
 

DISSERTATION 

 

 

EXPLORING GAS-PHASE PLASMA CHEMISTRY AND PLASMA-SURFACE 

INTERACTIONS: PROGRESS IN PLASMA-ASSISTED CATALYSIS 

 

 

Submitted by 

Angela R. Hanna 

Department of Chemistry 

 

 

In partial fulfilment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2020 

 

 

Doctoral Committee: 

 Advisor: Ellen R. Fisher 
  

Nancy E. Levinger 
 Anthony Rappe 
 R. Mark Bradley 
 



 

 

Copyright by Angela R. Hanna 2020 

All Rights Reserved 



ii 
 

ABSTRACT 
 
 
 

EXPLORING GAS-PHASE PLASMA CHEMISTRY AND PLASMA-SURFACE 

INTERACTIONS: PROGRESS IN PLAMSA-ASSISTED CATALYSIS 

 
 

The fundamental aspects of inductively coupled plasma chemistry was investigated, focusing 

on the interdependence of gas-phase and surface reactions for process improvement.  Different 

project aspects included (1) gas-phase energetics and kinetics determination with and without 

substrates (i.e., catalysts) via spectroscopy; (2) material characterization before and after plasma 

modification; and (3) elucidation of gas-surface relationships whereby both the substrate and 

plasma are impacted by their interaction.  The research presented herein focused on a holistic 

approach to plasma diagnostics, specifically addressing current limitations in pollution 

abatement strategies.  

To enhance our understanding of plasma phenomena, optical spectroscopy was employed to 

provide insight into foundational plasma properties.  This dissertation begins with a review of the 

applicability of optical spectroscopy as a non-intrusive, versatile diagnostic tool to explore non-

thermal discharges.  Specifically, time-resolved optical emission spectroscopy (TR-OES) was 

utilized to provide kinetic information about excited-state species formation, ultimately lending 

mechanistic insight into a range of plasma reactions.  In addition, optical emission and 

broadband absorption spectroscopies (OES and BAS, respectively) were combined for the 

determination of rotational and vibrational temperatures (TR and TV, respectively) for both 

excited and ground state species.  This comprehensive approach can and should be applied 

globally, across a wide range of plasma systems (i.e., clean gas, etching, depositing) and 
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materials (i.e., semiconductors, catalysts, polymers).  The two platforms explored here were 

plasma-assisted catalysis systems containing NxOy species and fluorocarbon (FC) plasmas, 

utilizing a range of precursors to evoke either etching or depositing conditions.   

An understanding of how energy is dispersed into rotational, vibrational, and translational 

modes of a gas-phase molecule by means of plasma-stimulated decomposition of a precursor 

lends critical insight into molecule formation mechanisms, decomposition pathways, and overall 

plasma chemistry.  Specifically, energetic distributions for excited and ground state CFx (x = 1, 

2) radicals within fluorinated plasma systems were measured via OES and BAS.  Elevated 

excited state TV for CF radicals within CxFy discharges suggest that vibrational modes are 

preferentially excited over other degrees of freedom.  In CxFy plasma systems, TR for the radicals 

equilibrate to the plasma gas temperature and remain independent of changing plasma 

parameters.   

Generally, CxFy precursors with lower fluorine-to-carbon (F/C) ratios tend to deposit FC 

films, where higher F/C ratios tend to etch surfaces.  Here, zeolite modification via CxFy and 

H2O(v) plasmas was investigated, along with the fabrication of various zeolite constructs (i.e., 

native, pellets, and electronspun fibers).  Inductively coupled plasmas tuned the wettability of 

microporous zeolites, evaluated by static and dynamic water contact angle goniometry.  Zeolite 

modification, such as the formation of fluorocarbon films or surface functionalization, was 

verified via X-ray photoelectron spectroscopy and scanning electron microscopy.  OES was used 

to probe gas-phase species, gleaning how the material intrinsically changes the plasma 

environment.  Our studies revealed correlations between gas-phase spectroscopic analyses, the 

gas-surface interface, and the resulting plasma modified surface properties. 
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A current area of interest to the plasma community, plasma-assisted catalysis (PAC), seeks to 

understand the synergistic coupling of a plasma with a catalyst for improved pollution 

abatement.  Prior to probing the plasma-material interface within PAC systems, energetic and 

kinetic processes in NxOy plasmas were elucidated.  Energy partitioning between degrees of 

freedom and multiple molecules (i.e., N2 and NO) formed within NxOy plasma systems (N2, N2O, 

N2/O2) was investigated at various applied rf powers and system pressures.  TR and TV for both 

molecules (regardless of state) showed a strong positive correlation with applied plasma power, 

as well as a negative correlation with system pressure.  Analogous to the excited state CF radical 

study, in all cases, TV values are significantly higher than TR for NO and N2 species.  These 

studies characterized the gas-phase plasma chemistry without the added complexity of a 

material.   

The impact of adding a catalyst (i.e., zeolites) on plasma energetics within an N2 low-

temperature, radio frequency plasma was investigated, where OES-related studies entailed in situ 

measurements of steady-state plasma-substrate interactions through the determination of N2 TR 

and TV.  N2 plasmas were selected for this study to minimize system intricacy and number of 

plasma species.  The presence of micro-structured zeolites within the plasma significantly 

decreases N2(g) vibrational temperature, suggesting these materials promote vibrational relaxation 

within the discharge upon interaction with a catalytic substrate.  In addition to evaluating the 

spectroscopic characteristics of the N2 discharge, material morphology and chemical 

composition were assessed before and after plasma exposure.  Zeolite substrates maintained a 

porous, interconnected network, although small amounts of surface nitrogen incorporation 

occurred at high applied powers.  

Building upon this foundation, OES was utilized to examine the impact of Pt and zeolite 
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catalysts on gas-phase species densities, plasma energetics, reaction kinetics, and plasma-catalyst 

configurations within an N2O plasma.  By studying Pt materials with two different morphologies 

and size scaling (i.e., foil and nanopowder), the role of material structure on resulting plasma 

chemistry was revealed.  The concentration of excited state NO substantially decreased at high 

powers in the presence of Pt nanopowder and micro-structured zeolites.  All catalytic materials 

studied herein significantly decreased N2 TV in the plasma, with little impact on rotational 

thermalization pathways.  Pt nanopowder further enhanced NO decomposition within a two-

stage configuration (i.e., plasma and substrate are physically separate), compared to the single-

stage system.  Material characterization conducted after N2O plasma exposure revealed the 

plasma effectively poisons both Pt materials through oxidation, resulting in poorer performance 

in the single-stage system.  Alternatively, zeolites, remained relatively unchanged by N2O 

plasma exposure, hence further decomposed NO within the single-stage system. These studies 

exemplify the need for a holistic approach to solving challenges presented in the plasma-

catalysis and fluorocarbon plasma community.
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CHAPTER 1 

INTRODUCTION 

 

Presented herein is an introductory chapter, providing an overview of the fundamentals of 

plasma chemistry and plasma processing of materials.  An essential portion of this dissertation 

work focuses on the use of various diagnostic tools to holistically study the gas-phase and 

resulting plasma-surface interface upon addition of a substrate.  These topics are also introduced, 

along with an overview of the specific research to be found in subsequent chapters of this work. 

 

1.1. Plasma Chemistry Fundamentals 

Plasmas, the fourth state of matter, are partially ionized gases containing a heterogenous 

variety of energetic components.  Plasmas generally fall into two main classifications: thermal or 

non-thermal.  Thermal plasma systems are characterized by the existence of thermodynamic 

equilibrium, where the ion and electron temperatures (Ti and Te, respectively) equilibrate.1  

Chemical reactions within these systems take place near the thermal equilibrium, characterized 

by a common temperature of all species.  High-temperature thermal plasmas are often employed 

in industrial applications (e.g., welding, metallurgical and steel-making),2 as well as the 

formation and growth of nanomaterials.3,4  Non-thermal plasmas, however, contain electrons 

with higher energies than those found in thermal systems, resulting in Te values up to two orders 

of magnitude greater than Ti.1  In addition to high energy electrons, non-thermal plasmas have 

relatively low gas temperatures (Tg < 103 K), often thermalizing to room temperature (~300 K).1  

The differences between thermal and non-thermal discharges are explained, in part, by increased 

Brownian motion in the non-thermal system, caused by the movement of electrons in response to 
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an external applied electric field.1,5  Thus, non-thermal plasmas consist of more electron-based 

collisions with other gas species compared to thermal plasmas, discussed below.  

A plasma is ignited when a free electron is accelerated across an applied electric potential 

and collides with another species.  For the work herein, radio frequency (rf) at 13.56 MHz is 

driven through an induction coil, generating an applied electric field, where a resulting cascade 

of electron-mediated collisions produces a plasma.  Electrons can ionize atoms or molecules 

present in the gas phase, generate excited species, and promote molecular dissociation.  Thus, the 

plasma bulk nominally comprises free electrons, ions, metastables, as well as ground- and 

excited-state atoms and molecules.  The presence of both electrons and positive ions generally 

renders the bulk of the plasma gas quasi-neutral.  Due to the multitude of gas-phase species 

produced in a plasma, plasma chemistry and species interactions are complex and multi-faceted, 

even in relatively simple atomic and molecular systems (e.g., Ar and N2).  The discharge 

chemistry becomes increasingly convoluted when studying larger precursors and feed gas 

mixtures, as the number of breakdown products nominally increases with more complex 

precursors.   

Several characteristic and distinct temperatures arise within non-thermal plasmas due to the 

lack of thermodynamic equilibrium, such as rotational (TR) and vibrational (TV) temperatures for 

individual plasma species.6  Determining energy partitioning trends within a discharge can 

elucidate the underlying chemistry leading to macroscopic plasma behavior and provide a 

molecular-level understanding of plasma processes.  Therefore, these studies sought to gain a 

fundamental, molecular-level understanding of rf plasma systems, including the energetic 

implications of species’ interactions, using a combination of spectroscopic techniques [e.g., 

optical emission spectroscopy (OES) and broadband absorption spectroscopy (BAS)] to 
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holistically probe the discharge.7  This requires knowledge of discharge operation parameters 

(i.e., applied power, system pressure, gas mixture) and its interconnection with fundamental 

plasma parameters [i.e., gas temperature (Tg), electron density (ne), electron temperature (Te), and 

electron energy distributions].  A literature review for the applicability of spectroscopy-based 

diagnostics to study plasmas is provided in Chapter 3.  Many studies have focused on 

homonuclear N2
8-10

 and other diatomic molecules (i.e., H2, OH, NO),11-14 yet a vast data gap exits 

for energy partitioning information for a majority of species found in technologically and 

environmentally relevant plasma systems.  Moreover, there are substantially fewer experimental 

studies measuring plasma kinetics.  Plasma dynamics can be quantitatively probed with time-

resolved (TR) OES to gain mechanistic insight into formation and decomposition pathways.  

Here, a systematic approach was implemented to study non-thermal discharges with incremental 

increases in system complexity to build a comprehensive library of knowledge pertaining to 

plasma energetics and kinetics.  

Non-thermal plasmas are widely employed to modify materials via surface etching (removal 

of material), thin film formation, or functionalization processes.1  This versatility has led to 

plasmas being incredibly useful in semiconductor processing, creation of protective coatings, 

biomaterial fabrication and modification, and more recently, pollution abatement strategies.15  

Often, plasma modification studies focus on characterizing the material after plasma processing, 

with little to no description of the gas-phase chemistry (i.e., energy partitioning and kinetic 

distributions).  Ultimately, a thorough understanding of interactions occurring at the plasma-

surface interface is necessary to improve plasma processes.  Therefore, a significant portion of 

this dissertation work sought to quantify how the addition of two- and three-dimensional (2D and 
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3D, respectively) substrates impact plasma species densities, energetics, and kinetics via optical 

spectroscopy. 

1.2. Motivations for Fluorocarbon Investigations 

Fluorocarbon (FC) plasmas are extensively employed in a variety of surface modification 

strategies, where plasmas are used to deposit conformal films or fluorinate inorganic and organic 

substrates,16-18 create surfaces with relatively low surface energy and dielectric constants,19 as 

well as for applications requiring biocompatibility.20  d’Agostino et al. identified the formation 

and interactions of reactive F atoms and CFx (x = 1, 2) radicals generated from a FC plasma with 

a substrate leads to an inherent dualistic behavior, where FC plasma can readily etch or deposit 

films.21  Generally, as the fluorine-to-carbon (F/C) ratio of the precursor increases, surface 

etching is likely to dominate over film deposition.  These processes are, however, occurring 

simultaneously and competitively within the discharge. Therefore, the role of gas-phase CFx and 

F species as contributing factors on the net effect of substrate exposure warrants further 

investigation. 

The seminal work by Coburn and Winters explored plasma-assisted etching of materials 

using halogenated systems, discovering a synergy between ions (Ar+) and reactive plasma 

(XeF2(g)) radicals for enhanced etch rates.22  Millard and Kay were among the first to report 

strong correlations between the amount of CF2 in the gas phase and the rate of FC deposition, 

utilizing in situ optical spectroscopy as a diagnostic tool for the polymerization process.23  The 

Fisher Group has employed a three-tier diagnostic strategy to investigate a range of FC plasmas: 

(1) gas-phase diagnostics (i.e., emitting species densities, kinetics, and ion energies), (2) study of 

the gas-surface interface via our unique Imaging Radicals Interacting with Surfaces (IRIS) 

technique, and (3) robust surface characterization of plasma-processed materials.24-29  
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Specifically, Cuddy and Fisher used OES to measure relative CF2 and F species densities during 

plasma processing of Si and ZrO2 wafers, where greater amounts of CF2 compared to F were 

measured with both substrates and at all applied powers.25  Cuddy and Fisher also investigated 

the contributions of CF and CF2 radicals to the formation of FC films, determining rate constants 

via TR-OES, as well as the propensity of CF and CF2 radials to scatter from Si substrates within 

a variety of CxFy precursors via IRIS.26  Their results demonstrated precursors with high F/C 

ratios (e.g., CF4) did not readily deposit FC films on Si wafers, agreeing with the work by 

d’Agostino et al..21  Interestingly, TR-OES revealed rate constants of formation (kf) for CF 

radicals were elevated and kf (CF2) values were significantly lowered within CF4 discharges, 

compared to the depositing CxFy precursors (F/C ≤ 3).26  CF2 species are hypothesized to 

promote surface passivation and FC film growth,26 therefore the delayed formation of excited-

state CF2 may contribute to the absence of FC moieties on the material surface (detected via X-

ray photoelectron spectroscopy) after CF4 processing.   

Additionally, as the F/C ratio within CxFy precursors decreased, the propensity of CFx 

radicals to scatter from Si wafers also decreased.26  Despite the extensive amount of literature 

investigating FC plasmas, a lack of understanding concerning energetic distributions of excited 

and ground state CFx species and the ultimate mechanisms that drive CxFy plasma processing 

persists.  Therefore, OES and BAS was used to determine TR (CF and CF2) and TV (CF) values 

for a range of operating conditions and FC precursors.  Studies on FC plasma deposition have 

largely focused on traditional, 2D substrates, such as wafers.  Hawker et al. sought to deposit 

hydrophobic coatings on biopolymeric substrates with C3F8 and hexafluoropropylene oxide 

(HFPO) discharges.20  Here, efficacy of FC film deposition or substrate etching was also 

investigated for 3D, microporous aluminosilicate zeolite materials.   
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Zeolites are commonly used in catalysis, wastewater treatments, and gas separations because 

of stable, micro- and nano-sized porous frameworks,30-32 yet functionality is limited by surface 

effects.  Therefore, plasma modification strategies were used to tailor surface chemistries while 

maintaining bulk crystallinity and morphology of zeolite constructs.  The catalytic properties and 

potential for microporous zeolites are further discussion in Section 1.3. 

1.3. Motivations for Plasma-Assisted Catalysis Studies 

Plasma-assisted catalysis (PAC), the coupling of a discharge with a catalyst, has gained 

increasing attention in recent years as a possibly route to enhanced pollution abatement.15,33  

PAC has been investigated for a wide variety of applications, including volatile organic 

compound (VOC) removal,34,35 CO2 capture,36 and treatment of exhaust gases.37  Nitrogen oxides 

are a major pollutant in the atmosphere, especially N2O, a greenhouse gas38 and nitric oxide 

(NO).  Morgan et al. studied the potential of rf ICPs to remove NO emissions from a variety of 

gas mixtures, containing NO, N2, O2, H2O, and CH4 precursors.39  The authors observed a 

decrease in NO density as a function of power in NO and N2/O2 system. The decomposition of 

NO within a NO/CH4/Ar system was impacted by the addition of 2D substrates [e.g., Si wafers 

(as-received and Au-coated) and Pt foil].39  The coupling of nano- and micro-structured 3D 

catalysts with NxOy discharges represents a large portion of the work presented in this 

dissertation.  Specifically, microporous zeolite and nanostructured Pt catalysts were employed to 

study the plasma-catalytic decomposition of N2O, Chapter 8. 

Within the PAC community, three plasma-catalyst configurations are nominally investigated, 

studying system characterization and optimization.40  Illustrated in Figure 1.1, two-stage systems 

require physical separation of the plasma and catalyst; where the exhaust gas decomposition is 

catalyzed by the material and those reaction products are subsequently exposed to the discharge 
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(pre-plasma catalysis) or the plasma alters the gas-phase composition prior to interaction with the 

catalyst (post-plasma catalysis).40  Within single-stage systems, the plasma components can 

directly interact with the catalyst, ultimately resulting in complex and entangled chemistries. 

Active plasma species can influence the electronic, chemical, and physical properties of the 

catalysts, thus thorough material characterization is necessary to assess catalyst properties after 

plasma exposure.  Conceivably, a catalyst that degrades or is damaged by the plasma is non-ideal 

for single-stage PAC systems.  Subsequently, the material within the discharge can influence the 

electric field, electron energy distribution function (EEDF), adsorption of pollutants on the 

surface, and residence times in the discharge.  Moreover, microdischarges can be formed within 

the pores of a material, illustrated in Figure 1.2, which can significantly impact the overall 

plasma character.  Strong electric fields inside pores can lead to different electron energy 

distributions, giving rise to modified electron impact reaction rates and changes in the plasma 

chemistry.41  The generation of a stable plasma inside catalyst pores is an important factor for 

PAC, as it can increase the active surface area of the catalyst that is available for waste 

treatment.  Additionally, after plasma ignition, electrons rapidly move toward surfaces (i.e., 

reactor walls and substrates) in response to the external electric field,1 depicted in Figure 1.2, 

creating a sheath around boundaries within the discharge.  Sheath and ion effects at the surface 

of these catalytic materials are, therefore, important to consider and may contribute to the 

effectiveness of PAC technologies. 

Therefore, a significant portion of this work was dedicated to investigating the impact on 

kinetics and energetics of gas-phase species when materials were added to PAC-relevant 

discharges.   
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Figure 1.1. Representation of plasma-catalyst configurations, depicting (a) pre-plasma 
(or two-stage), (b) single-stage, in-plasma, and (c) post-plasma catalysis. 
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Figure 1.2. Schematic representation of some of the potential interactions occurring at the 
plasma-surface interface. 
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Specifically, formation and destruction mechanisms of key excited state species have been 

examined to provide mechanistic insight that could be correlated with system energetics. An 

overview of the work presented here is provided below in Section 1.4.  

1.4.Overview of Research 

Research efforts in this dissertation focus on linking the gas-phase, gas-surface interface, and 

material properties.  All components represent a larger effort to elucidate potential plasma-

material synergisms, where a fundamental understanding of these systems is essential to the 

continued development and application of plasma technologies.  Chapter 2 provides detailed 

descriptions of the plasmas and materials studied herein; as well as the techniques, instruments, 

and methods used to characterize and explore those systems.  

Chapter 3 provides a literature review of the development of optical diagnostic techniques to 

study non-thermal plasma discharges.  Opportunities to elucidate fundamental plasma properties 

(i.e., electron temperatures and densities) within noble gases are discussed and demonstrated. 

This study illustrates the value of using temporally- and spatially-resolved optical spectroscopies 

to probe complex environmentally and technologically relevant discharges.  

Although Chapter 4 may seem like a departure from the theme of other chapters, it extends 

our studies of plasma-surface interactions for a variety of fluorocarbon (FC) systems.  Indeed, 

Chapter 4 focuses on the plasma energetics, primarily for CF and CF2 species, including their 

ability to influence surface scatter properties.  This fundamental FC work was applied to the 

surface modification of microstructured materials, detailed in Chapter 5.   

Zeolites are a versatile class of materials, with widespread utility in catalysis, wastewater 

treatments, and gas separations.30  The work presented in Chapter 5 focuses on customizing 

zeolite surface properties via plasma modification, while maintaining morphology and bulk 
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characteristics of the materials.  The dynamic balance between etching and depositing regimes 

with differing F/C ratios in the precursors gas was studied, as well as how the addition of H2 or 

O2 promotes deposition and etching, respectively.  Using H2O(v) plasmas, the wettability of the 

zeolite materials was significantly enhanced and examined as a function of plasma operating 

conditions (i.e., power and time) and placement of material in the reactor.  In addition to surface 

modification of these materials, the potential of zeolites to be employed in plasma-assisted 

catalysis was also explored. 

Prior to adding a substrate to the discharge, a detailed characterization of the internal 

energetics and reaction kinetics of N2 and NO molecules within NXOY precursors is presented in 

Chapter 6.  Rotational and vibrational temperatures were determined as a function of pressure 

and power for both absorbing and emitting species in the discharge.  Rate constants of formation 

and destruction for excited state species, measured by former Fisher group member, Dr. J.M. 

Blechle, are also included.  Chapter 7 expands upon the results detailed in Chapter 6 and focuses 

on the deciphering plasma-catalyst interactions.   

Chapter 7 reports on our initial PAC studies with the precursor N2: a simple, homonuclear 

diatomic molecule.  With the addition of a single zeolite pellet in the coil region of an 

inductively-coupled plasma, a drastic decrease (~800 K) in TV (N2) was documented at applied rf 

powers above 100 W.  This vibrational cooling was further enhanced upon the addition of 

multiple zeolites throughout the reactor, where a decrease of ~1500 K (from the plasma system 

with no substrate present) was documented.  PAC is thought to be a viable technology for 

pollution abatement, therefore we increased the complexity of the gaseous precursor to a more 

environmentally relevant gas, such as N2O.  Chapter 8 examines plasma energetics, reaction 
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kinetics, and plasma-catalyst configuration for both platinum and zeolite materials within an N2O 

plasma.  

Finally, Chapter 9 provides a brief summary of the entire dissertation and conveys the 

potential for further extension and application of this research.  These studies exemplify the need 

for a holistic, well-rounded approach to solving challenges presented in the plasma community. 
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CHAPTER 2 

EXPERIMENTAL METHODS 

 

This chapter contains a detailed description of experimental apparatus, instruments, 

materials, fabrication techniques, and methods used to perform the research discussed in this 

dissertation.  These experimental details are also presented in publications that are the basis for 

Chapters 3 – 8.1-5  This chapter includes five main sections: Section 2.1 provides an overview of 

the plasma systems and treatment conditions used herein; gas-phase diagnostics (2.2); the IRIS 

technique (2.3); substrate preparation and fabrication (2.4); and material characterization (2.5).  

All IRIS data were collected by previous Fisher Group members, specifically Dr. C.I Butoi, Dr. 

K. L. Williams, Dr. J. Zhang, Dr. M. F. Cuddy, and Dr. J. M. Blechle.  I would like to thank all 

members of the Central Instrument Facility at CSU, without their guidance and technical 

expertise, this work would have not been possible.  Additionally, Michael Olsen, Ron Costello, 

and Tom Frederick within the CSU Chemistry Department have all played essential roles in the 

work presented herein, particularly with system design and maintenance.  

 

2.1 General Information 

Plasma reactor.  The majority of plasma treatments were performed in a home-constructed 

glass tubular reactor, inductively coupled via an eight-turn Ni-plated Cu coil, described in detail 

previously and shown in Figure 2.1a.3,6  Slightly different reactor configurations were employed 

throughout this dissertation work; the reactor shown in Figure 2.1a was used to collect the 

spectroscopy data presented in Chapters 3 – 8.  The reactor utilized for zeolite material 

modification (Figure 2.1b) has a central O-ring joint to enable efficient sample introduction and 
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is elongated to probe downstream plasma species.  The reactor in Figure 2.1a was lined with 

zeolite pellets to create a multi-substrate reactor, discussed in Chapter 7 (Figure 2.2a).  For two-

stage studies, a pre-plasma catalysis system was constructed (Figure 2.2b) that included a 

stainless-steel vacuum chamber mated upstream to the plasma reactor.5  Catalytic substrates were 

placed in the center of this chamber, feed gas flowed over the substrate, entered the glass reactor, 

and a plasma was subsequently ignited.  Regardless of reactor configuration, radio frequency (rf) 

at 13.56 MHz was applied through a matching network; applied rf power (P) ranged from 5 – 

200 W in the work presented in this dissertation.  For some experiments, a pulsed plasma was 

employed.  For these experiments, pulsed power is reported in the form of duty cycle (d.c.), 

defined here as the ratio of pulse on time to total cycle time, where a d.c. of 100% is equivalent 

to continuous wave (CW) plasma condition.  For comparison to CW plasmas, when the power 

was pulsed, the equivalent power (Peq), defined as the product of the d.c. and the peak power, 

was reported.  Here, 20 ms and 10 ms pulse widths were used to study pulsed Ar (Chapter 3) and 

N2 (Chapter 7) discharges, respectively.  Vacuum was maintained using a mechanical rotary 

vane pump, reactor pressure (p) was monitored using a Baratron® capacitance manometer.  The 

reactor stabilized at base pressure (< 1 mTorr) before introduction of plasma precursors, where 

system p ranged from 25 – 200 mTorr.  After introduction of gaseous or liquid precursors to the 

reactor, pressure stabilized for a minimum of 5 min prior to plasma ignition and for at least 5 min 

after plasma treatment to quench possible surface active sites, further discussed in Chapter 5.  

Gaseous precursors were used as-received and introduced into the reactor with flow rates 

regulated through mass flow controllers (MKS Instruments Inc.) or a series of needle values, 

depending on the experiment.  Liquid precursors (i.e., H2O(v)) were subject to a minimum of 

three freeze-pump-thaw cycles to remove trapped atmospheric gases before use.  
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Figure 2.1. (a) Detailed schematic of OES/BAS apparatus used in spectroscopic 
investigations of low-temperature ICP discharges.  Both collimating lenses are equidistant 
from quartz windows.  (b) ICP reactor utilized to modify zeolites (Chapter 5), illustrating the 
range of substrate positions within the reactor. 
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Figure 2.2. Schematic representation of (a) zeolite pellet, packed-bed system (Chapter 7) and 
(b) two-stage, pre-plasma catalysis configuration (Chapter 8).   
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Additionally, liquid precursors were stored in a 50 mL Pyrex sidearm vacuum flask with a 

Teflon stopcock and introduced to the reactor via needle valves.  Table 2.1 lists the purity and 

manufacturer information for gaseous and liquid precursors used in this dissertation. 

2.2 Gas – Phase Diagnostics  

Optical Emission Spectroscopy (OES).  All steady-state spectra were collected by an 

AvaSpec-2048L-USB2-RM multichannel spectrometer over a wavelength range of 197 – 1061 

nm.  Briefly, quartz windows are secured to the up and downstream ends of the reactor using 

RODAVISS® joints, enabling maximal signal intensities via the coaxial collection of plasma 

emission.  The spectrometer houses six gratings, each synchronized for simultaneous data 

collection with 2048-pixel linear array charged couple device detectors with a spectral resolution 

of ~0.1 nm, determined from the full width half maximum (FWHM) of a HeNe laser.  A second 

spectrometer (AvaSpec-ULS4096CL-EVO) was employed in time-resolved studies (Chapter 8) 

for enhanced temporal resolution (i.e., μs time scale), with a spectral resolution of 0.5 nm.  A 

Faraday cage was constructed around the plasma reactor and spectrometer(s) to minimize 

potential rf coupling between the discharge and electronics of the spectrometer. 

Actinometry was used in specified OES experiments, where the ratio of emission intensity 

for each excited state species of interest to that of an actinometric species is taken as a relative 

species density.7,8  Using Ar as an actinometer, small amounts (~5-10% by pressure) were added 

to the feed gas to provide a reference to determine relative number density.  The inherent 

assumptions with inert gas actinometry are discussed at length in Chapter 3.  A concise list of 

species analyzed via actinometry and discussed in this dissertation is provided in Table 2.2.  
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Table 2.1. Summary of plasma precursors used for work presented in this dissertation  

Precursor Chemical 
Formula Purity (%) Manufacturer Chapter(s) 

argon Ar >99.999 Airgas 3-8 

ultrapure ionized water H2O -- Millipore 5 

nitric oxide NO >95 American Gas 
Group 6 

nitrogen N2 >99.99 Airgas 6,7 

oxygen O2 99.5 Airgas 5,6 

nitrous oxide N2O >99 Airgas 5, 6, 8 

tetrafluoromethane CF4 >95 Airgas 4, 5 

hexafluoroethane C2F6 >95 Airgas 4, 5 

hexafluoropropylene C3F6 >95 Airgas 4, 5 

octofluoropropane C3F8 >95 Airgas 4, 5 

hexafluoropropylene oxide HFPO 98 Sigma-Aldrich 4 

hydrogen H2 99 Airgas 5 
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Table 2.2. Transitions and corresponding wavelengths used in actinometry studies 

Emitting species Transition Wavelength (nm) 

Ar 2p1 → 1s2 750.4 

NO A2Σ+ → X2Π 235.9 

N2 B3Πg → C3Πu  337.0 

O 3S0 →3P 777.2 

OH A2Σ+ → X2Π 309.0 

Hα 
2P0 → 2D 656.3 

CF B2Δ → X2Π 202.4 

CF2 A1B1 → X1A1 251.9 

F 2p43p1
→ 2p43s1

 703.7 
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Broadband Absorption Spectroscopy (BAS).  Depicted in Figure 2.1a, the experimental 

apparatus for BAS measurements consists of an AvaLight-DHS deuterium-halogen light source 

interfaced to the ICP reactor via a fiber optic cable and collimating lens (Avantes DCL-UV/VIS-

200).  Optics were aligned with the light source prior to any spectroscopic measurement.  Three 

measurements were collected during each BAS experiment: emission from the light source (IS), 

emission from the plasma (IP), and emission from the plasma and source together (IPS).  An 

absorbance spectrum was determined via Equation (2.1).9 

              𝐴 = − (𝐼𝑃𝑆−(𝐼𝑃+𝐼𝑆)𝐼𝑆 )                            (2.1) 

A range of integration times (25 – 200 ms) and number of averages (25 – 150) were explored to 

examine the steady state of each plasma system with optimized signal-to-noise ratios, where 

discharge run times were several minutes.  Within steady-state measurements, these plasma 

interactions are examined on the millisecond to minute time scales, therefore rf periods are not 

thought to play a major role in the final evaluation of the resulting data.10 

Time Resolved Gas-Phase Analyses.  Time resolved (TR)- OES data were collected to study 

formation and decomposition mechanisms within atomic and molecular plasma systems.  Data 

collection began before plasma ignition and lasted for ~ 5 – 15 seconds after ignition; integration 

times for TR-OES varied from 75 μs to 25 ms, depending on the experiment.   
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Figure 2.3. N2O plasma emission (p = 100 mTorr, P = 150 W) collected at various 
integration times.  
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Integration time determination is heavily influenced by the system of study, highlighted in 

Figure 2.3.  Emission arising from an N2O plasma (p = 100 mTorr, P = 150 W) was collected at 

four integration times with one average, ranging from 50 μs up to 875 μs.  Steady-state N2O 

spectroscopy was previously collected at this experimental condition,3 revealing strong emission 

bands from N2 second positive (C3Πg → B3Πu) and NO γ (A2Σ+u → X2Π) transitions.  As can be 

seen in the Figure 2.3 spectra, at the fastest integration times, virtually no signal is observed for 

NO emissions and the N2 signal is barely above the noise.  As the integration time is increased 

slightly, emission bands from both molecules can clearly be seen in the spectra.  This 

exemplifies the notion that the fastest integration time is not always optimal as emission from 

molecular species could get suppressed underneath poor signal-to-noise ratios.  Therefore, 

selection of an integration time for a time-resolved study should be based on steady-state 

emission measurements to accurately include and assess species within a discharge.  TR-OES 

data were collected with an AvaSpec-2048L-USB2-RM multichannel and an AvaSpec-

ULS4096CL-EVO spectrometer.  The TR-OES data presented in Chapter 6 were collected by 

Dr. J.M. Blechle with a 5 ms integration time and at an interval of 25.5 ms (AvaSpec-2048L-

USB2-RM multichannel) with small amounts of Ar added as an actinometer.11  The data 

presented in Chapter 7 were collected with a 25 ms integration time and one average, TR-OES 

data included in Chapter 8 were collected with a 1.5 ms integration time (AvaSpec-ULS4096CL-

EVO).  Actinometry (i.e., Ar dilution) was not used in the TR-OES data presented in Chapters 7 

and 8.  Regardless of spectrometer or integration time, data collection began before plasma 

ignition; the first non-zero data point was set at time (t) = 0.0 s and time points for all subsequent 

data points were adjusted accordingly.  The intensity of signals arising from excited-state NO 

(235.9 nm) and N2 (337.0 nm) were monitored as a function of time, shown in Figure 2.4a and 
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2.4b, respectively.  The data presented in Figure 2.4 were collected with the AvaSpec-

ULS4096CL-EVO spectrometer with a 1.5 ms integration time.  The point(s) of highest intensity 

was identified; where the rise to maximum intensity was denoted as the rate constant of 

formation (kf).  The subsequent decrease in intensity marked the end of species formation and the 

start of signal decay, denoted as the rate constant of destruction (kd).  It is important to note that 

“destruction” here does not refer to complete decomposition or removal of the species, but rather 

a decrease in intensity resulting from several decay pathways available to the species of interest.  

In some cases, no specific formation and destruction of species were detected on the time scale 

of our system, further discussed in Chapter 6.   

Characteristic Temperature Determination.  The atomic emission intensity (Ijk) of the 

transition from level j to k depends on the Einstein coefficient of spontaneous emission (Ajk) and 

absolute population of the atomic level (nj), shown in Equation 2.2 𝐼𝑗𝑘 = 𝑛𝑗𝐴𝑗𝑘ℎ𝜈     (2.2) 

where h is the Planck constant and ν is the frequency corresponding to the transition.  Assuming 

the atomic level populations follow a Boltzmann distribution, Ijk is given by Equation 2.3: 

    𝐼𝑗𝑘 = ℎ𝜈 (𝐴𝑗𝑘𝑔𝑗𝑛𝑈(𝑇𝑒𝑥𝑐)) 𝑒𝑥𝑝 ( −𝐸𝑗𝑘𝐵𝑇𝑒𝑥𝑐)              (2.3) 

where gj is the statistical weight of level j, n is the number density of bound electrons (not to be 

confused with ne pertaining to free electrons in the plasma), U(Texc) is the partition function, kB is 

the Boltzmann constant, and Ej is the energy of the upper level, j.  Equations 2.2 and 2.3 

represent relationships for emitting species within ideal systems, not accounting for radiation 

trapping or electron distributions that deviate from a Boltzmann distribution.  A representative 

emission spectrum of an Ar plasma (p = 100 mTorr, P = 20 W) is provided in Figure 2.5a.  
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Figure 2.4. Intensity from (a) N2 and (b) NO emission as a function of time, where first order 
exponentials were used to determine rate constants (P = 150 W, Pt powder substrate present).   
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Figure 2.5. (a) Representative Ar emission spectrum and resulting (b) Texc Boltzmann plot of 
Ar plasma (p = 150 mTorr, P = 10 W).   
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Table 2.3. Ar emission lines used in Boltzmann plotting 
procedure to determine Texc 

Transition λ (nm) A jk (105 s-1) g 

1s4 – 3p6 426.6 3.33 5 

1s4 – 3p7 427.2 8.40 3 

1s4 – 3p8 430.0 3.94 5 

1s2 – 3p3 433.3 6.00 5 

1s2 – 3p2 433.5 3.80 3 

1s2 – 3p4 434.5 3.13 3 

2p10 – 5s1” 518.7 13.8 5 

2p9 – 7d4’ 522.0 9.20 9 

2p9 – 6d4’ 549.5 17.6 9 

2p10 – 5d3 555.8 14.8 5 

2p10 – 5d4 560.6 22.9 3 

2p9 – 5d4’ 603.2 24.6 9 

2p10 – 3s5 641.6 12.1 5 
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Excitation temperature (Texc) was determined via a Boltzmann method, where ln(Iijλ/gjAjk) 

was plotted as a function of the upper level energy Ej, the slope of which is equal to -1/kBTexc.  

Shown in Figure 2.5b, the experimental data for the higher Ar levels (quantum number n ≥ 5) are 

linear with Ej, whereas lower lying levels (quantum number n < 4) deviate.  This 

underpopulation of the lower energy state is a deviation from local thermodynamic equilibrium 

(LTE), most likely resulting from plasma relaxation processes, rather than only through electron-

impact excitation from the ground state followed by de-excitation.  This concept is further 

discussed in Chapter 3.  Only the n ≥ 5 Ar emission lines were utilized in the determination of 

Texc, transitions (Paschen’s notation) and relevant constants are listed in Table 2.3. 

Plasma mean electron temperature (Te) values were also determined via analysis of Ar 

emission lines in more complex gas systems (Chapters 4 and 6).  This process involved iterative 

comparison of the intensities of four Ar transitions, summarized in Table 2.4, with the emission 

line of Ar+ (λ = 617.2 nm).  Specifically, Te is calculated from emission intensities via Equation 

2.4:12  (En−E1)
kTe

 = ln [I1νnAn(En + 2kTe)
Inν1A1(E1+ 2kTe)]    (2.4) 

where En represents the excitation energy of arbitrarily defined transition n.  In is the emission 

intensity obtained from the OES spectrum, νn is the frequency of the transition, and An is the 

transition probability.  This calculation yielded three Te values for each OES spectrum collected, 

which were then averaged and reported with one standard deviation from the mean.  Although 

Texc and Te have been determined using analysis of Ar atomic lines, several studies have 

combined computational (CR models) and experimental (Langmuir probes) results to select 

emission line-ratios with a high sensitivity to Te and ne, shown in Equations 2.5 and 2.6, 

respectively.   
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Table 2.4. Emission parameters for used in Te determination 

Transitiona
 λ (nm) ν x 1014 (s-1) A (s-1) Excitation Energy (eV) 

-- 617.2 4.86 2.00 x 107
 21.127 

2p10 – 3s2 641.6 4.68 1.16 x 106
  14.839 

2p10 – 3s4 638.5 4.70 4.21 x 105
 14.848 

2p10 – 4d3 675.3 4.44 1.93 x 106
 14.743 

a Transitions are denoted in Paschen’s notation for excited state Ar.  
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𝑇𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 = (𝐼(763.5 𝑛𝑚)𝐼 (738.3 𝑛𝑚))                              (2.5) 

𝑛𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 = (𝐼(706.7 𝑛𝑚)𝐼 (750.4 𝑛𝑚))                             (2.6) 

Results from the Te sensitive ratio (Equation 2.5) are compared to the Texc values obtained via the 

Boltzmann plotting method for a range of system pressures (50 – 150 mTorr) and applied rf 

powers (5 – 50 W) in Chapter 3.   

Emission and absorbance spectra were analyzed using LIFBASE 2.1.113 simulations of the 

radiative transitions NO gamma (A2Σ+ ↔ X2Π), OH (A2Σ+ ↔ X2Π), and CF (B2Δ ↔ X2Π) 

within NxOy, H2O, and FC (fluorocarbon) plasma systems, respectively.  After importing 

experimental spectra and specifying the parameter space, the simulated vibrational histogram 

was manually manipulated to best represent experimental peak heights, yielding non-equilibrium 

distributions.  Using these vibrational state populations, we determined TV via Equation 2.7:  

𝑇𝑉  = ∑ 𝑛(ℏ𝜔)(𝑣 + ½𝑣𝑓𝑣𝑖 )𝑘𝐵      (2.7) 

where n represents the fractional population of an individual vibrational state, ω is the vibrational 

constant (ω = 1904 cm-1 for NO X2Π, ω =2374 cm-1 for NO A2Σ+)13, v is the numeric vibrational 

state, and kB is Boltzmann’s constant.  Determination of TR was achieved by adjusting the 

rotational temperature within LIFBASE to match peak FWHM, assuming a thermalized 

distribution.  Using LIFBASE to determine vibrational populations and rotational temperatures, 

we sought to maximize peak correlation (>90%), as reported within the program.   

Specair, a commercially available spectral fitting program, was utilized to determine N2 

plasma temperatures.  All TR (N2) values for the C3Πu ↔ B3Πg transition were determined from 

simulated fits of experimental spectral data using Specair.14  TV (N2) values reported in Chapter 6 

were determined via the “Temperature Loop” function within Specair.3  A Boltzmann plot of 
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ln(Iλ/A) as a function of vibrational energy (E) was used to calculate TV(N2) in Chapters 74 and 

8,5 where I and λ are the intensity (a.u.) and wavelength (nm) of a specific emission line and A (s-

1) is the corresponding Einstein transition probability coefficient for the transition.  Table 2.5 

lists the N2 vibrational transitions, corresponding wavelengths, and A values used herein.15,16  

The differences between these temperature determination methods is discussed in Chapter 7.  

Figure 2.6 shows a representative Boltzmann plot for a 100% N2O plasma (with a zeolite 

substrate) created from Specair fits of TR and the Table 2.5 data.  The slope of the linear 

regression is inversely proportional to TV, yielding TV = 2300 K.  pGopher17 was used to 

determine TR values CF2 molecules, described in Chapter 4.2  To simulate the CF2 (Ã1B1 - X̃1B1) 

transition at wavelengths 240 – 260 nm, the rotational constants described by Blucourt and 

coworkers were utilized.18  For all rotational and vibrational temperatures determined within this 

dissertation work, error was determined from a standard deviation of n  ≥ 3 trials.  

Discussed in detail below, the application of spectroscopy to elucidate fundamental plasma 

properties is inherently dependent on the spectral resolution, quantum efficiency, and grating 

efficiency of the spectrometer.  The wavelength-dependent quantum and grating efficiencies 

should be calibrated and corrected before the fit of measured spectra can be used for the 

determination of plasma temperatures.1  The quantum efficiency of these detectors varied by 

~5% and therefore, was not considered in the work presented herein.  All spectra collected herein 

are irradiance-calibrated across the wavelength range 200 – 1000 nm; however, the grating 

efficiency reported by Avantes ranged from ~35% to ~65%, depending on the spectrometer 

channel.  As may be expected, applying a correction for grating efficiency has no measurable 

effect on measured TR values, as these are nominally determined by fitting the FWHM of the 

vibrational peaks.   
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Figure 2.6. (a) Representative N2O emission spectrum (100 mTorr, 125 W, zeolite pellet 
present), with both NO and N2 bands fit. Internal temperatures are reported within inset table. 
(b) Boltzmann plot corresponding to the determination of N2 TV(K) at the above conditions. 
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Table 2.5. Parameters for the vibrational bands in N2 used to 
determine TV (K) using a Boltzmann plot.  

vibrational transition λ (nm) A v’-v” (106 s-1) 

4 → 2 295.3 8.84 

3 → 1 262.2 6.61 

2 → 0 297.6 3.49 

3 → 2 311.6 5.48 

2 → 1 313.5 8.84 

1 → 0 315.9 10.2 

0 → 0 337.1 11 

1 → 2 353.6 4.61 

0 → 1 375.6 7.33 
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In contrast, the grating efficiency can impact determined TV values.  The differences in the 

resulting TV(NO) values obtained with a grating efficiency correction compared to those obtained 

without a correction were, however, within the overall experimental error.6  This can be 

rationalized by considering the methodology used to obtain TV(NO) from emission spectra, 

which includes the entire vibrational band corresponding to the A2Σ+ → X2Π transition in the 

simulated spectra (Figure 2.6a).  As a consequence, small differences in grating efficiency are 

likely accounted for within the fit of this relatively wide wavelength range (200 – 280 nm).  For 

comparison, in the determination of TV(CH) within CH4 plasmas, Van Surksum and Fisher found 

the grating efficiency did have a significant impact on the resulting temperature.19  These data 

were, however, collected on a different, four-channel Avantes AvaSpec-3648-USBS 

spectrometer.19  In addition, the wavelength range for the CH (A2Δ → X2Π) molecule is 

significantly smaller (425 – 437 nm) and the v’ = 0 and v’= 1 vibrational states significantly 

overlap in the CH vibrational band.  By comparison, the NO emission band is characterized by 

distinctively separate vibrational peaks (shown in Figure 2.6a).  Thus, small fluctuations in the 

grating efficiency within this smaller, more conflated wavelength range impacted the determined 

TV(CH) values.  These examples clearly demonstrate that the potential influence of quantum and 

grating efficiencies, spectral resolution, and calibration technique should all be carefully 

considered when employing spectral techniques in plasma temperature determination. 

2.3 Gas-Surface Interface 

Imaging Radicals Interacting with Surfaces (IRIS).  Laser induced fluorescence (LIF) spectra 

were acquired for SiF, CF, rand NO radicals for the A2Σ+  X2Π transition, as well as CF2 

(A1B1  X1A1) by previous Fisher Group members.2,6  For these studies, an rf inductively 

coupled plasma (ICP) reactor was mated to the IRIS chamber, described in detail previously.20-22   
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Figure 2.7. Schematic of imaging of radical interacting with surfaces (IRIS) apparatus. Detail 
of the interaction region shows the spatial orientation of the optics and detector relative to the 
molecular and laser beam. 
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Plasma afterglow from the reactor expands through a series of collimating slits into a 

differentially pumped region (base pressure ~10-6 Torr) to generate a molecular beam, consisting 

of virtually all species present in the plasma.  Tunable laser light generated from an excimer-

pumped (Lambda Physik LPX210i, XeCl 180 mJ/pulse, 25 Hz) dye laser intersected the plasma 

molecular beam at a 45° angle.  For LIF studies requiring UV radiation, the output of the laser 

was frequency doubled using BBO I crystals.  Total fluorescence was imaged through two 

focusing lenses onto a 512 x 512 pixel array of an intensified charge-coupled device (ICCD) 

located directly above the region of intersection and perpendicular to the laser and plasma 

molecular beam.  Individual images were pixel averaged for a 20 x 12 region around the center 

of the most intense fluorescence and these averages were plotted as a function of the 

corresponding laser wavelength to generate the excitation spectrum.  

Radical surface reactivities for SiF, CF and CF2 were measured using the IRIS technique, 

described previously.2  Briefly, IRIS employs analysis of spatially-resolved LIF excitation of 

plasma species in the molecular beam as they interact with a substrate mounted on a rotatable 

arm.  Fluorescence signals were collected at specific excitation wavelengths (SiF: 437.348 nm, 

CF: 223.838 nm, CF2: 234.278 nm, NO: 226.199 nm) for the molecular beam alone (“beam 

only”) and the beam interacting with a substrate (“beam + scatter”).  Background subtractions 

were performed for each image by turning the laser off.  The difference between the “beam + 

scatter” and “beam only” images provides a measure of the signal arising from molecules 

scattered from the surface during plasma processing (“scatter”).  Cross-sections along the laser 

propagation axis were taken in 20 - pixel wide swaths around the center of most intense 

fluorescence for both the “beam only” and “scatter” images.  These cross-sections were fit with a 

geometrical model to derive scatter coefficients, S.  Briefly, S represents the fraction of incident 
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radicals scattered from the surface.  S values greater than unity indicate radicals are generated at 

a surface, where S < 1 represent radicals disappearing from the gas-phase upon interaction with 

the substrate.  Surface generation can occur via a number of mechanisms, including 

fragmentation and desorption of a deposited film, discussed further in Chapter 4 and Appendix 

B.  

2.4 Substrate Preparation and Fabrication 

Zeolite construct fabrication.  Three types of molecular sieve constructs were utilized in this 

work: native, pressed pellets, and electrospun fibers, Figure 2.8.  Molecular sieves (Sigma-

Aldrich, 13x, 45/60 mesh) were used as received and secured to glass slides (VWR) with double-

sided carbon tape (VWR), referred to as “native zeolite” throughout this work.  The received 13x 

zeolites were crushed into a fine powder using a mortar and pestle, then pressed in 0.3 g pellets 

using a pellet die at 18k pounds per square inch (Carver), as depicted in Figure 2.8a.  Electrospun 

fibers were fabricated using polyvinylpyrrolidone [PVP (MW – 1,300,000)] and ground zeolites.  

An overview of the electrospinning process is displayed in Figure 2.8b, specific parameters are 

detailed in Appendix A.  Briefly, zeolite solutions were prepared by fully dissolving the zeolites 

in 200 proof ethanol [EtOH, (PHAMCO-APPER, absolute anhydrous, ACS grade)] and bath 

sonicated for seven hours to achieve uniform dispersion; zeolite: EtOH solutions were then 

stirred magnetically overnight.  PVP was added to the zeolite solution and magnetically stirred 

for at least six hours to obtain a homogeneous suspension to be loaded into a 5 mL syringe 

equipped with a 20-gauge needle.  The syringe was placed in a Kent Scientific syringe pump 

with a constant 0.5 mL/hour or 5 mL/hour dispensing rate and the pump was oriented such that 

the tip of the needle was 15 cm away from a conductive disk wrapped in heavy-duty Al foil.   
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Figure 2.8. Overview of in-house zeolite fabrication methodologies including (a) pressed 
zeolite pellets and (b) electrospinning fiber mats.  
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Electrodes were connected to the needle tip and conductive disk, where a constant voltage 

ranging from 12 to 24 kV was applied for the entirety of the electrospinning process using a high 

voltage power supply (Gamma High Voltage Research).  The as-spun fiber mats were removed 

from the Al foil prior to calcination to remove the polymeric phase.  Here, the PVP-zeolite fibers 

were calcinated in a furnace (Thermolyne 1300) at 550° C for 2 hours. Additionally, the potential 

utility of using Ar and O2 rf ICPs to remove the polymeric phase was examined, discussed in 

Chapter 5 and Appendix A.  

Platinum substrate preparation.  Platinum foil (Alfa Aesar, 99.99 %, 0.025 mm) was used as 

received.  Commercial Pt powder (Alfa Aesar 99.99%, 9-19 m2/g) was secured to glass slides 

(VWR) with double-sided carbon tape.  Pt powder was suspended in both ethanol and hexane to 

crease a suspension of particles, which was drop cast onto glass slides and left to dry overnight in 

ambient laboratory conditions.  These fabrication processes, however, resulted in the oxidation 

of the Pt nanoparticles (EtOH) and poor adhesion to the glass slides (hexanes), therefore were 

these fabrication methodologies were not employed for plasma-assisted catalysis studies, 

Chapter 8.  

2.5 Material Characterization  

Composition analysis. Powder X-ray diffraction (PXRD) data (Bruker D8 Discover DaVinci 

Powder X-ray Diffractometer, Cu Kα radiation source using 2θ from 5° to 80° at intervals of 

0.02° with scans of 0.25 – 0.5 step/s) was collected on catalytic substrates to elucidate any 

changes to bulk crystallinity of the material after plasma exposure.   

X-ray photoelectron spectroscopy (XPS) was performed on a Physical Electronics PE5800 

ESCA/AES system equipped with an Al K monochromatic X-ray source (1486.6 eV), 

hemispherical electron analyzer, and multichannel detector to elucidate surface composition.  
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Spectra were collected using a 45° angle and a low energy electron flood gun (15 eV).  A 

minimum of three spots on three samples (n = 9) was collected to analyze surface and sample 

reproducibility, where a mean value and its standard deviation are reported.  CasaXPS software 

was used to process all high-resolution spectra with Gaussian-Lorentzian (30:70) fits and FWHM 

of each component was constrained to ≤ 2.0 eV.  High-resolution C1s spectra were charge 

corrected by setting the aliphatic carbon component (-C-C/C-H) to 284.8 eV.  Fluorocarbon 

peaks were generally shifted to the F-C binding environment at 689.0 eV.  For high-resolution 

Si2p XPS spectra, Alexander et al. have assigned the binding energies for Si(-O), Si(-O)2,  

Si(-O)3, and Si(-O)4 to 101.5, 102.1, 102.8 and 103.5 eV, respectively.23   

Morphological analysis.  Scanning electron microscopy (SEM) images were collected using 

a JEOL JSM-6500F field emission microscope, operating with an accelerating voltage of 5 – 

15.0 kV and a working distance of 10 mm.  Energy dispersive spectroscopy (EDS) was collected 

in conjunction with SEM to obtain elemental composition maps of untreated and plasma 

modified materials.  Multipoint Brunauer-Emmett-Teller (BET) measurements were performed 

to elucidate the surface area of the ground zeolite powder, Figure 2.9.  Figure 2.9a shows the 

obtained signal intensity as a function of time as N2 is desorbed and adsorbed to the ground 

zeolite powder, where 2 mL of N2 gas was injected as an internal calibration.  Utilizing different 

ratios of He and N2 gas, a multipoint BET plot was generated, Figure 2.9b.  A specific surface 

area of 930 m2/g for the ground zeolite material was obtained using this plot. 

Wettability analysis.  Water contact angles (WCA) experiments were performed using a 

Krüss DSA30 goniometer.  Substrates did not require further sample preparation for WCA.  

Static and dynamic WCA data were collected depending on the wettability of the substrate (i.e. 

hydrophobic or hydrophilic).   
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Figure 2.9. (a) Signal intensity plotted as a function of time during while performing a 
multipoint BET experiment, where 2 mL of N2 was injected during the calibration. (b) 
Multipoint BET curve used to determine specific surface area of ground zeolite powder. 
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Regardless of substrate, deionized ultrapure water (Millipore, 18 mΩ) was used at ambient 

laboratory conditions for all data collection.  The probe liquid parameters (density 0.9970 g/mL, 

viscosity = 0.010 P, surface tension = 72.16 mN/m) were programmed into the onboard software 

and utilized when performing all WCA fitting.  For non-wettable materials, static WCA values 

were collected using a 2 uL drop volumes, where drops stabilized in < 1 s.  When WCA values 

were less than twenty degrees, the circle method was employed, otherwise tangent methods were 

used (assuming elliptical drop profiles).  Water adsorption rates were determined via video 

analysis, t = 0 s is defined as the time the water droplet first contacts the material surface.  An 

adsorption rate was calculated by dividing the drop volume by the time it took for the drop to be 

fully adsorbed.  Video data were acquired at 25 and 75 frames/s over 15 s to measure water 

sorption behavior on zeolite constructs, discussed in Chapter 5. 
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CHAPTER 3 
 

INVESTIGATING RECENT DEVELOPMENTS AND APPLICATIONS OF OPTICAL 
PLASMA SPECTROSCOPY: A REVIEWa

 
 

 
A key portion of this dissertation work employs various diagnostic tools to holistically study 

the gas-phase and resulting plasma-surface interface upon addition of a substrate.  This chapter 

comprises a review of literature using optical spectroscopies to study plasma discharges, 

focusing on the elucidation of fundamental plasma properties, specifically electron temperature 

and electron density, using optical emission spectroscopy.  The potential to use spectroscopy for 

kinetic and thermodynamic insights are discussed here, as well as subsequent chapters (Chapters 

6 – 8).  

 

 

  

 

a
 Adapted from an invited review published in the Journal of Vacuum Science and Technology A 

Special Topic Collection: 30 years of the Nellie Yeoh Whetten Award – Celebrating the Women 
of the AVS, written by Angela R. Hanna and Ellen R. Fisher. 
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3.1 Introduction 

Described in Chapter 1, OES is a widely used, relatively simple diagnostic tool for non-

thermal plasmas, at both low– and atmospheric– pressure.  In the most straightforward 

configuration, OES only requires a means of collecting light emitted, a dispersing element, and a 

detector.1  Recent technological advances have, however, enhanced both the spatial and temporal 

resolution of spectrometers, leading to new applications and robust characterization of plasma 

processing.  Indeed, the body of literature using OES to study plasmas has increased 

exponentially over the past decade, shown by the steadily increasing number of publications and 

citations in Figure 3.1a and 3.1b, respectively.  This powerful technique can be employed to 

identify species, elucidate fundamental plasma properties, and monitor end-product formation in 

discharges.  The most common use of OES by far, however, is species identification.  

Consequently, there are several noticeable gaps in the literature.  For example, although plasmas 

are universally applied for surface modification strategies (i.e., etching, deposition, 

modification), very few studies focus on how the presence of a substrate alters the gas phase of 

the plasma.  Considering that the substrates being subjected to modification often have 

substantive electrical and/or catalytic properties, it is not difficult to imagine that the plasma 

properties could be substantially different with and without a substrate.  The data in Figure 3.1 

also demonstrate the increased efforts of the plasma community in recent years to measure 

plasma temperatures and kinetics via optical spectroscopy.  This approach can afford tremendous 

insight into the underlying mechanisms at work within the dynamic environment of a plasma.  

Furthermore, the types of data revealed from such studies are critical to the development of more 

accurate computational models of plasma systems, thereby increasing their predictive power.  
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Figure 3.1. History of research interest in plasmas investigated by optical emission 
spectroscopy, detailing (a) total publications and (b) sum of times cited per year for plasma 
temperature and kinetic studies since 1995 (Web of Science search on October 3, 2019).  
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Thus, the primary focus of this chapter will be on demonstrating how optical spectroscopy tools 

can be used, either alone or in combination, to provide valuable, formative data on the kinetics 

and thermodynamics of low temperature plasmas.  An additional aim of the current work is to 

highlight the contributions of women scientists to the plasma community within this Special 

Topic Collection: 30 Years of the Nellie Whetten Award, Celebrating the Women of the AVS.  

As such, a significant fraction of the cited works herein represents contributions from female 

researchers.  

In the sections below, we provide (1) a brief literature review and background covering 

recent context for (2) the remainder of this dissertation work, which focuses on specific 

examples of how the Fisher group has further explored the use of optical spectroscopy 

techniques to understand underlying plasma chemistry.  We begin these studies by characterizing 

fundamental properties within noble gas plasmas, specifically Ar.  As detailed in Section 1.1, 

non-thermal plasmas generally follow the empirical relationship wherein electron temperature 

(Te) is significantly greater than the gas temperature (Tg) of the discharge.2  Here, we discuss the 

application of OES to determine Te, as well as electron density (ne), exploring how these 

parameters change temporally and as a function of operating conditions.  Studying these 

fundamental plasma properties via OES in noble gas discharges represents a small fraction of the 

world of plasma diagnostics.  Here, a review and discussion of new data were provided to 

highlight the utility of spectroscopy as a diagnostic tool for deconstructing the complexity within 

non-thermal plasmas.  Specifically, molecules partition energy through vibrational and rotational 

degrees of freedom, which can be determined through the analysis of spectral transitions.  By 

coupling energetic insights with temporally-resolved kinetics, one can begin to unravel 

underlying mechanisms and chemistries in a variety of non-thermal plasma systems.  Thus, we 
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explored the utility of optical spectroscopies with a focus on comprehensive plasma diagnostics.  

Potential plasma-material synergisms in the context of plasma-assisted catalysis (PAC) systems 

containing NOx species were investigated (Chapters 6 – 8, Appendix B) as well as a several 

fluorocarbon (FC) discharges (Chapters 4 and 5).  These two platforms were chosen because 

they demonstrate the wide range of environmental and technological applications that can be 

achieved with non-thermal plasmas, as well as provide useful exemplifying data for each of the 

techniques covered herein.  

3.2 Literature Review and Background 

This section provides a concise literature review of recent articles describing the use of 

optical diagnostic techniques with a focus on pushing the capabilities of OES beyond simple 

species identification.  The literature review provided is purposefully limited in scope by 

focusing on the past ten to fifteen years of published, peer reviewed articles.  It is not meant to be 

a fully comprehensive review but does include necessary background for the data presented in 

subsequent sections and chapters, as well as coverage of pivotal studies that could be considered 

seminal to the development of new directions in optical spectroscopy techniques. 

3.2.1 Spectroscopic studies of inert gas plasmas 

Ionization, excitation, dissociation, recombination, and relaxation processes can occur as 

electrons transfer energy from the external field to the discharge gas.2,3  As such, electrons play a 

crucial role in governing the overall plasma chemistry; understanding their behavior in these 

interrelated processes is thus critical to accurate modelling and simulation of plasma systems.4  

Although ne and Te are key parameters, they are often difficult to measure spectroscopically; 

rather, electrostatic Langmuir probes are often employed.  Unfortunately, these probes physically 
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perturb the plasma environment which can be problematic, especially for depositing systems.5  A 

direct, non-intrusive measurement of Te is challenging and many works have sought to establish 

a methodology based on the evaluation of OES emission lines in inert gas systems, with 

connection to detailed plasma collisional radiative (CR) modeling for verification.6-11  Often 

explored within Ar plasmas, the CR technique uses a population density model determined by a 

system of rate equations, specifically considering collisional and radiative processes.12  If one 

assumes a local thermodynamic equilibrium (LTE) environment, population and depopulation 

processes are dominated by collisions; therefore, rates and distributions are governed by 

Boltzmann statistics and Saha equations.2,13  Excitation transitions are primarily dominated by 

electron collisions; thus, if the discharge is operating in LTE, determination of an excitation 

temperature (Texc) is an approximation for Te, assuming the population of atomic excited states 

follows a Boltzmann distribution.14  The validity of LTE assumptions has been investigated for a 

variety of discharge types.6,15,16  Avoiding the inclusion of complex equilibrium models and 

intrusive probes, Texc can be determined through the analysis of atomic emission lines via a 

Boltzmann plotting method, described in Chapter 2.  This technique, which naturally assumes a 

Boltzmann distribution, has been used for both low- and atmospheric-pressure plasmas, with 

comparison to traditional Te determination methods (e.g., Langmuir probes).3,17  

Plasma chemistry is largely governed by electron-mediated processes and thereby the 

electron energy distribution function (EEDF).  Factors that influence the EEDF include discharge 

type, system pressure, and power.18  Under equilibrium conditions, the EEDF follows a 

Maxwell-Boltzmann distribution, expressed via Equation 3.1;2 

      𝑓𝑀𝐵(𝜀) = 2√ 𝜀𝜋(𝑘𝐵𝑇𝑒)3 𝑒𝑥𝑝 (− 𝜀𝑘𝐵𝑇𝑒)                                (3.1) 
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where ε is the electron energy and kB is the Boltzmann constant.  The EEDF of non-thermal 

discharges, however, can deviate from a Maxwellian distribution due to temporal or spatial 

variation of electromagnetic fields, presence of boundaries (e.g., reactor walls or substrates) and 

an absence of thermodynamic equilibrium (described in Section 3.2.3) 2,19  Often, despite these 

deviations, some portion of the EEDF is Maxwellian.  As such, the practice of determining Te 

assuming Maxwellian statistics is common, acknowledging the possibility of inherent errors in 

this simplification.20  A Druyvesteyn EEDF, Equation 3.2, is also commonly used to describe 

low-pressure plasmas, with the assumptions that the electric field strength is low enough to 

neglect inelastic collisions, Te is significantly greater than ion temperature (Ti), and the 

collisional frequency is independent of electron energy.2   

𝑓𝐷(𝜀) = √ 𝜀𝜋(𝑘𝑇𝑒)3 𝑒𝑥𝑝 [−0.244 (− 𝜀𝑘𝑇𝑒)2]                             (3.2) 

Druyvesteyn distributions are characterized by a shift toward higher electron energies, compared 

to a Maxwell distribution, depicted in Figure 3.2a.2  Inelastic collisions of electrons with heavy 

particles can lend to a drop of the EEDF at higher electron energies, therefore is it generally 

accepted a Druyvesteyn distribution is present in plasmas with low ionization degrees.  Rather 

than reporting EEDF curves, it is common in the plasma community to report the electron energy 

probability function (EEPF), determined via Equation 3.3.  𝑓𝑝(𝜀) = 𝑓(𝜀 )𝑒−1/2                              (3.3) 

In the case of a Maxwellian distribution, this results in a straight line with the slope of (-1/kBTe), 

shown in Figure 3.2b.  The sample EEDF and EEPF curves shown in Figure 3.2 were 

theoretically determined, however there are significant research efforts to determine these 

properties with electrostatic plasma probes and OES techniques.18,19,21 
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Figure 3.2. (a) EEDFs and (b) EEPFs for two distributions with three average electron energy 
[Te = 1.5 (green), 3 (blue), and 5 (orange)] and the same electron density (ne = 1011 cm-3). 
Solid and dashed traces represent Maxwell-Boltzmann and Druyvesteyn distributions, 
respectively. 
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Additionally, a bi-Maxwellian representation can be employed to model measured EEDFs, 

where a low energy or “bulk” electron population and the higher energy tail of the distribution 

are characterized by different temperatures.22  The electrons in the high-energy tail of the 

distributions, though present in small concentrations, can have a significant impact on the overall 

reaction rates and plasma character.  

Recently, several studies have implemented an emission line-ratio technique for the 

determination of Te and ne, with comparison to trends obtained from electrostatic probes.23-27  

These measurements assume excitation processes are dominated by direct electron impact and 

that subsequent depopulation from upper levels is either radiative or proceeds through collisional 

quenching.  Both are reasonable assumptions for Ar plasmas operating at low pressure.  Zhu and 

coworkers detailed a variety of methods to determine Te and ne by line-ratios for non-thermal Ar 

and N2-containing plasmas, discussing the selection of appropriate line-ratio and the limitations 

of the technique.26  Several fundamental noble gas plasma studies explore the interdependence of 

Te, Texc, ne, and plasma conditions.7,10,21,28-31  The effect of plasma operating parameters on Ar ion 

and metastable number densities has also been with explored with the OES line-ratio 

technique.32,33  Although Ar is a widely studied plasma precursor and commonly used as an inert 

gas actinometer (see below), Texc and line-ratio studies were also included in this review to 

provide context for OES as a technique to characterize fundamental plasma parameters.    

We note that obtaining absolute species concentrations from optical emission data is 

possible; however, this requires knowledge of electron impact rate constants, electron density 

and energy distributions, as well as the absolute sensitivity of the spectrometer.34  Coburn and 

Chen were among of the first to quantify the relationship between emission intensity and reactive 

particle density, thereby founding the technique of rare-gas actinometry in the plasma 



56 
 

community.35  To be as accurate as possible, this technique requires the actinometer and the 

species of interest to have similar cross sections for excitation, excitation thresholds, and 

excitation pathways.36  Following the landmark work of Coburn and Chen, relative and absolute 

species densities within many plasma systems have been studied with OES.  A brief overview of 

these studies that explored the relationship between gas-phase chemistry and a resulting plasma 

process is provided here.    

To better understand the mechanisms of plasma-surface processing, regardless of precursor 

or substrate, it is necessary to recognize the role of gas-phase species in gas-surface interactions.  

Donnelly and coworkers investigated the practice of adding traces of multiple rare gases (i.e., 

Ne, Ar, Kr, Xe) to a variety of etchant plasma systems to elucidate species density, Te, as well as 

EEDFs via trace rare gases OES.34,37,38  By examining Te obtained from each individual gas, as 

well as various mixtures, the authors were able to differentiate and study different portions of the 

Maxwellian EEDF.  Through the selection of emission lines primarily excited through electron 

impact of the ground state, electron temperatures were determined and differentiated for 

electrons within both the high-energy tail of the distribution and the lower energy, bulk 

electrons.37  Fuller et al. measured absolute densities of Cl2, Cl, Cl+, and Ar+ within inductively 

coupled (ICP) Cl2-Ar plasmas, a system routinely utilized for the etching of semiconductor 

materials.39  Absolute Cl atom densities have also been determined via actinometric OES in an 

ICP Cl2 plasma, where a cylindrical substrate is rapidly rotated, creating a “spinning wall” 

effect.40  Alshaltami and Daniels measured concentrations of oxygen and fluorine with OES and 

studied their impact on selective etching with SF6-O2 discharges.41  Notably, in many industrial 

plasma processes, dry etch is performed without the addition of an inert gas as it can effect both 

etch rate and selectivity, hence inert gas actinometry is unavailable.  To address this, Kang et al. 
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developed a “pseudo actinometry” technique for the normalization of species density in the 

absence of an inert gas.42  A correction factor was experimentally determined by incrementally 

decreasing the number density of the inert gas within the discharge, eventually determining a 

convergence when the concentration of the inert gas was zero.  The feasibility of the proposed 

technique was tested by the etching of Cr with a Cl2/O2 discharge, documenting strong 

correlation between Cl density distributions with Cr etch rate, determined via ellipsometry.42  

Thus, understanding species density within a plasma process can ultimately lead to process 

optimization, with and without an inert actinometer.   

Another important consideration is how the relative concentrations of species are affected by 

the mere introduction of a substrate into the discharge.  Cuddy et al. determined the density of 

CF and CF2 species upon the addition of a substrate.  Examining CF4 and C2F6 plasma 

processing of Si and ZrO2 wafers, they found the presence of a substrate could dramatically 

affect the species density, and furthermore, this finding was substrate dependent, further 

discussed in Chapters 1 and 5.43  Stuckert and co-workers monitored gas-phase species upon the 

addition of SnO2 nanomaterial gas-sensors in H2 radio frequency (rf) ICPs, a known reducing 

environment.  The formation of both excited state OH* and Sn* in H2 plasmas was observed 

when SnO2 nanomaterials were present.  As neither species is formed in H2 or H2/Ar plasmas 

without a substrate, they must be formed via plasma-surface interactions.44  This study also 

introduced an additional level of complexity; micro- and nano-structured materials are more 

likely to strongly influence the plasma as compared to the effects of traditional two-dimensional 

materials (e.g., thin films, wafers), further explored in Chapters 7 and 8.  To better understand 

the mechanisms that govern plasma processes (i.e., modification through functionalization, 
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etching, or deposition) of a specified surface, we must gain quantitative information concerning 

the kinetics and energetics of these complex systems. 

3.2.2 Temporally-resolved spectroscopy: kinetic insights 

The intricate dynamics occurring within plasma systems can be systematically and 

quantitatively probed with time-resolved (TR) OES.  By employing TR-OES with an intensified 

charge coupled device (ICCD) camera, spatially- and temporally-resolved images can be 

obtained to study mode shifts and ionization events in discharges.45  Gherardi et al. provided a 

detailed experimental and theoretical discussion regarding the increased use of ICCDs to study 

both physical and chemical properties of non-thermal plasmas, focusing on atmospheric plasma 

jets.46  ICCDs can provide time-resolution on the nanosecond scale, an important consideration 

of the study of streamers formed through nanosecond pulsed discharges.47,48  Furthermore, TR-

OES studies with ICCDs aid in the visualization of plasma dynamics,49 where the temporal 

behavior of radiative species, Tg, Te, and ne have been investigated within a variety of continuous 

wave (CW) and pulsed plasma systems.50,51  

Pulsed plasmas are often used in the processing of materials to reduce substrate temperatures 

and prevent substrate damage, with the goal to increase uniformity of the overall plasma 

process.52  Within pulsed systems, once the plasma pulses off, an afterglow region can persist 

wherein energetic electrons recombine with ions to create neutral and excited-state species.53,54  

Within Ar plasmas, it is stipulated that higher excited states are more populated during plasma 

ignition and decay to a steady state through the pulse duration, whereas the afterglow is 

characterized by electron thermalization and plasma recombination.55,56  This hypothesis is 

further tested below, where TR-OES is employed to characterize the properties of pulsed rf Ar 

plasmas.   
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Additional studies have measured the evolution of species in the plasma afterglow during 

magnetron sputter deposition of Al2O3 and TiO2 materials in direct current (DC) plasmas.57,58  

During these processes, Lopez et al. observed different Ar emission lines decayed with different 

rate constants, where the emission decay times (1 to 4 μs) were significantly longer than the 

radiative lifetimes of the Ar emitting levels.57  The authors argue these longer decay rates result 

from plasma dynamics and operating conditions, where the decay of fast electrons, Ar 

metastables, as well as Al and O atoms in the plasma afterglow (i.e., after plasma power is turned 

off) could be monitored via TR-OES.  Within a pulsed DC magnetron Ar plasma, two decay 

times for different groups of Ar emissions lines were found.  The authors attribute the fast decay 

time (1 μs) to the decline of fast beam electrons in the plasma afterglow and the slower decay 

time (3.2 μs) to the decrease in Ar metastable density.57  Hioki et al. argue the decay of electron 

and ion densities, dissipation of electron energies, and metastable number density decrease will 

occur on different timescales.59  Furthermore, the authors acknowledge the necessity to study 

low, moderate, and high energy electrons separately, as each may temporally-decay differently.59  

Salmon et al. coupled TR-OES with a detailed kinetic model to determine the quenching rates of 

N(2P) atoms in the afterglow of an N2 atmospheric pressure discharge.60  Aforementioned, 

gaining quantitative experimental information on fundamental plasma properties can assist in 

plasma computational simulations.  Specifically, the determination of quenching rates within 

pulsed N2 plasma systems can have substantial impact on the ability to build accurate models, 

with potential for process improvement.  

Significant technological applications can benefit from the use of TR-OES, such as the 

sterilization and cleaning of plasma chambers post film deposition.  Bišćan and co-workers 

studied the removal of amorphous carbon film deposits on reactor walls by an oxygen plasma, 
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where OES was employed for in situ monitoring of film deposition as well as O2 plasma cleaning 

processes.61  By measuring emissions from oxygen and hydrogen atoms, OH radicals, CH, and 

CO, alongside the documentation of plasma mode shifts during the cleaning of the plasma 

chamber, they were able to deduce when the system was free of impurities (i.e., hydrogen and 

carbon species) with improved accuracy over visual inspection.61  This line of inquiry could 

easily be expanded to other film deposition systems, including the removal of fluorocarbon and 

chlorine contamination after plasma processing.  Plasma cleaning studies are usually limited to 

searching for the disappearance or appearance (depending on experiment) of a given species in 

the gas-phase, an inherently qualitative process.  Of burgeoning interest, TR-OES can be 

quantitively used to measure the initial production of plasma species, thus determining rate 

constants of formation through analysis of emission lines.62  The ability to experimentally 

measure rate constants and reveal underlying plasma-surface mechanisms is presented in 

subsequent chapters.  

3.2.3 Energy partitioning between molecules and electronic states 

Within non-thermal plasma systems, Tg is an important plasma parameter, it strongly 

influences the underlying chemistry that drives most plasma processes.  Tg studied via OES has 

been shown to be highly dependent on plasma parameters, leading to an increased necessity to 

understand trends in energy partitioning.63,64  The distribution of energy into rotational and 

vibrational degrees of freedom (expressed as temperatures TR and TV, respectively) is also an 

important consideration. The second positive system of N2 (C3Πg → B3Πu) is commonly used to 

determine TR and TV in N2 or N2-containing plasma systems within low- and atmospheric-

pressure discharges.29,65-67  TR values have long been employed as a measure of Tg,68,69 with the 

assumption that rotational and collective translational temperatures (TT) of the gas equilibrate 
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within the plasma.  Bruggeman et al. demonstrated TR only equilibrates with TT when rotational 

energy transfer is relatively fast or nascent rotational distributions are thermalized.63  Information 

gleaned from internal temperatures can elucidate the processes that dictate the overall character 

of the plasma, as the values are interrelated to species densities, Te, formation reactions, and gas-

phase and surface collisions of plasma species.  Thus, elucidating energy partitioning trends 

(Figure 3.1b) for a variety of excited state species, ranging from homonuclear diatomics (H2, N2, 

O2) to species formed through the decomposition of a more complex precursor (e.g., CF from 

CxFy discharges) is a growing area of study.  Energy partitioning trends for technologically- and 

environmentally-relevant plasma systems are further discussed in Chapters 4, 6 – 8. 

OES provides useful kinetics and energetics data for emitting species; however, it is unable 

to directly evaluate ground state species within the plasma.  Nevertheless, the rate balance 

equations for emitting species within the discharge can be employed to indirectly assess ground 

state neutrals via OES.  Laser-induced fluorescence (LIF) is commonly used to probe the ground 

state; however, this technique requires expensive laser equipment and is inherently limited to 

species that possess a fluorescing excited state.1  Thus, broadband absorption spectroscopy 

(BAS), where a light source is interfaced with a high-resolution spectrometer, has recently found 

promise as an alternative technique for ground state species measurements, such as absolute 

species density and plasma energetics.  Literature studies have used a range of light sources, 

including UV-enhanced Xe arc lamps,70,71 deuterium-halogen lamps,4,72,73 and light-emitting 

diodes (LED).74-76  Compared to LIF, BAS is a viable strategy to determine absolute species 

density without intensive calibration procedures, discussed in depth in a recent review of 

atmospheric plasma characterization.77  Liu and co-workers employed BAS to determine 

absolute density and rotational temperatures of CF2 radicals in capacitively coupled CF4/Ar 
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plasmas.76  One of the difficulties with plasma absorbance measurements is the dual-reference 

nature of the system (i.e., both the light source and plasma are emitting), as well as poor signal-

to-noise ratios.  Wijaikhum et al. developed a two-beam ultraviolet-LED absorption technique, 

equipped with a probe and reference beam to improve the signal-to-noise ratio when measuring 

ozone densities.75  In this dissertation, the utility of BAS to determine plasma temperatures in FC 

and NxOy discharges will be discussed (Chapters 4 and 6, respectively).  Moreover, our unique 

imaging radicals interacting with surfaces (IRIS) technique, which employs LIF spectroscopy, 

can provide insights into the behavior of radicals near substrates during plasma processing.  

Coupled with the kinetic and energetic information gained through gas-phase spectroscopy 

diagnostics, a more holistic understanding of gas-surface interactions is gained.  

3.3 Results and Discussion 

Noble gas precursors have been widely used as model systems to study the behavior of 

electrons within plasma discharges, especially Ar due to its relatively simple gas-phase 

chemistry and availability of electron-impact cross section information.20  Ar emission spectra 

are nominally dominated by the Ar I emissions, shown in Figure 2.4a in the wavelength range 

650 – 1000 nm.  As noted in the Introduction and Background section, dilute amounts of Ar are 

often added to more complex systems as an inert gas actinometer to probe Te and ne, as well as 

determine relative and absolute species densities, as a function of plasma operating conditions.  

Within non-thermal ICPs, it is generally recognized the primary effect of increasing rf P is to 

increase plasma density at a fixed pressure, where Te is hypothesized to be relatively independent 

from plasma power.2,13  Several works, however, have experimentally observed Te fluctuations 

over a range of P in rf ICP discharges.  Lee et al. measured changes in Te as a function of power 

in Ar rf ICPs, ignited at 13.56 MHz via an antenna coil, with both Langmuir probe and laser 
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Rayleigh scattering measurements.78  This study was performed at p = 50 mTorr, P = 100 – 900 

W; where the authors claim Te decreases as power increases from 100 – 500 W and then 

increases with P = 500 - 900 W.  The measured Te values, however, are within experimental 

error of each other at several P conditions, with all of the values falling in a narrow range of 

~1.81– ~2.10 eV.78  As such, it is challenging to understand whether the claims of a local 

minimum in Te with power are valid or if it might be translatable to other systems.  

Consequently, we sought to perform a similar characterization of our rf Ar plasmas by using 

OES to examine our systems as a function of small changes in P (ΔP = 5 W) at three different 

plasma pressures.  

Figure 3.3a shows calculated Texc (eV) values as a function of plasma operating conditions, 

revealing several interesting trends regarding pressure, power, and discharge-mode.  At P ≤ 15 

W, there is a clear pressure dependence: increasing the system pressure from 50 to 150 mTorr 

can increase the frequency of collisions, hence a quenching of Texc is observed.  Within the 150 

mTorr system, as power increases from 15 to 20 W, the discharge visually changes, indicating a 

shift from operating in capacitive (E) to inductive (H) mode, and a corresponding sharp decrease 

in Texc was also observed.  Generally speaking, a discharge operating in E mode is sustained by 

the electrostatic field and is characterized by a low plasma density; H mode is sustained by 

applying more power or current, subsequently creating a system characterized by higher plasma 

density.79  Above p = 150 mTorr and P = 40 W, emission from the plasma saturated the detector 

and no additional spectral data could be reliably collected.  At lower pressures (50 and 

100 mTorr), the visual mode change occurred at higher power, between 30 and 35 W.  When the 

plasma is operating in E mode or H mode, regardless of pressure, small fluctuations in Texc may 

be observed as a function of power; nevertheless, the majority of these data are within 
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experimental error.  Notably, the largest changes in Texc occur when the plasma shifts between 

modes.   

A considerable number of studies have sought to use the intensity ratio of two OES lines to 

determine Te and ne trends as a function of plasma operating conditions.  The sensitivity and 

potential accuracy of these measurements will, however, strongly depend on the choice of line-

ratios.25  The selection of emission line ratios is largely dependent on the major collisional-

radiative processes within the discharge and are theoretically supported by a population model 

(e.g., Corona and collisional-radiative models).26  Therefore, system pressure and ionization rate, 

as well as the EEDF, plasma dimension, and gas temperature can influence the population and 

depopulation processes and thereby selection of line-ratios.  Discussed above, the plasma can 

shift between capacitive and indicative modes based on operating conditions, therefore plasma 

mode may also play a role in the determination of Te via OES line – ratios.  Boffard et al. studied 

rf ICP discharges at 13.56 MHz at p = 10 – 50 mTorr, P = 600 W, using the ratio of line 

intensities at 420.1 and 419.8 nm to measure the effective Te in Ar-containing systems, finding 

temperatures obtained with this line pairing in ICPs are consistent with those determined via a 

Langmuir probe.24  Siepa and co-workers studied 13.56 MHz rf driven, capacitively-coupled 

plasma (CCP) discharges, at p = 20 Pa (~150 mTorr) and 200 Pa (1.5 Torr) at P = 50 – 350 W, 

using the ratio of line intensities at 763.5 and 738.4 nm to examine Te.25  We also employed this 

line ratio to examine our Ar rf ICPs at p = 50 – 150 mTorr, P = 5 – 50 W, Figure 3.3b.  Upon 

comparison to calculated Texc values, a similar pressure trend emerges when the plasma is 

operating at low power (i.e., in E mode); however, there appears to be a stronger rf power 

dependence with the line-ratio method than with the Texc values, determined via the Boltzmann 

plot (Figure 3.3a).   
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Figure 3.3. (a) Calculated Texc values, Te sensitive line-ratios (b) (I763.5 nm/I738.3 nm) and  
(c) (I750.4 nm/I751.5 nm) determined in Ar plasmas, plotted as a function of p and P. 
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Furthermore, a sharp drop in Te (line-ratio method) corresponding to an E to H mode transition is 

not observed for the 150 mTorr system, although visually the plasma has switched operating 

modes.  Furthermore, at P = 40 W, the Te line-ratios suggest a lower Te is obtained with a lower 

system pressure, which conflicts with expected ionization balance within a discharge and the Texc 

trends shown in Figure 3.3a.  Similarly, however, Chai and Kwon observed a drastic increase in 

the relative intensities of 811.5 and 763.5 nm emission lines with increasing Ar pressure within a 

CCP at 13.56 MHz.7  The authors attribute this intensity increase to radiation trapping, an 

argument supported by the results of their CR modeling.7  The potential susceptibility of the Ar 

2p6 (763.5 nm) line to radiation trapping at increased pressures could further explain the 

discrepancies in Figure 3.3b.  Ar 2p1 (750.4 nm) and 2p5 (751.5 nm) emissions are primarily 

produced by ground-state excitation, whereas other Ar (2p) levels are produced by both ground- 

and metastable-state excitations.20  The 2p1 and 2p5 lines have shown sensitivity to Te at p = 120 

Pa (900 mTorr);26  Donnelly employed these emission levels to determine high Te (characterizing 

electrons in high-energy tail) in combination with additional Kr and Xe lines.37  Figure 3.3c 

depicts the 2p1/2p5 ratio as a function of system pressure and power.  Here, pressure effects are 

diminished at lower powers (i.e., E mode) for this line-ratio compared to Texc (Figure 3.3a) and 

results from 2p6/2p3 ratio (Figure 3.3b).  Notably, the trends in Figure 3.3a and 3.3c are better 

aligned at higher powers (i.e., H-mode).  These data suggest that discharge mode should be an 

additional consideration when applying the line-ratio method to assess Te trends within a 

discharge. 

Additionally, the discrepancies presented in Figure 3.3 highlight the necessity for careful 

selection of line-ratios, as well as comparison to other computational and experimental 

techniques, such as population models and Langmuir probes.  A previous Fisher group study 
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characterized Ar ICPs at p = 30 – 50 mTorr, P = 25 – 150 W with Langmuir probe and mass 

spectrometry measurements.80  At 25 and 50 W, little to no pressure dependence is documented; 

however, at the highest P (150 W), Te decreases from ~3.75 eV to ~3.0 eV as p increases from 

30 to 50 mTorr.  Although different operating conditions were employed, this same trend is 

reflected in Figure 3.3a and 3.3c; however, the values of Texc are considerably lower compared to 

Te measured with a Langmuir probe.  Further comparison reveals that although the type of 

plasma was consistent between these studies (rf ICP), the plasma dimensions and discharge 

volume differed, which may contribute to the difference in Texc and Te.  As described above, a bi-

Maxwellian distribution can be used to describe plasmas that contain both a high Te (electrons in 

the tail of the distribution) and a low Te corresponding to bulk electrons.  By assuming a 

Maxwell-Boltzmann distribution to determine Texc in our current studies, it is likely we are 

primarily characterizing the bulk electrons, providing a lower-limit for Te compared to the Te 

values obtained directly with the Langmuir probe of a similar system. 

Electron density (ne) is an additional plasma parameter that can be characterized through the 

OES line-ratio method, Figure 3.4.  At 50 and 100 mTorr, there is little power dependence when 

the plasma operates in E mode (5 – 30 W); at P = 35 W, however, a sharp increase by a factor of 

~3 is documented. Revealed via a global model analysis, an increase in system pressure leads to 

a decrease in electron temperature and concomitant increase in plasm density, presented through 

ne determination.81  The 100 mTorr system continues to increase until 40 W, then little power 

dependence is observed in H mode operation at 50 or 100 mTorr.  Although a similar trend is 

observed for the 150 mTorr system, the mode transition occurs at lower P 

 (15 W → 20 W).  
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Figure 3.4. ne sensitive line-ratio (I706.7 nm/I750.4 nm) determined in Ar plasmas as a function of 
p and P. Dashed lines represent a change from plasma operating from E-mode to H-mode.  

Applied rf Power (W)

0 10 20 30 40 50

n
e:

 I
7
0
6
.7

 n
m

/ 
I 7

5
0
.4

 n
m

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
50 mTorr
100 mTorr
150 mTorr



69 
 

 

 

Figure 3.5. Pictorial representation of E-H mode change as a function of plasma density and 
power.  
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 An additional ne sensitive line-ratio, (I696.5 nm/I750.4 nm), was proposed by Crintea et al.;82 within 

our rf ICP system, this ratio yielded similar results to those shown in Figure 3.4 for the (I706.7 

nm/I750.4 nm) ratio.  As shown in Figures 3.3 and 3.4, as rf power increases to a certain threshold, 

an E → H mode shift occurs.  As power decreases, it has been theoretically and experimentally 

revealed the discharge mode will return to E mode, however hysteresis behavior can be present, 

pictorially represented in Figure 3.5.  El-Fayoumi et al. argue this hysteresis is due to the 

nonlinearity of power absorption and dissipation within a discharge.83   

As noted in the Section 3.2, these plasma properties are widely studied, yet can be system-

dependent, therefore important to characterize for each discharge type and reactor set-up.  

Therefore, we sought to probe how incremental increases in power could influence fundamental 

plasma properties.  In a previous Ar ICP study, a positive correlation with ne and rf power was 

measured with a Langmuir probe, however this study was performed over a large power range 

(ΔP = 125 W).80  Moreover, the density of ions increased from ~1 x 1010 to ~5 x 1010 cm-3 as 

power increased from 25 to 150 W.  As power increases, that energy can be distributed to the 

formation of more Ar ions or higher energy metastable states.80  Wang et al. compared effective 

electron temperature (Teff) values measured via probe and OES analysis of a Ar ICP operating at 

600 W, p = 1 – 25 mTorr, documenting as system pressure increases, Teff decreases with a 

parallel increase in ne.30  The data shown in Figures 3.3 and 3.4 reflect these relationships 

between plasma properties and pressure.  Recently, the study of the fundamental plasma 

properties (Te, ne, and Tg) was expanded by Durocher-Jean et al. with small admixtures of N2, O2, 

and H2 into microwave Ar plasmas at atmospheric pressure.84  Each of these admixtures are 

common plasma precursors with their own physical and chemical properties, therefore the 

authors sought to understand how the addition of these gases contribute to overall plasma 
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character.  At the highest amount of admixture in the Ar plasma (1%), Tg generally increased 

with a concomitant decrease in ne.  As systems become more multifaceted, it is imperative to 

understand how fundamental properties evolve with increased complexity.  

To further explore the relationship between electron dynamics and plasma conditions, TR-

OES was employed to probe pulsed Ar plasmas, monitoring the 750.4 nm (2p1) line and Te line-

ratio (2p1/2p5) as a function of time, shown in Figures 3.6a and 3.6b, respectively.  Figure 3.6a 

contains TR-OES data for a pulsed Ar plasma (p = 100 mTorr), collected with a 50% d.c. at three 

different Peq.  Although there are clear intensity differences for the powers studied, the shape of 

the pulses is relatively independent of Peq and plasma operating mode.  Figure 3.5b depicts 

temporally-resolved Te line-ratios for an Ar plasma (p = 100 mTorr) at three operating 

conditions, with Peq = 5, 20, and 50 W.  At Peq = 5 W, Te ratios increase sharply to ~2.0 at the 

start of the second and fourth pulses, with a subsequent decay to ~1.6.  Boffard and coworkers 

monitored the 420.1 – 419.8 nm emission lines of Ar to elucidate temporally-resolved Te, 

documenting enhanced Te at the start of the pulse (time resolution 25 μs), followed by a decrease 

to a steady value within the cycle.85  The tendency of Te to overshoot steady-state values at the 

beginning of the active glow (plasma-on) and subsequent decrease to a steady-state value during 

the pulse cycle has been observed previously in both theoretical and experimental studies.52,86,87  

These initial “hot electrons” were not, however, detected at every cycle or Peq in our pulsing-

experiment; ; however, the TR-OES data shown in Figure 3.6 were collected with a 1.05 ms 

integration time, whereas the time-resolution in the Boffard study was 25 μs.85  Therefore, the 

sharp increase or overshoot of Te at the beginning of the active glow is likely occurring 

consistently, albeit sometimes on a time-scale experimentally unavailable with our current 

apparatus.   
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Figure 3.6. TR-OES of pulsed Ar plasma (p  = 100 mTorr, 50 % d.c.) at (a) Peq = 5 W (blue), 
20 W (green), 50 W (black) and (b) corresponding Te line ratios (I750.4 nm/I751.5 nm). 
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In the afterglow (plasma off), Boffard et al. noted significant electron cooling,85 where Te 

decreases rapidly due to inelastic collisions and fast electron escape to the wall, effectively 

approaching gas temperature due to diffusional cooling.86  Specifically, Godyak measured Te = 

0.05 eV in the afterglow in an Ar ICP (4 MHZ) discharge at 3 mTorr.86  Pulsing the discharge 

not only changes the applied power, but also modifies plasma parameters such as plasma sheath 

formation, potentials across the sheath, which in turn affects ion and electron energies. 

Depicted in Figure 3.3c, within a CW Ar plasma (100 mTorr, 20 W), the plasma is operating 

in E-mode with a Te line ratio value of 1.76.  As power is increased to 40 W, the plasma shifts 

modes and the Te line-ratio value decreased to 1.026.  Studying the pulsed Ar system, (Peq = 20 

W, peak power = 40 W), the plasma was visually operating in H-mode.  Shown in Figure 3.6b, 

the line-ratio technique yielded a Te value of ~1 for both Peq = 20 and 50 W, quantitively 

indicative of H-mode operation.  Libermann and Ashida employed global models to study pulsed 

and continuous wave Ar discharges to describe the behavior of plasma density and electron 

temperature.  Assuming a Maxwellian EEDF, they found the time-averaged plasma density can 

be considerably higher (up to 4 times greater) than that for CW discharges for the same time-

averaged power.88  Additionally, at Peq = 5 W, a Te value of ~1.6 was obtained, where the CW 

discharge resulted in Te = 1.78.  This discrepancy is unsurprising, as Logue and Kushner also 

report steady-state Te values in the active glow of a pulsed plasma may differ from Te within a 

CW discharge, even if ignited at the same Peq.89  By employing OES as a diagnostic tool, one can 

probe fundamental plasma properties as a function of time, effectively assessing the differences 

between CW and pulsed regimes of a discharge. 

OES can also be used to characterize streamers generated by nanosecond pulsed discharges.  

Goekce et al. measured plasma dynamics with a spectrometer coupled with ICCD camera to 
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achieve time resolution of 2 ns, determining the average reduced electric field associated with 

surface streamers using transitions arising from atmospheric pressure air plasmas: Ar transitions 

(2px – 1sy), as well as the first negative system of N2
+ (B2Σu

+– X2Σg
+), and the first positive (B3Πg 

– A3Σu
+) and second positive system (C3Πu – B3Πg) of N2.47  For pulsed plasma systems, 

increased time resolution is critical if monitoring nanosecond pulse widths in comparison to the 

10 ms pulse widths reported here.  Clearly, however, the desired time resolution for a given 

experimental must be chosen carefully as it will depend heavily on the nature of the discharge, 

such as CW or pulsed, as well as the type of species to be monitored, whether molecular or 

atomic precursors or products of precursor decomposition, Figure 2.3.  In the following chapters, 

we expand the examination of time-resolved studies of Ar pulsed plasmas to more complex 

systems, such as NxOy discharges. 

3.4 Summary and Observations 

Optical spectroscopy provides non-intrusive, in situ diagnostic tools (including OES, BAS, 

and LIF) to examine the complex chemistry in a range of plasma systems.  Although OES has 

been frequently employed for plasma species identification and to elucidate species density with 

inert gas actinometry, the present work focused on recent literature and new results from the 

Fisher group that highlight specific ways to significantly enhance and expand these capabilities.  

The literature is rife with studies that characterized fundamental plasma properties, such as Te 

and ne, within a variety of discharge types and various operating conditions.  We have also 

explored using a simple, OES line-ratio technique to explore how these parameters evolve over a 

range of pressure-power combinations.  Using these line-ratios, we quantitatively determined 

applied power conditions where E to H mode shifts occur at different system pressures.  

Exploiting the temporal and spectral resolution of our spectrometer allows the collection of TR-
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OES data, which provides additional insight on the kinetics of species formation within plasma 

systems.  This is especially relevant when applied to the PAC platform that utilizes catalytic 

substrates, described in Chapters 7 and 8. 

Perhaps even more powerful, the combination of optical spectroscopies can provide a more 

comprehensive view of the molecular-level plasma chemistry.  Specifically, we used a 

combination of OES and BAS to document that vibrational energy distributions significantly 

differ between molecules and electronic states (both excited and ground state) within a given 

system, described further in Chapters 4 and 6.  Knowledge of internal molecular temperatures 

and system kinetics for multiple species within a plasma system will significantly aid plasma 

modeling efforts.  Likewise, combining OES with the LIF-based IRIS technique affords insight 

into the energetics and kinetics, including gas-substrate interactions (Chapter 4 and Appendix B).   

Through optical spectroscopies, the influence of a substrate on the energetics and kinetics of 

the resulting gas-phase has been measured, where efforts to more efficiently tailor plasma 

processing techniques require a thorough knowledge of both the gas-phase and gas-surface 

interface.  Aspects of work detailed here are universally relevant for plasma applications, thus 

furthering fundamental understanding of plasma systems required for improved or novel uses. 

We encourage the plasma community to incorporate optical diagnostic tools more deeply to 

enhance and enrich their characterization of complex plasma systems. 

  



76 
 

REFERENCES 

1. Stillahn, J. M.; Trevino, K. J.; Fisher, E. R., Plasma Diagnostics for Unraveling Process 
Chemistry. Annu. Rev. Anal. Chem. 2008, 1, 261-291. 
2. Grill, A., Cold Plasma Materials Fabrications: From Fundamentals to Applications. 
IEEE Press: Piscataway, NJ, 1994. 
3. Park, H.; Choe, W., Parametric Study on Excitation Temperature and Electron 
Temperature in Low Pressure Plasmas. Curr. Appl. Phys. 2010, 10, 1456-1460. 
4. Hanna, A. R.; Cuddy, M. F.; Fisher, E. R., Energy Partitioning and its Influence on 
Surface Scatter Coefficients within Fluorinated Inductively Coupled Plasmas. J. Vac. Sci. 

Technol., A 2017, 35, 05C308. 
5. Mawardi, O. K., Use of Langmuir Probes for Low-Density Plasma Diagnostics. Am. J. 

Phys. 1966, 34, 112-120. 
6. Konjević, N.; Jovićević, S.; Ivković, M., Optical Emission Spectroscopy for 
Simultaneous Measurement of Plasma Electron Density and Temperature in a Low-Pressure 
Microwave Induced Plasma. Phys. Plasmas 2009, 16, 103501. 
7. Chai, K.-B.; Kwon, D.-H., Optical Emission Spectroscopy and Collisional-Radiative 
Modeling for Low Temperature Ar Plasmas. J. Quant. Spectrosc. Radiat. Transfer 2019, 227, 
136-144. 
8. Gizzatullin, A. R.; Zhelonkin, Y. O.; Voznesencky, E. F.; Gizzatullin, A. R., Application 
of Argon Collisional-Radiative Model for Inductive RF Discharge Research. J. Phys.: Conf. Ser. 

2019, 1328, 012025. 
9. Evdokimov, K. E.; Konishchev, M. E.; Pichugin, V. F.; Pustovalova, A. A.; Ivanova, N. 
M.; Sun’, C., Determination of the Electron Density and Electron Temperature in a Magnetron 
Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon. 
Russ. Phys. J. 2017, 60, 765-775. 
10. Navrátil, Z.; Dvořák, P.; Brzobohatý, O.; Trunec, D., Determination of Electron Density 
and Temperature in a Capacitively Coupled RF Discharge in Neon by OES Complemented with 
a CR Model. J. Phys. D: Appl. Phys. 2010, 43, 505203. 
11. Yamashita, Y.; Yamazaki, F.; Nezu, A.; Akatsuka, H., Diagnostics of Low-Pressure 
Discharge Argon Plasma by Multi-Optical Emission Line Analysis Based on the Collisional-
Radiative Model. Jpn. J. Appl. Phys. 2019, 58, 016004. 
12. Bogaerts, A.; Gijbels, R.; Vlcek, J., Collisional-Radiative Model for an Argon Glow 
Discharge. J. Appl. Phys. 1998, 84, 121-136. 
13. Lieberman, M. A.; Lichtenberg, A. J., Principle of Plasma Discharges and Materials 

Processing. Wiley: New York, 2005. 
14. Iza, F.; Hopwood, J. A., Rotational, Vibrational, and Excitation Temperatures of a 
Microwave-Frequency Microplasma. IEEE Trans. Plasma Sci. 2004, 32, 498-504. 
15. Drawin, H. W., Validity Conditions for Local Thermodynamic Equilibrium. Z. Phys. 

1969, 228, 99-119. 
16. Hey, J. D.; Chu, C. C.; Rash, J. P. S., Partial Local Thermal Equilibrium in a Low-
Temperature Hydrogen Plasma. J. Quant. Spectrosc. Radiat. Transfer 1999, 62, 371-387. 
17. Ivković, M.; Jovićević, S.; Konjević, N., Low Electron Density Diagnostics: 
Development of Optical Emission Spectroscopic Techniques and Some Applications to 
Microwave Induced Plasmas. Spectrochim. Acta, Part B 2004, 59, 591-605. 



77 
 

18. Sugai, H.; Ghanashev, I.; Hosokawa, M.; Mizuno, K.; Nakamura, K.; Toyoda, H.; 
Yamauchi, K., Electron Energy Distribution Functions and the Influence on Fluorocarbon 
Plasma Chemistry. Plasma Sources Sci. Technol. 2001, 10, 378-385. 
19. Taccogna, F.; Dilecce, G., Non-Equilibrium in Low-Temperature Plasmas. Eur. Phys. J. 

D 2016, 70, 251. 
20. Boffard, J. B.; Jung, R. O.; Lin, C. C.; Wendt, A. E., Optical Emission Measurements of 
Electron Energy Distributions in Low-Pressure Argon Inductively Coupled Plasmas. Plasma 

Sources Sci. Technol. 2010, 19, 065001. 
21. Zhu, X.-M.; Pu, Y.-K.; Celik, Y.; Siepa, S.; Schüngel, E.; Luggenhölscher, D.; 
Czarnetzki, U., Possibilities of Determining Non-Maxwellian EEDFs from the OES Line-Ratios 
in Low-Pressure Capacitive and Inductive Plasmas Containing Argon and Krypton. Plasma 

Sources Sci. Technol. 2012, 21, 024003. 
22. Scanlan, J. V.; Hopkins, M. B., Langmuir Probe Measurements of the Electron Energy 
Distribution Function in Radio-Frequency Plasmas. J. Vac. Sci. Technol., A 1992, 10, 1207-
1211. 
23. Franek, B. J.; Nogami, H. S.; Koepke, E. M.; Demidov, I. V.; Barnat, V. E., A 
Computationally Assisted Ar I Emission Line Ratio Technique to Infer Electron Energy 
Distribution and Determine Other Plasma Parameters in Pulsed Low-Temperature Plasma. 
Plasma 2019, 2. 
24. Boffard, J. B.; Jung, R. O.; Lin, C. C.; Aneskavich, L. E.; Wendt, A. E., Argon 420.1–
419.8 nm Emission Line Ratio for Measuring Plasma Effective Electron Temperatures. J. Phys. 

D: Appl. Phys. 2012, 45, 045201. 
25. Siepa, S.; Danko, S.; Tsankov, T. V.; Mussenbrock, T.; Czarnetzki, U., On the OES Line-
Ratio Technique in Argon and Argon-Containing Plasmas. J. Phys. D: Appl. Phys. 2014, 47, 
445201. 
26. Zhu, X.-M.; Pu, Y.-K., Optical Emission Spectroscopy in Low-Temperature Plasmas 
Containing Argon and Nitrogen: Determination of the Electron Temperature and Density by the 
Line-Ratio Method. J. Phys. D: Appl. Phys. 2010, 43, 403001. 
27. Melnikov, A. D.; Usmanov, R. A.; Gavrikov, A. V.; Liziakin, G. D.; Smirnov, V. P.; 
Timirkhanov, R. A.; Vorona, N. A., Application of Line-Intensity-Ratio Method for 
Measurement of Electron Temperature of Radio-Frequency Plasma of Argon in  Magnetic Field 
Inside the Plasma Separator. J. Phys.: Conf. Ser. 2019, 1147, 012131. 
28. Abrar, M.; Qayyum, A.; Gilani, A. R.; Khan, A. W.; Saeed, A.; Naseer, S.; Zakaullah, 
M., Effect of Helium Mixing on Excitation Temperature and Nitrogen Dissociation in 
Inductively Coupled Plasma. Curr. Appl. Phys. 2013, 13, 969-974. 
29. Wu, A. J.; Zhang, H.; Li, X. D.; Lu, S. Y.; Du, C. M.; Yan, J. H., Determination of 
Spectroscopic Temperatures and Electron Density in Rotating Gliding Arc Discharge. IEEE 

Trans. Plasma Sci. 2015, 43, 836-845. 
30. Wang, S.; Wendt, A. E.; Boffard, J. B.; Lin, C. C.; Radovanov, S.; Persing, H., 
Noninvasive, Real-Time Measurements of Plasma Parameters Via Optical Emission 
Spectroscopy. J. Vac. Sci. Technol., A 2013, 31, 021303. 
31. Belostotskiy, S. G.; Ouk, T.; Donnelly, V. M.; Economou, D. J.; Sadeghi, N., Gas 
Temperature and Electron Density Profiles in an Argon DC Microdischarge Measured by Optical 
Emission Spectroscopy. J. Appl. Phys. 2010, 107. 



78 
 

32. Lee, Y.-K.; Moon, S.-Y.; Oh, S.-J.; Chung, C.-W., Determination of Metastable Level 
Densities in a Low-Pressure Inductively Coupled Argon Plasma by the Line-Ratio Method of 
Optical Emission Spectroscopy. J. Phys. D: Appl. Phys. 2011, 44, 285203. 
33. Evdokimov, K. E.; Konischev, M. E.; Pichugin, V. F.; Sun, Z., Study of Argon Ions 
Density and Electron Temperature and Density in Magnetron Plasma by Optical Emission 
Spectroscopy and Collisional-Radiative Model. Resour.-Effic. Technol. 2017, 3, 187-193. 
34. Donnelly, V. M.; Malyshev, M. V.; Schabel, M.; Kornblit, A.; Tai, W.; Herman, I. P.; 
Fuller, N. C. M., Optical Plasma Emission Spectroscopy of Etching Plasmas Used in Si-based 
Semiconductor Processing. Plasma Sources Sci. Technol. 2002, 11, A26-A30. 
35. Coburn, J. W.; Chen, M., Optical Emission Spectroscopy of Reactive Plasmas: A Method 
for Correlating Emission Intensities to Reactive Particle Density. J. Appl. Phys. 1980, 51, 3134-
3136. 
36. Gottscho, R. A.; Donnelly, V. M., Optical Emission Actinometry and Spectral Line 
Shapes in RF Glow Discharges. J. Appl. Phys. 1984, 56, 245-250. 
37. Donnelly, V. M., Plasma Electron Temperatures and Electron Energy Distributions 
Measured by Trace Rare Gases Optical Emission Spectroscopy. J. Phys. D: Appl. Phys. 2004, 
37, R217-R236. 
38. Donnelly, V. M.; Kornblit, A., Plasma Etching: Yesterday, Today, and Tomorrow. J. 

Vac. Sci. Technol., A 2013, 31, 050825. 
39. Fuller, N. C. M.; Herman, I. P.; Donnelly, V. M., Optical Actinometry of Cl2, Cl, Cl+, and 
Ar+ Densities in Inductively Coupled Cl2–Ar Plasmas. J. Appl. Phys. 2001, 90, 3182-3191. 
40. Guha, J.; Donnelly, V. M.; Pu, Y.-K., Mass and Auger Electron Spectroscopy Studies of 
the Interactions of Atomic and Molecular Chlorine on a Plasma Reactor Wall. J. Appl. Phys. 

2008, 103, 013306. 
41. Alshaltami, K. A.; Daniels, S., Investigation of Etching Optimization in Capacitively 
Coupled SF6–O2 Plasma. AIP Adv. 2019, 9, 035047. 
42. Kang, M.; Ko, Y.; Jang, I.-y.; Jung, J.; Hahn, J. W., Pseudo Actinometry for the 
Measurement of Reactive Species Density. Opt. Lett. 2017, 42, 1420-1423. 
43. Cuddy, M. F.; Fisher, E. R., Investigation of the Roles of Gas Phase CF2 and F During 
FC Processing of Si and ZrO2 J. Appl. Phys. 2010, 108, 033303. 
44. Stuckert, E. P.; Miller, C. J.; Fisher, E. R., Gas-phase Diagnostics During H2 and H2O 
Plasma Treatment of SnO2 Nanomaterials: Implications for Surface Modification. J. Vac. Sci. 

Technol., B 2017, 35, 021802. 
45. Hirao, S.; Hayashi, Y.; Makabe, T., Space-and Time-Resolved E–H Transition in an 
Inductively Coupled Plasma in Ar. IEEE Trans. Plasma Sci. 2008, 36, 1410-1411. 
46. Gherardi, M.; Puač, N.; Marić, D.; Stancampiano, A.; Malović, G.; Colombo, V.; 
Petrović, Z. L., Practical and Theoretical Considerations on the Use of ICCD Imaging for the 
Characterization of Non-Equilibrium Plasmas. Plasma Sources Sci. Technol. 2015, 24, 064004. 
47. Goekce, S.; Peschke, P.; Hollenstein, C.; Leyland, P.; Ott, P., OES Characterization of 
Streamers in a Nanosecond Pulsed SDBD Using N2 and Ar Transitions. Plasma Sources Sci. 

Technol. 2016, 25, 045002. 
48. van der Horst, R. M.; Verreycken, T.; van Veldhuizen, E. M.; Bruggeman, P. J., Time-
Resolved Optical Emission Spectroscopy of Nanosecond Pulsed Discharges in Atmospheric-
Pressure N2 and N2/H2O mixtures. J. Phys. D: Appl. Phys. 2012, 45. 
49. Maletić, D.; Puač, N.; Selaković, N.; Lazović, S.; Malović, G.; Đorđević, A.; Petrović, Z. 
L., Time-Resolved Optical Emission Imaging of an Atmospheric Plasma Jet for Different 



79 
 

Electrode Positions with a Constant Electrode Gap. Plasma Sources Sci. Technol. 2015, 24, 
025006. 
50. Jagannath, R. R.; Satija, A.; Lucht, R. P.; Bane, S. P. M., Characterization of Time-
Resolved Emission of N2(C) in an Atmospheric Pressure Nanosecond Pulsed Air-Plasma Using 
Streak Spectroscopy. Plasma Sources Sci. Technol. 2019, 28, 01LT02. 
51. Hofmann, S.; van Gils, K.; van der Linden, S.; Iseni, S.; Bruggeman, P., Time and Spatial 
Resolved Optical and Electrical Characteristics of Continuous and Time Modulated RF Plasmas 
in Contact with Conductive and Dielectric Substrates. Eur. Phys. J. D 2014, 68, 56. 
52. Subramonium, P.; Kushner, M. J., Pulsed Plasmas as a Method to Improve Uniformity 
During Materials Processing. J. Appl. Phys. 2004, 96, 82-93. 
53. Kang, N.; Britun, N.; Oh, S.-g.; Gaboriau, F.; Ricard, A., Experimental Study of Ar and 
Ar–N2 Afterglow in a Pulse-Modulated ICP Discharge: Observation of Highly Excited Ar(6d) 
Afterpeak Emission. J. Phys. D: Appl. Phys. 2009, 42, 112001. 
54. Bogaerts, A., The Afterglow Mystery of Pulsed Glow Discharges and the Role of 
Dissociative Electron–Ion Recombination. J. Anal. At. Spectrom. 2007, 22, 502-512. 
55. Yan, X.; Lin, Y.; Huang, R.; Hang, W.; Harrison, W. W., A Spectroscopic Investigation 
of the Afterglow and Recombination Process in a Microsecond Pulsed Glow Discharge. J. Anal. 

At. Spectrom. 2010, 25, 534-543. 
56. Jackson, G. P.; King, F. L., Bulk Plasma Properties in the Pulsed Glow Discharge. 
Spectrochim. Acta, Part B 2003, 58, 1417-1433. 
57. Lopez, J.; Zhu, W.; Freilich, A.; Belkind, A.; Becker, K., Time-Resolved Optical 
Emission Spectroscopy of Pulsed DC Magnetron Sputtering Plasmas. J. Phys. D: Appl. Phys. 

2005, 38, 1769-1780. 
58. Belkind, A.; Zhu, W.; Lopez, J.; Becker, K., Time-Resolved Optical Emission 
Spectroscopy During Pulsed DC Magnetron Sputter Deposition of Ti and TiO2 Thin Films. 
Plasma Sources Sci. Technol. 2006, 15, S17-S25. 
59. Hioki, K.; Itazu, N.; Petrovic, Z. L.; Makabe, T., Optical Emission Spectroscopy of 
Pulsed Inductively Coupled Plasma in Ar. Jpn. J. Appl. Phys. 2001, 40, L1183-L1186. 
60. Salmon, A.; Popov, N. A.; Stancu, G. D.; Laux, C. O., Quenching Rate of N(2P) Atoms in 
a Nitrogen Afterglow at Atmospheric Pressure. J. Phys. D: Appl. Phys. 2018, 51, 314001. 
61. Bišćan, M.; Kregar, Z.; Krstulović, N.; Milošević, S., Time Resolved Spectroscopic 
Characterization of a-C:H Deposition by Methane and Removal by Oxygen Inductively Coupled 
RF Plasma. Plasma Chem. Plasma Process. 2010, 30, 401-412. 
62. Cuddy, M. F.; Fisher, E. R., Contributions of CF and CF2 Species to Fluorocarbon Film 
Composition and Properties for CxFy Plasma-Enhanced Chemical Vapor Deposition. ACS Appl. 

Mater. Interfaces 2012, 4, 1733-1741. 
63. Bruggeman, P. J.; Sadeghi, N.; Schram, D. C.; Linss, V., Gas Temperature Determination 
from Rotational Lines in Non-Equilibrium Plasmas: A Review. Plasma Sources Sci. Technol. 

2014, 23, 023001. 
64. Chen, C.-J.; Li, S.-Z., Spectroscopic Measurement of Plasma Gas Temperature of the 
Atmospheric-Pressure Microwave Induced Nitrogen Plasma Torch. Plasma Sources Sci. 

Technol. 2015, 24. 
65. Zhang, Q. Y.; Shi, D. Q.; Xu, W.; Miao, C. Y.; Ma, C. Y.; Ren, C. S.; Zhang, C.; Yi, Z., 
Determination of Vibrational and Rotational Temperatures in Highly Constricted Nitrogen 
Plasmas by Fitting the Second Positive System of N2 Molecules. AIP Adv. 2015, 5. 



80 
 

66. Yang, F.; Mu, Z.; Zhang, J., Discharge Modes Suggested by Emission Spectra of 
Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes. Plasma Sci. Technol. 

2016, 18, 79-85. 
67. Gangoli, S. P.; Gutsol, A. F.; Fridman, A. A., A Non-Equilibrium Plasma Source: 
Magnetically Stabilized Gliding Arc Discharge: I. Design and Diagnostics. Plasma Sources Sci. 

Technol. 2010, 19, 065003. 
68. Raud, J.; Laan, M.; Jogi, I., Rotational Temperatures of N2(C,0) and OH(A,0) as Gas 
Temperature Estimates in the Middle Pressure Ar/O2 Discharge. J. Phys. D: Appl. Phys. 2011, 
44. 
69. Greig, A.; Charles, C.; Boswell, R. W., Neutral Gas Temperature Estimates and 
Metastable Resonance Energy Transfer for Argon-Nitrogen Discharges. Phys. Plasmas 2016, 23, 
013508. 
70. Ramos, R.; Cunge, G.; Touzeau, M.; Sadeghi, N., Absorption Spectroscopy in BCl3 
Inductively Coupled Plasmas: Determination of Density, Rotational, Translational and 
Vibrational Temperatures of BCl Molecule. J. Phys. D: Appl. Phys. 2008, 41, 115205. 
71. Vinogradov, I. P.; Dinkelmann, A.; Lunk, A., Measurement of the Absolute CF2 
Concentration in a Dielectric Barrier Discharge Running in Argon/Fluorocarbon Mixtures. J. 

Phys. D: Appl. Phys. 2004, 37, 3000-3007. 
72. Blechle, J. M.; Hanna, A. R.; Fisher, E. R., Determination of Internal Temperatures 
Within Nitric Oxide Inductively Coupled Plasmas. Plasma Process. Polym. 2017, 1700041. 
73. Hanna, A. R.; Blechle, J. M.; Fisher, E. R., Using Fundamental Spectroscopy to Elucidate 
Kinetic and Energetic Mechanisms within Environmentally Relevant Inductively Coupled 
Plasma Systems. J. Phys. Chem. A 2017, 121, 7627-7640. 
74. Bruggeman, P.; Cunge, G.; Sadeghi, N., Absolute OH Density Measurements by 
Broadband UV Absorption in Diffuse Atmospheric-Pressure He–H2O. Plasma Sources Sci. 

Technol. 2012, 21, 035019. 
75. Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, 
A.; Schulz-von der Gathen, V.; O’Connell, D.; Gans, T., Absolute Ozone Densities in a Radio-
Frequency Driven Atmospheric Pressure Plasma Using Two-Beam UV-LED Absorption 
Spectroscopy and Numerical Simulations. Plasma Sources Sci. Technol. 2017, 26, 115004. 
76. Liu, W.-Y.; Xu, Y.; Liu, Y.-X.; Peng, F.; Gong, F.-P.; Li, X.-S.; Zhu, A.-M.; Wang, Y.-
N., Absolute CF2 Density and Gas Temperature Measurements by Absorption Spectroscopy in 
Dual-Frequency Capacitively Coupled CF4/Ar Plasmas. Phys. Plasmas 2014, 21, 103501. 
77. Reuter, S.; Sousa, J. S.; Stancu, G. D.; Hubertus van Helden, J.-P., Review on VUV to 
MIR Absorption Spectroscopy of Atmospheric Pressure Plasma Jets. Plasma Sources Sci. 

Technol. 2015, 24, 054001. 
78. Lee, H.-C.; Seo, B. H.; Kwon, D.-C.; Kim, J. H.; Seong, D. J.; Oh, S. J.; Chung, C. W.; 
You, K. H.; Shin, C., Evolution of Electron Temperature in Inductively Coupled Plasma. Appl. 

Phys. Lett. 2017, 110, 014106. 
79. Lee, H.-C.; Kim, D.-H.; Chung, C.-W., Discharge Mode Transition and Hysteresis in 
Inductively Coupled Plasma. Appl. Phys. Lett. 2013, 102, 234104. 
80. Zhou, J.; Martin, I. T.; Ayers, R.; Adams, E.; Liu, D.; Fisher, E. R., Investigation of 
Inductively Coupled Ar and CH4/Ar Plasmas and the Effect of Ion Energy on DLC Film 
Properties. Plasma Sources Sci. Technol. 2006, 15, 714-726. 



81 
 

81. Gudmundsson, J. T., On the Effect of the Electron Energy Distribution on the Plasma 
Parameters of an Argon Discharge: a Global (Volume-Averaged) Model Study. Plasma Sources 

Sci. Technol. 2001, 10, 76-81. 
82. Crintea, D. L.; Czarnetzki, U.; Iordanova, S.; Koleva, I.; Luggenhölscher, D., Plasma 
Diagnostics by Optical Emission Spectroscopy on Argon and Comparison with Thomson 
Scattering. J. Phys. D: Appl. Phys. 2009, 42, 045208. 
83. El-Fayoumi, I. M.; Jones, I. R.; Turner, M. M., Hysteresis in the E- to H-Mode Transition 
in a Planar Coil, Inductively Coupled RF Argon Discharge. J. Phys. D: Appl. Phys. 1998, 31, 
3082-3094. 
84. Durocher-Jean, A.; Delnour, N.; Stafford, L., Influence of N2, O2, and H2 Admixtures on 
the Electron Power Balance and Neutral Gas Heating in Microwave Ar Plasmas at Atmospheric 
Pressure. J. Phys. D: Appl. Phys. 2019, 52, 475201. 
85. Boffard, J. B.; Wang, S.; Lin, C. C.; Wendt, A. E., Detection of Fast Electrons in Pulsed 
Argon Inductively-Coupled Plasmas Using the 420.1–419.8 nm Emission Line Pair. Plasma 

Sources Sci. Technol. 2015, 24, 065005. 
86. Godyak, V. A., Nonequilibrium EEDF in Gas Discharge Plasmas. IEEE Trans. Plasma 

Sci. 2006, 34, 755-766. 
87. Gao, F.; Lv, X.-Y.; Zhang, Y.-R.; Wang, Y.-N., Complex Transients of Input Power and 
Electron Density in Pulsed Inductively Coupled Discharges. J. Appl. Phys. 2019, 126, 093302. 
88. Lieberman, M. A.; Ashida, S., Global Models of Pulse-Power-Modulated High-Density, 
Low-Pressure Discharges. Plasma Sources Sci. Technol. 1996, 5, 145-158. 
89. Logue, M. D.; Kushner, M. J., Electron Energy Distributions and Electron Impact Source 
Functions in Ar/N2 Inductively Coupled Plasmas Using Pulsed Power. J. Appl. Phys. 2015, 117, 
043301. 

 



82 
 

CHAPTER 4 
 

ENERGY PARTITIONING AND ITS INFLUENCE ON SCATTER COEFFICIENTS WITHIN 
FLUORINATED INDUCTIVELY COUPLED PLASMASa

 

This chapter examines energy partitioning for molecules (CF and CF2) formed from 

fluorinated plasma systems, containing data and discussion from a full, invited manuscript to 

celebrate the life and work of plasma scientist Harold F. Winters.  This manuscript was also 

selected as an Editor’s Pick.  The data reported for TR(CF), TV(CF), and TR (CF2) and species 

densities were collected and analyzed by Angela R. Hanna.  These data have been combined 

with previously reported data for S(CF), S(CF2), S(SiF), TT(SiF), TR(SIF), TV(SiF).  Dr. C.I Butoi, 

Ms. M.M. Morgan, Dr. K.L. Williams, Dr. J. Zhang, and Dr. M.F. Cuddy have greatly 

contributed to this work. 

  

  

 

a
 Published in the Journal of Vacuum Science and Technology A, written by Angela R. Hanna, 

Michael F. Cuddy, and Ellen R. Fisher. 
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4.1 Introduction 

An understanding of how energy is dispersed into rotational, vibrational, and translational 

modes of a gas-phase molecule by means of plasma-stimulated decomposition of a precursor 

lends critical insight into molecule formation mechanisms, decomposition pathways, and overall 

plasma chemistry.  Knowledge of internal energies, including vibrational (TV) and rotational (TR) 

temperatures, is applicable to estimates of neutral gas temperatures and plasma modeling.1  

Moreover, information gleaned from internal temperatures can elucidate the processes that 

dictate the overall character of the plasma, as the values are dependent upon such attributes as 

species densities, electron temperature (Te), formation reactions, and gas-phase and surface 

collisions of plasma species, among others.2 

Non-thermal inductively coupled plasmas (ICPs) generally comprise molecules that follow a 

classical relationship wherein TV is nominally greater than TR and translational (TT) temperatures, 

yet each temperature remains significantly less than the Te of the plasma.3,4  Notably, TR values 

have long been employed as a measure of the neutral gas temperature of the plasma,5-8 with the 

assumption that rotational and collective translational temperatures of the gas equilibrate within 

the plasma.9  Although this estimate may be appropriate for analyses of the internal temperatures 

of actinometers, the Fisher Group has previously demonstrated that significant differences exist 

between TR and TT for species such as the silylidyne radical in silane plasmas.10-12  Furthermore, 

different radicals in the same plasma system often exhibit distinct internal temperatures, as we 

have shown for SiF and SiF2 molecules in tetrafluorosilane systems, using laser-induced 

fluorescence (LIF).13  In addition, the same type of plasma species may be formed via different 

mechanisms, including direct gas-phase decomposition of a monomer gas or recombination 
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reactions in the plasma reactor.  Thus, it is useful to explicitly examine the effect of formation 

pathways on internal temperatures and surface reactivity of plasma species. 

Also of burgeoning interest is the correlation between internal energies and species behavior 

at surfaces.  Our unique imaging of radicals interacting with surfaces (IRIS) technique affords 

the capability of monitoring in situ both the internal energies of selected plasma species and the 

propensity of such molecules to react at the surface of a specific substrate.  In particular, we can 

calculate the surface scattering coefficient, S, for a given molecule, which is a measure of the 

likelihood of scattering to occur.  Given that the full range of plasma species is incident on the 

substrate during our measurements, we have also sought to separate the effects arising from 

different types of species.  For example, highly energetic plasma species, such as ions, can play 

an important role in determining S values for halogenated molecules such as CF2 in fluorocarbon 

(FC) plasmas,14 SiF2 in SiF4 systems,15,16 and SiCl2 in SiCl4 plasmas.17  We have previously 

illustrated the relationship between S and TR for systems including the SiF molecule from LIF 

data.16  Nonetheless, we have yet to offer a more comprehensive investigation into the interplay 

of molecular internal energies (TR and TV) with kinetic energy (as measured via TT) and the 

impact of these on observed surface interactions (e.g. S values).  Thus, we aim to understand the 

effect of energy dissipation among various degrees of freedom in a given molecule, probing the 

impact of different types of energy on a molecule’s behavior when interacting with a surface. 

Ultimately, the goal would be to predict surface behavior of a molecule given the distribution of 

internal energies or the reverse. 

In the arena of halocarbon plasma chemistry, Harold Winters and co-workers performed 

pioneering work by extensively exploring plasma-assisted etching of semiconductor materials 

using a range of halogenated systems.18,19  Specifically, Coburn and Winters explored the role of 
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energetic ions in plasma-assisted etching in silicon-fluorine systems, studying the dynamic 

interplay between physical and chemical sputtering.  The chemical sputtering of silicon and SiO2 

during argon-ion bombardment in the presence of a XeF2 discharge was examined, wherein 75% 

of the silicon sputtered from the surface was emitted as SiF4 gas.20  Here, we investigated the 

internal energetics of SiF molecules formed within 100% SiF4 discharges and their relation to 

species’ behavior at surfaces. Winters and coworkers also studied the reflection and trapping of 

energetic particles, predominantly ions, within a plasma environment. A portion of this work 

examined the concentration of argon in sputtered nickel films as a function of film-growth 

temperatures, pressure, and bias voltage of argon ions. They found that particles with energy less 

than ~50 eV are not trapped within the film, whereas particles with kinetic energy >100 eV have 

a significant sticking probability.20 

This fundamental work fueled the development of our IRIS technique, which examines the 

likelihood of molecules scattering (i.e., particles that are not trapped) from a specific substrate. 

Previous IRIS studies explored the interactions of CFx molecules formed within CxFy ion-rich 

and ion-free plasma molecular beams,21 as well as NO radicals on various surfaces,22 wherein the 

knowledge of ion energies is essential to understanding and ultimately tailoring the chemistry 

occurring at the gas-surface interface.  Winters and coworkers also developed a method for 

determining the total electron impact cross-sections for many fluoroalkanes and other gases 

relevant to materials processing in an energy range of 12.5 eV to 600 eV.23,24  The interactions 

and collisions of electrons with molecules within the discharge governs the observed chemistry, 

partitioning between the pathways of excitation, dissociation, and ionization.  Understanding 

these interactions and obtaining quantitative information describing these interrelated processes 

are critical to the accurate modelling and simulation of plasma systems.  We have previously 
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explored the interdependence of radicals, ions, and surfaces in various plasma processes, 

concluding both ionic and neutral species must be considered in understanding the precise 

plasma-surface interactions that lead to specific processing outcomes.25  Thus, we view our 

current work as a continuation of the foundational plasma studies completed by Winters, as we 

seek to develop a deeper understanding of both physical and chemical mechanisms within these 

plasma systems through our combination of gas-phase spectroscopy and gas-surface interface 

studies.  

Several spectroscopic techniques have been used to measure internal temperatures of plasma 

species, including Langmuir probes,26 Doppler broadening analysis of spectral lines,27 optical 

emission spectroscopy (OES),28 LIF spectroscopy,29 and broadband absorption spectroscopy 

(BAS).30-32  Of these, we exploit the latter three for their simplicity of use and the 

complementary information that can be obtained through excited and ground state species 

spectral analyses.  We offer an approach toward understanding the energetic and surface 

interactions of plasma species that behave similarly with respect to the relationships between 

internal temperatures and surface reactivity using OES, LIF, and BAS.  Specifically, we examine 

CF radicals and CF2 produced from CF4, C2F6, C3F8, C3F6, and hexafluoropropylene oxide 

(HFPO) plasmas and SiF from tetrafluorosilane ICPs.  Each diatomic radical has the same 

ground- and first-excited state symmetry, and each demonstrates a comparable relationship 

between TV and S.  These radicals have been extensively studied by others1,33-37 and in our 

laboratories,11,13,15,16,38 yet a concise illustration of the effect of internal temperatures on surface 

scattering coefficients has been conspicuously absent.  To understand the mechanisms that 

govern either the etching of or depositing onto a specified surface, we must gain quantitative 

information concerning the energetics of these systems.  Thus, our current line of inquiry 
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represents a comprehensive investigation of the internal energies of plasma molecules exhibiting 

a strong relationship between surface scattering coefficients and vibrational energy; building 

upon the foundational work of Winters and co-workers to understand the physical and chemical 

mechanisms at play within these technologically-relevant plasma systems.  

4.2 Results 

Vibrational temperature data were acquired from OES data and simulated using LIFBASE39 

or pGopher.40  A section of a typical experimental OES spectrum for a C2F6 plasma (p = 100 

mTorr, P = 100 W) is shown in Figure 4.1 along with simulated data TR = 315 K, TV = 2340 K.  

A BAS spectrum and generated fit in pGopher for a C3F8 plasma (p = 50 mTorr, P = 50 W) is 

shown in Figure 4.2, yielding TR = 400 K.  Here, eight vibrational levels of the ground state were 

considered in the fit, with a single reported rotational temperature, whereas Lie et. al. determined 

an average temperature of only three bands (v’=4, 5, 6).31  As depicted in Figure 4.2, the v’=8 

band is slightly over-emphasized by the model, which could be negated if each band was fit 

individually.  Rather, we sought for an efficient method to determine the distribution of 

rotational energies within an entire vibrational band, so a global rotational temperature is 

reported.  These simulations represent the maximized peak correlation between the experimental 

data and simulated fit.38  The quantum efficiency of the detector varies by only ~5% over the 

simulated wavelength range, and as such, these variations were not accounted for in the 

simulation.  Similar procedures were used to determine TR and TV for all plasma parameters 

examined in this study (feed gas, applied power, and system pressure).  Scatter coefficients and 

temperatures (TT, TV, and TR) for SiF radicals are summarized in Table 4.1, where S(SiF) and 

internal temperatures increase with increasing power.  Tables 4.2 and 4.3 contain data for CF 

radicals formed within a variety of CxFy systems at p = 50 and 100 mTorr, respectively.  
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Figure 4.1. Raw OES data (solid black line) corresponding to the B→ X emission for CF in a 
C2F6 plasma (p = 100 mTorr, P = 100 W).  The other represents a simulated fit to the data, 
with TR = 315 K, TV = 2340 K, created in LIFBASE 2.1.1. 
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Figure 4.2. Absorbance spectrum corresponding to the A1B1 (0, v’,0) →X1A1 (0, 0 ,0) for 
CF2 in a C3F8 plasma (p = 50 mTorr, P = 50 W), simulated in PGOPHER, TR = 400 K. 
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Table 4.1.  Scatter coefficients and TT, TV, and TR for SiF in SiF4 plasmasa 

P (W) S(SiF) TT (K) TV (K) TR (K) 

20 0.21(0.14)    

40 0.43(0.14)    

80 0.79(0.13) 571(180) 1813(63) 735(78) 
100  598(85) 1842(18) 818(46) 
130  802(88) 1962(13) 870(28) 
170 1.20(0.13) 831(120) 1947(10) 1032(3) 
200  869(54) 2073(25) 1083(35) 

aValues for TV(SiF) and TR(SiF) are reported here for the first time.  S(SiF) 
and TT(SiF) values were previously reported.13,15 
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Table 4.2.  Scatter coefficients, TV and TR for CF (B2Δ) in FC plasmasa,b 

Source P (W) S(CF) T
V
 (K) T

R
 (K) 

CF
4
 b 

50 0.90(0.10) 3259(40) 313(14) 
100 1.52(0.09) 3373(51) 309(14) 
150 1.34(0.09) 3304(31) 317(7) 

C
2
F

6
 b 

50 0.98(0.09) 2935(23) 298(2) 
100 1.04(0.06) 2948(17) 298(2) 
150 1.17(0.10) 3029(16) 320(10) 

C
3
F

8
 b 

50 0.90(0.10) 2950(38) 298(6) 
100 1.02(0.06) 2940(23) 305(3) 
150 1.18(0.04) 3183(29) 315(10) 

C
3
F

6
 b 

50 0.74(0.06) 2842(19) 300(5) 
100 0.75(0.09) 2700(8) 308(3) 
150 0.64(0.09) 2732(10) 305(5) 

HFPO 
50 0.54(0.09) 2090(30) 298(3) 
100 0.85(0.09) 2160(20) 305(5) 
150 0.70(0.04) 2240(15) 305(5) 

ap = 50 mTorr 
bS(CF) data were previously reported.41  
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Table 4.3.  TV and TR for CF (B2Δ) in fluorocarbon plasmasa 

Source P (W) T
V
 (K) T

R
 (K) 

CF
4
 

50 2470(45) 306(3) 

100 2550(16) 310(5) 

150 2645(15) 303(4) 

C
2
F

6
 

50 2390(35) 303(3) 

100 2368(42) 311(3) 

150 2406(13) 308(5) 

C
3
F

8
 

50 - - 

100 2315(40) 310(5) 

150 2500(15) 330(11) 

C
3
F

6
 

50 2360(25) 310(7) 

100 2495(20) 315(5) 

150 2385(20) 325(10) 

HFPO 

50 2050(25) 298(5) 

100 2118(40) 305(5) 

150 2215(5) 308(3) 
ap = 100 mTorr. 
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Table 4.4. S(CF2) and TR for CF2 ( (X̃1B1) molecules in several fluorocarbon plasmas.a 

Source S(CF2) 
T

R
 (K) 

 50 mTorr 

T
R
 (K) 

100 mTorr 

CF
4
 

1.50(0.10) 350(20)  

1.50(0.20) 400(20)  

1.90(0.20) -  

C
2
F

6
 

1.28(0.02) 410(35) 370(30) 
1.33(0.02) 405(25) 420(20) 
1.65(0.08) 450(-) 440(15) 

C
3
F

8
 

1.56(0.06) 375(25) 340(15) 
1.08(004) 430(20) 405(20) 
0.93(0.02) 450(25) 435(10) 

C
3
F

6
 

1.17(0.02) 430(35) 375(25) 
0.81(0.03) 510(15) 460(15) 
0.77(0.03) 550(20) 475(35) 

HFPO 
0.96(0.04) 400(20) 385(30) 
0.69(0.06) 480(30) 415(15) 
0.93(0.10) 475(15) 435(25) 

aS(CF2) data were previously reported.41  
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Generally, TR(CF) values are independent of P and plasma precursor, remaining approximately 

equal to room temperature regardless of system parameters.  At p = 50 mTorr, TV(CF) values 

ranged from ~2000 K – 3300 K, whereas at p = 100 mTorr, those values ranged from ~2000 – 

2500 K.  At both pressures, TV(CF) values from HFPO plasmas demonstrate a direct dependence 

on P, whereas the remaining CxFy precursors exhibit little to no P dependence.  S(CF2) and 

ground state TR(CF2) at p = 50 and 100 mTorr are reported in Table 4.4.  Notably, S(CF2) and 

TR(CF2) values are generally higher than S(CF) and TR(CF) under the same experimental 

conditions.  TR(CF2) for CxFy plasmas indicate a slight, direct relationship with P, whereas a 

decrease in TR is noted as pressure is increased. 

In addition to characterizing the energetics of rotational and vibrational degrees of freedom, 

we have determined Te for fluorinated ICPs at p = 50 mTorr, P = 50 -175 W.  Mean Te values 

and standard deviations are listed in Table 4.5 for CF4, C2F6, C3F8, C3F6, HFPO and SiF4 

plasmas.  The values in Table 4.5 indicate that Te neither differs appreciably among the CxFy 

plasma systems, nor appears to depend strongly on P over the range studied here.  Notably, Te 

values calculated from HFPO are elevated in comparison to the other plasma systems.  

As noted in Section 4.1, we are fundamentally interested in the effects, if any, of internal 

energy on surface interactions of plasma radicals during surface modification.  Thus, although 

some scatter coefficients have been reported previously for SiF, CF, and CF2,15,41 we have 

performed additional IRIS experiments on these species and provide these data here.  LIF images 

and IRIS cross-sections are shown in Figure 4.3 for CF radicals in a C2F6 plasma molecular 

beam.  An image containing only fluorescence from CF radicals in the molecular beam (“beam 

only”, Figure 4.3b), is subtracted from the image in Figure. 4.3a, which corresponds to the 

fluorescence of CF in the beam and CF scattered from a Si substrate (beam + scatter). 



95 
 

Table 4.5.  Te (eV) calculated from Ar emission linesa,b 

P (W) CF
4
 C

2
F

6
 C

3
F

6
 C

3
F

8
 HFPO SiF

4
 

50 1.82(0.02) 1.92(0.02) 1.96(0.03) 1.80(0.01) 2.32(0.03) -- 
75 1.86(0.02) 1.82(0.02) 2.01(0.03) 1.87(0.02) 2.35(0.03) 1.91(0.02) 

100 1.85(0.02) 1.87(0.02) 2.06(0.03) 1.98(0.02) 2.37(0.03) 1.82(0.02) 
125 1.92(0.03) 1.92(0.02) 2.10(0.03) 2.02(0.02) 2.43(0.03) 1.93(0.02) 
150 2.03(0.03) 1.96(0.02) 2.11(0.03) 2.00(0.02) 2.49(0.04) 1.89(0.02) 
175 2.12(0.04) 2.10(0.03) -- 1.97(0.02) 2.51(0.04) 1.88(0.02) 

ap = 50 mTorr. 
bValues in parentheses represent standard error calculated from the mean of three 
trials. 
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Figure 4.3. (a-c) IRIS images for CF species in a C2F6 plasma with P = 100 W.  The solid white 
arrow indicates propagation of the plasma molecular beam, whereas the dashed arrow represents 
CF molecules scattering from the Si substrate.  Image (a) corresponds to fluorescence signal 
collected from both CF in the plasma beam and CF scattered from the substrate (i.e. Si wafer) 
rotated into the path of the molecular beam.  Image (b) represents CF signal arising only from 
the plasma molecular beam (i.e. no substrate), where laser propagation is denoted by the thin 
dotted arrow.  Image subtraction yields (c) an image that contains only signal for scattered CF 
molecules.  Cross-sections for CF LIF signals in the plasma molecular beam and CF scattered 
from a Si substrate are shown in (d) for P = 100 W.  The simulated fits to the data correspond to 
S(CF) = 1.04.  Data were collected by Dr. M.F. Cuddy. 
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This produces a spot corresponding to CF scatter only, Figure 4.3c.  Cross-sections along the 

laser propagation axis are compared to simulated data to determine S values, where S(CF) = 1.04 

for this specific data set (C2F6 plasma with p = 50 mTorr, P = 100 W).  Similar data were 

collected, and calculations performed to determine S(CF), S(CF2), and S(SiF).  Although S(SiF) 

values within SiF4 plasmas have been characterized previously, we have yet to determine 

vibrational and rotational temperatures of these radicals and relate system energetics to scatter 

properties.  A comparison of SiF characteristic temperatures (TT, TR, and TV) is provided in 

Figure 4.4a as a function of power.  sVibrational temperatures are consistently approximately 

three times greater than the translational temperatures at all P, illustrated by nearly parallel linear 

fits to each data set where the slope m = 2.6 ± 0.6, 2.9 ± 0.2, and 2.0 ± 0.4 for TT, TR, and TV 

respectively.  Similar to the characteristic temperatures in Figure 4.4a, scatter coefficients for 

SiF, Figure 4.4b, increase with increasing power.  

OES spectra with dilute additions of Ar were acquired for CxFy plasmas in which both CF* 

emission from the B2Δ – X2Π (201 – 204 nm) and CF2* emission from the A1B1 – X1A1 

transition (240 – 260 nm) are evident.  The CF2 emission line at 251.9 nm and CF emission line 

at 202.4 nm were used for actinometric analysis, as well as the 3s 2P2 – 3p 2P2 line at 703.7 nm 

for F.  Figure 4.5 shows actinometric excited state CF and CF2 data as a function of P and 

precursor.  In general, CF4 plasmas produce the most CF at all P, whereas the highest 

concentrations of CF2 are generated in the C2F6 plasmas.  The amount of CF produced also 

generally decreases with the size of the FC precursor.  In CF4 plasmas, [CF2] remain relatively 

constant with increasing P, whereas [CF] increases slightly from 50 W – 175 W.   
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Figure 4.4. (a) TT (red), TR(blue), and TV (black) are plotted as a function of P for SiF species in 
a 100% SiF4 plasma at p = 100 mTorr.  (b) Scatter coefficients for SiF interacting with Si 
substrates plotted as a function of P.  The linear regression fit to these data yields a slope m = 
0.0064 ± 0.0009 with R2 = 0.96. 
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Figure 4.5. Actinometric OES for (a) CF* and (b) CF2* in CxFy plasmas at p = 50 mTorr as a 
function of P. 
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In contrast, in the C2F6 plasma, relative concentrations of CF* increase with increasing P, and 

CF2* concentrations monotonically decrease over the same P range.  The CF* and CF2* 

concentrations in the C3F8 plasma system exhibit similar trends with P, namely a high 

concentration at 50 W, a sharp decrease at 75 W, then a steady increase with increasing P. 

Within C3F6 plasmas, CF* and CF2* concentrations show similar dependence on P, with slightly 

higher concentrations at higher P.  Species’ densities formed in HFPO plasmas as a function of 

P, Figure 4.6, reveals F* and O* densities remain relatively independent of P, whereas CF* 

increases dramatically with P.  Notably, CF2* concentrations increase from 50 W – 125 W, then 

decrease with increasing P.  

Figure 4.7 depicts TV for excited CF radicals in a variety of CxFy plasmas (P = 150 W, p = 50 

and 100 mTorr). Regardless of plasma precursor, TV decreases with an increase in p and is 

relatively independent of P at both pressures, although some variations are seen.  The 

relationship between scatter coefficients and TV(CF)is shown directly in Figure 4.8a, where 

S(CF) is plotted as a function of TV(CF B2Δ) for radicals formed in five different FC plasmas.  

Each data point represents a discrete set of plasma conditions.  The linear fit provided for the 

collective data in CxFy plasmas indicates that CF(2Π) scatter directly correlates to the vibrational 

temperature of excited state species.  The relationship between TV and P for CxFy and HFPO 

precursors is shown in Figure 4.8b; where a decrease in TV occurs as the F/C ratio of the 

precursor decreases from 4 to 2.  

As a final note, we acknowledge that an essential aspect to understanding the overall plasma 

chemistry of these systems is the role of neutral species.  Using a deuterium-halogen light 

source, we sought to determine the energetics of ground state CF radicals via BAS. 
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Figure 4.6.  Actinometric OES for excited species formed in HFPO plasmas at p = 50 mTorr 
(with ~5% Ar dilution) as a function of P. The inset table shows the relationship between TV(CF) 
and P in HFPO systems with no Ar added. 
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Figure 4.7. Vibrational temperature for CF in various CxFy plasmas, at P = 150 W, p = 50 mTorr 
(green circles) and p = 100 mTorr (blue triangles). Error bars represent ±1 standard deviation 
from the mean (n = 3). 
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Figure 4.8. TV (K) for CF species in CF4, C2F6, C3F8, C3F6, and HFPO plasmas as a function of 
(a) S(CF) and (b) P.  The linear regression fit to the data for the CxFy precursors (i.e. excluding 
HFPO) shown in (a) yields a slope m = 0.0010 ± 0.0002 with R2 > 0.71.   
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Figure 4.9.  Experimental absorbance spectrum obtained of plasma reactor under vacuum 
 (sans gas). 
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Figure 4.9 depicts the absorbance within the glass tubular plasma reactor under vacuum, with no 

gas present.  A theoretical, perfect response is plotted in Figure 4.9 with a red trace; the 

experimental data, however, displays a significant increase in shot noise at wavelengths below 

240 nm.  Luque et. al. showed CF (A2Σ+ — X2Π) absorbance measured at 204 – 235 nm, and CF 

(B2Δ — X2Π) absorbance peaks arising at ~198 nm and 202 – 204 nm.34  As a result of the 

intensity of the measured shot noise between 200 – 235 nm, as well as the Avantes COL-

UV/VIS-25 lenses only extending to 200 nm, we were unable to detect CF (X2Π) radicals with 

our current experiment design.  To probe transitions at lower wavelengths with minimized 

signal-to-noise ratios, alternative light sources (i.e. UV-enhanced Xe lamps) can be utilized for 

absorption experiments.  In addition to using a different excitation source, plasma precursors that 

minimize the interference from CF2 absorbance will be considered, such as combinations of 

argon and octofluorocyclobutane, as well as difluoromethane, to maximize CF signal.34  In 

contrast, we have successfully determined the absorbance of NO (X2Π) molecules through BAS 

using the same deuterium halogen light source (see Figure 4.11).  This is likely because the 

relative intensity of NO is significantly higher than that of the CF radicals; thus, NO peaks (v’=0, 

v’=1) are observable above the signal-to-noise ratio.42  Absorbance spectra for CF2 (Ã1B1 — X̃1B1) were measured using our current BAS system (Figure 4.2).  Figure 4.10 depicts TR(CF2) 

values as a function of P and plasma precursor.  Notably, TR(CF2) values are approximately 100 

– 200 K higher than TR(CF).  Also, TR values at a given P are within error for precursors with 

larger y/x ratios.  TR increases linearly with P for all precursors, with the data for C3F6 and C3F8 

plasmas exhibiting nearly perfect linearity, yielding R2 values of 0.96 and 0.93, respectively, 

when a linear regression analyses were performed.  
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Figure 4.10.  TR for ground state CF2 species in CF4, C2F6, C3F8, C3F6, and HFPO plasmas at  
p = 50 mTorr as a function of P.  R2 values (all > 0.66) corresponding to linear regression fits for 
each precursor are reported. 
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Figure 4.11.  Experimental spectra and simulated fits of (a) NO absorbance and (b) emission 
from an NO plasma at p = 150 mTorr and P = 150 W.  Peak correlations were >90%. As 
described above, noise from the deuterium-halogen lamp is present at lower wavelengths, 
however, the intensities of the ground (v=0) and first vibrational state (v=1) in the NO X2Π band 
is distinguishable above the noise. 
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4.3 Discussion 

As noted in Section 4.1, the compilation of data on energy partitioning and surface 

interactions for plasma species is important to a molecular-level understanding of plasma 

chemistry.  The goal with this work was to compare energy partitioning and surface scattering 

coefficients for two isoelectronic diatomic molecules, SiF and CF, as well as for the triatomic 

molecule CF2 in a range of ICPs.  Here, we report new data for TV(SiF), TR(SiF), TV(CF), TR(CF), 

TR(CF2), and surface scattering coefficients, S, for CF and CF2 within HFPO plasmas.  We have 

combined these new data with previously reported data for S(SiF) and TT(SiF),13,15,16 S(CF), and 

S(CF2).41  All of these data are provided in Tables 4.1 – 4.4. 

Focusing first on the energy partitioning between TT, TV, and TR for each diatomic gas-phase 

molecule, Tables 4.1 – 4.3, some interesting trends emerge.  Notably, TV values for all three 

molecules are significantly higher than TR or TT, regardless of experimental parameters.  In 

general, TR for CF radicals is approximately room temperature, independent of P and precursor.  

Rotational relaxation is a relatively fast process, typically requiring <10 collisions to reach 

equilibrium;43 we estimate that a given diatomic molecule in our plasma reactor experiences 

>100 collisions per second.  The TR(SiF) values were ~400 K higher than room temperature and 

demonstrated a stronger dependence on P, indicating the plasma gas temperature is significantly 

higher for SiF4 systems than in fluorocarbon systems studied herein.42,44  Prior Fisher Group 

work used LIF spectra acquired in IRIS experiments to determine TR for SiF and SiF2.  This 

work compared surface reactivities for different rotational transitions over a range of differing 

substrate temperatures, finding TR(SiF) = ~450 ± 50 K in SiF4 plasmas with p = 100 mTorr, P = 

40, 80, and170 W (using the wavelength range 436.8 – 437.2 nm).15  Our current approach, using 

OES, allows coaxial collection over the entire vibrational band of the SiF radical (427.5 – 465.0 
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nm), thereby offering, through our determined TV and TR values, a more representative image of 

the energetics of the SiF first excited state.  Furthermore, examining the larger wavelength range 

enables us to probe higher level rotational states, potentially explaining the increased rotational 

temperatures reported herein.  

Translational temperatures for plasma species are determined from velocity measurements 

obtained from incrementally increasing the gate delay on the IRIS ICCD camera as described 

previously.12,13  These measurements necessitate a sufficiently long radiative lifetime (τr) for 

accurate determination of TT.  Of the three molecules studied here, SiF (τr = ~230 ns)45 is the 

only one for which TT can be determined accurately, although we have completed preliminary 

work in the determination of TT for CF2 molecules.44  Translational, rotational, and vibrational 

temperatures for SiF molecules as a function of P are shown in Figure 4.4.  Best-fit regression 

lines for each set of data are essentially parallel to each other, indicating each characteristic 

temperature has a similar dependence on P.  Although these related rates of temperature rise with 

increasing P are notable, another clear observation is that the translational temperatures are in all 

cases less than half the measured TV(SiF) values, whereas TR and TT differ by <125 K when 

considering error reported with each value.  This likely indicates that the V-T energy transfer 

mechanism is the predominant pathway for vibrational relaxation of SiF*, while rotationally 

excited SiF molecules are simultaneously present in this discharge.  Specifically, the translational 

energies of SiF may be increased through collisions with SiF*, transferring vibrational energy 

from the electronically excited molecule to the ground state radical.  Alternatively, interactions 

of SiF* with other gaseous species (M) may lead to loss of vibrational energy to M and electronic 

quenching of SiF* as in Reaction 4.1.  We hypothesize that a similar relaxation pathway exists 

for the diatomic oscillator CF. 
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   𝑆𝑖𝐹∗ + 𝑀  → 𝑆𝑖𝐹 + 𝑀∗                              (4.1) 

The relationship between TV and plasma parameters such as applied rf power and system 

pressure can also be explored further for each molecule.  TV(SiF) increases from 1813 K to 2073 

K as P is increased from 80 - 200 W, Table 4.1.  Likewise, TV(CF) in HFPO plasmas generally 

increases with P, Tables 4.3 and 4.4, although the increase is not as pronounced as with SiF and 

for molecules in other systems examined by our laboratory.42  Moreover, energy partitioning in 

SiF and CF appears to favor vibrational channels, as TV values are much greater than TT or TR 

and they tend to increase with increased P.  Interestingly, in the FC plasmas, TV decreases with 

increasing p, Tables 4.2 and 4.3, but remain nearly an order of magnitude higher than TR.  At 

higher system pressures, the number of collisions between molecules in the discharge also 

increase, promoting further fragmentation of the parent gas and collisional quenching.  As noted 

above, TR(CF) is roughly around room temperature, indicating efficient collisional cooling of this 

degree of freedom.  Clearly, the additional collisions CF molecules under go in higher p plasmas 

affords some measure of cooling of vibrational temperatures, but this is not a very efficient 

channel for energy transfer.  Given this relationship between TV and pressure, as well as the 

observed relationship between TV and scatter, we can predict collisional cooling effects at 

increased p will also affect a molecule’s ability to scatter at a surface.  

One additional piece of information that helps characterize energy partitioning among 

vibrational modes in plasmas is the role of electrons.  Electron temperatures were estimated for 

selected plasma systems from analyses of OES spectral lines, a process that has been widely used 

for a range of plasma systems.26,46  This calculation assumes (1) all ionization and excitation 

events proceed via electron impact and (2) that there exists a Maxwellian distribution of electron 

energies.  Assumption (1) is valid for dilute Ar in a low pressure plasma; however, assumption 



111 
 

(2) can be jeopardized because of the Druyvestyn distribution of electron energies common in 

plasma systems.47  Nonetheless, for sufficiently low electron temperatures, the deviation of 

Druyvestyn distributions from Maxwell distributions is small and there is little discrepancy in the 

measured Te.  As discussed in the Results section, the values in Table 4.5 indicate that Te does 

not differ appreciably among the plasma systems, nor does Te appear to depend strongly on P 

over the range studied here.  Indeed, comparison to the literature suggests that the values 

measured for the FC plasmas discussed herein are comparable to those measured using an in situ 

Langmuir probe in similar systems.48  These observations suggest that Te does not have a strong 

influence on TV.  One reason for this is that TV values measured from OES data depend upon 

excited vibrational state densities, nv, and the vibrational excitation rate constant kv, via the 

following equation:49 𝑛𝑣 = 𝑛𝑒𝑛𝑔𝑘𝑣                            (4.2) 

where ne denotes the electron density in the plasma and ng the ground vibrational state density.  

The rate constant kv is, in turn, highly dependent upon Te.50  Because Te does not change 

appreciably among systems or with changing P (ΔTe <~10% for P = 50 - 150 W), the increases 

in TV for a given molecule with increasing P are predominantly a consequence of increased 

electron density and not electron temperature.  This notion is bolstered by the results of Kim et 

al., who demonstrated that although ne correlates directly with P in CF4 inductively coupled 

plasmas, Te remains independent of rf power.51  Furthermore, Ono and Teii showed that N2 

vibrational temperatures increase with increasing ne in CO2/N2/He discharges.52  We can thus 

infer that increases in TV are proportional to increases in ne in each case discussed here, thereby 

providing a metric for monitoring ne ex situ, independent of a Langmuir probe. 
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Another aspect of this work measures surface scattering coefficients for radicals during 

plasma processing using the IRIS technique.  As this technique is used to probe steady-state 

processes occurring at the plasma-surface interface, it measures the interface behavior of species 

interacting with a substrate or film deposited on a substrate.  The plasmas chosen for this study 

each have different effects on surfaces.  Specifically, SiF4 plasmas tend to fluorinate Si surfaces 

whereas FC plasmas tend to deposit robust films.  We have also examined oxidative systems, 

such as NO, which can create oxide layers on the surface of Si materials.42  These net effects of 

plasma processing on surfaces have been verified through high-resolution XPS analyses.16,41  

Thus, the measured surface scatter coefficients must be interpreted in light of the overall impact 

of substrate processing in our ICPs.  This multi-pronged approach of characterizing a variety of 

gas-surface interfaces enables us to consider more holistic elucidation of energy partitioning 

trends and how the gaseous plasma chemistry modifies the surface of a particular substrate (e.g. 

p type Si wafers). 

SiF scatter coefficients measured in SiF4/Si systems vary directly with P, having a linear fit 

of slope 0.0064 ± 0.0009, Figure 4.4b, and these changes in S(SiF) are commensurate with 

similar trends in both TT(SiF) and TV(SiF) values, Figure 4.4a.  It should be noted, however, that 

other plasma species, such as ions, can contribute to increasing S values.  In other ICP systems, 

energetic ions contribute significantly to surface production of radicals.22,25,53  For example, 

surface production of both SiF2 in SiF4 and CF2 in FC systems is enhanced by high ion densities 

in these plasmas.14,15,54  The effect of ion contributions to the IRIS measured scatter coefficients 

was examined for SiF in SiF4 plasmas at P = 175 W by employing a grounded mesh in the path 

of the plasma molecular beam.15,16  In an essentially ion-free environment, the S(SiF) value 

decreased only slightly.  This small change upon removal of ions relative to the strong 
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correlation between TV(SiF) and S(SiF) indicates that ions do not play as significant a role in the 

surface production of SiF as does its vibrational temperature.  Ion contributions to S(SiF) may be 

limited because of the tendency for the moiety to remain “buried” in the fluorinated silicon 

substrate.  Oehrlein and coworkers showed through reactive ion etching experiments that SiF 

species dominate the deepest regions of a fluorosilane film, whereas the topmost layers of the 

film are SiF3-rich.55  Thus, if reactive ion penetration depth is smaller than the thickness of a 

given steady-state fluorosilane film at a substrate, SiFx species (x = 2, 3) are more likely than SiF 

to desorb. Furthermore, formative work by Winters and Coburn reported F atom etch 

mechanisms, cleaving the Si-Si bond to form SiF2 and SiF4, which then desorb from the 

surface.56  Ultimately then, the increasing scatter values measured here may have a strong 

dependence on the increasing translational energies of ground state SiF and/or the vibrational 

energy of electronically excited SiF*.  This relationship is further addressed below. 

Scatter coefficients for CF radicals interacting with room temperature Si substrates have 

similar source gas and P dependences as TV(CF), Tables 4.2 and 4.3. Specifically, S(CF) values 

decrease with decreasing F/C ratio for the precursor gas. We have previously reported on the 

relationship between choice of feed gas and the CF scatter coefficient,41 and note that these 

measurements are heavily influenced by ion bombardment of the surface.14,53  Nonetheless, 

vibrational temperatures for excited state CF radicals appear to correlate strongly with observed 

S(CF) values and F/C ratios.  The most profound example of the apparent relationship between 

vibrational temperature on scatter coefficients for the three radicals studied here is provided in 

Figure 4.8a, where S(CF) values are plotted as a function of TV(CF) for a range of FC precursors.  

As the vibrational temperature of excited state (2Δ) CF radicals increases, the observed scatter 

coefficient of the ground state species (2Π) concomitantly grows, Figure 4.8a. Because S(CF) 
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values essentially measure a change in CF(2Π) density between scattered species and the gas-

phase of the plasma molecular beam, this relationship implies that vibrationally hot CF in excited 

electronic states contribute significantly to the observed scatter of ground state species.  We 

believe that this phenomenon can be rationalized in several ways.  For example, the 2Δ CF 

radicals in the IRIS molecular beam (undetectable in the LIF scheme) may quench at the surface 

of the substrate and desorb as a ground state CF, yielding a high scatter value.  Energy from this 

process may be dissipated into the surrounding FC film or passivation layer being deposited on 

the substrate.  It is possible that enough excess energy may cause dislodging of additional CF(s) 

units by effectively heating the surface film, further enhancing the S(CF) value.  Small increases 

in temperature also increase the diffusivity of F atoms through FC polymers,57 rendering a 

significant portion of the exposed FC surface CF-rich.  This CF experiences the full brunt of 

plasma species and as such is facilely removed, resulting in high observed scatter coefficients.  

In this way, highly vibrationally excited CF may act indirectly as an etchant to ablate FC 

material.  Indeed, Tsai and coworkers58 speculated on this phenomenon to explain resonant 

energy transfer of vibrationally hot molecules with growing surface Si-H bonds during silane 

depositions.  This rationalization of the relationship between TV(CF) and S(CF) may be extended 

to the other radicals as well.  The F/C ratio in the precursor also has an impact on both the 

observed scatter and TV(CF).  As the F/C ratio decreases, concomitant decreases in TV and S(CF) 

are also measured.  Probing this for the CF radical, we expanded our line of inquiry to include 

scatter and temperature properties of CF2 formed in these discharges.  

As documented with CF, the choice of precursor also influences the propensity for CF2 

scatter: S(CF2) increases with increased feed gas y/x ratio.  Scatter coefficients represent the 

probability for surface scatter of an individual species, therefor an increase in S(CF2) denotes a 
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decreased inclination for reactivity of a surface.  Although the relationship between precursor 

and scatter between CFx (x = 1 or 2) species is similar and has been previously published,41 the 

relationship between gas-phase energetics of CF2 molecules and the propensity for scatter needs 

elucidated.  TR(CF2) values suggest that CF2 molecules produced in these discharges are only 

partially relaxed by collisions.  An increase in P promotes the dissociation of the parent gas and 

these partially relaxed CF2 molecules can participate in further fragmentation.  Furthermore, the 

difficulty of determining absorbance of CF2 at 150 W with high y/x feed gas ratios (i.e. 4 and 3), 

as well as at increased pressure (100 mTorr, CF4) suggests CF2 ground state molecules are 

additionally fragmented as more energetic collisions are occurring within the discharge.  This 

non-thermalization of CF2 rotational states can be used to hypothesize the increase in scatter for 

CF2; as these molecules undergo energetic collisions and bombardment, they are more likely to 

scatter from a given substrate and continue to promote fragmentation and formation of CF within 

the discharge.  Determination of TV(CF2) values within the ground and excited state is necessary 

to elucidate the mechanisms occurring at the gas-surface interface, which will be the subject of a 

further publication. 

In general, surface scatter coefficients for the radicals investigated here track with changes in 

their vibrational temperatures.  We observe essentially no dependence of S(M), (M = CF and 

SiF) on TR, leading us to infer that scatter coefficients are at least partially reliant upon the 

internal vibrational modes associated with the radical.  In IRIS experiments, for a molecule 

formed in the plasma source to scatter from the substrate, it must have energy sufficient to 

overcome the potential barrier for desorption.  Our data suggest that energy in vibrational modes 

preferentially provides a radical with the means to desorb over molecules with energy 

contributions from translational and rotational modes.  For each molecule, we observe that the 
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greater the vibrational energy associated with the molecule, the higher the propensity for scatter 

from a surface.  This suggests that vibrationally excited molecules interact with the substrate and 

rebound with some energy loss, as in Reaction 4.3 where M denotes CF or SiF,  𝑀(𝑔)(𝑣′)  → 𝑀(𝑎𝑑𝑠)(𝑣′)  → 𝑀(𝑔)(𝑣")               (4.3) 

Reaction 4.3 also implies that contributions from quenching of higher excited states not probed 

in the IRIS experiment could affect increases in scatter coefficients.  Kim and coworkers showed 

that increases in ne (and, as such, increased TV as discussed above) result in greater number 

densities of excited electronic populations.59  Thus, molecule M in a given IRIS experiment, 

existing in an excited electronic state with correspondingly high TV in the plasma molecular 

beam, could quench upon contact with the substrate and subsequently desorb in a ground 

electronic state.  This scenario would result in molecule M being LIF-transparent in the 

molecular beam of the plasma, but producing LIF signal as a scattered molecule, resulting in an 

apparently higher S(M) value, as discussed in the case of CF radicals above.  Note that 

preliminary results for CF interactions with ZrO2 substrate are similar to the S(CF) values 

reported here for interactions with Si substrates.44  Ultimately, then, the relationship between 

internal temperatures and scatter coefficients for these molecules could provide the capability to 

predict surface reactivity of plasma species.  It should be noted, however, that although the 

contribution of vibrationally hot molecules to surface reactivity is significant, it certainly does 

not represent a complete embodiment of surface reactions.  Other processes, including ion 

bombardment and/or neutralization, vibrational relaxation, particle flux, recombination reactions, 

and photodetachment all occur simultaneously at surfaces in these systems.  Nonetheless, a clear 

relationship emerges linking vibrational energies to surface scatter coefficients for three distinct 
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systems.  Thus, even if internal energy contributions to surface reactivity are not exclusively 

causative, they are most certainly correlated to plasma-surface interactions. 

A remaining question focuses on the generality of the relationship between vibrational 

temperature and scatter observed here for CF and SiF.  We have previously speculated that the 

multiplicity (2S + 1 for angular spin momentum S) of a molecule influences its surface 

interactions, citing data which imply that molecules with singlet electronic configurations tend to 

have the greatest propensity for surface scatter (i.e. are least reactive).60,61  Scatter coefficients 

for singlet molecules, including C3, CHF, and CF2, tend to be high under all plasma conditions.61  

The molecules studied here have a doublet multiplicity, and their scatter coefficients also tend to 

be relatively high and change with changing applied power.  Conversely, not all doublet species 

adhere to this overall trend in surface reactivity.  For example, CH molecules exhibit low scatter 

coefficients (i.e. are primarily reactive at surfaces), regardless of plasma and substrate conditions 

and gas-phase formation mechanism.  Note that the transition monitored for the CH molecule is 

A2Δ—X2Π, whereas the transition used to calculate scatter coefficients in our LIF-based IRIS 

experiments is A2Σ+—X2Π for CF and SiF.  This difference in symmetry in the electronic 

configuration of the excited state molecule may contribute to the differences in observed scatter 

coefficients.  Future work will further explore this with additional plasma species, including 

main group hydrides OH, NH, CH and SiH, along with species having different electronic 

ground states.  It is also informative to consider the kinetics and energetics of ground state 

molecules, with various symmetries, within plasma discharges. Ground state species can be 

monitored ex situ using BAS, gaining for both temporally and spatially resolved information.  

This holistic approach, coupling multiple spectroscopic techniques together to probe electronic 

states, is necessary to understanding the complex phenomena within plasma processing. 
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4.4 Summary 

Following in the footsteps of the seminal work performed by Winters and coworkers in the 

arena of halogenated plasma processing, the present work has extended our understanding of 

energy partitioning and molecule-surface interactions within a range of fluorinated ICPs.  Using 

a complement of gas-phase diagnostics, we have measured internal and kinetic temperatures of 

three molecules, SiF, CF, and CF2, along with Te in SiF4 and a host of FC plasmas.  In all cases, 

we found the vibrational temperatures measured were significantly higher than the rotational 

temperatures, often by an order of magnitude or more, suggesting collisional relaxation is most 

effective for rotational degrees of freedom.  In contrast, the electron temperatures derived from 

our OES spectra reveal only small differences, regardless of plasma precursor or other 

parameters.  This may be attributable to the highly electronegative nature of the gases studied.   

Perhaps the most notable result from these studies is the observed relationship between 

vibrational temperature and surface scatter coefficients for the isoelectronic diatomic radicals CF 

and SiF formed within fluorinated ICPs.  The preferential partitioning of energy into vibrational 

modes correlates with an increased propensity for scatter when a molecule interacts with a 

substrate.  Thus, these data suggest that radical surface scatter coefficients are at least partially 

reliant upon the vibrational energy of the radical.  We propose that electronically excited, 

vibrationally hot radicals are significant contributors to observed S values.  Ultimately, the 

intimate relationship between internal energies of gas-phase constituents, electronic 

configuration, and the overall reactivity of plasma species must be considered when developing 

new plasma applications as well as comprehensive models of plasma chemistry.  
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CHAPTER 5 
 

TAILORING THE SURFACE PROPERTIES OF POROUS ZEOLIE CONSTRUCTS USING 
PLASMA PROCESSINGa 

 
 

Zeolites have been widely used for adsorption, catalysis, and gas separation processes.  De-

spite their extensive use, the ability to control the surface properties of zeolites remains unopti-

mized.  Plasma modification presents an ideal modification methodology with a wide parameter 

range and the potential to create tailored surface properties and functionalities.  Here, zeolite 

constructs were modified with CxFy and H2O(v) discharges to tune the material wettability.  This 

work was supported by the National Science Foundation (NSF CBET – 1803067) and the Ameri-

can Chemical Society Petroleum Research Fund (ACS PRF 59776 – ND6).  I would like to thank 

Carina Ammerlahn for her work on zeolite (8-12 mesh, 4 Å pore size) modification studies.1  

Specific acknowledgments for this chapter include Dr. Patrick McCurdy (assistance with SEM 

and XPS analyses); and Dr. Brian Newell (PXRD expertise); as well as Dr. Morgan J. Hawker 

and Dr. Michelle M. Mann (assistance with WCA).  

 

  

 

a
 This chapter is reproduced from an article submitted to Microporous and Mesoporous Materials 

by Angela R. Hanna and Ellen R. Fisher.   
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5.1  Introduction 

Zeolites are a broad class of crystalline aluminosilicates consisting of a three–dimensional 

(3D) framework, with pores ranging from nanometers to microns.  Their high specific surface 

area, stability, and shape selectivity have made zeolites a frequent choice for utilization in a 

range of applications including catalysis, adsorption, and separation technologies.2-4  Despite 

their extensive use, the ability to control the surface properties of zeolites remains unoptimized.  

Currently, zeolites are often modified via wet chemical methods to obtain desired surface proper-

ties.  Although there are numerous successful reports using aqueous solutions as a modification 

strategy, these methods are undesirable because they can produce excess waste and introduce 

possible structural damage.  Briefly, Ramos-Martinez et al. modified zeolite 13x with gamma-

aminobutyric acid through ion exchange to improve removal efficiency of creatine and urea.5  

Liu et al. sought to improve the performance of  natural zeolites in the removal of nitrite from 

aqueous sources.6  The authors investigated a wide range of zeolite modification strategies, in-

cluding acid (H2SO4), base (NaOH), salt (NaCl), and organic surfactant (cetyl trimethyl ammo-

nium bromide) treatments.6  Acid modified zeolites increased nitrite adsorption by ~7 fold, the 

other modification techniques (i.e., base, salt, organic surfactant) did not improve the zeolite ad-

sorption capacity.6  Shi et al. reviewed modification techniques and their impact on wastewater 

treatments, reporting acid modification as a straightforward means to improve adsorption capac-

ity.7  Using natural zeolites, Zhang et al. reported the removal rate of Sb3+ increased from 63.1% 

to 82.7% as HNO3 concentration increased from 0.2 M to 0.8 M; however, as the acid concentra-

tion increased to 1 M, the adsorption rate decreased to 62.8 %.8  This reduction can be attributed 

to lowered cation exchange capacity or structural damage to the Si-tetrahedra, inherent disad-

vantages of acid modification.7   
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Overall, the potential for zeolites to function as adsorbents in the removal of heavy metals 

improved via acid surface modification.  Acid reactions are also commonly used to alter the 

SiO2/Al2O3 ratio, ultimately impacting zeolite performance.9,10  The hydrophilic–hydrophobic 

properties of a zeolite nominally arise from the SiO2/Al2O3 ratio within the material.11  Zeolites 

with lower SiO2/Al2O3 ratios tend to be more hydrophilic, and are therefore often employed to 

remove ammonium and heavy metals from wastewater.12  Munoz et al. investigated zeolite-A 

(low SiO2/Al2O3 ratio) coatings on stainless steel substrates and found they increased hydro-

philicity and decreased evaporation time, compared to the stainless steel subtrates.13  In addition 

to zeolite coatings, zeolite/polymer composite blends have gained recent attention for biological 

applications, especially wound-healing, tissue engineering, and drug delivery.14  Surface proper-

ties of these composites often need to be tailored for enhanced biocompatibility, such as increas-

ing the wettability or modifying chemical functionality. 

Zeolites with higher SiO2/Al2O3 ratios tend to be more hydrophobic and are utilized to re-

move hydrophobic contaminates in water.11  Highly hydrophobic materials, especially those with 

high surface areas are useful for oil/water separation and organic-pollutant enrichment.  Numer-

ous materials and methodologies have been designed to alleviate the detrimental impact of oil 

released/leaked into the environment.15  These spills contain a complex mixture of low and high 

molecular weight hydrocarbons, the latter of which persist in the environment because of low 

volatility and solubility.  In recent years, the role of wettability in oil/water separations has gar-

nered increasing attention; specifically, materials that show different wetting properties for oil 

and water for efficient separation are of great interest.16  Hydrophobic zeolites are, however, 

more difficult to fabricate than their hydrophilic counterparts.17   
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Plasma modification presents an ideal modification methodology with the potential to create 

tailored surface properties (i.e., specific wettability) and functionalities (i.e. surface chemistries).  

Described in Chapter 1, non-thermal plasmas can etch, deposit conformal films, or functionalize 

porous substrates with low temperature, solution free processing.  Furukawa et al. used a radio 

frequency (rf) capacitively-coupled plasma discharges to modify zeolite H-Y with CF4.  The au-

thors argue –OH functionality was replaced with –CF3 and –F groups, evidenced by energy dis-

persive spectroscopy and infrared (IR) adsorption techniques.  Zeolite crystallinity was assessed 

after plasma processing, where the authors note the crystal structure of the zeolite was damaged 

via XRD.18  CF4 plasmas are known etchants for a range of materials, including silicon-contain-

ing substrates,19 which likely contributed to the reported decrease in crystallinity in the Furukawa 

study.18  Here, four CxFy precursors were employed to modify the surface properties of zeolites.  

We deployed a range of characterization tools to assess materials before and after plasma treat-

ment.  X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and powder X-

ray diffraction were utilized to investigate surface chemistry, substrate morphology, and bulk 

characteristics of the material, respectively, before and after plasma exposure. Optical spectros-

copies examined the gas-phase of the plasma, both with and without zeolites, to evaluate the im-

pact of the material on the plasma gas-phase.  Through the use of complementary techniques, the 

interconnected relationships between plasma chemistry and resulting material modification can 

be probed.  

5.2  Results and Discussion 

Noted in Section 5.1, the inherent versatility of zeolite materials arises from their chemical 

properties and porous structure.  A large portion of this work therefore sought to study how the 

surface chemistry and morphology of these materials are impacted by plasma modification.  As 
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all plasma treatments were performed under vacuum conditions, treating free powder substrates 

can be problematic.  Therefore, native zeolite powder was secured to glass slides with C tape and 

a simple straightforward pellet fabrication technique was also used with ground zeolite powder 

(Figure 2.8a).  

Figure 5.1 depicts SEM images of two of the three types of untreated substrates, the as-re-

ceived native materials (Figure 5.1a and 5.1b) and the pressed zeolite powder pellets (Figure 5.1c 

and 5.1d).  At low magnification (25x), Figure 5.1a highlights the size distribution of the individ-

ual zeolite particles, whereas the pellet surface appears much smoother, with visible pores (Fig-

ure 5.1).  Utilizing a higher magnification (4500x) emphasizes the interconnected network of 

pores within the zeolite substrate (Figure 5.1b and 5.2d).  Moreover, the overall size of the major 

features remains approximately the same.  High-resolution XPS spectra were collected to deter-

mine compositional data for both morphologies of untreated zeolites.  The Si/Al ratio, deter-

mined from XPS analyses, was 3.3 ± 0.2 and 3.63 ± 0.2 for native and pellet constructs, respec-

tively, indicating our materials are Si-rich zeolites.  High-resolution Si2p spectra, Figure 5.2a and 

5.2b, display primarily Si(–O)x binding environments, corresponding to an inorganic SiO2 silicon 

network.  Oxygen (~58 %) within the material is largely bound to Si and to the small amount of 

Al in the zeolite network, shown in the high-resolution O1s spectra (Figure 5.2c and 5.2d).  Due 

to the porous nature of these substrates, adsorption of adventitious carbon is expected and clearly 

documented by the XPS results.  
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Figure 5.1. SEM images of untreated native zeolite (a,b) and pellets (c,d) at magnifications (a,c) 
25x and (b,d) 4500x.  
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Figure 5.2. XPS high resolution Si2p (a, b), O1s (c, d), and C1s (e, f) spectra for untreated native zeolite (top) and pressed pellets (bot-
tom). The percent atomic composition with error (in parentheses) is listed in each panel.  Both the native and pellet zeolites also con-
tained 4.4 ± 0.6 % Al (not shown). 
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 High-resolution C1s XPS spectra for untreated zeolite constructs (Figure 5.2e and 5.2f) suggest 

the surface consists of carbon environments corresponding to C–C/C–H, C–O–H/C–O–C, and 

C=O at binding energies 284.8, 286.4, and 288.8 eV, respectively.  In a previous study, zeolite 

pellets were oven calcinated (150 °C, 3 hours) to remove adsorbed H2O and carbon contami-

nants, decreasing the carbon content to 8.9 ± 0.8.20  The current study used the as-received native 

and pressed zeolite pellets without introducing additional fabrication procedures.  As evidenced 

by the C1s spectra, some oxygen is clearly bound to carbon in these materials.  The binding en-

ergy for O – C functionality within the O1s envelope, however, is difficult to deconvolute from 

the Si–O–Si and Si–O–Al bridges.  As such, we have not specifically assigned peaks or portions 

of peaks within the O1s binding environment to O – C.  Ultimately, these data demonstrate fabri-

cation of the pellet construct does not largely impact the morphology or surface chemistry of the 

zeolites based on SEM and XPS analyses. 

Recently, fabricating zeolites into a fibrous form has attracted scientific inquiry for new ap-

plications in adsorption, optics, chemical sensors, and petroleum refining.21-24  Zeolite fibers can 

be synthesized via hydrothermal methods, electrophoretic deposition, and electrospinning (Fig-

ure 2.8b).  Electrospinning is commonly used to fabricate polymer fibers;25 however, recent ef-

forts have focused on fabricating composite,26 metal oxide,27 and micro- and nano-sized zeolite 

fibers.24,28  Several factors affect fiber morphology, including electrospinning distance, applied 

voltage, solution flow rate, choice of polymer, and overall solution composition.  Here, the dis-

tance between the needle tip and conductive disk was optimized to 15 cm by electrospinning  

100 % PVP fibers, Figure 5.3a.  Ground NaX zeolites and PVP were combined as described 

above, and electrospun at 16 kV for one hour to create zeolite-PVP composite fibers, Figure 

5.3b.   
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Figure 5.3. SEM images (a-c: 5000x, d: 7000x) of electrospun (a) 100% PVP, (b) zeolite: PVP 
(1:2, 15 cm, 16 kV) (c) O2 and (d) Ar plasma calcinated zeolite fibers. 
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Anis and Hashaikeh fabricated zeolite –Y  fibers via oven calcination at 550 °C for 2 hours to re-

move the polymer used in the fabrication process.29  The fabrication of zeolite-Y fibers was veri-

fied with SEM, EDS, XRD, and BET analyses.29  Oven calcination of NaX zeolite:PVP fibers is 

discussed in Appendix A.  To avoid high temperature exposure, we chose to employ O2 and Ar 

plasmas (100 mTorr, 100 W, 15 min) to remove the polymeric phase, the results of which can be 

seen in Figure 5.3c and 5.3d, respectively.  EDS compositional maps were collected in conjunc-

tion with SEM images to probe morphology and to evaluate removal of the polymeric phase via 

compositional distributions, discussed in Appendix A.  Although these SEM data suggest the 

successful fabrication of zeolite NaX fibers via plasma calcination, the evaluation of surface 

chemistry is also important.  

Figure 5.4a depicts a representative XPS survey scan of the as-spun zeolite- PVP fibers.  The 

chemical structure of PVP is included in Figure 5.4a, demonstrating the anticipated O1s, N1s, and 

C1s binding environments.  Following O2 and Ar plasma treatments (Figure 5.4b and 5.4c), new 

binding environments corresponding to zeolites were measured (i.e., Na1s and Si peaks) with sig-

nificant reduction of the N1s and C1s environments.  Thus, plasma calcination offers a facile, rela-

tively fast strategy to remove the PVP from composite fibers.  Moreover, upon removal of the 

polymer phase, the zeolite particles appear largely adhered together to maintain a random net-

work of fibers, Figure 5.3c and 5.3d.  Although there are significant areas for calcination im-

provement to engineer coherent and continuous zeolite fibers, these results clearly demonstrate 

the efficacy for relatively short (i.e., 15 min) plasma exposure to yield fibrous zeolites.  Addi-

tionally, these results support employing a complement of analytical techniques to study these 

materials, addressing both bulk and surface properties. 
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Figure 5.4. Representative XPS survey scans of (a) as-spun zeolite: PVP fibers (1:2 ratio, 15 cm, 
16 kv), as well as (b) O2 and (c) Ar plasma calcinated fibers (p = 100 mTorr, P = 100 W,  
t = 15 min).  
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As described in the Introduction, a significant motivation for this work was to develop the 

ability to tune the wettability of zeolites via plasma surface modification.  Figure 5.5 depicts 

time-resolved photographs of a 2 μL water drop interacting with untreated and plasma treated 

materials at three different time points (1, 3, and 10 s).  The untreated zeolite is relatively hydro-

philic and as such, the water droplet is almost entirely adsorbed into the material at t = 10 s.  Af-

ter H2O(v) and C2F6 plasma treatments (100 mTorr, 50 W, 5 min), surface wettability increased, 

as indicated by the observation that the 2 μL water droplet is almost adsorbed after 3 s.  The C3F8 

treatment at the same experimental conditions yielded a highly hydrophobic coating, where the 

water droplet sits on the substrate with a high profile and is largely unchanged as a function of 

time.  These data highlight the ability to monitor wettability qualitatively, however, we sought to 

also quantify contact angle as a function of drop age on the surface.  Hawker et al. provided an 

intensive literature study, reviewing the application of static and dynamic WCA measurements 

for plasma-modified porous constructs, nominally supplying the community with guidelines and 

best practices for how to represent and report WCA results.30  They argue evaluating the wetta-

bility of 3D materials via dynamic techniques (e.g., measuring WCA as a function of time in 

conjunction with absorption rate analysis) has a numerous advantages and is a robust approach to 

evaluating wettability.  Therefore, dynamic WCA and absorption rates are reported for all wetta-

ble materials fabricated herein. 
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Figure 5.5. Time-resolved photographs of 2 μL water drops interacting with untreated and plasma treated zeolite pellets (100 mTorr, 
50 W, 5 min), showing the relative contact angles of the zeolite pellet substrates. Rows correspond to drop time on zeolite: top (1 s), 
middle (3 s), and bottom (10 s).  
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Figure 5.6. WCA as a function of drop age for untreated, H2O(v), and CxFy treated zeolite pellets. 
All treatments were performed at 100 mTorr, 50 W for 5 min.  
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Figure 5.6 depicts WCA as a function of drop age for untreated and plasma-modified substrates.  

As evidenced in Figures 5.5 and 5.6, C3F8 plasma exposure yielded a superhydrophobic surface, 

with a 135.5 ± 2.2 ° contact angle (CA).  A second fluorocarbon (FC) precursor, C2F6, was em-

ployed and surprisingly rendered the zeolite more hydrophilic than the untreated construct (Fig-

ure 5.6).  Specifically, complete absorption occurred with a 0.53 ± 0.17 μLs-1 rate for the C2F6 

modified zeolite, whereas a a 0.19 ± 0.022 μLs-1 rate was measured for the untreated material.  

The Figure 5.6 data suggest that following an H2O(v) treatment at the same experimental condi-

tions (100 mTorr, 50 W, 5 min), the wettability of the zeolite was further improved.  The calcu-

lated absorption rate for H2O modified zeolites, however, is 0.53 ± 0.10 μLs-1, which is within 

experimental error of the C2F6 modified zeolite.  Static and dynamic WCA on porous constructs 

are often more difficult to interpret as both surface chemistry and roughness can impact these 

measurements, ultimately leading to higher experimental errors relative to flat surfaces (i.e., 

glass slides and wafers).30  These data exemplify the need to analyze numerous samples, ac-

counting for variation between samples and plasma treatments.  To further assess the zeolite – 

plasma interactions with CxFy and H2O(v) systems, TR-OES was employed to study the evolution 

of gas-phase species during plasma processing. 

The study of FC discharges to create new materials or modify surfaces has grown in past dec-

ades due to dualistic nature of these systems as they are known to both etch a variety of materials 

(i.e., microelectronics) and to deposit conformal FC coatings.31  In particular, FC plasmas pro-

vide a prime example of multiple, competitive processes occurring simultaneously as they can 

both deposit FC films and etch a wide variety of materials.  Through altering discharge operating 

conditions, precursor, or feed gas additives, it is possible to tailor the etching or depositing ca-

pacity of the plasma.31  Nevertheless, few studies have sought to investigate substrate-dependent 
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processes in these systems.32  Cuddy and Fisher previously explored the roles of neutral and gas-

phase species, as well as ions, during FC plasma (CF4 and C2F6) processing of Si and ZrO2 wa-

fers.32  They documented that addition of a substrate can dramatically influence relative species 

densities as measured by OES, where Si and ZrO2 wafers impacted the gas-phase chemistry dif-

ferently.  The relative density of atomic F within C2F6/Si and C2F6/ZrO2 systems was not sub-

stantially impacted by applied power.32  CF2 densities, however, were significantly lower at all 

powers (50 –150 W) within the C2F6/ZrO2 system.32  Here, we also employed TR-OES to moni-

tor gas-phase species within FC plasmas and introduced additional complexity to the plasma-

substrate system by using a 3D, microporous material.   

Figure 5.7 depicts relative species density as a function of time throughout a 5 min FC 

plasma treatment with and without a zeolite pellet.  When no substrate is present, [CF2] is greater 

than the other species in both the C2F6 and C3F8 systems.  Moreover, little to no emission from 

atomic F or CO is observed in the substrate-free discharges.  This is logical as the only source of 

oxygen in the plasma would arise from etching of the glass reactor walls, which has not previ-

ously been observed for these systems under the conditions used here.   
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Figure 5.7. Relative species densities within C2F6 (a,b) and C3F8 (c,d) discharges without (a,c) 
and with (b,d) a zeolite pellet in the coil region (p = 100 mTorr, P = 50 W).  
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The low level of atomic F is also expected as the relatively low applied rf power does not fully 

fragment the feed gases.  Cuddy and Fisher also measured small amounts of F* within 50 mTorr 

C2F6 plasms at a range of powers (50 – 150 W).32  Upon addition of a zeolite pellet, the produc-

tion of CF2 appears largely unaffected, Figure 5.7c and 5.7d, as nominally these data are within 

experimental error of and comparable to the substrate-free system, regardless of precursor.  

There are, however, slightly elevated amounts of F in the C2F6 /zeolite discharge (t = 5 min, 

0.044 ± 0.0065) compared to C3F8/zeolite system (t = 5 min, 0.015 ± 0.0090).  Additionally, [F] 

marginally increased from 0.030 ± 0.0056 to 0.044 ± 0.0065 throughout the 5 min C2F6 zeolite 

treatment, indicating this plasma condition may lean towards an etching regime.  Within CF4 dis-

charges, a prototypical etchant system, Cuddy and Fisher measured more atomic F than CF2 dur-

ing plasma processing of Si (P ≥ 75 W) and ZrO2 wafers (P ≥ 50 W).32  These results suggest 

atomic F has an important role in the resulting etching or deposition capacity of the plasma, how-

ever, it is important to note that only excited state species are probed via OES.  Ground state neu-

trals and ions (e.g., CF3
+)33 can also impact plasma behavior and the resulting material modifica-

tion.  

Within C2F6 discharges, [CO] significantly increases in the presence of a zeolite pellet and 

appears to increase linearly as a function of time.  This suggests either oxygen is being removed 

from the surface and undergoing subsequent reactions in the gas phase (Figure 5.7c) to form CO 

or that intact CO is being removed (etched) from the surface.  In addition, we see a steady rise in 

the amount of CF in the gas phase over time, whereas without a substrate [CF] remains relatively 

constant as a function of time.  This could indicate that some FC material is being deposited on 

the pellet and subsequently removed from the surface as it evolves.  Regardless of the exact 

mechanism, these gas-phase data bolster the hypothesis that a C2F6 plasma at p = 100 mTorr, 
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P = 50 W operates in an etching regime, which may help explain the observed increase in surface 

wettability measured via WCA (Figure 5.6).  Within the C3F8/zeolite system, there is an increase 

in signal arising from CO upon the addition of a zeolite pellet, Figure 5.7d, but we do not ob-

serve significant increases over time.  This further supports the idea that significant competition 

between etching and deposition occurs within all FC discharges; however, ultimately a hydro-

phobic coating is deposited in the C3F8 plasma.  As a final observation regarding the etch-deposi-

tion competition, representative SEM images of untreated and FC plasma treated zeolites are il-

lustrated in Figure 5.8.  After C2F6 plasma exposure (100 mTorr 50 W, 5 min), there is evidence 

of potential surface etching (Figure 5.8b, denoted with red box), compared to SEM images of un-

treated (Figure S1a) and C3F8 plasma treated pellets (Figure 5.8c).  Additionally, the individual 

features in the C2F6 treated sample appear to have rougher edges compared to the smoother, 

more rounded features observed in the C3F8 treated material.  By using complementary tech-

niques to evaluate surface wettability and morphology, as well as the relative densities of plasma 

species, a more comprehensive understanding of plasma –zeolite interactions can be obtained.  

Specifically, the increased absorption rate (verified via WCA); evidence of etched trenches and 

jagged features in the material (SEM); and elevated formation of CO(g) species combine to sup-

port the hypothesis that surface etching is occurring during C2F6 plasma processing of zeolite 

pellets.  Here, WCA was employed to provide further indicators of film deposition (or etching) 

in FC systems. 
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Figure 5.8. Representative SEM images (7000x) of (a) untreated, (b) C2F6, and (c) C3F8 plasma 
treated (p = 100 mTorr, 50 W, t = 5 min) zeolite pellets. 
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Table 5.1 lists static WCA values obtained for C3F8 plasma-modified zeolites as a function of 

applied power and system pressure, where all treatments were 5 min with the pellet in the coil 

region (Figure 2.1a).  At P = 50 W, contact angles increased from 123.9 ± 4.3 ° to 135.5 ± 2.2 ° 

with increasing system pressure.  All other plasma conditions yielded static WCA values that 

were within experimental error of each other, however under all treatment conditions a hydro-

phobic surface was observed.  Substrate positioning in the discharge can also impact the result-

ing surface properties, therefore changing the placement within the discharge may allow for ad-

ditional surface property optimization.  Additionally, Hawker et. al determined a linear relation-

ship between FC film thickness and C3F8 deposition time (p =50 mTorr, P = 50 W, t = 5 – 90 

min) on Si wafers, therefore longer treatment times could render thicker FC film formation,34 po-

tentially resulting in blanket-type coatings of the zeolite features, as opposed to the relatively 

conformal coatings observed here. 

Noted in the Introduction, system pressure, applied rf power, and treatment time are operat-

ing conditions that can heavily influence the plasma modification processes, specifically the bal-

ance between etching and deposition within FC systems.  To understand the extent of these influ-

ences, plasma operating parameters were varied to determine conditions that ultimately resulted 

in some FC deposition after exposure to a C2F6 discharge, verified via WCA.  A static CA of 

19.4 ± 4.5 ° was obtained at p = 50 mTorr, P = 25 W, t = 5 min, the lowest power and pressure 

studied herein.   
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Table 5.1. Static WCA values C3F8 plasma-modified zeolite pelletsa
 

P (W)  p (mTorr) WCA (°) 

25 50 138.2 (4.4) 
100 134.5 (2.6) 

50 50 123.9 (4.3) 
100 135.5 (2.2) 

100 50 130.1 (2.2) 
100 132.3 (8.0) 

aAll analyses were performed for an n = 9; the mean standard deviation are reported 
bTreatments were performed in the coil region for 5 min. 
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Cuddy and Fisher measured the propensity of CF and CF2 molecules to scatter from Si and ZrO2 

substrates using the Imaging of Radicals Interacting with Substrates (IRIS) technique, reporting 

scatter coefficients (S) as a function of CxFy precursor and operating parameters.32,35  At 50 

mTorr, S(CF2) from a Si wafer increased from 1.28 ± 0.02 to 1.65 ± 0.08 as power increased 

from 50 to 150 W.  Scatter values greater than unity indicate surface production of CF2.  Addi-

tionally, CF2 species and oligomeric units are hypothesized to contribute to surface passivation 

and fluorocarbon film formation.35  Therefore, at p = 50 mTorr and low powers (i.e., 25 W), it is 

likely less CF2 scatter occurs, suggesting these parameters promote CF2 reactivity at a surface 

and subsequent film deposition.  Although this material is not hydrophobic, a stable droplet re-

mained on the surface compared to the complete absorption documented for the untreated pellets.  

At the same experimental conditions, a 138.2 ± 4.4 ° static WCA was measured after C3F8 

plasma exposure (Table 5.1).  Illustrated in Figure 5.9, the inset photographs highlight the differ-

ence in resulting material wettability after the two different plasma treatments.  XPS was also 

used to study the resulting surface chemistry after plasma exposure.   

Figure 5.9 depicts high-resolution XPS spectra for C3F8 and C2F6 treated zeolite pellets 

(p = 50 mTorr, P = 25 W, t = 5 min), revealing several CFx surface moieties present after C3F8 

treatment (Figure 5.9a).  Additionally, the majority of the F is bound to C species, with a much 

smaller amount bound to Si in the underlying zeolite, Figure 5.9b.  Figure 5.9c and 5.9d show the 

C1s and F1s binding environments for C2F6 treated pellets.  Notably, a similar array of CFx bind-

ing environments is observed; however, the majority of the carbon (54.3 ± 3.7 %) resides in an 

aliphatic C-C/C-H environment (284.8 eV), suggesting low levels of CFx species from a depos-

ited FC film.  Furthermore, in the corresponding F1s spectrum, the fluorine is almost equally split 

between F-C and F-Si binding environments, Figure 5.9d.   
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Figure 5.9. High-resolution XPS spectra for C3F8 (a, b) and C2F6 (c,d) plasma treated zeolite pel-
lets (p = 50 mTorr; P = 25 W; t = 5 min) are shown for C1s (a,c) and F1s (b,d) binding environ-
ments. Inset are photographs of water drops with 138.2 ± 4.4 ° and 19.4 ± 4.5 ° static WCAs 
measured on (a) C3F8 and (b) C2F6 plasma treated zeolites. 
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Cuddy and Fisher previously measured deposition rates of 1.0 ± 0.1 and 3.4 ± 0.4 nm/min for 

C2F6 and C3F8 rf ICPs, respectively (p = 50 mTorr).35  The increased deposition rate for the C3F8 

precursor corroborates the increased hydrophobicity of the zeolite pellet compared to the C2F6 

modified materials.  Although the aforementioned deposition rates were determined on Si wafers 

and not explicitly on the zeolite materials studied herein, we believe the same trends would hold 

and note that it is difficult to accurately measure film thickness on a 3D, porous substrates.34   

C2F6 treatments at other applied powers and system pressures increased the water absorption 

rate, compared to the untreated pellet, Table 5.2.  At P = 100 W, absorption rates increased from 

0.35 ± 0.1 uLs-1 to 0.89 ± 0.2 uLs-1 as pressure was increased from 50 to 100 mTorr.  Interest-

ingly, the opposite trend was documented at P = 50 W, where an increase in pressure corre-

sponded to a decrease in absorption rate.  Although a clear relationship between power, pressure, 

and resulting material wettability was not determined, these data highlight the ability to modify 

the surface properties via CxFy plasma exposure.  FC film growth is hypothesized to be more ef-

ficient as the y/x ratio of CxFy precursors is decreased,31 a notion that is supported by the data 

provided in Tables 5.1 and 5.2.  Additives to FC plasmas can be employed to increase the depo-

sition or etching efficiency of the plasma system; H2 additions have been shown to promote dep-

osition whereas O2 additives tend to favor etching regimes.31  Utilizing WCA as a tool to meas-

ure outcomes, we sought to quantify wettability behavior of zeolite pellets after exposure to a 

range of CxFy precursors, as well as adding dilute amounts of H2 and O2 to the gas feed.   

Figure 5.10 shows WCA (°) as a function of the F/C ratio within a CxFy precursor, where di-

lute amounts of O2 or H2 (e.g., ~10 %) were added to promote surface etching or polymerization, 

respectively.  As the F/C increases to 4 (CF4), the discharges nominally primarily etch the mate-

rials, where a wettable surface is indicated by a WCA < 10°.   
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Table 5.2. Average absorption rate for plasma-modified zeolite pelletsa
 

Precursor  P (W)  p (mTorr) Rate (μL/ s) 
Untreated -  -  0.19 (0.022) 

C2F6  

25 
50 --b

 

100 0.39 (0.15) 

50 
50 0.53 (0.17) 
100 0.26 (0.078) 

100 
50 0.35 (0.10) 
100 0.89 (0.20) 

aAll analyses were performed for an n = 6 – 9 
bStatic WCA of 19.4 (4.5)°   
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Figure 5.10. WCA as a function of F/C ratio, where WCA <10 ° describes a hydrophilic surface, 
where the water droplet was completely absorbed by the material. All treatments were performed 
at p = 50 mTorr; P = 25 W; t = 5 min. 10% H2 (green triangles) or O2 (blue triangles) were 
added to feed gas. The dashed line is intended to guide the reader’s eye to separate polymeriza-
tion and etching regimes. 
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When H2 was added to C2F6, the overall process shifts to deposition, with a hydrophobic coating 

being deposited, as evidenced by high WCA values, (Figure 5.10).  Note that the dashed line in 

Figure 10 is intended to guide the reader’s eye and was fashioned after a similar illustration de-

veloped by d’Agostino and coworkers who demonstrated hydrogen addition to C2F6 discharges 

increases the distribution of CFx groups within the deposited material.31  Specifically, “Teflon-

like” films were created from a  C2F6 /H2 (80/20) discharge, where the film is nominally com-

posed of only CF2 groups.  These CF2 thin films were obtained after seconds of plasma exposure.  

At longer discharge durations (e.g., the 5 min exposure used here), a large CF2 binding environ-

ment is present in the XPS C1s spectrum after C2F6 /H2 (90/10) plasma treatment; however, addi-

tional carbon moieties are also observed, Figure 5.11.  Additionally, only a F-C binding environ-

ment (689.0 eV) was measured in the corresponding F1s spectrum, Figure 5.11b.  The underling 

(SiO)x network was not detected, suggesting the film was at least as thick as the 10 nm XPS sam-

pling depth.36 

Table 5.3 details XPS atomic composition of zeolites after FC plasma treatments.  Upon H2 

addition to a C2F6 discharge, the amount of C on the surface increased from 23.5 ± 1.9 to  

41.3 ± 0.7 % and the amount of F embedded increased from 40.3 ± 7.3 to 57.9 ± 1.1 Addition of 

hydrogen to discharges is hypothesized to deplete the amount of F(g) in the system, and thereby 

decrease etching capabilities.31  Cuddy proposed excited state H(g) reacts with CF2 to form gase-

ous CF and HF species, although this phenomena was only observed for H2 dilutions ≥ 50 %.37  

The inset SEM image in Figure 5.11b also suggests the formation of a film on the microporous 

material.   
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Figure 5.11. High-resolution (a) C1s and (b) F1s XPS spectra for C2F6:H2 treated zeolite pellets 
 (p = 50 mTorr; P = 25 W; t = 5 minutes). Inset corresponds to representative SEM image after 
the same plasma conditions (7000x). 
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Table 5.3. XPS atomic composition of FC plasma treated zeolitesa,b,c
 

  C (%) O (%) Si (%) Al (%) F (%) 

UT native 19.7 (4.8) 58.4 (3.2) 17.5 (1.4) 4.4 (0.6) -- 

UT pelletb
 22.7 (7.0) 57.5 (4.0) 15.5 (2.6) 4.4 (0.6) -- 

C3F8 34.5 (1.5) 9.3 (2.4) 3.7 (0.8) -- 52.5 (4.0) 

C2F6 23.5 (1.9) 22.6 (6.6) 8.5 (2.2) 5.1 (0.4) 40.3 (7.3) 

C2F6/H2
c
 41.3 (0.7) < 1.0 -- -- 57.9 (1.1) 

aAll analyses were performed for an n = 6 – 9; standard deviation from mean are reported 
b Previsouly reported38 
c~10% H2 dilution 
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Although C2F6/H2 processing resulted in a hydrophobic coating, the materials were still wettable 

after a CF4/H2 plasma treatment, suggesting etching still predominates in this system.  Interest-

ingly, the C3F8/O2 system also resulted in a hydrophilic surface, whereas the addition of O2 to 

C3F6 did not impact the overall wettability.  These data exemplify the tunability of plasma pro-

cessing as a robust avenue for surface modification.  

Non-thermal O2 plasmas are commonly used to etch materials, as well as increase the amount 

of oxygen functional groups on the material surface.  These include numerous studies of O2 

plasma treatments of nanomaterials, carbonaceous materials, and polymers.  For example, Stuck-

ert and Fisher used Ar/O2 plasmas to etch the surface of SnO2 nanomaterial gas sensors to create 

surface oxygen vacancies, ultimately to fabricate an improved gas sensors.39,40  Nevertheless, 

modification of zeolites via O2 plasma processing has not been widely documented, with few 

studies reporting extensive materials characterization before and after plasma exposure.  De Ve-

lasco-Maldonado et al. used an rf at 13.56 MHz O2 plasma [p  = 1 mbar (~750 mTorr), P = 75 

W, t  = 9 min] to modify natural clinoptilolite, systematically analyzing potential changes in 

morphology, chemical functionality, and performance before and after plasma treatments.41  Ulti-

mately, these authors argue the plasma conditions they studied had little to no effect on chemical 

or structural properties of the clinoptilolite, using FT-IR with an attenuated total reflectance, 

XRD, and SEM.41  Plasma processing is nominally a surface-sensitive modification, therefore 

XPS and WCA goniometry can provide information regarding changes to the first ten nanome-

ters of the material, compared to bulk properties.42  These characterization techniques were em-

ployed by Ammerlahn and Fisher after plasma modifying zeolite pellets (8-12 mesh, 4 Å pore 

size.1  An increase in surface oxygen after O2 rf ICP plasma treatments [at 100 mTorr, 200 W, 
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8 min] was observed,1 including a substantial increase in Si(-O)4 binding environments in the 

high-resolution Si2p XPS spectrum.  Dynamic water contact angle was performed with drop sizes 

of 5 μL, where H2O and O2 plasma treatments increased surface wettability.1  Gao et al. report 

the successful modification of mesoporous silica SBA-15 pore channels with an O2 dielectric 

barrier discharge (DBD).43  Fahmy et al. modified zeolite-A materials using rf O2 plasmas to in-

crease cadmium ion adsorption capabilities.44  The authors argue -OH functionality is necessary 

to increase Cd adsorption capacity, where O2 plasma ignition generates a variety of energetic ox-

ygen species, which subsequently interact with adsorbed H2O within pores to generate OH radi-

cals.44  As H2O(v) discharges also generate gas-phase OH radicals and O-containing species, we 

used OES to examine an H2O(v)/Ar (90/10) plasma without and with a zeolite pellet, Figure 5.12.  

Emission from OH, H2, atomic H, O, and Ar are observed.  Moreover, the Fisher Group has pre-

viously documented the efficacy of  H2O(v) treatments to improve the wettability of numerous 

polymeric constructs, including filtration membranes, scaffolds, and fibers.45,46  Therefore, we 

further explored using this system to achieve hydrophilic modification of zeolite materials.   

As shown in Figure 5.6, H2O(v) treatment [100 mTorr, 50 W, 5 min] increased the absorption 

rate to 0.56 ± 0.10 μLs-1.  As detailed in Table 5.4, increasing the power from 50 to 100 W sig-

nificantly impacted the absorption rate, as a 1.64 ± 0.085 μLs-1 rate was measured following a 

100 W, 100 mTorr, 15 min treatment.  In contrast, increasing treatment time from 5 to 15 min 

had no noticeable effect on the absorption rate at either power studied here.  Material morphol-

ogy was also maintained for native and zeolite pellets after 5 and 15 min treatments, illustrated in 

Figure 5.13.  In addition, the relative densities of Hα, OH, and atomic O were measured as a 

function of time with no substrate and with a zeolite pellet in the coil, Figure 5.14a and 5.14b, 

respectively.  
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Figure 5.12. Representative OES spectrum without (bottom) and with zeolite pellet (top) in an rf 
ICP (100 mTorr, P = 100 W, t =  15 min). 
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Table 5.4. Average absorption rate for plasma-modified zeolite pelletsa,b
 

Precursor  time (min) P (W) Rate (μL/ s) 
Untreated - -  0.19 (0.022) 

H2O 
5 50 0.56 (0.10) 

100 1.29 (0.34) 

15 50 0.55 (0.22) 
100 1.64 (0.085) 

aAll analyses were performed for an n = 3 – 9; the mean standard deviation are reported 
b
p = 100 mTorr 
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Figure 5.13. SEM images of H2O treated (a,b) native zeolite and (c,d) zeolite pellet at magnifi-
cations 4,500x and 5,000x, respectively. Treatment conditions were p = 100 mTorr, 100 W (a,c) 
 t = 5 min, (b,d) t = 15 min.   
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Figure 5.14. Relative density of species within a H2O (100 mTorr, 100 W) plasma system (a) 
with no substrate and (b) a zeolite pellet in the coil region. Error bars represent one standard de-
viation from the mean (n = 3).  
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 In the substrate-free H2O plasma, the relative densities of atomic O and OH do not change over 

time, however, a slight exponential decay of Hα is measured, Figure 5.14a.  The addition of a ze-

olite pellet directly impacted the density of gas-phase species, as the amount of OH in the dis-

charge increases until ~4 – 6 min and a subsequent decrease is documented as time increases to 

15 min, Figure 5.14b.  A similar temporal behavior was also measured for Hα emission, Figure 

5.14b.  These data suggest the addition of a microporous zeolite impacts the resulting gas-phase 

chemistry, potentially also altering surface functionality after H2O(v) plasma exposure. 

XPS atomic compositions for H2O(v) treated native and zeolite pellets are listed in Table 5.5, 

as well as computed O/Si and O/C ratios.  The resulting O/C ratios for native (5 min) and pellet 

(5 and 15 min) zeolites increased from ~2.5 – 2.8 (untreated) to ~4 – 4.7 after plasma treatment.  

Interestingly, as time increases from 5 to 15 min for the native substrates, the O/C ratio increases 

from 2.6 ± 0.5 to 4.6 ± 0.9, where the O/C ratios are within experimental error for the 5 and 15 

min treated pellets.  Often, uniquely shaped materials (e.g., nanoparticles, nanowires) are sus-

pended in a solution (e.g., methanol or ethanol) and then applied to glass or Si substrates prior to 

plasma treatment.39,47,48  Native zeolite powder was secured to glass slides with C tape for SEM 

analysis, where isolated zeolites are visible at 25x magnification (Figure 5.1a), compared to the 

smoother surface of the zeolite pellet at the same magnification (Figure 5.1b).  These morpholog-

ical differences may explain the need for a longer treatment time (15 min) to oxidize the 3D na-

tive zeolites.  Additionally, these materials may benefit from utilizing a rotating reactor system, 

wherein the free, unsupported particles are rotated throughout plasma processing.49  A rotating 

drum rf reactor that can be interfaced to the plasma reactor shown in Figure 1c, was previously 

employed to functionalize Fe2O3 nanoparticles via allyl alcohol discharges.50   
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Table 5.5 XPS atomic compositions for untreated and H2O (v) treated zeolite constructsa,b
 

precursor  construct t (min)  C (%) O (%) Si (%) Al (%) Si/Al O/Si O/C 

untreated 
native -- 19.9 (4.8) 58.4 (3.2) 17.5 (1.4) 4.4 (0.6) 3.8 (0.6) 3.5 (0.3) 2.5 (0.4) 
pellet -- 22.7 (7.0) 57.5 (4.0) 15.5 (2.6) 4.4 (0.6) 3.5 (0.2) 3.8 (0.5) 2.8 (0.8) 

H2O 

native 
5 22.3 (3.4) 55.9 (2.1) 17.1 (1.2) 4.8 (0.5) 3.5 (0.4) 3.3 (0.1) 2.6 (0.5) 
15 14.0 (2.4) 62.5 (1.3) 20.6 (0.7) 2.8 (2.3) 3.2 (2.6) 3.0 (0.1) 4.6 (0.9) 

pellet 
5 13.6 (1.2) 63.7 (1.4) 17.5 (0.3) 5.2 (0.3) 3.4 (0.2) 3.6 (0.1) 4.7 (0.4) 
15 15.2 (1.4) 60.4 (0.8) 19.3 (0.7) 5.2 (0.2) 3.7 (0.3) 3.1 (0.08) 4.0 (0.4) 

aAll analyses were performed for an n = 9; the mean standard deviation are reported 
bTreatments were performed at p = 100 mTorr, P = 100 W in the coil region 
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These preliminary results reporting H2O(v) treatments of the native zeolites were included here to 

highlight the wide tunability of plasma processing, where operating conditions (e.g., power, pres-

sure, time), discharge configuration (e.g., static, rotating, pulsed), and precursors (O2, H2O, allyl 

alcohol) can be varied to optimize performance for a given application.   

The placement of a substrate within the plasma reactor can impact the resulting surface func-

tionalization.  For example, previous work in the Fisher group showed that positioning polymeric 

ultrafiltration membranes downstream within an H2O(v) plasma increased hydrophilicity while 

avoiding damage to the polymeric material.45,46  Polymers are particularly suspectable to mor-

phological damage at increased pressures and powers; therefore H2O(v) treatments of these mate-

rials are usually at P ≤ 50W or positioned downstream from the energetic coil region.45,46,51  The 

zeolites, however, were exposed to an H2O(v) plasma (100 mTorr, 100 W) for 15 min without 

substantial morphological changes, Figure 5.13.  Nevertheless, a substrate position study was 

performed, where wettability was measured for pellets treated 15, 20, and 35 cm downstream 

from the upstream side of the coil (Figure 2.1b).  Detailed in Table 5.6, absorptions rates were 

within experimental error following a p = 100 mTorr, P = 100 W, t  = 5 min treatment, regard-

less of position in the reactor.  Under these conditions, the plasma visually appears homogenous 

throughout the entire length of the reactor, therefore it is likely energetic plasma species (e.g., O, 

OH, H) are still interacting with downstream substrates.  To further assess this hypothesis, a dis-

tance study was performed at p = 100 mTorr, P  = 25 W, t = 5 minutes, Table 5.6.  Preliminary 

data reveal a 20 cm downstream placement yields an enhanced absorption rate for materials 

treated at P = 25 W.  As the zeolite is placed farther downstream (35 cm), the absorption rate de-

creases to 0.63 ± 0.10 μLs-1, likely due to fewer energetic species-surface interactions.  
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Table 5.6. Average absorption rate for plasma-modified zeolite pelletsa,b
 

Precursor  distance (cm) P (W) Rate (μL/ s) 
Untreated -- -- 0.19 (0.022) 

H2O 

coil 25 0.45 (0.052) 
100 1.29 (0.34)  

15 25 0.77 (0.048) 
100 0.90 (0.09) 

20 25 0.97 (0.033) 
100 1.01 (0.28) 

35 25 0.63 (0.10) 
100 0.96 (0.26) 

aAll analyses were performed for an n ≥ 3; the mean and standard deviation are reported 
b
p = 100 mTorr, t = 5 minutes 
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Figure 5.15. PXRD patterns for NaX reference zeolite; untreated native 
(as-received), ground, and pressed zeolite pellets; as well as C3F8, C2F6, and H2O treated zeolite 
pellets. All treatments were performed at 100 mTorr, 100 W, 5 minutes.  
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These data show the ability to increase the hydrophilicity of zeolite pellets with an H2O(v) plas-

mas, without generating excess waste (i.e., acid modification).   

Described in Section 5.1, acid and CF4 plasmas have previously introduced structural damage 

to the zeolite framework.  Plasma modification, however, is often described as a powerful strat-

egy to modify surfaces while maintaining bulk properties.  Therefore, PXRD data were collected 

through each step of the pellet fabrication process, as well as after FC and H2O plasma treat-

ments, Figure 5.15, to assess any changes in material crystallinity.  The black trace corresponds 

to a reference NaX diffraction pattern obtained from the International Zeolite Association data-

base.52  The diffraction patterns depicted in Figure 5.15 nominally demonstrate the bulk crystal-

linity of the material is unaffected by the formation of pellets or by plasma processing.   

5.3 Summary 

Zeolites are microporous, aluminosilicate materials that, despite their extensive use in a vari-

ety of applications, the ability to control the surface properties of zeolites remains unoptimized.  

Here, plasma modification strategies were employed over a range of fluorocarbon precursors, as 

well as H2O(v) to tune the wettability of zeolite substrates.  XPS analysis revealed surface fluori-

nation and/or formation of hydrophobic coating on the material under conditions when the F/C 

ratio of the feed gas is lowered.  Under certain experimental conditions, C2F6 plasma treatments 

created a more hydrophilic surface, suggesting competitive etching and depositing regimes 

within fluorocarbon plasmas that are heavily influenced by operating conditions and precursor.  

H2O(v) plasmas were also employed to create a more hydrophilic zeolite surface, while maintain-

ing a porous, interconnected network.  Regardless of surface treatment, the bulk crystallinity of 

the zeolite constructs was unchanged, verified by X-ray diffraction. 
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By also studying the gas-phase, we can glean how the material changes the plasma environ-

ment.  Time-resolved emission spectroscopy was employed to in situ probe relative densities of 

key gas-phase species.  The increased density of etch products (i.e., CO) in the gas-phase further 

corroborate the competing surface modification processes within fluorinated plasma systems.  

Moreover, our approach to understand the fundamental plasma chemistry allows us to provide 

significant insight into mechanisms that will ultimately provide a more thorough evaluation of 

plasma processing for zeolite surface modification.  In addition to the surface modification of ze-

olite pellets, brief coverage of a zeolite-fiber fabrication scheme with plasma calcination is pro-

vided.  After electrospinning zeolite-PVP fibers, O2 and Ar plasmas were used to remove the 

polymeric phase, ultimately revealing zeolite fibers.  Consequently, plasma technology has an 

enormous potential to modify and fabricate new zeolite constructs, increasing the potential utility 

and performance of these microporous materials.  Ultimately, the study herein revealed im-

portant connections between gas-phase species, the gas-surface interface, and the resulting 

plasma modified surface properties for zeolite materials. 
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CHAPTER 6 
 

USING FUNDAMENTAL SPECTROSCOPY TO ELUCIDATE KINETIC AND ENERGETIC 
MECHANIMS WITHIN ENVIRONMENTALLY RELEVANT INDUCTIVELY COUPLED 

PLASMA SYSTEMSa 
 

This chapter focuses on energy partitioning for NO and N2 molecules formed from several 

nitrogen- and oxygen-containing plasma systems.  The work presented here examines plasma 

gas-phase phenomena, with a focus on the determination of electron, vibrational, and rotational 

temperatures for both nitric oxide and molecular nitrogen as a function of plasma parameters.  

These energetic data have been combined with kinetic rate constants, determined previously by 

Dr. J. M. Blechle,1 to provide a more holistic approach to understanding gas-phase plasma 

phenomena. 

  

 

a
 Reproduced with permission from an invited article published in Journal of Physical Chemistry 

A virtual special issue “Veronica Vaida Fetschrift” by Angela R. Hanna, Joshua M. Blechle, and 
Ellen R. Fisher. 
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6.1 Introduction 

Nitrogen oxides (NxOy) have long been the focus of numerous research investigations, from 

fundamental characterization to technologically relevant advancements.2-4  A seemingly simple 

heteronuclear diatom, NO is the object of significant inquiry, as it participates in many biological 

processes including blood pressure regulation, coagulation, antimicrobial action, and controlled 

drug release.5-8  NOX have also been studied because of their environmental impact, where 

reactions between nitric oxide and related byproducts can be detrimental to the atmosphere.9  

The need to understand reactions involving NxOy species arises from a distinct concern with 

increasing water and air pollution, where anthropogenic sources such as industrial and vehicular 

combustion are major pollution contributors.  The byproducts of NxOy reactions, closely 

monitored by the Environmental Protection Agency, include contaminates that contain primarily 

NxOy species, carbon monoxide, lead, particulate matter, and volatile organic compounds 

(VOCs).10,11  Both NxOy species and VOCs can react with sunlight to produce photochemical 

smog,9 where secondary organic aerosols (SOA) can be produced in the atmosphere through the 

oxidation of VOCs.  These aerosols are a major component of fine particle pollution and have 

been linked to heart and lung disease.12,13 

In the arena of fundamental atmospheric science, Vaida and co-workers have investigated the 

molecular mechanisms and dynamics of sunlight-initiated atmospheric reactions, where the 

nature of photochemistry is both molecule and environment-specific.14  Utilizing fundamental, 

gas-phase spectroscopy, Vaida and co-authors identified and characterized vibrational overtone 

transitions of the OH-stretch within pyruvic acid, a key species in SOA formation.15   

Understanding foundational spectroscopic principles is essential to understanding the role of 

these compounds within the atmosphere, a holistic approach that is directly parallel to the work 
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presented herein.  Furthermore, spectroscopic analysis is a key methodology employed to 

examine the dynamics of unimolecular reactions, where knowledge of mechanisms and kinetic 

formation for multiple electronic states can be obtained.14,16  It is of fundamental and practical 

importance to elucidate the physical and chemical properties that are determining factors in the 

lifetime and atmospheric impact of environmentally-relevant species, such as SOA, VOCs, and 

NxOy. 

One technique to abate atmospheric pollutants (e.g., NxOy derivatives) from vehicular 

exhaust is via three-way catalytic converters (TWCs).17  Since the implementation of TWCs in 

vehicles in 1981, nitrate levels in various water sources throughout the United States have 

decreased.18  Using catalytic processes, several approaches have been explored to improve NO 

decomposition and nitrogen oxide species removal.  These efforts include the investigation of a 

range of catalytic materials, photocatalytic decomposition, and plasma-assisted catalysis 

(PAC).19-21  PAC has been recently investigated because of the non-thermal nature of the 

plasmas employed (allowing access to thermally unfavorable processes), as well as the enormous 

potential to increase feed gas conversion.22  The state of knowledge regarding PAC systems 

remains largely phenomenological;23 ultimately for PAC to become a viable method for pollution 

control, the fundamental chemistry of precursor gases must be fully elucidated, before and after 

substrates are introduced to the discharge.24 

Optical plasma diagnostics provide a non-intrusive platform to obtain molecular-level 

information; from measuring energy partitioning in gas-phase species (electrons, neutral and 

excited species) and the kinetics of species formation and destruction.25  For example, 

understanding how energy is dispersed into rotational and vibrational modes of a particular gas-

phase molecule during NxOy plasma processing can provide insight into molecule formation 
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mechanisms, decomposition pathways, and overall plasma chemistry.26,27  Several spectroscopic 

techniques have been used to measure rotational (TR) and vibrational temperatures (TV) of plasma 

species, including Doppler broadening analysis of spectral lines,28 laser-induced fluorescence,29 

optical emission spectroscopy (OES),30 and broadband absorption spectroscopy (BAS).31-33  All 

have inherent advantages (e.g., non-intrusive, molecule-specific) and disadvantages (e.g., limited 

to molecules with optically-active transitions; limited to either excited or ground state 

molecules); therefore, we have employed a combination of spectroscopic techniques (OES and 

BAS) to achieve a more complete examination of plasma phenomena.  

Non-thermal, low temperature plasmas comprise a variety of high energetic electrons, ions, 

atoms, and molecules; plasma molecules typically follow a relationship wherein TV is greater 

than TR or translational temperatures, and each of these characteristic temperatures is 

significantly lower than electron (Te) and ion temperatures.34,35  Although N2 energetic studies 

have been performed for various plasma sources,36-38 there is a lack of foundational data for 

energy partitioning within plasma systems relevant to PAC.  We have also employed time-

resolved OES (TR-OES) to probe changes in plasma species density over time, yielding insight 

into the possible mechanisms of species formation and decay within NxOy plasma systems.  The 

use of TR-OES to examine the temporal evolution of plasma species has been limited,39-41 

especially regarding the formation of molecular species within continuous-wave systems.  

Therefore, this work seeks to demonstrate the utility of TR-OES in elucidating formation kinetics 

and relevant mechanistic information for continuous-wave, non-thermal plasma systems.42,43 

For this study, we performed two different sets of experiments to determine some of the 

fundamental plasma chemistry: (1) examining energy partitioning within steady-state, continuous 

wave plasmas and (2) measuring rate constants with TR-OES.  The BAS and OES data presented 
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herein focuses on exploiting absorption and emission transitions, respectively for N2 (B3Πg ↔ 

C3Πu) and NO (X2Π↔ A2 Σ+) to determine energy distributions within N2, N2O, and mixed 

N2/O2 plasmas.  In addition, we use TR-OES data to determine formation and destruction rate 

constants.  These results are also compared to previously reported results from 100% NO 

plasmas.31  By using multiple techniques, with a focus on in situ probing of plasma chemistry, a 

more complete understanding of plasma chemistry phenomena can be gained, regardless of end 

applications. 

6.2 Results 

The data presented herein focus on the gas-phase energy distributions between multiple 

degrees of freedom within NxOy plasma systems and the corresponding kinetic relationships.  A 

multitude of ground and excited state species are generated in these systems, paramount of these 

are NO and N2, as they are the primary pollutant and the desired by-product in remediation 

systems, respectively.  Thus, we have examined the energetics (Te, TV, and TR) and kinetics (kf 

and kd) of NO and N2 as a function of plasma parameters (power, pressure, and precursor). 

Plasma Energetics.  Energy partitioning within a plasma can be difficult to measure as a 

plethora of species are simultaneously created and destroyed.  Moreover, these species and their 

concentrations are known to vary significantly with a range of plasma parameters.  In general, 

determining the characteristic temperatures (electron, vibrational, rotational, etc.) can provide a 

more complete picture of the energetics within the plasma system.  Therefore, Te values were 

determined from OES spectral lines, as described in detail previously,32 to characterize the role 

of electrons.  Table 6.1 lists Te values for N2, N2O, and NO plasmas at p = 50 mTorr, P = 25 – 

175 W.   
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Table 6.1.  Te for selected plasma systems, p = 50 mTorra   
P (W) N2 (eV) N2O (eV) NO (eV) 

25 1.63 (0.03) 1.53 (0.02) 1.61 (0.02) 
50 1.62 (0.03) 1.59 (0.02) 1.66 (0.03) 
75 1.61 (0.02) 1.59 (0.02) 1.63 (0.03) 
100 1.60 (0.02) 1.60 (0.03) 1.62 (0.03) 
125 1.61 (0.03) 1.62 (0.03) 1.63 (0.03) 
150 1.64 (0.03) 1.64 (0.03) 1.64 (0.03) 
175 1.64 (0.03) 1.65 (0.03) 1.65 (0.03) 

aCalculated from Ar emission lines.  Values in parentheses represent standard deviation calculated from the 
mean of three trials 
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From these values, Te clearly does not change between the three plasma systems, nor does it 

depend strongly on P over the range studied here.  However, there appears to be a steady, albeit 

small, increase in Te with P in the N2O system (ΔTe = 0.12 eV between 25 and 175 W). 

A representative emission spectrum, acquired with OES, of the second positive system 

(B3Πg C3Πu) in an N2 plasma (p = 100 mTorr, P = 150 W) is shown in Figure 6.1a, along with 

Specair simulated fits to the data, where TR = 340 K, TV. = 4700 K.  Figure 6.1b displays a 

representative absorbance spectrum (B3Πg → C3Πu), acquired with BAS, obtained under the 

same experimental conditions, yielding TR = 315 K, TV = 3500 K.  Important to note, these 

temperature values were determined for a single trial, therefore error is not reported.  The fits 

generated in both Speciar (and LIFBASE) have a minimum 90 % peak correlation. The error 

associated with the reported internal temperatures in this work is the standard deviation from the 

mean of a minimum of three trials.  

To more adequately investigate the energy partitioning between rotational and vibrational 

modes within N2 plasmas, a range of pressures and plasma powers were explored.  Figure 6.2a 

and 6.2b display P and p dependence for both TR and TV in the upper electronic state of N2 

(C3Πu).  Average TR and TV values were also determined for the absorbing, lower electronic state 

N2 species (B3Πg), shown as functions of both P and p in Figure 6.2c and 6.2d, respectively.  

Linear regression analyses for each pressure regime reveals plasma temperatures have a positive, 

linear dependence on P (e.g., R2 ≥ 0.84).  Notably, for both N2 electronic states studied here, 

regardless of experimental conditions, TV values are significantly higher than TR values, a 

phenomenon that is well-documented within non-thermal discharges.35-38  Upon further 

examination of the OES data (Figure 6.2a and 6.2b), we see a clear, direct dependence on P for 

both TR and TV, where both temperatures decrease with increasing system p.  
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Figure 6.1.  A representative (a) emission spectrum and (b) absorbance spectrum for an N2 
plasma system at p = 100 mTorr, P = 150 W.  The simulations to these individual experimental 
spectra were acquired with (a) TR = 340 K, TV = 4700 K and (b) TR = 315 K, TV = 3500 K. 
 

E
m

is
si

o
n

 (
a
.u

.)
Experiment
Simulation

Wavelength (nm)

300 320 340 360

A
b

so
rb

a
n

ce
 (

a
.u

.) Experiment
Simulation

(a)

(b)



178 
 

  

 

Figure 6.2.  Average TR (a,c) and TV (b,d) values for N2 determined from the emission (a-b) and 
absorbance (c-d) within N2 plasmas are plotted as a function both of p and P.  Error bars 
represent ±1 standard deviation from the mean (n ≥ 3). R2 values are reported from a linear fit. 
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occurring in NxOy systems.  We therefore expanded our energy partitioning portfolio by 

choosing a more complex plasma precursor (e.g. N2O) that still leads to formation of both N2 and 

NO.  Figure 6.3 provides representative emission and absorbance spectra for a p = 100 mTorr, 

P = 150 W N2O plasma.  The emission spectrum, Figure 6.3a, contains radiative bands from both 

NO and N2 molecules, but the excited state N2 molecules dominate the spectral character. In 

contrast, there is a clear shift in peak intensity within the N2O absorbance spectrum, Figure 6.3b, 

as the NO peaks dominate.  As discussed elsewhere,44,45 directly comparing peak intensities with 

OES spectra can be problematic due to inconsistencies in excitation and de-excitation pathways 

of different plasma species.  Therefore, OES and BAS were used to determine TR and TV values 

for NO and N2 molecules formed within N2O plasmas, summarized in Table 6.2.  The 

relationship between TV and P is shown in Figure 6.4 for emitting and absorbing NO and N2 

species at p = 100 mTorr.  A linear regression analysis is provided for each molecule (N2 and 

NO) and each electronic transition, indicating vibrational temperatures are directly correlated 

with P in these N2O plasma systems (R2 ≥ 0.90).   

In a separate set of experiments, we used mixtures of N2 and O2 to form our plasma.  In this 

mixed gas system, we varied the % N2 and O2 in the feed gas by means of partial pressure, 

keeping a total system pressure of 100 mTorr.  Figure 6.5 displays excited state TV values for NO 

and N2 at different P, as a function of % N2 in the feed gas.  In these systems, TV depends 

strongly on P, but displays little to no dependence on % N2.  Also, TV values for emitting N2 

molecules are elevated compared to those for emitting NO species.  Tabulated data (including TR 

and TV for both NO and N2) are provided in Table 6.3 (emission data) and Table 6.4 (absorbance  
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Figure 6.3.  Representative (a) emission and (b) absorbance spectra for an N2O plasma, with 
both NO (X2Π ↔ A2Σ+) and N2 (B3Πg↔C3Πu) bands fit.  Internal temperatures are reported 
within inset tables. 
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Figure 6.4. TV values for specific states of N2 and NO are plotted as a function of P for both 
emission and absorbance data from a p = 100 mTorr N2O plasma system.  Values for the lower 
states (N2: B3Πg, NO: X2Π) were derived from absorbance data, values for upper states (N2: 
C3Πu, NO: A2Σ+) were determined from emission data. Error bars represent ±1 standard 
deviation from the mean (n ≥ 3). 
 

Applied rf Power (W)

50 100 150 200

T
V

 (
K

)

3000

3500

4000

4500

5000

5500 N2 (C
3u)

NO (A2+)
N2 (B

3g)

NO (X2)

R2: 0.99

R2: 0.90

R2: 0.997

R2: 0.97



182 
 

  Table 6.2. TR and TV values for NO and N2, determined from emission and absorbance of N2O plasmasa 

p 
(mTorr) 

P 
(W) 

TR (K) TV (K) 

NO (X) NO (A) N2 (B) N2 (C) NO (X) NO (A) N2 (B) N2 (C) 

50 

50 
100 
150 
200 

535 (15) 
550 (5) 

620 (20) 
740 (30) 

550 (15) 
575 (25) 
630 (10) 
670 (20) 

310 (15) 
350 (10) 
350 (25) 
500 (25) 

310 (10) 
320 (10) 
330 (5) 
350 (10) 

3200 (320) 
2200 (140) 
3600 (115) 
4300 (200) 

2500 (20) 
2800 (200) 
2900 (15) 

3400 (100) 

3300 (180) 
3950 (70) 
4500 (50) 
5700 (15) 

3300 (50) 
4000 (60) 
4300 (75) 

5500 (100) 

100 

50 
100 
150 
200 

460 (10) 
520 (10) 
600 (20) 
720 (20) 

535 (10) 
530 (5) 

520 (20) 
500 (20) 

310 (5) 
315 (5) 

320 (10) 
430 (5) 

305 (10) 
310 (5) 
310 (10) 
320 (5) 

3400 (120) 
3850 (70) 
4200 (60) 
4600 (40) 

2900 (60) 
2900 (10) 

3300 (170) 
3600 (140) 

3100 (100) 
3650 (50) 
4300 (80) 
5400 (60) 

3850 (50) 
4600 (70) 

5000 (180) 
5600 (70) 

150 
100 
150 
200 

600 (10) 
640 (10) 
700 (15) 

520 (5) 
585 (5) 

640 (10) 

310 (5) 
325 (5) 

400 (15) 

315 (5) 
310 (5) 
320 (5) 

5200 (70) 
5500 (140) 
6300 (70) 

2900 (30) 
3000 (15) 
3500 (40) 

3400 (115) 
4000 (80) 

5000 (100) 

4700 (80) 
5200 (25) 
5700 (50) 

aFor the NO ground state X2Π (denoted here by X) and the lower, B3Πg, N2 state (denoted here by B) was determined from BAS 
measurements. The NO upper state, A2Σ+ (denoted by A) and the upper C3Πu, N2 state (denoted here by C) was determined via 
OES measurements. 
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Table 6.3. TR and TV values for NO and N2, determined from emission of N2/O2 plasma mixtures 

N2/O2 
p (mTorr) 

P (W) 
TR (K) TV (K) 

N2 NO N2 NO 

25: 75 

50 
100 
150 
200 

-- 
320 (10) 
350 (20) 
440 (20) 

-- 
530 (10) 
560 (15)  
620(15) 

-- 
3900 (80) 
4300 (70) 
5200 (50) 

-- 
3600 (40) 
3800 (40) 
4200 (90) 

50: 50 

50 
100 
150 
200 

310 (5) 
320 (5) 
330 (5) 
350 (10) 

550 (20) 
575 (20) 
630 (10) 
670 (20) 

3300 (50) 
4000 (60) 
4300 (80) 
5500 (100) 

3150 (30) 
3500 (40) 
3700 (20) 
4300 (120) 

75: 25 
100 
150 
200 

350 (10) 
380 (5) 
420 (20) 

600 (5) 
670 (15) 
715 (15) 

4150 (50) 
4800 (80) 
5650 (100) 

3750 (60) 
4000 (80) 
4400 (80) 
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Figure 6.5. TV values as a function of P and % N2 in the feed gas for excited state (a) NO and (b) 
N2, determined via OES. 
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Table 6.4. TR and TV values for NO and N2, determined from absorbance of N2/O2 plasmas 

N2/O2 
p (mTorr) 

P (W) 
TR (K) TV (K) 

N2 NO N2 NO 

25: 75 
100 
150 
200 

330 (5) 
350 (10) 
440 (10) 

600 (20) 
760 (20) 
860 (10) 

3250 (70) 
3500 (50) 
4300 (80) 

4700 (150) 
4900 (60) 
5300 (80) 

50: 50 
100 
150 
200 

320 (10) 
370 (20) 
460(20) 

725 (20) 
780 (10) 
855 (10) 

3300 (40) 
3600 (80) 
4500 (70) 

4600 (200) 
5300 (130) 
5400 (50) 

75: 25 
100 
150 
200 

340 (5) 
360 (10) 
410 (15) 

640 (10) 
670 (15) 
790 (10) 

3400 (120) 
3700 (30) 
4600 (60) 

4400 (170) 
5200 (100) 
5200 (200) 
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data). The analysis of steady-state plasma conditions enables us to illuminate the energy 

distributions occurring within these continuous wave discharges.  

Plasma Kinetics.  Although plasma energetics and species interactions are related to one 

another, temporally-resolved data are necessary to accurately probe the intricate dynamics within 

non-equilibrium environments.  For example, species formation can result from precursor 

decomposition, bimolecular (or multiple) collisions, or plasma-wall reactions, all of which occur 

on very different time scales.34  Here, a small subset of the reaction dynamics in NxOy plasmas 

were evaluated with TR-OES.  Representative raw OES spectra are depicted in Figure 6.6 for 

emission collected from an NO plasma (p = 100 mTorr, P = 200 W) at various time points after 

plasma ignition.  The spectra show an increase in N2 emission intensity from the B3Πu  C3Πg 

transition (290 – 370 nm), corresponding to the time dependence of the species production.  The 

NO emission lines from the X2Π  A2Σ+ transition around 200 – 280 nm also increase in 

intensity as t increases to 0.42 s, although it appears NO decomposes over time, nominally 

recombining to form N2.  These data qualitatively demonstrate there is strong time-dependent 

component of species production and decomposition within these plasma discharges.  As 

described in the Chapter 2, we sought to quantify these interactions through the determination of 

kf and kd to obtain a more accurate description of molecular interactions in NxOy plasma systems.  

Comparing the destruction of NO* (Figure 6.7a) and the formation of N2* (Figure 6.7b) 

within an NO plasma system as a function of p and P allows us to elucidate kinetic trends within 

this parameter space.  Noticeably, at p = 150 and 200 mTorr, kd(NO*) increases slightly as P 

increases (Figure 6.7a).  At p = 100 mTorr, kd(NO*) values increase between 50 – 100 W and are 

significantly higher compared to the other pressures studied, whereas higher powers (200 W) 

show little to no p dependence.  Shown in Figure 6.7b, kf(N2*) values at p = 100 mTorr are also  
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Figure 6.6.  (a) Raw OES spectra collected at t = 0, 0.42, and 1.63 s after NO (p = 100 mTorr, P 
= 200 W) plasma ignition. (b) TR-OES profile, monitoring the relative intensity of N2 with an Ar 
actinometer in a NO (p = 100 mTorr, P = 100 W) plasma.  The rise and decay are fit with 
exponentials to determine first order rate constants of kf and kd, reported to be 16 ± 2 s-1 and  
1.2 ± 0.2 s-1 respectively. 
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Figure 6.7.  Destruction rate constants for (a) NO* and formation rate constants for (b) N2* 
species formed in NO plasmas as a function of P and p. 
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Table 6.5. Calculated values for kf and kd for N2 and NO
a
 

Source p (mTorr) P (W) 
kf (s-1) kd (s-1) 

N2 NO N2 NO 

 

100 

50 17 (4) -- 1.3 (0.5) 4.8 (0.2) 

NO 

100 16 (2) -- 1.2 (0.2) 6.4 (0.2) 
150 15 (2) -- 0.67 (0.02) 4.3 (0.2) 
200 7.3 (0.7) -- 0.68 (0.08) 4.7 (0.2) 

150 

50 4.4 (0.5) -- <0.1 2. 6 (0.1) 
100 5.9 (0.6) -- 0.9 (0.2) 3.7 (0.1) 
150 5.4 (0.7) -- 1.2 (0.02) 4.1 (0.1) 
200 4.6 (0.5) -- 1.0 (0.1) 4.2 (0.2) 

200  

50 3.2 (0.5) -- 6 (1) 2.4 (0.05) 
100 3.3 (0.5) -- 1.1 (0.3) 3.1 (0.04) 
150 7 (1) -- 1.3 (0.2) 3.1 (0.06) 
200 7.7 (0.6) -- 1.1 (0.1) 4.6 (0.08) 

N2O 

100 

50 -- -- 1.6 (0.5) 2.9 (0.2) 
100 5 (2) -- 2.0 (0.3) 4.3 (0.3) 
150 15 (5) -- 2.2 (0.2) 3.3 (0.2) 
200 20 (4) -- 2.0 (0.2) 4.8 (0.2) 

150 

50 -- -- 4.0 (0.6) 3.4 (0.2) 
100 9 (4) -- 2.3 (0.3) 5.0 (0.3) 
150 10 (8) -- 1.6 (0.1) 7.0 (0.3) 
200 6 (1) 11 (8) 1.8 (0.1) 6.9 (0.4) 

200  

50 -- -- 4 (2) 5 (2) 
100 -- -- 3.7 (0.5) 3.3 (0.1) 
150 11 (8) -- 2.9 (0.5) 3.5 (0.1) 
200 10 (3) -- 3.3 (0.4) 2.7 (0.2) 

N2/O2 

100 

50 -- NA 2.5 (0.9) NA 
100 -- NA 1.4 (0.1) NA 
150 -- 3 (2) 1.7 (0.2) -- 
200 -- 1.7 (0.5) 1.8 (0.03) -- 

150 

50 -- NA 1.3 (0.5) NA 

100 -- 1.6 (0.8) 1.4 (0.2) -- 
150 -- 3 (2) 2.1 (0.1) -- 

200 -- 15 (8) 1.9 (0.2) 8 (3) 

200  

50 -- NA  NA 
100 -- 12 (4) 1.4 (0.7) -- 
150 -- 11 (3) 1.3 (0.3) -- 

200 -- 26 (8) 1.3 (0.1) -- 

a“--” represents conditions where non-zero concentrations are seen, but rate constants cannot 
be determined. “NA” represent conditions where formation of NO cannot be observed above 
experimental noise. 
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6.3 Discussion  

As described in the Introduction, plasma assisted catalysis can be a viable tool in pollution 

abatement, however there is a vast data gap in fundamental, gas-phase information.  It is 

necessary to probe the distributions of energy within these non-equilibrium discharges, as they 

have a significant impact on the chemistry occurring in these systems.  As described in Chapter 

2, continuous wave discharges were ignited via rf power, where energy from the rf source can be 

transferred to electrons, internal and translational energy of atoms, molecules, and ions.  We first 

examined the energetics of electrons due to their crucial role in governing the overall plasma 

chemistry; electrons in the plasma gain energy from the external electromagnetic field and 

transfer that energy to excite and sustain the plasma.34  As shown in Table 6.1, Te does not 

appear to depend on P or plasma precursor. In the N2O system, there appears to be a slight 

dependence in looking exclusively at data obtained from the highest and lowest P systems (a 

difference of 0.12 eV).  This admittedly slight dependence on P in the N2O system, where none 

exists in either N2 or NO plasmas, may arise because N2O is slightly more polarizable than N2 

and NO, which have virtually identical polarizability.46  Similar results were observed previously 

in a variety of fluorocarbon plasma systems, although somewhat higher Te values (~ 1.8 – 2.51 

eV) were determined, Table 4.5;32 again these higher values are reflective of the significantly 

higher polarizability of the fluorocarbon molecules.46  Overall, however, this suggests that when 

more energy is being provided to the system (by increasing rf power), it is not distributed into 

heating the electrons, rather is appears to be directed at increasing the internal energy of neutrals 

or ions.  

These hypotheses were examined in a previously study of mean ion energies (⟨Ei⟩total) formed 

within NxOy plasmas47 and by evaluating TR and TV values within ground and electronically-
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excited plasma molecules in the current study.  Both electrons and ions play a substantial role in 

the chemical reactions occurring in the plasma.  Electron impact with neutral gas-phase 

molecules leads to the production of excited state atoms and molecules,34 which is largely 

governed by Te.  However, Te is effectively independent of plasma precursor and power, 

therefore reactions between heavy species (i.e. ions, radicals, molecules) play a substantial role.  

A goal of this work is to elucidate how the internal energies and kinetics of neutral species 

influence plasma chemistry. 

Within nitrogen plasmas, under the conditions shown in Figure 6.1 (p = 100 mTorr, P = 150 

W), TR and TV are higher for the upper N2 state (C3Πu); however, for both N2 electronic states, TR 

is significantly lower than TV.  This suggests the pathways for rotational cooling are more 

efficient in comparison to vibrational channels, which was documented across all pressures and 

powers studied herein (Figures 6.2a– d).  However, at P = 50 W, TV shows little p dependence, a 

mere ~100 K difference when p triples from 50 to 150 mTorr.  In contrast, at P = 200 W, a 

pronounced difference in TV (~1000 K) emerges when pressure is increased from 50 mTorr to 

150 mTorr.  Generally, as p increases, fragmentation of the precursor increases through increased 

number of collisions, causing a relaxation of the vibrationally and rotationally excited N2 

molecules.48  Clearly, the additional collisions upper state N2 molecules (C3Πu) undergo at higher 

pressures affords some measure of TV cooling.  This is not, however, an efficient channel for 

energy transfer compared to rotational relaxation pathways, as TR values are only slightly above 

room temperature.  Using OES, TR values for N2 molecules have been documented within this 

range (~300 – 400 K) for a variety of nitrogen plasma systems, including atmospheric pressure 

plasma jets afterflow49,50 and 50 MHZ ICP nitrogen plasmas.51 
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Considering the absorbing N2 species, Figure 6.2c and 6.2d, TR and TV values exhibit a 

strong, linear dependence on P, with little to no dependence on p.  Examining the two N2 

electronic states of the second positive system, there is little difference between TR values 

determined within the lower B3Πg state (~300 – 390 K) compared to the upper C3Πu state (~300 

– 365 K).  This further bolsters the idea that rotational relaxation and thermalization occurs 

within N2 rf discharges.  In contrast, TV values of the B3Πg state are lower than the C3Πu state and 

there is a smaller temperature range (~3100 – 4500 K) compared to (~3300 – 6200 K).  The 

energy difference between the electronics states is ~3.67 eV,52,53 therefore we hypothesize 

species populating the higher vibrational levels within the lower B3Πg state have sufficient 

energy to be promoted to the C3Πu state as a result of electron-impact collisions.  Furthermore, 

theoretical models suggest the main population pathways for N2 molecules in B3Πg state 

originate from the X1Σ+
g and A3Σ+

u states through electron impact excitations.53-55  In addition to 

this pathway, the excited B3Πg and C3Πu states can be partially populated by the pooling 

reactions of the metastable N2 A3Σ+
u state.50  Within N2 discharges, there are clearly complex and 

intertwined energetic relationships.  Through the examination of these data, we can begin to 

elucidate energy distribution profiles for rotational and vibrational degrees of freedom for a 

diatomic system.  Previously reported, internal molecular temperatures (TV and TR) within NO 

plasma discharges have been determined, a tabulated comparison of NO TV values for ground 

and excited state NO is provided in Table 6.6 as a function of applied rf power and pressure.31 
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Table 6.6. TV values for NO formed in N2O and NO plasma systemsa 

p (mTorr) P (W) 
NO (X2Π) TV (K) NO (A2Σ+) TV (K) 

NO N2O NO N2O 

50 
50 
100 
150 
200 

-- 
5800 (300) 
6100 (200) 
6300 (200) 

3200 (320) 
2200 (140) 
3600 (115) 
4300 (200) 

-- 
4500 (70) 
4900 (80) 
5100 (70) 

2500 (20) 
2800 (200) 
2900 (15) 
3400 (100) 

100 
50 
100 
150 
200 

-- 
5200 (100) 
6000 (200) 
6500 (40) 

3400 (120) 
3850 (70) 
4200 (60) 
4600 (40) 

-- 
3700 (10) 
4100 (50) 
4400 (50) 

2900 (60) 
2900 (10) 
3300 (170) 
3600 (140) 

150 
100 
150 
200 

5150 (150) 
5850 (150) 
6800 (150) 

5200 (70) 
5500 (140) 
6300 (70) 

3400 (180) 
3900 (20) 
4050 (110) 

2900 (30) 
3000 (15) 
3500 (40) 

a
T

V
 values for 100 % NO systems are previously reported31 
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As noted above, the investigation of diatomic N2 and NO plasma systems establishes a 

foundation that can be built upon through the investigation of more complex NxOy precursors, 

such as N2O.  As depicted in Figure 6.4, where TV is plotted as a function of P for emitting and 

absorbing N2 and NO molecules, a few interesting trends can be noted.  First, the NO (A2+) 

state has the lowest vibrational temperatures of all four species measured; ground state NO TV 

values are consistently higher than those of the first excited state.  The energy difference between 

the X2Π and A2+ electronic states of NO is ~5.4 eV;56 therefore higher vibrational levels (v’≥ 3) 

within the ground state are populated without being promoted to the first excited state.  Second, 

the N2 (C3Πu) excited state records the highest Tv values of all four molecules, regardless of P.  

Interestingly, at P = 100 and 150 W, TV for NO (X2Π) and N2 (B3Πg) are approximately the 

same, whereas at P = 50 W, NO (X2Π) has a TV value ~100 K greater than N2 (B3Πg), and at 

P = 200 W, not only is TV for N2 (B3Πg) higher than that for NO (X2Π), the delta is nearly 

1000 K.  This alone demonstrates the interplay of energetics between species formed through 

decomposition within an environmentally-relevant plasma system.  If the goal is to design a 

method for NO conversion into ambient species, such as N2, determination of these energetic 

differences can provide unparalleled insight.   

Similar to the 100 % N2 plasma systems, as P increases within N2O discharges, an increase in 

TV is noted for both emitting and absorbing N2 species, regardless of system pressure.  

Examining the emission of N2 species in the discharge, we see that as p is increased, a slight 

increase of TV (~800 K) is observed.  At higher P (e.g., 200 W), however, there is no TV 

dependence on p.  Upon studying the absorbing N2 species in the plasma, we observe a decrease 

in TV with increasing p, as described above.  Rotational temperatures for N2 molecules in both 

electronic states show little p dependence and are approximately equivalent to room temperature 
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at lower powers (50 – 150 W).  This does not hold true at P = 200 W for N2 (B3Πg), where TR 

values decrease from 500 – 400 K as p increases from 50 to 150 mTorr.  Notably, plasma species 

can be produced via a variety of mechanisms (decomposition, recombination, etc.), all of which 

could contribute to the differences observed in TV and TR values.  These mechanisms also include 

effects of other species in the system, such as nitrogen and oxygen atoms and nitric oxide 

species; thus, examination of energetic information for NO molecules formed in the system is 

also warranted.  

For excited state NO formed in N2O plasmas, TR values exhibit a slight, positive dependence 

on P (apart from p = 100 mTorr data where no P dependence is observed), and little to no 

pressure dependence.  Excited state NO molecules are rotationally hotter (by ~ 200 K) than N2 

molecules in either electronic state studied herein, and their vibrational temperatures increase 

with increasing P, displaying little p dependence.  The opposite trend is true for ground state 

molecules.  As pressure is increased, a significant increase in TV (~2000 K) is observed, 

regardless of P.  To characterize the energetic relationships within the N2O plasma system, we 

have compared the plasma temperatures obtained from 100% N2O, N2 (above) and NO systems31 

to those obtained in the more complex precursor.  Within NO plasmas, as shown in Table 6.6, TV 

values ranged from ~3500 – 5000 K and ~5000 – 7000 K for the NO (A2Σ+) and NO (X2Π) 

species, respectively.31  TV values for both ground and excited state NO formed through 

decomposition (of N2O, for example) are significantly lower (across all P and p), compared to 

the 100 % NO system.31  One proposed pathway is shown in Reaction 6.1, where the excited NO 

molecules formed from N2O decomposition can further relax to NO (X2Π) via multiple pathways 

(not shown here).  Within the N2O emission spectrum, little to no atomic nitrogen peaks are 
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present where the spectral character is dominated by the N2 molecular transitions, suggesting 

atomic N formed via Reaction 6.1 participates in further chemical processes within the plasma.  

N2O + e– → NO* + N + e–    (6.1) 

Comparing the energetics of N2 within a 100 % N2 plasma to those for N2 formed in an N2O 

plasma, we find molecules in both the B3Πg and C3Πu states are vibrationally hotter in the N2O 

plasma system, except for molecules in the C3Πu state at the lowest pressures (p = 50 mTorr).  

Interestingly, upon examination of the B3Πg state, the differences in energetics between the 100 

% N2 and N2O plasma systems becomes increasingly larger as P increases, such that at P = 50 W 

(all p), TV values are approximately equivalent and at P = 200 W, TV values differ by 700 – 1,100 

K.  Multiple potential pathways exist through which excited molecular nitrogen can form, one of 

which is proposed in Reaction 6.2. Furthermore, with N2O plasma discharges, strong atomic O 

peaks are present at 777 nm (3p5P – 3s5S0) and 844 nm (3p3P – 3s3S0). 

N2O + 2e– → N2 + O + 2e– → N2* + O + 2e–    (6.2) 

Within plasma systems, ionization, dissociation, and excitation processes can occur 

simultaneously; therefore, there is a multitude of excited and metastable nitrogen states that can 

be populated through electron collisions.57  Through examination of different molecules in 

multiple electronic states, we can begin to untangle and interpret complex species interaction and 

the interdependence of energy partitioning.  Moreover, the energetics associated with N2 and NO 

molecules produced primarily through formation mechanisms will provide additional insights 

into plasma processing phenomena.  

 Examining the Figure 6.5 data for mixtures of N2 and O2 at a total pressure of 100 mTorr, 

reveals that TV (N2) generally has very little to no dependence on the amount of N2 in the feed 

gas.  Both emitting and absorbing NO and N2 molecules show a strong, positive correlation to P 
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(Tables 6.3 and 6.4).  This relationship in N2/O2 mixed plasma systems has been previously 

documented with atmospheric pressure plasma jets at similar powers.50  Under all experimental 

conditions, TR values for both ground and excited state NO molecules are elevated in comparison 

to N2, suggesting the rotational excitation and relaxation processes are slower for NO species, a 

phenomena that has been documented within 2.45 GHZ microwave discharges.58  As 

documented within 100 % N2 plasmas, TR vales for N2 molecules in B3Πg and C3Πu states show a 

positive dependence on P, however do not exceed 460 K, demonstrating the effectiveness of the 

rotational cooling pathways.  A time-dependent kinetic model, studying the energy transfer to 

gas heating in N2/O2 plasmas, demonstrated the energy transferred to the translational mode (gas 

heating) increased with increasing O2 concentration.59  Assuming TR and gas temperature have 

equilibrated within the discharge,60 a similar trend emerges: as oxygen concentration increases 

within the feed gas, there is in an increase in TR for N2 B3Πg molecules (Table 6.4).   

 TV values for NO molecules in both electronic states are significantly lower in the mixed gas 

systems, compared to the 100 % NO plasmas, where NO (X2Π) TV values are again elevated 

compared to the exited state. These data indicate that production of NO from formation 

mechanisms, such as the Zel’dovich chain (Reactions 6.3 and 6.4), generates ground state NO 

and does not preferentially transfer vibrational energy to the molecule.  

                  O(g) + N2(g) → NO(g)(X2Π) + N(g)                  (6.3) 

N(g) + O2(g) → NO(g)(X2Π) + O(g)    (6.4) 

NO* + M → NO (g)(X2Π) + M*    (6.5) 

Vibrationally hot N2 is requisite for propagation of the Zel’dovich chain in non-thermal 

plasmas.35  We correspondingly observe vibrationally excited N2 (approximately equivalent to 

100% N2 plasmas) in the afterglow of N2/O2 systems, suggesting N2 molecules with significantly 
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high TV  are not consumed in the reactions forming NO.  Given the relatively high TV measured 

for N2 in our systems, Reaction 6.5 is suggested as the primary route for relaxation of 

vibrationally excited NO molecules, where interactions of NO* with other species (M) may lead 

to a transfer of vibrational energy to species M and electronic quenching of NO*.  Hence, we see 

larger vibrational temperatures for ground state NO and excited state N2 in mixed gas plasma 

systems.  Thus, NO energetics appear to be dependent on the source of the NO molecule, where 

the partitioning of energy favors vibrational channels, with little to no dependence on electron 

temperatures.  Clearly, NxOy plasmas exhibit a complex chemistry; with a dynamic interplay 

between the electrons, and the molecular vibrational, and rotational degrees of freedom.  Another 

crucial aspect to consider is the chemical kinetic processes occurring, therefore we have 

employed time-resolved spectroscopy to further probe these non-equilibrium discharges.  Note, 

the kinetic information presented in this chapter was collected with an AvaSpec-2048L-USB2-

RM multichannel spectrometer with a 25.5 ms integration time (described in Chapter 2). 

We specifically chose to investigate formation and destruction of key excited state species to 

provide foundational and mechanistic insight that could be correlated with the system energetics 

data discussed above.  It is important to understand what the rate constant values shown in 

Figures 6.7 and 6.8 and Table 6.5 tell us about the processes occurring in our plasmas.  

Assuming both excitation and de-excitation are direct processes, the formation and relaxation of 

these species is first order with respect to the molecule (NO is included as an example in 

Reactions 6.6 and 6.7).  Thus, simulation of the intensity profiles is performed with both 

exponential rise and decay of the form e-kt, corresponding to a first-order process. 

          NO + e– → NO* + e–      (6.6) 

NO* → NO + hν    (6.7) 
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Deviations from the profile presented in Figure 6.6b can provide further insight into the 

chemistry within nitrogen oxide plasma systems.  For example, excited state species must be 

formed within the plasma, as they are not present natively in the gas-phase precursor; therefore, a 

formation profile must exist in some capacity.  An inability to discern changes in emission 

intensity after plasma ignition thus indicates the formation process is faster than the time 

resolution of our experiment.  With NO as the system precursor, formation profiles are observed 

for N2*, but not NO*, suggesting direct electron-impact (Reaction 6.6) is the primary route for 

nitric oxide excitation. The density of electrons within these dischargers are several orders of 

magnitude higher compared to other species in the system,34 therefore NO-electron collisions are 

more likely to occur compared to NO-NO collisions.  In contrast, molecular nitrogen must be 

formed in the discharge through decomposition and recombination reactions before excitation 

can occur.  Thus, formation of N2* was examined with TR-OES to further explore this 

phenomenon in these systems.  

As described above, the formation of N2* in nitric oxide plasma systems can proceed via 

several different pathways; one such pathway is described by Reaction 6.8.  𝑒 − + 2𝑁𝑂  →  2𝑁 + 2𝑂 + 𝑒 −  → 𝑁2∗ + 𝑂2 + 𝑒 −         (6.8) 

Additionally, NO could react with some other species (M) that has been formed previously 

within the plasma to form NOM.  This reaction could generate a larger intermediate that 

subsequently decomposes into N2, Reaction 6.9.   2𝑁𝑂 + 2𝑅 +  𝑒−  →  2𝑁𝑂𝑀  → 𝑀𝑂𝑁𝑁𝑂𝑀 + 𝑒 −  → 𝑁2∗ + 2𝑂𝑀 + 𝑒 −      (6.9) 

Importantly, our data do not necessarily provide exclusive evidence for a single formation or 

destruction mechanism, as there are limitations to our ability to discern competing processes. In 

our TR-OES studies, however, N2* specifically refers to the C3Πu state, which is shown to be 
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formed directly in Reactions 6.8 and 6.9.  Once molecular nitrogen is formed, however, 

excitation can occur by separate steps from a multitude of electronic states, including from 

ground state N2 or the reaction of singlet metastable states of N2.30  Regardless of the excitation 

step, it is likely that the NOM mechanism (Reaction 6.9) would take considerably longer than the 

more direct process shown in Reaction 6.8, because the formation of the NOM species would 

also be a time-consuming and less energetically favorable process.  As such, this possible 

mechanism would likely be lost within the steady-state concentration of the plasma, essentially 

concealed by the more prevalent competing pathways.  Thus, our data support a multi-step 

formation mechanism for N2*, as opposed to a direct formation mechanism, but do not 

necessarily provide information about the exact process occurring. 

Interestingly, the N2O precursor behaves essentially the same way as the NO precursor, in 

that NO* formation is not observed, Table 6.5.  This suggests that the excited state is formed 

directly upon electron impact (Reaction 6.1) or at the very least, that it is the predominant 

mechanism.  When compared to the observed trends in the NO system (Table 6.5), N2* 

formation in N2O suggests this process is indirect and involves some decomposition and reaction 

prior to excitation, Reaction 6.2.  Indeed, this interpretation is further validated by observations 

made within the N2/O2 precursor system.  Here, the onset of N2* formation is not detected, 

whereas NO* formation can easily be determined (i.e., opposite behavior to NO and N2O 

systems).  This suggests that N2 as a parent molecule in the feed gas undergoes a direct excitation 

that cannot be detected within the time resolution of our apparatus, whereas NO* formation is 

evidence of further decomposition reactions necessary for generating NO in this system.  The 

intensity profile indicates, however, that the rate-limiting step is still first order, as the data still 

follow the same e-kt behavior.  Additionally, we can make a few assumptions about conditions 
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under which destruction constants cannot be determined (whereas formation rate constants can).  

First, under such conditions, it is likely that quenching of the excited state is occurring at the 

same rate as steady-state production of the excited state.  Second, under these conditions there 

are likely no alternative pathways for the quenching of the excited state.  Notably, this behavior 

is only observed for NO* in the N2/O2 precursor.  

As a final piece of information, we provide some context for the kinetic data obtained in 

these studies.  As the actinometric intensity ratio is simply proportional to concentration, so too 

are reported values for both kf and kd.  The comparison of these values across the varied 

parameter space chosen in these studies provides insight into probable reaction mechanisms 

within the first few seconds of plasma ignition.  Because precursor gas flow is continuous, the 

system achieves a steady-state concentration of these various species.  This results in constant 

[N2*] and [NO*] throughout the life of the plasma, as equilibrium with respect to kf and kd is 

achieved.  The first moments after ignition, however, are shown to be dynamic with respect to 

the reactivity of these molecules.  Indeed, Meddeb and coworkers saw a very similar trend with 

respect to SiH* intensity as a function of time.42  They report comparable rise/decay trends over 

the first few seconds after plasma ignition, with varying profiles, before ultimately arriving at 

steady-state concentrations.  Additionally, by relating these profiles to cross-sectional 

transmission electron microscopy images, they are able to hypothesize mechanisms for silane 

film production. 

Another work of interest by Burnette et al. investigated the kinetics of NxOy species in the 

afterglow region of a plasma filament discharge.61 The authors suggest that downstream and 

post-discharge chemistry is highly dependent on neutral species reactivity and that little evidence 

exists to suggest an excited state influence, meaning that these areas are likely dominated by the 



202 
 

Zel’dovich mechanisms.  Such observations highlight the importance of coordinated efforts to 

explore the role of excited state species within the bulk discharge region, as highlighted here.   

Beyond these studies, however, direct comparison of values and trends reported herein is 

difficult.  As noted in the Introduction, many TR-OES efforts have focused on modular plasmas 

generated from a variety of high-energy sources.  Even so, context for broader TR-OES efforts 

can be achieved by way of comparison.  Sridhar et al. for example, monitored various Si* and 

Cl* emissions with the help of an Ar* actinometer, similar to the approach used here.62  With 

these data, the authors were able to highlight potential etching mechanisms and the impact of 

system parameters on species losses.  Alternatively, Liang and coworkers utilized TR-OES 

methods to study N2-plasma ablation of graphite and determined the impact of plasma 

parameters on the formation of C2 radicals within the system.63  The formation of CN radicals 

through gas-phase reactions of N2 and C2 were also examined, concluding ionized and excited N2 

promote the formation of CN radicals, ultimately outlining potential formation mechanisms 

through time-resolved spectroscopy.  The work presented herein also to demonstrate the utility of 

TR-OES within plasma diagnostics, both in terms of temporal insight and mechanism 

elucidation.   

Within this work, we examined energy partitioning within steady-state plasmas as well as 

determining rate constants with time-resolved optical emission spectroscopy.  Internal (i.e., 

vibrational and rotational) temperatures strongly depend on plasma parameters (i.e., power and 

pressure). Rate constants of excited state species also depend on rf power and precursor, where 

evidence supports direct excitation of NO in both NO and N2O plasma. These energetic and 

kinetic observations are essential to furthering the utility of these complex discharges for plasma 

assisted catalysis processes. 
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6.4 Summary 

 

Plasma species can be produced via a variety of mechanisms (direct-impact excitation, 

decomposition, recombination, etc.); therefore, information regarding the formation and 

destruction mechanisms, as well as the distribution of energy, is crucial to understanding 

fundamental plasma chemistry.  Optical emission and broadband absorption spectroscopy 

techniques were employed to examine energy partitioning within inductively coupled plasmas 

(ICPs), focusing on NO (X2Π ↔ A2Σ+) and N2 (B3Πg ↔ C3Πu) radiative transitions formed 

within a variety of different plasma precursors.  This work also highlights the utility of TR-OES 

in elucidating components of the complex kinetic parameters that exist within NxOy plasma 

systems. TV and TR of ground and excited state species, as well as the rate constants of excited 

state species, appear to depend on both applied rf power and system pressure.  There is also 

evidence to support direct excitation of NO in both NO and N2O plasma systems, whereas direct 

excitation of N2 is likely only observed in the N2/O2 system.  Such observations are key to 

furthering the utility of these systems for plasma-assisted catalysis processes.  Using 

complementary spectroscopic techniques is beneficial to elucidating the multifaceted nature of 

plasma kinetics, in the first few seconds of the plasma ignition and steady-state conditions.  
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CHAPTER 7 
 

INVESTIGATING THE IMPACT OF CATALYSTS ON N2 ROTATIONAL AND 
VIBRATIONAL TEMERPATURE IN LOW PRESSURE PLASMASa 

 
This chapter examines energy partitioning and kinetic distributions for excited state N2(g) 

molecules within a N2 plasma discharge with the presence of catalysts, as well as resulting 

materials characterization post plasma processing.  The Fisher Group protocol for utilizing the 

Boltzmann plot method for TV (N2) determination, as well as all data herein pertaining to N2 

plasma without substrates and zeolite materials were established, collected and analyzed by 

Angela R. Hanna.  The entirety of the work with TiO2 nanomaterials was performed by Tara L. 

Van Surksum and will be included in her dissertation.  Collectively, work included in this 

chapter was supported by the National Science Foundation (CBET-1803067).  Specific 

acknowledgments for this Chapter include contributions provide by Dr. Joseph A. DiVerdi 

(assistance with the determination of surface area); Dr. Patrick McCurdy (assistance with SEM 

and XPS analyses); and Dr. Brian Newell (PXRD expertise).  

  

 

a
 This chapter is reproduced with permission from an article published in Journal of Physics D: 

Applied Physics by Angela R. Hanna, Tara L. Van Surksum, and Ellen R. Fisher, as well as some 
results published in an invited review article in Journal of Vacuum Science and Technology A by 
Angela R. Hanna and Ellen Fisher (most of which is reproduced in Chapter 3).   
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7.1  Introduction 

Plasma-assisted catalysis (PAC) generally describes the combining of a plasma system with a 

catalytic material for enhanced decomposition of a waste stream.  PAC has recently received 

much attention within the plasma community because the non-thermal nature of the plasmas 

employed allows access to processes energetically unavailable under thermal conditions and 

because of the enormous potential to increase feed gas conversion.2-5  PAC can be widely applied 

across a wide range of disciplines and applications, including treatment of waste gases;6,7 CO2 

capture and conversion to high-value materials;8,9 methane reforming;10,11 ammonia synthesis;12 

and fabrication of carbon nanostructures and supported nanocatalysts via non-thermal plasma 

methods.13,14  Regardless of end application, the fundamental scientific questions and challenges 

that must be addressed before implementation of PAC as a viable technology are remarkably 

similar, such as optimized reactor and catalyst design.  Indeed, paramount to the future of PAC 

development are a number of essential pieces, such as understanding of plasma generation and 

general operating conditions; the selection of catalysts, where both chemical and physical 

properties need to considered; and the elucidation of interactions between plasma and 

material.15,16   

In single-stage PAC systems, the catalyst is placed directly in the discharge, allowing all 

plasma species to interact with the surface of the catalyst.  The resulting range of dissociation 

products can lead to a complex and entangled chemistry within the plasma system.  Although it 

is generally understood that catalyst particle size can influence the overall rate and efficiency of 

PAC processes,3,4 little is understood about how low-temperature plasmas (LTPs) interact with 

micro- and nano-structured materials.  Furthermore, most studies to date have primarily explored 

optimizing PAC systems from the standpoint of how well the plasma removes a pollutant4,17 or 
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how the plasma affects the material,2,18-20 with fewer focusing on how the material affects the 

gas-phase chemistry, energy partitioning within the plasma, or interactions between the plasma 

and the surface.  Energy distributions within non-thermal plasmas typically follow the 

relationship wherein vibrational temperatures are greater than rotational or gas temperatures, and 

higher energy electrons and ions play a crucial role in the overall plasma character.  

As the precursor gas becomes more complex, these interactions between gas-phase species 

and catalysts will undoubtedly also become more convoluted and potential synergisms may be 

difficult to deconstruct.  Hence, in this study we examined nitrogen plasmas, a relatively inert, 

homonuclear, diatomic system that somewhat diminishes the complexity by at least limiting the 

number and type of gas-phase species that can be formed.  Moreover, as evidenced by the 

selected works listed in Table 7.1, N2 plasmas have been extensively studied in the literature 

over decades.  Table 7.1 demonstrates the wide range of N2 plasma operating conditions, 

including source ignition, pressure regimes, and power (or charge), and consequently a wide 

range of rotational and vibrational (TR and TV, respectively) have been documented.  Although 

not an exhaustive list, the Table 7.1 studies all examined gas-phase characteristics of N2 plasmas, 

without the complexity of adding a catalyst.  
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Table 7.1. Summary of TV & TR measurements in N2 glow discharges.  

Source p (Torr) P (W) TR (K) TV (K) Ref 

rf 1 1000 600 -- Porter(1979)21 

DC 0.1-2 n/a  (I = 50 mA) -- 2500-3000, 7200 Cernogora(1984)22 

DBD 0.15 n/a  (U = 800 V) 480 -- Zhang(2002)23 

C-DBD 200–600 25-60 360 2270-3030 Masoud(2005)24 

IPC-rf -- -- 370/470 5000-12000 Britun (2007)25 

RGA -- -- 2200-2500 3200-3700 Gangoli (2010)26 

RGA atm. n/a  (U = 7-10 kV) 1160-1508 4874-5105 Wu (2015)27 

DBD atm. 140 350-575 2200-2500 Yang (2016)28 

ICP-rf 0.05-0.2 50-200 300-500 2000-7000 Hanna (2017)1 

GAP atm. n/a  (I = 230 mA) 5500 -- Groger (2019)29 
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Two additional studies that examined internal temperatures of N2 plasma species in model 

PAC systems measured TV and TR of N2 utilizing TiO2 in a packed bed atmospheric dielectric 

barrier discharge (DBD) system [system pressure (p) of ~101 Pa]30 and Co-ZSM-5 in a radio 

frequency (rf) plasma, operated near atmospheric pressure (p = 90 Pa).31  Tu et al. found that 

TV(N2) increased dramatically from ~2300 – 2800 K to ~3200 – 4100 K when TiO2 pellets were 

placed in the plasma and attributed this to an increase in electron temperature (Te) as a result of 

the catalyst.30  Interestingly, the TiO2 catalyst had no effect on TR(N2) at the lowest applied 

discharge power (P) of 40 W and removed all the positive linear dependence of TR(N2) on P 

observed without TiO2 (P = 40 –  70 W).  Although Tu et al. noted some of these changes may 

indicate heating of the substrate, although the true origin of these effects remains unclear.  Niu et 

al. observed differences in TV and TR when employing Co-ZSM-5 as a catalyst.31  Here, however, 

TV(N2) was ~3100 – 3400 K with the catalyst, more than 1000 K lower than that measured 

without the Co-ZSM-5 (~4300 –  5000 K).  Although a slight decrease was observed as a 

function of rf power with the catalyst, the opposite trend was observed without the catalyst.  In 

addition, TR(N2) ranged from ~375 K at the lowest P to ~500 K at the highest P, with very little 

difference between values measured with and without the catalyst.  Notably, all of the 

measurements made in this study were made at P = 5– 25 W, discharge powers considerably 

lower than the lowest used by Tu et al..30  Although no explanation was provided for the 

differences between these internal temperature values and those measured by Tu et al., variations 

in P and the catalyst type could account for the observed dissimilarities.  

When nanostructured or porous materials are placed in plasma discharges, spatial 

inhomogeneity can be created (i.e., microplasmas within pores, localized electric fields) which 

alters the electrical characteristics of the plasma.32  Described in Chapter 1, significant 
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experimental and theoretical efforts have explored the formation of microdischarges in different 

catalytic pores in recent years.  Zhang et al. simulated micro-and nanosized catalyst pores with a 

two-dimensional particle-in-cell/Monte Carlo collisional model, demonstrating the formation of 

microdischarges in both μm- and nm-sized pores; electron density and electron impact ionization 

rate drastically increase when the plasma stream permeates in the micrometer pore.33  Likewise, 

Gu et al. computationally demonstrated that the discharge is more enhanced on the surface of 

porous catalysts compared to inside the pores.34  Clearly, plasma-material synergisms arise from 

the introduction of a catalysts in a discharge, where the chemical identity and pore size, position 

in reactor, and amount of catalyst in the discharge are important variables to consider and study.  

Tu and Whitehead demonstrated different packing methods with Ni/γ-Al2O3 catalysts in DBD 

reactor systems impact the dry reforming of CH4.10  In a fully packed-bed reactor, the authors 

found a decrease in conversions of CH4 and CO2 compared to the system with no catalyst 

present.  When the Ni/γ-Al2O3 catalyst particles are partially packed in the discharge, the 

conversion rate of CH4 increased to 38% compared to the 30% conversion of the no catalyst 

system.  The authors concluded that the manner of catalyst packing in a discharge plays an 

important role in single-stage PAC systems.10   

Here, we further explore all these phenomena by examining the effects of adding catalysts to 

an N2 inductively coupled plasma (ICP) operated at relatively low pressure (~50 – 150 mTorr or 

~7– 20 Pa).  TiO2 nanoparticles were studied here for direct comparison to the results of Tu et 

al.; PAC studies within N2 plasmas were expanded to probe the impact of micro-structured NaX 

zeolite (Si/Al ratio of 3.5 ± 0.2) on resulting plasma energetics and kinetics.  Specifically, TV(N2) 

and TR(N2) were measured as a function of power and pressure via OES.  We have also 

examined the morphology and chemical composition of the catalysts using scanning electron 
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microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) both before and after plasma 

exposure to determine the impact of the plasma on the materials.  To further probe the impact of 

catalyst packing on the synergisms between the plasma and catalysts, we have studied single-

substrate systems, where a single catalyst pellet or substrate was placed in the coil region of our 

rf ICP reactor and a multi-substrate configuration, where the glass tubular reactor was aligned 

with zeolite pellets (Figure 2.2b).  Our holistic approach to plasma diagnostics (i.e., 

determination of TR and TV as well as species densities and kinetic information) and 

comprehensive materials characterization enables us to more thoroughly investigate potential 

synergisms arising from the coupling of low temperature plasma and catalytic materials. 

7.2  Results and Discussion 

As the Table 7.1 data suggest, one of the key characteristics of N2 plasmas is the internal 

temperatures of excited state N2 in the plasma.  As such, we first characterized our N2 plasma 

without any substrates using optical emission spectroscopy.1  Figure 7.1 shows a typical N2 

emission spectrum acquired with no substrate present (p = 50 mTorr, P = 25 W).  TR(N2) for the 

C3Πu → B3Πg transition was determined from simulated fits of experimental spectral data using 

Specair.35  As described by Tu et al.,30 a Boltzmann plot of ln (Iλ/A) as a function of vibrational 

energy (EV) was used to calculate TV(N2), described in Chapter 2.  The inset in Figure 7.1 shows 

a representative Boltzmann plot for a 100% N2 plasma (sans substrate) created from the 

corresponding spectrum and the Table 2.5 data. 
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Figure 7.1. Representative emission spectrum at p = 50 mTorr, P = 25 W for N2  
(C3Πu → B3Πg) in a N2 plasma with no substrate. Simulation of the spectrum using Specair 
yields TR = 310 K.  Inset shows a Boltzmann plot of N2 vibrational distribution in a 100% N2 
plasma under the same conditions, calculated using the Table 2.5 values.  
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The slope of the linear regression is inversely proportional to TV, which ultimately yields TV 

= 2910 ± 90 K for the particular set of conditions shown in Figure 7.1.  A minimum of three 

trials were collected and fit for each condition reported, described in Chapter 2.  We previously 

reported TV(N2) values in N2 plasmas;1 however, these values were calculated using the 

“Temperature Loop” function within Specair.35  The simulation process within the Specair 

program uses Boltzmann distributions to determine vibrational temperatures, but does so while 

simultaneously considering electronic, rotational, and translational temperatures to achieve a best 

“fit” to an experimental spectrum.  It is not possible to simulate a spectrum with just vibrational 

temperature.  Furthermore, the presence of zeolite substrates changes the corresponding emission 

spectrum, where there is clear overlap with the OH (A2Σ+ → X2Π) transition, Figure 7.2.  

Therefore, fitting the entirety of the N2 (C3Πu → B3Πg) emission spectrum using Specair was 

challenging, whereas the Table 2.5 spectral transitions utilized in the Boltzmann plot are 

independent of potential species (OH and NO) overlap.  Thus, we believe the Boltzmann plot 

provides a more straightforward method to calculate TV.  In some cases, the previously reported 

values are within combined experimental error of those reported here.  In those instances where 

the values differ appreciably, the methodology used herein results in higher TV values than those 

acquired via the Specair simulation. 

Noted in Section 7.1, N2 TR and TV values within an N2 discharge with and without a TiO2 

substrate have been measured as a function of operating conditions, reported in Tables 7.2 and 

7.3.  The TR(N2) data in the 100% N2 plasma (no substrate), reported previously,1 show a small, 

but fairly linear increase with increasing applied power, with values near room temperature 

(~310 –340 K).  The addition of a TiO2 substrate does not appreciably change the overall TR 

values, but the P dependence has largely disappeared, within experimental error.   
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Figure 7.2. Representative emission spectrum at p = 150 mTorr, P = 100 W for N2  
(C3Πu → B3Πg) in a N2 plasma with zeolite pellet where spectral transitions corresponding to 
NO (A2Σ+ → X2Π) and OH (A2Σ+ → X2Π) transitions are observed.  
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In contrast, the TV values listed in Table 7.3 show a strong linear dependence on applied 

power, both with and without the TiO2 catalyst in the plasma.  Interestingly, with the catalyst, the 

measured temperatures decrease by ~400 –1000 K and the dependence on power decreases by 

approximately a factor of 2.  This decrease in TV(N2) was documented at all pressures studied 

herein (50 – 150 mTorr), Table 7.3.  Notably, TV(N2) reaches values nearly an order of 

magnitude higher than TR(N2), suggesting that rotational relaxation is more efficient than 

vibrational relaxation.  Within N2 plasmas containing a TiO2 substrate, as p increases from 50 

mTorr (6.7 Pa) to 150 mTorr (20 Pa), some interesting trends emerge.  At lower P (25 – 75 W), 

TV(N2) at 100 and 150 mTorr are within experimental error but are elevated compared to the 50 

mTorr data.  At higher P, as pressure is increased to 150 mTorr, there is significant quenching of 

the vibrational excited states, resulting in a decrease in TV as a function of pressure. 

These results clearly demonstrate the presence of a TiO2 catalyst within the plasma can 

dramatically impact TV and agree to a certain extent with the results reported by Tu et al. for a 

TiO2 packed DBD system.30  Overall, the actual values measured are similar to the literature 

work, with TR(N2) slightly higher than room temperature (~300 – 600 K) and TV(N2) significantly 

higher at ~2500 – 4500 K in both systems.  In the DBD configuration, however, the dependence 

of TV(N2) on discharge power and catalyst display the opposite behavior to that observed here: 

namely TV(N2) decreases with applied power and significantly increases in the presence of the 

packed TiO2.  Notably, this power dependence previously observed was attributed to greater 

vibrational-translational relaxation at higher rf powers, and the increase with the catalyst was 

attributed to an enhancement of the average electron energy in the plasma.30   

Possible explanations for these different trends lie primarily with the differences in the two 

plasma systems.  Generally, emission intensity within a plasma is influenced by a number of 
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factors, including electron energy distribution function (EEDF), direct or dissociative excitation, 

cascade processes, radiation transport, as well as elastic and inelastic collisions.36  First, the DBD 

system operates at atmospheric pressure, whereas our systems operate at much lower pressures, 

thereby increasing the mean free path in the system.  At atmospheric pressure, electronic 

quenching (the process by which a collision with species M removes energy from excited state 

species towards any other final product37) determines the lifetime of the excited electronic state, 

occurring on a longer timescale compared to radiative decay.  As such, fewer collisions are likely 

to occur in our systems than in the DBD.  Upon the addition of a substrate, there is greater 

likelihood of productive plasma-surface collisions, effectively quenching the N2 excited states.  

Furthermore, plasma processing time is an important consideration, as the DBD system studied 

by Tu et al. operated on the μs time scale,30 whereas our temperature studies investigate steady-

state emissions from N2 molecules on the timescale of minutes.  Arguably, there can be vast 

differences in long-lived and short-lived species within plasma discharges,38 therefore future 

studies probing plasma internal temperatures as a function of time may be useful to 

understanding species’ evolution during plasma processing.  
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Table 7.2. N2 TR (K) values in N2 plasma systemsa 

p (mTorr) P (W) no substrate TiO2
b Zeolite 

50 

25 305 (5) 300 (10) 310 (10) 

50 320 (5) 300 (10) 310 (5) 

75 320 (1) 310 (10) 320 (10) 

100 350 (10) 320 (10) 335 (5) 

125 360 (10) 320 (10) 340 (5) 

150 355 (5) 370 (10) 355 (5) 

100 

25 310 (5) 320 (10) 310 (10) 

50 310 (3) 320 (10) 340 (20) 

75 315 (5) 320 (10) 360 (5) 

100 320 (3) 330 (10) 350 (10) 

125 330 (5) 330 (10) 330 (10) 

150 340 (10) 320 (10) 360 (10) 

150 

25 300 (5) 300 (10) 305 (5) 

50 305 (5) 300 (10) 320 (10) 

75 -- 330 (10) 320 (5) 

100 310 (5) 330 (10) 340 (14) 

125 -- 330 (10) 350 (20) 

150 320 (5) 340 (10) 350 (10) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials. 
b TiO2 data collected and analyzed by Tara L. Van Surksum       
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Table 7.3. TV(N2) values in N2 plasma systemsa 

p (mTorr) P (W) no substrate TiO2
b Zeolite 

50 

25 2910 (90) 2310 (20) 2670 (100) 

50 4080 (70) 2560 (10) 3050 (90) 

75 3780 (50) 2780 (10) 3270 (100) 

100 4750 80) 3120 (120) 3800 (190) 

125 5560 (20) 3700 (270) 4230 (130) 

150 7000 (70) 4620 (70) 5070 (200) 

100 

25 2750 (200) 2550 (10) 2690 (185) 

50 3220 (30) 2780 (10) 3300 (40) 

75 3900 (70) 2970 (20) 3550 (50) 

100 4300 (180) 3140 (20) 3640 (120) 

125 4700 (15) 3350 (10) 3860 (200) 

150 4600 (90) 3560 (20) 3760 (200) 

150 

25 3320 (160) 2520 (20) 2990 (180) 

50 4470 (70) 2770 (10) 3530 (20) 

75 -- 3010 (10) 3870 (30) 

100 5230 (140) 3150 (10) 4250 (40) 

125 --  3310 (20) 4500 (100) 

150 6020 (20) 3480 (10) 4980 (40) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials. 
 b TiO2 data collected and analyzed by Tara L. Van Surksum    
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Second, the catalyst in our system occupies only a small fraction of the total plasma volume, 

whereas Tu et al.’s reactor is completely packed with TiO2 nanoparticles.  Thus, the surface area 

of catalyst available for interaction with the plasma is much larger in the Tu system.  Moreover, 

the packed reactor reduces the plasma volume and gives rise to changes in the discharge mode 

which could promote decomposition or non-uniform electric fields in the system.3  If the 

hypothesis that the catalyst enhances the average electron energy in the plasma is true, then this 

enhancement could be dependent on the amount of catalyst present.  We have used the OES 

spectra acquired in our system to measure the Te in our plasmas.  We previously reported Te for a 

100% N2 plasma (no substrate) and found Te ~1.6 eV, regardless of power.1  Here, we found Te 

~1.8 eV for the same system with a TiO2 substrate, also independent of applied power at p = 50 

and 100 mTorr.  The lack of significant dependence on P suggests increasing the overall energy 

of the system preferentially results in increasing the internal energy of neutrals or positive ions, 

rather than heating the electrons.  Nevertheless, Te appears to be slightly elevated in the presence 

of the TiO2 catalytic material, indicating this catalyst does indeed slightly enhance the average Te 

in our systems.    

Exploring the impact of TiO2 photocatalysts on the energy partitioning of N2 plasmas allowed 

for a direct comparison to the work by Tu et al.30  To further explore this work, we have also 

examined the impact of a different catalytic material on the gas-phase chemistry of an N2 plasma.  

Figure 7.3 shows TR(N2) and TV(N2) as a function of P with and without a zeolite pellet in a 

100% N2 plasma.  Although not nearly as dramatic as with TiO2, a single zeolite pellet also 

decreases TV(N2), especially at the highest applied power, Figure 7.3b.  The behavior for TR(N2) 

is much more complex.  At the lower P (i.e., 50 – 100 W), TR(N2) with the zeolite pellet is higher 

than that measured in the system without the catalyst, Figure 7.3a.   
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Figure 7.3. (a) TR(N2) and (b) TV(N2) from a N2 plasma system at p = 100 mTorr with (black 
circles) and without (blue triangles) a zeolite substrate.  Values for TR without a substrate 
were previously reported.1  
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At P ≥ 125 W, however, the values are the same within experimental error.  Note, however, 

that TR(N2) values lie between 310 and 380 K, regardless of plasma conditions.  Thus, these 

subtle fluctuations in values suggest TR is relatively independent of applied P, where rotational 

relaxation processes are less prominent in the presence of either catalyst.  As noted above, a 

single catalyst in the coil region of the ICP reactor makes up a small fraction of the plasma 

volume; thus, a multiple zeolite substrate system (Figure 2.2a) was also examined.  As shown in 

Figure 7.3a, at P ≤ 125 W, the addition of more zeolite catalysts to the N2 discharge does not 

appreciably affect rotational cooling pathways.  At P = 150 W, TR(N2) in the multiple substrate 

system is somewhat elevated compared to the other systems.  The plasma discharge switches 

between operating in E and H mode between 125 and 150 W, such that at 150 W the plasma is 

operating in H mode.  Consequently, the change in TR is likely a result of this mode shift.  

Catalyst packing can change the plasma operating mode, which has been studied experimentally 

and theoretically in DBD systems.39,40  Tu et al. reported packing their entire reactor altered the 

discharge mode.10  Thus, we hypothesize that as our ICP reactor became more “packed” with 

zeolite catalysts, the accompanying mode shift may impact rotational energy distributions.  

Depicted in Figure 7.3b, the decrease in vibrational temperature observed with one pellet 

becomes more pronounced in the presence of multiple zeolite substrates.  Vibrationally excited 

N2 molecules clearly interact with the zeolite catalyst surface and can scatter with some energy 

loss; hence a decrease in vibrational energy is observed when a single zeolite pellet is present, 

and a larger decrease is documented in the multiple substrate system.  These interactions can be 

explained through Reaction 7.1, 

           𝑁2 (𝑔)(𝑣′) →  𝑁2(𝑎𝑑𝑠)(𝑣′) → 𝑁2 (𝑔)(𝑣′′)                  (7.1) 
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where ν' and ν'' indicate two different vibrational states, with ν'' having a lower vibrational 

energy. 

As shown in Figure 7.4, inert gas actinometry was used to determine relative species’ density 

as a function of P without and with a zeolite substrate in the coil region, wherein molecular 

emissions from N2 (337.0 nm), NO (235.9 nm), OH (309.0 nm) and atomic emission from O 

(777.2 nm) were monitored.  Without a substrate, the amount of N2 in the discharge decreases 

with increasing P, where there is little to no observable emissions from NO, OH, or O.  N2 

emission displays a similar P dependence with a zeolite pellet in the plasma; however, the 

amount of NO, OH, and O all increase with increasing P in the catalyst loaded system.  The 

increase in the oxygen-containing gas-phase species likely arise from the plasma interacting with 

SiO2-rich zeolite, resulting in removal of surface oxygen.  This decrease in TV (K) in the 

presence of either catalyst suggest that within these low pressure discharges, vibrationally 

excited molecules interact with the substrates and rebound with some energy loss, hence a lower 

TV (K) is measured.41  Evaluating steady-state emission spectroscopy provides valuable 

information regarding energy distributions and relative species densities, however, it is essential 

to utilize temporally resolved data to probe the entangled dynamics in PAC relevant systems.42 

Depicted in Figure 7.5, intensity arising from N2 emission at 337.0 nm was monitored as a 

function of time, where rate constants of formation (kf) and destruction (kd) were determined by 

fitting the intensity curve with a first order exponential (e-kt).  As evidenced in Figure 7.5a, the 

system with no substrate reached a steady state with no subsequent decay, hence a kd is not 

reported.  The addition of a zeolite catalysts significantly impacts the gas-phase chemistry, where 

a clear N2 decay is documented.   
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Figure 7.4. Steady-state relative species density as a function of applied rf power in a  
100 mTorr N2 plasma system without (a) and with (b) zeolite substrate.  
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Figure 7.5. Intensity of N2 emission plotted as a function of time at (a) p = 100 mTorr, P = 
50 W with no substrate present; (b) p = 100 mTorr, P = 150 W with a single zeolite pellet. 
Rate constants of formation and destruction were determined by fitting a first order 
exponential to each curve.  
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Figure 7.6. N2 kf (s-1) from a N2 plasma system at p = 100 mTorr without a catalyst (blue 
triangles); with a single zeolite pellet (black circles); and with multiple substrates (green 
squares).   
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To further assess the dynamics within these systems, time-resolved spectroscopy was collected 

as a function of power, in the presence of single and multiple zeolite substrates (Figure 7.6; 

Tables 7.4 and 7.5).   

Without a catalyst present, kf (N2) values decreases as a function of power, upon addition of 

catalysts to the system interesting trends emerge.  In the single zeolite system, rate constants 

increase from P = 25 – 75 W, then a corresponding decrease occurs as P is increased to 150 W.  

Although the rate constants for the multi-substrate reactor are significantly higher at P = 50 – 

125 W, all systems are within experimental error at 150 W.  Aforementioned, the discharge is 

operating at H (electromagnetic) mode at this condition, suggesting the catalysts have a greater 

impact on reaction kinetics when the plasma is operating in E (electrostatic) mode.  Table 7.4 

documents kf for N2, OH, and NO molecules in an N2 plasma.  There is little to no emission 

arising from NO or OH species in the system without a catalyst (Figure 7.4), hence no kinetic 

information is available.  At lower P in the single zeolite system (i.e., 25 – 75 W), there are 

emission peaks from NO (235.9 nm) and OH (309.0 nm), however, rate constants were not able 

to be quantified due to poor signal-to-noise ratios.  Upon addition of more catalysts in the 

reactor, rate constants were determined at lower powers, suggesting that the interactions 

occurring at the surface of a single catalyst are further enhanced upon additional of more 

substrates.  The determined rate constants largely unaffected by the amount of catalyst in the 

system.  Table 7.5 details rate constants of destruction in the N2 plasma with catalysts.  Notably, 

a decay to steady-state emission is nominally only documented at higher P.  Mehta et al. argue 

the gas-phase is heavily influenced by active nitrogen species (i.e., N, N2
+, and vibrationally 

excited N2) and increased reaction rates in the presence of catalysts arise from N2 molecules in 

low vibrational states on the surface.39   
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Table 7.4. kf (s-1) values in N2 plasma systems with and without zeolite substratesa,b 

kf (s-1) P (W) no substrate single substrate multi-substrate 

N2 

25 10.0 (5.8) 6.6 (2.3) 7.1 (0.8) 

50 8.1 (1.6) 11.1 (2.8) 10.4 (1.3) 

75 5.3 (2.9) 22.6 (6.3) 22.2 (7.4) 

100 4.8 (0.4) 15.3 (2.0 31.4 (5.1) 

125 2.4 (0.3) 3.6 (0.5) 24.5 (6.1) 

150 1.3 (0.06) 1.6 (0.5) 1.9 (0.5) 

OH 

25 

NA 

-- 9.3 (2.5) 

50 -- 11.0 (5.4) 

75 -- 9.6 (1.9) 

100 4.4 (0.4) 3.6 (0.8) 

125 3.4 (0.5) 3.7 (0.6) 

150 1.1 (0.2) 2.1 (0.3) 

NO 

25 

NA 

-- -- 

50 -- 10.0 (1.9) 

75 -- 8.7 (4.0) 

100 9.2 (1.4) 9.6 (5.1) 

125 3.9 (0.5) 5.6 (0.3) 

150 1.7 (0.5) 2.8 (0.5) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials.  
b”--” represents emission peaks were present, but could not be quantified   
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Table 7.5. kd (s-1) values in N2 plasma systems with zeolite substratesa 

kf (s-1) P (W) single substrate multi-substrate 

N2 

75 -- 0.0092 (0.00014) 

100 -- 0.013 (0.0051) 

125 0.055 (0.028) 0.019 (0.0088) 

150 0.16 (0.085) 0.054 (0.013) 

OH 
125 -- 0.028 (0.00085) 

150 0.053 (0.027) 0.038 (0.0012) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials.  
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For the data provided in Figures 7.3 and 7.6, at P = 75 – 125 there is a clear enhancement in 

formation of excited N2 molecules, while concomitantly a lower TV (K) (i.e., less vibrationally 

active) is documented for the multi-substrate system.  These data were collected at intervals of 

25 ms, it would be beneficial to obtain μs temporally resolved spectra to gain additional insight 

into reaction kinetics, described in Chapter 8.  Clearly, the gas-phase and surface chemistry of 

the catalyst has a measurable impact on plasma-catalysis kinetics.  

As noted in the Introduction, we sought to examine how the presence of a catalyst impacts 

the energetics within the discharge using both micro- and nano-structured materials.  When 

comparing TV(N2) in the systems with a catalyst, the vibrational temperatures documented with a 

zeolite pellet present are elevated relative to those in the TiO2 system under all experimental 

conditions, Table 7.3.  Factors to consider when comparing the two substrates include size and 

geometry of pores, as well as chemical properties.  With a two-dimensional fluid model, Zhang 

et al. demonstrated that the shape of a catalyst pore has significant impact on the electric field 

within a plasma, thus substantial impact on the resulting plasma properties.43  Their results 

indicated that the electric field enhancement was largest for conical pores, and that those with 

small openings experienced a large increase in ionization rate relative to those with larger 

openings.  In our systems, the pores in the TiO2 substrates have significantly smaller openings 

than those in the zeolite pellets, suggesting plasma generation near and in the pores of the TiO2 

may be heightened, ultimately leading to more vibrational quenching interactions with the 

catalyst surface.  As TiO2 is also a known photocatalyst, the UV light generated from the plasma 

may further active these materials and contribute to additional vibrational quenching of the N2 

(C3Πu) state.  Nasonova and Kim coated zeolite materials with TiO2 particles to observe possible 

synergisms upon coupling a catalyst with a photocatalyst for NO and SO2 removal.44  The 
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authors demonstrated these hybrid materials increased both NO and SO2 removal efficiencies;44 

however, they did not characterize plasma internal temperatures.  As TiO2 nanoparticles 

supported on glass substrates have a large impact on TV(N2) within our low-temperature rf 

discharges, a logical step forward would be to assess the impact on TiO2 particles supported on 

materials with larger surface areas.  Regardless of the pore size or surface area of a specific 

catalyst, clearly addition of a catalyst alters the gas-phase plasma chemistry.  Consequently, we 

also examined how the catalysts were changed through gas-surface interactions in the plasma.   

Specifically, N2 plasmas have been used to create metal nitrides and other materials and 

nitrogen is known to readily replace oxygen in metal oxide lattices.45,46  We therefore performed 

extensive materials characterization before and after plasma exposure to ascertain  potential N-

doping or modification of the catalysts via SEM and XPS.  The commercially purchased TiO2 

material agglomerates into nanoparticle clusters with a porous structure when pasted onto the 

glass substrate; morphology does not change appreciably upon exposure to the N2 plasma (p = 

100 mTorr, P = 150 W, t = 10 min).47  Likewise, the morphology of the zeolite pellet does not 

change appreciably upon plasma treatment, depicted in Figure 7.7.  As described in Section 7.1, 

a goal of this work was to investigate the impact of materials (both nano- and micro-structured) 

on gas-phase composition and energetics, as well as assess material properties post plasma 

exposure.  

Compositional data from high-resolution XPS spectra, Table 7.6, reveal untreated zeolite 

pellets are nominally composed of Si, O, and Al, with ~23 % C bound in environments 

corresponding to -C-C/-C-H, -C-O-R/-C-O-H, and -C=O (Figure 7.8).  As shown in SEM 

images, Figure 7.7, zeolites are porous materials with a high surface area, therefore the 

adsorption of large amounts of atmospheric (adventitious) carbon is expected on the surface.   
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Figure 7.7. Representative SEM images (x7000) of (a) untreated zeolites and (b) post N2 
plasma exposure (P = 150 W; p = 100 mTorr; t = 10 min). 
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Figure 7.8. XPS high resolution O1s (a, d), Si2p (b, e), and C1s (a, b) data for zeolite pellets prior to plasma exposure (top) and after 
N2 plasma (p = 100 mTorr, P = 150 W, t = 10 min) exposure (bottom). 
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High-resolution O1s and Si2p spectra, Figure 7.8, further corroborate this evidence, as the primary 

oxygen binding environments include the Si-O-Si band at 531.7 eV and the Si-O-Al band at 

530.8 eV.48,49  Oxygen adsorbed to the material or bound to adventitious carbon can be present at 

binding energies 532.6 – 532.1 eV, which is difficult to deconvolute from the Si-O-Si band.  

High-resolution Si2p data, Figure 7.8b and 7.8e, primarily show two Si binding environments, 

Si(-O4) at 103.4 eV and Si(-O3) at 102.8 eV50, corresponding to an inorganic SiO2 network, 

which nominally changes to a single binding environment at 102.8 eV post N2 plasma treatment, 

Figure 7.8e.  For PAC to be a viable and usable technology, these catalysts must be robust and 

able to withstand intense plasma exposure.  Table 7.6 documents elemental composition of 

zeolite pellets post N2 plasma exposure at a range of P.  At 125 and 150 W, there are little to no 

changes in elemental composition, within error, except for the Al.  At both P, the percent of Al 

slightly increases from the untreated, suggesting removal of adventitious carbon and oxygen 

from the surface.  This is further substantiated by the gas-phase chemistry and SEM, where an 

increase in NO, OH, and O is documented (Figure 7.4).  In Figure 7.7b, there appears to be areas 

that have been etched (or pitted), likely disrupting the zeolite Si-O-Si and Si-O-Al bonding 

bridges.  At P=175 W, the most intense plasma conditions studied herein, the XPS data show 

significant nitrogen incorporation into the surface of the material.  Furthermore, the O1s and Si2p 

binding environments are largely unchanged compared to the untreated material (Figure 7.8) as 

well as the morphology (Figure 7.7) and overall bulk crystallinity of the material (Figure 7.9), 

suggesting these materials still retain the properties that make them desirable catalysts.  
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Table 7.6. XPS atomic composition data for zeolite pelletsa,b
 

 Untreated 125 W 150 W 175 W 

Si (%) 15.5 (2.6) 23.1 (2.9) 18.7 (5.2) 21.0 (0.5) 

O (%) 57.5 (4.0) 59.7 (3.5) 56.4 (5.3) 53.1 (0.5) 

Al (%) 4.4 (0.6)  6.8 (0.7) 13.1 (7.7) 4.3 (0.3) 

C (%) 22.7 (7.0) 10.5 (6.0) 11.8 (3.0) 14.1 (1.0) 

N (%) -- -- -- 7.4 (0.3) 

aValues in parentheses represent one standard deviation for the measurement   
bTreatment conditions: p = 100 mTorr, t = 10 min 
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Figure 7.9. Diffraction patterns for untreated and treated (p = 100 mTorr, t = 10 min) zeolite 
pellets. 
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Large bandgap nitride materials have become increasingly important in catalytic and 

semiconductor processes.  Nitrogen doping via plasma modification can enhance chemical and 

electrical properties of a wide variety of materials, ranging from metal oxides to carbon 

nanostructures.51,52  In this study, we documented the implantation of N into both TiO2 and 

zeolite substrates with a CW N2 rf plasma.53  This study was expanded to employ TR-OES to 

characterize pulsed N2 plasmas (Peq = 175 W, 50% d.c.), with and without a porous zeolite 

substrate in the coil region.54  For the N2 system without a substrate, Figure 7.10a, shows the 

intensity of N2 emission (337.0 nm) slightly decreased through the duration of the 10 ms pulse 

widths, and little to no signal arising from NO (235.9 nm) was observed.  Upon addition of a 

zeolite, signal from NO appears, Figure 7.10b, suggesting its formation in the system arises from 

the removal of surface oxygen.  In comparison to our data, Mackus et al. used TR-OES to study 

pulsed-plasmas used in atomic layer deposition (ALD), providing a mechanism for monitoring 

thin-film growth in real time.55  By monitoring emission intensities during plasma processing, 

the authors determined failures in plasma ignition during ALD cycles and could pinpoint the 

time at which gas flow failed.55  The ability to use TR-OES as an in-situ, non-intrusive method to 

monitor and detect a range of advanced materials manufacturing techniques could substantially 

impact the adoption of industrial ALD processing.  For process optimization, regardless of 

specific application, the plasma-material interface must be considered.  
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Figure 7.10. Time-resolved intensity of N2 (black trace) and NO (green trace) with (a) no 
substrate and (b) a zeolite pellet in the coil region of an N2 pulsed plasma  (p = 100 mTorr, 
Peq = 175 W, 50 % d.c.) 
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Figure 7.11. Schematic representation of various surface modification processes occurring 
during N2 plasma processing: (a) N-doping of the substrate; (b) energetic bombardment 
resulting in vibrational quenching and possible microdischarge formation; and (c) etching and 
formation of new gaseous species. 
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The gas-surface interactions studied herein are schematically depicted in Figure 7.11.  

Although numerous possible gas-catalyst interactions exist, we believe these four are the most 

prevalent in our systems.  XPS data reveal that under certain operating conditions, N is doped 

into both the zeolite and TiO2 substrates.  The etching of lattice oxygen in both TiO2 and zeolite 

(nominally SiO2) substrates can occur when excited state nitrogen impinges and reacts to form 

additional gas-phase species (i.e., NO, OH) as depicted in Figure 7.2 and Reaction 7.2, 

  𝑁2 (𝑔)∗ + 2𝑂(𝑔) → 2𝑁𝑂(𝑔)∗               (7.2) 

where N2
* and NO* represent excited state species.  Ultimately, we believe there is still much 

work to be done to further understand the underlying mechanisms involved in PAC systems.  

Nevertheless, the data presented herein clearly demonstrate that not only does the plasma alter 

the surface of catalytic substrates, but the presence of both micro- and nano-structured catalytic 

materials clearly alter energy partitioning within the gas-phase of the plasma.  

7.3  Summary 

As evidenced by gas-phase energetics data and resulting materials characterization, there is a 

synergistic, dynamic interface that arises when a plasma is coupled with catalysts.  Regardless of 

material surface area, the presence of a catalyst in the coil region of a low-pressure rf plasma 

results in a pronounced decrease in the vibrational temperature of gas-phase species, with no 

clear or significant impact on rotational cooling pathways.  For PAC to become a viable means 

of pollution control, it is essential that these energetic pathways and plasma-surface interactions 

be further examined.  Notably, all work presented herein characterized excited state species; we 

have shown previously a significant energetic difference between ground and excited state N2 

and NO molecules.1,56  As such, additional data on ground-state molecules in the system could 

provide further insight into energy partitioning within these systems.  Finally, employing our 
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unique Imaging Radicals Interacting with Surfaces (IRIS) technique to determine a molecule’s 

propensity to scatter from both nano- and micro-structured surfaces may provide more direct 

evidence of how plasma species synergistically interact with catalytic substrates.  This holistic 

experimental approach, combining gas-phase diagnostics, IRIS, and robust material 

characterization will be essential to realizing the potential of PAC for pollution remediation.   
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CHAPTER 8 
 

EFFORTS TOWARDS UNRAVELING PLASMA-ASSISTED CATALYSIS: 
DETERMINATION OF KINETICS AND MOLECULAR TEMPERATURES WITHIN N2O 

DISCHARGESa 
 

  

The work presented in this dissertation sought to establish links between the gas-phase, gas-

surface interface, and resulting material properties.  This chapter utilizes optical emission 

spectroscopy to examine the impact of Pt and zeolite catalysts on gas-phase species densities, 

plasma energetics, reaction kinetics, and plasma-catalyst configurations within an N2O rf plasma.  

The studies herein exemplify the need for a holistic approach to solving challenges presented in 

the plasma-catalysis community.  This work was supported by the National Science Foundation 

(NSF CBET – 1803067) and the American Chemical Society Petroleum Research Fund (ACS 

PRF 59776 – ND6).  I would like to thank the staff of the CSU Central Instrument Facility for 

assistance with the XPS, XRD, and SEM analyses.   

  

 

a
 This chapter is reproduced from a submitted article to ACS Catalysis by Angela R. Hanna and 

Ellen R. Fisher. 
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8.1 Introduction 

N2O is a greenhouse gas that contributes to ozone depletion,1 has a greenhouse warming 

potential ~300 times that of CO2 and can remain in the atmosphere an average of 114 years.2  

N2O is produced through natural processes; however, it is largely emitted from anthropogenic 

sources, including wastewater management, industrial processes, agriculture, and fuel 

combustion.  The continuous increase of N2O in the atmosphere, combined with long 

atmospheric residence times, requires developing efficient solutions for its abatement.  Thermal 

decomposition,3 selective adsorption,4,5 catalytic decomposition, and plasma technologies6,7 have 

been studied as means to reduce and remove N2O emissions, including decreased energy 

requirements and enhanced rate conversions.  Prior investigations have shown N2O decomposes 

via a first order reaction, where proposed, general reaction schemes for its catalytic 

decomposition are shown in Reactions 8.1 and 8.2.8,9 

𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 +  𝑁2𝑂(𝑔)  → 𝑁2 (𝑔) +  𝑂(𝑎𝑑𝑠)   (8.1) 𝑂(𝑎𝑑𝑠) + 𝑁2𝑂(𝑔)  → 𝑁2 (𝑔) +  𝑂2 (𝑎𝑑𝑠)  (8.2) 

Several catalysts have been examined for N2O decomposition, including noble metals (Pt, Au, 

and Pd);10 metal oxides (TiO2, NiO, Fe2O3, ZnO);8,11 mixed metal oxides;12,13zeolites (ZSM-5, 

ZSM-11, Ferrierite);4,14,15 and perovskite-type oxides.16  Although these catalysts show high 

removal efficiency, they can also require relatively high operating temperatures (> 300 °C).  To 

improve energy efficiency and selectivity of these processes, plasma-assisted catalysis (PAC) has 

been explored as a promising alternative technology for pollution abatement.17-19 

Although auspicious, the applicability of PAC is limited due to a paucity of knowledge of the 

nature of fundamental plasma-catalyst interactions.  Currently, there are three PAC techniques 

actively investigated; including two different configurations of two-stage systems, wherein the 
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catalyst and plasma are physically separated, as well as single-stage systems wherein the catalyst 

is placed directly in the discharge.20,21  Within two-stage systems, the plasma alters the gas-phase 

composition, either prior to or after interaction with the catalyst; whereas single-stage systems 

enable all plasma species to interact with the catalyst simultaneously, often resulting in diverse 

dissociation products and significant alteration to the surface properties of the catalyst.  Thus, 

deciphering possible synergisms within single-stage PAC systems is complex, originating from 

the discharge-catalyst interdependence. 

The principles of PAC can be applied across a wide range of waste treatments, not limited to 

the oxidation of volatile organic compounds,22 ammonia synthesis,23 and methanation of CO2;24 

however, NOx emissions are of particular interest.  Hur et al. studied the decomposition of N2O 

in a low-pressure reactor, finding the destruction and removal efficiency (DRE) of N2O enhanced 

by increasing applied power from 1.3 to 1.8 kW.25  Jo et al. investigated the decomposition of 

N2O over gamma alumina-supported metal oxide catalysts, revealing decomposition efficiency 

tends to decrease with increasing amounts of O2 in the feed gas.12  This result suggests gas-phase 

species compete for active sites on the catalyst and the adsorption of oxygen onto these active 

sites could inhibit the decomposition of N2O.12  This hypothesis was further supported by the 

work completed by Fan et al., documenting a substantial decrease in N2O conversion with the 

concomitant increase of O2 content in a N2-O2 mixture.26  The type of plasma discharge (e.g., 

gliding arc, dielectric barrier, radio frequency, etc.), chemical nature, and substrate morphology 

are all capable of modifying plasma-catalytic processes.  Affordable materials (compared to rare-

earth metals) with complex morphologies (specifically nano- and micro-structured materials) 

could have an advantageous impact on PAC processes.  Increasing surface-area to volume ratio 

for a catalyst could initiate additional surface interactions between the plasma species and 
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material, synergistically combining to result in augmented decomposition of a waste stream.  

Numerous studies have, therefore, focused on ion-exchanged Zeolite Socony Mobil (ZSM)-5 

zeolites.  Specifically, Centi et al.4 and Guilemot et al.27 found Ba-ZSM-5 to be a successful 

material in N2O treatment applications.  The addition of an active material can clearly impact the 

plasma itself, therefore it is crucial to characterize gas-phase species with and without a catalytic 

substrate in the system. 

We have previously studied emitting and absorbing species in N2O discharges without a 

substrate,28 determining rotational (TR) and vibrational (TV) temperatures for both N2 and NO 

molecules increase with increasing applied rf power (P) and decrease with increasing system 

pressure (p), reported in Chapter 6.  This suggests as more energy is supplied to the discharge 

through increasing applied power, this energy is transferred to the gas-phase molecules, thereby 

populating higher vibrational states.  As system pressure increases, the number of collisions 

within the plasma concomitantly increases, resulting in decreased TR and TV values through 

collisional quenching.  Initial time-resolved optical emission spectroscopy (TR-OES) 

experiments suggested a mechanism of direct, electron-impact excitation of NO from both NO 

and N2O precursors.28  Through the combination of energetic and kinetic information, we can 

begin to optimize plasma operating conditions for the increased decomposition of N2O into 

ambient species (e.g., N2 and O2) and decrease the amount of NO formed in a discharge.   

In this work, these foundational plasma studies were expanded to investigate the 

decomposition of N2O over Pt and zeolite catalysts.  By selecting two forms of the same catalyst, 

Pt in foil and nanopowder form, the influence of material morphology on the discharge can be 

deduced, nominally without the complication of large differences in chemical identity.  In 

addition to the rare-earth metal catalysts, micro-structured aluminosilicate zeolites were studied 
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herein.  Of burgeoning interest is the correlation between material properties (e.g., chemical 

identity and pore size) and their potential influence on plasma properties (e.g., species density, 

energy distributions, formation of microplasmas within pores).  Significant research efforts have 

been focused towards understanding the scaling of microplasmas in porous materials,17,29 

therefore we also sought to characterize the impact of both nano- and micro-scaled materials on 

plasma thermodynamics and kinetics.  By focusing on these plasma properties, the experiments 

and results herein will produce foundational data for addressing critical intellectual challenges in 

the field of plasma science.17  Collectively, this approach can advance globally-relevant 

technologies by providing pathways to better processes and materials for pollution abatement via 

PAC. 

8.2 Results 

A major focus of this work is to explore the potential of Pt and zeolite substrates as catalysts 

in the plasma-assisted decomposition of N2O.  One key element of these studies examines the 

impact of substrate morphology on the overall process.  Pt foil (Figure 8.1a) shows a relatively 

smooth morphology; however, scratches and imperfections can be seen at higher (65x) 

magnification.  The Pt powder substrate (Figure 8.1b) displays a random, highly porous network 

with minimum agglomeration of nanoparticle clusters.  Microstructured zeolite pellets (Figure 

8.1c) also display an interconnected porous morphology. 

Using inert gas actinometry, the relative densities of excited-state plasma species (denoted 

here with brackets, e.g. “[NO]”) observed in N2O systems, with and without substrates, can be 

evaluated.  Depicted in Figure 8.2, relative densities of N2 (Figure 8.2a), NO (Figure 8.2b), 

atomic O (Figure 8.2c), and OH (Figure 8.2d) generated from a 90:10 N2O/Ar plasma are plotted 

as a function of power for systems with no substrate, and with substrates in the coil (Figure 2.1a). 
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Figure 8.1. SEM images of (a) Pt foil (65x); (b) Pt powder (5000x) and (c) zeolite pellet 
(5000x). 
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Figure 8.2. Relative density of (a) N2, (b) NO, (c) O, and (d) OH as a function of P in a 100 mTorr, 
single stage N2O plasma system. Error bars are plotted for all points and represent one standard 
deviation from the mean (n ≥ 3).  
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With no substrate in the plasma discharge, [N2] slightly decreases with a concomitant 

increase of [NO], [O], and [OH] as P increases from 25 to 175 W, suggesting additional 

fragmentation of N2O at higher power.  At 25 – 75 W, the relative densities of N2 and NO are 

higher with Pt foil present compared to the substrate-free system, ultimately converging to values 

within experimental error of each other as P increases to 175 W.  The Pt foil system also 

demonstrates an increase in [O] with power, yet more atomic oxygen is present in the substrate-

free system at all P except 175 W.  The nanostructured Pt powder (Figure 8.2b) resulted in a 

decrease in excited state N2 and NO with a corresponding increase in atomic O.  These data 

clearly highlight the impact of material morphology; although both substrates are nominally 

platinum, there is a significant and measurable difference in the resulting gas-phase chemistry.  

Furthermore, the amount of OH in the discharge is substantially increased at higher P with a Pt 

powder substrate, a trend that continues with the micro-porous zeolite pellet.  Unlike the other 

catalytic materials, a sharp increase in [N2] and corresponding decrease in [NO] is measured at P 

≥ 75 W with a zeolite pellet in the coil.  Notably, all data provided in Figure 8.2 were collected 

over several minutes, averaging multiple spectra collected with a 50 ms integration time, 150 

averages per scan.  As such, these effectively steady-state measurements can clearly provide 

insight into plasma-catalyst interactions.  Nevertheless, optical spectroscopy can also be 

employed to gain temporally-resolved information about these plasma-catalyst systems, 

discussed in Chapter 3. 

The presence of a zeolite pellet in an N2O plasma resulted in the smallest amount of NO 

produced in the discharge.  As such, actinometric TR-OES data were collected with a zeolite 

substrate in the system at two P, Figure 8.3.  Relative intensities of N2 (orange), NO (blue), O 

(green), and OH (grey) were monitored via TR-OES as a function of time.  At P = 25 W, [N2] 



256 
 

increases as a function of time, reaching an intensity maximum after ~12 s.  A subsequent decay 

to an apparent steady-state density occurred as time increases to 60 s.  When P is increased to 

150 W, [N2] gradually increases over the 60 s collection time, in contrast to the 25 W data.  

Figure 8.3b is plotted with a logarithmic y-axis to more easily distinguish species at low 

concentrations.  Note also that there is a gradual decrease in [NO] over time in the 25 W system, 

whereas in the 150 W system, [NO] signals became erratic and are only slightly above 

experimental noise after ~35 s.  [O] increased throughout the plasma duration at 150 W 

compared to the 25 W discharge, where an initial increase and slight decay to a steady-state was 

measured.  In contrast, the [OH] in the discharge at 25 W did not change over time, further 

supporting the observation that there is little to no OH in the system with these conditions 

(Figure 8.2d).  At higher P, the [OH] increases significantly with time, exceeding the [O] after 

~35 s.  Particularly noticeable in the 150 W system, the first few points (< 5 s) are scattered for 

all species, thus, select species were studied with a higher time resolution to elucidate how they 

are initially formed and interact within the discharge. 

TR-OES was performed without the addition of Ar to study the first 4 s of plasma ignition, 

employing a 1.5 ms integration time.  Described in Chapter 2, a first order exponential was used 

to fit the onset of OES signals for N2 and NO species (Figure 2.6).  N2 and NO kf (s-1) values 

were determined and are depicted as a function of power in Figure 8.4a and 8.4b, respectively.  

These kf values are also reported in Table 8.1; kd(NO) values are included in Table 8.2.  kf(N2) 

values increased with increasing power for the substrate free, Pt powder, and zeolite systems, 

ranging from 1.484 s-1 (zeolite: 25 W) to 17.579 s-1 (Pt powder: 150 W).  Note, 150 W is the 

highest applied power examined in the time-resolved studies, compared to 175 W in the steady-

state experiments.  
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Figure 8.3. Relative intensity of plasma species (X) as a function of time for a 100 mTorr 
90/10 N2O/Ar plasma at (a) 25W and (b) 150 W, with a zeolite pellet present in the coil 
region of the discharge. Note relative intensities are plotted on a linear (a) and log (b) scale.  
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Figure 8.4. kf (s-1) for (a) N2 and (b) NO plotted as a function of P and substrate. Error bars 
represent one standard deviation from the mean (n ≥ 6).  
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Table 8.1. kf (s
-1) values in N2O plasma systemsa

 

 P (W) No substrate Pt powder Zeolite 

N2 

25 1.551 (0.912) 2.431 (0.332) 1.484 (0.0432) 

50 2.269 (0.195) 4.438 (0.757) 2.925 (0.0523) 
75 4.778 (0.0703) 6.291 (0.460) 4.310 (0.132) 
100 7.264 (0.216) 9.444 (0.381) 5.713 (0.173) 
125 11.845 (0.908) 12.700 (0.889) 9.770 (0.0961) 
150 14.260 (0.803) 17.579 (2.360) 12.171 (0.522) 

NO 

25 3.249 (0.240) 4.596 (0.478) 3.622 (0.604) 

50 4.933 (0.548) 6.347 (1.586) 6.069 (0.750) 
75 6.273 (1.327) 7.589 (0.540) 7.496 (1.284) 
100 6.625 (0.813) 9.193 (0.833) 10.930 (0.807) 
125 11.362 (1.669) 11.315 (1.741) 13.345 (0.899) 
150 14.229 (2.550) 16.326 (3.714) 14.145 (2.454) 

aValues in parentheses represent standard deviation calculated from the mean of n  6 trials 
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Table 8.2. kd (s
-1) values in N2O plasma systemsa

 

 P (W) No substrate Pt powder Zeolite 

NO 

50 4.105 (1.056) 2.780 (0.628) 1.539 (0.459) 

75 6.445 (1.055) 2.937 (1.163) 4.408 (0.888) 
100 7.717 (0.739) 6.038 (1.871) 4.632 (0.545) 
125 11.843 (1.234) 6.533 (0.989) 6.406 (0.343) 
150 9.300 (1.015) 7.289 (0.865) 8.243 (1.146) 

aValues in parentheses represent standard deviation calculated from the mean of n  6 trials 
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At P = 175 W, plasma ignition was influenced by reflected rf P fluctuations within the first μs; 

therefore, rate constants could not be reliably quantified.  Moreover, [NO] (and therefore NO 

signal) in the discharge is low at P = 175 W for both Pt powder and zeolite systems.  At all P, 

excluding 125 W, kf(N2) with a Pt powder were slightly elevated compared to the substrate free 

and zeolite systems.  At P ≥ 100 W, kf(N2) decreased in the presence of a zeolite pellet.  At P < 

100 W, kf(NO) for a given system are higher compared to the N2 rate constants.  Additionally, 

kf(NO) values demonstrate little to no dependence on the addition of a substrate.  As detailed in 

Chapter 2 and depicted in Figure 2.4, after reaching a maximum, the intensity of NO follows an 

exponential decay to a steady-state, denoted as kd.  Due to low signal-to-noise ratios at 25 W, 

kd(NO) values are not reported.  kd(NO) values demonstrated a slight dependence on P, however 

several conditions are within experimental error of each other. Evaluation of plasma kinetics can 

provide insight into plasma ignition and initial plasma-catalyst interactions; however, 

illumination of steady-state energetics is also a critical component of a holistic evaluation of 

PAC systems.  

TR values of excited state N2 and NO are plotted as a function of applied rf power and 

substrate, Figures 8.5a and 8.5b, respectively and included in Table 8.3.  When no substrate is 

present, TR(N2) values have thermalized to approximately room temperature, with little to no 

power dependence.  The Pt foil system shows a slightly stronger power dependence, TR(N2) 

increases to 340 ± 10 K at P = 175 W.  Interestingly, the two porous substrates impact the ability 

of N2 molecules to rotationally thermalize, particularly the Pt powder substrates as TR(N2) = 405 

± 10 K at P = 175 W.  Albeit, this increase in TR(N2) values as power increases is significantly 

smaller compared to the increase in TR(NO) values, shown in Figure 8.5b.  
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Figure 8.5. TR (K) values for (a) N2 and (b) NO molecules, plotted as a function of applied rf 
power and substrate within p = 100 mTorr N2O discharge. Error bars represent one standard 
deviation from the mean (n ≥ 3).  
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Table 8.3. TR (K) for excited state N2 and NO within N2O plasmasa,b
 

 P (W) No substrate Pt foil Pt powder Zeolite 

N2 

25 305 (5) 305 (5) 315 (5) 300 (5) 

50b 305 (10) 305 (5) 325 (5) 305 (5) 

75 310 (10) 310 (5) 325 (5) 315 (5) 

100b 310 (5) 310 (10) 335 (10) 325 (15) 

125 320 (15) 320 (5) 375 (10) 350 (10) 

150b 310 (10) 330 (5) 395 (10) 355 (10) 

175 335 (10) 340 (10) 405 (10) 350 (5) 

NO 

25 410 (15) 360 (10) 440 (40) 350 (25) 

50b 535 (10) 410 (15) 510 (10) 520 (30) 

75 560 (10) 440 (10) 540 (15) 540 (30) 

100b 530 (5) 470 (10) 590 (15) 590 (10) 

125 640 (10) 510 (10) 660 (15) 620 (20) 

150b 520 (20) 570 (15) 710 (15) 640 (10) 

175 725 (25) 660 (20) 770 (30) 680 (30) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials 
bPreviously reported28 
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Table 8.4. TV (K) for excited state N2 and NO within N2O plasmasa.b
 

 P (W) No substrate Pt foil Pt powder Zeolite 

N2 

25 2850 (15) 2500 (20) 2560 (180) 2570 (70) 

50 3450 (80) 3150 (15) 2960 (100) 3010 (160) 

75 3880 (70) 3670 (70) 3380 (70) 3700 (40) 

100 4410 (50) 4150 (15) 3650 (30) 4060 (90) 

125 5290 (90) 4600 (10) 3990 (60) 4830 (10) 

150 6360 (50) 5050 (30) 4210 (70) 5190 (40) 

175 6890 (50) 6380 (70) 4190 (210) 5900 (80) 

NO 

25 2880 (20) 2760 (20) 2990 (10) 2850 (140) 

50b 2870 (60) 2770 (20) 2900 (50) 3300 (160) 

75 2910 (90) 2790 (10) 2910 (20) 3320 (120) 

100b 2900 (10) 2780 (20) 2860 (40) 3630 (100) 

125 3080 (50) 2920 (130) 2910 (20) 3550 (120) 

150b 3300 (170) 2860 (10) 3160 (50) 4200 (180) 

175 3850 (110) 3500 (30) 3730 (90) 4050 (140) 
aValues in parentheses represent standard deviation calculated from the mean of  
n  3 trials 
bPreviously reported28 
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A positive correlation between rf P and TR(NO) was determined, where TR(NO) values increased 

by ~300 K as P increased from 25 to 175 W for each system.  At 150 W, the addition of a 

substrate (Pt foil and power, zeolite pellet) resulted in increased TR(NO) values, yet TR(NO) 

values converge within experimental error as P increases to 175 W.  

TV values for excited state N2 and NO are listed in Table 8.4.  Regardless of catalytic 

substrate, TV(N2) increases as a function of rf power.  TV(NO) also displays a power dependence; 

however, the increase in TV(NO) between 25 and 175 W is significantly less compared to that 

observed for N2 species.  When no substrate is present, TV(NO) values at lower P (25 – 100 W) 

are all within experimental error of each other.  As the rf power is increased from 100 – 175 W, 

an increase in TV(NO) is observed.  ΔTV for N2 (Figure 8.6a) and NO (Figure 8.6b) was 

determined via Equation 8.4 as a function of power and substrate to probe differences in 

vibrational energy partitioning upon the addition of a catalyst. ∆𝑇𝑉 = [𝑇𝑉(𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡) − 𝑇𝑉(𝑛𝑜 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)]         (8.4) 

At all conditions herein, vibrational cooling of N2 molecules, as measured by ΔTV, was observed 

upon the addition of catalytic substrates.  At 25 and 50 W, vibrational cooling was relatively 

independent of catalyst type; however, as P is increased to 175 W, the temperature difference 

between the Pt powder and substrate-free system became more pronounced [ΔTV (N2) = - 2700 ± 

210 K].  ΔTV with zeolite and Pt foil substrates display a similar, limited dependence on P 

[ΔTV(N2) ≤ - 500 K] below P = 125 W.  Notably, ΔTV at 150 and 175 W is significantly larger  

(-1170 ± 60 K and -990 ± 90 K, respectively) in the presence of a zeolite pellet.  Unlike TV (N2), 

vibrational cooling of NO was not observed for all substrates, shown in Figure 8.6b and Table 

8.4.  At 25 W, the presence of catalysts does not impact the resulting NO vibrational energetics.  

As P is increased in the zeolite system, TV (NO) is enhanced, with limited P dependence.   
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Figure 8.6. ΔTV for (a) N2 and (b) NO as a function of applied power and substrate within a 
100 mTorr N2O discharge.  
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The two Pt substrates studied here do not have a substantial impact on TV (NO).  Indeed, many of 

the data points calculated here are within experimental error of the substrate-free system.  The 

relative species density, energy partitioning, and kinetic distributions have been measured as a 

function of operating conditions and catalytic substrate within single-stage PAC systems.  Noted 

in the Introduction, the configuration of the plasma and catalyst may also impact the efficacy of 

PAC technologies.  

Figure 8.7 depicts [N2], [O], and [NO] density as a function of P and plasma-catalysis 

configuration for the Pt powder substrates.  For comparison, substrate free and single-stage 

actinometric data are shown in Figure 8.2.  At 25 and 50 W, plasma-catalyst orientation does not 

impact [N2].  As P increases from 75 to 175 W, [N2] decreases, with little difference between the 

no substrate and single-stage configuration.  Additional decreases in [N2] are observed, however, 

with the two-stage system.  Described above, [O] slightly increases with P when no substrate is 

present. At P < 125 W, less atomic O is formed, with no dependence on single or two-stage 

configuration.  At 175 W, [O] has no apparent dependence on PAC orientation.  [NO] decreases 

substantially at higher P with the addition of Pt nanopowder in the coil region of the plasma and 

was further diminished in the pre-plasma catalysis orientation.  

To better understand these gas-phase trends and to understand the impact of plasma 

processing on each substrate, the catalysts were studied before and after plasma exposure.  

PXRD and XPS techniques were used to characterize bulk and surface properties, respectively.  

The diffraction patterns of Pt foil (Figure 8.8a) and powder (Figure 8.8b) are shown for untreated 

as well as N2O plasma-treated substrates.  The diffraction peaks at 2θ = 39.6, 46.4, and 67.4° in 

Figures 8.8a and 8.8b correspond to the reflections (111), (200), (220), respectively, consistent 

with the face centered cubic (fcc) structure of platinum.30 
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Figure 8.7. Species density as a function of P and plasma catalysis set-up, with Pt powder 
substrates present. Error bars represent one standard deviation from the mean (n = 4).   
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Figure 8.8. PXRD patterns for Pt (a) foil and (b) powder substrates: untreated (black trace) 
and N2O treated at p = 100 mTorr, P = 175 W, t = 10 minutes (green trace). Inset in panel (a) 
highlights the (111) and (200) peaks in the Pt foil diffraction patterns, where the green trace 
was multiplied by 10 to better compare diffraction intensities. Inset EDS image in panel (b) 
corresponds to the N2O treated Pt powder (p = 100 mTorr, P = 175 W, t = 10 minutes).  
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Figure 8.9. High resolution Pt4f XPS spectra for untreated Pt (a) foil and (b) powder (black 
traces) and N2O plasma treated substrates at P = 25 W (blue traces) and 175 W (green traces), 
with p = 100 mTorr and t = 10 min.  
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The (111) diffraction peak of the Pt foil has nominally disappeared after a 175 W plasma 

treatment; no substantive changes to the XRD patterns were measured for the Pt powder 

substrate.  The inset EDS image in Figure 8.8b corresponds to Pt powder after exposure to a  

100 mTorr, 175 W N2O plasma for 10 min, revealing the bulk of the material is comprised of 

platinum, with some oxygen dispersed throughout the material.  These data, in conjunction with 

the PXRD diffraction, highlight the bulk chemistry of these materials is metallic Pt.  In XPS 

spectra, both Pt foil and Pt powder (Figure 8.9a and Figure 8.9b, respectively) show the addition 

of a peak at 78.0 eV in the Pt4f spectra, corresponding to the oxidation of the Pt substrate.  

Atomic compositions for these materials are reported in Table 8.5.  Both Pt materials have 

high concentrations of carbon on the surface.  Post plasma exposure at either 25 or 175 W, the 

amount of oxygen on the Pt foil surface increased compared to the untreated material, with a 

concomitant decrease in carbon.  In some spots on the Pt powder substrates, no carbon was 

detected in the survey spectra; hence, there is a large error associated with the amount of carbon 

adsorbed to the surface of the nanopowder.  In contrast to the Pt foil, after gas and plasma 

exposure the carbon content on the Pt powder substrates increased significantly.  Although the 

bulk of these materials are metallic Pt, verified through PXRD and EDS, the surface chemistry is 

much more complex and clearly affected by plasma exposure.  These data exemplify the need for 

robust material characterization (e.g., bulk and surface properties) in conjunction with gas-phase 

studies.    

The impact of plasma-catalyst configuration on gas-phase species densities was also 

investigated with a zeolite substrate as the catalyst, Figure 8.10.  N2 density decreases as a 

function of P for the two-stage and substrate-free systems, converging to the same values at  

P ≥ 75 W.   
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Table 8.5. XPS atomic composition for Pt and zeolite substrates
a,b

    
  Pt foil  Pt powder Zeolite pellet 

 UT 25 W 175 W UT Gas flow
c
 25 W 175 W UT

d
 Gas flow

c
 175 W 

Pt(%) 25.3(1.9) 23.8(2.2) 26.0(2.9) 53.4(12.2) 32.3(6.8) 32.5(2.0) 29.6(2.1) -- -- -- 

O(%) 18.3(2.6) 53.5(2.5) 39.1(6.2) 37.0(4.1) 29.1(0.8) 45.5(4.2) 31.6(4.2) 57.5(4.0) 57.3(1.2) 60.3(3.5) 

C(%) 56.3(3.6) 22.7(3.0) 34.9(4.1) 9.5(13.6) 38.6(6.7) 22.0(4.6) 38.8(7.1) 22.7(7.0) 21.2(0.9) 14.4(5.9) 

Si(%) -- -- -- -- -- -- -- 15.5(2.6) 15.7(0.8) 20.9(2.2) 

Al(%) -- -- -- -- -- -- -- 4.4(0.6) 5.7(0.4) 4.4(0.4) 

a
Values in parentheses represent one standard deviation for the measurement.    

b
Treatment conditions: p = 100 mTorr, t = 10 min 

c
Substrates were placed in pre-plasma catalysis chamber 

d
Previously reported31 
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Figure 8.10. Species density as a function of P and plasma catalysis set-up, with zeolite 
pellets present. Error bars represent one standard deviation from the mean (n = 4).   
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The single-stage system resulted in significantly less atomic O compared to the substrate-free 

and two-stage systems studied herein, with largely no dependence on P.  At 175 W, there is 

substantially more O produced in the two-stage system and a slight decrease in [NO] was 

detected with this configuration.  At P ≤ 125 W, the two-stage zeolite system produced more NO 

in the discharge compared to when no catalyst is present, whereas a zeolite placed directly in the 

discharge enhanced the decomposition of NO at higher power.   

The surface and bulk properties of the zeolite materials were also characterized after these 

plasma exposures.  XPS atomic composition is listed in Table 8.5 and Figure 8.11 shows the 

high resolution Si2p and O1s XPS spectra for untreated (a,d), single-stage (b,e), and two-stage 

(c,f) N2O plasma-exposed zeolite pellets.   The high-resolution Si2p spectra show two Si binding 

environments: Si(-O4) at 103.4 eV and Si(-O3) at 102.8 eV.(36)  The primary oxygen binding 

environments include the Si-O-Si band at 531.7 eV and Si-O-Al band at 530.8 eV.(31,37) The 

single-stage system depicts an increase in the Si(-O4) (Figure 8.11b) and Si-O-Al (Figure 8.11e) 

binding environments compared to the untreated or two-stage system.  This suggests some 

surface “cleaning” to expose the underlying aluminosilicate bridges is occurring.  Although there 

are slight differences in the surface chemistry of zeolite materials after plasma processing, 

substrate morphology and bulk properties remained largely unchanged, Figure 8.12.  
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Figure 8.11. High resolution Si2p (top) and O1s (bottom) XPS spectra for untreated (a,d); single-stage (b,e); and two-stage (c,f) N2O plasma 
treated zeolite pellet (100 mTorr, 175 W, 10 min).   
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Figure 8.12. SEM images of N2O treated (100 mTorr, 175 W, 10 minutes) (a) Pt powder and 
 (b) zeolite pellet, collected at 5000x magnification. 
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8.3 Discussion 

Detailed in the Introduction, the applicability of PAC for decomposition of pollutants is 

inherently hindered by a lack of knowledge regarding plasma-catalyst interactions.  This pertains 

to both the potential modification of the catalyst by the plasma and the ability of the substrate to 

influence plasma chemistry.  Therefore, a holistic experimental approach is necessary to 

understand relationships between gas-phase species, processes at the gas-surface interface, and 

resulting catalyst properties.  For example, within plasmas (sans substrate), N2O is hypothesized 

to decompose primarily through multiple electron-impact dissociation pathways, described 

briefly in Reactions 8.5 and 8.6.  𝑁2𝑂(𝑔) +  𝑒−  → 𝑁2 (𝑔) + 𝑂(𝑔) + 𝑒−                (8.5) 𝑁2𝑂(𝑔) +  𝑒−  → 𝑁(𝑔) + 𝑁𝑂(𝑔) + 𝑒−              (8.6) 

Using inert gas actinometry, the relative density of these reaction products can be elucidated as a 

function of operating conditions.  With no substrate in the plasma discharge, [NO] slightly 

increases as P increases from 25 to 175 W.  This could indicate further fragmentation of the 

precursor (N2O) at higher power, or NO could form via additional reactions between O and N.  

This study sought to abate N2O via PAC, however, the decomposition of N2O to NO (Reaction 

8.6) is non-ideal as reactions between NO and other environmental byproducts can be 

detrimental to the atmosphere.  Given this type of complexity, the data presented here reveal 

several major observations regarding the interactions of catalytic substrates with N2O plasmas. 

The first major observation is that the presence of a zeolite substrate dramatically changes the 

plasma chemistry, ultimately increasing the decomposition of N2O (and NO) into benign N2 at rf 

P ≥ 75 W, Figure 8.2.  Consequently, this sharp decrease in NO in the presence of a zeolite pellet 

coincides with a sharp increase in N2 (Figure 8.2a), expressed via Reaction 8.725  
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𝑁𝑂(𝑔) +  𝑁(𝑔)  →  𝑁2 (𝑔) + 𝑂(𝑔)         (8.7) 

Atomic nitrogen emission peaks are not observed in the N2O emission spectra, further supporting 

its consumption in Reaction 8.7 to form N2 and O species.  Generally, N2O and subsequent NO 

decomposition increased by increasing the applied rf P for both Pt powder and zeolite substrates.  

This likely occurs as a result of more reactive species being generated at a higher power.  Upon 

plasma ignition, a variety of reactive species are created via excitation, ionization, and 

dissociation, including excited state N2, N radicals, and N2
+ ions.  Jo et al. hypothesize these 

species nominally decompose N2O via Reaction 8.8.12  𝑁2(𝐴3𝛴𝑢+)(𝑔) + 𝑁2𝑂(𝑔)  → 2𝑁2 (𝑔) +  𝑂(𝑔)             (8.8) 

At 25 W, [NO] in the discharge increased upon the addition of a substrate, suggesting a gas-

phase molecule could remove adsorbed O from the surface and undergo reactions to form 

additional NO.  Within the Pt foil system, [NO] is elevated compared to the substrate-free system 

at P ≤ 75 W, but as power increases to 175 W these systems are the same within experimental 

error.  The Pt foil seems to have little to no impact on the plasma environment; the densities of 

N2, NO, and OH are within experimental error with the substrate-free system at most rf powers 

studied here.  Depicted in Figure 8.2b, both Pt powder and zeolite substrates drastically altered 

the plasma chemistry, ultimately decreasing the amount of NO in the discharge at P ≥ 50 W 

(zeolite) and P ≥ 100 W (Pt powder).  Therefore, it is likely the porous network of these 

materials impacts the ability of the catalyst to decompose N2O and NO.  Illustrated in Figure 8.1, 

pore size and shape drastically differ between the Pt nanopowder and micro-structured zeolite.  

The variability of the porous network could impact the formation of microplasmas within the 

pores of the catalyst, which is hypothesized to enhance pollutant decomposition.32  
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Zhang et al. studied the influence of the material dielectric constant on plasma generation 

inside catalyst pores using a two-dimensional fluid model of an atmospheric pressure helium 

discharge.33  The authors concluded pore size and shape is a crucial variable in the propagation 

of plasma into catalyst pores.  In a 100 μm pore, the electron impact ionization in the pore is 

greatly enhanced for dielectric constants (εr) below 300, however, ferroelectric materials with 

dielectric constants above 300 did not yield plasma enhancement inside catalyst pores, regardless 

of pore size.  The authors argue common catalysts supports [Al2O3 (εr =8-11), SiO2 (εr =4.2), and 

zeolites (εr =1.5- 5)] should more easily allow formation of microdischarges within pores, even 

those of smaller sizes.33  Aluminosilicate zeolites have a smaller dielectric constant compared to 

Pt (εr = 6.5-7.5) and the zeolites employed in this study have significantly larger pores compared 

to the nanostructured Pt powder.  This suggests microdischarges may form more easily with the 

zeolite catalyst, hence it is the system with the most NO decomposition.  As evidenced by the 

results depicted in Figure 8.2, chemical nature and morphology (i.e., pore size) can have a 

substantial impact on the resulting plasma composition.  An additional variable is the catalyst 

placement, which is why the PAC community is actively investigating different plasma-catalyst 

configurations for pollution abatement, including those where the plasma and catalyst can 

directly interact (single-stage) or be separated (two-stage).19  By exploring both single- and two-

stage arrangements, synergisms between gas-substrate (two-stage) and plasma-substrate (single-

stage) can be separately evaluated.   

Within a two-stage, pre-plasma catalysis configuration, gas flows over the catalyst and is 

further treated by the inductively coupled plasma (Figure 2.2b).  As the porous substrates (Pt 

powder and zeolites) had the greatest impact on the amount of NO in the discharge (Figure 8.2b), 

they were chosen for the two-stage studies.  As noted above, [NO] decreases substantially at 
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higher powers (P ≥ 100 W) with the addition of a nano-structured Pt catalyst in the discharge.  

Thus, a second major observation herein was the further diminished NO density in the system 

with the pre-plasma catalysis set-up, compared to the substrate-free and single-stage 

configurations, Figure 8.7c.  Within the two-stage system, N2O(g) likely interacts with the 

catalyst via Reactions 8.1 and 8.2, wherein the interactions with adsorbed O are hypothesized to 

be the rate-limiting step.12  Density functional theory (DFT) studies have shown N2O(g) can be 

easily absorbed on metal surfaces, calculating a favorable adsorption energy of N2O on the top 

site of Pt(111) surfaces.34  Using CaS(100) as a catalyst model in DFT calculations, Wu et al. 

computed a 1.228 eV energy requirement for N2O to decompose to N2(g) and O(ads) (Reaction 

8.1).  The subsequent removal of O(ads) from the surface is more energy intensive, discussed 

further below.35  At low temperatures, there is limited regeneration of active sites due to 

adsorbed species, hence overall catalytic activity is diminished.  In a review article, Konsolakis 

compiled literature studies of N2O decomposition on bare oxides, where system temperatures 

ranged from 300 to 710 °C.36  In the present study, all results were nominally collected at room 

temperature,37 suggesting the combination of the catalyst with a plasma inherently removes the 

necessity for high reaction temperatures.  Within the single-stage discharge, N2O is mostly 

fragmented upon ignition (Reactions 8.5 and 8.6), therefore it is unlikely intact N2O is 

interacting with the substrate.   

To further probe the differences in these configurations and plasma chemistry, the materials 

were thoroughly characterized before and after plasma exposure.  Specifically, PXRD and XPS 

techniques were used to characterize bulk and surface properties of the materials, respectively.  

Both Pt catalysts were used as received and contained large amounts of C on the surface.  The 

high experimental error reported for the untreated Pt powder substrates (Table 8.5) resulted from 
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having some sampling locations containing no measurable carbon.  As detailed in Chapter 2, a 

minimum of three spots on three samples were analyzed for XPS studies to gain a representative 

view of the surface chemistry.  Within the two-stage configuration, flowing 100 mTorr N2O over 

the Pt powder substrate for ten minutes does not appear to change the catalyst (Table 8.5), 

whereas placing the Pt catalysts in the discharge actively changes the chemical identity of the 

catalysts and hence may hinder catalytic activity.  Both Pt materials are clearly modified upon 

plasma exposure, as an additional binding environment at 75.0 eV, corresponding to PtO2, 

appears in the Pt4f XPS spectra (Figure 8.9).  Several studies have demonstrated an increase in 

oxygen negatively influences the ability of Pt to decompose N2O.9,12  Surface oxygen on the Pt 

powder is likely blocking the active sites of the catalyst, hence [NO] is lower in the two-stage 

system compared to the single-stage configuration.   

A two-stage PAC system was also investigated using a zeolite pellet, Figure 8.10.  For both 

the substrate-free and two-stage systems, [N2] decreases as rf P increases from 25 to 175 W.  The 

single-stage system resulted in significantly less O compared to both the substrate-free and two-

stage system, with largely no dependence on rf power.  Within the two-stage system at P = 25 – 

125 W, there is more NO in the gas-phase compared to when no catalyst is present.  This 

suggests the decomposition of the N2O precursor into N2, NO, and O is occurring, yet further NO 

decomposition is not.  Clearly, in the case of zeolites, a single-stage system is optimal, 

exemplified in Figure 8.10c.  The distinct and exaggerated decrease in NO indicates the plasma 

is necessary for activation of the catalyst.  Furthermore, plasma exposure does not appreciably 

change the surface or bulk chemistries of the zeolite materials; therefore, the catalyst is not being 

degraded or damaged by the plasma (Figure 8.12b and Table 8.5).  These gas-phase and material 
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characterization results support the hypotheses proposed in the Introduction; namely, affordable 

materials (e.g., zeolites) can be utilized in PAC pollution abatement.    

As noted in Section 8.1, it is imperative to study both the steady-state plasma, as well as 

discharge phenomena as a function of time to obtain a comprehensive representation of plasma-

surface interactions.  As such, TR-OES was used to probe the sharp decrease of [NO] in the 

single-stage, zeolite system.  Shown in Figure 8.3b, [NO] suddenly decreases 10 s after plasma 

ignition at P = 150 W.  Small amounts of Ar (~10 %) were added to the system for actinometric 

purposes, which could also influence the decomposition and formation of plasma species.  Lee 

and Kim found the application of an Ar plasma in conjunction with alumina-supported Ru 

catalysts could decompose N2O bonds to form NO, N, and O species at relatively low substrate 

temperatures.38  Using a 245 °C reaction temperature, the authors noted as the N2O:Ar ratio 

increased to 3:1, N2O conversion decreased to 23.8%.38  These data suggest Ar plays an 

important role in the dissociation of N2O.  As the atmosphere contains < 1 % Ar, we sought to 

study plasma kinetics and energetics without the addition of Ar, quantifying rate constants for 

formation and destruction as a function of plasma operating P and catalytic substrate.   

Through TR-OES, the formation profiles of excited state N2 and NO within an N2O 

discharge were measured and differentiated. The intensity of N2 (337.0 nm) increases as a 

function of time, ultimately reaching an apparent steady state, where NO emission (235.9 nm) 

initially increases to a local maximum and subsequently decays.  These data suggest that 

Reactions 8.6 and 8.7 are occurring sequentially in the discharge: NO is initially formed through 

the dissociation of the N2O precursor, then a decay in NO intensity is observed as it undergoes 

further reactions within the plasma.  From a thermodynamic perspective, 
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 ∆𝐻𝑟𝑥𝑛 =  481.1 𝑘𝐽/𝑚𝑜𝑙 for Reaction 8.6 and ∆𝐻𝑟𝑥𝑛 = −122.1 𝑘𝐽/𝑚𝑜𝑙 for Reaction 8.7.39  

When no substrate is present, the discharge operating mode also impacts kf values.  Specifically, 

when the discharge shifts from inductance (E) to capacitance (H) mode operation at 125 and 150 

W, there is an increase in both kf(N2) and kf(NO) values. 

Additionally, at P > 100 W, kf(N2) decreased in the presence of a zeolite pellet, where kd(NO) 

appears largely independent of the catalyst.  As described above, we hypothesize the structure 

and surface chemistry of the zeolite pellet promotes formation of microdischarges near or within 

the pores of the material.  Consequently, the formation of N2 species within the bulk discharge 

could be impacted by the microdischarges within the material.  Collisional quenching of excited 

state N2 is another proposed pathway for decreased rate constants at certain conditions.  We have 

previously studied the impact of zeolite catalysts within an N2 plasma, where a decay to a steady-

state emission (similar to the NO within N2O herein) was documented at 125 and 150 W with 

zeolite(s) present.31  To further assess these hypotheses of plasma-material interactions, a third 

major finding herein was the deciphering of energy partitioning between degrees of freedom and 

across multiple molecules (i.e., N2 and NO) formed in N2O plasmas. 

Excited state N2 and NO TR values were determined as a function of rf power and substrate, 

Figures 8.5a and 8.5b.  The Pt powder system had the most significant impact on TR(N2) values, 

compared to the substrate-free discharge.  As shown in Figure 8.5a and Table 8.3, it appears that 

that the discharge mode and resulting rotational distributions are interrelated with Pt nanopowder 

present.  TR(N2) values increase from 335 ± 10 K (100 W) to 375 ± 10 K (125 W) as the 

discharge shifts from E to H mode operation.  This trend is not prevalent in the zeolite system, 

TR(N2) values at P = 100 W and 125 W are within experimental error, although TR generally 

increases within increasing rf power.  Rotational energy distributions of absorbing and emitting 
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N2 molecules in a variety of discharges (e.g., N2, N2O, N2/O2) have been previously studied via 

broadband absorption spectroscopy (BAS) and OES, respectively, where all TR(N2) values were 

less than 440 K.28  This suggests the rotational populations within N2 molecules readily 

thermalize to slightly above room temperature, an observation that holds here, as all calculated 

TR(N2) values are less than 405 K, Figure 8.5a.  Rotational temperatures for excited state NO 

radicals are significantly elevated compared to N2.  When no substrate is present, as P increases 

from 25 to 175 W, TR(NO) increases from ~400 to ~725 K.  This is not, however, a clear, linear 

increase as TR(NO) at 50 and 150 W are within error.  At P = 50 – 125 W, a decrease in TR(NO) 

of ~50 – 130 K was measured in the presence of Pt foil.  This suggest that excited state 

molecules interact with the flat Pt substrate and scatter with some rotational relaxation at these 

powers.  At 150 W, an increase in TR (NO) is determined for all catalytic substrates, with Pt 

powder yielding the highest TR value (710 K), followed by the zeolite (640 K), Pt foil (570 K), 

and sans substrate (520 K) systems.  These data suggest that material morphology may play a 

more important role in plasma energetics than material chemistry; the porous materials impact 

the ability of NO molecules to thermalize rotationally.  At the highest power studied (175 W), TR 

does not display a strong dependence on the catalytic substrate, even though there is a large 

difference in the amount of NO in the discharge with no substrate ([NO] = 1.73 ± 0.04) 

compared to when a zeolite pellet is present ([NO] = 0.25 ± 0.07).  Rotational relaxation is a 

relatively fast process, typically requiring fewer than ten collisions to reach equilibrium.  

Therefore, on the time scale that both the energetic and actinometric data were collected (i.e., 

minutes), the NO (A2Σ+) radicals have effectively reached a quasi-rotational equilibrium and 

substrate effects are negligible, regardless of the amount of NO in the discharge.  All TR values 
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reported herein are < 800 K, an order of magnitude less than the TV values for excited state N2 

and NO, listed in Table 8.4. 

Regardless of substrate, as applied rf power in the system is increased from 25 to 175 W, 

there is a clear increase in TV (N2), a trend we have previously quantified in N2 (with and without 

catalysts),31 NO (no substrate),40 and N2/O2 (no substrate)28 rf ICPs.  At all power conditions 

studied herein, a decrease in TV(N2) was determined upon the addition of catalytic substrates, 

where the temperature difference between the Pt powder and substrate-free system increased 

with increasing power.  The discharge mode of the plasma likely contributes to the enhanced 

vibrational cooling documented in Figure 8.6a; as P increases from 125 to 150 W, the rf plasma 

herein shifts from E (low plasma density) to H mode (higher plasma density).  We have 

previously studied TV(N2) within a 100% N2 plasma, with TiO2 and zeolite substrates in the 

discharge and a similar decrease in TV with catalysts present was measured.31  N2 vibrational 

energy distributions within NxOy plasmas are clearly impacted by a catalyst, therefore examining 

the plasma-material interface could garner additional insight into this phenomena.  

 Larsson described a selective energy transfer (SET) model to explain catalysts-reactant 

interactions,41-43 where the catalyst provides the energy required to populate higher vibrational 

levels within a molecule.  This model suggests vibrationally excited N2 molecules can interact 

with a substrate, scatter with some energy loss, potentially through an energy transfer 

mechanism.44  Larsson investigated numerous catalytic systems [e.g., hydrocarbon cracking over 

zeolites,45 ethane hydrogenolysis over Pt, Ni, Fe and Co catalysts46],  applying the SET model to 

probe vibrational resonance processes.  In many of the SET systems reported in the literature, 

little chemisorption of the intact molecule onto the catalyst surface is observed, depending on the 

catalyst.43  Therefore, we sought to understand the plasma-material interactions within N2O 
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discharges using a SET model.  Pt nanopowder was exposed to a P = 175 W N2O plasma for 10 

min, as depicted in Figure 8.9b, the resulting Pt4f XPS spectra did not exhibit the additional PtO2 

peak, documented at P = 25 W.  Furthermore, at P = 175 W, the most pronounced decrease in 

TV(N2) values was measured, whereas at P = 25 W, limited vibrational cooling was measured.  

The combination of these gas-phase and surface chemistry data suggest that at P = 175 W a 

vibrational energy transfer is occurring with a Pt powder substrate. 

Unlike TV(N2) values, vibrational cooling of NO did not occur for all catalysts studied herein, 

Figure 8.6b and Table 8.4.  With a zeolite, as power increases, TV(NO) values also increases.  

Examining ΔTV(NO), Figure 8.6b, reveals the zeolite clearly has a very different effect on 

plasma energetics compared to the Pt substrates.  As the applied power is increased, only the 

zeolite system displays an enhancement in TV(NO).  Interestingly, neither of the Pt substrates 

have a substantial impact on the energetics of NO radicals in the discharge.  There are fewer NO 

and N2 molecules in the discharge when a Pt powder substrate is present in the discharge from 

100 – 175 W, as well as enhanced N2 vibrational cooling (Figure 8.6a).  The lack of vibrationally 

excited N2 under these conditions, suggests N2 molecules with sufficiently high TV are likely 

involved in additional gas-phase reactions to form NO(g), O(g), and OH(g).  Note, all data 

presented herein correspond to excited state, emitting gas-phase species.  We have previously 

reported vast differences in vibrational temperatures of excited and ground state molecules, 

therefore it will be essential to probe the ground state species in these N2O-catalyst systems via 

BAS.28,40  

As evidenced via energy partitioning and kinetic studies here, it is necessary to consider both 

thermodynamic and mechanistic implications for the applicability of PAC technologies 

nominally the fourth major observation herein. 
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Figure 8.13. Schematic representation of plasma-catalyst interactions; example Langmuir-
Hinshelwood (L-H) and Elrey- Rideal (E-R) mechanisms are depicted. 
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The decomposition of N2O on metal oxide catalysts is often expressed using Langmuir-

Hinshelwood (L-H) or Eley-Rideal (E-R) models, schematically represented in Figure 8.13.  

Reactions 8.9 and 8.10 depict a possible N2O decomposition pathway via a L-H mechanism: 

 2𝑁2𝑂 (𝑔) + (∗)  →  2𝑁2 (𝑔) + 2𝑂(𝑎𝑏𝑠)∗          (8.9) 2𝑂(𝑎𝑏𝑠)∗  →  𝑂2 (𝑔) + (∗)              (8.10) 

where (*) symbolizes an active site on the catalyst surface.  Within this mechanism scheme, the 

adsorbed surface oxygen migrates from one active site to another to form O2 by recombination, 

ultimately the rate-determining step in the decomposition of N2O, described above.8  As shown 

in Reactions 8.5 and 8.6, the PAC decomposition of N2O produces atomic O and NO radicals, 

which can then potentially regenerate the active sites of the catalyst by recombining on the 

surface and desorbing.  The O1s binding environment for adsorbed oxygen is 532.1 eV, often 

documented in the evaluation of TiO2 materials,47 which overlaps with the Si-O-Al binding 

environment.  Thus, increase in the Si-O-Al peak area in Figure 8.11e is likely the result of the 

plasma creating oxygen vacancies in the material, lending to a slight increase in the amount of Si 

at the surface.  Although there are slight differences in the surface chemistry of zeolite materials 

after plasma processing, the substrate morphology remained largely unchanged (Figure 8.12). 

Within the E-R mechanism, a chemisorbed molecule or atom interacts with a gas-phase 

species.  The reaction of an N2O(g) molecule interacting with O(ads) is depicted in Reaction 8.11: 𝑂(𝑎𝑑𝑠) + 𝑁2𝑂(𝑔) 
 → 𝑁2 +  𝑂2(𝑎𝑑𝑠) 

 →  𝑁2 (𝑔) +  𝑂2 (𝑔)              (8.11) 

The E-R mechanism is considered rare in thermal catalysis because of the timescale of gas-phase 

surface interactions (picoseconds), reaction orientation, and entropy considerations.48  Moreover, 

the E-R mechanism requires that a species from the gas-phase interacts with adsorbed species; 

thus the probability for such a collision can be low.48  Using DFT calculations to study N2O 
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decomposition over a CaS(100) surface, Wu et al. calculated the reaction of N2O(g) and O(ads) to 

form O2(ads) (Reaction 8.10) required 1.863 eV, whereas the removal of O(ads) from the surface by 

binding with neighboring O(ads) via the L-H mechanisms (Reactions 8.9 and 8.10), depicted in 

Figure 8.3, required 1.877 eV.35   

Within an N2O PAC system, N2(g) can react with O(ads), subsequently desorbing to form NO 

via an E-R pathway, depicted in Figure 8.13.  These reaction products can undergo additional 

pathways (Reaction 8.7) to form gas-phase species measured via optical spectroscopy.  Zaharia 

et al. experimentally demonstrated an E-R reaction pathway when an O-covered Ru(0001) 

crystal was exposed to a molecular beam of nitrogen atoms and molecules.  Within the initial 

stages of exposure, O(ads) interacts with N2(g) or N(g) from the beam, forming NO(g) species.  The 

authors determined as O coverage decreases and the adsorbed N coverage increased, the initial 

flux of NO is rapidly attenuated and a concomitant increase in N2(g) is documented.49  The 

experimental determination of E-R pathways using molecular beams interacting with a material 

suggest these reaction processes can occur within the PAC systems studied herein.  Furthermore, 

modification of the direct E-R mechanisms proposes an indirect, hot-atom pathway occurs when 

a gas-phase atom interacts and rebounds from the surface several times before colliding and 

reacting with an adsorbed species.48  Regardless of pathway, the removal of adsorbed oxygen to 

regenerate the active site of the catalyst is a critical step.  Within a single-stage system, the 

zeolite catalysts benefited from direct plasma interactions, resulting in the smallest amount of 

NO in the discharge.  A two-stage, pre-plasma configuration was deemed optimal for the Pt 

powder constructs, reducing the amount of NO compared to the native system without the 

detrimental oxidation effects caused by plasma exposure.  
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By obtaining a fundamental understanding of plasma-catalyst systems; efforts can focus on 

determining the most effective catalyst in conjunction with optimal design, configuration, and 

plasma operating conditions.50  A plethora of variables can dominate these plasma-material 

interactions, including electron-impact reactions, gas-phase neutral reactions, as well as 

multitude of surface reactions.  These interactions become progressively convoluted as the 

complexity of the systems increases.  Suarez et al. studied the influence of a 2 vol. % water 

vapor addition to an N2O feed gas, resulting in a decrease in catalytic activity with Rh-γ-Al2O3-

sepiolite monolithic catalysts.13  A similar effect was observed upon the addition of NH3, 

suggesting that NHX or OH species tend to adsorb at the same sites as N2O, reducing the number 

of active sites available for the decomposition of nitrous oxide, consequently yielding a decrease 

in catalytic activity.13  Ultimately, we believe there is still much work to be done to further 

understand the underlying mechanisms involved in the plasma-catalytic decomposition of N2O.  

Nevertheless, the data presented herein clearly demonstrate that not only does the plasma alter 

the surface of catalytic substrates, but the presence of both micro- and nano-structured catalytic 

materials clearly alter energy partitioning and reaction dynamics within the gas-phase of the 

plasma. 

8.4 Summary 

A comprehensive understanding of plasma-material interactions necessarily must include 

processes that occur at surfaces.  Ultimately, many of our results demonstrate that the presence 

of a substrate in a plasma can dramatically alter the gas-phase chemistry of the system, from both 

a kinetics perspective and an energetics perspective.  Although this might seem obvious, few 

studies have appropriately documented these effects.  Within an N2O rf ICP, N2 emissions rise to 

an apparent steady state, whereas NO emissions approach a local maximum and a subsequent 
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decay, where the addition of a catalyst had minimal impact on measured rate constants.  Steady-

state energetics revealed the addition of Pt and zeolite catalysts results in a pronounced decrease 

in the vibrational temperature of excited state N2.  The vibrational temperature of NO species 

seems to depend more on chemical nature compared to morphology; both Pt catalysts had little 

to some quenching effects on TV, where the addition of a zeolite pellet yielded an increase in 

TV(NO).  Moreover, this study epitomized the necessity to examine of each portion of the PAC 

system (i.e., the plasma, the plasma-surface interface, and corresponding material analyses).  

Post plasma exposure material characterization revealed the plasma effectively poisons the Pt 

materials through oxidation, resulting in poorer performance in the single-stage system, whereas 

the bulk and surface properties of the zeolites were nominally unaffected by the plasma.  This 

line of scientific inquiry should be expanded to more complex mixed-gas systems, ultimately 

studying systems that resemble exhaust systems and atmospheric pollutants. 
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CHAPTER 9 

RESEARCH SUMMARY AND FUTURE DIRECTIONS 

 

This dissertation concludes with a summary of major aspects and themes of the research 

presented in Chapters 3 – 8, as well as outlooks and implications for future inquiry.  The broader 

impacts of this work are discussed in the context of coupling plasmas with catalysts for enhanced 

pollution abatement.  

9.1 Research Summary 

9.1.1 A holistic experimental approach to plasma-substrate interactions  

Plasma discharges are an inherently complex environment with a multitude of energetic 

species, ranging from free electrons, ions, metastables, atoms and molecules.1,2  As such, a 

plethora of diagnostic tools have been developed to study gas-phase interactions within these 

systems.  Langmuir probes have been extensively used to measure electron properties (i.e., 

density, temperatures, and energy distributions) and the electric potential of a discharge.2  These 

probes, however, physically perturb the plasma environment and are also susceptible to surface 

contamination.  As such, optical spectroscopies are becoming widely employed as non-intrusive 

diagnostic tools.  The most common uses of OES include species identification and 

determination of relative densities via inert gas actinometry.3  Here, a literature review regarding 

the diagnostic capabilities of OES beyond simplistic species identification was provided 

(Chapter 3).  OES lines were used to elucidate electron temperature (Te) and electron density (ne) 

trends as a function of power and pressure in rf Ar plasmas.4  Chapter 3 also introduced the 

framework of this dissertation, where spectroscopic techniques were used to investigate 
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technologically (CxFy) and environmentally (NxOy) relevant plasma systems as prime examples 

of how a holistic approach to the study of plasma chemistry applies to a range of systems. 

Plasma energetics, specifically determining how energy is partitioned between rotational and 

vibrational modes, as well as how vibrational energies can impact interactions at surfaces, is 

another critical component of plasma chemistry.  These key features were investigated within 

CxFy discharges, which have enormous utility in numerous of applications, especially the 

semiconductor and microelectronics industries.  Knowledge of system energetics, as well as gas-

substrate interactions, could lead to significant improvements in process development.  The 

culmination of work by several Fisher Group members, especially Dr. M.F. Cuddy, determined a 

linear relationship between the propensity of CF radicals to scatter from a Si substrate and 

excited-state CF vibrational temperature (TV).5,6  Additionally, the influence of precursor, system 

pressure, and applied power was elucidated for emitting CF radicals.  Previously, BAS 

characterized emitting and absorbing NO radicals within NO discharges.7  Here, BAS was 

employed to investigate more complex systems, specifically to determine rotational temperature 

(TR) for ground-state CF2 radicals within CxFy plasmas.  CF2 and other oligomeric species are 

hypothesized to substantially contribute to FC film formation,8 therefore the gas-phase insights  

of Chapter 4 were further applied to the modification of microporous zeolites studies within 

Chapter 5.  

The surface properties (i.e., wettability, composition) of NaX zeolites were tuned via CxFy 

and H2O(v) plasma exposure.  The wettability of solid surfaces is an important material property, 

governed by chemical composition and the geometrical structure of the surface.9,10  The net 

effect of plasma treatment on the zeolite substrates was predominantly assessed via WCA, where 

CxFy precursors with large F/C ratios (F/C ≥ 3) rendered the surface more hydrophilic via surface 
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etching processes.  Tuning precursor selection, operating conditions, and gas-feed additives (i.e., 

H2 and O2), the surface properties of zeolites ranged from completely wettable to super-

hydrophobic (Chapter 5).  Regardless of plasma treatment, the bulk crystallinity of the zeolite 

remained intact.  This is an improvement over acid modification strategies that often also result 

in structural damage to the zeolite framework,11,12  The zeolites employed in these plasma 

modification studies also have potential in catalysis applications, therefore were used in 

subsequent PAC studies.  

Before adding the complexity of catalysts to the discharge, the gas-phase chemistry of NxOy 

plasmas was studied with emission and absorbance spectroscopy (Chapter 6).  This study 

confirmed the empirical relationship where electron temperatures are several orders of 

magnitude elevated compared to vibrational and rotational temperatures.  Furthermore, a 

positive, linear correlation was determined for applied rf power and measured internal 

temperatures (i.e., TV and TR).  Increasing system pressure, however, resulted in a concomitant 

decrease in TV (NO and N2), likely due to collisional quenching.  After thorough characterization 

of gas-phase energetics and kinetics within NxOy discharges, a homonuclear diatomic (N2) was 

selected for an exploratory plasma-assisted catalysis (PAC) system.  

The chemistry within N2 plasmas with the addition of a zeolite was studied via OES as a 

function of power and system pressure.  Interestingly, the addition of a microporous zeolite pellet 

resulted in dramatically reduced N2 vibrational temperatures, with little impact on rotational 

thermalization pathways.13  These data suggest excited-state N2 interacts with the micro-

structured catalyst and rebounds with some energy loss.  The quenching of vibrational energy is 

hypothesized to arise from the formation of microplasmas within the pores of the material.  

Numerous theoretical studies have assessed the impact of pore size, shape and composition on 
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the formation of microdischarges in low- and atmospheric-pressure discharges.14  To further 

experimentally investigate this vibrational cooling phenomenon, the plasma reactor was 

completely lined with zeolite pellets (Figure 2.2a).  The resulting N2 vibrational temperatures 

were further thermalized, suggesting the interactions between the plasma and catalysts directly 

impacts gas-phase energetics.  Additional gaseous species (i.e., OH and NO) were formed with a 

zeolite in the system, suggesting surface removal of oxygen into the gas-phase.  This hypothesis 

was verified with X-ray photoelectron spectroscopy, where small amounts of nitrogen were 

measured on the surface, likely filling oxygen vacancies created upon plasma exposure.  PAC 

studies were expanded to explore the impact of both micro- and nanostructured catalysts on more 

complex plasma systems. 

N2O is a greenhouse pollutant that is generated from both natural and anthropogenic sources, 

forming N2, NO, and O species upon dissociation.  Gas-phase (densities, energetics, and kinetics) 

and material properties (surface chemistry, morphology, crystallinity) were systematically and 

robustly investigated for platinum and zeolite catalysts within N2O discharges to understand how 

the plasma impacts dissociation of N2O.  With a single zeolite in the N2O plasma, OES revealed 

an increase in the production of ambient species (i.e., N2), with little emission from NO peaks at 

P ≥ 75 W.s.  These data exemplify the potential for energetic plasma species to enhance the 

catalytic ability of zeolites within a single-stage PAC system.  The majority of the work 

presented in this dissertation explored single-stage systems, however, a two-stage, pre-plasma 

catalysis configuration was constructed and used to study the catalytic decomposition of N2O.  

These preliminary results suggest Pt catalysts are better suited for pre-plasma configurations, as 

the Pt metal is oxidized when directly interfaced with the plasma (Chapter 8).  Future 
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investigations of environmentally-relevant plasmas systems are needed to yield important 

information about the nature of plasma-catalysts interactions, discussed in Section 9.2.  

9.1.2 Broader impacts and outlook for plasma –assisted catalysis   

These studies evaluated the potential effectiveness of non-thermal plasmas, coupled with 

catalysts, to decompose atmospheric pollutants through an understanding of underlying 

chemistry of gas-phase energetics and kinetics, as well as gas-surface interactions within NxOy 

plasma systems.  This dissertation emphasizes the necessity to employ a host of complementary 

techniques to study plasma-catalysts synergisms for the design of effective materials and plasma 

systems.  For researchers to fully address PAC limitations, it is imperative not only to understand 

how the plasma affects the catalyst (i.e., possible degradation and poisoning), but also how 

catalysts impact the resulting gas-phase chemistry.  Furthermore, this holistic approach to PAC 

can be employed for various material architectures and gas mixtures, discussed in greater detail 

below. 

9.2 Future Directions 

9.2.1 A multi-faceted approach to plasma diagnostics 

This dissertation sought to employ a wide array of techniques to analyze the gas-phase of 

various plasma precursors, ranging from noble gases (e.g., Ar) to large, complex fluorocarbons.  

Energetic electrons are a governing force for the resulting plasma character and thus many 

studies have sought to understand electron dynamics within a discharge, presented in Chapter 3.  

Phase-resolved OES (PR-OES) is an additional non-intrusive diagnostic tool that provides access 

to highly energetic electrons with enhanced spatial and temporal resolution.15  Fundamental 

plasma parameters such as electron density, electron temperature, and electron energy 
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distributions can be determined on the nanosecond time scale.  PR-OES is sensitive to high 

energy electrons (> 10 eV), which is particularly interesting as these electrons dominate 

ionization processes and are nominally responsible for the non-thermal nature of plasma 

discharges.15  The combination of OES line-emission analysis and PR-OES data can provide a 

thorough description of both low (bulk) and high energy electrons.  The current IRIS apparatus 

could be modified to support this diagnostic tool as the most important requirement for PR-OES 

is a gated intensified charged coupled device (ICCD) camera (Figure 2.7).16  Gans et al. studied 

pulsed rf ICPs via PR-OES and time-resolved ion energy analysis, concluding that a pulsed ICP 

initially ignites capacitively before reaching a stable inductive mode.17  Additionally, by 

analyzing the plasma afterglow, they found the boundary sheath does not fully collapse for rf H2 

discharges, which is attributed to electron heating through collisions with vibrationally excited 

hydrogen molecules.17  Therefore, the use of PR-OES could allow us to more readily understand 

plasma-sheath effects when a material is added to the discharge.  Limited studies on pulsed-

plasma systems are provided herein; thus, characterizing pulse dynamics and the afterglow is an 

avenue for future exploration.  Additional experimental strategies to study PAC systems is 

discussed in Section 9.2.2. 

9.2.2 Expanding pollution abatement strategies  

Concentrations of environmental pollutants are continually rising, therefore alternative 

technologies are needed alleviate the detrimental impact of atmospheric contaminants.  Prevalent 

researchers have identified plasmas utilized in environmental applications as a growing, 

important area of research within the low-temperature plasma community.18  The 2017 Plasma 

Roadmap states: 
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“Solving these challenges requires developing an understanding of the fundamental 

plasma-surface interactions in an integrated approach that combines new computational 

strategies and diagnostics techniques.”18 
 

This proposed approach, using a variety of diagnostic techniques to probe plasma-substrate 

interactions, was a focal point of this dissertation.  Optical spectroscopy is, inherently, a 

comparative strategy to probe the impact of adding a catalyst to the discharge, gas-phase 

interactions (sans catalysts) must be elucidated first.  The IRIS technique, however, provides 

significant insight into the plasma-surface interface during plasma processing through the 

determination of a radical’s propensity to scatter or react at a surface.  NO scatter coefficients 

within NxOy plasmas have been determined from Pt and Si surfaces, showing no dependence on 

the catalytic nature of the substrate.7,19  These substrates, however, are morphologically similar 

with a smooth, 2D surface.  Therefore, it is necessary to elucidate the propensity of radicals to 

scatter from micro-and nano-structured catalysts, a set of experiments not performed here.  These 

interactions are likely coupled to plasma species with a variety of internal and translational 

energies.  The IRIS apparatus can also determine translational energies, where kinetic energy 

distributions (e.g. translational temperatures) of NH2 within NH3 discharges,20 Si and SiF2 in a 

SiF4 molecular beam,21 and preliminary work on CF2 within C2F6 and C3F6 systems5 have been 

measured.  Connecting plasma energy partitioning data and specific molecule-surface 

interactions during non-thermal processing is necessary to realize the potential of PAC. 

Continuing the work presented in Chapters 6 –8, the gas-phase composition of mixed gas 

systems should be explored spectroscopically to measure internal temperatures of plasma species 

such as NO, N2, OH, H2, and O2, and the characterization of electron properties as a function of 

plasma parameters in the presence of catalytic substrates.  Figure 9.1a depicts representative 

OES spectra of H2O(v), N2O: H2O(v) (50:50), and N2O plasmas ignited at 100 mTorr, 175 W.   
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Figure 9.1. (a) Representative OES spectra of N2O, N2O: H2O (50:50), and H2O plasmas (p = 
100 mTorr, P = 175 W) and (b) OH (A2Σ+ → X2Π) band within H2O plasma fit with 
LIFBASE. 
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The N2O emission spectra is populated with NO (A2Σ+ → X2Π) and N2 (C3Πu → B3Πg) 

transitions.  Once H2O is added to the gas feed, strong emissions from the OH (A2Σ+ → X2Π) 

band are measured.  Figure 9.1b depicts the OH (A2Σ+ → X2Π) band within an H2O(v), discharge 

with the corresponding fit generated in LIFBASE.22  Notably, the determined TR(OH) within a 

H2O(v) plasma is considerably higher than values reported for NO and N2, a trend previously 

documented by Stuckert et al..23  Spatially- and temporally-resolved spectroscopy should be 

completed on gaseous mixtures, where gases are systematically added to the feed to understand 

the role of each component species within the overall chemistry and reactivity within 

increasingly complex PAC systems.  Moreover, it is important to decipher the role of ground 

state neutrals and ions within PAC systems via BAS and mass spectrometry (MS) techniques.  

Charged species play critical and dynamic roles in PAC systems, therefore MS is a key analytical 

tool that can measure ion densities and distributions within the discharge.  To deconvolute 

coupled effects of reactive neutrals and ions bombarding the catalyst surface, two approaches can 

be taken:  (1) the gas-phase environment downstream of the catalysts can be measured 

spectroscopically and (2) experiments can be performed wherein ions are prevented from 

interacting with the substrate, such as grounding the substrate via a wire mesh or designing 

alternative geometry reactors.  

Briefly demonstrated in our N2 PAC study with zeolites (Chapter 7), the amount of catalyst 

in the discharge can drastically impact the resulting chemistry.  Increasing the amount of catalyst 

present innately reduces the plasma volume, likely to change the discharge character, which 

could promote exhaust decomposition or non-uniform electric fields in the system (i.e., 

microdischarges).24  The multi-substrate experiments detailed in Chapter 7 should be expanded 

to additional NxOy precursors and mixed-gas systems.  Furthermore, the investigation of two-
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stage PAC systems has been limited,24 therefore additional system characterization and 

optimization of plasma-catalyst configurations is warranted.  Post-plasma catalysis, Figure 1.1c, 

has yet to be studied by the Fisher Group.  Understanding the resulting gas-phase composition 

after plasma ignition and subsequent interaction with a catalyst could be accomplished with 

Fourier Transform infrared spectroscopy or residual gas analyzers, both positioned downstream 

of the plasma reactor.  Although the synergistic coupling of a plasma with a catalyst to access 

reactions not energetically feasible at thermal conditions is an intrinsic benefit of single-stage 

systems, the direct interaction of energetic plasma species can negatively impact the catalyst.  

Hence, two-stage configurations may prevent or postpone degradation of the catalyst over 

numerous exposures.   

Lastly, investigating a range of different nano- and micro-structured catalysts will further 

elucidate effects of substrate morphology and chemistry on plasma-catalyst interactions.  Here, 

the relative density of NO within an N2O plasma was greatly diminished in the presence of a 

microporous NaX zeolite, even compared to the rare earth metal Pt.  There are over 40 types of 

naturally occurring zeolites and these aluminosilicate minerals are significantly less expensive 

than traditional rare-earth metals, thereby present a sustainable pathway for PAC improvement.  

Specifically, it would be beneficial to explore the impact of different SiO2/Al2O3 ratios and size 

distributions on the resulting plasma chemistry.  Representative SEM images of untreated ZSM-

5 are illustrated in Figure 9.2 at two different magnifications.  These nano-structured materials 

have a manufacturer reported Si/Al ratio of 23, significantly higher than that for the materials 

utilized in these studies (Si/Al ratio ~3.3).  These materials can be used as-received, pressed into 

pellets, spun into fibers, or doped with additional catalytic materials. 
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Figure 9.2. Representative SEM image of untreated ZSM-5 zeolite pellet at (a) 10000x and 
(b) 20000x magnification. 
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Specifically, Zeolites are commonly used as a support structure and can also be loaded with 

metal catalysts (i.e., Ni) or metal oxides (i.e., TiO2
25and γ-Al2O3

26), therefore the utility of 

composite or mixed material catalysts to decompose atmospheric pollutants should also be 

explored.  Ultimately, the potential of plasma-assisted catalysis as a means for pollution 

abatement depends largely on the ability to understand the underlying chemistry and plasma-

catalyst interactions within these multifaceted systems. 
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APPENDIX A 

 

A brief description of data pertaining to the fabrication and characterization of zeolite and 

TiO2 fibers is provided here.  A bench-top electrospinning unit was designed and built by Angela 

R. Hanna and Dr. M.M. Mann.  I would like to thank both Tom Frederick and Ron Costello for 

their essential advice and assistance in the construction of this apparatus.  

Numerous experimental factors can affect fiber morphology, including distance between the 

collector and the syringe, applied voltage, solution flow rate, choice of polymer, and solution 

composition (e.g., solvent, concentration).  Currently, there are limited studies on the design of 

zeolites prepared from an electrospun polymer template, therefore preliminary data herein sought 

to primarily optimize zeolite fiber fabrication.  In addition, electrospun polymers with embedded 

nanoparticles (i.e., TiO2) fibers were also investigated to test the ability to translate this process 

to another material system.  Morphological variations related to the electrospinning process were 

investigated, with the potential to open new domains for zeolite and TiO2 fibers in a wide range 

of applications.  

A.1. Electrospinning Results 

Recently, incorporating zeolites into fibrous forms has attracted scientific inquiry for new 

applications in adsorption, optics, chemical sensors, and petroleum refining.1-3  Here, 

microporous NaX zeolites were added to a polyvinylpyrrolidone (PVP) solution to create 

zeolite:polymer composite fibers, described in Chapter 2.  The electrospinning process is 

illustrated in Figure 2.8b; briefly, voltage is applied to a syringe needle filled with 5 mL of a 

zeolite:PVP:ethanol (EtOH) solution.  During electrospinning, the syringe pump dispenses 

solution at 5 mLhr-1 for 1 hour, where the EtOH solvent evaporates and a composite zeolite:PVP 
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fiber mat is collected on an Al foil – wrapped disk.  The chemical structure of the PVP backbone 

is depicted in Figure 5.4a. 

Prior to adding the complexity of the solid zeolites, the impact of electrospinning distance 

(i.e., between collector and syringe) on fiber formation was investigated, Figure A.1.  When the 

conductive disk was 10 cm from the needle tip (Figure 2.8), the size distribution of the fibers 

varied (Figure A.1a) An ImageJ plugin, DiameterJ, was employed for image analysis to measure 

fiber dimensions.4  A more uniform size distribution was achieved with a 15 cm electrospinning 

distance.  Anis and Hashaikeh studied the fabrication of zeolite –Y: PVP fibers, reporting an 

optimal distance of 15 cm.5  Therefore, the conductor disk was 15 cm away from the needle for 

all subsequent studies.  Anis and Hashaikeh also explored three different concentrations of 

zeolite: PVP (1:0.7, 0.7:1, and 1:1 by weight) in EtOH via SEM.5  Preliminary experiments here 

also investigated three zeolite:PVP concentrations (1:2, 1:1, and 2:1) within EtOH.  The 

solutions with a higher concentration of zeolites generally did not yield uniform electrospun 

mats; although a homogenous solution was loaded into the syringe-needle, precipitates 

(presumably zeolites) formed in the needle during the electrospinning process.  Zeolite 

concentration conditions were optimized for our work, where the majority of the results 

presented in this Appendix were obtained with a 1:2 zeolite:PVP ratio. 

Figure A.2. shows as-spun zeolite:PVP fibers at 12, 16, 20, and 24 kV spinning voltages.  

The fibers fabricated with 12 kV and 16 kV (Figure A.2a and A.2b) appear evenly distributed, 

where the fibers spun at 20 kV are increasingly random with agglomeration of zeolites (Figure 

A.2c).  Moreover, significant beading is observed when the solution is electrospun at 24 kV.  

Therefore, lower voltages (e.g., 12 and 16 kV) were used in subsequent parameter optimization.   
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Figure A.1. Representative SEM images of electrospun 100% PVP fibers at16 kV, (a) 10 cm 
(13000x) and (b) 15 cm (10000x). 
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Figure A.2. Representative SEM images of electrospun zeolite: PVP fibers, (1:2 ratio, 15 cm) 
fibers at (a) 12 kV (5000x), (b) 16 kV (5000x), (c) 20 kV (3500x), and (d) 24 kV (5000x) 
voltages.  
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Described in Chapter 5, zeolite: PVP composite fibers require calcination to remove the 

polymeric phase and form zeolite fibers.  Anis and Hashaikeh calcinated zeolite –Y fibers in a 

furnace at 550 °C for 2 hours, reporting a heating rate of 1 °C/min.5  Here, the operating 

temperature of a furnace was slowly increased to 550 °C for 2 hours.  The oven calcinated fibers 

were assessed with SEM and XPS techniques to verify removal of the polymeric phase, Figure 

A.3.  The resulting fiber appears to be morphologically damaged, with consistent fissures along 

the width of the fiber.  An XPS survey scan measured binding environments representative of the 

zeolite material (i.e., Na, Si, and Al), detailed in Chapter 5.  Ultimately, these oven calcination 

studies served as a proof-of-concept that zeolite fibers could be fabricated with the current 

apparatus.   

Discussed throughout this dissertation, plasmas are used to modify surfaces via thin film 

formation, functionalization, or etching.  The utility of plasma to fabricate new materials, 

particularly in catalysis, is gaining significant research attention.6  Here, O2 and Ar plasmas were 

employed to remove the polymeric phase in efforts to decrease fabrication time.  O2 is commonly 

used to etch polymers,7 where the energetic bombardment of O atoms can readily etch the 

surface.  High resolution C1s and O1s XPS spectra for as –spun and O2 plasma calcinated fibers 

are depicted in Figure A.4.  Binding environments corresponding to aliphatic carbon (284.8 eV), 

-C-O-R/C-O-H (~ 286 eV) and C-N (~ 287 eV) were measured, where O is nominally bound to 

C, with small amounts bound to Si arising from the underlying zeolite material (Figure A.4b).  

Table A.1. details preliminary XPS atomic compositions for the as-received, native zeolites 

(discussed in Chapter 5), as–spun zeolite:PVP, and zeolite fibers after O2 and Ar plasma 

treatments.  These results are preliminary, and a larger sample size is needed to comprehensively 

characterize these materials.   
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Figure A.3. Representative XPS survey spectrum and SEM image of oven calcinated zeolite 
fiber (1:2 ratio, 15 cm, 16 kV).  
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Figure A.4. High resolution (a,c) C1s and (b,d) O1s XPS spectra for (a,b) as-spun zeolite: PVP 
(1:2 ratio, 15 cm, 16 kV) and (c,d) O2 plasma calcinated zeolite fibers (100 mTorr, 100 W, 15 
min).  
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Table A.1. XPS atomic compositions for zeolites, zeolite-PVP and zeolite fibersa,b
 

 n  C (%) O (%) Si (%) Al (%) N (%) 
native 9 19.9 (4.8) 58.4 (3.2) 17.5 (1.4) 4.4 (0.6) -- 

as–spun 2 78.7 (0.4) 10.7 (0.5) -- -- 10.6 (0.1) 
O2 3 5.9 (0.4) 69.1 (1.1) 20.5 (0.8) 4.6 (0.7) -- 
Ar 1 40.6 40.5 10.8 2.5 5.6 

aZeolite: PVP fabrication parameters (1:2 ratio, 15 cm, 16 kV) 
bTreatments were performed at p = 100 mTorr, P = 100 W, t = 15 min in the coil 
region 
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Regardless, Si and Al were not measured on the surface of the as-spun (pre-calcinated) 

materials, suggesting zeolite encapsulation within the polymer.  Upon an O2 plasma treatment 

(100 mTorr, 100 W, 15 min), the amount of carbon measured on the surface decreased from  

78.7 (0.4) % to 5.9 (0.4) %, Table A.1.  Additionally, the amount of Si and Al on the surface of 

the O2 calcinated fibers is comparable to the native, suggesting removal of the PVP from the 

fiber.  Although XPS provides surface composition, it is important to characterize the 

morphology of the calcinated fibers.  Therefore, EDS compositional maps were collected in 

conjunction with SEM images to probe morphology and compositional distributions, Figure A.5.  

This approach exemplifies the need to use a complement of analytical techniques to study these 

materials.  An O2 plasma calcinated fiber mounted on copper tape is depicted in Figure A.5.  The 

length of the fiber is nominally composed of O and Si, with C and Cu dominating the 

background.  Ar plasmas generate a multitude of excited Ar species and ions, discussed in 

Chapter 3 and are often used in grafting applications.8  Detailed in Table A.1, Ar exposure was 

less efficient removing the PVP compared to O2 plasmas, nominally N (5.6 %) and a significant 

amount of carbon (40.6 %) was measured.  Notably, this result has yet to be reproduced.  Wavhal 

and Fisher studied Ar plasma treated ultrafiltration membranes, arguing exposure to the 

atmosphere causes the attachment of oxygen and nitrogen moieties on the polymer.8  Clearly, 

more work must be completed to understand the plasma-material interactions within the 

fabrication of these fibers.  The ideal combination of plasma exposure, system pressure, and 

applied rf power remains unoptimized.  Discussed in Chapter 3, optical emission spectroscopy 

can be employed to monitor the formation of gas-phase etch products to improve plasma 

calcination processes.  
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Figure A.5. Representative SEM image and EDS elemental maps of O2 plasma (100 mTorr, 
100 W, 15 min) calcinated zeolite fibers (1:2, 15 cm, 16 kV). 
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A primary goal of this study was to explore the vast parameter space within this fabrication 

process.  Therefore, the plasma calcination of fibers fabricated at 12 kV were also investigated, 

shown in Figure A.6.  Representative SEM and EDS images were obtained for Ar and O2 treated 

fibers.  These treatments appear to be less effective than the fiber depicted in Figure A.5, 

evidenced by the significant presence of C.  Please note the color differences identifying Al, Si, 

and Na between the Ar (Figure A.6a) and O2 (Figure A.6b) treated constructs, an artifact of the 

on-board EDS software.  These data suggest different fibers require different plasma operating 

parameter to effectively remove the overlying PVP.   

Figure A.7 illustrates representative SEM image and EDS maps for as-spun zeolite:PVP 

fibers, varying several parameters.  Here, the zeolite:PVP ratio was increased to 1:1; flow was 

decreased to 0.5 mLhr-1 for 20 min.  These experiments were conducted following the example 

of Anis and Hashaikeh, who used a constant 0.5 mLhr-1 flow for approximately 1–2 minutes.5  

The authors documented if the flow rate is too low, discontinuous jets are produced, where if the 

flow rate is too excessive, solution droplets are formed instead of a continuous jet.1,5  

Significant work is necessary to optimize the fabrication of zeolite fibers, particularly for 

these materials to be used in an application.  Anis et al. recently published a review article, 

detailing the synthesis of mirco- and nano-porous zeolite fibers for catalysis.1  Additionally, 

zeolite composite materials have been studied for increased pollution abatement.  Zhang et al. 

synthesized TiO2/zeolite composites via hydrolysis desorption and subsequent calcination.  The 

increased photoactivity of these materials was attributed to high surface area and surface -OH 

groups.9  Ultimately, this dissertation work sought to improve pollution abatement processes 

through plasma-assisted catalysis, the coupling of an energetic discharge with catalytic materials.   
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Figure A.6. Representative SEM image and EDS compositional maps for (a) Ar and O2 
plasma (100 mTorr, 100 W, 15 min) treated zeolite fibers (1:2, 15 cm, 12 kV).  
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Figure A.7. Representative SEM image and EDS compositional maps for as-spun zeolite: 
PVP fibers (1:1 ratio, 15 cm, 16 kV, 0.5 mLhr-1, 20 min).  
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The fabrication of morphologically complex catalysts is an additional avenue of exploration.  

Figure A.8. illustrates the fabrication of TiO2 nanoparticles: PVP composite fibers (Figure A.8a 

and A.8d), as well as Ar (Figure A.8b and A.8e) and O2 (Figure A.8c and A.8f) plasma 

calcinated fibers at a variety of magnifications.  These results represent the first steps to synthesis 

metal oxide fibers which can be employed in catalysis, biomaterial, or gas-sensing applications.  
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Figure A.8. Representative SEM images of electrospun (a,d) TiO2: PVP fibers; (b,e) Ar treated (100 mTorr, 100W, 17 min); and 
(c,f) O2 treated (100 mTorr, 100, 11 min). A variety of magnifications were used: (a) 3300x, (b) 7000x, (c) 3500x, (d) 9000x, and 
(e, f) 11000x. 
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APPENDIX B 

As noted in the Introduction to this dissertation, knowledge of internal molecular 

temperatures within a plasma system will significantly aid plasma modeling efforts.  Likewise, 

combining OES with the LIF-based IRIS technique affords insight into the energetics and 

kinetics, including gas-substrate interactions.  A comprehensive understanding of plasma-

material interactions necessarily must include processes that occur at surfaces.  Ultimately, many 

of our results demonstrate that the presence of a substrate in a plasma can dramatically alter the 

gas-phase chemistry of the system, from both a kinetics perspective and an energetics 

perspective.  Although this might seem obvious, few studies have appropriately documented 

these effects.  IRIS data presented herein were collected by previous Fisher Group members, 

specifically Dr. M. F. Cuddy and Dr. J. M. Blechle. 

 

B.1. Probing the gas-surface interface  

Another feature of our OES-related studies entails in situ measurements of steady-state 

plasma-substrate interactions.  Specifically, our unique LIF-based IRIS technique was coupled 

with OES measurements to investigate potential synergisms between a molecule’s propensity to 

scatter and excited state vibrational energy.  As documented in previous studies and shown here 

(Chapters 7 and 8), the presence of a substrate can have a substantial impact on TV.1  Thus, one 

study examined the relationship between NO scatter [S(NO)] and excited state TV(NO) values 

obtained from NO plasmas (p = 50 mTorr; at three P) with either a Si wafer or a Pt foil substrate 

in the plasma, Figure B.1.  Notably, S(NO) values are largely independent of substrate type (Si 

wafer vs. Pt foil) and increase with increasing P.   
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Figure B.1. S(NO) as a function of excited state TV(NO) values from an NO plasma (p = 50 mTorr) 
with a Si (black) or Pt foil (blue) substrate present. Bidirectional error bars represent ±1 standard 
deviation from the mean (n ≥ 3). 

 

NO (A
2 +

): T
V
 (K)

3300 3450 3600 3750 5400 5700 6000

S
(N

O
)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

150 W

100 W

200 W

Si wafer Pt foil



327 
 

Scatter values greater than unity indicate surface production of a molecule; therefore, the Figure 

B.1 data suggest that as P increases, surface production of NO also increases.  

For each substrate, there is a substantial increase in TV(NO) at P = 200 W, relative to that at 

100 W, with that for Pt (~3550 K to ~6000 K) being substantially larger than that for Si (~3450 

K to ~3750 K).  For Pt, the 150 W data also shows a substantial rise in TV(NO) (~5550 K) over 

the 100 W data.  One potential hypothesis for this observation is that higher scatter coefficients 

result from the surface interactions of vibrationally hot molecules.  Depicted in Figure B.1, 100 

W is the only condition where S(NO) < 1, regardless of substrate, implying surface loss of NO.  

Notably, this is also the only set of conditions wherein TV(NO) with a Pt substrate is less than 

TV(NO) in the substrate-free system.  With a Si substrate in the system, TV(NO) was lower than 

TV(NO) in the substrate-free system under all conditions.2  As noted above with respect to the 

selective energy transfer (SET) model (Chapter 8),3-5 this suggests that vibrationally excited 

molecules interact with the substrate and scatter, having undergone some energy loss, potentially 

through a resonant energy transfer mechanism.  This phenomenon has been previously 

documented via OES in N2 plasmas, with both TiO2 nanoparticles and micro-structured zeolites 

(Chapter 7).1 

To further explore this trend, the plasma reactor, Figure 2.2, was lined from end to end with 

zeolite substrates and a further vibrational cooling was documented (Chapter 7).  Micro-plasma 

generation near and in the pores of these nano- and micro-structured materials may be 

heightened, ultimately leading to enhanced vibrational quenching/resonant transfer interactions 

with the catalyst surface.  Notably, within this study, the presence of a catalyst(s) did not have a 

clear or significant impact on rotational thermalization pathways.1  Evaluating steady-state OES 

provides valuable information regarding energy distributions as well plasma-substrate 
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interactions, however, as noted Chapter 1 and 3, it is also essential to use temporally-resolved 

spectroscopy to detangle complex plasma dynamics.  We also employed TR-OES to study the 

impact of catalyst(s) on excited-state N2 kinetics,1  as the coupling of energetic and temporally-

resolved data is essential to holistically understanding the chemistries within PAC systems. 

Although S(NO) does not appear to depend substantially on substrate identity, the presence 

of Pt foil resulted in significantly higher TV values compared to the substrate-free and Si wafer 

systems, further evidence that the SET mechanism may be contributing to our experimental 

observations.  At all P, there is substantial scatter of NO off of both substrates, with more than 

50% of the molecules desorbing from under all conditions.  If we focus on the data from the 200 

W systems, however, we observe S(NO) is significantly greater than unity for both substrates, 

implying surface production of NO.  Surface production of NO could be attributed to several 

different reactions, a few of which are depicted in Reactions B.1 – B.4,  

   NO*
(g) → NO(ads) → NO(g)     (B.1) 

   NO+
(g) → NO(ads) → NO(g)     (B.2) 

N(g) + O(g) → N(ads) + O(ads) → NO(ads) → NO(g)  (B.3) 

   N2O(g) → N2O(ads) → NO(ads) + O(ads) → NO(g) + O(ads) (B.4) 

where (ads) indicates an adsorbed species, (g) indicates a gas-phase species, and the * indicates 

an excited state species.  Note that in reaction B.1, we depict an excited state NO molecule 

desorbing as a ground state molecule, which does not fully describe the internal temperatures of 

either molecule.  Assuming NO(ads) species exist on any given substrate, regardless of how they 

were formed, they must have sufficient energy to overcome the potential energy barrier for 

desorption for us to observe them in the IRIS system as surface production of NO.  The energy 

required for desorption of NO from either a Si(111)7 x 7 or a Pt(111) substrate is ~14 kcal/mol6 
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and ~25 kcal/mol,7 respectively.  The differences in these desorption energy barriers corroborates 

the notion that vibrationally hot molecules may contribute significantly to higher S values.  It 

also aligns with the observation that a resonant energy transfer mechanism may be at play on the 

Pt substrate as the SET model allows for a compensation effect whereby vibrational quanta can 

be added in a stepwise fashion to overcome an activation barrier.  Given that it takes more 

energy for NO radicals to desorb form a Pt surface, we may expect that those molecules may 

leave the surface vibrationally hotter than ones leaving the Si surface.  The data presented here 

suggest that energy in vibrational modes may preferentially provide a radical with the means to 

desorb relative to translationally or rotationally hot molecules.  Si and Pt substrates were chosen 

for a non-catalytic and model catalyst system; however, it is important to consider material 

morphology in addition to chemical identity.  Both substrates employed herein are nominally flat 

and smooth; understanding how radicals scatter from morphologically complex structures may 

provide more direct evidence of how plasma species synergistically interact with catalytic 

substrates.1 

Overall, the combination of the IRIS technique and OES derived data on specific molecules 

can be employed to study plasma systems with various processing effects on surfaces.  Shown in 

this dissertation are two systems that have very different processing outcomes from a substrate 

perspective: NOx plasmas can oxidize (or nitride) surfaces;8 CF4 plasmas are largely used as an 

etchant, and decreasing the F/C ratio using CxFy plasmas leads to film deposition (Chapter 4 and 

5).9  Thus, the hypothesis that increasing scatter coefficients result from surface interactions of 

vibrationally hot molecules was further tested with a variety of FC precursors, shown in Figure 

4.8.  Vibrational temperatures for excited state CF radicals appear to linearly correlate with 

measured S(CF) values.  As the vibrational temperature of excited state CF radicals increases, the 
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observed S(CF) of the ground state species concomitantly grows.  This implies that vibrationally 

hot CF in excited electronic states contributes significantly to the observed scatter of the ground 

state species.  Excited state CF radicals in the molecular beam may electronically quench at the 

substrate surface, desorb as ground state CF (i.e., the CF equivalent of reaction B.1), yielding a 

higher scatter value. Energy from this process may be dissipated into the surrounding FC film or 

passivation layer being deposited on the surface.  The already deposited fluorocarbon film is still 

receiving the full complement of plasma species and as such can be facilely removed, resulting 

in a high observed scatter coefficient.  Thus, highly vibrationally excited CF may act indirectly 

as an etchant to ablate FC material.   

Consideration of species’ vibrational temperature when seeking to optimize any plasma 

process may increase the ability to tailor and tune experimental conditions.  This may be 

especially relevant for precursors and systems that have competing processes, such as the ability 

to both etch and deposit, depending on experimental conditions.  For example, d’Agostino and 

co-workers documented C4F10 and C2F6 can etch or deposit, depending on the bias applied to a 

substrate, discussed in Chapter 5.9  By selecting experimental conditions with vibrationally 

cooler CF, measured by OES, the competition between etching and depositing regimes can be 

shifted to promote fluorocarbon film formation.  The preferential partitioning of energy into 

vibrational modes correlated with an increased propensity for scatter when a molecule interacts 

with a substrate, however, does not represent a complete embodiment of the possible surface 

reactions occurring in these systems.  Indeed, as partially depicted in reactions B.1 – B.4, ion, 

neutral, and radiation bombardment, vibrational relaxation, decomposition, recombination, and 

charging of the surface via electron or ion bombardment are all occurring simultaneously.10  The 

complexity within these systems exemplifies the need for a comprehensive, holistic approach to 
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plasma diagnostics.  Optical spectroscopies can provide insight into how a substrate can modify 

the plasma discharge itself, ultimately providing means for system optimization, regardless of 

end application. 
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APPENDIX C 

 

INDEPENDENT RESEARCH PROPOSAL 

 

The following is the entirety of an independent research proposal, prepared by Angela R. 

Hanna, in accordance with the doctoral requirements of the Department of Chemistry at 

Colorado State University. This proposal entitled “Exploring Fundamental Chemistry in Plasma 

Aided Ignition and Combustion Systems,” was submitted and recommended for funding by the 

American Chemical Society Committee on the Petroleum Research Fund for $110,000. A.R.H. 

would like to thank Dr. Anthony Rappé and Justin Joyce for providing the molecular structure 

calculations shown herein, as well as Tara L. Van Surksum for providing preliminary methane 

plasma work.  
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C.1  Abstract 

Over the past decade, there has been significant progress in demonstrating the potential 

utility of low temperature plasmas for ignition and combustion control.  This proposal addresses 

fundamental issues associated with plasma aided ignition and combustion by examining the 

steady state energetics and surface reactivity of plasma-generated species on catalysts using a 

suite of diagnostics tools.  Using both emission and absorption spectroscopies, energy 

partitioning between degrees of freedom (e.g., translational, rotational, and vibrational) will be 

determined for a variety of diatomic molecules that are critical in combustion processes.  Time-

resolved spectroscopies will also be utilized to determine rate constants, providing mechanistic 

insight in molecule formation and decay to steady-state concentrations.  Surface reactivities of 

species of interest (e.g., C2, CH, OH, NO, NHx) will be determined as a function of plasma and 

substrate parameters (e.g., gas composition, plasma power, pressure, catalyst morphology and 

chemical identity).  Phase-resolved optical emission spectroscopy will provide insight on 

electron heating and energy distributions within the plasma systems.  Detailed information about 

plasma-surface interface reactions will be correlated to internal and kinetic temperature of the 

species as well as to substrate architecture (e.g., nanowires, nanoparticles, flat films).  This 

combined approach will provide unparalleled insight on the surface interactions of a range of 

species and chemical mechanisms involved in hydrocarbon combustion and ignition.  

C.2  Overview 

Combustion of petroleum-based hydrocarbon systems still represents a significant source of 

global energy.1-3  Despite extensive studies of combustion, however, the conversion efficiency of 

most combustion processes remains un-optimized.  Plasma aided ignition and combustion 

(PAIC) is a promising approach to increasing efficiency, that ultimately could contribute to new 
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engine technology, reduction of harmful emissions, and improved fuel efficiency.4-7  In addition, 

PAIC offers an alternative route to the conversion of methane into transportation fuels.8  Thus, 

the primary focus of the research proposed herein is to improve understanding of the chemical 

processes that occur during PAIC, especially in the presence of catalytic surfaces.  Molecular-

level study of chemical processes provides an in-depth understanding of complex systems, such 

as low temperature plasmas (LTPs), thereby unlocking extraordinary potential across a wide 

range of technologies.  This research will have profound influence on our ability to design more 

efficient, high-valued processes for PAIC.  Our unique multipronged approach provides 

unparalleled insight into molecular-level chemistry, affording a more complete understanding 

not achieved by examining a single aspect of LTP processing.  Our approach will include 

• developing electronic structure calculations to model formation mechanisms of gas-phase 

plasma species relevant to PAIC and petroleum technologies; 

• illuminating the kinetics and thermodynamics of gas-phase plasma chemistry, including 

examination of species evolved off catalytic surfaces;  

• measuring the steady-state reactivity of plasma-generated species at the surface of 

catalysts using the imaging of radicals interacting with surfaces (IRIS) technique; and 

• elucidating synergistic or coupled plasma interactions via correlation of data derived 

from all of the above methodologies.  

The proposed work combines computational and experimental strategies to measure 

fundamental properties of LTPs.  We seek to create a new direction in our laboratories by 

incorporating electronic structure calculations, developing a PAIC-specific reactor system, and 

employing new techniques such as phase-resolved optical emission spectroscopy (PR-OES) to 

better access the dynamic interplay between the plasma and catalytic materials employed in 
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hydrocarbon conversion systems.  This approach is uniquely suited to provide critically 

important data for understanding plasma-catalyst surface interactions and much needed insight 

into chemical mechanisms for PAIC.  By focusing on the fundamental properties in complex 

LTPs, the proposed experiments and calculations will produce foundational data for addressing 

critical intellectual challenges at the intersection of combustion and ignition chemistry and 

plasma science.  

C.3  Motivation and Background 

To understand foundational gas phase and gas-surface interface chemistry, we propose to 

unravel the complexity of the chemical milieu within plasmas utilized in PAIC.  Nonequilibrium 

LTPs, wherein the electron temperature (Te) is on the order of a few eV, the ion temperature is 

substantially higher, and the fraction of gas dissociation is relatively low (<1%),6,9,10 can initiate 

processes with a unique selectivity and unmatched energy efficiency, nominally due to their non-

equilibrium state.6  Consequently, plasma-initiated reactions often generate radicals, excited state 

species, and photons that are simply inaccessible within purely thermal, equilibrium systems.  

Thus, enormous potential exists for LTPs to have a transformative impact on a wide range of 

applications.  This potential is, however, accompanied by a long list of challenges, including 

understanding (1) spatial and temporal behavior of plasma species; (2) kinetics of surface 

reactions; (3) interactions of plasmas with catalytic materials; (4) possible synergistic reactions 

of various plasma components; and (5) control of plasma chemistry to create specifically tailored 

materials and chemical environments.6,9,10  Clearly, no single analysis method or specific plasma 

system can afford complete understanding of all these aspects.  As such, we propose to use a 

multipronged approach, as depicted in Figure C.1, with an eye toward developing as in situ as 

possible probing of the LTP and characterizing resulting material properties and performance.   
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Figure C.1. Conceptual framework of our multipronged approach to characterizing essential 
components of PAIC   
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This combination can provide a more complete understanding of LTPs and their potential utility 

in the petroleum field.  Equally as important, such studies generate foundational knowledge and 

data required for efforts aimed at predictive modeling of these complex systems.   

In the context of PAIC, the 2017 Plasma Roadmap10 suggests a key factor in using plasmas 

within combustion or conversion processes is the ability to lower environmental impact and 

improve efficiencies in processes such as exhaust gas recirculation, controlled ignition, and cold 

startup.  The Roadmap10 clearly indicates that understanding the role of energetics (e.g., 

rotational/vibrational/translational) as well as reaction kinetics are key factors in realizing the 

potential of PAIC.  Historically, significant efforts have been devoted to the study of elementary 

process within PAIC systems.7,11-13  Given that LTPs contain a plethora of reactions occurring 

simultaneously within the gas phase and at the gas-surface interface, understanding and 

predicting fundamental processes in these discharges remain complex challenges.  

Plasma simulations could theoretically predict PAIC process outcomes, but these rely on the 

foundational data used to build them, which in many cases must be extrapolated as no reliable 

data exist.  Many experimental studies have focused primarily on collecting gas-phase data in 

LTPs with relatively low complexity (e.g., rare gas, N2, and O2 plasmas).14-17  There remains, 

however, a paucity of data for the more complex LTPs, such as those typically used for improved 

hydrocarbon processing.  Thus, we seek to elucidate the kinetics of and synergisms between 

fundamental chemical processes in the gas phase and at the gas-surface interface in LTPs used 

for PAIC.  We will develop a single plasma-diagnostics platform housing temporally- and 

spatially-resolved gas-phase diagnostics [optical emission spectroscopy (OES), broadband 

absorption spectroscopy (BAS), and mass spectrometry (MS)] coupled to a plasma reactor 

specifically designed for PAIC systems.  Molecular-level information will be gleaned from 
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measuring energy partitioning in gas-phase species, kinetics of species formation and 

destruction, and molecule-surface interactions during PAIC.  By focusing on these fundamental 

properties in complex LTPs, the proposed calculations and experiments will produce 

foundational data for addressing critical intellectual challenges in the field of plasma science.  

Collectively, the comprehensive approach proposed will advance globally-critical petroleum 

technologies by providing pathways to better processes and materials.  

Background.  Within an electrical discharge, collisions of energetic electrons with neutral gas 

molecules form chemically active species (e.g., ions, excited state species, radicals), thereby 

initiating additional chemical reactions.  Consequently, surface reaction rates can be greatly 

enhanced via interactions between plasma-generated reactive species and adsorbates on a 

catalyst surface.  Although gas-phase reactions are critical to chemical transformations in these 

systems, plasma-induced surface reactions on the catalysts must play a key role in PAIC 

processes.  For the decomposition of volatile organic compounds, a synergistic effect between 

the discharge and catalytic material has been attributed to the availability of short-lived, highly 

reactive plasma species.18-21  Although these synergies tend to increase the rate of conversion, 

different catalysts yield different efficiencies and selectivities.22  Yet, there has been no 

systematic exploration of gas-surface interface reactions in these systems under relevant 

conditions.  Likewise, basic properties of LTPs, including species temperatures [e.g., Te, ion 

temperature (Ti), vibrational temperature (TV), rotational temperature (TR), translational 

temperature (TT)], energy transfer to surfaces, gas phase kinetics, and surface reaction 

probabilities are not well described.   

Gas temperature, for example, is considered one of the most important properties of LTPs;23 

yet species temperature within methane plasmas, the simplest hydrocarbon system, have not been 
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extensively characterized outside a minimal set of conditions, and these primarily focus on a 

single species, CH radicals.24-27  Similarly, only a few studies report on energy partitioning 

trends in CH4 discharges with catalytic substrates.19,28  Even less is known about fundamental 

plasma properties in systems containing larger hydrocarbons (e.g. C2H4, C3H6, etc.) or more 

complex gas mixtures (e.g. addition of H2O, O2, N2, etc.).13,29-31  Understanding how energy is 

dispersed into different modes of a specific molecule during plasma-induced decomposition in 

particular, can provide insight into molecule formation mechanisms, decomposition pathways, 

and overall plasma chemistry.32,33  For example, one report indicates that NO dimer 

photodissociation involves excitation into a 3p Rydberg state as well as formation of excited 

state NO, with associated vibrational excitation of ground state NO upon emission.  Formation of 

NO in a plasma via other routes (e.g. precursor decomposition, interaction with a surface, 

bimolecular collision) may also involve Rydberg states and associated vibrational signatures.34  

Another study showed a range of highly excited valence and Rydberg states of NO were 

populated upon photoexcitation.35  Moreover, insight gained from measurement of both internal 

(TV, TR) and TT temperatures can elucidate the processes that dictate the overall plasma character.  

The non-thermal nature of LTPs, however, makes accurate measurements challenging as internal 

energies often deviate from a Boltzmann population distribution.36-38  Despite many studies of 

diatomic species in simple plasma systems (e.g., N2), a vast data gap persists for the majority of 

species found in technologically-relevant plasmas, severely limiting the utility of computational 

plasma models.  

C.4  Proposed Work 

We propose to explore fundamental chemistry within PAIC systems by applying a 

multipronged approach that combines theoretical calculations with a range of experimental 
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studies.  The proposed work represents new directions for the Fisher group on several fronts, 

including (a) application of computational studies; (b) creation of a comprehensive diagnostics 

platform for PAIC systems; and (c) development of a unique phase-resolved OES system for 

examining electron dynamics and molecule-surface interactions during PAIC.  In the following, 

we describe the different elements of our approach, some preliminary work, and specific tasks 

we will complete during this study; Section C.4.e describes the timeline for completion.   

C.4.1 Electronic Structure Calculations.  As the complexity of LTPs can constrain the 

utility of theoretical methods, several numerical simulations (e.g., molecular dynamics (MD) 

calculations) have been used to model LTP processes.39-41  Electronic structure calculations can 

also be used to investigate gas adsorption properties and the role of coupled nuclear and 

electronic dynamics on molecule formation mechanisms.  Here, in preliminary work with our 

colleague, Prof. Rappé, electronic structure calculations were performed to determine the direct 

excitation profile of NO and CH4, as shown in Figure C.2.  The NO ground state was optimized 

utilizing the aug-cc-pVTZ basis set with a variety of electronic structure methods.  Subsequent 

natural transition orbital determinations were performed using APFD/aug-cc-pVTZ.  For 

example, Figure C.2a depicts the different orbital geometries associated with an electron excited 

from the 2π orbital in the NO ground state to a large 3s-like orbital in the 2Σ state (lowest excited 

state).  The 2Σ state is best described as the CO triple bond electronic configuration of NO+ with 

the remaining electron in a 3s Rydberg orbital.  Thus, emission from this state will be 

accompanied by significant vibrational excitation.  The energy of the 2Σ state (5.45 eV) and the 

relatively low ionization potential of NO (9.26 eV) suggest a nearly 4 eV range for valence 

excitations and additional Rydberg features of spectroscopic interest.  Methane electronic 

geometry was optimized at APFD and also used the aug-cc-pVTZ basis set.   
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Figure C.2. TD-DFT representation of the natural transition orbitals for excitation of NO 
from the ground state 2π orbital (“From”) to a large 3s-like orbital (“To”). 
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Time-dependent density functional theory (TD – DFT) was performed on the subsequent 

geometry.  The lowest-lying excitations were triply degenerate at 9.94 eV above ground state. 

Transitions for CH4, Figure C.2b, are best described as an electron excited from the 2sp3 orbital 

(T1 state) to a large 3s-like orbital.  These calculations showcase our ability to compute 

electronic geometries of species relevant to PAIC.   

The proposed computational work (performed with Gaussian 16) will utilize multi-reference 

configuration interaction (MR-CI) and TD-DFT electronic structure calculations to characterize 

the excited state electronic structure and vibrational profile of molecules relevant to our PAIC 

systems formed via various excitation mechanisms.  For example, using DFT methods, Shirazi et 

al. determined the presence of surface-bound species (e.g., H atoms and hydrocarbon fragments) 

largely influences catalytic activity.42  This information will lead to improved interpretation of 

experimental spectroscopy data and help elucidate excitation pathways within LTPs.  Initially, 

we will perform electronic structure calculations to explore the role of CH and C2 formation 

mechanisms on vibrational excitation of various hydrocarbons, focusing on correlating 

experimental molecular and electron temperatures measured within PAIC systems with structural 

information gained from these computational studies.  

C.4.2 Gas – Phase Analyses.  One emerging theme for further exploration evaluates the 

potential effectiveness of PAIC through understanding energetic distributions and gas phase 

kinetics in LTPs.6,43  Applying a range of gas-phase optical diagnostics [laser-induced 

fluorescence (LIF), OES, BAS] is key to this comprehensive characterization.  Species 

interactions and plasma energetics are intertwined; thus, temporally-resolved data are necessary 

to accurately probe the intricate dynamics within LTPs.  We have developed a customized pilot 

(alpha) spectrometer/reactor design for OES, BAS, and time-resolved spectroscopy 
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measurements, Figure C.3a.  The spectrometer comprises a broadband light source (deuterium 

and halogen lamps) collimating and collection optics, and a multichannel detector with a spectral 

detection range of ~190 – 1015 nm.  Notably, we have not addressed adding temporal control 

(i.e., a shutter and timing system), nor have we formulated the most efficient collection of 

spatially-resolved BAS, as we must account for logistics of optical element placement.  Thus, we 

propose to build a new (beta) apparatus to house our extant TR-OES/BAS spectrometer, 

accommodate spatially-resolved spectral analysis, and mass spectrometry capabilities.  We aim 

to build this system from a repurposed vacuum system (i.e., no new capital equipment is 

required) that can be operated at higher pressures (approaching atmospheric) than our present 

reactors currently accommodate.  As we will be able to operate at both lower (10-200 mTorr) 

and higher (nominally 0.8-10 Torr) pressures, we can evaluate the impact of a broad pressure 

range on the discharge kinetics, including transitioning to more efficient processes resulting from 

hydrodynamic effects that can arise under more process-relevant (higher) pressures.  

 

  



345 
 

 

 

Figure C.3. Schematic of inductively-coupled plasma reactor for a) OES & BAS and b) IRIS 
apparatus. 
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As noted above, gas temperature is a central property of LTPs, especially in catalytic 

processes and understanding how energy partitions into different modes can provide significant 

insight into fundamental plasma chemistry.  To address the data gap for energy partitioning 

within petroleum-relevant plasmas, we propose to create a library of fundamental energy 

partitioning data, and kinetic rates, for species relevant to combustion and ignition processes.  

Table C.1 lists diatomic species we will analyze as a function of feed gas composition, 

catalyst, and plasma parameters [e.g., power (P); pressure (p)].  To demonstrate the type of data 

we can acquire, Figure C.4 shows a raw OES spectrum of a CH4/Ar plasma with SnO2 

nanoparticles (NP) supported on a glass slide.  The spectral region assigned to excited state CH 

was fit in LIFBASE to elucidate TV and TR.  Observation of Sn atoms in the gas phase clearly 

indicates the interdependence between the plasma and materials being processed.  Clearly, 

deeper understanding of LTP interactions with nanomaterials must be obtained to further refine 

and optimize PAIC processes utilizing catalytic materials.  Proposed studies will center on 

plasma processing of nanomaterials with various morphologies, specifically chosen for their 

heightened catalytic behavior.  Outcomes will focus on understanding how the plasma affects the 

substrate and how the substrate affects the gas phase of the plasma. 
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Figure C.4. Raw OES spectra for a 95:5 CH4:Ar plasma (150 mTorr, 75 W) containing SnO2 
nanoparticles.  Peaks are labeled with the corresponding species. Inset highlights the 
determination of energy partitioning information for CH radicals.  
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C.4.3 Gas – Surface Interface. A primary challenge to understanding LTP chemistry in the 

context of PAIC processes lies in deciphering plasma-surface interactions.6,9,10,22  Thus, it is 

critical to distinguish effects arising from (a) different types of species bombarding the surface; 

(b) synergistic or coupled reactions at the surface (e.g., ion bombardment assisting chemical 

etching15,44) and (c) energy partitioning within molecules.  All can impact how molecules interact 

with a surface, especially because the rates of many surface reactions are likely controlled by 

molecular vibrational and electronic states.45  Our IRIS technique provides insight into the 

plasma-surface interface during plasma processing by determination of in situ, steady-state 

radical-surface interactions.  In the differentially-pumped IRIS apparatus (Figure C.2b), a 

collimated, near-effusive molecular beam is produced from an LTP.46  In the interaction region, 

the plasma molecular beam (PMB) impinges on a substrate 45º from surface normal and a 

tunable laser beam propagates in the principal scattering plane, intersecting the PMB, ~3-5 mm 

upstream from the substrate.  The laser is tuned to an absorption frequency of a single PMB 

species; spatially-resolved LIF signals are collected by a gated, intensified CCD (ICCD) located 

perpendicular to the PMB and laser beam (above the interaction region).  ICCD images are 

collected with the substrate in the path of the PMB, and with it rotated out of the PMB.  As the 

PMB encompasses effectively all source species (with the likely exception of electrons), IRIS 

substrates are processed in a nearly identical fashion to those processed directly in our LTPs.  

Substrates of any type (e.g., both non- and catalytic materials) can be heated or cooled to 

examine substrate temperature (TS) dependence on surface reactivity.  We can control ion 

bombardment of IRIS substrates by application of a substrate bias, addition of a grounded mesh 

screen (removes majority of ionic PMB species), or use of alternate ion-free sources (e.g., a hot 

filament rector47).  IRIS data are analyzed by modeling ICCD image cross sectional data with a 
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numerical simulation.46,48  The output is a calculated fraction of radicals scattered off the 

substrate (surface scatter coefficient, S), related to surface reactivity by R = 1 – S, where R 

represents a steady-state surface loss coefficient.  As IRIS utilizes LIF, we can also measure TR 

by collecting LIF signals as a function of wavelength to yield rotational excitation spectra, and 

data obtained using different ICCD gate delays yield TT values.49  TT for scattered molecules can 

also be measured, provided the fluorescence lifetime is sufficiently long.50,51  Such detailed 

information for molecule-surface interactions during LTP processes is unobtainable with any 

other single experimental technique.  

We will utilize IRIS to examine plasma-surface interactions of the molecules in Table C.1 on 

catalytic substrates.  Initially, we will use small hydrocarbons and mixtures of hydrocarbons and 

H2O, O2, N2, and NxOy as precursor gases to explore the surface interactions of C2 and C3 on 

control substrates (e.g., Si) as well as on a range of catalytic materials (Table C.1).  Although we 

have employed IRIS previously, we propose several significant modifications to create an 

apparatus to perform PR-OES studies.  PR-OES is a non-intrusive, diagnostic technique to study 

electron and population dynamics of excited states within LTPs.52,53  In many plasmas, electron 

heating and electron dynamics are not fully understood; nevertheless, these energetic electrons 

have an immense role in influencing plasma chemistry and gas-surface interactions.  Using a 

time-dependent model of excitation dynamics within a given LTP system, PR-OES provides 

access to fundamental plasma parameters such as Te, electron density (ne), and electron energy 

distribution function (EEDF).54  Briefly, from an experimental perspective, PR-OES requires a 

fast, gateable (nanoseconds) ICCD camera and the ability to synchronize the ICCD with the 

applied RF voltage waveform to measure space and phase-resolved emission.  Addition of 

appropriate optical elements generally yields a spatial resolution of ~0.5 mm and a temporal 
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resolution of ~5 ns.  Given that the key experimental components already exist on our IRIS 

apparatus, modification to allow PR-OES studies should be straightforward. 

As one example of how PR-OES provides critical insight for plasma processes, prior work on 

energy partitioning within fluorocarbon plasma systems suggests Te does not have a strong 

influence on TV values.55  Rather, increases in vibrational energy with increasing P for a given 

molecule are predominantly a consequence of increased ne.  Experimentally determining ne as a 

function of plasma conditions (feed gas composition, p, P) with a non-intrusive technique such 

as PR-OES will provide unique insight into the synergistic relationships between energetic 

electrons and resulting gas-phase chemistry.  Here, we seek to study electron dynamics in 

hydrocarbon plasmas (CH4, C2H4, etc.) with and without micro- and nanostructured catalysts, 

elucidating the role of electrons in the plasma sheath formation and in energy partitioning for 

molecular species such as CH, C2, and C3.  This element of the proposed work represents a new 

direction in diagnostics applied to PAIC systems. 

C.4.4 Relevant Material Characterization.  Particle size significantly influences the overall 

rate and efficiency of PAIC processes; yet, little is understood about how LTPs interact with 

micro- and nanostructured materials.  Understandably, this has been identified as a major 

challenge in the field.10  Although LTPs have been used to synthesize NPs and to modify a range 

of nanoscale architectures, limited foundational chemical and physical data exist on how reactive 

plasma species are formed within LTPs and how they interact with nanomaterials.  Because the 

scale of nanostructured materials is intermediate between bulk and molecular, surface 

interactions of energetic species on NPs and nanowires (NWs) may be fundamentally different 

than with flat films.  A possible explanation is that reactions of energetic plasma species are not 

limited to the nanomaterial surface, but rather they may rapidly diffuse through particles on the 
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substrate.  The exact mechanisms of how reactive species (e.g., radicals, ions, electrons) interact 

at particle surfaces is, however, largely unknown.  When porous or nanostructured materials are 

placed in plasmas, spatial inhomogeneity can be created (e.g., microplasmas within pores, 

localized electric fields) which alters electrical characteristics of the plasma.56,57  Residence 

times of reactive species can also lengthen, significantly changing surface 

chemistries/morphologies, as well as gas-phase densities.19,22,58  Clearly, plasma-surface 

interactions across a range of spatial and temporal scales are driving forces in these systems.  

Figure C.5 demonstrates our ability to fabricate a variety of catalytic materials with different, 

complex three-dimensional architectures.  Here, we will study the Table C.1 catalysts by 

examining changes within the gas phase and at the gas-surface interface when these substrates 

are in the plasma, providing insight on how catalysts affect the plasma.  We will also perform 

extensive material characterization before and after plasma exposure to reveal how the plasma 

affects the catalyst.  
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Figure C.5. SEM images of TiO2 nanoparticles, zeolite pellets, and SnO2 stacked nanoplates.  
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Table C.1. Molecules of interest to PAIC processes 

Precursor Molecule Transition 
Excitation 

Wavelength 
(), nm 

Radiative 
lifetime 

(ns) 
Substrates 

CXHY 
CH A2

 –  X2
 430 537  

C2 A1
 –  X1


+
 691 1.85 x 104

 

Si, Pt, Au  
nano-structured 

metal oxides 
(TiO2, SnO2)  
Ni/γ-Al2O3 
Co-ZSM-5 

Zeolites 

C3 A1
 –  X1


+
 410 200 

NXOY 
NO A2


+ –  X2

 226 215 

N2 C3
u – B3

g  315 35 – 40 

H2O 
OH A2


+ – X2

 308 688 

O2 A3


+– X3
u

+
 249 1.2 x 105

 

NH3 
NH A3

 – X3


-
 336 440 

NH2 A2A1 – X2B1 598 1 x 104
 

SO2 
SO B3

 – X3
 235 16.2 

SO2 A1B1 – X1A1 300 3 x 104
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C.4.5 Connecting Research Questions.  We anticipate the proposed comprehensive 

approach will provide insight into how a specific molecule (e.g., CH, C2, OH, etc.) interacts with 

catalytic substrates and how energy is partitioned within a plasma system.  There is a critical 

need for such a comprehensive approach to address the interdependent relationships and to 

decouple synergistic effects of coincident plasma-surface interactions.  

Table C.2 contains a projected timeline for the proposed work.  Year 1 focuses on building 

the proposed comprehensive diagnostics apparatus along with developing our expertise with 

electronic structure calculations.  A graduate student will work with Prof. Rappé to become 

proficient with MR-CI and TD-DFT calculations.  During construction of the new diagnostics 

platform, we will perform gas phase CH and C2 temperature measurements with a range of 

catalytic substrates using our current system and will characterize those substrates before and 

after plasma exposure.  Depending on how these experiments progress, we will explore surface 

interactions of other molecules of interest (e.g., OH, CN, and NH formed via addition of gases 

such as H2O, NH3, and nitrogen oxides).  Initial Year 1 electronic structure calculations will 

examine C2 formation mechanisms, as well as O2 and CH, within a variety of hydrocarbons.  

Materials analysis including evaluation of effects of LTP processing on catalytic behavior will be 

performed throughout the project.  From a fundamental science perspective, this holistic 

experimental and computational approach promises to significantly enhance our overall 

understanding of LTP chemistry, including deciphering synergistic interactions with the goal of 

optimizing PAIC processes.  
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Table C.2. Projected Timeline for Proposed Work 

Development of Experimental  

& Theoretical Approach 

Year 1 Year 2 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Diagnostic apparatus construction, troubleshooting          

Development of basis sets, student expertise for 
calculations, initial calculations  

        

Plasma Diagnostics for PAIC Systems 

Gas-phase C
2
, CH temperature measurements 

with/without catalytic substrates  
        

PR-OES, TR-OES, TR-BAS, MS measurements 
(kinetics/formation mechanisms) 

        

IRIS studies of CH, C
2
, & HS on catalytic 

substrates 
        

IRIS studies of OH, NH, and NO in hydrocarbon 
systems w/ additivities (e.g., H

2
O, N2, O2, NH

3
) 

        

Materials for PAIC Systems 

Zeolite and metal oxide substrate fabrication         

Plasma treatment (C
X
H

Y
,H

2
O,NH

3
) of substrates         

Surface analysis and materials characterization of 
catalyst substrates 

        

Catalytic Activity Assessment 

Photocatalytic decomposition studies         

Role of LTPs in catalyst activation         
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C.5. Summary 

These studies presented here offer a unique opportunity for substantial contributions toward 

understanding the underlying chemical mechanisms involved in PAIC.  We anticipate the 

proposed comprehensive approach will provide significant insights into how a specific molecule 

(CH, C2, OH, etc.) interacts with specific catalytic substrates and how energy is partitioned 

within a specific plasma.  Our studies are designed to elucidate key factors that address critical 

scientific challenges, including overarching research questions of:  

(1) How do molecule formation mechanisms affect energy partitioning and reaction kinetics 

in LTPs? 

(2) On a molecular level, how do LTPs interact with materials, and how does substrate 

architecture affect those interactions?  

(3) What factors govern synergisms between reactions occurring in LTPs, and can we control 

them to create efficient and selective PAIC processes?  

The proposed experiments will provide robust experimental and theoretical data to improve 

comprehensive plasma simulations of relevant systems that currently rely on either incomplete 

data or extrapolated information.  Our holistic approach will provide fundamental insight into the 

gas phase, the surface, and most importantly, the gas-surface interface chemistry, which is 

imperative for significant progress to be made with PAIC, ultimately lowering environmental 

impact and improve process efficiencies. 
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LIST OF ABBREVIATIONS 

 

ads adsorbed 

Al2p aluminum 2p (XPS spectrum) 

Ar argon 

BAS broadband absorbance spectroscopy 

B.E. binding energy 

C1s carbon 1s (XPS spectrum) 

CR collisional radiative 

CW continuous wave 

DC direct current 

DFT density functional theory 

DBD dielectric barrier discharge 

e- electron 

EDS energy dispersive spectroscopy 

EEDF electron energy distribution function 

E mode inductance or electrostatic mode 

E-R Eley-Rideal 

EtOH ethanol 

F/C fluorine-to-carbon ratio 

FC fluorocarbon 

fps frames per second 

FTIR Fourier transform infrared spectroscopy 
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FWHM full width at half maximum 

H2 diatomic hydrogen 

H2O water 

HFPO hexafluoropropylene oxide  

H mode conductance or electromagnetic mode  

ICCD intensified charge-coupled device 

IRIS imaging of radicals interacting with surfaces 

ICP inductively coupled plasma 

kB Boltzmann’s constant 

kf rate constant of formation 

kd rate constant of destruction 

L-H Langmuir-Hinshelwood  

LIF laser-induced fluorescence 

LTP low temperature plasma 

MeOH methanol 

min minute 

N2 diatomic nitrogen 

ne electron density 

NO nitric oxide 

N2O nitrous oxide 

O1s oxygen 1s (XPS spectrum) 

OES optical emission spectroscopy 

OH hydroxide radical 
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P applied rf power 

p total system pressure 

PAC plasma-assisted catalysis  

PAIC plasma aided ignition and combustion 

PECVD plasma-enhanced chemical vapor deposition 

Pt4f platinum 4f (XPS spectrum) 

PXRD powder X-ray diffraction 

PVP polyvinvlypyrrodine  

rf radio frequency 

s second 

S surface scatter coefficient  

sccm standard cubic centimeters per minute 

SEM Scanning electron microscopy  

Si2p silicon 2p (XPS spectrum) 

t time 

Te electron temperature 

Texc excitation temperature 

Tg gas temperature 

Ti ion temperature 

TR rotational temperature 

TR-OES time-resolved optical emission spectroscopy 

TT translational temperature 

TV vibrational temperature 
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UT untreated or no plasma treatment 

WCA water contact angle  

XPS X-ray photoelectron spectroscopy 

ZSM Zeolite Socony Mobil 
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