. Diseases associated with ACOX1 are 

characterized by accumulation of very long chain fatty acids (186).  

A similar peroxisomal enzyme is pristanoyl-CoA oxidase 3 (ACOX3), which is involved 

in the desaturation of 2-methyl branched FAs. It has very low expression in the liver, but may be 

expressed during certain developmental stages. ACOX3 may be increased in prostate cancer 

samples and thus contribute to peroxisomal branched chain fatty acid β-oxidation prostate cancer 

(187).  

Peroxisomal trans-2-enoyl-CoA reductase (PECR) is a reducing enzyme involved in fatty 

acid elongation (similar to those mentioned above) in the peroxisome. This enzymes is key for 

peroxisomal FA elongation (188). However, it has also been implicated in the degradation of 

fatty acids in the peroxisome such as phytol, a dietary derived branched chain fatty acid (189). 

Clearly more work needs to be done to tease apart the role of PECR in peroxisomal FA 

metabolism. 

Acetyl-CoA acyltransferase 1 (ACAA1), is a peroxisomal acyl transferase enzyme 

involved in β-oxidation. It is not well characterized, however mutations in this gene lead to 

pseudo-Zellweger syndrome. A transcriptomics study also found ACAA1 downregulated in 

hepatocellular carcinoma (187). 

Bile Acids: 

Bile acids are made in the liver (191). They are a way to absorb and excrete excess 

cholesterol, fats and fat-soluble vitamins from the intestines. Bile acids are made from 

cholesterol, which is enzymatically transformed, and finally undergoes β-oxidation in the 

peroxisome to form chenodeoxycholoyl-CoA (C24 bile acid). The final step in the process is the 

formation of bile acid-amino acid conjugates via the transfer of C24 bile acids from the acyl-
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CoA thioester to either glycine or taurine. Once conjugated bile acids are excreted in the bile. 

The Bile Acid-CoA:Amino Acid N-Acyltransferase (BAAT) carries out this final amidation 

reaction and is primarily a peroxisomal enzyme, however it has been postulated that there is a 

second pathway in the cytoplasm for the conjugation of the bile acid to glycine or taurine 

[reviewed in (192)].  

Mitochondrial β-oxidation: 

Mitochondrial β-oxidation uses unique enzymes but overall a similar process to 

peroxisomes. The last 3 steps are catalyzed by the enzymatic activities of the mitochondrial 

trifunctional protein (MTP): hydroxyacyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase, enoyl-

CoA hydratase. This is a tri-functional protein composed of four alpha and four beta subunits. 

The gene in our siRNA screen (discussed in Chapter 3) encodes for one of the alpha subunits that 

catalyzes the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities, HADHA. 

Thus, it converts medium- and long-chain 2-enoyl-CoA compounds into 3-ketoacyl-CoA when 

NAD is solely present and acetyl-CoA when NAD and CoASH are present (193). The MTP 

protein complex is located on the inner mitochondrial membrane.  

Human mutations in HADHA are associated with accumulation of long-chain fatty acids 

and long-chain 3-hydroxyacyl coenzyme A dehydrogenase (LCHAD) deficiency, with symptoms 

of hypoglycemia, Reye-like syndrome, cardiomyopathy, or sudden unexpected death (194).  

Furthermore, HADHA was found to be downregulated in renal cell carcinoma and this was 

associated with a poor prognosis (195). This implies that preventing the buildup of long-chain 

fatty acids is critical to maintain homeostasis and prevent disease onset.  

Interestingly, HCV has been shown to interact with HADHA. The viral protein NS5A 

interacts with both the α and the β subunit and downregulates their expression. They also found 
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an attenuation of β-oxidation in HCV infected cells. Knockdown of HADHA and HADHB did 

not reduce viral replication but did suppress the type I IFN response (196). 

1.6 Dengue Disease Serum Metabolomics 

The application of metabolic changes caused by DENV to human health is most apparent 

in studies of biomarker discovery. Many efforts have been made over the years to characterize 

metabolites in the serum of dengue disease patients in order to identify diagnostic biomarkers 

and understand disease pathology. Here we will discuss the findings from a variety of efforts 

from all over the world.   

Untargeted metabolomics of dengue disease serum 

Untargeted metabolomics, or a chemometrics approach, involves extraction of 

metabolites en masse from a sample and measurement of the metabolites with a mass 

spectrometer to acquire accurate masses. Molecular features are extracted from the mass 

spectrometer and their presence/absence and intensities are compared across samples. Accurate 

masses [mass/charge (m/z) ratios] are aligned with databases and annotated accordingly. 

Accuracy of metabolite annotations from mass spectrometry are scored on a point system from 

1-4 depending on the degree of certainty associated with the annotation and the techniques used 

according to the Metabolomics Standard Initiative (MSI) level of identification (197). Level 1 

identification involves the use of a standard and fragmentation data, while level 2 just requires 

fragmentation data. The accuracy of annotations from untargeted metabolomics is typically MSI 

level 3, where there is no fragmentation data, just annotation of accurate mass. When no 

annotation can be found it is level 4; this generally occurs for a large percentage of the 

metabolites in these datasets. Nonetheless, a large dataset is generated from these studies that can 

be validated using targeted analyses to accurately identify and quantify a subset of features. This 
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approach is ideal for hypothesis generation and identifying trends and patterns in metabolite 

profiles.  

One of the main groups using this approach is located in Singapore, where they have 

access to a cohort of adult patients with dengue infections. Their samples are well characterized, 

often followed over time and compared to matched healthy controls. Their seminal paper profiles 

the total serum metabolome and lipidome of adult dengue disease patients with a primary 

infection, followed over time (198). Serum was collected from these patients on their first, 

second and third visits to the clinic after a positive diagnosis for dengue infection and compared 

to healthy controls. They used two different chromatography platforms to characterize patient 

serum. Liquid chromatography (LC) was used for metabolomic analysis and gas-

chromatography (GC) for lipidomic analysis. 

In the acute infection phase, visits 1 and 2 to the clinic, the authors identified extensive 

metabolic changes in dengue diseases compared to healthy controls. Interestingly, they found a 

variety of free fatty acids including PUFAs such as arachidonic acid, linoleic acid, 

docosohexenoic acid, and α-linoleic acid increased during acute infection. These are hallmarks 

of increased inflammation. Whether the increase in these molecules is a cause or effect of 

increased inflammation is unknown but presents an intriguing future direction to investigate. 

Multiple acylcarnitines, sphingolipids, and glycerolipids were also increased. However, they 

identified a decrease in certain phosphocholine and lysophosphocholine species. This replicates 

the studies mentioned above, where PL species are decreased in serum from dengue patients, 

again likely representing liver damage or retention of PLs in cells.  

The next major work done by the same group in Singapore, characterized one component 

of dengue disease pathophysiology from a metabolomics dataset. Using untargeted LC-MS 
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metabolomics they characterized the serum from adult patients with dengue fever (DF) and 

dengue hemorrhagic fever (DHF) in the febrile phase (<96 h) (199). They determined that 

serotonin was significantly decreased in DHF patients. This is physiologically relevant because 

serotonin is involved in platelet aggregation and activation (200), processes which are impaired 

in DHF. This observed decrease may explain some of the thrombocytopenia characteristic of 

severe dengue diseases. Furthermore, they found that kynurenine, an immunomodulator, 

increased significantly in patients with DHF, which may represent a host response to infection. 

Kynurenine and serotonin are metabolites of tryptophan, which has been implicated in dengue 

and a variety of other diseases (201). 

Dengue diseases are difficult to distinguish at an early phase, can progress to more severe 

diseases and are marked by a long recovery phase. To address some of these challenges Cui et al 

characterized the differences between DF and DHF at early and later phases of disease (202). 

Using sera from adult DF and DHF patients at critical (<96hrs) and convalescent (21-28 days) 

phases, they identified 29 differentially expressed metabolites at the critical phase including bile 

acids, purines, acylcarnitines, phospholipids and amino acids. The same group of patients had 

eight different metabolites between DF and DHF during the convalescent phase. Among the 

identified metabolites, they identified a decrease in uric acid in DHF vs. DF patients at the 

critical phase, indicating increased oxidative stress. Several studies have observed oxidative 

stress during DENV infections in model systems, however, the role that it plays may depend on a 

variety of factors. It has typically been implicated as a host response to infection that reduces 

viral replication and biogenesis (203) however others have shown that oxidative stress 

specifically aids in viral replication (204). Interestingly, one of the bile acids, 

chenodeoxyglycocholic acid, was significantly higher at both critical and convalescent phases. 
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This likely indicates long-term liver damage due to severe infection that is not found in DF. 

These findings shed light on dengue disease pathology, particularly the prospect of long-term 

liver damage raising concerns for continued patient care.  

 To confirm their findings from the human serum metabolome Cui et al performed a 

serum metabolomics study of humanized mice infected with DENV (205). Their findings 

demonstrated the replicability of the human serum metabolome in these mice and validated the 

use of the humanized mouse model to identify biomarkers for dengue diseases. Mouse models 

have not replicated other aspects of DENV biology accurately, but in this study they were 

successful. They used a humanized mouse model where the immunodeficient NOD-scid II2rg-/- 

(NSG) mouse received an adoptive transfer of human CD34+ fetal liver cells for the experiments. 

The mice were infected with DENV and serum was collected on 0, 3, 7, 14, and 28 days post 

infection. They used LC-MS to characterize the metabolome and included both reverse-phase-

ultra high-performance liquid chromatography (RP-UHPLC) and hydrophilic interaction 

(HILIC)-UHPLC to fully cover both hydrophobic and hydrophilic molecules. Results were 

consistent with their human studies. FFAs, purine and pyrimidines, acylcarnitines and SMs were 

mostly elevated at 3 and 7 days post-infection (dpi) and returned to normal levels later during the 

infection. Meanwhile, PLs were decreased at 3 and 7 dpi and returned to normal at 14 and 28 dpi. 

The change in PLs, in particular, mimicked studies from their human cohort and others. Pathway 

analyses found that purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid 

catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan 

metabolism, phenylalanine metabolism, lysine biosynthesis and degradation and bile acid  
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biosynthesis were all perturbed. Findings from metabolomics studies have been slow to progress 

to the clinic. However, studies like this demonstrate the potential for progress and reproducibility 

across platforms, infection models, sample types and sources. 

In collaboration with the Sustainable Sciences Institute, Managua, Nicaragua and 

Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, México, Voge et al set out to 

identify metabolites in acute phase serum that were predictive of progression to severe disease 

(206). In a cohort of children from Nicaragua they found 83 molecular features that 

differentiated DHF/DSS and DF outcomes. In the Mexican cohort, comprised of children and 

adults, they found 37 molecular features that statistically differentiated DHF/DSS and DF 

outcome. Of the features that differentiated DF and DHF/DSS in the Nicaraguan samples, 13 

metabolites were structurally identified using tandem mass spectrometry (MS/MS). These 

features were classified as amino acids and lipids such as fatty acids and phospholipids, as well 

as vitamins. Of particular interest, they identified 3 different forms of vitamin D3 that were all 

downregulated in severe (DHF/DSS) vs. non-severe disease (DF) in both the Nicaraguan and the 

Mexican cohort. Among these, 1,25-vitamin D3 is the active form. It is synthesized in the 

vascular endothelium following stimulation of vitamin D3 1α-hydroxylase activity by 

inflammatory cytokines and its decrease in the serum is associated with increased mortality in 

sepsis patients (207). Vitamin D3 has many implications in diseases and is actively being 

explored for its role in DENV replication and disease. Furthermore, they identified long-chain 

polyunsaturated fatty acids such as DHA (C22:6) and ALA (C18:3) that were increased in 

abundance in DHF/DSS versus DF and ND groups. These long chain n-3 fatty acids are anti-

inflammatory agents and may represent a host response as an attempt to dampen the immune 

response to the infection. 
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 A key question with all of these studies is whether metabolomic data can predict disease 

progression, outcome or response to treatment. The difficulty in answering this question often 

lies with the correct experimental design and procurement of the proper samples. Fortunately, 

this group obtained acute phase serum samples from the Nicaraguan cohort that were initially 

diagnosed as DF and then progressed to DHF/DSS. Comparing these samples to DF patients who 

did not progress to a severe disease, they found 65 metabolites that were significantly different. 

Of these, six were structurally identified (MS level1) and they were annotated as proline, alpha-

linolenic acid, arachidonic acid, docosahexaenoic acid, and two lysophosphatidylcholines. These 

six features were quantified and each of them were found in higher abundance in the patients 

who progressed to severe disease. Hence, this study confirmed that diseases were biochemically 

distinct even at an early phase. Furthermore, using acute-phase serum, they quantified 

metabolites that could predict disease outcomes. Further testing of these and other metabolites in 

the proper experimental setting may yield results with prognostic potential that can be moved 

forward to clinical settings.  

Another analytical platform used in metabolomics is 1H nuclear magnetic resonance 

(NMR) spectroscopy. This technique is reliable and reproducible, however the computational 

platforms to analyze the spectra from NMR experiments are limited and difficult to use at this 

point. This will likely change in the near future, as bioinformatics improves. One group recently 

used NMR exploratory metabolomics to analyze patient plasma from a patient cohort in Recife, 

Brazil (208). The samples were collected during a DENV3 outbreak from both adults and 

children. They obtained 2 samples from each patient: 1 at the onset of symptoms and 1 at the 

defervescent phase. Patients were grouped as DF primary infection, DF secondary infection, 

DHF primary infection, DHF secondary infection, and non-dengue febrile illness. They built a 



48 
 

sparse partial least squares discriminant analysis (sPLS-DA) pairwise model and found 

metabolites in lipid, glucose, and protein metabolism that were changed. In particular they found 

a decrease in VLDL/LDL in severe vs. non-severe samples, similar to others (209). Interestingly, 

when the patients were followed over time to the defervesent phase they identified an increase in 

the plasma lipoprotein levels in DF patients that recovered, likely representing a recovery of liver 

function. This increase was not seen in the DHF patients who appeared to experience long-term 

liver damage. These observations indicated that plasma VLDL and LDL levels may be good 

prognostic markers for severe dengue diseases. Further evidence for liver damage in severe 

patients was gathered with the increase in acetate, citrate and formate. Increases in acetate levels 

are often seen from liver dysfunction, specifically due to a decrease in acetyl-CoA synthetase 

activity (210). Plasma glutamine and choline were also decreased in severe diseases (208).  The 

differences in glutamine levels were discriminatory for severe vs. non-severe patients implicating 

glutamine as another potential prognostic feature. The longitudinal decrease in glutamine levels 

observed is consistent with the hypermetabolic state observed in DENV-infected cells. In 

particular, immune cells require increased glutamine as a biosynthetic precursor for metabolic 

processes and functionality (211). However, in cell culture glucose and not glutamine was shown 

to be important for DENV replication (76), but as is often the case, this observation may not be 

replicated in vivo.  

Each of these un-targeted metabolomics studies highlights differing metabolites that play 

a role in dengue disease pathology. Taken together, they provide a broad picture of metabolite 

dysregulation across patient cohorts from differing genetic backgrounds and age-ranges with 

primary or secondary DENV(1-4) infections, measured on multiple analytical platforms. Clearly, 

there is variability in the findings from these studies, however they consistently highlight liver 
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dysfunction in severe disease and provide us with a set of metabolites with prognostic potential. 

Further testing of these metabolic profiles in prospective studies will be crucial as we move 

forward in determining patient care options.    

Metabolic indicators of vascular permeability  

An intriguing and deadly phenomenon in dengue disease pathology is the vascular 

permeability and endothelial barrier leakage leading to hemorrhaging. Precisely how this occurs 

and whether it is virally mediated or a host response to the infection, has remained unclear. 

However, excellent hypotheses have been put forth that will be discussed here.   

Recent work on the DENV non-structural protein 1 (NS1) has suggested its role in 

mediating vascular permeability through disruption of the endothelial glycocalyx (47,212). These 

findings shed light on the mechanism of endothelial barrier failure. Many other metabolomic 

studies add to this by identifying host factors that may either contribute to endothelial barrier 

dysfunction or are a downstream effect of this cascade. For example, an increase in chymase was 

observed in DHF vs. DF patient serum from adult patients in Singapore (213). Chymase is a 

serine protease found primarily in mast cells, but also in skeletal muscle and skin. This group 

hypothesized that activated mast cells during infection produce excess chymase and causes an 

increase in vascular leakage (213).  

Recently, others have found serum immunomodulators that may play a role in endothelial 

barrier function. Using serum from dengue patients with plasma leakage they found a reduction 

in endothelial barrier function in cultured cells compared to serum from patients without plasma 

leakage (214). They identified various immunomodulators that differed in the leakage and non-

leakage serum samples and hypothesized that these may mediate the observed effects. In 

particular, leakage was strongly associated with augmented levels of IP-10, GM-CSF, IL-1α, and 
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IL-8, as well as decreased levels of CXCL1 and platelets (214). Indeed, many other metabolites 

found elevated in DSS patients may be a cause or an effect of plasma leakage. Likely endothelial 

barrier dysfunction is a product of both virally mediated efforts and host factors responding to 

the infection. Teasing these metabolites apart and testing them in model systems will be critical 

to gain mechanistic understanding of this phenomenon.  

Comparison with other viruses: 

 Of course, a big question in this field is how well metabolomics can distinguish one 

disease vs. another rather than just a healthy vs. a disease state. Specifically, can we identify 

biochemical features that are uniquely and consistently altered by a given infection rather than 

simply due to a generalized immune or stress response from the host? 

Chikungunya virus (CHIKV) is an alphavirus that shares a common vector with DENV: 

the Aedes aegypti and Aedes albopictus mosquitos. It has co-circulated with DENV in parts of 

South East Asia for a long time. It was first detected in the Americas in 2013 and now co-

circulates with DENV in these areas as well. Due to this co-circulation, the prospect of human 

co-infection with these viruses is a real possibility. However, this phenomenon and particularly 

the metabolic impacts are poorly understood. The first report of co-infection was in 1967 in 

South India (215). Furthermore, with the recent introduction of Zika virus (ZIKV) into the 

Americas, and the common vector that it also shares with CHIKV and DENV, there are now 

multiple reports of all combinations of co-infection with these three viruses (216–220). 

Metabolomics of ZIKV infection are still preliminary with only one report where serum from 

ZIKV patients was compared to a control group of healthy and febrile patients negative for 

ZIKV (221). They identified an up-regulation of Angiotensin (1-7) and Angiotensin I as well as a 

disturbance of the PI3K-AKT-mTOR Pathway. While, they did not specifically compare to 
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DENV disease, their inclusion of healthy and non-healthy individuals highlighted interesting 

metabolic differences unique to ZIKV that will be interesting to confirm in future studies.  

Naturally, metabolomic comparisons of DENV and CHIKV infections were in order. 

Thus, Shrinet et al conducted an NMR based metabolomics study of serum from patients in India 

who were infected with DENV, CHIKV or co-infected with both (222). They stratified their 

groups multiple different ways in order to find confounding factors that detract from the main 

findings. They found that age, fever duration and intensity of joint involvement in CHIKV 

disease all contributed to the variation in the data. However, they were able to correct for these 

and identify features whose differences were attributed to the disease states. They found eleven 

compounds dysregulated in the CHIKV infections, fourteen compounds in DENV and twenty 

compounds in the co-infected patients. Glycine, serine, threonine and galactose metabolism were 

all dysregulated in CHIKV, DENV and the co-infections. Hence, they identified similarities 

amongst the infections, but were also able to identify specific features that biochemically 

differentiated DENV vs. CHIKV infection vs. a co-infection.  

Another febrile illness with symptoms that overlap with DENV diseases is influenza. Cui 

et al used their expertise in DENV metabolomics to compare it with H3N2 influenza infections 

(223). They used untargeted metabolomics and targeted oxylipidomics to characterize serially 

collected patient serum, comparing first, second, third visits to see metabolic changes overtime. 

They identified disturbances in purine metabolism, fatty acid biosynthesis and β-oxidation, 

tryptophan metabolism, phospholipid catabolism, and steroid hormones over time. Significant 

overlap between the two diseases was observed, however they were able to metabolically 

distinguish them. They identified eight oxylipins associated with early influenza infection, and  
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found that dengue infection attenuated serotonin, bile acids and biliverdin. Despite the clinical 

similarities and general host response to inflammation and disease, it is remarkable that these 

infections can be metabolically distinguished.  

Other bio-fluids 

A major critique of using serum for many of these metabolomics studies is the difficulties 

it presents in clinics in resource poor settings. For example, it is relatively invasive, time-

consuming and the material needs are costly. These studies using serum are proof-of-principle 

and identify trends and biological concepts. Translation of these concepts to biological samples 

that are cheaper and less invasive will be critical for developing quality diagnostic and 

prognostic tests.  

Due to the ease of serum analysis, few metabolomics studies have been carried out on 

other bio-fluids. However, a group in Malaysia recently collected mid-stream urine from ninety 

six adult males serologically positive for dengue infection at the Penang General Hospital (PGH), 

and compared to matched healthy controls (224). 1H NMR spectroscopy was used to characterize 

the metabolome of these patients. They identified dysregulation of amino acid metabolism, 

tricarboxylic acid cycle intermediates and β-oxidation of fatty acids in DENV-infected patients. 

They found an increase in 4-hydroxyphenylpyruvic acid, which is an intermediate in the 

metabolism of the amino acid phenylalanine. The observation of perturbation of phenylalanine 

metabolism was confirmed by other groups (202,225). High levels of phenylalanine indicate 

oxidative stress due to its accumulation and lack of conversion to tyrosine. This is due to reduced 

levels of tetrahydrobiopterin (BH4), which is a necessary cofactor for converting phenylalanine 
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 to tyrosine. In conditions of oxidative stress, BH4 is increasingly oxidized and thus unavailable 

as a substrate. Again, we see the theme that dengue disease contributes to increased oxidative 

stress.  

While many viral diseases have excellent diagnostic tests available, prognosis remains a 

problem. Metabolomics has revealed great potential to change this by identifying biomarkers that 

can predict disease outcome. In the case of DENV infections, these metabolites tend to result 

from liver damage and oxidative stress caused by the virus that regulates multiple biochemical 

pathways. Furthermore, it is very promising to see similar biochemical pathways disturbed 

across studies, genetic backgrounds, analytical platforms and bio fluids. Application of these 

findings to longitudinal and blinded test sets will demonstrate the reproducibility of these 

findings and translatability to the clinic. 

1.7 Conclusions 

Here, we have discussed the current understanding of the flavivirus life-cycle, flavivirus 

manipulation of cellular metabolism, the lipid content of flavivirus envelopes, enzymes in the 

unsaturated fatty acid biosynthesis pathway and their contribution to human diseases, and the 

current state of metabolite biomarker discovery in biofluids from dengue patients.  

Each of these sections provides the scientific premise for our experiments in this thesis. 

Given the vast evidence in the literature it is clear that DENV2 induces changes in cellular 

metabolism to meet its needs. We have identified outstanding questions in the field and proposed 

directions to answer them. In the following chapters, we will present our findings of the 

metabolic changes induced by DENV2 infection over time in an in vitro human cell culture 

model (Chapter 2), discuss the importance of the unsaturated fatty acid biosynthesis pathway for 

the DENV2 life cycle (Chapter 3), describe our efforts towards the discovery of metabolite 
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biomarkers in serum from dengue patients as well as our efforts to identify common themes in 

specific pathways perturbed between model systems (Chapter 4). Taken together, this 

dissertation will provide insight into how cellular metabolism plays a key mechanistic role in the 

DENV life cycle and dengue disease prognoses.  
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CHAPTER 2. DENGUE VIRUS 2 PERTURBS ESSENTIAL FATTY ACID SYNTHESIS 
AND METABOLISM IN HUMAN HEPATOMA CELLS 

 
 
 

2.1 Introduction 

The DENV-induced ER membrane rearrangements form multiple complex structures 

(described in section 1.2). These membranous structures serve to concentrate metabolites 

required for the assembly and function of viral replication complexes. Furthermore, they protect 

replicating viral genomes from the innate immune response and serve as the site for assembly 

and budding of progeny virions (29,226).  

The extensive reorganization of ER membranes for the construction of complex 

structures is not trivial. Engineering the characteristics of membranes can occur in many ways. 

Primary among these is through alteration of cellular metabolism to concentrate or deplete a 

given lipid species. Interestingly, it was previously demonstrated that cellular fatty acid synthase 

(FAS) is recruited to these membrane sites during DENV2 replication (90). Hence, virus 

infection may be driving the concentration of particular lipid species [i.e.: long-chain fatty acids 

(C>16)] in these virus-induced membranes by changing the location of FAS to promote local 

fatty acid synthesis. It was also shown that the activity of FAS is required for DENV2 replication 

in both human and mosquito cells (90,92). Furthermore, significant changes in the lipid 

repertoire of mosquito cells as well as mosquito midguts following infection with DENV2 have 

also been demonstrated (92,106). Highly unsaturated fatty acids and lyso-phospholipids, both 

species that induce membrane curvature and fluidity (97), were significantly altered in virus 

infected mosquito cells and midguts. These studies indicate that not only does DENV2 expand 

the total area of ER membranes, but it also enriches cells in lipid species that facilitate the 

curvature of these complex replication platforms.  
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The completion of the virus life cycle from entry and fusion through replication, 

assembly and egress is a tightly coordinated process that occurs in a timely manner. This is 

essential so that the virus can evade the cellular response and effectively generate progeny 

virions. How viruses coordinate metabolic changes in the host in a timely manner is less well 

understood. However, cellular metabolism is a powerful limiting factor in viral replication and 

the tight control of these processes is absolutely imperative for viruses to complete the steps in 

their life-cycle [reviewed in (67)]. The timing of a life cycle differs widely amongst families of 

viruses. Interestingly, metabolic differences in central carbon metabolism between a relatively 

fast and slow growing virus have been characterized, clearly demonstrating the importance of 

well-timed metabolic control (69). Characterizing other changes to biochemical pathways, or 

their dysregulation, will provide further insight into the metabolic requirements of viral 

replication.  

Given that flaviviruses significantly alter cellular membranes in a consistent time-

dependent manner (227), temporal controls of specific metabolic pathways must occur to cater to 

changing needs as infection progresses. These temporal changes can be used as a tipping point to 

alter the outcomes of infection. Using high-resolution mass spectrometry and a chemo-

enrichment approach, we have identified changes in the cellular metabolome caused by DENV2 

infection over time. Specifically, we found a time-dependent enrichment of de novo fatty acid 

synthesis and arachidonic acid metabolism that coincided with viral replication. Disruption of 

these pathways resulted in a reduction of viral replication. Through these studies, we have 

demonstrated that DENV2 infection induced changes in key metabolic pathways to cater to its 

changing needs over time and we can alter these pathways to control viral infection.   
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2.2 Results 

To identify metabolic changes caused by DENV2 over time we used liquid 

chromatography-high-resolution mass spectrometry (LC-MS) to profile DENV2 infected cells 

during a time course of infection. Specifically, we analyzed metabolic changes in Huh7 cells 

infected with DENV2 at 6, 18, 30 and 48 hr post-infection (hpi)  (Figure 5, and Table 2), 

representing early, peak, advanced and late time points of infection.  Mock infected cells and a 

UV-inactivated (UVI) virus, which can attach to and enter cells but cannot replicate its genome, 

were used as controls. The UVI, enabled us to differentiate between metabolic changes that 

occurred following exposure to and entry of a virus versus during replication of the viral genome. 

We expected that any metabolic changes observed that are similar in the DENV2 infected and 

UVI samples should be a result of early signaling events following virus attachment, while 

similarities between mock and UVI treated cells should be due to normal cell growth conditions. 

Where these features differ from DENV2 infected cells, represents metabolic changes caused by 

virus infection and replication.  
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Figure 5 Experimental design used to identify temporal metabolic changes during DENV2 infection. 
Huh7 cells were infected with DENV2, a UV-inactivated DENV2 or mock infected for 6, 18, 30 or 48 hr. 
At each time point cells were harvested and metabolites extracted into polar and non-polar phases from an 
equal number of cells from each sample. These metabolites were then analyzed by LC-MS in positive and 
negative ionization modes. A linear model was built to identify significant differences between all the 
comparisons and log fold change values calculated between each comparison. Mass to charge (m/z) ratios 
and statistical measures were fed into a network analysis platform to annotate the features and identify 
biochemical pathways enriched during infection. 
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LC-MS reveals changes in the DENV2 infected cellular metabolome  

 LC-MS was run to evaluate the cellular metabolites extracted into the polar and non-

polar phases, each in both positive and negative ionization mode to acquire maximal metabolite 

coverage. For our initial multivariate analyses, we kept each of the phases and modes separate, 

giving us four sample sets to analyze (Figure 5). Molecular features observed were defined as 

unique mass to charge ratios (m/z) and retention times (rt). Those features found to be absent in 

50% or more of a group were removed. We further removed all features found in only one group 

and imputed missing values as described in the materials and methods section.  

Due to the multiple variables in this experiment, we ran a variety of rigorous statistical 

analyses. The different comparisons are outlined in Table 2.  As an initial overview of the data 

we performed principle component analyses (PCA) on all four phases and modes (Figure 6A and 

6B). We first looked at the effect of time on the metabolic profiles of the samples. Samples are 

colored; 6 hpi (black), 18 (red), 30 (green) and 48 (blue) (Figure 6A). The samples are circled with 

the 95% confidence interval (CI) around the mean. We see that the principle components 

separate the samples by time very clearly for non-polar metabolites analyzed by negative 

ionization mode. General separation between the early (6 and 18 hpi) and late (30 and 48 hpi) 

time points are seen in the polar phase metabolites analyzed by both positive and negative 

ionization modes. However, distinct temporal separation is not observed in the non-polar 

metabolites analyzed by the positive ionization mode (Figure 6A). These analyses provide 

valuable insight into the chemical characteristics of metabolites that change over time as cells 

grow in culture. 
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Table 2 Statistical comparisons made between samples in all phases, ionization modes, time 
points and treatment groups. 

Hours 
post 

infection 

Non-Polar 
features in 

positive 
ionization mode 

Polar features in 
positive ionization 

mode 

Polar features in 
negative 

ionization mode 

Non-Polar 
features in 
negative 

ionization mode 

6 
DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

18 
DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

30 
DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

48 
DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

DENV2 vs mock 
DENV2 vs UVI 

mock vs UVI 

 

Next, we looked at the global effect of virus infection or exposure on the metabolome 

(Figure 6B). The PCA plots show DENV2 infected samples colored in black, UVI samples are in 

green and mock in red (Figure 6B). The samples are circled with the 95% confidence interval 

(CI) around the mean. Similar to the above, we see a strong separation of DENV2 from mock 

and UVI samples in all of the phases and modes except for the non-polar metabolites analyzed 

by the positive ionization modes (Figure 6B). These analyses indicate that UVI-exposed and 

mock-infected cells are quite similar, while DENV2 infection drastically changes the cellular 

metabolome. 
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Figure 6 Principle component analyses (PCA) show segregation of the global metabolite profiles. (A) PCA plots for each phase and 
ionization mode with all the samples color-coded by time; 6 hpi (black), 18 (red), 30 (green) and 48 (blue). The circle around the data represents 

Non-Polar 
positive Polar positive Polar negative
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the 95% confidence interval of those samples. (B) PCA plots for each phase and ionization mode with all the samples color-coded by treatment; 
DENV2 (black), UVI (green) and mock (red). The circle around the data represents the 95% confidence interval of those samples. DENV2; 
dengue virus serotype 2, UVI; UV-inactivated DENV2.  
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To test for dysregulation of metabolites we used the limma package in R (228) to generate a 

linear model measuring the log fold change (logFC) in abundance of each metabolite between 

the 12 different comparisons. These were plotted against their p-values on volcano plots 

(Supplementary Figures 1 and 2). Metabolites were considered significantly different when the 

absolute log fold change was at least 1 and adjusted p-value was less than 0.005. A low p-value 

was used to decrease the likelihood of false discovery because of the large number of 

comparisons that are looked at simultaneously.  

We quantified the number of molecular features (unique m/z values) increased 

(logFC>0), decreased (logFC<0) or those that remained unchanged (NA) in each of the 

comparisons by time-points. The number of molecular features from each phase and mode were 

summed to give the total number of metabolites that changed in each comparison (Table 3). 

These numbers were color-coded according to their values. The red cells correspond to the most 

number of features changed and green corresponds to fewer changes (Table 3). The highest 

numbers of features we see are those that did not change in abundance in each comparison, this 

is expected. The highest number of features that changed was downregulated at 6 hpi. At peak 

viral replication (18 hpi) we also see numerous metabolites significantly different between 

DENV2-infected and mock-infected cells. Changes are also observed between DENV2 and UVI, 

although fewer than compared to mock. Comparing mock to UVI we see far fewer differences 

overall. Furthermore, at later time points (48 hpi) we see fewer differences between all 

comparisons. These trends can also be observed looking at the volcano plots in Supplementary 

Figures 1 and 2. Overall, the number of features changing reflects the effects of DENV2 

infection on the cellular metabolome and demonstrates the quality of our controls. 
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Table 3 Changing metabolites over time. The numbers of metabolites increased, decreased or 
remaining unchanged (NA) in each of the comparisons by time-points are shown. The numbers 
of molecular features (based on m/z) from each phase and ionization mode were summed to give 
the total number of metabolites in each comparison. These numbers were color-coded according 
to their values. Color scale is indicated. 

 

 

Pathway analysis of DENV2 induced metabolic changes 

Untargeted mass spectrometry is an invaluable tool for discovery of novel molecular 

features and characterizing global trends. However, the annotation of specific metabolites with 

this approach is still weak. This is because the methodology typically relies on matching only the 

mass to charge (m/z) ratios of molecular features against databases of known metabolites. These 

databases only cover ~2% of the complete human metabolome leaving extensive un-annotated 

data [reviewed in (229–231)]. Furthermore, a given m/z value can often map to multiple 

metabolites in the databases. Therefore, without further fragmentation of the molecule, it is often 

impossible to distinguish between them. Recent advances in bioinformatics has improved this 

outlook [reviewed in (232)]. An alternative to traditional untargeted metabolomics is the chemo-

enrichment approach where m/z values are mapped onto a network and connectivity data 

between the metabolites is used to obtain putative identifications. This removes human bias in 

selecting metabolite annotation.  



65 
 

Thus, we used the mummichog software to generate a network of all the detected 

metabolites and to identify biochemical pathways that were enriched in the different comparisons 

(233). The biochemical pathways found to be enriched in each of our comparisons at each time 

point is listed in Supplementary Tables 1 and 2. We observed significant dysregulation of 

pathways in DENV2-infected cells compared to uninfected cells. Other pathways were perturbed 

in both DENV2 and UVI samples compared to mock, indicating a stress response or signaling 

event caused by virus entry. To further tease these relationships apart we looked at enriched 

pathways shared amongst these comparisons. The number of pathways shared (following pooling 

of metabolites from all time points) is depicted in the Venn diagram in Figure 7A. We reasoned 

that pathways enriched in both the DENV2 vs. mock comparison and the DENV2 vs. UVI 

comparison that are absent in mock vs. UVI must represent a metabolic shift caused by viral 

replication distinct from viral attachment and entry (Figure 7B). We observed that a substantial 

amount (41%) of the total enriched pathways attributed to virus replication were involved in fatty 

acid synthesis or metabolism (Figure 7B).  
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Figure 7 DENV2-infected cells show enrichment of pathways in fatty acid biosynthesis and 
metabolism. (A) Pathway analysis was run to identify enriched pathways in the indicated comparisons. 
Venn diagrams show the number of pathways that are common or unique amongst the comparisons. 
Pathways shared between DENV2 vs. mock and DENV2 vs. UVI represent pathways that are specifically 
enriched during viral replication. (B) The 17 pathways that fall in this group are listed. 41% of these 
pathways involve fatty acids. These are shown in bold. DENV2; dengue virus serotype 2, UVI; UV-
inactivated DENV2. 
 

To determine which biochemical pathways changed with the progression of viral 

infection, we performed similar analyses of shared and unique pathways at each individual time-

point (Figure 8). The numbers of pathways attributed to viral replication at each time point are 

highlighted in yellow (Figure 8A-D). These biochemical pathways are listed below with their 

corresponding p-value as an indication of how significant the enrichment of the pathway is in 

DENV2 infected cells compared to mock (Figure 8D).  
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Figure 8 DENV2-infected cells show a temporal enrichment of pathways. Pathway analysis was run 
to identify enriched pathways at each time point in the indicated comparisons. (A-D) Venn diagrams 
show the number of pathways that are common or unique at each time point. Pathways shared between 
DENV2 vs. mock and DENV2 vs. UVI represent pathways that are specifically enriched during viral 
replication. The number of pathways that fall in this comparison at each time point are highlighted in 
yellow. (E) The pathways that correspond to the highlighted numbers are listed for each time point. They 
are ordered by their p-value (only p<0.05 were included), which indicates the level of significance for the 
enrichment of the pathway in DENV2 vs. mock. DENV2; dengue virus serotype 2, UVI; UV-inactivated 
DENV2.  
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In general, we see an initial disturbance of pathways involved in anabolic processes, 

particularly amino acid and nucleotide synthesis. At time points representing peak and advanced 

viral infection we see pathways involved in fatty acid synthesis and metabolism. Finally, at later 

time points we see a switch to more catabolic and energy producing pathways that are disturbed 

(Figure 8E). This is similar to what has been observed for other viruses (234) and demonstrates 

the changing needs of the virus over time.  

For enhanced detail, we show the metabolic network of DENV2 vs. mock at each time 

point. The metabolic networks for DENV2-infected vs. mock-infected samples at 6 hpi is shown 

in Supplemental Figure 3, 18 hpi in Supplemental Figure 4, 30 hpi in Supplemental Figure 5, and 

48 hpi in Supplemental Figure 6. For each time point we show a sub-network of metabolites 

derived from the significantly perturbed biochemical pathways (Figure 9, 10). The red nodes are 

metabolites that are increased in DENV2 infected cells, while blue are metabolites that are 

decreased. At 6 hpi we see metabolites involved in amino acid biosynthesis that tend to be 

downregulated (Figure 9A). We have shown the sub-network of tryptophan metabolism that is 

dysregulated at this time point (Figure 9A and Figure 8E). Then at 18 hpi (Figure 9B) we see that 

metabolites in arachidonic acid (AA) metabolism are strongly upregulated in virus-infected cells 

(Figure 9B and Figure 8E). This trend is maintained at 30 hpi (Figure 10A). Finally, we see far 

fewer overall altered metabolites at 48 hpi. (Supplemental Figure 6). We have highlighted the 

observed features in glycolysis (Figure 10B). The increase in downstream metabolites in 

glycolysis such as phosphoenolpyruvate potentially indicates a shift towards gluconeogenesis at 

48 hpi. (Figure 10B).  
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Figure 9 Metabolic sub-networks at early viral replication. Metabolites annotated by network analysis 
that are observed following comparison of DENV2-infected samples to mock controls. The node size and 
color are determined by the statistical differences between DENV2 and mock with the values noted in the 
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legend. The large nodes (red) are metabolites that are upregulated and the small nodes (blue) are 
metabolites that are downregulated in DENV2 vs. mock samples. The edges connecting the nodes 
represent enzymatic reactions between the connected metabolites. Their length has no significance. (A) A 
sub-network of tryptophan metabolism at 6 hpi showing decreases in most features of this pathway. (B) A 
sub-network of features in arachidonic acid metabolism as 18 hpi. These sub-networks were chosen based 
on pathway analysis that indicated their enrichment at this time point (Figure 8). The legend indicates 
values of size and color for the nodes.  
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Figure 10 Metabolic sub-networks at late viral replication. Metabolites annotated by network analysis 
that are found when comparing DENV2-infected samples to mock controls, similar to Figure 9. (A) A 
sub-network of arachidonic acid metabolism at 30 hpi showing increases in most features of this pathway. 
(B) A sub-network of features in glycolysis at 48 hpi is shown. These sub-networks were chosen based on 
pathway analysis that indicated their enrichment at this time point (Figure 8). The legend indicting values 
of size and color for the nodes.  
 
De novo fatty acid synthesis  

Previously, we demonstrated that FAS activity was upregulated during DENV2 virus 

infection and re-located to centers of viral replication (90). Furthermore, we have shown that 

stearoyl-CoA desaturase 1 (SCD1) and its product, oleic acid, increased during DENV2 infection 

in a time-dependent manner. Inhibition of this enzyme resulted in the production of immature 

virus particles (Chapter 3). These are both enzymes in de novo FA biosynthesis that act on 

medium to long-chain FAs. Here we observed that de novo FA biosynthesis was perturbed at 18 

and 30 hr of viral replication (Figure 8E). Specifically, we observed an increase in palmitic and 

oleic acids at peak viral replication (Figure 11A). Additionally, when we mapped the metabolites 

that were observed (from all phases and modes) onto the KEGG unsaturated fatty acid 

biosynthesis pathway we saw consistent disturbances in these metabolites over time (Figure 

11A). In the n-3 family of unsaturated fatty acids, we observed an early increase in 

eicosapentanoic acid, indicating some increase in essential fatty acid uptake or prevention of its 

degradation (Figure 11B). This fatty acid can be elongated and desaturated to docosahexanoic 

acid, which we measured in this study with a moderate but not statistically significant increase at 

18 hpi (Figure 11B).  
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Figure 11 Metabolites observed in the biosynthesis of unsaturated fatty acids. (A-B) Using Kegg 
pathways (235) we have mapped the metabolites we observed in de novo fatty acid biosynthesis and 
unsaturated fatty acid biosynthesis. The common name for each fatty acid is shown in green with the 
measured m/z value for each molecular feature indicated below. The graphs show the normalized 
abundance of the metabolites over time in DENV2 infected cells, UVI-exposed cells and mock-infected 
cells. The arrows indicate enzymatic reactions with rate-limiting enzymes of interest labeled. 
DENV2vsMock (*=p<0.005, **p<0.001), DENV2vsUVI (#=p<0.005, ##=p<0.001), m/z; mass to charge 
ratio, FAS, Fatty acid synthase, SCD1; Stearoyl-CoA desaturase 1, ELOVL6; Elongation of very long-
chain fatty acids 6, FADS2; Fatty acid desaturase 2, ELOVL2; Elongation of very long-chain fatty acids 2,  
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The elongation of fatty acids is regulated by seven elongation of very long chain fatty 

acid (ELOVLs) enzymes in mammalian cells, which differ by substrate specificity and tissue 

distribution (140,236). The desaturase enzymes that act on the fatty acid products we see are 

stearoyl-CoA desaturase 1 (SCD1) and fatty acid desaturase 2 (FADS2). Using siRNA analyses 

we screened the ELOVL and desaturase enzymes responsible for the observed reactions shown 

in Figure 11A and 11B. We observed that inhibition of the enzymes that elongated and 

desaturated both de novo synthesized FAs and essential FAs were important for viral replication 

(Table 4). Hence, the increases in fatty acids that we see in DENV2 infected cells are likely viral 

induced changes in the cell and disruption of their synthesis is detrimental to the virus. 

 
Table 4 DENV2 replication is reduced with inhibition of unsaturated fatty acid synthesis. siRNAs 
were used to knockdown enzymes of interest in Huh7 cells. These cells were infected with DENV2 and 
viral titers measured after 24 hrs. Shown here is the fold change in viral replication compared to a 
matched irrelevant siRNA control (IRR) and the p-value from a statistical comparison of three replicates. 
The mechanistic analyses of the desaturase enzymes (SCD1 and FADS2) are also shown in Figures 14 
and 16.  

 

 

Arachidonic acid synthesis and metabolism 

Next, we characterized the role of n-6 fatty acids and their oxygenated products in 

DENV2 replication. Arachidonic acid (AA) is synthesized in the cell from n-6 fatty acid 

precursors. It is then stored in cellular membrane phospholipids by lysoacyltransferase enzymes 

and freed upon cleavage by PLA2 [reviewed in (237)]. When freed, it can be oxygenated 
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randomly by free radicals or by enzymes to produce eicosanoids, which are potent signaling 

molecules. The enzyme that acts on AA determines the production of each unique eicosanoid. 

The three main pathways to make eicosanoids are modulated by cyclooxygenase (COX), 

lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. These enzymes have a specific 

tissue distribution and are often concentrated in cells of the immune system [reviewed in (238)]. 

We identified that the AA metabolism pathway is dysregulated in DENV2- vs. mock-infected 

cells at 18 and 30 hpi (Figures 8E, 9B, 10A). We have reconstructed this pathway with 

representative features identified in our dataset by the mummichog software in both the synthesis 

of AA, its liberation from phospholipids, and its downstream effectors (Figure 12). Overall, we 

see a consistent increase in the precursors to AA as well as its downstream effectors in DENV2 

infected cells at peak viral replication (Figure 12). This increase is not seen in cells exposed to 

UVI-virus or mock treatment. Therefore, these data suggest that the replication of DENV2 

causes an increase in AA synthesis and metabolism. However, the data do not inform us on 

whether this pathway is required for viral replication or if it is a host-response to infection. 
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Figure 12 Metabolites observed in Arachidonic acid (AA) synthesis and metabolism. Using Kegg pathways (235) we have 
mapped the metabolites we observed in AA synthesis and metabolism. The common name for each metabolite is shown in blue with 
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the m/z value for each molecular feature indicated below. The graphs show the normalized abundance of the metabolites over time in 
DENV2 infected cells, UVI-exposed cells and mock-infected cells. DENV2 vs Mock (*=p<0.005, **p<0.001 DvsM), DENV2 vs UVI 
(#=p<0.005, ##=p<0.001). m/z; mass to charge ratio.  
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Given the metabolic disturbances we observed, we propose that both the synthesis and 

metabolism of AA is important for DENV2 replication. Therefore, disruption of this pathway 

would be detrimental to the virus. The observed trends in specific metabolites in this pathway are 

summarized in Figure 13. We have also highlighted the critical enzymes in blue and have 

indicated what is known about their role in flavivirus replication. For instance, PLA2 is activated 

during DENV infection and inhibition of this process is detrimental to West Nile Virus (WNV) 

replication (94,239). 5-LOX expression was also upregulated in DENV-infected human 

neutrophils resulting in increased leukotriene B4 (240). Here, we investigated the importance of 

fatty acid desaturase 2 (FADS2) and 5-lipoxogenase (5-LOX) in the DENV2 life cycle in Huh7 

cells.  
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Figure 13 DENV2 perturbs essential fatty acid biosynthesis and metabolism. Here we show 
a model of a cell infected with DENV2 causing perturbed AA synthesis and metabolism. The 
metabolites in these pathways are listed along with a blue arrow indicating the trend in DENV2 
infected cells at 18 hpi compared to mock infected cells. The arrows pointing up indicate an 
increase in the indicated metabolite, while the arrow pointing down indicates a decrease in 
abundance. Critical enzymes in these pathways are labeled in red with a citation for data showing 
that inhibition of the indicated enzyme reduces viral replication.  
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Fatty acid desaturase2 

We observed a modest (insignificant) increase in γ-linoleic acid in DENV2 infected cells 

but significant increases in downstream metabolites (Figure 12). This could be due to an increase 

in flux of metabolites through this pathway. Hence, we reasoned that further interrogation of key 

regulators of this pathway was warranted. The rate-limiting enzyme in this pathway is FADS2. It 

converts linoleic (C18:2n-6) or α-linoleic acid (C18:3n-3) to γ-linoleic acid (C18:4n-6) or 

stearidonic acid (C18:4n-3) respectively. The n-6 family member γ-linoleic acid is further 

converted to AA while the n-3 stearidonic acid is further converted to eicosapentanoic acid. Both 

of these polyunsaturated fatty acids (PUFAs) can be further elongated and desaturated to other 

PUFAs or can be oxygenated to become eicosanoids with potent signaling capabilities (Figure 

12).  

Since we observed that the linoleic acid metabolism pathway was modulated in a 

temporal manner over the course of DENV2 infection (Supplementary Table 1 and 2) we wanted 

to test the expression levels of FADS2. Like many other fatty acid metabolism enzymes, FADS2 

is primarily regulated at the transcriptional level [reviewed in (140)]. Thus, we infected cells 

with DENV2 and harvested infected and mock-infected cells at the indicated time points. RNA 

was extracted and FADS2 gene expression was measured. We observed an early (6 hpi) increase 

in FADS2 gene expression followed by a decrease in expression at later time points (Figure 13A). 

The decrease in expression may be due to the accumulation of PUFAs in cells that can reduce 

gene expression via SREBP-1 (241). These data suggest that DENV2 infection may increase 

FADS2 expression in a time-dependent manner to ensure an early increase in essential PUFA 

metabolism.  
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To determine the role of FADS2 in DENV2 infection we used a FADS2 specific siRNA 

to knockdown gene expression and measured its impact on viral replication. We first determined 

that treatment of cells with an siRNA for FADS2 was not significantly cytotoxic for the cells 

(Figure 13B) and that treatment with the siRNA resulted in a decrease in FADS2 gene 

expression (Figure 13C). Thus, we infected cells after 48 hr of knockdown and allowed for viral 

replication to proceed for 24 hr. We then measured infectious virus and viral genome copies in 

the cell (Figure 13D and 13E). Interestingly, we found that while viral genome copies in the cell 

were not reduced significantly upon FADS2 knockdown, we did observe a significant reduction 

of infectious virus release from cells at multiple time points (Figure 13E). These data suggest 

that PUFA products of FADS2 enzymatic activity are dispensable for viral genome replication, 

but they are critical for the production of infectious virions.  
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Figure 14 Loss of function of fatty acid desaturase 2 (FADS2) limits DENV2 replication. (A) Huh7 
cells were infected with DENV2 (MOI=100) or mock infected and harvested at the indicated time points. 
FADS2 gene expression was measured by qRT-PCR and the fold change in gene expression compared to 
mock was calculated with the delta delta ct method (242) using one sample at each time point. (B) 
FADS2 mRNA was knocked down with a FADS2 specific siRNA and cytotoxicity was measured after 48 
hr following knockdown. No significant cytotoxicity was observed compared to controls, DENV2 
(siRNA against the viral genome) and IRR (irrelevant/non-specific siRNAs). (C) Huh7 cells were treated 
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with the indicated siRNAs and subsequently infected with DENV2. Cells were collected and FADS2 gene 
expression measured compared to RPLPO to confirm knockdown. A 70% decrease in FADS2 mRNA 
levels was found after 48 hr of siRNA treatment. (D) DENV2 positive strand genome was measured from 
one sample of these same cells and normalized to RPLPO as in part A. No difference was found in viral 
genome replication following FADS2 knockdown. (E) Virus containing-supernatants were collected from 
the same experiment in D and infectious virus was titrated. A significant reduction in infectious virus was 
found after siRNA treatment for 48, 72 and 96 hr. (*=p<0.05, **=p<0.01). The results represent 6 
biological replicates. 
 
5-Lipoxogenase  

To further explore the functional impact of increased PUFA metabolism, we looked at the 

eicosanoids altered by DENV2 replication (Figure 12). We identified two eicosanoids produced 

from AA that were increased at peak viral replication (Figure 12). These eicosanoids are 

produced via the enzyme 5-LOX, which converts AA to 5-HPETE and then rapidly to either 5-

HETE or leukotriene A4. Leukotriene A4 is then converted to either Leukotriene B4 or C4, which 

act as chemical messengers to other cells. 5-LOX is predominately expressed in bone-marrow 

derived cells and not in hepatocytes (243), however it can be expressed in many cancerous 

tissues (244) and has been reported in HepG2 cells (245). Since we observed the two different 

products of this enzyme in our Huh7 cells we wanted to first confirm its presence in this cell line. 

Using primers specific to 5-LOX we quantified and confirmed 5-LOX expression in Huh7 cells 

(Figure 1A).  

Given the role of 5-LO in inflammatory processes, inhibitors have been developed 

against it to treat allergies (246). We took advantage of one such inhibitor to test its impact on 

DENV2 replication in Huh7 cells. Interestingly, we found a dose-dependent decrease in virus 

replication at non-cytotoxic concentrations of the inhibitor (Figure 15B). These data suggest that 

the increased expression of these eicosanoid effectors is likely a pro-viral action in the cell and 

not merely a general inflammatory response.  
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Figure 15 Inhibition of 5-lipoxygenase reduces viral replication. (A) Huh7 cellular RNA was 
extracted and the concentration was measured. 10-fold dilutions were prepared starting with 
50ng/µL to 0.5 ng/µL. Using primers specific for 5-LOX, we measured the amplification (Ct 
values) of the 5-LOX in the RNA samples with qRT-PCR. (B) Huh7 cells were infected with 
DENV2 (MOI=0.5) and treated with the indicated concentrations of Zileuton, an FDA approved 
5-lipoxygenase inhibitor.  After 24 hr, cytotoxicity was measured and virus containing-
supernatants were titrated. Therapeutic index was measured as the EC50/CC50. The results 
represent three biological replicates of a single experiment. 

2.3 Discussion 

Temporal control of replication is key to successful virion production. Metabolites are 

potent enhancers or restrictors of viral replication, hence we sought to understand the temporal 

metabolic changes that occurred during DENV2 infection of human cells to determine how 

metabolites might temporally control the viral life cycle. Specifically, we carried out a chemo-

enrichment approach to analyze metabolomic data acquired during a time course of infection 

with DENV2 followed by mechanistic investigations of specific pathways that were highlighted 

by the data. 
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Pathway analysis over time 

Our use of a chemo-enrichment approach (mummichog) is a distinct advancement in the 

field of untargeted metabolomics.  The use of network connectivity enhances the likelihood that 

we have correctly annotated the features and removes the bias of manual annotation [reviewed in 

(232)]. Using this approach, we have identified biochemical pathways that are enriched in the 

indicated comparisons and identified where they are shared or remain distinct between 

treatments. We reasoned that pathways enriched in both DENV2 vs. mock and DENV2 vs. UVI-

virus exposure must play an important role in viral replication. Certainly, all the pathways 

enriched in DENV2 vs. mock are likely involved in viral replication, but when these are shared 

with the DENV2 vs. UVI-comparison, it increases the likelihood that they are impacted by viral 

replication specifically, as opposed to viral attachment or entry. We noticed that many of these 

pathways were involved in fatty acid biosynthesis or metabolism confirming previous 

observations that fatty acids are important points of control during DENV2 infection (90). 

We then looked at the shared pathways attributed to DENV2 replication enriched at each 

distinct time point of replication, we observed a disturbance in anabolic cellular processes 

(amino acid synthesis) at early and peak replication time points with a switch to catabolic 

processes (TCA and glycolysis) at late infection. This switch in cellular metabolism was also 

observed in HCV infected cells indicating a common energetic need (234). The disturbances in 

anabolic biochemical pathways were geared towards the production of amino acids and 

nucleotides at 6 hpi. Early control of these substrates is not surprising given the need for the 

virus to rapidly translate and replicate its genome. However, we observed a general decrease in 

metabolites involved in tryptophan metabolism. We did observe an early increase in 

tetrahydrobiopterin (BH4) in DENV2-infected cells. BH4 is a cofactor for tryptophan 
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hydroxylase, which metabolizes tryptophan on the pathway to serotonin. BH4 is widely 

distributed and acts as a co-factor for multiple amino acid hydroxylase enzymes and nitric oxide 

(NO) synthases and is sensitive to degradation by reactive oxygen species (247). Accumulation 

of BH4 along with depletion of certain amino acids (Figure 9A) may indicate that amino acid 

synthesis is primarily downregulated early during infection or that the virus is depleting 

substrates too rapidly for the cell to keep up. Others have hypothesized that BH4 is depleted in 

severe dengue diseases due to oxidative stress leading to accumulation of phenylalanine (202). 

Perhaps the early increase in BH4 coupled to the decrease in advanced infections is a by-product 

of the time-dependence of oxidative stress in DENV2 infection, which plays a pro-viral role in 

genome replication (204).  

Fatty acid synthesis 

 Following the early disturbance of nucleotide and amino acid synthesis, we observed 

changes in fatty acid synthesis at peak viral replication. This time point is when cellular 

membranes are actively expanding to support viral replication (227). Fatty acids are key 

substrates for these membranes hence the regulation of FAS by DENV2 (90). However, the fatty 

acid substrates made by FAS are clearly not sufficient for the required membrane expansion, 

since we observed accumulation of longer chain unsaturated fatty acids in DENV2 infected cells. 

The ELOVL family of enzymes are rate-limiting in elongating fatty acids, which is accomplished 

in a four enzyme cycle to add two carbons to an elongating fatty acid chain (140). ELOVL7 is 

critical for infectious virion production of human cytomegalovirus (HCMV) (248). Since we 

observed an increase in oleic acid at 18 hpi, we hypothesized that ELOVL6 and SCD1 are 

utilized by the virus to synthesize these fatty acids. We demonstrated that reduction of ELOVL6 

and SCD1 reduces viral replication. We also observed increases in docosahexanoic acid 
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(although not statistically significant) and hypothesized that ELOVL2 and FADS2 would be 

utilized to synthesize these fatty acids. Thus, we demonstrated that reduction of ELOVL2 and 

FADS2 reduced viral replication. Taken together, our studies here provide biochemical and 

mechanistic evidence that fatty acid synthesis and elongation are essential for DENV2 

replication.  

Given the clear importance of phospholipids (PL) during flavivirus infection we 

measured the levels of PLs over the course of DENV infection. The decrease in PC in DENV2 

infected cells was surprising given our previous findings in mosquito cells and midguts (92,106). 

The extensive membrane expansion in virus-infected cells implies that PL abundance should be 

increased. However, others have also reported that PC is increased by other positive strand 

viruses but not by DENV2 (249). Thus, we hypothesize that PCs must be recycled or remodeled 

throughout the cell to provide alternate lipids for membrane expansions in Huh7 cells. Given this 

variation, it is clear that DENV2 interacts in a diverse manner with different cell types to 

modulate the lipid repertoire. Furthermore, as an arbovirus DENV2 has to toggle between 

mosquito and human hosts, infecting even more diverse cell types. Hence, this ability to 

metabolically modulate dissimilar cell types depending on its needs is required.  

Arachidonic acid biosynthesis and downstream metabolism 

At 18 hr and 30 hr of viral replication we found enriched essential fatty acid synthesis 

and metabolism. Specifically, linoleate synthesis leading to AA metabolism was enhanced, 

implying a virally triggered increase in its uptake, retention, or reduced degradation. Therefore, 

we explored the downstream metabolism of linoleate, specifically its conversion to AA. 

As an n-6 fatty acid, AA is not synthesized entirely de novo in mammalian cells due to a 

lack of specific enzymes.  It is primarily synthesized in the cell from a linoleic acid precursor 
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rather than directly absorbed from the environment. Hence, modulation of linoleic acid 

metabolism could be a way to control AA levels. Based on our observations from the 

metabolomic studies, we chose to analyze the rate-limiting enzyme in AA synthesis, FADS2, the 

Δ4, Δ6 and Δ8 desaturase. We found a time-dependent increase in FADS2 gene expression 

similar to SCD1, the Δ9 desaturase (Chapter 3). siRNA knockdown of FADS2 resulted in a 

significant decrease in DENV2 virion production but had no impact on genome replication 

suggesting that PUFAs generated by FADS2 may be critical for post-genome replication steps in 

the viral life cycle.  

After AA is synthesized it is stored in PLs by lyso-acyltransferases, until it is cleaved by 

phospholipase (PLA2) enzymes. DENV2 triggers apoptosis in neuroblastoma cells by activating 

PLA2 to cleave AA, which leads to the generation of superoxide anions and the activation of NF-

κB leading to apoptosis (239). Hence the increase in AA that we see may be a result of a cellular 

response to control infection. However, others have recently demonstrated that WNV uses PLA2 

to cleave PLs for the production of lysoPLs that contribute to the negative curvature required for 

membrane rearrangements that facilitate viral replication (94). Hence the release of AA could 

have a strong proviral effect as well.  

We observed that inhibition of 5-LOX in Huh7 cells resulted in a dose-dependent 

decrease in viral replication (Figure 15). Others have found that DENV2 exposure to neutrophils 

results in increased Leukotriene B4 production through 5-LOX, but did not demonstrate the 

effect of 5-LOX inhibition on viral replication (240). Our observations indicate that the 

inflammatory metabolite products of 5-LOX could also be pro-viral. Interestingly, others have 

demonstrated that leukotriene A4 produced by 5-LOX stimulates fatty acid synthase (FAS) 

expression via SREBP-1 and that inhibition of 5-LOX results in a decrease of FAS in HepG2 
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cells (245). The significance of FAS for flavivirus replication is clear (90,93,250). If this 

regulatory mechanism holds true for Huh7 cells, it could indicate why the eicosanoid products of 

AA via 5-LOX are critical for DENV2 infection and how their inhibition negatively impacts 

viral replication. In this scenario DENV2 takes advantage of a complex metabolic regulatory 

mechanism whereby PUFA metabolism produces eicosanoids to stimulate FAS, which in turn 

the virus utilizes to build replication compartments. Taken together, we see viral control of both 

AA synthesis through FADS2 as well as its release from PLs by PLA2 and its further metabolism 

into eicosanoid effectors (Figure 13).  

Thus, DENV2 accomplishes a metabolic reprogramming that favors anabolic processes 

early and de novo fatty acid synthesis at peak viral replication. Then, at later time points during 

infection when cells are experiencing significant levels of stress, the virus activates catabolic and 

energy producing processes to sustain a low level of cellular function that serves to continue 

progeny virion production before cell death proceeds. For example, we observed changes in the 

TCA cycle and glycolysis at 48 hpi where downstream metabolites in glycolysis were 

accumulating, indicating an anapleurotic role of upstream glycolytic intermediates (77) leading 

to overall energy production and cell survival. Hence viral control of cellular metabolic 

processes in indeed a well-timed phenomenon that serves the changing viral needs during the 

course of its journey in a cell. 

2.4 Materials and Methods 

Cells lines:  

The cell lines used for this study are as follows: BHK-21, Clone 15 (ATCC CCL-10), and 

Huh7 (from Dr. Charles Rice, (251)). Huh7 cells were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Gibco, LifeTech), while BHK were maintained in Minimum Essential Media 
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(MEM) (Gibco, LifeTech), both were supplemented with 0.1 mM nonessential amino acids, and 

0.1 mM L- glutamine, and 10% Fetal Bovine Serum (Atlas Biologicals) at 37°C with 5% CO2.  

Viruses: 

DENV2 (16681) (252) passaged in C6/36 cells was used for this study. Virus titers were 

quantified by plaque assay on BHK cells as described previously (253). Approximately, 4x106 

Huh7 cells were infected with DENV2 strain 16681 at a MOI = 10. Infection of cells was carried 

out at 4°C for one hour to allow virus adsorption. Virus was then removed, cells were rinsed with 

ice-cold 1XPBS 2 times, overlayed with the indicated media and transferred to the 37°C 

incubator for the indicated periods of time.  

To generate UV-inactivated (UVI) DENV2 stocks, we used the same stock of DENV2 

(16681) and exposed it to 4000 mj of UV light in a stratalinker for 1.5 mins. The virus was then 

titrated on BHK cells to ensure no infectious virus was present.  

Metabolite extraction 

For the metabolomics experiments 5 biological replicates were used for each time point 

and treatment. Cells were harvested at the indicated time point and metabolites were extracted 

from an equal number (3.4x106) of cells per sample. A mixture of 1∶1 chloroform∶methanol were 

added to the cells. Specifically, 500µl of methanol (containing 2,6-Di-tert-butyl-4-methylphenol) 

and 180µl of dH2O was added to the cell pellet, vortexed vigorously, and then 500µl of 

chloroform and 180µl of dH2O was added and vortexing repeated. To standardize the metabolite 

extraction process 20µl of a 100µg/ml stock of 17C-ceramide was added as a standard for the 

non-polar phase metabolites, and a similar amount of a di-peptide, ALAL was added as a 

standard for the polar phase metabolites. The samples were then centrifuged at 16,000 rpm in a 

microcentrifuge for 10min at 4°C, and the polar and non-polar fractions separated and dried 
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under a vacuum. To prevent degradation of metabolites, samples were processed on ice or at 4°C 

throughout the process. Samples from aqueous and organic phases were dried separately by 

speed-vacuum centrifugation and were stored at -80°C for LC-MS/MS analyses.  

LC/MS 

An LTQ Orbitrap XL instrument (Thermo Scientific, Waltham, MA) was used to analyze 

each sample. It was coupled to an Agilent 1100 series LC (Agilent Technologies, Santa Clara, 

CA) equipped with a refrigerated well plate auto sampler and binary pumping device. Reverse-

phase liquid chromatography was used to analyze the samples in both phases. 

Polar metabolites: 

An Atlantis T3 column (Waters Corp., Milford, MA) with 2.1x 150 mm, 5.0 µm 

dimensions was used for the separation.  Solvent A consisted of water + 0.1 % formic acid. 

Solvent B consisted of acetonitrile + 0.1 % formic acid.  The flow rate was 300 µL/minute.  A 

volume of 10 µL was loaded onto the column.  The gradient was as follows:  time 0 minutes, 0% 

B; time 1 minutes, 0% B; time 41 minutes, 95% B; time 46 minutes, 95% B; time 50 minutes, 

0% B; time 60 minutes 0% B. We ran the LC-MS analysis twice, using positive and negative 

polarity electrospray ionization (ESI). Data were acquired using data dependent scanning mode. 

FTMS resolution of 60,000 with a mass range of 50–1100 was used for full scan analysis. 

Non-polar metaboplites:  

An Xterra C18 column (Waters Corp., Milford, MA) with 2.1 x 150 mm, 5.0 µm 

dimensions was used for the separation of the non-polar metabolites. Solvent A consisted of 

water + 10mM ammonium acetate + 0.1% formic acid. Solvent B was acetonitrile/isopropyl 

alcohol (50/ 50 v/v) + 10mM ammonium acetate + 0.1% formic acid. The flow rate was 300 

µL/minute. A sample volume of 10 µL was loaded onto the column. The gradient was as follows: 
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time 0 minutes, 35% B; time 10 minutes, 80% B; time 20 minutes, 100% B; time 32 minutes, 

100% B; time 35 minutes, 35% B; time 40 minutes 35% B. The LC-MS analysis was run twice, 

with both positive and negative polarity ESI. The acquired data were evaluated with Thermo 

XCalibur software (version 2.1.0). 

MS data processing and analysis 

To analyze the mass spec data we converted the raw data to mzXML format with 

msConvert (254). Much of the downstream analysis used R according to published methods. 

Peak picking was accomplished with the XCMS package using the centWave (255–257) 

algorithm and a Gaussian fit for peak-picking, and the OBI-Warp method for retention time 

correction and alignment (258). Parameters used for XCMS were optimized using the IPO 

package (259). Features were removed if their retention time was outside of acceptable limits: 2–

34 minutes for nonpolar modes and 2–48 minutes for polar modes. Intensities for peaks were 

determined and normalized using the median fold change method (260,261). Missing values for 

samples where less than half of the group has the feature clearly identified were assumed to be 

below the lower limit of detection and imputed with one-half the overall minimum intensity 

value. Groups with values for at least half of the samples in that group were imputed with the 

fillPeaks function of XCMS and normalized with previously calculated normalizing constants 

(262). Where fillPeaks results in zero intensity, we are assuming the intensity is below the lower 

limit of detection, and we use one-half the overall minimum value. These abundance values were 

used for pathway analysis described below.  

Each of the four chemical and analytical modes (polar/non-polar and negative/positive 

mode) were processed and analyzed separately. To test for dysregulation of metabolites among 

the 12 biological groups, we used the limma package in R (228). This approach fits linear models 
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to the data using an empirical Bayes approach. The Venn diagrams summarize the differences 

among groups, where absolute log fold changes were at least 1 and adjusted p-values were less 

than 0.005. A low p-value is used because of the large number of comparisons that are looked at 

simultaneously in this study. 

Pathway analysis 

We used a student’s t-test on the imputed abundances for all the features at each time 

point with each treatment generating 12 different comparisons of features in negative mode and 

12 comparisons of features in the positive mode. Network analysis and metabolic pathway 

analysis was performed using the mummichog software version 2.0 (233). This platform tests the 

enrichment of input features against random data resampled from the reference list and 

produced an empirical P value for each pathway. Input metabolites were then annotated as 

empirical compounds and the significant one (p<0.05) were mapped onto metabolic pathways. 

They were also linked in a network figure by known metabolic reactions and visualized in 

Cytoscape version 3.6.0 (263) (Supplemental Figures 3-6).  Representative features in 

arachidonic acid metabolism were plotted with abundance versus time and displayed in a 

metabolic pathway for Figure 12. 

RNA extraction and qRT-PCR:  

RNA was extracted from cells using Trizol (ThermoFisher) and from virus in supernatant 

using Trizol LS (ThermoFisher). A one-step qRT-PCR kit with SYBR green from Agilent was 

used. Reactions were set up according to the manufacturer’s protocol and run on a LightCycler 

96 real-time PCR machine (Roche). The cycling parameters were: 20 mins at 50°C for reverse 

transcription, then 5 mins at 95°C followed by 45 two-step cycles of 95°C for 5 seconds and 

60°C for 60 seconds. This was followed by a melt curve starting at 65°C and ending at 97°C. 
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DENV2 primers (264) were used to quantify viral RNA copies by comparing to a standard curve 

of in vitro transcribed viral RNA from a DENV2 cDNA subclone (265). Copies of viral RNA in 

the cell as well as copies of cellular mRNA transcripts were both normalized to Ribosomal 

Protein Lateral Stalk Subunit P0 (RPLPO) RNA using the delta delta ct method (242).  For this  

method: the fold change in gene expression = 2^[-{Infected samples((Ct value of gene of 

interest) – (Ct value of control gene))}–{Uninfected samples ((Ct value of gene of interest) – (Ct 

value of control gene))}].   

Primers: 

DENV2: 

Forward: ACAAGTCGAACAACCTGGTCCAT Reverse: GCCGCACCATTGGTCTTCTC 

FADS2:  

Forward: GGCACTACGCTGGAGAAGATG Reverse: AGTGATCTTTGAGTTCTTGCCGT 

RPLPO:  

Forward: AGATGCAGCAGATCCGCAT Reverse: GGATGGCCTTGCGCA 

5-lipoxygenase (ALOX5): 

Forward: GGATGGACGCGCAAAGTTGG Reverse: CCTTGTGGCATTTGGCATCG 

Inhibitor and siRNA treatments and confirmation:  

The siRNAs used were a scrambled siRNA control with no targets in the mammallian 

genome (IRR) and an endonuclease prepared FADS2 specific siRNA pool (Sigma, esiRNA). 

Cells were transfected with siRNAs using RNAiMax (Invitrogen) similar to previous 

experiments (90) and incubated for 48 hr to allow for sufficient knockdown. Cells were then 

infected with DENV2 or collected for cytotoxicity tests (described below). Virus was collected 

and titrated by plaque assay. To confirm knockdown of mRNA transcripts, RNA was extracted 
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and qRT-PCR performed to measure FADS2 levels relative to RPLPO with FADS2 specific 

siRNA treated samples and compared to IRR treated samples using the delta delta ct method 

(242) described above.  Cytotoxicity was measured with alamar blue (ThermoFisher) diluted 

1:10 in DMEM incubated on cells for 2-4 hr and read on a Victor 1420 Multilabel plate reader 

(Perkin Elmer) with excitation at 560 nM and emission at 590 nM. 

The inhibitor of 5-LOX used was Zileuton (Sigma-Aldrich). It was diluted in DMSO and 

further diluted in DMEM before being added to cells. Huh7 cells were infected with virus as 

described above and overlayed with the indicated concentrations diluted in DMEM. Supernatants 

were collected at 24 hr and plaque assays performed. Cytotoxicity was measured with alamar 

blue (ThermoFisher) diluted 1:10 in DMEM incubated on cells for 2-4 hr and read on a Victor 

1420 Multilabel plate reader (Perkin Elmer) with excitation at 560 nM and emission at 590 nM. 
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CHAPTER 3. STEAROYL-COA DESATURASE 1 IS A METABOLIC SWITCH THAT 
DEFINES EARLY AND ADVANCED DENGUE VIRUS INFECTIONS AND DETERMINES 

VIRUS PARTICLE INFECTIVITY 

3.1 Introduction 

Phospholipids are critical for membrane structure, function and stability of eukaryotic cells. 

Specific distributions of lipids within these membranes define their characteristics such as 

curvature, fluidity, leakiness and the interactions between membranes and membrane-bound 

protein complexes. A key approach to alter the architecture of a membrane is to incorporate 

unsaturated fatty acyl chains, to induce curvature and fluidity in a lipid bilayer, altering its 

functional capacity (97,266). Unsaturated fatty acids (UFA) are generated in the cytoplasm and 

after their initial desaturation they are further elongated, desaturated and shunted towards 

triglyceride, cholesterol ester or phospholipid synthesis. This initial desaturation event is the rate-

limiting step in UFA biosynthesis and is catalyzed at the Δ9 position in the carbon chain by 

stearoyl CoA desaturase (SCD) (267,268). In humans, it has two isoforms: SCD1 is ubiquitously 

expressed and preferentially converts stearic and palmitic acids into oleic and palmitoleic acids, 

respectively. SCD5, is restricted to the brain and pancreas (176). SCD1 is a 40 kD integral 

membrane protein in the endoplasmic reticulum (ER) and is highly conserved from bacteria to 

mammals (175). It regulates the balance between saturated and monounsaturated fatty acids 

(MUFA) in the cell.  

Flaviviruses are obligate intracellular pathogens that hijack lipid metabolic pathways for their 

energy and substrate requirements. As enveloped viruses, they rely heavily on host phospholipid 

membranes at every stage of their life cycle and alter the architecture and composition of these 

membranes to fit their replicative needs (29,249,269,270). Specifically, flaviviruses target 
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membranes of the ER to generate a scaffold for the assembly of viral protein complexes, 

concentrate substrates required for genome replication, and protect the double-stranded RNA 

replicative intermediates from detection by the cellular immune response (226). As a result, the 

architecture of the ER membrane is altered to form structures known as convoluted membranes 

(CM), vesicles (Ve) and vesicle packets (Vp) (29,65,271). The CM are considered to be sites for 

viral protein translation. The Vp/Ve are sites for viral RNA replication (65). Additionally, these 

viruses co-opt the ER membrane as a structural component of the virus particle (envelope) and 

use the ER for virus particle assembly and egress. Embedded in this ER-derived lipid envelope 

are the viral transmembrane glycoproteins, pre-membrane (prM) and envelope (E). Structural 

transitions between these proteins are critical for virion maturation and infectivity.    

Flaviviral dependence on cellular membranes is reflected in alterations in cellular fatty acid 

metabolism during infection (90,92). This has also been observed for other viruses (272–275). 

The specific physiochemical properties of the required fatty acids and their influence on specific 

steps of the flaviviral life cycle are not known. In this study, we investigated the importance of 

fatty acid desaturation on the flavivirus life cycle. We evaluated required enzymes in the UFA 

pathway using an siRNA library and identified key restrictions that reduced replication of the 

flavivirus, dengue virus type 2 (DENV2). The enzymatic activity of SCD1 in particular, was 

required for viral replication and was regulated in a time-dependent manner. SCD1 protein 

expression levels were inversely correlated with the concentration of viral dsRNA (Replicative 

Intermediate, RI) in the cell. This modulation of SCD1, coinciding with the stage of viral 

replication, highlighted its function as a ‘metabolic switch’ that controls alternate lipid 

requirements during early and advanced infections. Loss of function of this enzyme adversely 
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altered the maturation and infectivity of released virions. This study highlights the importance of 

the UFA biosynthesis pathway in flaviviral genome replication and virion infectivity.   

3.2 Results 

Bottlenecks in the UFA biosynthesis pathway control DENV2 replication  

We hypothesized that enzymes in the UFA biosynthesis pathway are important for the 

DENV2 lifecycle and interrogated this pathway with siRNAs (Supplemental Table 3) to 

determine effects of their transient knock-down on viral replication (Figures 16, 17). An 

irrelevant siRNA (IRR) controlled for off-target effects of siRNA treatment, while an siRNA 

targeting the DENV2 genome was a positive control for reduction in viral replication. We 

identified two enzymes in this pathway that represent host-viral interaction points, SCD1 and 

peroxisomal trans-2-enoyl-coA reductase (PECR) (Figure 16A). These observations were made 

in two human cell lines (Huh7 and A549), yielding similar effects on viral replication (Figure 16, 

Figure 17A, 17B). Cytotoxic effects of siRNA treatment were not significant (Figure 17C-E).  
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Figure 16 siRNA screen of the UFA biosynthesis pathway indicates that the rate-limiting enzyme is 
key for DENV2 replication. (A) Huh7 cells were transfected with pools of four siRNAs targeting each 
gene and infected with DENV2. Infectious virus release was measured by plaque assay. (B) Validation of 
results in A using a single siRNA targeting SCD1 as well as indicated controls. (C) siRNAs were 
electroporated into Huh7 cells along with a luciferase-expressing DENV2 replicon. Viral RNA replication 
was measured by luciferase expression. (D) Huh7 cells were infected with DENV2 (MOI=10) and cells 
were harvested at indicated time points and processed for gene expression, protein levels or enzymatic 
activity. Fold change in SCD1 mRNA in virus-infected cells compared to mock-infected cells. qRT-PCR 
results are normalized to GAPDH. The same cells were flash frozen to preserve active enzymes. 
Cytoplasmic extracts were prepared and run on a western blot, probed with SCD normalized to actin and 
TLC was carried out to measure conversion of 14C-labeled Stearoyl-CoA to 14C-labeled-oleic acid. The 
quantification of these 3 assays is shown here. The data are representative of 3 independent biological 
replicates. SCD1: stearoyl CoA desaturase, IRR: irrelevant siRNA (without a biological target for the 
siRNA sequence), DENV2: siRNA against dengue virus, serotype 2 genome. (**=p<0.05, ***=p<0.001, 
****=p<0.0005, A-D: one-way ANOVA with multiple comparisons tests, and E: a two-tailed t-test). 

We found that knockdown of SCD1 expression significantly reduced DENV2 replication in 

all cell lines and conditions tested when compared to an irrelevant siRNA (Figure 16A-C, and 

Figure 17A, B). Since the initial screen was carried out with a pool of four siRNAs against SCD1, 

we also validated the results with a single siRNA against SCD1 and showed a similar reduction 
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in virion release (Figure 16B). This siRNA was further tested against a luciferase expressing 

DENV2 replicon (90), and we found that viral RNA replication was significantly reduced 

(Figure 16C). Therefore, the effect of SCD1 knockdown on the release of infectious virus is at 

least partly mediated at the RNA replication step. We confirmed that siRNA treatments were 

effective at reducing SCD1 mRNA and protein levels using qRT-PCR and western blot analyses. 

The SCD1 mRNA expression was reduced by 90% and protein levels were below the level of 

detection (Figure 17F and 17G). These data suggest that UFA synthesis is critical for DENV2 

replication. 
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Figure 17 siRNA screen of the human UFA biosynthesis pathway (cytotoxicity and validation). 
Multiple cell types were transfected with single siRNAs targeting enzyme “hits” initially identified in the 
pooled siRNA screen of the pathway. Infectious virus release from siRNA treated cells and controls was 
measured. (A)  Huh7 cells, (B) A549 cells. A one-way ANOVA with multiple comparisons was done. (C). 
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Cytotoxicity of the siRNAs (in Figure 16) was measured by the fluorescence of the reduction of resazurin 
to resorufin. A one-way ANOVA with multiple comparisons was done; none of the treatments were 
significantly cytotoxic. Cytotoxicity of the single siRNAs in Huh7 cells are shown in (D) without virus 
addition and (E) with virus addition. (F) qRT-PCR analysis to confirm knockdown of SCD1 gene 
expression. (G) Western blot analysis to confirm knockdown of SCD1 protein using antibodies against 
SCD1 and Actin. Signal intensities are quantified One-way ANOVA indicated no significant difference. 
(ns=not significant, *=p=0.05, **=p<0.001, ****=p<0.0001 compared to IRR) 

SCD1 gene expression and activity are elevated early post-DENV2 infection 

Based on the above observations, we hypothesized that DENV2 requires a stable or increased 

level of the SCD1 enzyme and its products to regulate the cellular lipid repertoire for its 

replicative advantage, and that the activity of this enzyme may be controlled by viral infection. 

Since SCD1 expression is regulated at the transcriptional level (276), we first examined SCD1 

mRNA levels in infected cells and found them to be increased at early time-points post infection 

compared to mock-infected cells (Figure 16D). To ensure that the protein is translated and active 

during viral replication, we quantitatively examined the enzymatic activity of SCD1 in DENV2-

infected cells over time. Consistent with the mRNA expression profile at early time points, we 

found that cells infected with DENV2 had an initial increase in SCD1 activity, as measured by 

the conversion of radiolabeled stearic acid to oleic acid, as early as 6 hr post infection (Figure 

16D). This coincides with early replication and translation of the viral genome. Also, consistent 

with changes in its mRNA profile, later during infection we found a decrease in SCD1 

expression and activity. SCD1 is the only enzyme that can produce oleic acid. Our observations 

suggest that DENV2 infection specifically up-regulates SCD1 activity early in infection to 

expand the pool of MUFAs available for its replicative needs. 

SCD1 in found within early centers of viral replication 

Previous studies with DENV2 have shown that lipid biosynthetic enzymes (such as fatty acid 

synthase, FAS) are recruited to viral replication complexes, to increase local synthesis of lipids at 

sites of viral RNA replication and virus assembly (90). Since SCD1 is immediately downstream 
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of FAS in the biosynthetic pathway, we investigated whether SCD1 was also re-localized to viral 

replication complexes during DENV2 infection. We processed mock-infected or DENV2-

infected cells at 6, 9 and 24 hr for immunofluorescence studies, using antibodies against DENV2 

NS3, dsRNA (RI) and human SCD1 (Figure 18). Interestingly, unlike what we previously 

observed for FAS in Huh7 cells (90), there is a temporal progression in marker distribution (best 

observed in Figure 18A, 24 hr dsRNA and SCD1 panel). Uninfected cells show normal SCD1 

signal (Figure 18A and Figure 19C), while cells with a low level (early) infection show that 

SCD1 can be found within viral replication complexes.  Using Manders co-localization values 

(277,278), we can see a strong correlation between RI and SCD1 in all infected cells (Figure 

18B). However, cells high levels of RI (late infection) show very low levels of SCD1 (Figure 

18C). Quantification of the mean fluorescent intensity in a representative image of these cells 

demonstrated an inverse correlation between levels of SCD1 and viral markers (Figure 18D, E). 

These data correspond with our findings of SCD1 expression and enzymatic activity, where 

Huh7 cells with high levels of RI at late time points of infection have reduced levels of SCD1. 

The initial spike in SCD1 activity from its localization around viral replication and assembly 

sites early during infection likely generates concentrations of oleic acid sufficient for the 

metabolic needs throughout replication.  The specificity of the SCD1 antibody was tested in 

SCD1 siRNA-treated cells (Figure 19B, C). We did not see this distribution of SCD1 in DENV-

infected A549 or human embryonic lung (HEL) cells. Rather we see a uniform co-localization of 

SCD1 and NS3 (Figure 19D, E). This suggests that changes in SCD1 expression levels are cell-

type specific.  
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Figure 18 SCD1 protein expression is modulated with viral load. (A) Immunofluorescence analysis of 
Huh7 cells uninfected or infected with DENV2 at three time points. Viral protein NS3 or dsRNA (488nm, 
green), SCD1 (647nm, red). (B) Cells were classified as uninfected, low viral load or high viral load 
based on their dsRNA (488 nm, green) signal. A summary of the mean intensities of dsRNA and SCD1 in 
the 3 cell populations with co-localization coefficients: Pearsons global correlation and Manders 
correlation M1 and M2. (C) 3-D reconstructions of 3 representative cells at 24 hr showing dsRNA and 
SCD1. (D) Mean fluorescent intensity of dsRNA and SCD1 signals was measured in each cell of a 
representative image frame at 24 hr. (E) Mean fluorescent intensity of each cell in multiple images was 
averaged. The average 488 nm (dsRNA, green) signal and 647 nm (SCD1, red) signal for each group of 
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cells are plotted here. (ns=not significant, **=p<0.005, ***=p<0.001, ****=p<0.0001, from a one-way 
ANOVA with a multiple comparisons tests), hpi: hours post-infection. 

Figure 19 NS3 co-localizes with SCD1 in certain cell types. (A) Huh7 cells were mock infected and 
fixed in ice-cold methanol at the indicated time points. Cells were permeabilized and probed with the 
indicated antibodies. (B) Huh7 cells on cover slips were transfected with an irrelevant (IRR) siRNA or 
one specific for SCD1 and fixed after 48 hr to ensure complete degradation of SCD1 mRNAs and 
turnover of the SCD1 protein. Cells were then permeabilized and probed for SCD1 with an Alexafluor 
647 secondary antibody. The 647 signal is shown in the top two panels with DAPI in the bottom panels. 
(C) The signals from these cells were quantified and we see less 647 signal in cells treated with the SCD1 
siRNA. An unpaired t-test showed a significant difference with p<0.05. (D) and (E) Human embryonic 
lung (HEL) cells and A549 cells were infected with DENV for 36 and 24 hr respectively and processed 
similarly to A. Inset shows a 3-D reconstruction of a infected A549 cell. (F) Quantification of signals and 
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co-localization coefficients of A549 cells. In both cell types uninfected cells show expression of SCD1, 
but infected cells show accumulation at perinuclear sites. (****=p<0.0001), hpi: hours post-infection 

Inhibition of SCD1 disrupts replication of all DENV serotypes and other enveloped viruses 

We used a pharmacological inhibitor to characterize the enzymatic requirement for SCD1 

during DENV2 replication. The piperidine-aryl urea-based inhibitor, A939572, which we will 

refer to as the SCD1 inhibitor, has been shown to be effective (279). We tested the SCD1 

inhibitor in our activity assay and found that it abolished the formation of oleic acid (Figure 20A). 

In DENV-infected cells, SCD1 inhibition resulted in a dose-dependent reduction in viral titers 

(up to 2 logs) without toxicity (Figure 20B).  Analysis of the effectiveness of the SCD1 inhibitor 

as an antiviral compound gave a therapeutic index of 2.1. The SCD1 inhibitor was also effective 

against DENV2 replication in A549 cells but it had no effect on mosquito cells (Figure 21A, B), 

suggesting that the Δ9 desaturase in arthropods may differ from the mammalian version.  

Inhibition of SCD1 halts the desaturation of stearic acid (C18:0), acid leading to a decrease in 

cellular concentrations of oleic acid (C18:1). Oleic acid is a key building block for more complex 

phospholipids, cholesterol esters and triglycerides that function as constituents of cellular and 

virus-induced membranes. We hypothesized that addition of exogenous oleic acid would rescue 

the effect of SCD1 inhibition on virus replication. To accomplish this we added oleic acid 

conjugated to BSA in serum free medium combined with the SCD1 inhibitor and measured viral 

replication. We found that addition of oleic acid restored viral replication, implying that the 

product of SCD1 enzymatic activity is critical for DENV2 replication (Figure 20C). The rescue 

was not complete, likely because exogenous fatty acids have many destinations in the cell and 

are often shunted to β-oxidation (280). Therefore, they may be minimally incorporated into the 

ER where they could be used for virus replication. 
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Figure 20 Oleic Acid supplementation following inhibition of SCD1 rescues viral replication.  (A) 
The production of 14C-labeled oleic acid and stearic acid in uninfected cell extracts were quantified and 
compared across indicated conditions. (B) Infectious virus release from Huh7 cells infected with DENV2 
(MOI=0.5) and treated with the indicated concentrations of the SCD1 inhibitor for 24 hr. Cytotoxicity 
was also measured. (C) Huh7 cells were infected with DENV and treated with 10 µM SCD1 inhibitor and 
50 µM oleic acid conjugated to BSA or indicated controls. At 24 hr post infection virus was collected and 
titrated by plaque assay. (D) Huh7 cells were electroporated with RNA from a DENV2 luciferase-
expressing replicon and treated with the indicated concentrations of the SCD1 inhibitor. RLU and 
cytotoxicity was measured at 24 hr. (*=p=0.05, ***=p<0.001, from a one-way ANOVA with a multiple 
comparisons test). 
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yellow fever virus (YFV), Zika virus (ZIKV) and Sindbis virus (SINV) was significantly reduced 

(Figure 22A-D, I). To confirm that this was not due to off-target effects of the inhibitor, we 

knocked down SCD1 with siRNA and found similar effects on viral replication (Figure 22E-H, I). 

These data indicate a common need for SCD1 enzymatic activity and incorporation of MUFAs 

into complex lipid species to aid in the replication of enveloped viruses.   

Figure 21 Inhibition of SCD1 in other cell types. A dose response curve of SCD1 inhibition of DENV2 
replication in C6/36 cells (A) and A549 (B). Cells were infected with DENV2 (MOI=0.5) and treated 
with the indicated concentrations of the SCD1 inhibitor. Virus supernatant was collected at 24 hpi and 
quantified by plaque assay. Cytotoxicity was measured by the fluorescence of the reduction of resazurin 
to resorufin. 
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Figure 22 Inhibition and knockdown of SCD1 reduces replication of multiple enveloped viruses. 
Huh7 cells were infected with (A). KUNV (MOI=0.1), (B). YFV (MOI=0.1), (C). SINV (MOI=0.01) or 
(D). ZIKV (MOI=0.5) and treated with 10µM of the SCD1 inhibitor or DMSO. (E-H). Huh7 cells were 
transfected with IRR or SCD1 specific siRNA and infected after 48 hr of knockdown with (E). KUNV 
(MOI=0.1), (F). YFV (MOI=0.1), (G). SINV (MOI=0.01) or (H). ZIKV (MOI=0.5). Supernatants were 
collected at 24 hr post infection for KUNV, YFV and ZIKV, and at 8 hr post infection for SINV 
according to the time point for maximum viral replication. Virus release was quantified by plaque assay 
on BHK cells. I. Summary of results for DENV serotypes 1, 3 and 4. Inhibitor and siRNA analyses were 
done similar to the previous experiments. Unpaired t-tests were performed for all experiments indicating 
significant reduction in viral replication with inhibition or knockdown of SCD1. (*=p<0.05, 
***=p<0.0005, ****=p<0.0001) compared to control) 
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SCD1 activity is critical for infectious virus release 

Having determined that SCD1 is important for the DENV2 life cycle, we investigated its 

requirement at specific stages of viral replication. Using a viral replicon, we found that inhibition 

of SCD1 reduced DENV2 RNA replication (Figure 20D). Viral RNA replication and assembly 

are tightly coordinated (281). We examined the release of infectious virus particles by 

quantifying the intra- and extracellular virus at 24 and 48 hr post infection and found that intra- 

and extracellular virus from untreated cells had equivalent titers at 24 hr with an increase in 

extracellular virus titer at 48 hr (Figure 23A). However, virus grown in the presence of SCD1 

inhibitor lagged in release of extracellular infectious virus compared to intracellular virus at 24 

hr. Titers reached equivalence at 48 hr but were below those of untreated controls (Figure 23A). 

Three-way ANOVA confirmed a significant interaction between inhibitor treatment and 

intracellular vs. extracellular virus location (Figure 23B; p=1.600e-06 for the interaction term). 

These analyses indicate that inhibition of SCD1 affects the release of infectious virus. 
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Figure 23 Inhibition of SCD1 impacts viral particle infectivity. Huh7 cells were infected with DENV2, 
MOI=1 and treated with SCD1 inhibitor or DMSO. (A) Virus in supernatants (extracellular) and cell-
associated virus were collected at 24 and 48 hr and quantified by plaque assay. (B) Statistical interaction 
plot of data from A. The non-parallel lines indicate interaction between the cellular location of the virus 
and the treatment. A three-way ANOVA confirmed this interaction with a p=1.600e-06. C-E. Huh7 cells 
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were infected with DENV2 and treated with the SCD1 inhibitor or DMSO. Supernatants were collected at 
24 and 48 hr. Virus was quantified by plaque assay. Virus RNA was extracted from the same samples for 
qRT-PCR analysis. (C) GE were determined by qRT-PCR using a standard curve of viral RNA copies. 
(D) The titer of the viruses at each time point as determined by plaque assay. (E) The particle:pfu ratio 
was calculated by dividing the RNA copies/mL by the PFU/mL from C and D. (F) Comparison of GE in 
cells treated with the SCD1 inhibitor to those treated with lipid synthesis inhibitors, C75 and Lovastatin. 
[Inhibitor: (Genome equivalents/mL) / DMSO: (Genome equivalents/mL)]. (****=p<0.0001). GE: 
Genome equivalents.  

We next investigated the effect of SCD1 inhibition on the ratio of infectious and non-

infectious virus particles released. We measured the ratio of total particles released to infectious-

particles released (the specific infectivity) for virus grown in cells exposed to the SCD1 inhibitor 

compared to untreated cells. We found a small but significant reduction in total particles released 

from SCD1-inhibited cells as measured by genome equivalents (GE) (Figure 23C). However, the 

titer of infectious particles (as measured by plaque assay) was reduced at both time points by 

almost 100-fold, similar to our previous results (Figure 23D), and indicated a reduction in the 

specific infectivity of virus released from inhibitor-treated cells (Figure 23E). Hence, when cells 

are treated with the SCD1 inhibitor, the total numbers of viral particles released was only slightly 

lowered compared to control cells, but fewer of these viral particles were infectious (Figure 23C-

E). Similar results were observed for Zika virus released from Huh7 cells treated with the SCD1 

inhibitor (data not shown). This was not observed in C6/36 mosquito cells treated with SCD1 

inhibitor (Figure 24A). The DENV2 GE in virus particles released from SCD1 inhibitor-treated 

Huh7 cells were compared to GE from cells treated with two other lipid synthesis inhibitors, C75 

(inhibits FAS) and Lovastatin (inhibits cholesterol synthesis) (Figure 23F), that had previously 

been shown to be effective against DENV2 (90,92,117). 

 We observed a defect in the release of infectious particles with all treatments (Figure 24B 

and C), however, C75 treatment resulted in a larger decrease in the GE ratio compared to the 

other treatments (Figure 23F and compare 24D to 24E). FAS activity is critical for DENV2 
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genome replication (90), while cholesterol (altered by Lovastatin) is critical for maturation of 

DENV2 and generation of infectious particles (282). Inhibition of SCD1 was similar to inhibition 

of cholesterol biosynthesis (Figure 23 and 24), further demonstrating its significance in the virus 

life cycle.  

Figure 24 DENV2 treated with SCD1 inhibitor has a defect in infectivity in human cells but not 
mosquito cells. (A). C636 cells were infected with DENV2 and treated with the SCD1 inhibitor for 24 hr. 
Supernatant was collected and quantified by plaque assay. RNA was extracted and genome copies
measured by qRT-PCR. (B-E). Huh7 cells were infected with DENV2 (MOI=0.5) and treated with C75 or 

Gullberg et al, Figure 9
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DMSO (B, D) or Lovastatin or DMSO (C, E). Supernatants were collected at the indicated time points 
and viral titer determined by plaque assay (B, C) or RNA was extracted and genome equivalents 
measured by qRT-PCR (D, E). (F) and (G). Cells were infected with DENV2 (MOI=3) and treated with 
10µM SCD1 inhibitor. This virus was collected at 24 hr and subsequently used to re-infect new cells at 
MOI=0.1 in the absence of inhibitor. Supernatant was collected at 24 hr and viral titer determined by 
plaque assay. (F). Experiments in Huh7 cells. (G). Experiments in A549 cells. (ns=not signficant, 
*=p<0.05, **=p<0.005, ***=p<0.0005, ****=p<0.0001 compared to control) 

Virion infectivity is altered following SCD1 inhibition 

We evaluated the virions released from inhibitor-treated cells for defects in infectivity. 

DENV2 was passaged in Huh7 cells in the presence of the SCD1 inhibitor or DMSO, and 

released virus particles were collected, titrated, and used to infect new Huh7 cells in the absence 

of inhibitor (Figure 25A). During adsorption, the same concentration of inhibitor (10µM) was 

added to control supernatants to mimic remaining, un-metabolized inhibitor in the treated-cell 

supernatant. Virus isolated from inhibitor-treated cells had reduced infectivity compared to virus 

from control cells as determined by intracellular viral RNA (Figure 25B) and a reduction in 

released infectious virus (Figure 24F). This was confirmed in A549 cells (Figure 24G). To 

control for possible interference by defective particles in drug-treated cell supernatants, we UV-

inactivated virus in supernatants from drug-treated and control cells and added it to equal titers 

of untreated virus stock to observe possible inhibition of infection. We found no difference in the 

resulting production of infectious virus, indicating that defective particles from cells treated with 

the SCD1 inhibitor did not interfere with subsequent virus infection (Figure 25C). Therefore, the 

defect in initiating a second round of infection is unique to virus particles released from cells 

lacking SCD1 activity. 

We examined the early kinetics of viral infection with the virus from inhibitor-treated cells 

versus virus from control cells. We used a viral entry assay to determine the amount of virus 

internalized or endocytosed at given time points after attachment. Virus still external to the cell 

was inactivated at the indicated time point. The virus from cells treated with SCD1 inhibitor was 
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slower to enter new cells (0.133 PFU/min versus 0.243 PFU/min for the control virus; Figure 

25D). This defect was found both in the rate at which virus entered cells as well as the number of 

virus particles that entered the cells at equal titer of infection. Inhibition of SCD1 lowers the 

quantity of and changes the characteristics of infectious particles. These data indicate that there 

is an attachment or fusion defect that is generated in cells with decreased SCD1 enzymatic 

activity. 

To determine if the defect was in the physical structure of the virus particle (either the prM/E 

glycoprotein shell or virion lipid envelope) or in the genome encapsidated within virus particles 

released from SCD-inhibited cells, we isolated and transfected the RNA from these virus 

particles into BHK cells and measured the ability of the RNA to initiate infection. We found that 

both viral RNA populations were able to initiate infections with the same efficiency (Figure 25E). 
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Figure 25 Infectious particles grown in the presence of the SCD1 inhibitor are slower to infect new 
cells. (A) Schematic of the experimental design: Step 1: Huh7 cells (set 1) were infected with DENV2, 
MOI=3 (Virus A) and treated with DMSO or the SCD1 inhibitor. At 48 hr the virus was titrated (Virus B 
and C). Step 2: This virus was used to infect naïve Huh7 cells (set 2) at a MOI of 0.1. The concentration 
of inhibitor remaining in viral supernatant C was mimicked by adding inhibitor to viral supernatant B 
during attachment. Cells were washed and overlaid with media without inhibitor and incubated for 36 hr. 
Total RNA (RNA A and B) and virus supernatant (Virus D and E) were collected. (B) Viral RNA copies 
(RNA A and B) from Huh7 cells (set 2) were measured by qRT-PCR. The fold change of viral RNA 
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copies in RNA B compared to RNA A is shown. (C) Supernatants were collected from DENV-infected 
cells with or without the inhibitor and UV-inactivated. WT DENV2 was then diluted in these UV-treated 
supernatants and used to infect new cells with an equal MOI. (D) Virus grown with the SCD1 inhibitor 
was again titrated and used to infect BHK cells with 100pfu/well. Attachment was allowed to occur at 
4°C for 2 hr, the temperature was shifted to 37°C and the cells were treated with acid glycine at the 
indicated time points after infection to inactivate un-internalized virus. Cells were overlayed with agarose 
and plaques were counted at 6 days. A linear regression was performed. The slope of the entry of the 
virus grown in the presence of the SCD1 inhibitor was 0.133 PFU/min and DMSO was 0.243 PFU/min. 
(E) Huh7 cells were infected with DENV2 (MOI=3) and treated with SCD1 inhibitor or DMSO. 
Supernatants were collected at 48 hr, RNA was extracted, viral RNA copies were measured by qRT-PCR. 
Equal RNA copies were transfected into BHK cells to allow plaques to form. (ns=not significant, 
***=p<0.001, from a two-tailed t-test).  

Inhibition of SCD1 results in release of immature virions 

These data suggest that there is a change to the physical structure of the virion when it is 

released from cells lacking SCD1 activity.  We initially tested if the virions were less thermally 

stable when grown in the presence of the SCD1 inhibitor compared to controls. The virus from 

SCD1-inhibitor treated and control-infected cells were diluted to the same infectious virus 

concentration, heated to the indicated temperatures (Figure 26A), and titrated. Nonlinear 

regression demonstrated that the control virus lost infectivity at 44.03°C and the SCD1 inhibitor-

treated virus lost infectivity at 43°C. An F-test to determine the difference between the two 

models indicated no significant difference (Figure 26A). We also carried out freeze/thaw cycles 

on virus samples and measured infectivity and found that control virus maintained its infectivity 

for 6 or more freeze/thaw cycles, but virus grown in the presence of the SCD1 inhibitor lost its 

infectivity after 3 freeze/thaw cycles (Figure 26B). This effect was also observed with Zika virus 

grown in the presence of the SCD1 inhibitor (data not shown). We limited the defect in SCD1 

inhibitor-treated virus infectivity to the structure of the virion envelope, which is more 

susceptible to freeze-thaw transitions than the control. 
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Figure 26 Characterization of virus grown in the presence of SCD1 inhibitor. Huh7 cells were 
infected with DENV2 and treated with the SCD1 inhibitor or vehicle. Supernatant was collected at 24 hr 
and the viral titer quantified by plaque assay. (A) The virus was then diluted to 1000 pfu/ml and subjected 
to the indicated temperature for 15 minutes. The virus was allowed to recover at room temperature and 
then used to infect BHK cells. Plaques were counted and the PFU/mL was calculated. (B) The indicated 
virus samples were subjected to freeze/thaw cycles. Virus was thawed, titrated on BHK cells and returned 
to -80°C until frozen. This cycle was repeated 5 times. A linear regression was performed and the control 
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samples yielded a slope of 0.06 that was not significantly different from zero, while the SCD1 inhibitor 
samples yielded a slop of -0.75 that significantly deviated from zero with p=0.02. (C-H). Huh7 cells were 
infected with DENV2 and left untreated (WT), treated with 20mM NH4Cl (immature), 10mM SCD1 
inhibitor or vehicle (DMSO). (C-E). Virus grown with the SCD1 inhibitor or DMSO was collected at 24 
hr, concentrated through a sucrose cushion and run on a K-tartrate gradient. (C). Ten fractions were 
collected (labeled 1-10). Distinct bands observed are shown in grey. The virus in each fraction from 
DMSO (D) or SCD1 inhibitor treated samples (E) was titrated (black) and RNA from each fraction was 
extracted to measure genome equivalents (grey).  (F-H). Virus supernatant was also collected at 72 hpi, 
PEG precipitated, concentrated through a sucrose cushion, and purified on a K-tartrate gradient. (F). 
Distinct bands (fractions 2, 4, 6 and 8) where virus was observed (grey) were concentrated, and buffer 
exchanged. (G). RNA was extracted from these bands to measure genome equivalents and (H). Western 
blots performed to probe for envelope, capsid and prM viral proteins. *These data (for fractions 6 and 8) 
were also shown in Figure 27. 

 
During infection, cells produce a range of structurally diverse particles with varying 

levels of infectivity. The main structural classes are immature, partially mature or fully mature 

and they are defined by the amount of uncleaved prM protein retained on the virion (283,284).  

Although the precise role of these various particles in the infectious cycle and immune 

modulation is not well understood, we sought to determine whether virions grown in the 

presence of the SCD1 inhibitor had uncleaved prM protein similar to immature virus.  We 

purified viruses from Huh7 cells infected with DENV2 at an MOI=3 under four conditions: 

untreated (WT), immature virus (treated with 20mM NH4Cl), and virus from cells treated with 

the SCD1 inhibitor or with vehicle (DMSO). Virus from DMSO or SCD1 inhibitor-treated cells 

at 24 hpi were pelleted through a sucrose cushion and purified by sedimentation velocity in a 

potassium tartrate step gradient. Visible bands (Figure 26C) were analyzed for viral RNA and 

infectious virus. A majority of the viral RNA and infectivity from both treatments sedimented in 

fractions 5-7 (Figure 26D and 26E). To characterize the physical properties of the virus particles 

in each gradient we collected and similarly processed cell culture supernatants from all four 

conditions at 72 hpi, a time-point with sufficient virus for purification and analysis. The bands 

observed in gradients for all samples were similar to those obtained from the gradient analysis of 

virus harvested at 24 hr with the exception of the top band (fraction 2 at the top of the 10% 
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interface) that was more prominent after 72 hr, indicating the presence of low molecular weight 

material (Figure 26F). We collected each band separately and characterized them for viral RNA 

(Figure 26G), prM, capsid and envelope proteins (Figure 27A, B, and 26H). Quantification of the 

western blots is shown in Figure 27C-F. The WT virus primarily sedimented at the 15-20% 

interface (fraction 6) and the 20-25% interface (fraction 8). Both of these fractions had similar 

levels of viral RNA. Typically, DENV2 purified from mosquito cells sediments in the 20-25% 

fraction, which was the primary fraction previously used for structure elucidation (37). DENV2 

produced in Huh7 cells show differences in sedimentation profiles. Immature virus sedimented at 

the same densities as WT virus (fractions 6 and 8) and showed the expected enrichment in prM 

protein compared to envelope protein (Figure 27C and D, fraction 6), but had less capsid protein 

compared to the WT virus. The virus isolated from SCD1 inhibitor-treated cells showed similar 

patterns of enrichment of the prM protein as the immature virus, and this enrichment was 

confined to the virus population in fraction 6 (Figure 26F and H). The virus population that 

sedimented in fraction 8 had no detectable prM. The virus isolated from vehicle-treated (DMSO) 

cells that sedimented in fraction 6 had a similar protein content to WT virus, but there was a 

prominent population that sedimented in fraction 4 that did not have high GE (Figure 26G). 

Based on these analyses, the fractions with the highest GE (fractions 6 and 8) demonstrated the 

clearest differences between the four conditions. The virus isolated from SCD1 inhibitor-treated 

cells was similar to immature virus in prM content and was distinctly different from WT virus.   
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Figure 27 Inhibition of SCD1 Impairs viral maturation. Huh7 cells were infected with DENV2 and 
left untreated (WT), treated with 20 mM NH4Cl (immature), 10 µM SCD1 inhibitor, or vehicle (DMSO). 
(A) and (B). At 72 hpi virus purified by density gradient sedimentation. Bands (fractions 6 and 8) where 
the highest concentration of genomes were observed (and previously known to have virus particles) were 
buffer-exchanged, concentrated and processed by western blot with antibodies for envelope, capsid and 
prM proteins. (C-F) The relative quantification of the viral glycoproteins prM and E in fractons 6 and 8. 
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Figure 28 Stearoyl-CoA desaturase 1 is a metabolic switch that defines early and advanced dengue 
virus infections. A proposed model for a ‘metabolic switch’ involving SCD1 that differentiates the 
metabolic state in early versus advanced DENV2 infections. E: envelope protein, c: capsid protein, prM: 
pre-membrane protein, CE: cholesterol Esters, TG: triglycerides 
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3.3 Discussion 

Previously we showed that lipid biosynthesis was upregulated in DENV-infected cells 

through the activation and relocalization of fatty acid synthase (FAS), an enzyme critical to the 

production of palmitic and stearic acids that are structural components of complex lipids (90). 

Here, we investigated the next step following FAS-catalyzed fatty acid production in the lipid 

biosynthesis pathway and demonstrated that desaturation of these fatty acids plays a critical role 

in the viral life cycle.  Specifically, DENV2 infection resulted in upregulated monounsaturated 

fatty acid (MUFA) biosynthesis, catalyzed by SCD1 at early time points post-infection. 

Inhibition of this process impaired virion maturation and particle infectivity and stability.  

Two distinct scenarios were observed (quantitatively and visually) in this study: early 

during infection when low levels of viral RNA and protein were present, SCD1 transcripts, 

protein and enzymatic activity levels were elevated. However, late during infection, when high 

concentrations of viral RNA were present, SCD1 mRNA, protein and activity levels declined. As 

summarized in Figure 28, we hypothesize that the metabolic environment required to progress 

from early to advanced infections changes and SCD1 activity could function as a ‘metabolic 

switch’ to modulate these changes. For instance, at early stages of viral RNA replication, 

increased amount of fatty acids, specifically MUFAs, are generated (through activity of SCD1) 

for construction of virus replication compartments. The unique architecture of positive-strand 

RNA virus replication compartments likely requires certain lipid components that can induce 

membrane curvature to provide extensive membrane contact sites and increased fluidity and 

leakiness to acquire substrates for genome replication (29,272–274). Energy and lipid substrates 

are provided by increased glycolysis and activation of the pentose-phosphate pathway (76). 

Increased SCD1 activity also results in the build-up of storage lipids, which reduces levels of β-



124 

oxidation. The high content of MUFAs in the membranes (resulting from SCD1 activity) also 

ensures appropriate assembly and maturation of the virus particles being released during early 

infection. However, during advanced infections, when viral RNA replication is at maximum 

efficiency, the cell has excess complex fatty acids that feed back to inhibit SCD1 expression 

(285). By the time this occurs, the virus has already constructed its replication compartments and 

sites of assembly and does not require synthesis of new components by SCD1. At this later time 

point, the focus is on producing a massive explosion of virus particles from the already 

assembled viral replication factories. This massive output of virus compromises quality control 

and increases the probability of producing mixed populations (structurally diverse) of virus 

particles. In these advanced infections, the decrease in MUFAs through the inhibition of SCD1 

negatively influences virus particle quality, resulting in the production of higher ratios of non-

infectious particles.  

Viral replication compartments are tightly coordinated with sites of virion assembly. For 

flaviviruses, only replicated viral RNA is packaged into newly assembled virions (286). 

Therefore, the lipid membrane environment surrounding viral RNA replication complexes and 

that involved in virion assembly must be physically coordinated to transfer newly replicated viral 

genomes to sites of virion assembly (29). Essentially, any lipid alterations that occur in these 

complex, virus-induced membranes must retain the capacity to support multiple functions. This 

is especially important since intracellular membranes become structural component of virus 

particles (virion envelope) that require assembly of a specific stoicheometry of viral 

glycoproteins.  Conformational transitions that occur between these glycoproteins in lipid 

membranes define the state of maturation and infectivity of virus particles. Accordingly, we 

found that virion infectivity decreased when SCD1 was inhibited early in infection. At the given 
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dose of the SCD1 inhibitor, DENV2 was able to replicate and produce particles with intact 

genomes, however a higher proportion of these particles were non-infectious. We and others 

have provided evidence that SCD1 inhibition results in lowering MUFAs in cellular membranes. 

Our observations suggest that the physical properties of the virus envelope influenced by the 

proportion of MUFAs may be critical for virus infectivity.  

DENV2 populations grown in the presence of the SCD1 inhibitor were found to be as 

stable to increased temperature as control virus, however, when the virus was subjected to 

multiple freeze-thaw cycles, it lost its infectivity faster than untreated virus. Inhibition of SCD1 

results in changes in lipid content of the ER, resulting in an increase in saturated fatty acids 

(287,288). At lower temperatures, saturated fatty acids pack together tightly, forming a rigid 

membrane (289–291). Rigid membranes are not able to curve well and this may impair 

interactions with the trans-membrane glycoproteins (289,291). Hence we observed a greater loss 

of functionality or infectivity of viral particles from SCD1-inhibited cells when transitioning 

from freezing to ambient temperature versus transitioning from higher temperatures, where lipids 

may achieve greater fluidity (292). 

The defect in infectivity of virus particles from SCD1-inhibited cells apparently resulted 

from incomplete particle maturation. After acquiring its ER-derived lipid envelope with inserted, 

stoicheometrically assembled prM and E glycoprotein heterodimers, the newly formed virions 

traverse the Golgi apparatus to complete a maturation process prior to exiting the cell. 

Maturation includes pH-dependent conformational transitions between the prM and E 

glycoproteins embedded in the envelope that are pre-requisite for the cleavage of the prM protein 

to M protein in mature virions by a Golgi-resident furin protease. If the conformational changes 

are inhibited or incomplete, furin cannot access the cleavage site on prM to complete the 
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maturation process. This results in prM retention on the virions; these virions are non-infectious. 

Based on our observations in this study, the virus requires MUFAs in its lipid envelope to allow 

the necessary structural transitions for virion maturation. SCD1 inhibition results in decreased 

proportions of MUFAs in intracellular membranes destined to become virion envelopes, 

resulting in impaired conformational shifts necessary for maturation and increased release of 

prM containing virions. We demonstrated that virions with higher prM content were defective in 

viral entry in subsequent infections. This establishes for the first time that lipids incorporated 

into the virion envelope are critical for particle infectivity.  

Enveloped viruses must acquire their lipid envelope from a specific organelle membrane 

(120,122,293,294). Our data suggest that DENV2 assembly may occur preferentially and 

successfully at ER-membrane regions with a high content of MUFAs. Future research will 

explore the content of specific lipid species at sites of viral assembly and the consequences of 

their alterations. The lipid composition of the DENV2 virion is currently undetermined, thus the 

content of MUFAs in the infectious virion envelope is unknown. Studies of the lipid composition 

of other enveloped viruses have focused on lipid classes such as phospholipids and sphingolipids 

but have not looked at fatty acid content or saturation levels. However, it is clear that certain 

lipid species are enriched in viral envelopes and are functionally relevant for virion infectivity 

(1,100,124,125,295).  

This study provides insights on how fatty acid biosynthesis, specifically unsaturated fatty 

acids impact flavivirus genome replication and assembly of infectious viral particles in human 

cells. It sheds light on host metabolic pathways that enhance viral replication success and 

provides a unique avenue for antiviral intervention.  
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3.4 Materials and Methods 

Cells Lines: 

The cell lines used were as follows: Human embryonic Lung epithelial cells (HEL 299) 

(ATCC CCL-137, male), adenocarcinomic human alveolar basal epithelial cells (A549) (ATCC 

CRM-CCL-185, male), C636 (ATCC CRL-1660, larva, sex unknown), Clone 15 (ATCC CCL-

10) of the Baby Hampster Kidney Clone 21 cells (BHK-21), and Human hepatoma (Huh7)

(From Dr. Charles Rice, sex unknown, (251). Huh7, HEL and A549 cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, LifeTech), while BHK and C636 were 

maintained in Minimum Essential Media (MEM) (Gibco, LifeTech), both supplemented with 0.1 

mM nonessential amino acids, and 0.1 mM L- glutamine, and 10% Fetal Bovine Serum (Atlas 

Biologicals) at 37°C with 5% CO2. 

Viruses: 

The virus strains used are as follows: DENV1 (16007) (296), DENV2 (16681) (252,296), 

DENV3 (16562) (297–299), DENV4 (1036) (297), YFV 17D (300), and KUNV (301) these 

viruses were passaged in C6/36 cells. Additionally, ZIKA (PRVABC59) (302) was passaged in 

African Green Monkey Kidney Epithilial cells from the Vero lineage (Vero).  A DENV 

luciferase reporter replicon containing only the nonstructural proteins was also used (90). Virus 

titers were determined by plaque assay on BHK cells as described previously (253). Infection of 

cells was carried out at room temperature for one hour to allow virus to adhere to cells. Virus 

was then removed, cells rinsed with 1XPBS, overlayed with the indicated media and transferred 

to the 37°C incubator for required periods of time.  
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RNA extraction and qRT-PCR: 

RNA was extracted from cells using Trizol (ThermoFisher) and from virus in supernatant 

using Trizol LS (ThermoFisher). A one-step qRT-PCR kit with SYBR green from Agilent was 

used. Reactions were set up according to the manufacturer’s protocol and run on a LightCycler 

96 real-time PCR machine (Roche). The cycling parameters were: 20 mins at 50°C for reverse 

transcription, then 5 mins at 95°C followed by 45 two-step cycles of 95°C for 5 seconds and 

60°C for 60 seconds. This was followed by a melt curve starting at 65°C and ending at 97°C. 

DENV primers (264) were used to quantify viral RNA copies in the supernatant as well as in 

cells. A standard curve of in vitro transcribed viral RNA from a DENV2 cDNA subclone was 

generated and used to quantify the genome copies in the supernatant (265). Copies of viral RNA 

in the cell as well as copies of SCD mRNA transcripts were both normalized to glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) RNA using the delta delta ct method (242).  For this 

method: the fold change in gene expression = 2^(-(Infected samples((Ct value of gene of 

interest) – (Ct value of control gene)))–(Uninfected samples ((Ct value of gene of interest) – (Ct 

value of control gene)))). The Ct values were generated from the Light Cycler software and the 

gene of interest was either SCD1 or DENV and the control gene was GAPDH.  

 siRNA treatments and confirmation: 

Cells were transfected with siRNAs using RNAiMax (Invitrogen) similar to previous 

experiments (90) and allowed to incubate for 48 hr. Cells were then infected with DENV2, or 

collected for knockdown confirmation or cytotoxicity tests (described below). Virus was 

collected and titrated with plaque assays. To confirm knockdown of mRNA transcripts RNA was 

extracted and qRT-PCR performed to measure SCD1 levels relative to GAPDH in SCD1 siRNA 

treated samples and compared to IRR treated samples using the delta delta ct method (242) 
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described above. To confirm knockdown of protein levels cellular protein was collected in 

radioimmunoprecipitation assay buffer (RIPA) [150 mM sodium chloride, 1.0% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS (sodium dodecyl sulfate), 50 mM Tris, pH 8.0]. and separated 

by electrophoresis on an SDS-Page gel.  They were then transferred to a nitrocellulose 

membrane (Bio-Rad), blocked in 5% milk and probed with SCD N-20 (Santa Cruz 

Biotechnology) and β-actin (Cell Signaling Technology). Secondary antibodies were IRDye 

680RD and IRDye 800CW (Li-Cor). The blot was imaged on an Odyssey IR Imaging system 

(Li-Cor) and quantification of the signals measured with Image Studio 5.2 (Li-Cor). 

Inhibitors and fatty acid treatments:  

The inhibitors used were A939572 (the SCD1 inhibitor, MedChem Express), C75 

(Cayman Chemicals) and Lovastatin (Sigma-Aldrich). Each was diluted in DMSO, added to 

DMEM and filtered through a 0.2µM filter before being added to cells. Oleic acid was acquired 

from Sigma and came dissolved in bovine serum albumin (BSA) at 200mM. It was further 

diluted in 1% fatty acid free BSA (Gold Biotechnology) in 1x phosphate buffered saline (PBS) to 

50 µM. Huh7 cells were infected with virus as described above and overlayed with the indicated 

treatments diluted in DMEM. Supernatants were collected at 24 hr and plaque assays performed. 

Cytotoxicity was measured with alamar blue (ThermoFisher) diluted 1:10 in DMEM incubated 

on cells for 2-4 hr and read on a Victor 1420 Multilabel plate reader (Perkin Elmer) with 

excitation at 560 nM and emission at 590 nM. 

Re-infection Experiments:  

Virus that was used for re-infection and entry assays was grown in Huh7 cells at an MOI 

of 3 in 10 µM SCD1 inhibitor or DMSO (0.02%). The virus samples were titrated by plaque 

assay and diluted to equivalent titers. The SCD1 inhibitor was added to the DMSO sample and 
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the virus samples (equivalent pfu/ml) were allowed to attach to new cells for 1 hr at room 

temperature before being removed. The cells were then washed with 1xPBS and incubated with 

DMEM + 2% FBS for the indicated times at 37°C.  

Assay for viral entry:  

Each virus was diluted to 1000 pfu/ml in DMEM. The SCD inhibitor was added to the 

virus that was grown in DMSO (0.02%) at 10 µM and then filtered. Virus was allowed to attach 

to BHK cells in 6 well plates for 2 hr at 4°C. The virus was then aspirated and cells were rinsed 

with 1XPBS to remove any unbound virus. The cells were then overlayed with MEM with 10% 

FBS and transferred to 37°C. At given time points after the temperature shift, cells were removed 

from the incubator rinsed with 1XPBS and treated with acid-glycine (8 g of NaCl, 0.38 g of KCl, 

0.1 g of MgCl2 6H2O, 0.1 g of CaCl2 2H2O, and 7.5g of glycine/L, pH adjusted to 3 with HCl) 

for 1 minute at room temperature to inactivate any extracellular virus. The cells were again 

rinsed with 1XPBS and overlayed with 1% agarose and MEM with 5% FBS, plaques were 

counted at 6 days.  

Immunofluorescence Assay:  

Cells were grown on a sterilized cover slip and maintained in 10% DMEM. Cells were 

infected with DENV2 (M0I=100) or mock infected (1XPBS). Cells were fixed in ice-cold 

methanol (Fisher Chemical) at room temperature and permeabilized with 0.1% TritonX (Fisher 

Chemical) in 1XPBS with 1% BSA (GoldBiotech) at room temperature and blocked with 0.01% 

TritonX in 1XPBS with 1% BSA overnight at 4°C. Cells were then probed with the indicated 

primary antibodies including dsRNA (English and Scientific Consulting Bt.), NS3 (gifted by 

Richard Kuhn, Purdue University) and SCD N-20 (Santa Cruz Biotechnology). Secondary 

antibodies were Alexa-fluor 488 or 647. The coverslips were fixed to slides with FluoroSave 
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(Calbiochem) and imaged on an Olympus inverted IX81 FV1000 (Olympus) confocal laser 

scanning microscope with a 100x oil objective using FV10-ASW 4.2 (Olympus). Digital images 

were processed with Volocity 6.3 (Perkin Elmer) and colocalization coefficients calculated by 

encircling each individual cell and using the measurement function with internal thresholds. 

Values represent averages of at least 30 cells from different image frames of the same slide.  

SCD Activity Assay:  

The indicated cell samples were collected at given time points and prepared in order to 

preserve enzymatic activity (303). Briefly, cells were washed in the wash buffer (35 mM Hepes, 

pH 7.4, 146 mM NaCl, 11 mM glucose) 3 times, then incubated in a hypotonic solution (20 mM 

Hepes pH 7.4, 10 mM KCl, 1.5 mM MgOAc, 1mM DTT) for 20 minutes to allow the cells to 

swell. Then they were passed through the dounce homogenizer 25 times to break apart the 

membranes.  A post lysis buffer (20 mM Hepes pH 7.4, 120 mM KOAc, 4mM MgOAc, 5 mM 

DTT) was added. Nuclei were spun down at 1000xg for 5 minutes at 4°C and the cytoplasmic 

extract was flash frozen in liquid N2. Protein content was measured by BCA (Pierce) and equal 

protein content was used for activity assays. Activity assays were performed similar to previous 

studies (304). Briefly, 1.5 mg/ml protein was incubated with 0.01 µCi of stearoyl [1-14C]-coA 

(American RadioLabled Chemicals, 55mCi/mM) at 37°C for 5 minutes. The reactions were 

stopped by adding 150 µL of methanolic HCl (Sigma-Aldrich) for 1 hour at 72°C, which 

generated fatty acid methyl esters that were extracted from the samples in 1 mL of chloroform. 

One aliquot of these samples was measured on a Beckman LS 6500 liquid scintillation counter 

(Beckman) and equal counts were spotted on a 0.5% AgNO3 impregnated normal phase thin 

layer chromatography plate. Fatty acids were separated by a mobile phase of hexane : acetone 

(50:1). Plates were exposed on a phosphoimager screen and scanned on a Typhoon Trio 9400 



132 

(GE Healthcare). Pixel intensity was measured with ImageQuant TL(GE Health Care) software. 

Standards were sprayed with 5% phosphomolibic acid in 100% ethanol and heated to visualize 

fatty acids.  

Virus purification:  

Virus purification and identification of prM were carried out similar to previous studies 

(37,305). Briefly, Huh7 cells were infected with DENV (MOI=3) and left untreated, treated with 

10 µM of the SCD inhibitor or DMSO similar to other experiments presented here. The 

supernatant was collected at the indicated time points and was replaced with fresh DMEM plus 

the indicated treatment. At 24 hr after infection 20mM NH4Cl was added to generate the 

immature virus samples. The supernatants from the SCD inhibitor and DMSO samples were 

collected at 24 hr. Cellular debris was removed from the supernatant and the virus was run 

through a 22% sucrose cushion at 32,000 xg for 2 hr at 4°C in a Sorvell WX ultracentrifuge 

(Thermo Fisher Scientific). The pellet was loaded onto a potassium-tartrate step gradient 

consisting of 10, 15, 20, 25, 30 and 35% potassium-tartrate in TNE buffer (50 mM Tris–HCl (pH 

7.4), 100 mM NaCl, 0.1 mM EDTA) and spun at 32,000 xg for 2 hr at 4°C in a Sorvell WX 

ultracentrifuge (Thermo Fisher Scientific). Ten different fractions were collected from each 

gradient and used to titrate the virus and quantify viral genomes similar to other experiments. At 

72 hr virus from all 4 samples were collected, cellular debris removed and virus was PEG 

precipitated at 4°C. The virus was then run through a 22% sucrose cushion and loaded onto a 

potassium-tartrate gradient same as mentioned above. Visible band of virus were noted in the 

gradients and the 4 fractions were collected and buffer exchanged with TNE buffer. Viral 

genome copies were measured with qRT-PCR. Protein content was measure with BCA 

(Pierce/Thermo Fisher) and equal amounts of protein were loaded on an SDS-page gel and 
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transferred to a PVDF membrane and probed for prM, capsid and E. Blots were imaged on an 

Odyssey and densitometric measurements were made. Western blots for each fraction (ie: 

fraction 6) had equal total protein loaded for the four conditions. Conditions between fractions 

cannot be compared due to differences in protein sedimentation between fractions (ie: total 

protein in fraction 6 cannot be compared to total protein in fraction 8). 

Quantification and statistical analysis:   

Results were expressed as mean values with standard deviation. The statistical details are 

noted in the figures and/ or in the corresponding figure legends. Statistical significance was 

primarily determined using either an unpaired Student's t-test or a one or two way Analysis of 

Variance (ANOVA) with a Bonferroni, Dunnets or Tukey’s multiple-comparison depending on 

the experimental design in the GraphPad Prism version 7.00 for Mac OS x (GraphPad Software, 

La Jolla California USA).  Drug inhibition studies were analyzed with a non-linear regression 

using GraphPad Prism version 7.00 for Mac OS x (GraphPad Software, La Jolla California USA) 

to calculate an IC50. The assay for viral release (Figure 23A) was analyzed with a 3-way 

ANOVA and included an interaction term for each.  This was performed in R studio version 

1.0.136 (306). Finally, the nonlinear regression models for the thermostability of the viruses 

(Figure 16A, B) was also performed in R studio version 1.0.136 (306). The model used was 

y=a+((b-a)/((1+10^((c-temp)*d))). An F-test was used to determine the difference between the 

curves with the formula F=((SStotal-SS pooled) / ((m+1)(K-1))) / (SSpooled/dfpooled). Each study 

shown is representative of at least two independent experiments.  

Additional key resources are included in Supplementary Table 4.  
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CHAPTER 4. DEVELOPMENT OF A METABOLIC BIOSIGNATURE TO DIFFERENTIATE 
SEVERE AND NON-SEVERE DENGUE DISEASE AND CHIKUNGUNYA INFECTIONS 

4.1 Introduction 

Currently there are an estimated 400 million DENV infections each year (2,307). The 

diseases caused by dengue virus infection vary significantly; however, initial presentation is 

similar and clinically impossible to distinguish from other febrile illnesses (2,11,308,309). 

Diseases range from a mild febrile illness, dengue fever (DF), to advanced diseases such as 

dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) (10,11). The recent 

emergence in the western hemisphere of chikungunya virus (CHIKV), an alphavirus transmitted 

by the same mosquito vector, has been an additional burden on health care systems (310). Initial 

presentation with CHIKV infection is indistinguishable from dengue diseases, yet it can progress 

to an advanced arthralgia (311). 

Traditional diagnostic tools for dengue diseases involve virus isolation and serology. While 

state of the art, these techniques take time, give very little indication of disease severity and are 

not meeting the current needs (4,11,312). Predicting disease outcomes is a persistent challenge in 

health care, particularly in resource poor settings where allocation of limited resources is difficult, 

yet crucial to saving lives (313). Hence, broader diagnostic and prognostic tools are needed to 

deliver a clear assessment of the care needed. This will aid in proper allocation of limited 

resources for complex diseases.  

Metabolites are the front line phenotypic indicators of underlying pathology. The accurate 

measurement of these molecules through techniques such as LC-MS/MS, can identify patterns of 

metabolites that unlock the mysteries of acute infections. In fact, metabolomics demonstrates 

promise in identifying small molecules associated with a variety of disease states (314). 
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The application of metabolomics to the field of dengue diseases is not new. Indeed, our 

group and others have identified many biomarkers with utility in predicting disease outcome 

(198,206,223,315–318). However, the field has yet to achieve consensus on a specific set of 

biomarkers and currently nothing is standardized nor used clinically. Much of this is due to the 

difficulty in rigorously narrowing down a specific set of metabolites that collectively can predict 

a disease outcome.  Similar analysis and metabolite sets have been used in other fields to predict 

disease states (314,319). 

Here we follow up our previous work profiling the serum metabolome of dengue patients 

(206). We have significantly expanded our sample size and identified a discrete set of well-

defined metabolites capable of predicting disease in these patient samples. We used reverse 

phase-LC/MS to retrospectively characterize the serum metabolome of patients diagnosed as DF, 

DHF or DSS and compared the results to patient serum with CHIKV and non-dengue (ND) 

febrile diseases. We used least absolute shrinkage and selection operator (LASSO) predictive 

models to identify specific sets of metabolites that can distinguish severe dengue disease from 

non-severe as well as dengue diseases from non-dengue febrile diseases, and finally a set that can 

distinguish CHIKV from dengue. For each of these comparisons, we identified a discrete and 

manageable list of features, smaller than found in other studies. This is promising, since our 

ultimate goal is to translate small molecule biomarkers (SMB) to a clinical setting in a cost-

effective manner. Furthermore, we used an integrated pathway and network analysis platform to 

annotate features and identify biochemical pathways dysregulated in these diseases. These sets of 

metabolites are a significant step forward in this field and show real promise for both 

understanding dengue disease pathology and allocating resources for effective treatment.   
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4.2 Results 

Clinical Samples 

For this study 535 serum samples were retrospectively obtained from 2 different well-

established studies in Managua, Nicaragua (Table 5). One set was from a cohort study with over 

3,000 initially healthy well-characterized children between the ages of 6 months and 15 years old. 

These patients were enrolled, followed over time and monitored for development of febrile 

diseases. To complement these samples, we also used serum samples from patients that 

presented at the Hospital Infantil Manuel de Jesús Rivera, the National Pediatric Reference 

Hospital in Nicaragua, with a fever or history of fever for <7 days and one or more of the 

following signs and symptoms: headache, arthralgia, myalgia, retro-orbital pain, positive 

tourniquet test, petechiae, or signs of bleeding. Patients who met the 1997 WHO case definition 

for dengue were used in our analysis (320). There was an outbreak of CHIKV in this area during 

the 2014-15 season.  Therefore, we used serum samples from these patients to develop a 

biosignature that differentiates DENV from CHIKV disease.  Additionally, we retrospectively 

tested the dengue negative samples from 2012-15 for CHIKV to ensure that samples were 

properly identified. Hereafter, we will use non-dengue (ND) for patients who had an 

undifferentiated fever and tested negative for dengue and CHIKV (if collected from 2012-2015). 



137 

Table 5 Serum specimens from two studies in Nicaragua used for metabolomics analysis. 

All samples used for this study were collected during the acute stage of disease (0-6 days of 

fever). Diagnostic testing was carried out with RT-PCR and serology testing to identify dengue 

cases and when possible the serotype. All dengue positive cases were also classified with both 

the 1997 and 2009 WHO case definitions for dengue diseases. Here we use the 1997 definition 

of DF, DHF and DSS. Thus, our sample set was composed of 257 females and 278 males,185 

DF, 44 DHF, 22 DSS, 47 CHIKV, and 237 ND patients from 2005- 2015 (Table 5). Details of 

DENV serotype and season are in Tables 6 and 7.  
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Table 6 The number of patient samples collected each year from 2005-2015 and their 
disease etiology. 

Table 7 Dengue disease patients samples classified by serotype and dengue disease 
diagnosis.  

Biosignature Development 

For the discovery phase of our analysis we used untargeted LC/MS data to characterize the 

global metabolic changes occurring with each disease state. Features were rigorously filtered for 

Season ND DF DHF DSS CHIKV TOTAL 

2005 11 8 3 1 0 23 

2006 13 3 5 8 0 29 

2007 1 8 3 11 0 23 

2008 0 4 2 0 0 6 

2009 1 4 0 0 0 5 

2010 8 0 0 0 0 8 

2011 9 0 0 0 0 9 

2012 100 92 12 1 0 205 

2013 78 66 10 1 0 155 

2014 11 0 2 0 23 36 

2015 5 0 7 0 24 36 

TOTAL 237 185 44 22 47 535 

Serotype DF DHF DSS TOTAL 

1 91 10 1 102 

2 45 24 21 90 

3 23 7 0 30 

NR 26 3 0 29 

TOTAL 185 44 22 251 
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robustness, and missing values were imputed using random forest imputation, with details given 

in the methods section. Our workflow to characterize these changes and identify a key set of 

metabolites is shown in Figure 29. For the statistical comparisons, we used linear models, 

implemented in the R package ‘limma’ (228,321), to compare molecular features (MFs) found in 

one disease group versus another with p-values adjusted to control false discovery rate at 0.05. 

The log fold change for each of these features was calculated and used as an initial portrayal of 

the data. MFs found in only one group were discarded for this initial discovery phase. Thus, we 

generated a list of 1493 significant (adjusted p< 0.005) molecular features differentiating (≥ 

2fold change in relative abundance) DEN and ND. Comparison of DF to ND, we found 27 

features that increased, 15 that decreased and 1451 that remained unchanged. Comparing DHF 

cases to ND cases we found 28 features increased, 336 that decreased and 1129 that remained 

unchanged. Finally, comparing DSS to ND there were 169 features that increased, 1169 that 

decreased and 155 that remained unchanged (Figure 30). We see more features differing between 

the more severe form of dengue compared to ND, while the milder forms are metabolically very 

similar to ND diseases. A principle component analysis (PCA) demonstrates the ability of the 

significant features to separate the three diseases; the first two components accounted for 81.42% 

of variation in the data (Figure 31A). 
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Figure 29 Workflow to discover and test serum biomarkers of dengue diseases, chikungunya and undifferentiated febrile diseases.  We 
used untargeted metabolomics to identify biomarkers in 535 serum samples from febrile patients in Nicaragua. We used statistical comparisons to 
determine the overall dysregulation of the metabolome in the various diseases. We then built a diagnostic model using LASSO regression and 
tested it on our samples. Finally, we used pathway analysis to identify biochemical pathways perturbed in the different diseases that have 
implications for disease pathology. 

Statistical comparisons

logFC of MFs:
Grouped and shown in 

Figure 30.

Total Significant features:
DEN vs ND: 1493

DF vs DHF vs DSS: 1506 
CHIKV vs DEN:  818 

All samples divided randomly by 
disease group

Features with Putative ID

Training Group (50%)

Biomarker Discovery

LASSO Regression Analysis
DHF/DSS vs DF: 8 features

DEN vs ND: 26 features
CHIKV vs DEN: 6 features

Features with Putative ID 
(KEGG, Metlin, LIPID Maps, 

HMDB):
DF vs DHF vs DSS: 211

ND vs DEN: 214
CHIKV vs DEN: 189

Test Group (50%)

Classify samples in test group 
using LASSO model

DHF/DSS vs DF: 89% 
DEN vs ND: 99%

CHIKV vs DEN: 100%

Group of features that 
can predict disease state

Pathway analysis

T-test on all features
 ND vs DEN, DF vs DSS/DHF, 
DSS vs DF, DSS vs DHF, and 

CHIKV vs DENV

List of significant path-
ways enriched in the 

comparisons (Table 11)

Molecular features measured by LC-MS in 535 serum samples

Metabolites mapped 
onto significant path-

ways with logFC values-

Insight into disease 
pathology 

Metabolic networks of 
features changed in 

each comparison 
(Figure 41-42, 44 and 

Supplemental Figures 7-11)
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Figure 30 Dysregulation of metabolites in the 9 different comparisons. (A-I) We measured the log fold changes (log(FC)) in each measured 
molecular feature between the indicated groups. The number of features that remained unchanged, increased (log(FC)>0) or decreased 
(log(FC)<0) in abundance were counted and divided into groups depending on the degree of change and plotted.  

Gullberg et al, Figure 2.
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Presumptive chemical identification was performed on all of the molecular features in each 

comparison group interrogating the monoisotopic mass [+/- 20 parts per million (ppm)] of each 

molecular feature against the Metlin, HMDB, KEGG and LipidMaps databases (322). For DEN 

vs. ND, 642 molecular features were assigned a putative chemical structure with an MSI of 3. 

These features were further filtered to 214 reliable and relevant metabolites. The metabolites 

were classified and divided into 7 categories. We found 60 glycerophospholipids, 9 glycerolipids, 

8 sphingolipids, 47 fatty acids, 27 sterol lipids, 8 prenol lipids, and 55 other organic compounds. 

The fold change in each glycerophospholipid species comparing each DEN disease to ND 

comparisons is plotted to observe changes in their expression (Figure 31B). 
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Figure 31 Global metabolome changes and dysregulation of glycerophospholipids. (A) We ran a 
principle component analysis (PCA) on all of the samples using all of the significantly different molecular 
features. In red are DEN samples, black are CHIKV samples, and in blue are ND samples. (B) In our 
linear model to test for overall dysregulation we calculated the log FC for all features. These features 
were putatively identified (MSI level = 3) and the features tentatively classified as glycerophospholipids 
were plotted here. The log FC values are plotted to show which features increase or decrease in the 
indicated comparisons. PC; phosphatidylcholine, PE; phosphatidylethanolamine, PS; phosphatidylserine, 
PA; phosphatidic acid, PG; phosphatidylglycerol. 
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Similar analysis was performed comparing DEN samples with each other. We found 1506 

MFs that differed significantly (adjusted p< 0.05) with ³ 2 fold change in relative abundance 

between DF, DHF and DSS. A principle component analysis (PCA) demonstrates the ability of 

the significant features to separate the three dengue diseases moderately; the first two 

components accounted for 54% of variation in the data (Figure 32). Of these features 310 

displayed increased abundance, 946 decreased and 250 unchanged in DSS vs. DHF (Figure 30). 

Similar numbers were found when we compared DF, CHIKV and ND cases, indicating a unique 

serum metabolome profile in each disease state. Overall, we see more features decreased than 

increased in more severe forms of dengue disease.  

Figure 32 Global metabolome changes in dengue diseases. We ran a principle component analysis 
(PCA) on all of the dengue disease samples using the 1506 molecular features that were found to be 
significantly different between dengue diseases. In black are DF samples, in red are DHF samples and in 
green are DSS samples.  

When comparing DF, DHF and DSS a putative chemical structure was assigned to 657 

features. These features were further down-selected to 211 reliable and relevant metabolites. The 

Comparison between dengue samples
(1506 significant features)
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metabolites were tentatively classified and divided into 7 categories. We found 63 

glycerophospholipids, 10 glycerolipids, 6 sphingolipids, 48 fatty acids, 27 sterol lipids, 8 prenol 

lipids, and 48 other organic compounds identified at MSI level 3. The fold change in each 

putative glycerophospholipid species amongst the DEN comparisons is plotted to observe 

changes in their abundances (Figure 33). While the DSS vs. DHF has some features with 

increased abundance, DHF vs. DF and DSS vs DF predominately display decreased abundance 

of glycerophsopholipid species.  

Figure 33 Dysregulation of glycerophospholipids in dengue diseases. In our linear model to test for 
overall dysregulation we calculated the log FC for all features. These features were putatively identified 
(MSI level = 3) and the features tentatively classified as glycerophospholipids were plotted here. Their 
log FC values are plotted to show which features increase or decrease in the indicated comparisons. PC; 
phosphatidylcholine, PE; phosphatidylethanolamine, PS; phosphatidylserine, PA; phosphatidic acid, PG; 
phosphatidylglycerol. 

Finally, we compared the CHIKV patient samples to DF and DHF/DSS and ND samples 

from 2012-2015 to achieve an adequate sample size.  We found 818 significant (adjusted p< 
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0.005) molecular features different (>= 2fold change in relative abundance). Of these features 96 

were increased, 565 were decreased and 157 remained unchanged in CHIKV vs. DF. Comparing 

CHIKV to severe dengue (DSS and DHF) we found 137 features increased, 455 decreased and 

226 remained unchanged. Finally, we compared CHIKV to ND and found 119 features increased 

with 595 decreased and 104 that remained unchanged (Figure 30). Overall, CHIKV displays a 

different metabolic profile to both dengue diseases and non-dengue diseases with a trend towards 

decreased expression of many of the molecular features.  

We were able to assign a putative chemical structure (MSI = 3) to 466 molecular features in 

the dataset comparing DEN and CHIKV cases. These features were further filtered to 189 

reliable and relevant metabolites. The metabolites were tentatively classified and divided into 

categories. We found 57 glycerophospholipids, 6 glycerolipids, 6 sphingolipids, 37 fatty acids, 

23 sterol lipids, 7 prenol lipids, and 53 other organic compounds. The fold change in each 

glycerophospholipid species amongst the CHIKV comparisons is plotted (Figure 34). Aside from 

one lysoPL species, all features were downregulated in CHIKV compared to ND, DF or 

DHF/DSS.  
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Figure 34 Dysregulation of glycerophospholipids in CHIKV vs. DEN. In our linear model to test for 
overall dysregulation we calculated the log FC for all features. These features were putatively identified 
(MSI level = 3) and the features tentatively classified as glycerophospholipids were plotted here. Their 
log FC values are plotted to show which features increase or decrease in the indicated comparisons. PC; 
phosphatidylcholine, PE; phsphatidylethanolamine, PS; phosphatidylserine, PA; phosphatidic acid, PG; 
phosphatidylglycerol.  

Diagnostic Classification 

A LASSO classification model was built to determine if a subset of the significant features 

identified in each comparison could differentiate one disease state from another. Training and 

test groups were randomly selected splitting 50% of the samples from each disease into the two 

groups. For the purpose of comparing dengue diseases we grouped them as severe (DHF and 

DSS) or not severe (DF) in order to obtain sufficient sample size. Furthermore, for the CHIKV 
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vs. DEN model we used all DEN samples exclusively from 2012-2015 to compare with CHIKV 

cases representing a similar time frame and excluded all non-dengue samples.  

The training groups were exclusively used to train the models, while the test group was 

exclusively used to test the accuracy of the models. We first developed linear models on the 

features in training groups to identify ‘significant’ features with a log fold change ≥ 1 and 

adjusted p-value < 0.05 within the training set alone. Metabolomics data sets such as ours 

currently have many unidentifiable features (229–231) and thus irrelevant in developing a useful 

diagnostic model. Therefore, from the list of significant features, we retained only the 

presumptively identifiable features with ppm <=20 in our training group to build the model.  

We developed a filtered list of features and fit a LASSO model to compare all DEN cases to 

ND cases. The training group (126 DEN; 119 ND) for this comparison built a model composed 

of 26 molecular features that was used to identify samples in the test group and performed on the 

test set (n = 243) with a combined accuracy of 99.2% with a sensitivity and specificity of 0.99 

(Figure 35A, B). A PCA of these features separated samples well and accounted for 93.7% of the 

variation (Figure 35C). The features were assigned putative identifications (MSI level = 3) 

yielding 1 acyl carnitine, 5 fatty acids, 1 glycerolipid, 3 glycerophospholipids, 5 peptides, 2 

sterol lipids and 9 other organic compounds (Table 8). The abundances of these features in all 

DEN and ND samples are plotted and the misdiagnosed samples indicated with a star (Figure 36). 
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Figure 35 Results of LASSO analysis on DEN vs. ND disease. (A) Results of LASSO predicted classes 
for the test set. Observed classes are given in columns, predicted classes in rows (B) Measures of 
performance for the LASSO model predictions on the test set. Balanced accuracy takes into account 
errors in classification. (C) Principal components for samples in the test set, using the 26 chosen features. 
Samples that were misclassified are circled. All DEN samples were modeled as a single group; the points 
are colored according to disease severity. The group of outlying points outside the 95% confidence ellipse 
to the right are DHF samples collected in season 2012 and later. 
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Table 8 Features selected by LASSO to differentiate ND from DEN with putative identifications. 
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Figure 36 Abundances of the 26 features chosen by the LASSO predictive model to distinguish 
dengue from non-dengue. Each feature is labeled with MZ value and RT in minutes. Each dot represents 
a sample; samples that were misclassified are indicated by a red star. The abundance for each feature in 
all DEN and ND samples are included here.  

A LASSO model trained on 126 dengue patient samples (93 DF; 33 DHF/DSS) identified 8 

molecular features that distinguish between dengue disease states. When tested on the test set (92 

DF; 33 DHF/DSS) this model performed with a combined accuracy of 89% with a sensitivity of 

1.00 and a specificity of 0.79 (Figure 37). A PCA of these features separated the DEN samples 
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moderately and accounted for 75.06% of the variation (Figure 37C). Based on putative 

identifications (MSI level = 3), the model was composed of 2 peptides, 1 fatty acid, 2 sterol 

lipids, 1 eicosanoid, 1 triglyceride and 1 glyceride (Table 9). The abundances of these features in 

all DEN samples are plotted and the misdiagnosed samples indicated with a star (Figure 38). 

Figure 37 Results of LASSO analysis on severe vs. non-severe dengue diseases. (A) Results of 
LASSO predicted classes for the test set. Observed classes are given in columns and predicted classes in 
rows. (B) Measures of performance for the LASSO model predictions on the test set. Balanced accuracy 
takes into account errors in classification. (C) Principal components for samples in the test set, using the 8 
chosen features. Samples that were misclassified are circled.   
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Table 9 Features selected by LASSO to differentiate severe vs. non-severe dengue diseases with putative identifications. 
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Figure 38 Abundances of the 8 features chosen by the LASSO predictive model to distinguish 
severe vs. non-severe dengue disease. Each feature is labeled with MZ value and RT in minutes. 
Each dot represents a sample; samples that were misclassified are indicated by a star. For the most part, 
misclassified samples had higher levels of the features than did severe dengue samples that were not 
misclassified. Samples from the entire dataset are included. The higher/lower levels of abundance in 
DHF/DSS samples do not have an obvious relationship to sex, serotype, age, season of collection, days of 
illness, or batch.  

Finally, to distinguish CHIKV vs. DEN we used 238 patient samples from 2012-2015. The 

training group (96 DEN; 24 CHIK) for this comparison built a model composed of 6 molecular 

features that were able to identify samples in the test group (n = 118) with a combined accuracy 

of 100% with a specificity and sensitivity of 1.00 (Figure 39). A PCA of these features separated 

the DEN samples very well and accounted for 96.76% of the variation (Figure 39C). Putative 

identifications (MSI level = 3) were assigned yielding 2 phospholipids, 1 fatty acid, 1 sterol 

lipids and 2 other organic compounds (Table 10). Their abundances are plotted for all CHIKV 

and DEN samples displaying clear separation between CHIKV and DEN samples (Figure 40). 
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Figure 39 Results of LASSO analysis on CHIKV vs. DEN. (A) Results of LASSO predicted classes for 
the test set. Observed classes are given in columns, predicted classes in rows. (B) Measures of 
performance for the LASSO model predictions on the test set. Balanced accuracy takes into account 
errors in classification. (C)  Principal components for samples in the test set, using the 6 chosen features. 
All DEN samples were modeled as a single group but are colored for different degrees of severity.  
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Table 10 Features selected by LASSO to differentiate CHIKV from DEN with putative identifications. 
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Figure 40 Abundances of the 6 features chosen by the LASSO predictive model to distinguish DEN 
from CHIKV. Each feature is labeled with MZ value and RT in minutes. Each dot represents a 
sample. Abundance for each feature in all CHIKV and all DENV samples are shown here. The features 
shown were present in all dengue samples, but absent or with low abundance in the majority of CHIKV 
infected samples (which therefore had low median imputed abundance). 

The accuracy of the LASSO models with the small number of metabolites required to 

differentiate the disease groups suggest that metabolic profiling of patient serum can be 

developed to accurately classify patients in these critical disease groups. 

Pathway analysis 

In addition to diagnostic and prognostic tools, there is a need for better understanding of 

arbovirus disease pathology for the development of antivirals. As such, we probed further into 

our metabolomics data set to identify biochemical pathways disturbed in each of these diseases. 

CHIKV DEN CHIKV DENCHIKV DEN

15

5

10

15

5

10



158 

As described in Chapter 2 using integrated pathway and network analysis to analyze 

untargeted mass spectrometry data is a superior approach to achieve accurate annotation of 

features, while removing human bias and identifying perturbed biochemical pathways. As such, 

we again utilized the mummichog analytical platform to determine connectivity and find enriched 

pathways (233). We used two-way comparisons to feed data into the software. These 

comparisons were DEN vs. ND, DHF/DSS vs. DF (all severe disease), and for further granularity 

we also separated these into: DSS vs. DHF, and DSS vs. DF, and finally to compare to 

alphavirus infection: CHIKV vs. DEN. These comparisons and the enriched pathways are 

outlined in Figure 29 and Table 11. 

Table 11 Pathways significantly enriched in each comparison (pathways in bold will be 
discussed further).  

We generated a metabolic map for each comparison that shows the upregulated or 

downregulated metabolites (nodes on the map) in each comparison and how they connect via 

enzymatic reactions (edges on the map). The color and size of the node represents whether it is 
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increased or decreased in the indicated comparison (see legends). The network for DEN vs. ND 

in shown in Supplementary Figure 7. We see enrichment of multiple eicosanoids in the DEN 

samples. We also observed down-regulation of multiple carnitine species in compared to ND. 

Since carnitines were the top pathway hit for DEN vs. ND (Table 11), metabolites (nodes) 

connected to L-carnitine were pulled out in the sub-network for enhanced visualization (Figure 

41A).  

 

Figure 41 Metabolic sub-network of DEN vs. ND samples. Metabolites annotated by network analysis 
that are found when comparing DEN to ND samples. The node size and color are determined by the 
statistical differences between the samples with the values noted in the legend. The large nodes in red are 
metabolites that are upregulated   in dengue samples and the small blue nodes are metabolites that are 
decreased in DEN (increased in ND). The edges connecting the nodes represent enzymatic reactions that 
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connect the metabolites and their length has no significance. This is a sub-network of all features 
connected to L-carnitine. The legend indicates values of size and color for the nodes.  

Initially we compared all severe dengue samples (DSS/DHF) to DF samples (Supplementary 

Figure 8). We observed dysregulation in retinol metabolism (Table 11), thus we pulled out the 

sub-network of features connected to retinol and retinoate (Figure 42A) and saw that some of 

these features were upregulated in DHF/DSS compared to DF, while others appeared 

downregulated.  However, when we pulled apart the three diseases and plotted their normalized 

abundances, we see that the features, particularly cis-9-retinoic acid, displayed an increase in 

abundance in DSS (Figure 43).  

One strength of our study is that we have a large sample size of DSS patients (22 samples) 

compared to most studies. To take advantage of this, we wanted to increase our understanding of 

the pathways changed in this unique severe form of dengue. Hence, we compared DSS to either 

DHF or DF individually to identify metabolic pathways that were altered. The metabolic map for 

each of these comparisons are quite similar (Supplementary Figure 9 and 10), likely indicating 

that the changes seen in DHF/DSS vs. DF (Supplementary Figure 8) can largely be attributed to 

the DSS samples given the similarities between DHF and DF. Overall, there were numerous 

pathways in fatty acid synthesis and metabolism dysregulated in DSS (Table 11) and their 

eicosanoid products were upregulated in the networks (Supplementary Figure 9 and 10). Thus, 

we enhanced the sub-network for one eicosanoid: prostaglandin, comparing DSS to DHF (Figure 

42B). The linoleate and leukotriene sub-networks were enhanced for the DSS vs. DF network 

(Figure 42C). Overall, we see that linoleate metabolism to arachidonic acid and the production of 

eicosanoid effectors (prostaglandins and leukotrienes) are increased in DSS (Figure 42C).  
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Figure 42 Metabolic sub-networks of DEN disease samples. Metabolites were annotated by network 
analysis. The node size and color are determined by the statistical differences between the samples with 
the values noted in the legend. (A) The sub-network of all features connected to retinol and retinoate. The 
large nodes in red are metabolites that are upregulated   in DHF/DSS samples and the small blue nodes 
are metabolites that are decreased in DHF/DSS samples (increased in DF). The edges connecting the 
nodes represent enzymatic reactions that connect the metabolites and their length has no significance. (B) 
The a sub-network of all features connected to Prostaglandin H2. The large nodes in red are metabolites 
that are upregulated   in DSS samples and the small blue nodes are metabolites that are decreased in DSS 
samples (increased in DHF). The edges connecting the nodes represent enzymatic reactions that connect 
the metabolites and their length has no significance. (C) The sub-network of all features in linoleate 
metabolism and leukotriene production. The large nodes in red are metabolites that are upregulated in 
DSS samples and the small blue nodes are metabolites that are decreased in DSS samples (increased in 
DF). The edges connecting the nodes represent enzymatic reactions that connect the metabolites and their 
length has no significance. The legend indicates values for colors and width of nodes. 
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Figure 43 Retinol metabolism is disturbed in severe DEN. The normalized abundance in each disease 
state is plotted for the annotated features. The common name of the metabolite is noted in purple and the 
m/z value measured is below. The features were mapped onto a portion of the KEGG (235) pathway for 
retinol metabolism. Statistical significance comes from our linear model taking all features into account 
and controlling for false discovery. *=p<0.05, **=p<0.01, ***=p<0.005, ****=p<0.001, 

To compare these pathological findings to another arbovirus we compared CHIKV samples 
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hormone metabolism (Table 11). A common treatment protocol for CHIKV infection is steroids, 

due to the inflammatory nature of the disease. Thus, we confirmed that none of these patients had 

received steroids prior to sample collection.  Hence, the perturbations in this pathway are unique 

to the infection with CHIKV compared to DENV. Interestingly, we observed an overall down-

regulation of many of the metabolites in the network of CHIKV compared to DEN 

(Supplementary Figure 11). Furthermore, most of the features in the steroid hormone 

biosynthesis sub-network were also strongly downregulated (Figure 44B).  
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Figure 44 Metabolic sub-network of CHIKV vs. DEN samples. Metabolites annotated by network 
analysis that are found when comparing CHIKV to DEN samples. The node size and color are determined 
by the statistical differences between the samples with the values noted in the legend. The large nodes in 
red are metabolites that are upregulated in CHIKV samples and the small blue nodes are metabolites that 
are decreased in CHIKV samples (increased in DEN). The edges connecting the nodes represent 
enzymatic reactions that connect the metabolites and their length has no significance. (A) A sub-network 
of features in steroid hormone biosynthesis. The legend indicates values for colors and width of nodes. 

Given the disturbances in fatty acid synthesis and metabolism amongst the dengue disease 

comparisons (Table 11) we wanted to look in more detail at these metabolites. The mummichog 
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software annotates input m/z values based on their connectivity to other m/z values and uses sets 

of m/z values with different adducts to enhance the likelihood of the annotation. As such, it 

generates a set of features with higher degree of certainty called empirical features, in addition to 

all of the annotated features that are plotted on our metabolic maps (Supplementary Figures 7-

11). Using the empirical features, we measured in the DSS vs. DF comparison, we mapped 

features onto the de novo fatty acid biosynthesis pathway (Figure 45). The common name is 

displayed in green with the m/z value for that feature below. The normalized abundance for each 

feature is plotted in DF, DHF and DSS samples. The significance levels result from our linear 

model adjusted for multiple comparisons (described in the methods section). We see a decrease 

in the carbon precursor to fatty acids, malonyl-CoA, in severe dengue diseases. Then in DSS we 

see a clear increase in the fatty acids, palmitic acid and oleic acid, likely indicating increased flux 

through the pathway.  
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Figure 45 De Novo fatty acid biosynthesis in DEN samples. We mapped the measured features in de 
novo fatty acid biosynthesis onto the KEGG(235) pathway. The common name for each feature is in 
green with the measured m/z value below it. The rate-limiting enzyme at each step is labeled in red. We 
found a significant reduction of the malonyl-CoA precursor to FA synthesis in severe dengue samples 
compared to DF samples. Significant increases in the down-stream fatty acids was seen in DSS samples. 
Statistical significance comes from our linear model taking all features into account and controlling for 
false discovery.  (*=p<0.05, **=p<0.01, ***=p<0.005, ****=p<0.001) 
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We then used the same process to map empirical features onto the arachidonic acid (AA) 

synthesis (linoleate metabolism) and AA metabolism pathways (Figure 46). Again, the common 

name is highlighted in red with the m/z value below, and the normalized abundance plotted. 

After synthesis, AA is stored in membrane phospholipids by lyso-acyltransferase enzymes, and 

when activated AA is released from PC by PLA2 (323,324). Then it is oxygenated, either 

randomly by reactive oxygen species or enzymatically by three main classes of enzymes and 

others that vary depending on tissue. Interestingly, we again see clear increases in the precursors 

to AA in DSS samples compared to both DF and DHF. We also see increases in three 

eicosanoids products of AA: leukotriene A4, prostaglandin E2 and hepoxilin A3 that were all 

significantly increased in DSS serum samples compared to both DF and DHF. This suggests a 

specific or enhanced inflammatory response in DSS that is absent in DHF and DF.  
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Figure 46 Arachidonic acid synthesis and metabolism in dengue samples. We mapped the measured 
features in linoleic acid and arachidonic acid metabolism onto the KEGG(235) pathway. The common 
name for each feature is in red with the measured m/z value below it. We found the features in AA 
synthesis (linoleic acid metabolism) to be consistently, significantly increased in DSS samples compared 
to DF and DHF. We also found increases in three different eicosanoid products of AA in DSS samples. 
Statistical significance comes from our linear model taking all features into account and controlling for 
false discovery.  (*=p<0.05, **=p<0.01, ***=p<0.005, ****=p<0.001) 

4.3 Discussion  

Many diseases present initially with common symptoms of fever and malaise yet can be self-

limiting or progress to a severe disease or death. Accurate diagnosis and early care is absolutely 

critical to saving lives. However, when resources are limited, it is difficult to allocate them 

appropriately. Hence, new tools are necessary to address this knowledge gap. Here we analyzed 

acute phase serum of patients with DF, DHF, DSS, CHIKV or an undiagnosed febrile disease 

[non-dengue, non-CHIKV (ND)]. Our aim was first to identify small molecule biomarkers that 

characterized one disease state or another in acute phase serum with the potential to predict 

disease outcomes. Our second aim was to use network analysis to accurately annotate features 

combined with pathway analysis to identify biochemical perturbations linked to disease 

pathology. Here we present correlative data that when tested, accurately predicts patient disease 

status, and biochemical features that may be responsible for dengue disease symptoms. These 

small and reliable sets of metabolites should be tested against other sample sets to confirm their 

current potential as diagnostic tools.  

Despite multiple metabolomic studies of dengue infection (198,206,223,224), the field has 

yet to achieve consensus on a specific set of biomarkers.  There are many factors indicating why 

it has been difficult to identify a core set of metabolites (325). Here we have addressed some of 

these elements by using a considerably larger sample size than most metabolomics studies (325), 

using multiple patient cohorts, and expanding our previous metabolite set by using a 

complementary chromatography platform. We have followed up our previous work with patients 
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from the same genetic background and observed similar profiles of changing metabolites, 

thereby strengthening our findings and lending credence to this approach.  

Our use of rigorous unbiased statistical techniques has enabled us to identify a specific set of 

serum metabolites that can predict dengue disease outcome. In fact, when tested our refined 

diagnostic bio-signature performed extremely well. This demonstrated the power of such an 

approach both in the accuracy of the tests as well as the limited number of features used for the 

models. This makes future applications of these markers much more feasible for use in a clinical 

setting. 

Not only did our diagnostic biosignature perform strongly in correctly identifying our test 

group, it also identified features of biological relevance that have been observed in other studies. 

Thus, similar trends in metabolites can be identified across chromatography platforms and 

studies. This further indicates that our diagnostic panel and disturbed pathways have real 

biological significance as well as potential utility as prognostic biomarkers.  

By profiling acute serum samples, we have identified an early shift in the metabolic profile 

that differs between these diseases. We also found changes in lipid metabolism indicative of 

pathology. It is well characterized that lipid metabolism is disturbed in dengue virus infection 

(29,90,92,106), however the precise role in disease pathology is not entirely clear. Interestingly, 

we found that serum glycerophospholipids were predominately decreased in severe vs. non-

severe dengue diseases. A similar decrease in serum phospholipids was seen also seen in other 

studies (198). This may indicate a retention of these lipids intracellularly, which may play a role 

in viral replication and production.   

Using an integrated pathway and network analysis platform we observed metabolites that are 

altered between each comparison and determined their connectivity. We have also identified 
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biochemical pathways that are significantly disturbed between the indicated comparisons 

demonstrating explicit physiological changes. More specifically, many of these pathways are 

related first to liver damage, second the inflammatory response and third, may be implicated in 

vascular permeability.  

First, we identified that retinoic acid metabolism is disturbed in DSS/DHF vs. DF and in 

DSS vs. DF. Retinoic acid is released into circulation when there is damage to the liver and it 

serves to regulate metabolic gene expression through ligand dependent transcription factors 

(326). In particular, we observed an increase in 9-cis-retinoic acid in DSS samples, which is a 

ligand for both retinoic acid receptors (RARs) and retinoid X receptors (RXRs), key nuclear 

transcription factors (327). The increase in retinoic acid we observed may be due to the liver 

damage caused in severe dengue diseases. Dysregulation of this transcription factor has broad 

implications for the perturbation of other metabolic pathways and the overall response to 

infection.  

Second, we observed disturbances in fatty acid biosynthesis and metabolism in all of the 

dengue disease comparisons (DFvsDHF/DSS, DSSvsDHF and DSSvsDF). Disturbed fatty acids, 

including many of the long and very–long chain species we found, have been shown in many of 

the dengue disease serum metabolomics studies thus far (198,202,206). Many fatty acids act as 

signaling molecules to mediate inflammation, which is common to all of these diseases but is 

particularly increased in DSS. FAS activity is known to be increased in DENV infection in cell 

culture (90). Perhaps the increase in fatty acids we observed may represent increased viral 

replication in severe dengue disease, causing an increase in FAS and an accumulation of 

intermediate fatty acid species in the serum. Or it may be indicative of the cellular inflammatory 

response to infection. However, we did not observe increased fatty acids in CHIKV samples, 
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rather they were decreased compared to DEN samples. Thus, the increase in fatty acids may be a 

specific feature of DENV infection that is not a general inflammatory response.  

Furthermore, we observed disturbances in linoleate metabolism in DSS vs. DHF and DSS vs. 

DF. Linoleate is an essential n-6 fatty acid that is metabolized into arachidonic acid (AA) or 

other very-long chain fatty acids. We observed significant increases in the metabolites in this 

pathway in DSS compared to DHF and DF. Further demonstrating that the synthesis and 

metabolism of fatty acids is perturbed in severe dengue diseases.  

Third, enhanced linoleate metabolism serves to increase pools of AA, which is a potent 

inflammatory molecule when it is transformed into eicosanoids. With our empirical features, we 

measured 3 different eicosanoids: leukotriene A4, prostaglandin E2 and hepoxilin A3. These 

features may have implications for the vascular permeability observed in DSS. The leukotriene 

species we observed are produced by the action of 5-lipoxygenase (5-LOX). Initially 5-LOX 

generates 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is unstable and rapidly 

converted to 5-hydroxyeicosatetraenoic acid (5-HETE) or to LTA4 another unstable intermediate 

that is converted to LTB4 or LTC4. 5-LOX is primarily expressed in leukocytes where it 

produces multiple cysteinyl leukotrienes (cLT) such as LTB4, a polymorphonuclear leukocyte 

(PMN) chemoattractant involved in anaphylaxis (323,328). Furthermore, LTC4 serves to increase 

vascular permeability and plasma leakage (329,330).  

In this data set we didn’t observe LTC4, however we measure LTA4 reliably and LTB4 was 

observed in some of our networks. Previous studies have also observed an increase in plasma 

leukotriene B4 during the febrile stage of DEN patients (240). Additionally, cell culture of human 

derived neutrophils revealed that exposure to DENV, both infectious and heat–inactivated, 



174 

caused an increase in LTB4. Inhibition of 5-LO attenuated LTB4 production, but the effect on 

viral replication was not demonstrated (240). 

Prostaglandins are produced from AA through the action of cyclooxygenase (COX) 

isoenzymes. Here, we observed prostaglandin E2 (PGE2) increased in DSS samples. PGE2 is the 

most abundant prostaglandin produced in mammals and it is significantly increased during 

inflammation (331). Additionally, it causes increased microvascular permeability during an 

inflammatory event (331,332). Hence, it may also play a role in the vascular permeability 

observed in DSS. Others have demonstrated a role for COX-2 in DENV replication in cell 

culture (333), implying a virally-induced phenomenon that may be at play as well.  

The third eicosanoid we observed was hepoxilin A3 (HxA3). This is a non-canonical 

eicosanoid that is produced when AA is converted to 12S-HpETE through the action of 12S-

LOX, which is then converted into HxA3. Hepoxilins are considered a novel type of 

inflammation that is not as well understood. They are formed in neutrophils where they promote 

chemotaxis and cause skin vascular permeability (334,335). During a general inflammatory 

event, vasodilation occurs to allow for an increase in blood flow to an injured site along with 

controlled vascular permeability to allow for plasma to leak into the injured tissue (334). This 

permeability event is likely mediated by hepoxilins (334,336). Hence the increase of hepoxilins 

during DENV infection may also be responsible for the vascular permeability in severe disease.  

Mast cells (MCs) are well known to produce leukotrienes and other vasoactive factors such 

as prostaglandins, proteases, VEGF and TNF. MCs line blood vessels and when activated, 

release these factors to induce vascular permeability. These cells have been implicated in the 

vascular permeability that occurs with DENV infection (213). In particular, chymase produced 

by mast cells acting at the site of virus infection induced vascular leakage in mice and was 
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elevated in serum from human patients with DENV infection. Additionally, inhibition of 

leukotriene receptors in the mouse model reduced virus-induced vascular leakage (213). Hence, 

there are likely multiple factors that work together to induce vascular leakage. 

Clearly all of these features are involved in inflammation and it is not surprising to measure 

them in the diseases comprising our sample set. Their increase in DSS is interesting, which may 

simply be due to general increased inflammation. However, each of these features have specific 

mechanisms of action that may be influential in the symptoms we observe. Their unique 

abundance in DSS compared to DF and DHF implies that they are not a general inflammatory 

response, but a specific response to this severe form of DENV infection. Clearly this study can 

only demonstrate associations and speculate about causes, but the features we measured are 

worthy of follow up studies to identify mechanisms.  

The field of metabolomics has been slow to move forward with applicable biomarkers, for 

many reasons. The study we present here is a feasible application of metabolomic biomarker 

discovery because we are proposing a system where a known diagnostic (PCR/ serology) is 

coupled to a discrete panel of metabolites at relative ratios that predict disease severity. 

Importantly, this panel does not overlap with the other disease states used in our study, rather 

different metabolic profiles were observed to predict these similar yet distinctly different 

phenotypes. Thus, despite the clinical difficulties in early diagnosis of febrile patients, we 

demonstrate that these diseases are in fact clearly distinguishable when using distinct changes in 

the serum metabolome. Rapid and accurate measurement in a cost-effective manner of these 

metabolites has real therapeutic potential. Naturally, this particular set of metabolites needs to be 

tested in further sets of patient serum, both patients from different genetic backgrounds as well as 

patients in different age ranges and from different seasons of dengue outbreaks. Additionally, 
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this particular set of features could be tweaked in the case of metabolites that may be more 

difficult to measure in a cost-effective manner. These features could be replaced with other 

metabolites that show additional promise. A rigorous iterative approach is required to improve 

upon the diagnostic sets we propose here to make them more clinically applicable. 

We submit that a paradigm shift is needed for the development of prognostic tools and 

metabolomic profiling is key to this end. We have demonstrated an improved approach to 

biomarker discovery applied to dengue disease prognosis. With further testing this can be applied 

to clinical settings.  

4.4 Materials and Methods 

Patients and Serum sampling and handling 

Acute-phase serum samples were obtained from patients who had been diagnosed as ND, DF, 

DHF, DSS, or CHIKV. The days of fever ranged from 0-3 for cohort patients and 0-6 for 

hospital patients (Table 5). These cohort patients presented to the study clinic Centro de Salud 

Sócrates Flores Vivas and met the 1997 WHO case definition for dengue (320) or presented with 

undifferentiated fever. The hospital patients presented to the Hospital Infantil Manuel de Jesús 

Rivera, the National Pediatric Reference Hospital. All dengue patients presented with a fever or 

history of fever <7 days and one or more of the following signs and symptoms: headache, 

arthralgia, myalgia, retro-orbital pain, positive tourniquet test, petechiae, or signs of bleeding. All 

the samples were from pediatric patients, <15 years of age, and 52% of the samples were from 

male and 48% from female patients (Table 5). Cases were laboratory-confirmed for DENV 

infection by detection of DENV RNA by RT-PCR, isolation of DENV, seroconversion of 

DENV-specific IgM antibody titers observed by MAC-ELISA in paired acute- and convalescent-

phase samples, and/or a ≥4-fold increase in anti-DENV antibody titer measured using inhibition 
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ELISA in paired acute and convalescent samples. Diseases severity was diagnosed by 

computerized algorithms based on the 1997 WHO schema were used to classify cases 

(13,312,320). 

Metabolite extraction. 

Samples were prepared in a randomized order.  5µL (0.08 ug/ml) of D5 L-tryptophan 

(Cambridge Isotope Laboratories) was added to 20µL of serum as an internal standard.  Samples 

were extracted with 100µL of cold methanol and vortexed for 30 s.  To precipitate proteins, the 

samples were incubated for 12 h at -80 oC, followed by 30 min centrifugation at 18,000xg. The 

supernatant was transferred to a new tube and dried in a vacuum concentrator. Extracted samples 

were resuspended in 25µl 50% methanol, let stand at room temperature for 15 m, vortexed for 20 

s, and centrifuged 30 m at 18,000xg to remove insoluble debris.  The supernatant was transferred 

to HPLC vials and directly submitted for LC/MS analysis. 

Untargeted LC/MS analysis. 

Sample order for injection, including technical triplicates, was randomized. 10µL of each 

sample were injected on an Agilent 1290 HPLC system coupled to an Agilent 6224 time-of-

flight mass spectrometer [Santa Clara, CA, USA].  Samples were run in positive ion mode.  An 

XBridge BEH C18 column (2.5 µm particle size, 2.1x100mm, Waters Millford, MA, USA) at a 

flow rate of 250 µL/min was used.  A linear gradient elution from 0% to 98% B (0-13 min) and 

98% B (13-14 min) was applied.  The mobile phase was composed of A= water plus 0.1% 

formic acid and B= 95% acetonitrile with 0.1% formic acid. ESI source conditions were set as 

follows:  gas temperature 325 ºC, drying gas 5 L/min, nebulizer 20psi, fragmentor 120 V, 

skimmer 50 V, and capillary voltage 4000 V.  Mass spectral data were collected in profile and 
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centroid mode. The instrument ran in 2 GHz extended dynamic range mode with a range of 85 to 

1700 m/z at a scan rate of 2 spectra/s. Samples were run in six batches. 

Data processing  

Peak Identification 

The raw data files were processed for peak detection using ProteoWizard MS Convert 

version 3.0.6478 64 bit. Retention-time correction, chromatogram alignment and metabolite 

feature annotation were performed using XCMS software version 1.46 in R version 3.2.2 (255–

257). 

Preprocessing 

All data analyses were conducted in R version 3.4.2 (337). Features were first filtered to 

remove any that failed to meet the following criteria: 1) present in at least 20% of all samples as 

a whole; 2) present in at least 75% of all pooled QC samples; 3) present in at least 70% of at 

least one group (ND, DF, DHF, DSS, CHIK+, CHIK-); 4) eluting within the gradient time, i.e. 

≤14.5 minutes). 

Normalization was conducted step-wise. First, within each batch separately, features that 

were not present in at least 80% of pooled QC in that batch were removed. Features were then 

normalized using a tobit regression (left-censored at the minimum value for each batch) fitted to 

the pooled QC samples, implemented in the R package ‘AER’ version 1.2.5 (Kleiber and Zeileis 

2008). Batches were then combined, retaining only those features present in all batches, and 

normalized feature-wise over all batches by the ratio of pooled QC mean batch abundance to 

pooled QC overall mean abundance.  

We found that the season of collection had a large effect on the presence of some features, 

suggesting that length of storage and/or methods of collection and handling may be influencing 
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the results. Therefore, features were removed if found to be present (in ≥50% of all samples, 

irrespective of group) only in samples collected in the 2005-2009 seasons, or only in samples 

collected in the 2001-2015 seasons. However, if the feature thus identified appeared to be 

specific to a single serotype (i.e. found in >50% of samples of that serotype, and <50% of 

samples from other serotypes), then the feature was retained. Finally features that had a 

coefficient of variation >30% in pooled QC samples after combining and normalizing batches 

were deemed unreliable and removed prior to analysis. Abundances were transformed by taking 

the log2 prior to further analysis. Missing values were imputed using a random forest algorithm 

implemented in the R package missForest version 1.4 (338,339). 

Statistical Analyses 

Abundance variance was calculated for each feature across all samples, and features in the 

lowest quartile were excluded from analysis (340). Prior to further analyses, the subset of 

samples to be compared was randomly divided into training and test sets. Test sets were used 

only to test predictions from fitted models. Linear models with empirical Bayes statistics were 

applied feature-wise using the package limma version 3.32.10 (228,321). Features were 

considered to be significant based on log2 fold change of ≥1 and p-value< 0.05 after adjustment 

for false discovery rate (341). From the list of significant features, those compounds for which 

putative identification was available were used to build predictive LASSO models implemented 

in the R package ‘glmnet’ version 2.0.13 (342,343) using a tuning parameter chosen by cross-

validation. Transformed feature abundances were centered and scaled prior to principal 

components analysis. 
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Feature Annotation 

Molecular features were assigned putative annotations first by running mass per charge 

ratios (m/z) through the Purdue omics Discovery Pipeline (322). [M+H]+ and [M+Na]+ adducts 

were accounted for in the neutral mass calculation of the positive ionization mode data. 

Annotations with mass accuracy <20 ppm error were further classified into molecular classes. 

The features that were classified as glycerophospholipids were retained and their fold change 

values (described above) were graphed in Figures 31B and 33. The features that were selected 

from the LASSO regression analysis were further annotated with the Human Metabolome 

Database (HMDB) and LIPID Metabolites and Pathways Strategy (LIPID MAPS) to identify the 

most likely annotation based on RT values and biological relevance.   

Pathway analysis 

We used a student’s t-test on the imputed abundances for all the features in each disease 

group comparison in negative ionization mode and positive ionization mode. Network analysis 

and metabolic pathway analysis was performed using the mummichog software version 2.0 with 

default parameters (233). This platform tests the enrichment of input features against random 

data resampled from the reference list and produced an empirical P value for each pathway. 

Input metabolites were then annotated as empirical compounds and the significant features 

(p<0.05) were mapped onto biochemical pathways. They were also linked in a network figure 

by known metabolic reactions and visualized in Cytoscape version 3.6.0 (263).  

Representative features in retinol metabolism, de novo fatty acid biosynthesis, and 

arachidonic acid metabolism were plotted with abundance in each disease state and displayed 

in metabolic pathways based on KEGG pathways (235).   
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CHAPTER 5. CONCLUSIONS 

In this thesis, we present insight into how DENV2 temporally perturbs cellular 

metabolism in an in vitro human infection model, Huh7 and decipher commonalities to 

metabolic alterations observed during dengue disease progression in human patients. Specifically, 

we discuss changes in the Huh7 cellular metabolome induced by DENV2 replication over time; 

provide mechanistic detail of the changes observed in unsaturated fatty acid biosynthesis and the 

implications for virion formation and demonstrate the applicability of these metabolic changes to 

disease prognosis.  

Throughout these different systems we see three main consistent themes. First, host 

cellular metabolism changes with time to cater to viral replicative needs. This is observed both in 

cell culture models as well as human disease models.  Second, multiple arms of fatty acid 

biosynthesis are perturbed by viral replication, presumably for the construction of viral 

replication complexes and particle assembly. Third, downstream metabolism of these fatty acids 

produces signaling molecules that may contribute to and exacerbate the signs of severe disease. 

DENV2 induced metabolomic changes in human hepatoma cells 

We have previously profiled the metabolome of DENV2 infected mosquito cells and 

mosquito midguts and described global changes caused by virus infection as well as changes to 

specific biochemical pathways (92,106). To complement these findings, we comprehensively 

profiled metabolic changes in the human hepatoma cell line (Huh7 cells) following DENV2 

infection. Given that flaviviruses significantly alter cellular membranes in a consistent time-

dependent manner (227), we hypothesized that temporal control of specific metabolic pathways 
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must occur to cater to changing needs as infection progresses. These temporal changes can be 

used as a tipping point to alter the outcomes of infection. 

To test this hypothesis, we used a comprehensive approach by profiling both polar and 

non-polar metabolites in both negative and positive ionization modes. We infected cells with 

DENV2 virus and collected samples at 6, 18, 30 and 48 hours post infection. For controls, we 

included mock-infected cells and UV-inactivated-DENV2 that can attach to and enter cells but is 

unable to replicate. This allows us to distinguish changes in the metabolome caused by exposure 

to virus from the actual replication of the genome and production of viral proteins. Thus, we 

identified global dysregulation of metabolites caused by the effects of time, virus exposure and 

virus replication. Here, we highlighted those changes due to virus replication. 

We also used an integrated network and pathway analysis platform to annotate 

metabolites and identify significantly perturbed biochemical pathways. We specifically identified 

that there is a disturbance in anabolic pathways during early viral replication, with a shift 

towards catabolic pathways at late viral replication. During peak viral replication we found 

disturbances in fatty acid biosynthesis and metabolism. In particular we found that linoleic acid 

(n-3) metabolism was increased at peak viral replication. We measured an increase in each 

metabolic intermediate along the pathway from linoleic acid to arachidonic acid. The rate-

limiting enzyme for this pathway is fatty acid desaturase 2 (FADS2). We observed a reduction in 

infectious virus released from cells with FADS2 knockdown. This implies that the virus 

specifically up regulates this biosynthetic pathway to stimulate production of PUFAs for 

completion of its life cycle and production of infectious virions. Furthermore, we observed an 

increase in two key eicosanoids: leukotriene A4 and 5-HETE at peak viral replication. We 
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demonstrated that inhibition of the rate-limiting enzyme for their production, 5-lipoxygenase (5-

LOX), also reduced viral replication.  

This is the first comprehensive profiling of global metabolic changes in DENV2 infected 

Huh7 cells. We have identified vast changes and highlighted a few trends here. Further analysis 

of this data set will provide deeper insight into other biochemical pathways and lipid molecules 

changed by DENV2 infection in Huh7 cells.   

Future directions: 

We found it quite surprising that phospholipid species were decreased in DENV2 

infected Huh7 cells. This is in direct opposition to what we have previously demonstrated with 

mosquito cells and midguts with DENV2 infection (92,106). However, we hypothesized that 

since Huh7 cells are a liver hepatoma cell line, they already have extensive ER networks and 

stores of lipids. Instead of increasing the abundance of PLs, perhaps the virus alters the 

localization of PLs in the cell in order rearrange the ER membranes and form replication 

platforms. Additionally, we measured increases in certain lysophospholipid species, which may 

reflect the decrease in total PLs. Perhaps, AA is being cleaved from numerous PC species to be 

processed into eicosanoids and the virally induced membranes are primarily comprised of 

LysoPC species. Further characterization of these lipid species and their localization to various 

cellular compartments during DENV2 replication in Huh7 cells will provide insight into the 

changing needs of the virus as it toggles between its human and mosquito host.  
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Stearoyl-CoA desaturase 1 is a metabolic switch that defines early and advanced dengue virus 

infections and determines virus particle infectivity 

It had previously been demonstrated that the DENV2 NS3 protein recruits fatty acid 

synthase (FAS) to viral replication complexes and increases its activity.(90) This causes 

localized production of saturated fatty acids. Unsaturated fatty acids (UFAs) play a key role in 

cellular membrane fluidity. Flaviviruses are dependent on these membranes, particularly ER 

membranes, for multiple stages of their life-cycle. Thus, we hypothesized that disruption of UFA 

biosynthesis through the rate-limiting enzyme stearoyl-CoA desaturase 1 (SCD1) would impact 

virus genome replication and virion formation and function. We assumed that SCD1 would 

behave similarly to FAS, displaying a re-localization and increase in activity in DENV2 infected 

cells. However, we found instead two key results. First, SCD1 expression and activity is time-

dependent, displaying an early increase in activity followed by a late decrease. This is likely 

because SCD1 is primarily transcriptionally regulated and sensitive to excess PUFA generation. 

Second, we found that while inhibition of SCD1 causes a moderate decrease in viral genome 

replication, it has a much greater impact on infectious particle formation. In fact, we determined 

that inhibition of SCD impacted the virion maturation process, causing enhanced production of 

immature particles.  

This is the first demonstration that unsaturated fatty acid biosynthesis impacts virion 

maturation. Furthermore, we have significantly contributed to the understanding of flaviviral 

control of cellular metabolism, with mechanistic detail. We have done so by demonstrating cell-

to-cell variation in a key metabolic enzyme that is dependent on the degree of viral replication. 

We have built on the previous literature of the role of FAS in DENV2 replication and 

demonstrated the role of SCD1 in both viral replication and virion production. To accomplish 
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this, we have taken observations from our metabolomics data set (Chapter 2), showing enhanced 

unsaturated fatty acid (UFA) biosynthesis, and demonstrated the mechanistic role for SCD1 in 

this process. Furthermore, we have demonstrated that SCD1 is critical for the replication of all 

DENV serotypes, other flaviviruses of medical interest and an alphavirus. This demonstrates a 

shared need for unsaturated fatty acid species for the generation of membranous platforms for 

positive-strand RNA virus replication and virion assembly. 

Future directions: 

We remain curious about the destination of newly synthesized UFAs in the virus infected 

cell. We hypothesize that they are incorporated into phospholipid (PL) species for the expansion 

of ER membranes, but this may vary by cell type. Surprisingly, we observed decreases in PLs 

(discussed above) in our metabolomics data set, indicating that this hypothesis may be incorrect 

for Huh7 cells. Alternative destinations for newly synthesized FAs include cholesterol esters or 

triglycerides. Favoring one of these options would represent a shift towards FA storage that 

could be exploited at advanced time-points of viral infection for energy production. This could 

keep the cell alive as the virus continues to multiply and produce virions.  

As such we have screened acyltransferase enzymes involved in the transfer of newly 

synthesized fatty acids to either phospholipid, cholesterol ester or triglyceride species. Results of 

this screen will provide insights into the channeling of FAs throughout the cell during DENV2 

infection. We will also pair knockdown of the enzymes of interest with SCD1 knockdown to 

further confirm channeling and destinations of de novo FAs.  Such an approach may shed light 

on potential protein-protein interactions of SCD1 with other metabolic enzymes to accomplish  
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FA channeling and its impact on virus replication. Additionally, it will provide insight into the 

energetic needs of the virus and will have broad implications for other metabolic changes upon 

SCD1 inhibition.  

Development of a metabolic biosignature to differentiate severe and non-severe dengue disease 

and chikungunya infections 

 Infection with dengue viruses manifests as multiple disease types with a range of 

outcomes, including dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock 

syndrome (DSS). It is difficult to accurately distinguish these diseases at initial presentation and 

properly allocate resources. We hypothesizde that the earliest signs of pathological 

manifestations of disease can be identified using metabolic biosignatures related to a specific 

etiology and disease state. These biosignatures can be exploited for prognosis or diagnosis. Many 

attempts have been made to identify metabolic biomarkers to diagnose or prognose various 

diseases. Metabolomics studies have been carried out in a variety of patient populations infected 

with dengue viruses and numerous metabolites have been proposed as biomarkers 

(198,199,202,206,344). However, consensus has yet to be achieved and none of these have made 

it to the clinic. Hence, we aimed to characterize the acute-phase serum metabolome of patients 

with dengue diseases, chikungunya infection or an undifferentiated fever. By expanding on 

previous work from our group (206) using a complementary analytical platform, expanding our 

sample size and using statistical analyses not previously applied to these types of data sets, we 

have contributed to and enhanced this field.  

Through the use of rigorous statistical analyses we have developed discrete models of 

metabolites that can accurately predict disease states in our data set. These models can 



187 

distinguish between DEN vs. non-dengue (ND) patients, DHF/DSS vs. DF, and CHIKV vs. DEN, 

where DEN refers to all three phenotypes, DF, DHF and DSS. 

Furthermore, through the use of integrated network and pathway analysis we have 

identified biochemical pathways disturbed by these various disease states. We found 

disturbances in fatty acid synthesis and metabolism in DEN vs. ND and between DHF/DSS vs. 

DF. We also found a disturbance in steroid hormone biosynthesis when comparing CHIKV and 

DEN. Since these patients were not treated with steroids, we assume that this is a virally induced 

phenomenon and may play a role in the different disease symptoms caused by these unique 

viruses.  

We were particularly interested in the disturbances to fatty acid metabolism caused by 

severe dengue diseases and the production of eicosanoids. We identified two eicosanoid species, 

leukotriene A4 and prostaglandin E2, which have previously been observed in DEN diseases. 

This demonstrates the reproducibility of DEN disease metabolomics studies and the feasibility 

for applications of these findings. We also observed an increase in a novel eicosanoid, hepoxilin 

A3, not previously observed in DENV infections. This demonstrates the strength of our data set 

for novel discovery with comprehensive data analyses, as well as the benefit to utilizing multiple 

chromatography platforms for biomarker discovery. These eicosanoid features further 

demonstrate potential mechanisms of the vascular permeability observed in DSS and are worthy 

of mechanistic exploration.  

Future directions: 

Metabolomics studies have unfortunately been slow to identify useful biomarkers that 

have been applied in a clinical setting. However, we submit that DENV infection is a useful  
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model for this type of approach because we are proposing a system where a known diagnostic 

(PCR/ serology) is coupled to a discrete panel of metabolites at relative ratios that predict disease 

severity. 

In order to accomplish this, there is a need for multi-center coordinated efforts between 

research groups. Samples from multiple genetic backgrounds and age-ranges need to be analyzed 

on multiple analytical platforms to identify consistently reproducible biomarkers. Furthermore, 

these biomarkers need to be tested in well-designed randomized trials. 

To further define these diagnostic sets of metabolites and their applicability to severe 

DEN diseases, we have since re-run the LASSO analysis comparing DSS to DF and DSS to DHF, 

rather than the pooled severe vs. non-severe dengue classification that we have included in this 

dissertation. We have improved on this new analysis by running the model 500 times to identify 

the frequency at which each metabolite is included in the model to predict a given disease state. 

From this analysis we have observed that metabolites tend to behave in groups. For example, 

certain sets of metabolites tend to always have increased abundance in DSS and are predictive, 

while other sets of metabolites tend to be decreased and are also predictive. This makes sense 

biologically, as metabolites that belong to similar pathways or have shared function tend to 

display similar behavior when metabolic flux increases uniformly. Consequently, certain groups 

of metabolites may be interchangeable as biomarkers. 

Given variations in human metabolism particularly from varying genetic backgrounds 

and behaviors, we submit that the application of metabolomic biomarker discovery may one day 

need to be personalized, however this is likely in the distant future. In the meantime, prognostic 

tests could take the form of “choose your own adventure” where specific serum metabolites are 

measured and the levels of one class of metabolites are used to determine which metabolites to 
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measure next and in what relative ratios etc. This approach is also extremely complex, but the 

application of advanced mathematical models and testing of large numbers of patient samples 

may advance this idea to a more feasible option. 

Concluding thoughts: 

Using multiple analytical platforms including global profiling, hypothesis driven 

mechanistic discovery and application to patient samples we have characterized DENV2 

metabolic alterations in the human host. We have also identified consistent themes, including 

temporal control of metabolism, viral induced up-regulation of fatty acid biosynthesis and the 

production of eicosanoids that may mediate severe disease outcomes.  

We found it particularly interesting that DENV2 induced a shift in disturbed pathways 

over time. This is not surprising given the changing needs of the virus with time as it completes 

genome replication, translation and production of infectious virions. Further understanding of 

each metabolic pathway perturbed will allow for specific connections to be made between 

metabolic changes and impact on stages of the virus life-cycle. For example, in Chapter 3 we 

connected de novo unsaturated fatty acid metabolism to infectious virion production. This type of 

mechanistic connection can be made for each of these metabolic pathways that the virus perturbs 

for distinct stages of its life-cycle.  

This is particularly important when we think about developing host-targeted antivirals. 

Host-targeted antivirals are a feasible approach for treating acute flavivrus infections since they 

are taken for short periods of time and thus minimize side effects. Also, they may exert less 

evolutionary pressure on the virus thus reducing the likelihood of resistance (345). With 

thorough understanding of viral induced metabolic changes, this can be accomplished in a 

targeted fashion leading to more effective antivirals. For example, host-targeted antivirals that 
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alter metabolism to impact earlier stages of the virus life-cycle may be more effective at 

preventing progression of viral replication. However, targeting these stages may put more 

evolutionary pressure on the virus to develop resistance. Meanwhile targeting later stages may 

impact virion formation, leading to decreased spread throughout a host. Nonetheless, the 

formation of immature particles may enhance the host response, causing more severe disease 

(346). Of course, metabolic changes at early and late time points of infection are intricately tied 

as we have demonstrated in Chapter 3. Teasing apart these stages into more discrete events may 

allow for targeted drug discovery.   

Furthermore, dissecting the cellular response from viral induced mechanisms, particularly 

to cellular stress and signaling pathways, is still unclear. While NS3 has been demonstrated to 

play a distinct role in the re-localization of FAS (90), we have not identified a viral protein 

responsible for changes in SCD1. Nor have viral proteins been identified for many of the 

metabolic changes we discussed in Chapter 1. Furthermore, others have demonstrated that UVI 

virus can induce changes in cellular metabolic pathways in a similar manner to infectious virus 

(89,347). We also observed changes in metabolic pathways caused by UVI; many, but not all, 

were distinct from viral infection.  

The fact that attachment and entry alone may serve as a control point whereby the virus 

induces changes in the host to prepare for its eventual entry and replication is an intriguing 

concept. Clearly, it is difficult to distinguish this process from a general host response to 

receptor-mediated endocytosis. Perhaps inclusion of specific non-viral proteins or synthetic 

beads that could undergo receptor-mediated endocytosis compared to UVI would tease apart 

these steps in the virus life-cycle.  
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We also saw a consistent increase in the synthesis of multiple types of fatty acids in each 

of our various systems. The increase in n-6 fatty acid abundances led to increased arachidonic 

acid and an increase in its eicosanoid products. In our cell culture system, we demonstrated that 

inhibition of 5-LOX resulted in reduced viral replication, implying that this enzyme may be 

activated by or at least important for viral replication. However, it is also possible that 

leukotriene production is simply a secondary effect of increased fatty acid metabolism and 

oxidative stress caused by virus infection. Cells don’t tolerate excess fatty acids very well, thus it 

makes sense that the cell would further metabolize or store them. Perhaps too many of them are 

shunted towards AA resulting in eicosanoid production. 

Each of the eicosanoids that we measured in our serum samples could individually be 

responsible for the vascular permeability observed in DSS. However, we measured multiple 

species, implying that there are multiple cell types involved in this process. Is this a result of 

infection of multiple cell types that are all triggered and cause leakage? Or just an overreaction 

of the immune system that activates too many different cells? Does each eicosanoid enhance the 

action of another to induce permeability or are they independent events? The coordinated efforts 

of all them would be difficult to pull apart, but necessary to really understand the causes of these 

extreme disease symptoms. Understanding the role of the virus in activating particular metabolic 

pathways and enzymes to produce eicosanoids as well as a more thorough characterization of the 

infected cell population will shed light on the mechanism of this phenomenon.  

In summary, we have advanced our understanding of viral induced changes in cellular 

metabolism and provided a practical application of these findings to human health. While 

metabolism is easy to perturb, biological systems seek homeostasis. Thus, the long-lasting and 

consistent changes that we see in cellular metabolism upon viral infection represent significant 
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events with far reaching impacts. Further integration of viral perturbation of pathways directly 

with stages of viral replication will represent that next major steps in this field.  
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Supplemental Figures 

 
 
Supplemental Figure 1 Volcano plots of non-polar metabolites in negative mode. All the significantly different metabolites in the non-polar 
negative samples at the indicated time-points and comparisons are shown for molecular features with altered levels of abundance (|log2 fold 
change| ≥ 1 and p-value < 0.05). The vertical dashed lines indicate a 2-fold change in abundance and the horizontal dashed line indicates a p-value 
= 0.05. 

NP Negative
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Supplemental Figure 2 Volcano plots of non-polar metabolites in positive mode. All the significantly different metabolites in the non-polar 
positive samples at the indicated time-points and comparisons are shown for molecular features with altered levels of abundance (|log2 fold 
change| ≥ 1 and p-value < 0.05). The vertical dashed lines indicate a 2-fold change in abundance and the horizontal dashed line indicates a p-value 
= 0.05. 

NP Positive
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Supplemental Figure 3 Volcano plots of polar metabolites in the negative mode. All the significantly different metabolites at the indicated 
time-points and comparisons are shown for molecular features with altered levels of abundance (|log2 fold change| ≥ 1 and p-value < 0.05). The 
vertical dashed lines indicate a 2-fold change in abundance and the horizontal dashed line indicates a p-value = 0.05. 

Polar Negative
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Supplemental Figure 4 Volcano plots of polar metabolites in the positive mode. All the significantly different metabolites at the indicated 
time-points and comparisons are shown for molecular features with altered levels of abundance (|log2 fold change| ≥ 1 and p-value < 0.05). The 
vertical dashed lines indicate a 2-fold change in abundance and the horizontal dashed line indicates a p-value = 0.05. 
 

Polar Positive
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Supplemental Figure 1 Metabolic map at 6 hpi. Metabolites annotated by network analysis that are found when comparing DENV2 
to mock samples at 6 hpi. The node size and color are determined by the statistical differences between DENV2 and mock with the 
values noted in the legend. The large nodes (red) are metabolites that are upregulated   in DENV2 vs. mock and the small nodes (blue) 
are metabolites that are downregulated   in DENV2 vs. mock samples. The edges connecting the nodes represent enzymatic reactions 
that connect the specific metabolites. Their length has no significance. 
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Supplemental Figure 2 Metabolic map at 18 hpi. Metabolites annotated by network analysis that are found when comparing 
DENV2 to mock samples at 18 hpi. The node size and color are determined by the statistical differences between DENV2 and mock 
with the values noted in the legend. The large nodes (red) are metabolites that are upregulated   in DENV2 vs. mock and the small 
nodes (blue) are metabolites that are downregulated   in DENV2 vs. mock samples. The edges connecting the nodes represent 
enzymatic reactions that connect the specific metabolites. Their length has no significance. 
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Supplemental Figure 3 Metabolic map at 30 hpi. Metabolites annotated by network analysis 
that are found when comparing DENV2 to mock samples at 30 hpi. The node size and color are 
determined by the statistical differences between DENV2 and mock with the values noted in the 
legend. The large nodes (red) are metabolites that are upregulated   in DENV2 vs. mock and the 
small nodes (blue) are metabolites that are downregulated   in DENV2 vs. mock samples. The 
edges connecting the nodes represent enzymatic reactions that connect the specific metabolites. 
Their length has no significance. 
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Supplemental Figure 4 Metabolic map at 48 hpi. Metabolites annotated by network analysis 
that are found when comparing DENV2 to mock samples at 48 hpi. The node size and color are 
determined by the statistical differences between DENV2 and mock with the values noted in the 
legend. The large nodes (red) are metabolites that are upregulated   in DENV2 vs. mock and the 
small nodes (blue) are metabolites that are downregulated   in DENV2 vs. mock samples. The 
edges connecting the nodes represent enzymatic reactions that connect the specific metabolites. 
Their length has no significance. 
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Supplemental Figure 5 Metabolic map of dengue vs. non-dengue samples. Metabolites annotated by 
network analysis that are found when comparing dengue to non-dengue samples. The node size and color 
are determined by the statistical differences between the samples with the values noted in the legend. The 
large nodes in red are metabolites that are upregulated in dengue samples and the small nodes in blue are 
metabolites that are decreased in dengue samples (increased in non-dengue). The edges connecting the 
nodes represent enzymatic reactions that connect the metabolites and their length has no significance. 
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Supplemental Figure 6 Metabolic map of DHF/DSS vs. DF samples. Metabolites annotated by 
network analysis that are found when comparing DHF/DSS to DF samples. The node size and color are 
determined by the statistical differences between the samples with the values noted in the legend. The 
large nodes in red are metabolites that are upregulated in DHF/DSS samples and the small nodes in blue 
are metabolites that are decreased in DSS samples (increased in DF). The edges connecting the nodes 
represent enzymatic reactions that connect the metabolites and their length has no significance. 
 



241 

Supplemental Figure 7 Metabolic map of DSS vs. DHF samples. Metabolites annotated by network 
analysis that are found when comparing DSS to DF samples. The node size and color are determined by 
the statistical differences between the samples with the values noted in the legend. The large nodes in red 
are metabolites that are upregulated in DSS samples and the small nodes in blue are metabolites that are 
decreased in DSS samples (increased in DF). The edges connecting the nodes represent enzymatic 
reactions that connect the metabolites and their length has no significance. 



 242 

 
Supplemental Figure 8 Metabolic map of DSS vs. DF samples. Metabolites annotated by network 
analysis that are found when comparing DSS to DF samples. The node size and color are determined by 
the statistical differences between the samples with the values noted in the legend. The large nodes in red 
are metabolites that are upregulated in DSS samples and the small nodes in blue are metabolites that are 
decreased in DSS samples (increased in DF). The edges connecting the nodes represent enzymatic 
reactions that connect the metabolites and their length has no significance. 
 



243 

Supplemental Figure 9 Metabolic map of CHIKV vs. dengue samples. Metabolites annotated by 
network analysis that are found when comparing CHIKV to dengue samples. The node size and color are 
determined by the statistical differences between the samples with the values noted in the legend. The 
large nodes in red are metabolites that are upregulated in CHIKV samples and the small nodes in blue are 
metabolites that are decreased in CHIKV samples (increased in DEN). The edges connecting the nodes 
represent enzymatic reactions that connect the metabolites and their length has no significance. 



244 

Supplemental Tables 

Supplementary Table 1 Pathways enriched in the indicated comparisons found in the 
positive ionization mode.  
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Supplementary Table 2 Pathways enriched in the indicated comparisons found in the 
negative ionization mode. 
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Supplamentary Table 3 siRNA screen of the human unsaturated fatty acid biosynthesis pathway. The enzymes in the UFA 
biosynthesis pathway were identified based on the KEGG database (235). Here each enzyme is listed along with its gene ID, 

Accession number, GI number (GenInfo Identifier) and the sequence for the four siRNAs used to knockdown each gene.  
 

 
 
 

Gene Symbol GENE ID Gene Accession GI Number Sequence 1 Sequence 2 Sequence 3 Sequence 4 

ELOVL6 79071 NM_024090 13129087 CAAUGGACCUGUCAGCAAA GGUCGGCACCUAAUGAAUA CGAACUAGGAGAUACAAUA GGGUGUAUAUCUAGAACGA 

HSD17B12 51144 NM_016142 153792624 GAAAUCGGCAUCUUAGUGA UAAGAUGACACAAUUGGUA CGUAUGAGUAUCCUGAAUA GAACUAAUAUUGUCGGGAA 

PECR 55825 NM_018441 93102372 GAGGAUCUAUCGUCAAUAU GGACCUUUCUGUUGUCAAA AGGAGGAGGUGAAUAAUUU GAAUGGGCCUGCAGUGGAA 

PTPLB 201562 NM_198402 158819030 GAGAACUGCUCACAAUAUA CGGCGUACCUGGUCAUCUA AAUCAUCCGUUACUCCUUU CAUGGACGAUCACGGAAAU 

PTPLA 9200 NM_014241 82659104 UGAGAUAGUUCACUGUUUA CAAUAAGACUUCCUAACAA CCACAACUCUAUUUUCAUA UGACAGAGAUCACUCGCUA 

GPSN2 9524 NM_138501 50726974 UGGAGAUUCUGGACGCAAA AUUACGAGGUGGAGAUUCU GAGCUCAGCAGGUGAAACU GAUUCUGGACGCAAAGACA 

SCD 6319 NM_005063 53759150 GAUAUGCUGUGGUGCUUAA AGAAUGAUGUCUAUGAAUG CGACAUUCGCCCUGAUAUA GGAGUACGCUAGACUUGUC 

SCD5 79966 NM_024906 148596937 CAUAUUGGGUGGCUGUUUG AGAACAUCGUCUGGAGGAA GAGAAAGCUUGACGUCACU CAGAAUGACAUCUUCGAGU 

FADS2 9415 NM_004265 14141180 GCACUACGCUGGAGAAGAU UGAAAUACCUGCCCUACAA GGCAAGAACUCAAAGAUCA GGCAAUGGCUGGAUUCCUA 

ELOVL5 60481 NM_021814 52851443 CAAGGAAGCUGCGGAAGGA GGUUUCUUCUGGACAAUUA UCACACUGCUGUCUCUGUA UCUCCAAACUCAUAGAAUU 

FADS1 3992 NM_013402 14141179 GGAACCAUCUGCUACAUCA GAGGAGCGGUGGCUAGUGA GACUUGGCCUGGAUGAUUA GCAUAGAGUACCAGUCCAA 

ELOVL2 54898 NM_017770 157388944 CAAAUGGAGUGAUGAACAA CCAGUCAUCUUAUAUGCUA CGGUCAUGAGCCACGAUAA CAAUAUGUUUGGACCGCGA 

ACOX1 51 NM_007292 83641872 GGAAAGACUUCAAAUCAUG GGGCAUGGCUAUUCUCAUU CAAGUAAACCAGCGUGUAA UUACAUGCCUUUAUCGUAC 

ACOX3 8310 NM_001101667 156104865 GCAAGCGGAUCUUCGAGUA ACAAGUGGCUGGUUUGCUA GAUCGCUCCUCCUGACUUU GAAUUAAGCCACGGCAGUA 

HADHA 3030 NM_000182 105990523 GCUCUAACAUCAUUUGAAA UCUCAGAAGUUAUGAAUGA GACAAUAGAAUACCUAGAA CGAAACAUGUGGCGGAAGA 

ACAA1 30 NM_001607 6598316 GAGAUUGCCUGAUUCCUAU GGGAUAACCUCUGAGAAUG CCACCACGGUCCAUGAUGA GAAAUAUUACUUCGCGCUU 

ZAP128 10965 NM_006821 148727285 GGAAACAACUCCAGACUUU GGAAGGACCUGACCAGAAG GAGGUGGCCUGCUGGAGUA GACCAAAGAUGGCUAUGCA 

BACH 11332 NM_181866 75709215 GGCGGUACCUGCAGAUGAA GCGCGGAGAUCACCUACAC GCGCACCGACUUCCUGUCU GACGAGAAGAAGCGCUUUG 

PTE2B 122970 NM_152331 63999751 UAUAAGGAAUGCUCUCGUA CCAAUAACAUGGACAACAU CAUCGAGCCUCCUUACUUC GAAGCGGGACGUACAGAUU 

ACOT1 641371 NM_001037161 81230484 GGGACGAACCGGUGCGAAU CUGCUGGAGUAUCGGGCUA CCAAAGAUGGCUAUGCAGA CAACAGAAAUCGCAUCAAG 

BAAT 570 NM_001701 4502350 GGAAGGAGAUCCAGAGAUU GACUAUCUAUGGCUAUUUA CAAUUAAUAUCCACCAAUG CCACGGUACUUAUUAAUGG 
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Supplamentary Table 4. Key resources Table. Included here is detailed information for all 
reagents and resources used in Chapter 
3.

 

 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
anti- SCD Antibody (N-20) Santa Cruz 

Biotechnology 
Cat#: sc-14715 
RRID: AB_2238791 

anti- β-Actin (8H10D10) Mouse mAb Cell signalling Cat#: 12262  
RRID: AB_2566811 
 

anti-dsRNA monoclonal antibody 
 

English & Scientific 
Consulting Bt 

Cat#: 10010500 
RRID: AB_2651015 
 

anti-NS3 Dr. Richard 
Kuhn(Heaton et al. 
2010a)  

NA 

anti-Envelope (4G2) Dr. Richard 
Kuhn(Gentry et al. 
1982)  

NA 

anti-Dengue 2 virus PrM protein antibody Genetex Cat#: GTX128093 
RRID: AB_1240702 

anti-Dengue 2 virus Capsid protein antibody Genetex Cat#: GTX103343 
RRID: AB_1240697 

Chicken anti-Goat IgG (H+L) Secondary Antibody, Alexa 
Fluor® 647 conjugate 

Thermo Fisher 
Scientific  

Cat#: A-21469 
RRID: AB_2535872 
 

Donkey anti-Mouse IgG Secondary Antibody, Alexa 
Fluor® 488 conjugate 

Thermo Fisher 
Scientific 

Cat#: R37114  
RRID: AB_2556542 
 

IRDye® 680RD Donkey anti-Goat IgG (H + L), 0.5 mg Li-Cor Cat#: 926-68074 
RRID: AB_10956736 

IRDye 800CW Goat anti-Mouse IgG (H + L), 0.5mg Li-Cor Cat#: 926-32210 
RRID: AB_2687825 

IRDye 800CW Goat anti-Rabbit IgG (H + L), 0.5mg Li-Cor Cat#: 926-32211 
RRID: AB_10796098 

IRDye® 680RD Goat anti-Mouse IgG (H+L), 0.5 mg Li-Cor Cat#:926-68070 
RRID: AB_2651128 

Bacterial and Virus Strains  
DENV1 (16007) Dr. Clair Huang, CDC 

(Yoksan, 1986; Huang 
et al. 2000)    

AF180818 
 

DENV2 (16681) Dr. Clair Huang, CDC 
(Yoksan, 1986; Kinney 
et al. 1997) 

U87411 

DENV3 (16562) Dr. Clair Huang, CDC 
(Jirakanjanakit et al. 
1999; Angsubhakorn 
et al. 1994; Goh et al. 
2016) 

KU725665 

DENV4 (1036) Dr. Clair Huang, CDC 
(Jirakanjanakit et al. 
1999) 

U18429 

YFV  17D Dr. Charles Rice 
(Rice et al. 1985) 

NC_002031 
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KUNV Dr. Alexander 
Khromykh (Khromykh 
& Westaway 1994) 

AY274505 
 

SINV Dr. Richard Kuhn 
(Strauss et al. 1984) 

NC_001547 

ZIKA (PRVABC59) Dr. Aaron Brault, CDC 
(Lanciotti et al. 2016) 

KU501215 

Chemicals, Peptides, and Recombinant Proteins 
siRNA library Dharmacon (This 

paper) 
Table S1 

Lipofectamine® RNAiMAX Transfection Reagent Invitrogen 13778075 
SCD siRNA Sigma SASI_Hs01_001813

71  
siIRR: Custom siRNA Dharmacon CTM-278879 
MISSION® esiRNA esiRNA human ELOVL2  Sigma-Aldrich EHU033101-20UG 
MISSION® esiRNA esiRNA targeting human ELOVL6  Sigma-Aldrich EHU005171-20UG 
MISSION® esiRNA esiRNA targeting human PECR  Sigma-Aldrich EHU002471-20UG 
MISSION® esiRNA esiRNA targeting mouse Acot1 Sigma-Aldrich EMU214111-20UG 
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) 
 

Invitrogen / Life 
Technologies 

D1306 
 

Stearoyl [1-14C] coA 
 

American Radiolabled 
Chemicals  

 ARC 0756-10 µCi 
 

SCD inhibitor  Medchem Express HY-50709 
C75 Cayman 10005270 
Lovastatin Sigma-Aldrich PHR1285 
Trizol  Lifetech 15596018 
Trizol LS Lifetech 10296-028 
Bovine Serum Albumin (BSA), Fraction V, Fatty Acid 
Free for tissue culture 

Gold Biotechnology A-421-25 
 

Oleic Acid Sigma-Aldrich O1008 
Stearic Acid Sigma-Aldrich S4751 
Oleic Acid-BSA Sigma-Aldrich O3008 
   
   
Critical Commercial Assays 
Brilliant III Ultra-Fast SYBR qRT-PCR Master Mix Agilent 600886 
   
Experimental Models: Cell Lines 
Huh7 Dr. Charles Rice 

(Blight et al. 2002) 
 

BHK ATCC ATCC CCL-10  
C636 ATCC ATCC CRL-1660 
A549 ATCC ATCC CRM-CCL-

185 
HEL299 ATCC ATCC CCL-137 
Oligonucleotides 
DEN2 +strand (FWD): 
ACAAGTCGAACAACCTGGTCCAT 
 

(Laue, Emmerich, & 
Schmitz, 1999 
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DEN2 +strand (REV):  
GCCGCACCATTGGTCTTCTC 

(Laue, Emmerich, & 
Schmitz, 1999 

Stearoyl-CoA desaturase 1 (FWD): 
TTGGGAGCCCTGTATGGGAT 

This paper 

Stearoyl-CoA desaturase 1 (REV): 
TTTGTAAGAGCGGTGGCTCC 

This paper 

GAPDH (FWD): TCCTGTTCGACAGTCAGCCG This paper 

GAPDH (REV): AGTTAAAAGCAGCCCTGGTGA This paper 

Recombinant DNA 
DENV2 luciferase replicon Dr. Richard Kuhn 

(Heaton et al. 2010a) 
Software and Algorithms 
GraphPad Prism version 7.00 for Mac OS x GraphPad Software, 

La Jolla California 
USA) 

R studio version 1.0.136 RStudio Team 2016 
ImageQuant TL GE Health Care Life 

Sciences 
Volocity 6.3 Perkin Elmer 
FV10-ASW 4.2 Olympus 

Image Studio 5.2 Li-Cor 
LightCycler 96 SW 1.1 Roche 


