-
L]
-

Available online at www.sciencedirect.com
"f’@;- . .
»” ScienceDirect

J. Parallel Distrib. Comput. 67 (2007) 400-416

Journal of

Parallel and
Distributed
Computing

www.elsevier.com/locate/jpdc

Robust static allocation of resources for independent tasks under makespan
and dollar cost constraints

Prasanna Sugavanam?®*, H.J. Siegel®®, Anthony A. Maciejewski?, Mohana Oltikar?,
Ashish Mehta?, Ron Pichel€, Aaron Horiuchi®, Vladimir Shestak?®, Mohammad Al-Otaibi?,
Yogish Krishnamurthy?, Syed Ali?, Junxing Zhang®, Mahir Aydin?, Panho Lee?, Kumara Guru?,
Michael Raskey¢, Alan Pippin¢

AElectrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80523, USA
bComputer Science Department, Colorado State University, Fort Collins, CO 80523, USA
CSystems and VLSI Technology Division, Hewlett-Packard Company, Fort Collins, CO 80528, USA
dLinux and Open Source Lab, Hewlett-Packard Company, Fort Collins, CO 80528, USA
€School of Computing, University of Utah, Salt Lake City, UT 84112, USA

Received 15 June 2005; received in revised form 18 December 2005; accepted 23 December 2005

Abstract

Heterogeneous computing (HC) systems composed of interconnected machines with varied computational capabilities often operate in
environments where there may be inaccuracies in the estimation of task execution times. Makespan (defined as the completion time for an
entire set of tasks) is often the performance feature that needs to be optimized in such systems. Resource allocation is typically performed
based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against
errors in computation time estimates. In this research, the problem of finding a static mapping of tasks to maximize the robustness of makespan
against the errors in task execution time estimates given an overall makespan constraint is studied. Two variations of this basic problem are
considered: (1) where there is a given, fixed set of machines, (2) where an HC system is to be constructed from a set of machines within a
dollar cost constraint. Six heuristic techniques for each of these variations of the problem are presented and evaluated.

© 2006 Published by Elsevier Inc.

Keywords: Heterogeneous computing; Robustness; Resource allocation; Makespan; Cost constraint

1. Introduction

Heterogeneous computing (HC) systems utilize vari-
ous resources with different capabilities to satisfy the

* Corresponding author.

E-mail addresses: prasanna@colostate.edu (P. Sugavanam),
hj@colostate.edu (H.J. Siegel), aam@colostate.edu
(Anthony A. Maciejewski), mohana@colostate.edu (M. Oltikar),
ammehta@colostate.edu (A. Mehta), rgp@fc.hp.com (R. Pichel),
akh@fc.hp.com (A. Horiuchi), shestak@colostate.edu (V. Shestak),
motaibi@colostate.edu (M. Al-Otaibi), yogi@colostate.edu
(Y. Krishnamurthy), sdamjad@colostate.edu (S. Ali), junxing@cs.utah.edu
(J. Zhang), mahir@colostate.edu (M. Aydin), leepanho@colostate.edu
(P. Lee), higuru@colostate.edu (K. Guru), michael.raskey @hp.com
(M. Raskey), ajp@fc.hp.com (A. Pippin).

0743-7315/$ - see front matter © 2006 Published by Elsevier Inc.
doi:10.1016/j.jpdc.2005.12.006

requirements of diverse task mixtures and to maximize the sys-
tem performance (e.g., [10,18]). Such systems often operate in
an environment where certain desired performance features de-
grade due to unpredictable circumstances, such as higher than
expected work load or inaccuracies in the estimation of task
and system parameters (e.g., [2,4,9,27,28,39,40]). Thus, when
resources are allocated to tasks it is desirable to do this in a
way that makes the system performance on these tasks robust
against unpredictable changes.

The act of assigning (matching) each task to a machine and
ordering (scheduling) the execution of the tasks on each ma-
chine is known as mapping, resource allocation, or resource
management. An important research problem is how to deter-
mine a mapping so as to maximize the robustness of desired

http://www.elsevier.com/locate/jpdc
mailto:prasanna@colostate.edu
mailto:hj@colostate.edu
mailto:aam@colostate.edu
mailto:mohana@colostate.edu
mailto:ammehta@colostate.edu
mailto:rgp@fc.hp.com
mailto:akh@fc.hp.com
mailto:shestak@colostate.edu
mailto:motaibi@colostate.edu
mailto:yogi@colostate.edu
mailto:sdamjad@colostate.edu
mailto:junxing@cs.utah.edu
mailto:mahir@colostate.edu
mailto:leepanho@colostate.edu
mailto:higuru@colostate.edu
mailto:michael.raskey@hp.com
mailto:ajp@fc.hp.com

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—-416 401

system features against perturbations in system parameters [3].
The general problem of optimally mapping tasks to machines
in an HC environment has been shown to be NP-complete
(e.g., [12,19,23]). Thus, the development of heuristic tech-
niques to find near-optimal solutions for the mapping prob-
lem is an active area of research (e.g., [1,7,8,11,18,20,21,26,
30,33,41,42,47,49]).

In this research, a metatask composed of a number of in-
dependent tasks (i.e., no communication between tasks are
needed) is considered. Makespan is defined as the completion
time for the entire metatask. A mapping is considered to be
robust with respect to specified system performance features
against perturbations in given system parameters if degradation
in these features is within acceptable limits when certain per-
turbations occur [3]. The degree of robustness is the maximum
amount of collective uncertainty in perturbed system parame-
ters within which a user-specified level of system performance
can be guaranteed. In this research, the problem of finding a
static (off-line) mapping of tasks to maximize the robustness
of makespan against errors in task execution time estimates is
studied. It is a static (off-line) mapping because it is assumed
that this HC system will be used to regularly execute predeter-
mined metatasks in a production environment. The system is
considered robust if the actual makespan under the perturbed
conditions does not exceed the required time constraint, denoted
by 7. Two variations to this basic problem are considered.

For the first problem variation, the goal is to find a static
mapping of all tasks to a given, dedicated, fixed set of machines
so that the robustness of the mapping is maximized within a
given makespan constraint. Specifically, the goal is to maximize
the collective allowable error in execution time estimation for
the tasks that can occur without the makespan exceeding the
constraint.

The second variation is a study of the problem of how to
select (purchase) a fixed set of machines, within a given dol-
lar cost constraint, to comprise an HC system. It is assumed
that this fixed HC system will be used to regularly execute
predetermined metatasks in a production environment, where
the metatasks are from a known problem domain with known
estimated computational characteristics. The machines to be
purchased for the HC suite are to be selected from different
classes of machines, where each class consists of machines of
the same type. The machines of different classes differ in dollar
costs depending upon their performance. The dollar cost of ma-
chines within a class is the same. To be able to use a machine
for executing tasks, a one time dollar cost is incurred (i.e., to
purchase the machines). Only a subset of all of the machines
available can be chosen to execute tasks as there is a dollar
cost constraint, denoted by J. The objectives of this variation
are to: (1) select a subset of all the machines available so that
the cost constraint for the machines is satisfied, and (2) find a
static mapping of all tasks to the subset. The goal of the subset
selection and associated mapping is to maximize robustness.
That is, the tasks to be executed are known, and the goal is to
build a robust system.

In the next section, the research problem investigated is for-
mally stated. Section 3 describes the simulation setup used for

each of the problem variations studied in this research. Sec-
tion 4 provides literature related to this work. In Section 5, the
heuristics for the fixed suite variation are presented and evalu-
ated. In Section 6, the heuristics for the selected suite variation
are presented and evaluated.

2. Problem statement

In both variations of this research, a set of T tasks in the
metatask is required to be allocated to a (given or chosen) set
of M machines. The estimated time to compute (ETC) value for
each task on each class of machines is assumed to be known
a priori. This assumption is commonly made (e.g., [25]). Ap-
proaches for doing this estimation are discussed in [22,34]. It
is assumed that unknown inaccuracies in the ETC values are
expected (e.g., a task’s actual exact execution time may be data
dependent). Hence, it is required that the mapping, denoted by
U, be robust against them.

Let C®* be the vector of estimated computation times for
the T tasks on the machine where they are allocated. Let C be
the vector of actual computation times (C* plus the estima-
tion error for each task). The finish time of a given machine j,
denoted by F;, depends only on the actual computation times
of the tasks mapped to that machine. The performance feature
(¢) that determines if the makespan is robust is the finish times
of the machines. That is, ¢ = {F;|1 < j <M]}. The FePIA pro-
cedure from [3] is applied to determine the robustness metric
for this problem.

The robustness radius [3] for machine j of F; against C
for mapping u, denoted by 7, (F;, C), is defined as the largest
Euclidean distance by which C can change in any direction
from the assumed point C! without the finish time of ma-
chine j exceeding the tolerable variation. This can be equiva-
lently stated as the robustness radius is the minimum Euclidean
difference in C from the assumed value of C®* within which
the finish time of machine j can reach the tolerable variation.
Mathematically,

ru(Fj,C)= min [|C—C*|,. (1)
C:F;j(C)=1

That is, if the Euclidean distance between any vector of

actual computation times and the vector of estimated com-

putation times is no larger than r,(F;, C), then the fin-

ish time of the machine j will be at most the makespan

constraint 7.

Because the finish time of a machine is simply the sum
of the execution times of the tasks mapped to that machine,
the makespan constraint is represented by a hyperplane. As
described in [3], Eq. (1) can be interpreted as the perpendicular
distance from C®* to the hyperplane described by the equation
T — Fj(C*") = 0. Hence, Eq. (1) can be rewritten using the
point-to-plane distance formula from [43]:

T— F/ (Cesl)

ru(Fi, C) = .
w5 ©) +/number of tasks mapped to machine

2

402 P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

The robustness metric, denoted by p, (¢, C), for the map-
ping is simply the minimum of all robustness radii [3]. Math-
ematically,

Pule, C) = glg:o ru(Fj, C). (3)

If the Euclidean distance between any vector of the actual ex-
ecution times and the vector of the estimated execution times
is no larger than p,(¢, C), then the actual makespan will be
at most the constraint 7. The performance metric that is used
to evaluate the mapping is pﬂ(qﬁ, C); the larger the robustness
metric, the better the mapping.

The goal for the first problem variation (fixed suite) of this
study is to map all tasks to machines such that the makespan
for the entire metatask is within the time constraint t while
maximizing p #((,b, C). The goal for the second problem vari-
ation (selected suite) is to determine the set of machines such
that: (1) the makespan is within 7, (2) the dollar cost for the
chosen set of machines is within ¢, and (3) the robustness met-
ric is maximized. The emphasis of the second variation is on
selecting the set of machines to accomplish the above stated
goal. Simulations are used to evaluate and compare the heuris-
tics studied in this research.

3. Simulation setup

An HC system with 1024 independent tasks is simulated for
both problem variations in this study. This large number of
tasks is chosen to present a significant mapping challenge for
each heuristic. The estimated execution times of all tasks taking
heterogeneity into consideration are generated using the gamma
distribution method described in [5]. The estimated execution
time of task i on machine j is given by ETC(i, j). A task mean
and coefficient of variation (COV) are used to generate the ETC
matrices.

The fixed suite variation consisted of eight machines in the
HC suite. Two different cases of ETC heterogeneities are used
in this research, the high-task and high-machine heterogene-
ity (high—high) case and the low-task and low-machine het-
erogeneity (low-low) case. For both cases, the ETCs are of
the inconsistent type [5], i.e., a machine that executes faster
for one task does not necessarily execute faster for all tasks.
For this study, a total of 100 trials (50 trails for each of the
cases) are run, where each frial corresponds to a different ETC
matrix.

The high-high case uses a mean task execution time of 30s
and a COV of 0.9 (task heterogeneity) to calculate the values
for all the elements in a task vector (where the number of
elements is equal to the number of tasks). Then using the ith
element of the vector as the mean and a COV of 0.9 (machine
heterogeneity), the ETC values for task i on all the machines
are calculated. The low—low heterogeneity case uses a mean
task execution time of 30's, a COV of 0.3 for task heterogeneity,
and 0.3 for machine heterogeneity.

The value of the time constraint t is chosen to be 5000s so
that it presents a feasible mapping problem for the heuristics to

solve. A simple greedy mapping heuristic that minimized the
makespan was used to establish the value of 7.

For the selected suite variation, the HC system simulated
has five different classes of machines, with eight machines in
each class. All the machines in a given class are homogeneous
(the execution time of any given task on all the machines is the
same). The ETCs used in this research are of the high-task and
low-machine (across various classes) heterogeneity (high—low).
In this variation, the ETCs are consistent [5] across different
classes of machines; i.e., if a class i machine is faster than a
class j machine for one task, it is faster for all tasks. These
assumptions are made to represent a realistic environment. The
machines with higher dollar cost typically are equipped with
faster processors, larger memory, etc., and in general, execute
tasks faster than the low-end cheaper machines. For this study,
heuristics are run for a total of 100 high—low trials.

The high—low case uses a mean task execution time of 180s,
a COV of 0.9 for task heterogeneity, and a COV of 0.3 for
machine heterogeneity. The ETC values are sorted in ascend-
ing order to obtain the consistent heterogeneity. Class 1 is the
fastest machine, Class 2 is the second fastest, and so on. It is
assumed that all machines in a class use the same software en-
vironment. The dollar cost per machine is in accordance with
their execution speeds: Class 1—1800, Class 2—1500, Class
3—1200, Class 4—800, and Class 5—500. These values are
based on specific configurations of DELL desktop, workstation,
and server products.

The cost constraint ¢ is chosen so that not all machines in the
suite can be used, and the actual makespan constraint 7 is chosen
so that it adds significant mapping challenge to the problem.
Experiments with simple greedy heuristics were used to decide
the value of the cost constraint to be 34,800 dollars and the
time constraint to be 12,000 s. Choosing different values for any
of the above parameters will not affect the general approach
of the heuristics used in this research. Because the tasks are
independent, there is no communication between tasks. The
time and resources required for loading the task executable file
is simply assumed to be the same on all the machines. Hence,
the network characteristics will not affect the solution of the
problem and so it is ignored.

For both variations of this study, the wall clock time for the
mapper itself to execute is arbitrarily required to be less than
or equal to 60 min for any trial on a typical unloaded 3 GHz
Intel Pentium 4 machine. This was done to establish a basis for
comparing the different heuristic approaches.

4. Related work

The work presented in this paper is built upon the four-
step FePIA procedure detailed in [3]. The FePIA procedure
describes a way to derive a generalized robustness metric
and it is applied to the problem studied here. In the lit-
erature, a number of papers have studied the issue of ro-
bustness in distributed systems (e.g., [9,13,14,17,27,32,44]).
Robust decision making formulations presented in [13,27,
28] motivate building a robust suboptimal solution over a
better performing solution that is less robust.

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—-416 403

In [9], given an allocation for an augmented dependency
graph, an analytic measure of the vulnerability of the allocation
to hazards (uncertainties in estimated execution times of tasks)
is devised. They introduced the concept of critical component
in the execution path based on the spare time and slack. Their
robustness metric is problem specific and cannot be applied to
our system.

The research in [13] considers a single machine scheduling
environment where the processing times of individual jobs are
uncertain. Given the probabilistic information about processing
time for each job, the authors in [13] determine a normal distri-
bution that approximates the flow time associated with a given
schedule. The risk value is calculated by using the approximate
distribution of flow time. The robustness of a given schedule is
then given by one minus the risk of achieving substandard flow
time performance. In our work, no such stochastic specification
of the uncertainties is assumed. Furthermore, our environment
involves multiple machines.

The work described in [14,17,27,28,32] considers robust re-
source allocation in job-shop environments. The central idea in
[14] is to provide each job with extra time (defined as slack)
to complete so that some level of uncertainty can be tolerated
without having to reallocate. The study uses slack as its mea-
sure of robustness, which is simpler and different from our
measure. The research in [17] considers reactive scheduling to
unexpected events that may cause a constraint violation. They
define repair steps if a job takes longer than expected so that
the new evaluation of proximity to constraint violation would
be as good as or better than the old evaluation. In [27,28],
the authors assume a scenario-based approach to represent the
input data uncertainty to their robustness decision model. In
[32], the authors assume a certain random distribution of the
machine breakdowns and a certain rescheduling policy in the
event of breakdowns. Our work explores robust resource allo-
cation techniques to maximize the cumulative errors in ETCs so
that the specified performance is guaranteed in a heterogeneous
computing environment and no mathematical characterization
of the possible uncertainties in ETC values is assumed. This
lack of a mathematical characterization is common in many
current problem domains. Thus, our problem differs in many
ways from scheduling machines in a job-shop environment.

In [44], the stability radius of an optimal schedule in a job-
shop environment is calculated. The stability radius of an opti-
mal schedule is defined as the radius of a closed sphere in the
space of the numerical input data such that, within that sphere,
the schedule remains optimal. Outside the sphere, which is cen-
tered at the assumed input, some other schedule would outper-
form the optimal schedule. In terms of the framework presented
in [3], the robustness requirement would be the existence of an
optimal schedule in the face of perturbations in the input data.
Thus, the stability radius can be considered as a special case of
the robustness metric that is used in this work.

The literature was examined to select a set of heuristics ap-
propriate for the HC environments considered here. The Max—
Max is a variation of the Min—Min that has proven to be a
good heuristic for static and dynamic mapping problems (e.g.,
[11,23,49]). The iterative maximization (IM) techniques are a

variation of the iterative deepening and random search tech-
niques used in [16]. The Genitor-style genetic algorithm used
here is an adaptation of [48]. Genitor is a steady-state genetic
algorithm (GA) that has been shown to work well for several
problem domains, including resource allocation, and job-shop
scheduling and hence, chosen for this problem. The memetic
algorithm (MA) [6,35,36], also referred to as a hybrid GA, ap-
plies a separate local search process (hill-climbing) to refine
chromosomes. Combining global and local search is a strategy
used by many successful global optimization approaches [6].
The HereBoy evolutionary algorithm used here is a combina-
tion of GA and simulated annealing (SA) and is an adaptation
of the work in [31] that was applied to the evolvable hardware
problem. This fast evolutionary algorithm is shown to be well
suited for exploring large spaces and can be applied to a wide
range of optimization problems.

All of the heuristics in the selected suite variation use as a
component machine assignment heuristics from the fixed suite
variation. The partition/merge methods used in [29] are adapted
to our environment to find the set of machines to be used for the
greedy iterative maximization heuristic. The research in [15,37]
has used variations of GA for the synthesis of heterogeneous
multiprocessors in embedded systems. Some of the other tech-
niques used for machine selection are designed specifically for
this environment.

5. Heuristics descriptions for the fixed machine suite
problem

This section describes six heuristics for the problem of find-
ing a robust static allocation for a given, fixed, dedicated set of
machines. Also, a mathematical upper bound on performance
is derived.

5.1. Max-Max

The Max—Max heuristic (see Fig. 1) is based on the Min—Min
(greedy) concept in [23]. In step 2 of the Max—Max heuristic,
to find the fitness function for assigning a given task i to a given
machine j, the robustness radius of machine j given by Eq. (2)
is evaluated based on the tasks already assigned to machine j
and the possible assignment of task i to machine j.

5.2. Greedy iterative maximization

Both of the IM heuristics start with an initial solution and try
to improve the solution by “local” modifications similar to the
iterative improvement techniques used in [16]. The term min-
radius machine is the machine that determines the robustness
metric of the mapping, that is, the one that has the minimum
robustness radius over all machines.

The greedy iterative maximization (GIM) heuristic (see Fig.
2) loops through the sequence of initial mapping generation and
robustness improvement until the wall clock time of one hour
expires. The first initial mapping for GIM is generated using
the Min—Min heuristic similar to [23] based on task completion

404

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

A task list is generated that includes all the unmapped tasks.

For each task in the task list, the machine that gives the task its maximum fitness
value (first “Max”) is determined (ignoring other unmapped tasks).

Among all the task/machine pairs found in the above step, the pair that gives the
maximum fitness value (second “Max”) is chosen.

The task found in step 3 is then removed from the task list and is mapped to its
paired machine.

Repeat steps 2 to 4 until all the tasks are mapped.

Fig. 1. Pseudocode for the Max—Max heuristic.

akrwN=

© ®N

10.

An initial mapping is generated with Min-Min or MCT.

The robustness metric and min-radius machine for the current mapping is found.
Generate a task list containing all tasks on the min-radius machine.

A task is chosen arbitrarily from the task list.

Reassign the task to the machine that improves the robustness metric the most and
go to step 2; if the reassignment does not improve the mapping, remove the task
from the task list and go to step 4 until there are no tasks in the task list.

The robustness metric and min-radius machine for the current mapping is
determined.

Generate a task list containing all tasks on the min-radius machine.

A task is chosen arbitrarily from the task list.

The chosen task from the task list is swapped with the first target task that will
increase the robustness metric by traversing through all the tasks in arbitrary order
on all other machines and go to step 6; if the chosen task could not be swapped
with any other task, remove the task from the task list and go to step 8 until the task
list is empty.

Repeat steps 1-9 until the one hour time constraint has expired.

Fig. 2. Pseudocode for the GIM heuristic.

oM

A task list is generated that includes all the unmapped tasks.

For each task in the task list, the machine that gives the task its minimum
completion time (first “Min”) is determined (ignoring other unmapped tasks).

Among all the task/machine pairs found in the above step, find the pair that gives
the minimum completion time (second “Min”).

Remove the above task from the task list and map it to the chosen machine.
Update the available time of the machine on which the task is mapped.

Repeat steps 2-5 until all the tasks have been mapped.

Fig. 3. Pseudocode for the Min—Min heuristic.

SRS

A task list is generated that includes all unmapped tasks.

Choose a task arbitrarily from the task list.

Find the machine that gives the minimum completion time for the chosen task.
Remove the task from the task list and map it to the chosen machine.

Update the available time of the machine on which the task is mapped.
Repeat steps 2-5 until all the tasks have been mapped.

Fig. 4. Pseudocode for the MCT heuristic.

times. The other initial mappings are generated using the mini-
mum completion time (MCT) heuristic that was used in [11] so
that the makespan constraint is satisfied. Tasks are considered
in a different random order every time a new mapping is gen-
erated for MCT. The Min—Min and MCT mapping generation
procedures are shown in Figs. 3 and 4, respectively. Execu-

tion of the reassignment procedure followed by swapping was
used in both the IM heuristics because it yielded better results
than performing them in reverse order and also was better than
using only one of the two. Reassignment aggressively tries to
maximize robustness radius by increasing the numerator and
simultaneously reducing the denominator of Eq. (2). Swapping

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—416

The MET mapping is generated and the robustness metric of the mapping is
determined.

The min-radius machine for the mapping is found.

Each task on the min-radius machine is considered to be reassigned to all other
machines.

If reassignment will increase the robustness metric, the task is reassigned to the
machine that maximizes the robustness improvement the most.

Repeat steps 2-4 until no task can be reassigned from the current min-radius
machine to improve the robustness metric.

The robustness metric and min-radius machine of the current mapping are
determined.

Each task on the current min-radius machine is considered to be swapped with any
task on other machines.

If swapping will increase the robustness metric, the relocation that has the

405

maximum robustness improvement is made.
9. Repeat steps 6-8 until no task swapping can be done.

Fig. 5. Pseudocode for the SIM heuristic.

can be interpreted as a fine tuning procedure where the number
of tasks on each machine is unaltered.

One variation tried was to select the “best” target task that
improves the robustness the maximum during swapping in step
9 and was found to perform slightly worse than the “arbitrary
order” swap method. In another variation, GIM is initialized
with the Max—Max heuristic. For this variation, the reassign-
ment scheme is the same as before and swapping is done in the
following way. For an arbitrary task i on the min-radius ma-
chine, a task x that is mapped on any other machine for which
the min-radius machine is the minimum execution time (MET)
machine is chosen such that ETC(x, min-radius machine) is less
than ETC(i, min-radius machine).

5.3. Sum iterative maximization

The sum iterative maximization (SIM) heuristic (see Fig. 5)
starts with the MET mapping that was used in [11], where all
the tasks are mapped to their MET machines. During an itera-
tion, the robustness improvement, defined as the change in the
sum of robustness radii of the machines after task reassignment
or swapping, is maximized. For each task on the min-radius
machine, SIM reassigns it to the machine that maximizes the
robustness improvement if it will improve the robustness met-
ric. Similar to the task reassignment procedure, each task on
the min-radius machine is considered for swapping with a task
on another machine.

5.4. Genitor

Genitor is a general optimization technique that is a varia-
tion of the genetic algorithm approach. It manipulates a set of
possible solutions. The method studied here is similar to the
Genitor approach used in [48]. Each chromosome represents a
possible complete mapping of tasks to machines. Specifically,
the chromosome is a vector of length 7. The ith element of the
vector is the identification number of the machine to which task
i is assigned. The Genitor operates on a fixed population of 200

chromosomes. The population includes one chromosome (seed)
that is the Max—Max solution and the rest of the chromosomes
are generated by randomly assigning tasks to machines. The
entire population is sorted (ranked) in decreasing order based
on their fitness (robustness metric) values. Chromosomes that
do not meet the makespan constraint are included in the popu-
lation, and have negative robustness values.

A linear bias function (with a value of 1.5) [48] is used to
select two chromosomes to act as parents. These two parents
perform a crossover operation, where a random cut-off point
is generated that divides the chromosomes into top and bottom
parts. For the parts of both chromosomes from that point to
the end of each chromosome, crossover exchanges machine
assignments between corresponding tasks producing two new
offspring. The two offspring are inserted in sorted order in the
population, and the two poorest chromosomes are removed.

After each crossover, the linear bias function is applied again
to select a chromosome for mutation. A random task is chosen
from the chromosome and reassigned to a random new ma-
chine. The resultant offspring is considered for inclusion in the
population in the same fashion as for an offspring generated by
CrOoSsoOver.

This completes one iteration of the Genitor. The heuristic
stops when the criterion of 250,000 total iterations is met (see
Fig. 6).

5.5. Memetic algorithm

The MA metaheuristic [35] (see Fig. 7) combines population-
based global search with local search made by each of the
individuals. Each individual represents a complete mapping of
tasks to machines, and is the same as a Genitor chromosome.
The local search hill climbing is a process that starts at a certain
solution, and moves to a neighboring solution if it is better
than the current solution until a stopping criterion is reached.
The interactions between individuals are made with the use of
a crossover operator. Later, an individual is mutated by partly
modifying an existing solution. Hill climbing is done on all

406

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

generate initial population

evaluate robustness metric for each chromosome

rank population based on robustness metric

while (stopping criteria (i.e., 250,000 iterations) not met)

Pob~

a. select two chromosomes to act as parents using a linear bias function
to perform crossover
i. cutthe chromosomes at a random spot into top and bottom parts
ii. exchange the machine assignments of the tasks in the bottom of the
chosen chromosomes
ii. insert the offspring in the sorted population based on its robustness
metric
b. select one chromosome using a linear bias function in the mutation step
i. for the chosen chromosome, choose a random task and change its
machine assignment arbitrarily
ii. insert the offspring in the sorted population based on its robustness
c. the population size stays fixed at the best 200 chromosomes

5. output the best solution

Fig. 6. Pseudocode for Genitor.

ok w

Generate initial population, as in Genitor.
Hill climb on each member of the population.
While (stopping criteria (i.e., 500 iterations) not met)

a. Select two tasks arbitrarily and their machine assignments are swapped.
b. If (robustness metric of offspring > robustness metric of original individual),
replace the original individual, otherwise ignore the offspring.

Evaluate robustness metric for each individual.
Rank population based on robustness metric, as in Genitor.
While (stopping criteria (i.e., 100,000 iterations) not met)

Perform crossover, as in Genitor.

After crossover operation, perform step 2 (hill climb) on the offspring.
Perform mutation, as in Genitor.

After mutation operation, perform step 2 (hill climb) on the offspring.

The population size stays fixed at the best 200 individuals, as in Genitor.

O™~ oo oo™

utput the best solution.

Fig. 7. Pseudocode for the memetic algorithm.

individuals in the initial population and also on the offspring
generated after crossover and mutation.

5.6. HereBoy evolutionary algorithm

HereBoy is an evolutionary algorithm that combines the fea-
tures of GA and SA [31] (see Fig. 8). Unlike GA, there is only
a single individual undergoing optimization, not a population.
The individual or the chromosome is a task to machine map-
ping similar to the Genitor and MA. Because there is only one
individual, the search space is explored only using chromosome
mutation. Mutated chromosomes are kept if they produce an
individual that performs better than its parent. The poor per-
formers are discarded although some can be kept based on a
probability test analogous to the SA approach.

HereBoy starts with an MCT mapping, based on an arbitrary
order of the tasks. An adaptive mutation scheme is employed by
the HereBoy heuristic. Mutation is applied by randomly select-
ing a task on the chromosome, and mapping it to the machine
that maximizes the robustness metric. Randomly assigning the
chosen task to a new machine was also tried, but it performed
poorly and so was not used.

The percentage of tasks to be mutated during each itera-
tion or the mutation rate () (Eqs. (4) and (5)) is determined
by two terms: (a) the maximum mutation rate, denoted by «,
which is user defined fraction, and (b) the fraction f that re-
duces the number of tasks mutated as the current robustness
approaches the upper bound (UB) value on the robustness met-
ric (the UB calculation is described in Section 5.7). Mathemat-
ically, the fraction f is calculated based on the equation given

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—416 407

solutions.

7. Output the best solution.

1. Generate an MCT mapping and evaluate the robustness metric.

2. Compute the percentage of tasks to mutate (¥)using equations (7) and (8).

3. Randomly select ¥% of the tasks and mutate each task by assigning it to the
machine that maximizes robustness metric.

4. Evaluate robustness metric of the current mapping.

5. Accept the new mapping if better or perform a probability test to accept poorer

6. For the current mapping, repeat steps 2 to 5 until 107 iterations.

Fig. 8. Pseudocode for the HereBoy evolutionary algorithm.

below:
_ (UB —py(e,C))
B= — g 4)
y=axp. 5)

The chromosome mapping solution is evaluated at the end of
each mutation. A probabilistic test is performed to accept poorer
solutions so that the surrounding neighborhood is searched for
better opportunities. The test probability starts with a high value
and reduces over time and is referred to as the cooling schedule
[11]. Typically cooling schedules are predefined, although it
has been shown that adaptive schedules produce better results
[31].

An adaptive scheme is employed by HereBoy to reduce the
probability () of accepting a poorer solution. The probability
is given by Eq. (6) that is similar to the adaptive mutation rate
formula. The probability is the product of the user defined value
maximum probability (7) and the fractional term f defined
earlier. Notice that the probability of accepting poor solutions
reduces as better solutions are produced:

n=mnxp. 6)

As a result of experimentation, HereBoy is run with a 5%
maximum mutation rate o and the maximum probability 7 is set
to 1% for this problem. The stoping criterion for the heuristic
is a total of 107 iterations.

5.7. Upper bound

The method developed for estimating an UB on the robust-
ness metric for this study assumes a homogeneous MET system
in which the execution time for each task on all machines is
the same and equal to the minimum time that the task would
take to execute across the original set of machines. The MET
of task 7, denoted by MET;, is given by the following equation:

MET; = min ETC(, j) over all j. @)

The UB for the robustness metric of the homogeneous MET
system is equal to or better than the UB for the robustness
metric of the original system because of the impact of the MET
values on the robustness metric. The tasks in the MET system
are arranged in ascending order of their execution times. Then,
the robustness UB is calculated as follows.

Let N = |[T/M]. The first N tasks in the sorted order are
stored in a list S. The total execution time any N tasks can have
is greater than or equal to the sum of the execution times of
the first N tasks. Thus, the UB for robustness is given by

|S|—1
(r— > MET,-)
UB = = .)

JN

Proof by contradiction: Assume that there is another solution
whose robustness metric is greater than UB and has machines
with fewer tasks than N. If there is a machine with tasks fewer
than A, then there must be a machine m, with more than NN tasks
mapped on to it. So, v/number of tasks on m, > +/N. Because
the list S consists of the N tasks with the smallest ETC values,
and machine m, has more than N tasks, its completion time

must be greater than the sum of the execution time of all tasks
N
in §. Thus, Fy >) MET;. Therefore, ry(Fy, C) < UB. Be-

cause the machinel with the least robustness radius determines
the robustness metric of the entire system, there cannot be a
mapping without tasks equally distributed to have robustness
greater than UB.

Now, assume a different solution Sol* has N tasks on each
of the machines and has a robustness metric greater than UB.

Thus, by Eq. (2), the finish time of all machines for So/* must
IS|=1
be less than Y MET;. But this summation is the smallest
i=0
possible F; for any j. Hence, there cannot be a mapping with N
tasks on each machine and a robustness metric larger than UB.
The method used to construct this mathematical UB results
in a loose UB. Furthermore, the greater the heterogeneity, the
looser the bound.

5.8. Experimental results

The simulation results are shown in Figs. 9 and 10. All the
heuristics are run for 50 different trials for the two cases of
heterogeneities, and the average values and 95% confidence in-
tervals [24] are plotted. The running times of the heuristics av-
eraged over all trials, mapping 1024 tasks onto eight machines,
are shown in Table 1.

408

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

|0 high-high B low-low
1
E3 En E3

195
. BE
(7]
@ 170 1—
k7]
>
Qo
e

145 1

120 T T T T T

Max-Max GIM SIM

Genitor MA HereBoy

Fig. 9. The simulation results for robustness. The average UB values are 416.54 for high-high heterogeneity and 313.83 for low—low heterogeneity.

3500

O high-high B low-low

3150

2800 ~

makespan

2450 -

2100 ~

1750 T T

Max-Max GIM SIM

Genitor MA HereBoy

Fig. 10. The simulation results for makespan (the makespan constraint T = 5000).

Table 1
The average execution times of the heuristics averaged over 100 trials
(using a typical unloaded 3 GHz Intel Pentium 4 machine)

Heuristic Average execution times (s)
Max—Max 0.52

Greedy IM 3600

Sum IM 600

Genitor 3000

Memetic algorithm 3000

HereBoy 1200

The GIM and SIM are among the best heuristics in terms of
robustness for both of the high—high and low—low cases stud-
ied here. The IM heuristics that make use of the tailored search
technique (as opposed to the general search used by Genitor)
proved to be very effective. The “best” swap variation of the
GIM arrived at a good solution faster than the “arbitrary order”

swap; however, the latter performed more beneficial swaps and
showed a gradual increase in the robustness, ultimately surpass-
ing the “best” swap variation solution. For “arbitrary order”
and “best” swap variations, it was observed that, in general, the
robustness of the initial mapping did not impact the robustness
of the final mapping. The variation of the GIM heuristic that is
seeded with the Max—Max solution is on average less by 2% of
the “arbitrary swap” variation. In this approach, not many ben-
eficial swaps could be made and hence, a poor initial solution
did not perform comparably to the other variations.

The Max—Max heuristic was the fastest among all the heuris-
tics implemented for this research. The Genitor and MA per-
formed comparably to the IM heuristics. Both of the heuristics
are seeded with the Max—Max solution and used the concept
of elitism. Genitor has less than 1% overall improvement in ro-
bustness after 6000 generations. Allowing Genitor to run more
than 250,000 generations was observed to be insignificant. MA
showed similar characteristics and was stopped after 100,000
iterations.

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—416 409

In previous work for a different problem domain [31], a Here-
Boy heuristic was able to outperform a GA and required much
less execution time. However, for the problem specified here,
HereBoy had the worst performance out of all the heuristics.
In addition, allowing HereBoy to run for a longer time did not
improve the solution. One possible cause may be that the UB
used here is relatively loose (considering all the assumptions
made in the derivation), and hence, the adaptive mutation tech-
nique that uses the UB value did not prove useful.

Another heuristic tried for this environment was ant colony
optimization [36,38,45]. The ACO heuristic performed well for
a related problem [38] although it is very time consuming to
build good solutions. For our implementation (see [46] for the
details), ACO was allowed to run for an hour and did not per-
form well. Hence, ACO is not included in this study.

Notice that for a similar makespan, the GIM heuristic
showed 6% better robustness for the high—high case over the
Max—Max heuristic. This clearly implies that even though the
makespan and robustness of a mapping are related, minimizing
the makespan does not automatically maximize the robustness.
This is also demonstrated in [3], but there it is for random
mappings.

6. Heuristics descriptions for the selected machine suite
problem

6.1. Overview

This section describes six heuristics for the problem of
selecting machines to comprise a suite. Five of the six heuris-
tics studied for this problem, negative impact greedy iterative
maximization, partition/merge greedy iterative maximization,
selection Genitor, Max—Max memetic algorithm, and Max—
Max Hereboy evolutionary algorithm, involve two phases. In
phase 1, a subset of machines is selected using specific heuris-
tic techniques to meet the cost and makespan constraints, and
to maximize robustness. In phase 2, tasks are mapped to the
set of machines found in phase 1 to further maximize the ro-
bustness metric for the mapping. The cost and robustness sum
iterative maximization heuristic involves only one phase where
a robustness maximization criterion is used to select machines
such that the cost constraint is always satisfied. Throughout the
description of the heuristics, Class 1 of machines is referred to
as the highest class and Class 5 of machines is referred to as
the lowest class.

6.2. Negative impact greedy iterative maximization

The negative impact greedy iterative maximization (NI-GIM)
heuristic used here is a modification of GIM described in the
fixed machine suite variation. The NI-GIM heuristic performs
a Min—Min [23] mapping (procedure described in Fig. 3) based
on the completion times assuming all machines to be available,
irrespective of the cost constraint.

The robustness radius of all the available machines is calcu-
lated for the Min—Min mapping. The negative impact of remov-
ing machine j is determined in the following way. Each of the

tasks mapped onto machine j is evaluated for reassignment to
all the other machines. The decrease in the robustness radius of
each available machine i if a task ¢ is reassigned from machine
J is calculated; call this A; ;. Let A be the set of available ma-
chines in the suite. The negative impact of removing machine
J», denoted by NI;, is given by

|A]—1

1
> Ty 2 A ©)
i=0

te tasks on j

NI; =

The ratio of negative impact to cost is obtained by simply
dividing the negative impact by the cost of the machine j. The
machine that has the least value of the negative impact to cost
ratio is then removed from the set of available machines. The
procedure of performing the Min—Min mapping with only the
available machines and the ratio calculation to remove another
machine is repeated until the cost constraint is satisfied.

For the set of machines determined above that meets the cost
constraint, the GIM heuristic (please refer to Section 5.2) is
run to determine a mapping that maximizes robustness for the
given machine set.

6.3. Partition/merge greedy iterative maximization

The phase 1 of partition/merge greedy iterative maximization
(P/M-GIM) starts with a random number of machines chosen
from each class. The tasks are then mapped to the selected ma-
chines using the Min—Min heuristic of Fig. 3. The makespan
for the Min—Min mapping is calculated. It was observed that
the makespan constraint in this study is such that if the cost
constraint is violated, the makespan constraint is always satis-
fied using Min—Min. Hence, either both of the constraints are
satisfied or only one of the two constraints is violated using
Min—Min. If the cost constraint is violated, then the task-merge
(machine removal) [29] technique is executed. Otherwise, the
task-partition (machine addition) [29] technique is executed to
improve the makespan. Merging is stopped once the cost con-
straint is satisfied and partitioning is stopped if addition of an-
other machine will violate the cost constraint.

Five different methods for partitioning and merging are im-
plemented: (a) cheap, (b) expensive, (c) even distribution, (d)
most common, and (e) random. In the cheap variation, the
merge step removed a machine in the most expensive class, or
the partition step added the cheapest available machine. The
expensive variation did exactly the opposite (removed a cheap-
est machine or added the most expensive). Even distribution
attempted to remove from the class that already had the most
number of machines or to add to the class that had the least
machines (ties were broken arbitrarily). The most common ap-
proach attempted to remove from the class that had the least
number of machines or to add machines to the class that al-
ready had the most machines (ties were broken arbitrarily). The
random variation simply involved partitioning or merging an
available machine from a randomly selected class.

After generating a valid mapping that satisfies the cost
and makespan constraints using one of the above techniques,
phase 2 is entered, where reassignment and swapping of the

410 P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

1. Begin with the CLB mapping.

mapping.

o~

execution improvement.

robustness improvement.

2. Find the makespan machine (the machine that finishes last) for the current

a. For each task on the makespan machine, find the machine that gives the
maximum task-execution improvement.

b. From the subset of these task/machine pairs that improve the makespan
and meet the cost constraint, find the pair that gives the maximum task-
execution improvement and assign the task to the paired machine.

3. Repeat step 2 until makespan < t or no task can be relocated.
If makespan < 1, go to step 7, otherwise go to step 5.
Find the makespan machine for the current mapping.
a. For each task on the makespan machine, consider swapping it with a task
on a different machine. Find the target task that gives the maximum task-

b. From the subset of these target tasks, for each task on the makespan
machine that improves the makespan, find the target task that gives the
overall maximum task-execution improvement.

c. Swap the task on the makespan machine with the selected target task.

6. Repeat step 5 until makespan < 1. If this is not possible, the mapping procedure
fails (for our study, this never happened).
7. Find the min-radius machine for the current mapping.

a. For each task on the min-radius machine, find the machine that gives the
maximum robustness improvement.

b. From the subset of these task/machine pairs that improve the robustness
and meet the cost constraint, find the pair that gives the maximum
robustness improvement and assign the task to the paired machine.

8. Repeat step 7 until no task can be relocated.
9. Find the min-radius machine for the current mapping.

a. For each task on the min-radius machine, consider swapping it with a task
on a different machine. Find the target task that gives the maximum

b. From the subset of these target tasks, for each task on the min-radius
machine that improves the makespan, find the target task that gives the
overall maximum robustness improvement.

c. Swap the task on the min-radius machine with the selected target task.

10. Repeat step 9 until no task can be swapped.

Fig. 11. Pseudocode for the CR-SIM heuristic.

GIM heuristic are executed in an attempt to improve the ro-
bustness metric of the mapping. The reassignment and swap-
ping of the GIM heuristic is executed for 20 unique machine
combinations (found using phase 1) and the best solution is
output.

6.4. Cost and robustness sum iterative maximization

The cost and robustness sum iterative maximization (CR-
SIM) heuristic (see Fig. 11) starts with a cost lower bound
(CLB) mapping where all the tasks are mapped onto a sin-
gle lowest cost machine (step 1). There cannot be a mapping
that has a lower cost than the CLB mapping. However, be-
cause this mapping is not guaranteed to have a makespan less
than 7, reassignment of some tasks to other machines (steps 2
and 3) may be necessary. It is assumed that all the machines
are available for the reassignment of tasks. When a machine
is used for the first time, the cost for using the machine is
paid and the total cost of all the machines used in the suite
must be less than §. After the reassignment procedure, if 7 is

still violated, a task swapping procedure is executed (steps 5
and 6). A similar procedure is used to maximizing robustness
(steps 7-10).

For this heuristic, the task-execution improvement, defined
as the decrease in the sum of the completion times of the
machines after reassignment or swapping, and the robustness
improvement, defined as the increase in the sum of the robust-
ness radius of the machines after reassignment or swapping,
are maximized. Recall that the min-radius machine is defined
as the machine with the smallest robustness radius.

A variation of this heuristic uses a predetermined set of min-
imum cost machines such that adding another machine will
violate the cost constraint. For this set of lowest cost machines
chosen that meets the cost constraint, relocations are made
based on the task-execution or robustness improvement as be-
fore. For another variation, define cost performance index (CPI)
of machine j as the product of the cost of machine j and the
average ETC of all tasks on machine j. The machines with the
lowest CPI are selected until the cost is less than or equal to
o for mapping tasks. For this machine set, the relocation and
swapping are done as explained above.

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—-416 411

6.5. Selection Genitor

In phase 1 of Selection Genitor (S-Genitor) a chromosome
is a vector of length equal to the number of machine classes
(five), where the ith element is the number of machines in the
ith class. Phase 1 of Genitor operates on a fixed population
of 100 chromosomes. The entire population is generated ran-
domly such that the cost constraint is met. The chromosomes
are evaluated using the robustness metric based on a machine
assignment using the Max—Max mapping from Section 5.1. The
entire population is sorted in descending order based on the
robustness metric of the Max—Max heuristic.

In the crossover step, for the pair of the selected parent chro-
mosomes (chosen with a linear bias function of 1.5), a random
cut-off point is generated that divides the chromosomes into
top and bottom parts. A new chromosome is formed using the
top of one and bottom of another. An offspring is inserted in
the population after evaluation only if the cost constraint is sat-
isfied (the worst chromosomes of the population are discarded
to maintain a population of only 100).

After each crossover, the linear bias function is applied again
to select a chromosome for mutation. Two random classes are
chosen for the chromosome and the mutation operator incre-
ments the number of machines of the first chosen class by one
and decrements the number of machines of the other by one.
If the chromosome is infeasible, that is, if it violates the cost
constraint or the possible number of machines in each class,
it is discarded. Otherwise, the resultant offspring is considered
for inclusion in the population in the same fashion as for an
offspring generated by crossover.

This completes one iteration of phase 1 of S-Genitor. The
heuristic stops when the criterion of 500 total iterations is met.
The relatively small number of iterations was found experimen-
tally to be sufficient for the solution space. The machine com-
bination found from phase 1 is used in phase 2, which derives
a mapping using this combination of machines to maximize ro-
bustness based on the Genitor implementation in Section 5.4
(a total of 100,000 iterations is used here to stop the phase 2
of Genitor).

6.6. Max—Max memetic algorithm

For the Max—Max memetic algorithm (MMMA) metaheuris-
tic, in phase 1, 100 random combinations of machines from
each class are chosen such that the cost constraint is satisfied.
Each of the 100 combinations is evaluated using the Max—Max
heuristic and the machine combination that has the highest ro-
bustness metric is selected. In phase 2, for the best machine
combination found in phase 1, the MA heuristic identical to
that described in Section 5.5 is executed, the only difference
being the stopping criterion. A total of 40,000 iterations is used
here in phase 2 of MA.

6.7. Max—Max HereBoy evolutionary algorithm

In Max-Max HereBoy (MM-HereBoy), phase 1 starts by
adding one machine to each class (starting from the lowest
class) in a round robin fashion until the cost constraint is vio-

lated. The current machine combination is evaluated using the
robustness metric based on a machine assignment made by the
Max—Max mapping of Section 5.1.

Now, starting from the highest class, a new machine is con-
sidered to be included in the existing machine set in a round
robin fashion (unless no more machines from a particular class
can be added). Adding another machine will violate the cost
constraint. Hence, to be able to accommodate the inclusion of
a machine, one or more machines from other classes should
be removed. Machines are considered to be removed from a
single class or from two different classes (this is sufficient to
add a machine of any class). All such combinations are consid-
ered and if removing a particular combination of machines al-
lows adding another machine of a lower class (after adding the
higher class machine under consideration), then an additional
machine is added. For each combination of machines that is
removed, and replaced by other machines, a new set of work-
ing machines is formed. All machine sets are evaluated using
the mapping produced by Max—Max and the set that gives the
highest robustness metric is stored as the best. For the current
best machine set, the above described procedure is repeated un-
til addition of a machine from any class will not improve the
robustness metric.

For the best combination of machines from the phase 1 pro-
cedure, the HereBoy evolutionary algorithm (see Section 5.6)
is executed as phase 2 to determine the task to machine map-
ping for that combination of machines.

6.8. Upper bound

The UB on the robustness metric for this study is similar to
that for the fixed machine suite problem variation. It assumes
a homogeneous MET system. For the selected suite problem,
there cannot be more than 33 machines in the system for the
given cost constraint. This includes the 33 machines of the
lowest class possible in the entire HC suite. Following Eq. (2)
and our assumption of the homogeneous MET system, having
more machines in the suite gives a better robustness metric than
having fewer machines in the suite (due to the impact of number
of tasks on each machine). Thus, a loose UB on robustness is
Eq. (11) with M = 33.

6.9. Results

The simulation results are shown in Figs. 12 and 13. All
the heuristics are run for 100 different high-low trials. The
average values and 95% confidence intervals [24] are plotted.
The running times of the heuristics averaged over 100 trials,
mapping 1024 tasks in each trial, are shown in Table 2.

The S-Genitor and “cheap” variation of the P/M-GIM heuris-
tic are the best among all the heuristics studied for this ro-
bustness maximization problem (the cheap variation is shown
in the figures). Both of these heuristics, on average, had all of
the available machines from Class 4 and 5. The “cheap” varia-
tion of the P/M-GIM heuristic always removed machines from
Class 1 if the cost constraint was violated. But Genitor explored

412 P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

600.0

540.0

480.0

420.0

robustness

360.0

300.0 T T

NI-GIM P/M-GIM

CPI-SIM

S-Genitor MMMA MM-

HereBoy

Fig. 12. The simulation results for robustness. The average UB value is 2019.3.

10000

9200

8400

makespan

7600

6800

6000 T T

NI-GIM P/M-GIM

CPI-SIM

S-Genitor MMMA MM-

HereBoy

Fig. 13. The simulation results for makespan (the makespan constraint T = 12, 000).

Table 2
The average execution times of the heuristics averaged over 100 trials
(using a typical unloaded 3 GHz Intel Pentium 4 machine)

Heuristic Average execution times (s)
NI-GIM 3600
P/M-GIM 3600
CPI-SIM 780
S-Genitor 3420
MMMA 3000
MM-HereBoy 1380

the search space more generally and on average used more ma-
chines in Class 1 than in Class 2. The “most common” and
“random” variations of P/M-GIM heuristic were within 10% of
the “cheap” variation. The “expansive” variation performed the

worst among all the variations of P/M-GIM and “even distribu-
tion” was slightly better than the “expensive” variation. These
two variations did not have as many machines in the suite as
compared to the other variations. For this problem, having a
good balance between the execution speed of machines and the
number of machines in the HC suite proved to be important for
maximizing the robustness of the mapping.

The NI-GIM heuristic performed slightly worse (on average)
than P/M-GIM. The negative impact calculation always forced
removal of machines from either Class 2 or 3. All machines
from Class 1, 4, and 5 (i.e., the fastest class and the two cheap-
est classes of machines) were used in more than 90% of the
trails.

The CR-SIM heuristic by itself did not perform well (an
average of 252 for the robustness metric across 100 trials).
The poor performance is because it always selected machines
for relocation that will maximize task-execution or robustness

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—416 413

improvement. Therefore, CR-SIM typically picked machines
in the order of the highest class to the lowest. The CR-SIM
heuristic does not consider replacing a fast machine with multi-
ple slower machines. The CPI variation of CR-SIM (CPI-SIM)
performed within 12% of S-Genitor. The lowest cost varia-
tion also performed similarly and is within 2% of the CPI-SIM
variation.

The robustness metric of the MM-HereBoy is within 12%
of S-Genitor. The search technique used for selecting the
machines for HereBoy used all of the machines of Class 1,
4, and 5.

The MMMA heuristic that made use of the random search
approach to find the set of machines in phase 1 performed
the worst among all the heuristics. The MA optimization
heuristic has proved to work well for a similar environment
in Section 4. However, the machine selection by the ran-
dom approach proved to be ineffective for this kind of an
environment.

The SIM heuristic performed well for the fixed suite prob-
lem, where inconsistent heterogeneity between machines is
considered. However, due to consistent heterogeneity consid-
ered in the selected suite study, the sum of the task-execution
or robustness improvement of machines did not help to find
a good solution. The phase 2 of the other heuristics discussed
in this research is similar to the heuristics studied in Section
4. The GIM heuristic performed well here because it focused
on maximizing the robustness metric itself, unlike CR-SIM.
The discussion on the performance of phase 2 of S-Genitor,
MMMA, and MM-HereBoy are similar to those discussed in
Section 4.

7. Summary

Two variations of robust mapping of independent tasks
to machines were studied in this research. In the fixed suite
variation, six static heuristics were presented that will maxi-
mize the robustness of a mapping against errors in the ETC
when a set of machines was given. The best robustness met-
ric was obtained by using the SIM heuristic. The GIM, GA,
and MA performed comparably with their robustness metric
within 2% of the SIM. However, the execution times for the
heuristics themselves were much higher as compared to the
SIM heuristic. Thus, SIM is a good choice for the fixed suite
problem.

This study also presented six static heuristics for selecting a
set of machines, under a given dollar cost constraint that will
maximize the robustness of a mapping against errors in the
ETC. The best average robustness metric was obtained by us-
ing the S-Genitor heuristic. The P/M-GIM heuristic performed
comparably with its robustness metric within 2% of S-Genitor.
The execution times for both of the heuristics themselves were
also comparable. Thus, both S-Genitor and P/M-GIM are a
good choice for the selected suite problem variation. In this
study, a suite of at most 33 machines from five classes were
used to execute 1024 tasks. Future work could include exam-
ining bigger scenarios, where all of the above parameters are
larger.

Acknowledgments

Preliminary portions of this material were presented at the
14th IEEE Heterogeneous Computing Workshop (HCW 2005)
and at the 4th International Workshop on Algorithms, Models
and Tools for Parallel Computing on Heterogeneous Networks
(HeteroPar 2005). The authors thank Shoukat Ali, Adele Howe,
and Jay Smith for their valuable comments. This research was
supported by NSF under grand No. CNS-0615170, by the Col-
orado State University Center for Robustness in Computer
Systems (funded by the Colorado Commission on Higher Edu-
cation Technology Advancement Group through the Colorado
Institute of Technology), by the DARPA Information Exploita-
tion Office under Contract no. NBCHC030137, and by the Col-
orado State University George T. Abell Endowment. Approved
for public release; distribution unlimited.

References

[1]1 S. Ali, T.D. Braun, HJ. Siegel, A.A. Maciejewski, N. Beck, L.
Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys,
B. Yao, Characterizing resource allocation heuristics for heterogeneous
computing systems, in: A.R. Hurson (Ed.), Advances in Computers, vol.
63: Parallel, Distributed, and Pervasive Computing, Elsevier, Amsterdam,
The Netherlands, 2005, pp. 91-128.

[2] S. Ali, J.-K. Kim, H.J. Siegel, A.A. Maciejewski, Y. Yu, S.B. Gundala,
S. Gertphol, V. Prasanna, Utilization-based techniques for statically
mapping heterogeneous applications onto the HiPer-D heterogeneous
computing system, Parallel and Distributed Computing Practices, Special
Issue on Parallel Numeric Algorithms on Faster Computers vol. 5 (4)
(December 2002).

[3] S. Ali, A.A. Maciejewski, H.J. Siegel, J.-K. Kim, Measuring the
robustness of a resource allocation, IEEE Trans. Parallel Distrib. Systems
15 (7) (July 2004) 630-641.

[4] S. Ali, A.A. Maciejewski, H.J. Siegel, J.-K. Kim, Robust resource
allocation for sensor-actuator distributed computing systems, in: The
2004 International Conference on Parallel Processing (ICPP 2004),
August 2004, pp. 174-185.

[5] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, S. Ali, Representing
task and machine heterogeneities for heterogeneous computing systems,
Special 50th Anniversary Issue, Tamkang J. Sci. Eng. 3 (3) (November
2000) 195-207 (invited).

[6] S. Areibi, M. Moussa, H. Abdullah, A comparison of genetic/memetic
algorithms and heuristic searching, in: International Conference on
Artificial Intelligence (IC-AI 2001), June 2001.

[7] H. Barada, S.M. Sait, N. Baig, Task matching and scheduling in
heterogeneous systems using simulated evolution, in: 10th IEEE
Heterogeneous Computing Workshop (HCW 2001), in the Proceedings
of the 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), April 2001.

[8] I. Banicescu, V. Velusamy, Performance of scheduling scientific
applications with adaptive weighted factoring, in: 10th IEEE
Heterogeneous Computing Workshop (HCW 2001), in the Proceedings
of the 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), April 2001.

[9] L. Boloni, D.C. Marinescu, Robust scheduling of metaprograms, J.
Scheduling 5 (5) (September 2002) 395-412.

[10] T.D. Braun, H.J. Siegel, A.A. Maciejewski, Heterogeneous computing:
goals, methods, and open problems, in: 2001 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA
2001), June 2001, pp. 1-12 (invited keynote paper).

[11] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, R.F. Freund, D. Hensgen,
M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, A
comparison of eleven static heuristics for mapping a class of independent

414 P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

tasks onto heterogeneous distributed computing systems, J. Parallel
Distrib. Comput. 61 (6) (June 2001) 810-837.

[12] E.G. Coffman Jr., (Ed.), Computer and Job-Shop Scheduling Theory,
Wiley, New York, 1976.

[13] R.L. Daniels, J.E. Carrilo, B-Robust scheduling for single-machine
systems with uncertain processing times, IIE Trans. 29 (11) (November
1997) 977-985.

[14] A.J. Davenport, C. Gefflot, J.C. Beck, Slack-based techniques for robust
schedules, in: Sixth European Conference on Planning, September 2001,
pp. 7-18.

[15] R.P. Dick, N.K. Jha, MOGAC: a multiobjective genetic algorithm for
the co-synthesis of hardware—software embedded systems, IEEE Trans.
Comput.-Aided Design 17 (10) (October 1998) 920-935.

[16] J. Dorn, M. Girsch, G. Skele, W. Slany, Comparison of iterative
improvement techniques for schedule optimization, European J. Oper.
Res. 94 (2) (October 1996) 349-361.

[17] J. Dorn, RM. Kerr, G. Thalhammer, Reactive scheduling: improving
the robustness of schedules and restricting the effects of shop floor
disturbances by fuzzy reasoning, Internat. J. Human—-Comput. Stud. 42
(6) (June 1995) 687-704.

[18] M.M. Eshaghian (Ed.), Heterogeneous Computing, Artech House,
Norwood, MA, 1996.

[19] D. Fernandez-Baca, Allocating modules to processors in a distributed
system, IEEE Trans. Software Eng. SE-15 (11) (November 1989)
1427-1436.

[20] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Fransisco, CA, 1999.

[21] R.F. Freund, H.J. Siegel, Heterogeneous processing, IEEE Comput. 26
(6) (June 1993) 13-17.

[22] A. Ghafoor, J. Yang, A distributed heterogeneous supercomputing
management system, IEEE Comput. 26 (6) (June 1993) 78-86.

[23] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent
tasks on non-identical processors, J. ACM. 24 (2) (April 1977) 280-289.

[24] R. Jain, The Art of Computer Systems Performance Analysis Techniques
for Experimental Design, Measurement, Simulation, and Modeling,
Wiley, New York, 1991.

[25] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous distributed
computing systems, IEEE Concurrency 6 (3) (July 1998) 42-51.

[26] A. Khokhar, V.K. Prasanna, M.E. Shaaban, C. Wang, Heterogeneous
computing: challenges and opportunities, IEEE Comput. 26 (6) (June
1993) 18-27.

[27] P. Kouvelis, R. Daniels, G. Vairaktarakis, Robust scheduling of a two-
machine flow shop with uncertain processing times, IIE Trans. 38 (5)
(May 2000) 421-432.

[28] P. Kouvelis, G. Yu, Robust Discrete Optimization and its Applications,
Kluwer Academic Publisher, Dordrecht, 1997.

[29] S.M. Kroumba, G. Bois, Y. Savaria, A synthesis approach for the
generation of parallel architectures, in: 37th Midwest Symposium on
Circuits and Systems, vol. 1, 3-5 August 1994, pp. 323-326.

[30] Y.-K. Kwok, A.A. Maciejewski, H.J. Siegel, I. Ahmad, A. Ghafoor,
A semi-static approach to mapping dynamic iterative tasks onto
heterogeneous computing systems, J. Parallel Distrib. Comput. 66 (1)
(January 2006) 77-98.

[31] D. Levi, Hereboy: a fast evolutionary algorithm, in: Second
NASA/DoD Workshop on Evolvable Hardware (EH ’00), July 2000,
pp. 17-24.

[32] VJ. Leon, S.D. Wu, R.H. Storer, Robustness measures and robust
scheduling for job shops, IIE Trans. 26 (5) (September 1994)
32-43.

[33] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund,
Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems, J. Parallel Distrib. Comput. 59 (2) (November 1999)
107-121.

[34] M. Maheswaran, T.D. Braun, H.J. Siegel, Heterogeneous distributed
computing, in: J.G. Webster (Ed.), Encyclopedia of Electrical
and Electronics Engineering, vol. 8, Wiley, New York, 1999,
pp. 679-690.

[35] P. Moscato, On evolution, search, optimization, genetic algorithms, and
martial arts: towards memetic algorithms, Technical Report, Caltech

Concurrent Computation Program C3P 826, California Institute of
Technology, Pasadena, CA, 1989.

[36] G.C. Onwubolu, B.V. Babu, New Optimization Techniques in
Engineering, Springer, New York, 2004.

[37] A. Rae, S. Parameswaran, Application-specific heterogeneous
multiprocessor synthesis using differential-evolution, in: 11th
International Symposium on System Synthesis, December 1998, pp.
83-88.

[38] G. Ritchie, J. Levine, A hybrid ant algorithm for scheduling independent
jobs in heterogeneous computing environments, in: Third Workshop of
the UK Planning and Scheduling Special Interest Group (PLANSIG
2004), December 2004.

[39] M. Sevaux, K. Sorensen, Genetic algorithm for robust schedules, in:
Eighth International Workshop on Project Management and Scheduling
(PMS 2002), April 2002, pp. 330-333.

[40] V. Shestak, E.K.P. Chong, A.A. Maciejewski, H.J. Siegel, L.
Benmohamed, I.J. Wang, R. Daley, Resource allocation for periodic
applications in a shipboard environment, in: 14th IEEE Heterogeneous
Computing Workshop (HCW 2005), in the Proceedings of the 19th
International Parallel and Distributed Processing Symposium (IPDPS
2005), April 2005, pp. 122-127.

[41] S. Shivle, P. Sugavanam, H.J. Siegel, A.A. Maciejewski, T. Banka, K.
Chindam, S. Dussinger, A. Kutruff, P. Penumarthy, P. Pichumani, P.
Satyasekaran, D. Sendek, J. Sousa, J. Sridharan, J. Velazco, Mapping of
subtasks with multiple versions on an ad hoc grid environment, Parallel
Computing, Special Issue on Heterogeneous Computing vol. 31 (7) (July
2005) 671-690.

[42] S. Shivle, HJ. Siegel, A.A. Maciejewski, P. Sugavanam, T. Banka, R.
Castain, K. Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W.
Saylor, D. Sendek, J. Sousa, J. Sridharan, J. Velazco, Static allocation
of resources to communicating subtasks in a heterogeneous ad hoc
grid environment, Special Issue on Algorithms for Wireless and Ad-hoc
Networks, J. Parallel Distrib. Comput. 66 (4) (April 2006) 600-611.

[43] G.F. Simmons, Calculus with Analytic Geometry, second ed., McGraw-
Hill, New York, 1995.

[44] Y.N. Sotskov, V.S. Tanaev, F. Werner, Stability radius of an optimal
schedule: a survey and recent developments, Industrial Appl. Combinat.
Optimiz. 16 (1998) 72-108.

[45] T. Stiitzle, H. Hoos, Max—min ant system, Future Generation Comput.
Syst. 16 (8) (2000) 889-914.

[46] P. Sugavanam, Robust resource allocation of independent tasks and
resource allocation for communicating subtasks on ad hoc grids, Masters
Thesis, Electrical and Computer Engineering, Colorado State University,
2005.

[47] L. Wang, H.J. Siegel, V.P. Roychowdhury, A.A. Maciejewski, Task
matching and scheduling in heterogeneous computing environments
using a genetic-algorithm-based approach, J. Parallel Distrib. Comput.
47 (1) (November 1997) 8-22.

[48] D. Whitley, The GENITOR algorithm and selective pressure: Why rank
based allocation of reproductive trials is best, in: Third International
Conference on Genetic Algorithms, June 1989, pp. 116-121.

[49] M.-Y. Wu, W. Shu, H. Zhang, Segmented min—min: a static mapping
algorithm for meta-tasks on heterogeneous computing systems, in: Nineth
IEEE Heterogeneous Computing Workshop (HCW 2000), May 2000,
pp. 375-385.

Prasanna Sugavanam received his M.S. degree
in Electrical and Computer Engineering from
Colorado State University in 2005, where he
was a Graduate Research Assistant. He received
his Bachelor of Engineering in Electrical and
Electronics from Kumaraguru College of Tech-
nology, India in 2001. He is currently work-
ing as a senior software developer for a leading
biotech company in California.

P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400—416 415

H.J. Siegel was appointed the George T. Abell
Endowed Chair Distinguished Professor of
Electrical and Computer Engineering at Col-
orado State University (CSU) in August 2001,
where he is also a Professor of Computer Sci-
ence. In December 2002, he became the first
Director of the university-wide CSU Informa-
tion Science and Technology Center (ISTeC).
From 1976 to 2001, he was a professor at
Purdue University. He received two B.S. de-
grees from MIT, and the MA, M.SEE., and
Ph.D. degrees from Princeton University. Prof.
Siegel has co-authored over 300 published pa-
pers on parallel and distributed computing and
communication. He is a Fellow of the IEEE Fellow and a Fellow of the
ACM. He was a Coeditor-in-Chief of the Journal of Parallel and Distributed
Computing, and was on the Editorial Boards of both the IEEE Transactions
on Parallel and Distributed Systems and the IEEE Transactions on Computers.
He was Program Chair/Co-Chair of three major international conferences,
General Chair/Co-Chair of six international conferences, and Chair/Co-Chair
of five workshops. He has been an international keynote speaker and tutorial
lecturer, and has consulted for industry and government. For more information,
please see www.engr.colostate.edu/~hj.

Anthony A. Maciejewski received the B.S.E.E.,
M.S., and Ph.D. degrees from Ohio State Uni-
versity in 1982, 1984, and 1987. From 1988
to 2001, he was a professor of Electrical and
Computer Engineering at Purdue University,
West Lafayette. He is currently the Department
Head of Electrical and Computer Engineering
at Colorado State University. Tony is a Fellow
of the IEEE. A complete vita is available at:
www.engr.colostate.edu/~aam.

Mohana Oltikar is pursuing her M.S.
degree in Electrical and Computer En-
gineering at Colorado State University,
where she is currently a Graduate Assis-
tant. She has completed her bachelor’s
degree in Electronics Engineering from
University of Mumbai, India. She is cur-
rently working on the robustness of het-
erogeneous systems.

Ashish Mehta is pursuing his M.S. degree in
Electrical and Computer Engineering at Col-
orado State University, where he is currently a
Graduate Teaching Assistant. He received his
Bachelor of Engineering in Electronics from
University of Mumbai, India. His research inter-
ests include resource management in distributed
computing systems, computer architecture, com-
puter networks, and embedded systems.

Ron Pichel received his B.S. degree in Electrical
Engineering in 2001 from Valparaiso University
in Indiana. He started graduate studies in com-
puter engineering at Colorado State University.
Currently, he is enrolled in National Techno-
logical University in pursuit of his M.S. degree
in Computer Engineering. He is employed by
Hewlett-Packard Company, where he works as a
verification engineer for high-end server ASICs.

Aaron Horiuchi is currently a Masters of Engi-
neering student at CSU and an ASIC R&D en-
gineer at Hewlett Packard. He obtained a B.S.E.
with an electrical specialty in December 2001
at the Colorado School of Mines. His research
interests include signal integrity, analog circuit
design, and VLSI systems.

Vladimir V. Shestak is pursuing a Ph.D. de-
gree from the Department of Electrical and
Computer Engineering at Colorado State Uni-
versity, where he has been a Research Assis-
tant since August 2003. His current projects
include resource management for clusters for
IBM, Boulder. He received his M.S. degree in
Computer Engineering from New Jersey Insti-
tute of Technology in May 2003. Prior to joining
the New Jersey Institute of Technology he spent
3 years in industry as a network engineer work-
ing for CISCO, Russia. He received his B.S.
degree in Electrical Engineering from Moscow
Engineering Physics Institute, Moscow, Russia. His research interests include
resource management within distributed computing systems, algorithm par-
allelization, and computer network design and optimization.

Mohammad Al-Otaibi is currently pursing his Ph.D. in the Department of
Computer Science at New Mexico Institute of Mining and Technology. He
received his M.S. in Electrical and Computer Engineering from Colorado
State University and B.S. in Computer Engineering from King Fahd Uni-
versity of Petroleum and Minerals, Dhahran, Saudi Arabia. He worked with
Lucent Technologies in Saudi Arabia as a computer network engineer from
1998 to 1999. His research interests are in the field of computer networks,
heterogeneous computing and reconfigurable computing.

Yogish G. Krishnamurthy graduated from the Department of Computer Sci-
ence at Colorado State University, where he received his Masters in Computer
Science in December 2004. He received his Bachelor of Engineering in Com-
puter Science and Engineering from Vishweshariah Technological University,
India in June 2002. He is currently employed in Level 3 Communications as
a software developer working on core business applications.

Syed Amjad Ali is currently a graduate stu-
dent at Colorado State University pursuing his
Master’s in Computer Information Systems. He
received his Bachelors in Computer Science
and Engineering from Dr. Babasaheb Ambed-
kar Marathwada University, Maharashtra, India.
He is involved in a project with US Navy for
implementing a real time information retrieval
system in Internet relay chat servers. He was
also involved with IBM in setting up a grid
at Colorado State University’s College of Busi-
ness. He manages the Apple and Linux clusters
at Atmospheric Science Department at CSU. His
research interests include heterogeneous systems, parallel computing, grid
computing, and information retrieval algorithms.

Junxing Zhang is pursuing his Ph.D. in the
School of Computing at University of Utah. He
received his M.S. in Computer Science from
Colorado State University and B.E. in Com-
puter Engineering from Beijing University of
Posts and Telecommunications. He has publi-
cations in the areas of distributed and hetero-
geneous computing, data management systems,
and formal verification. His current research fo-
cuses on computer networking, especially wide
area network measurement, characterization, and
modeling.

\'f/

http://www.engr.colostate.edu/~hj.
http://www.engr.colostate.edu/~aam.

416 P. Sugavanam et al. / J. Parallel Distrib. Comput. 67 (2007) 400-416

Mahir Aydin is pursuing his Ph.D. degree in Electrical and Computer
Engineering at Colorado State University. He is also working for Pre-
miere Systems in Fairfax, Virginia as a software engineer. He received his
Bachelor of Engineering degree in Computer Engineering and his Mas-
ter of Science degree in Computer Science from Union College, Schenec-
tady, New York. His current interests include computer architecture, soft-
ware engineering, microprocessors, networks, database design, and VLSI
design.

Pan Ho Lee is a Ph.D. student in Electrical and
Computer Engineering at Colorado State Uni-
versity. He received his B.S and M.S degrees
in Computer Engineering from Kwang Woon
University, Seoul, Korea in 1992 and 1994, re-
spectively. From 1994 to 2003, he worked for
Daewoo Telecom and LG Electronics as a re-
search staff member. His current research inter-
ests are in the fields of overlay networks, trans-
port protocols, sensor networks, and distributed
computing.

Kumara Guru is a graduate student of Colorado State University pursuing
his M.S in Electrical and Computer Engineering. He received his B.E degree
in Electronics and Communication from the University of Madras in 2003. His
research interests include computer architecture, heterogeneous computing,
and optics.

Michael Raskey received a B.S. in Electrical
Engineering from Valparaiso University in 2001,
and a M.S. in Electrical Engineering from Col-
orado State University in 2005. He is currently
employed by Hewlett-Packard Company in Fort
Collins, Colorado, as a systems/software engi-
neer.

Alan Pippin is currently pursuing an M.S. de-
gree in Electrical Engineering at Colorado State
University. He received his Bachelors in Elec-
trical and Computer Engineering from Brigham
Young University in 2001. He is currently em-
ployed in the systems-VLSI lab at Hewlett-
Packard as a control and verification engineer
working on core chipsets for enterprise comput-
ing systems. He is a member of IEEE.

