
THESIS

SUPERVISED AND UNSUPERVISED TRAINING OF DEEP AUTOENCODER

Submitted by

Tomojit Ghosh

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2017

Master’s Committee:

Advisor: Charles Anderson

Michael Kirby

Don Rojas



Copyright by Tomojit Ghosh 2017

All Rights Reserved



ABSTRACT

SUPERVISED AND UNSUPERVISED TRAINING OF DEEP AUTOENCODER

Deep learning has proven to be a very useful approach to learn complex data. Recent research

in the fields of speech recognition, visual object recognition, natural language processing shows

that deep generative models, which contain many layers of latent features, can learn complex data

very efficiently. An autoencoder neural network with multiple layers can be used as a deep network

to learn complex patterns in data. As training a multiple layer neural network is time consuming,

a pre-training step has been employed to initialize the weights of a deep network to speed up the

training process. In the pre-training step, each layer is trained individually and the output of each

layer is wired to the input of the successive layers. After the pre-training, all the layers are stacked

together to form the deep network, and then post training, also known as fine tuning, is done on

the whole network to further improve the solution. The aforementioned way of training a deep

network is known as stacked autoencoding and the deep neural network architecture is known as

stack autoencoder. It is a very useful tool for classification as well as low dimensionality reduction.

In this research we propose two new approaches to pre-train a deep autoencoder. We also

propose a new supervised learning algorithm, called Centroid-encoding, which shows promising

results in low dimensional embedding and classification. We use EEG data, gene expression data

and MNIST hand written data to demonstrate the usefulness of our proposed methods.
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Chapter 1

Introduction

Machine learning (ML) has become a widespread technology that influences many aspects of

modern life. Its applications include weather forecasting, speech recognition, anomaly detection,

image classification, content filtering in social network and genetics. In a broader sense, machine

learning (ML) algorithms are used for classification and regression. Typically, classification tasks

are supervised learning in the sense that the algorithms need ground truth information (class la-

bel/category information) to build (or train) the model. Once the training is done on ground truth

data, the model can be used to predict data which the model has never seen before. Similarly re-

gression tasks can be done in a supervised manner. In contrast, machine learning algorithms can

be trained in an unsupervised manner in the sense that the models do not need any ground truth

information about the data. Clustering algorithms are good examples of unsupervised learning

where the algorithms exploit some similarity measures to learn from the data. The similarity be-

tween data can be defined as distance where different distance metrics such as Euclidean distance,

Mahalanobis Distance, angle between points, angle between subspaces and geodesic distance can

be used.

In machine learning there are algorithms which support only supervised learning. For exam-

ple, Support Vector Machines [1] is a state of the art algorithm that explicitly needs ground truth

information about data. On the other hand Artificial Neural Networks [2] can be used in both

supervised and unsupervised learning. Unsupervised learning algorithms are particularly useful

when the ground truth (class/category label) information is not available. To apply a machine

learning algorithm (supervised or unsupervised), one needs to know a great amount of detail about

the data; in another sense a good domain expertise is a key factor to apply any machine learning

algorithm. The domain knowledge along with careful engineering plays a critical role to extract

the latent features from the raw data. For decades machine learning or pattern analysis has been

done by following the aforementioned approach.
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Then came the age of Deep Learning [3]. Deep learning derives from the concept of represen-

tation learning [4], in which the model automatically discovers representations required to extract

the features from the data. At its heart, deep learning utilizes this concept through multiple levels

of representation where the representation in any current level is achieved by applying some non-

linear functions/modules on the representation of the preceeding level. Research in recent years

has shown that this hierarchical learning via multiple layer of representation can produce unprece-

dented results [5, 6].

Autoencoder neural network is one such model that has the built-in capability to model deep

learning architecture. An autoencoder maps each data point (a sample) to itself through multiple

layers of hidden representations. This mapping is independent of the ground truth information,

i.e. autoencoder does not need any class/category label information, thus it is an unsupervised

learning algorithm. Typically training an autoencoder involves error backpropagation [7]. The

backpropagation algorithm does not work too well for deep autoencoder which consists of multi-

ple hidden layers. Over the years researchers have observed that the gradient tends to get smaller

and smaller as we move backward to update the weights in hidden layers. This phenomenon is

termed as vanishing gradient. More details can be found in [8, 9]. An approach to alleviating this

learning problem comes from Geoff Hinton who introduces a greedy layer-wise pretraining algo-

rithm, called Restricted Boltzmann Machine [10], which initializes the parameters of the network

near a good solution followed by a gradient based fine tuning method.

In our research work, we explore the layer wise pre-training method in light of training a deep

autoencoder. In conventional stacked autoencoder, each hidden layer is pre-trained individually.

Once all the hidden layers are pre-trained, they are stacked together to form an autoencoder which

is then fine tuned. In the process of pre-training each hidden layer individually, it can add noise,

and this noise addition increases as the number of hidden layers increases. We explain this is in

detail in Section 3.1. We propose two variations of pre-training for autoencoders. In our proposed

approaches we minimize the addition of noise in the pre-training phase. Thus we think our ap-
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proach will set the parameters of the network close to a good solution when compared to standard

stacked autoencoder. The results of our experiments support our hypothesis.

Dimensionality reduction is a key aspect in Machine Learning. Data analysis usually starts

with visualization and this visualization is significantly harder for high dimensional dataset. In

practice, we often get datasets where the number of samples is much lower than the number of

dimensions of each sample. This motivates the practitioners of Machine Learning to come up

with algorithms which can represent high dimensional data in low dimensional space, preferably

in 2D/3D space for visualization. There are several state of the art techniques that one can employ

to visualize his/her data. The most popular and common technique is the Principal Component

Analysis (PCA) [11], which is a linear technique that captures the maximum variance of the data.

On the other hand, neural networks can be used in an autoencoder setting that can be viewed as

nonlinear PCA [12]. Both of these techniques are unsupervised, i.e., they do not need ground truth

information about the data.

In our research we propose a new supervised learning algorithm, centroid-encoding, which is

similar to autoencoder neural network. But unlike autoencoder, centroid-encoder exploits the class

information to find a good representative of a class. In our algorithm, we choose the centroid as

being representative of a class. In autoencoder, each data point is mapped to itself via a nonlinear

mapping, whereas in centroid-encoder, each data point is mapped to the centroid of the class in

which the data belongs via a nonlinear mapping. As the centroid of each class of a dataset are

different in their ambient space, we think encoding centroids via low dimensional space (2D/3D)

can capture structured information about the data. We use three different datasets to visualize high

dimensional data in low dimensional space (2D/3D) using centroid-encoder. Our results show

that centroid-encoder can reveal interesting structured information in low dimensional space while

PCA and nonlinear PCA failed at this task. We also discover that centroid-encoder can be used for

pre-training step in classification. Encoding centroids via nonlinearity helps the network to learn

the hidden features which are conducive to distinguish a sample of one class from a sample of

another class. After pre-training, a softmax layer can be used for classification. Our result shows

3



that the classification accuracy after pre-training using centroid-encoder is significantly better than

that of autoencoder. We also calculate the classification accuracy after fine tuning the network.

We observe that centroid-encoder did better compared to autoencoder and standard neural network

when the network size is small.

The layout of the rest of the thesis is as follows. Chapter 2 consists of background information

of training an autoencoder. Chapter 3 comprises our proposed algorithms. Chapter 4 contains the

details of the datasets we explored. Chapter 5 elaborates the details of experiments and the results.

In Chapter 6, we make our conclusion based on the results we have obtained. We also mention

some of the prospective future work on our proposed algorithms.

4



Chapter 2

Background

In this chapter we will review the background of the autoencoder, its mathematical formulation

and its training using error backpropagation.

2.1 Autoencoder

To be put simply, an autoencoder is a function which tries to learn an approximation of the

identity map. For given data {X1, X2, X3, ...}, where X i ∈ R
n, it tries to learn a function f(W )

such that f(W )(X
i) ≈ X i where W and b are the model parameters.

One can use the artificial neural network with error backpropagation to learn an autoencoder. In

this set up the targets are set to be equal to the inputs as shown in Figure 2.1. The input is a

five dimensional vector {x1..x5} which is passed through three hidden layers. In the first hidden

Figure 2.1: An example of an autoencoder with three hidden layers.
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layer we have three hidden units {h1..h3} and in the second hidden layer we have two hidden

units {h′
1, h

′
2}. These two hidden layers can be thought as encoding layers. The third hidden layer

{h′′
1..h

′′
3} takes the two dimensional encoded data, decodes it and then pass it on to the output layer

which decodes the data again to produce the output {x′
1..x

′
5}. The number of nodes in the input

layer needs to be same as in the output layer. At this point the error is calculated from the original

input {x1..x5} and reconstructed input {x′
1..x

′
5}. Then this error is back propagated through the

network using an algorithm called error backpropagation. So an autoencoder reconstructs a data

point via some hidden representation.

For an autoencoder neural network the function f(W ) is a nonlinear one. This type of neural

network is generally used on unsupervised data where the labels are not available. Figure 2.1 repre-

sents an autoencoder with three hidden layers, but there can be numerous hidden layers especially

in a deep autoencoder. A deep autoencoder can be thought of as a multi-layer artificial neural

network. So the training procedure of autoencoder is the same as a multi-layer neural network.

Typically the training is done by an algorithm called error backpropagation [7] which we briefly

discuss here.

2.2 Error Backpropagation

In a feed-forward neural network each hidden unit computes a weighted sum of its input in the

form

alj =
∑

i

wl
j,iz

l−1
i (2.1)

where zl−1
i is the activation ith hidden unit of (l− 1)th layer or input layer, which is connected via

wight wl
j,i to the jth unit of lth layer. For simplicity, the bias in each unit is considered to be an

element of wl and the corresponding input in zl−1 is a constant 1. A non-linear activation function

(g) is applied to give the activation or output (zlj) of unit j in layer l in the following form:

zlj = g(alj) (2.2)

6



We seek to adjust the parameters of the network by minimizing an appropriate error function in the

following form:

E =
N∑

n=1

En

In the above equation we are calculating the sum of all errors defined on each pattern n. Most of the

error functions in practice takes this form. Examples are the mean squared error (MSE) and cross

entropy error (CE). We are also assuming that the error En can be expressed as a differentiable

function of the output variables of the network. Now we need to calculate the derivative of En with

respect to some network parameter wl
j,i. We note that En depends on the wl

j,i only via summed

input alj of j th unit in layer l . Applying the chain rule of derivatives we get:

∂En

∂wl
j,i

=
∂En

∂alj

∂alj

∂wl
j,i

(2.3)

Define :

δlj ≡
∂En

∂alj
(2.4)

Using equation 2.1 we can write:

∂alj

∂wl
j,i

= zl−1
i (2.5)

Substituting equation 2.4 and equation 2.5 into equation 2.3, we get:

∂En

∂wl
j,i

= δljz
l−1
i

So to calculate the derivatives we need to multiply the δ of unit j of layer l to the output of unit i

in layer l − 1. The calculation of δok for the output layer is as follows:

δok ≡
∂En

∂aok
= g

′

(aok)
∂En

∂yk

where we used equation 2.2 with zk denoted by yk. To calculate the δs for hidden units in a hidden

layer l we can use the equation 2.4 as follows:

7



δlj ≡
∂En

∂alj
=

∑

k

∂En

∂al+1
k

∂al+1
k

∂alj

where the sum runs over all the units k in layer l + 1 to which unit j of layer l sends connections.

Substituting the definition of δlj from equation 2.4 and using equations 2.1 and 2.2 we can write:

δlj = g
′

(alj)
∑

k

wkjδ
l+1
k (2.6)

Equation 2.6 tells us that the values of δ of a hidden unit can be calculated by propagating δs

backwards from units higher up in the network. This is the key to the error backpropagation

algorithm.

2.3 Pre-training Autoencoder

Updating the weights in the network by propagating the error backwards works well for a

shallow network where the number of hidden layers are few. But for a deep network where the

number of hidden layers is quite large, the learning saturates due to a phenomenon called vanishing

gradient [8,9,13,14]. In a deep architecture the gradient tends to get smaller as we move backward

from the output layer. This means the weights associated with the hidden layers close to the output

layer will be updated by large values, whereas the weights associated with the hidden layers close

to input layer will be updated by small values. This effectively slows down the overall learning

process in a deep neural network.

Around 2005 Geoff Hinton came up with the idea of greedy layer wise pre-training which

initializes the parameters in the network close to a good solutions. They used a probabilistic

approach called Restricted Boltzmann Machine (RBM) to initialize the parameters in the network

followed by a gradient based fine tuning [10, 15]. Due to this breakthrough people started to use

deep neural network architecture which started to produce good results in different applications.

Restricted Boltzmann Machine is a probabilistic model to initialize the parameters in the net-

work. The idea of pre-training was soon extended with continuous values [16, 17].
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To speed up the training of deep autoencoder a greedy layer wise pre-training approach is

useful. The main objective of this pre-training is to initialize the weights of a deep autoencoder.

A stacked autoencoder is a multi-layer artificial neural network which is built by stacking multiple

layers of autoenoder where the output of one autoencoder is fed as the input to the successive layers

as shown in Figure 2.2. Once the pre-training is done all the layers of autoencoders will be stacked

Figure 2.2: An example of a stacked autoencoder using three hidden layers. On the left hand side we have

three autoencoders trained separately. The first autoencoder maps the original input to itself via the hidden

layer ’h1’. The second autoencoder takes the output of the hidden layer ’h1’ from the first autoencoder

and then maps the data to itself via the hidden layer ’h2’. Similarly the third autoencoder maps the output

of hidden layer ’h2’ to itself via the hidden layer ’h3’. This process is known as pre-training. After the

pre-training, all the three autoencoders are stacked together to form a multiple layer perceptron (multi-layer

ANN) to do a further refinement of the network parameters.

together to form the deep autoencoder and then the post training (backpropagation) will be done

on the deep network. The post training of the deep autoencoder will be faster as we already have a

good initialization of weights from the stacked autoencoder.

9



Chapter 3

Methods

Before describing our proposed methods we point out an issue with stacked autoencoder.

3.1 Issue of Pre-training with Stacked Autoencoder

The autoencoder neural network tries to approximate the identity map such that for a given

input X , where X ∈ R
n, f(W )(X) ≈ X where f(W ) is a non-linear function. Therefore the

reconstruction of the input X by the non-linear function f(W ) will have an error in it. So it can be

written

f(W,b)(X) = X + ǫerror (3.1)

The reconstruction error (ǫerror) will be added by each layer while doing the pre-training by stacked

autoencoder. Moreover in each successive layer the autoencoder will reconstruct the input which

has the error ǫerror in it. This way the initial weights learned by stacked autoencoder will be

misleading and this may cause reaching the local minimum faster in the post training.

To tackle this potential issue with stacked autoencoder, the following pre-training approach is

being proposed.

3.2 Proposed Pre-training

In the proposed approach, pre-training will be done by adding the new hidden layers while

reconstructing the original input. To pre-train each layer error backpropagation will be used

with some non-linear activation function. The main difference of this approach with the stan-

dard stacked autoencoder is that in the standard stacked autoencoder the weights in each layer are

learned by reconstructing the input which is the output of previous layer, but in the proposed ap-

proach the weights of the newly added layer will be learned by reconstructing the original input.

Thus the reconstruction error ǫerror of each layer will not be propagated.

10



Two different variations are being proposed while updating the weights of the newly added

hidden layer. In the first approach weights are only updated to the newly added hidden layer

using error backpropagation. Weights of the previously added hidden layers will be frozen during

backpropagation. We will call this approach Stacked Autoencoder with Layer Freeze or simply

SAE with Layer Freeze. In the second approach, weights of the newly added hidden layer will

be updated along with the weights of the previously added layers. We will call this approach

Stacked Autoencoder without Layer Freeze or simply SAE without Layer Freeze. In Figure 3.1

we describe our pre-training approaches. We want to build a stacked autoencoder with n hidden

layers. The first step is similar to standard stacked autoencoder. In this step we add the first hidden

Figure 3.1: Pre-training a deep autoencoder by the proposed approaches. In the first step, an autoencoder

with the first hidden layer is pre-trained (left diagram). The pre-trained weights are w1, w1
′. In the next

steps, a new hidden layer is added by extending the network architecture of the autoencoder. In the SAE with

Layer Freeze approach, weights (w2, w2′) associated with the new hidden layer are updated while keeping

the other weights (w1, w1′) fixed. In contrast in the SAE without Layer Freeze approach, weights (w2, w2′)

associated with the new hidden layer are updated along with the other weights (w1, w1′). This process is

repeated to add more hidden layers.
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layer and map each data point to itself as shown in the left hand side of the Figure3.1. After

this step we get weight matrix w1 which connects the original input to the first hidden layer and

w1′ which connects the hidden layer to the output layer. In the next step we want to bring the

next hidden layer. Unlike the standard stacked autoencoder, we extend the network by adding the

second hidden layer. Now we have two new weight matrix w2, w2′. These two weight matrices

connect the second hidden layer with the first one as shown in the middle diagram of Figure 3.1.

Now we need to train the extended network. Here we take two separate approaches. In the SAE

with Layer Freeze approach, we only update the weights w2, w2′ and we keep the w1, w1′ frozen,

hence we call this approach SAE with Layer Freeze. So we only want to train the newly added

hidden layer by allowing the corresponding weight matrices to change. In other words, we do not

want to change the learning of first hidden layer and we accomplish this by freezing the weight

matrices w1, w1′. In contrast, we do not freeze the weights of the first hidden layer in SAE without

Layer Freeze approach. In this approach we train the extended network by changing the weight

matrices w1, w1′, associated with first hidden layer, and w2, w2′, associated with second hidden

layer. As we can see in SAE without Layer Freeze approach, the first hidden layer will loose some

of its learning which was learnt in first step. We need to repeat this process n times to pre-train our

network.

Both of our pre-training approaches are different from standard stacked autoencoder except

the first step. In standard stacked autoencoder, we pre-train n different autoencoders separately,

whereas in both of our approaches we extend an autoencoder by adding new hidden layers. In

standard stacked autoencoder, we use the output of a hidden layer to pre-train the next autoencoder,

but in both of our approaches we use the original input to pre-train the newly added hidden layers.
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3.3 Supervised Nonlinear Centroid-Encoder

Now we propose a new supervised learning algorithm. A modification to the autoencoder

neural network is being proposed to incorporate supervised learning. Like most of the supervised

learning, the label information will be used in training the model. As described above, a traditional

autoencoder maps each input x(i) to itself without considering the label information of each data

point. In the proposed algorithm, the supervised autoencoder maps each data point of a class to a

representative of that class while passing the data through two or three dimensions for visualization.

We take the representative Cj of Classj to be the centroid of the class:

Cj =
1

|Classj|

∑

xi∈Classj

xi

The rest of the training is similar to autoencoder: hence, this method can be viewed as a centroid-

encoder. The steps of this new method is described in Algorithm 1

Algorithm 1: Supervised Nonlinear Centroid-encoder.

Input Data: Data x(µ) ∈ R
m, µ = 1, . . . , P.

Output Data: Neural network output layer x̃(µ) ∈ R
m, µ = 1, . . . , P.

Non-linear function: f : Rm → R
m

Result: Nonlinear embedding of data in d dimensions (user selected).

Initialization: Set d and number of layers and nodes per layer. Set neural network

architecture including error tolerance τ . Calculate the centroid

Cj =
1

|Classj |

∑
xi∈Classj

x(i) for each class from input data.

Define: Centroid-encoder output error E =
∑

j

∑
xi∈Classj

‖f(xi)− Cj‖2

1 while centroid-encoder output error > τ do

2 Train centroid-encoder such that E ≤ τ where xµ ∈ Classj .

3 end
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Chapter 4

Data Description

In this chapter we present the descriptions of different datasets which are used in different

experiments.

4.1 MNIST dataset

The MNIST (Mixed/Modified National Institute of Standards and Technology) database is a

collection of images of handwritten digits (0 .. 9). This is a standard dataset to train and test

machine learning algorithm. This dataset is originally created from larger sets available in NIST

(National Institute of Standards and Technology) dataset. There are a total of 60,000 training

samples and 10,000 test samples in this dataset. Samples are the black and white image of the

digits 0 to 9 and these images are normalized to fit into a 28 x 28 bounding box. Therefore each

image in this dataset is represented by a collection of 28 x 28 = 784 pixels where the values in each

pixel represents the intensity in gray scale.

The training set contains ten different classes (digits) of data. The distribution of digits from

different classes is almost equal. In the training set we have 5923 digits of class 0, 6742 digits of

class 1, 5958 digits of class 2, 6131 digits of class 3, 5842 digits of class 4, 5421 digits of class 5,

5918 digits of class 6, 6265 digits of class 7, 5851 digits of class 8 and 5949 digits of class 9. The

distribution of ten different classes in test data is almost equal. In the test set we have 980 digits

of class 0, 1135 digits of class 1, 1032 digits of class 2, 1010 digits of class 3, 982 digits of class

4, 892 digits of class 5, 958 digits of class 6, 1028 digits of class 7, 974 digits of class 8 and 1009

digits of class 9.

The MNIST dataset is originally created by taking handwritten samples from NIST’s Special

Dataset 3 and Special Dataset 1. The SD-1 contains 58,527 digits which are collected from 500

different writers and the data is collected around 1992. NIST collected this data from high school

students. In contrast the SD-3 data was collected from the employees of Census Bureau. NIST
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originally released SD-3 data as training set and SD-1 data as test set. The samples from SD-3 set

is much clearer that the samples from SD-1. One reason could be the difference of participants

in those two datasets. Therefore the performance (classification rate) of any machine learning

algorithm will depend on the choice of training and test set. Hence it is required to create a new

dataset by mixing the samples from SD-1 and SD-3 set.

The MNIST training set is comprised of 30,000 samples from SD-1 and 30,000 samples from

SD-3. The test set is composed of 5,000 samples from SD-1 and 5,000 samples from SD-3. The

writers of training and test set are disjoint. The original pixel values of MNIST data is in the range

0..255. These values were divided by 255 to fit in the range 0..1. This is a standard practice in

Machine Learning to work with image dataset. Samples of MNIST data are shown in Figure 4.1.

Over the years many machine learning methods have been applied on this dataset. In many cases

the training set, which has 60,000 samples, has been distorted artificially (random combinations

of shifts, scaling, skewing etc) to improve the performance. In this thesis we do not apply any

distortion of the on the training data.

Figure 4.1: Samples of MNIST dataset
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4.2 Microarray gene expression data of crab-eating macaque

Technological advancements over the last decade have shown a tremendous improvement of

acquisition of biological datasets. Among the many techniques, DNA microarrays has emerged

as a new technology that allows to measure thousands of genes simultaneously. This technology,

known as DNA microarrays or DNA chips, helps to measure the mRNA levels in particular cells or

tissues for many genes at once. Essentially, a microarray is made up with multiple DNA spots on

a solid surface. Each of these spot is capable of estimating expression level of a gene. Generally,

a microarray is composed with thousands of DNA spots, hence by a microarray experiment one

can measure multiple genes at once. This technology, emerged in late 90s, helps to measure gene

expression at a higher temporal resolution, enables us to make discoveries related to human and

animal diseases. In our research we have analyzed such a microarray dataset which contains the

host immune response (gene expressions), taken from the blood samples of crab eating macaques,

in response to infection to Ebola Virus.

The second dataset that has been explored is provided by Rubins et al. [18]. In this study

fifteen macaques are used. Peripheral blood mononuclear cells (PBMCs) are collected from crab

eating macaques infected with ZEBOV (Zaire ebolavirus). Subjects are killed on days 1, 2, 3,

4, 5 and 6 after infection to collect the peripheral blood samples which we consider as infected

samples. Blood samples are also taken on days 1, 4, 6 before infection which we consider as

baseline (pre-bleed samples). After collecting the PBMCs, microarray analysis was done to get

the gene expression and then the gene expressions are assembled in pathways. For this study gene

expression is measured from 18,000 unique genes. A pathway is a collection of genes that work

together towards a common goal. There are 1469 genetic pathways in the Macaque dataset. We

considered the T Cell Receptor Signaling pathway for our study as this is a key pathway for early

warning. This pathway has 96 genes, so the ambient space is R
96. We studied the pre-infection

data (pre-bleed samples) and post-infection data where we considered only three time points (day

1 to day 3) in post-infection. There are thirty control samples in total. Beside that we have seven

samples from day one, twelve samples from day two and seven samples from day three. By sample

16



we mean expression of a genetic pathway of a subject at a particular time point. So from a subject

we may have multiple samples. For our study we used 80% of total data in training and the

remaining 20% in testing. More information on data can be found in [18].

4.3 EEG Mental Task dataset

EEG (Electroencephalogram) is the electrical activity of brain. In the year of 1928 the German

psychiatrist Hans Berger was the first to record EEG signal. Ever since its discovery EEG has been

used to diagnose many medical conditions like epilepsy, identify the location of a suspected brain

tumor, or a disease in the brain such as Parkinson’s disease. EEG has been used heavily to build

BCI (Brain Computer Interface) systems.

Collection of EEG data is done in two different ways: invasive and non-invasive. In invasive

EEG recording, electrodes are implanted inside the brain of a subject. This technique typically re-

quires surgery and it is costlier. On the other hand, non-invasive EEG recording is obtained through

electrodes attached to the scalp surface by an EEG cap. This technique is cheaper than the other

one. Depending upon the nature of the study, one has to decide the type of EEG recording. Al-

though the invasive technique is costlier, this allows the collection of EEG signal with considerably

higher amplitude and spatial resolution. Because this technique allows the electrodes to be placed

much closer to the brain than the scalp electrodes, the EEG recording will be more clearer and less

noisy. On the other hand, the non-invasive EEG technique allows us to collect data with less cost.

Because non-invasive EEG systems are portable, it allows us to collect data from different places

which gives one a better reach to a variety of subjects. In non-invasive technique the electrodes are

attached to the scalp surface via an EEG cap. The position of electrodes is determined by the type

of study. Figure 4.2 shows the positions of electrodes / channels in an EEG cap. In this research

we have collected EEG signals from the electrodes F3, F4, C3, C4, P3, P4, O1 and O2.

In this thesis EEG signals for different mental tasks have been analyzed. The EEG data has

been recorded in the BCI lab of Colorado State University. The EEG signal was captured by g.Tec

system which has the 8 electrode on the cap. The sampling frequency is 256 Hz. We have four
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Figure 4.2: EEG cap showing position of different electrodes..

different mental tasks: visual task, counting task, fist movement task and singing task. To collect

mental task data subjects are asked to imagine four different mental task one after another with a

little gap in between. In the visual task the participant has been asked to imagine a rubric cube, in

the counting task the participant has been asked to count from 100 to 1 mentally, in fist movement

task the participant has been asked to imagine moving his/her fist and in the singing mental task

the participant has been asked to remember a favorite song in his/her mind. It is noteworthy to

mention that in none these mental tasks the participants do the task physically, rather they have

just imagined the task being performed in their mind. For each mental task, we have collected

10 seconds of continuous EEG data and we have collected the data in five different trials. As we

have four different mental tasks so we have collected 40 seconds of EEG data in each trial. So in

five trials, we have collected 200 seconds of EEG data. To be more precise we have collected 50

seconds of EEG data for each mental task. Sample of EEG signal is shown in Figure 4.3.
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Figure 4.3: EEG data recorded from scalp electrodes at eight standard positions labeled F3, F4, C3, C4, P3,

P4, O1 and O2.
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Chapter 5

Results

In this chapter we will discuss the details of our experiments and the corresponding results.

Our experiments fall into three categories. In the first category of experiments we will focus on

the proposed pre-training. We will demonstrate the performance of the proposed pre-training with

respect to the standard practice. The experiments in the second category explore the effectiveness

of centroid-encoder for low dimensional data visualization. We will compare our low dimensional

visualization with PCA and autoencoder. In the third category we will describe classification using

centroid-encoder, focusing on how centroid-encoder can be used as a pre-training step. Again we

compare our result with autoencoder and standard neural network.

5.1 Experiments with proposed pre-training

Now we describe the experimental setup and associated results on the proposed pre-training.

We use the MNIST hand written digit dataset for these experiments.

5.1.1 Experiments

The objective of this experiment is to compare the performance of our proposed pre-training

algorithms with stacked autoencoder. To make the comparison fair, we keep the network archi-

tecture fixed in all three algorithms. Our network architecture is comprised of four hidden layers

where the first layer has 1000 hidden units, the second layer has 500 hidden units, the third layer

has 250 hidden units and the fourth layer has 30 hidden units. This structure will be denoted as

[1000 -> 500 -> 250 -> 30].

In stacked autoencoder, we pre-train four different autoencoders. First we train 784 -> [1000]

-> 784 where the input layer has 784 units, the hidden layer has 1000 units and the output layer

has 784 units. We then take the output of the hidden layer and pass it to the next autoencoder 1000

-> [500] -> 1000. This way we train the next two autoencoders: 500 -> [250] -> 500 and 250 ->
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[30] -> 250. After the pre-training, we stack together all the four autoencoders to form the deep

autoencoder (784 -> [1000 -> 500 -> 250 -> 30 -> 250 -> 500 -> 1000] -> 784) which is then

post-trained for fine tuning. Figure 5.1 illustrates this process.

Figure 5.1: Layer wise pre-training with standard stacked autoencoder. Four different autoencoders are pre-

trained as shown in the left diagram. After the pre-training, all the four autoencoders are stacked together to

form a deep autoencoder architecture as shown in right diagram.

We pre-train the autoencoder with our proposed methods in four steps as shown in Figure

5.2. The first step is essentially the same with the stacked autoencoder when we pre-train the

autoencoder 784 -> [1000] -> 784. In the second step we add the next hidden layer which has 500

hidden units and pre-train the autoencoder 784 -> [1000 -> 500 -> 1000] -> 784 by reconstructing

the input using error backpropagation. When we pre-train with layer freeze method, we do not

update the weights associated with the hidden layer which we have added in step one. We only

update the weights associated with the newly added hidden layer. Therefore in the SAE with

Layer Freeze method, we do not change the weights connecting layers 784 -> 1000 and 1000 ->
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784; we only update the weights connecting layers 1000 -> 500 and 500 -> 1000. But in SAE

without Layer Freeze method we do not freeze weights associated with any layer, we update all

the weights. Therefore in SAE without Layer Freeze we update the weights connecting all the

layers: 784 -> 1000, 1000 -> 500, 500 -> 1000 and 1000 -> 784.

Figure 5.2: Layer wise pre-training with proposed stacked autoencoder. In the first step an autoencoder

with 1000 hidden units is trained. The next hidden layer with 500 units, is added by extending the network

architecture of the autoencoder. In the SAE with Layer Freeze method, weights associated with the newly

added hidden layer (second one) are updated, whereas in the SAE without Layer Freeze method all the

weights in the network are updated together. Similarly this process is repeated to add the next two hidden

layers as shown in the figure.

In all of the hidden units we use hyperbolic tangent (tanh) as the activation function which is

defined in Equation 5.1. This is a commonly used activation function which keeps the output value

between -1 to +1.

f(x) = tanh(x) =
ex − e−x

ex + e−x
(5.1)
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For error backpropagation we use the Scaled Conjugate Gradient Descent (SCG) algorithm [19]

in both pre-training and post-training.

We use mean square error (MSE) as the error function which is described in Equation 5.2.

MSE =
1

n

n∑

i=1

(Ȳi − Yi)
2

(5.2)

where n is the total number of samples, Yi is the ith observed sample and the Ȳi is the ith predicted

sample. MSE is calculated on the test data after the post training for each methods.

In the pre-training, we determine the optimum number of SCG iterations by a statistical mea-

sure called Coefficient of Variation (Cv) which is defined as below:

Cv =
σ

µ

where σ represents the standard deviation and µ represents the mean. For a given list of numbers

Cv tells us the amount of variability relative to the mean. During pre-training of each hidden layer,

we calculate MSE on the training data of five consecutive iterations to calculate Cv. We stop the

pre-training when this value reaches a value of of 0.1.

We use early stopping to find out the optimal number of training iterations during post-training.

We calculate validation error (MSE) of twenty consecutive iterations. If the mean of the last ten

validation error is greater than the mean of first ten then we stop the post training. Among the

twenty consecutive iterations we pick the one which gives minimum validation error to select best

parameters (weights and biases).

We use MNIST hand written digit dataset for this experiment because this dataset has been used

very extensively in the research of deep learning. This dataset has 60,000 training samples and

10,000 test samples. As it is quite time consuming to train a deep autoencoder on this dataset, we

divide the data into small subsets and run our experiments on these small subsets. From the original

training dataset we form ten disjoint subsets which we refer as data chunks. Each data chunk

contains 6000 samples drawn randomly without replacement from the original MNIST training
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set. We also make sure to keep equal number of samples from each class in a data chunk. As

MNIST dataset has ten different classes, we pick 600 random samples for each class. We use

half of the data in a data chunk as a training set and the rest as a validation set which we use for

early-stopping as a regularization step in post-training. Both the training and the validation set

contain equal number of samples (300) from each class. In the first set of experiments, we run

three different pre-training algorithms ten times on a single data chunk and report the average error

(MSE) on the test set. In the second set of experiments, we run all the three pre-training algorithm

on all ten different data chunks only one time and we calculate the average error (MSE) on the test

set.

5.1.2 Results

In the first set of experiments we run three algorithms on the same data. By data we mean a data

chunk which is defined in the previous section. We calculate the mean squared error (MSE) after

pre-training and post-training on training data as well as on test data. Table 5.1 and Table 5.2 give

the details of the error statistics of our proposed pre-training algorithms, whereas Table 5.3 gives

the error statistics of the standard stacked autoencoder algorithm. We see that after pre-training

the mean MSE on test data is the lowest for SAE with Layer Freeze algorithm, whereas the mean

MSE on test data after pre-training is the highest for standard stacked autoencoder. If we consider

the post-training error we observe that SAE with Layer Freeze has the best result with mean MSE

at 16.58, whereas SAE without Layer Freeze and standard SAE algorithms performed poorly. It is

noteworthy to mention that mean MSE of these two methods are very similar.
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Table 5.1: Error statistics for SAE with Layer Freeze over multiple runs

Pre Training Post Training

Run Training Data Test Data Training Data Test Data

1 24.07 25.12 8.51 16.39

2 24.89 25.90 7.72 16.19

3 24.71 25.76 7.93 16.08

4 24.99 26.02 17.87 20.29

5 25.03 25.89 8.24 15.93

6 25.64 26.44 8.34 16.33

7 25.37 26.30 7.96 16.17

8 24.70 25.77 8.39 16.31

9 26.37 27.15 8.08 15.98

10 25.27 26.21 8.70 16.17

Mean 25.10 26.06 9.17 16.58

Table 5.2: Error statistics for SAE without Layer Freeze over multiple runs

Pre Training Post Training

Run Training Data Test Data Training Data Test Data

1 27.04 27.99 18.07 19.80

2 26.36 27.19 18.43 20.21

3 43.49 43.52 18.12 19.82

4 29.31 29.90 18.02 19.88

5 43.70 43.93 18.48 19.93

6 28.84 29.57 17.97 19.72

7 29.52 29.90 18.17 19.61

8 31.59 32.31 18.14 19.82

9 29.10 29.84 18.07 19.79

10 29.45 30.31 18.32 20.14

Mean 31.84 32.45 18.18 19.87

Now we discuss the performance of these algorithms on multiple data chunks. In this set of

experiments we have run all three algorithms on each of those ten data chunks only once and then

we have calculated the average MSE. Table 5.4 lists the MSE after pre-training and post-training

on ten different data chunks for the algorithm SAE with Layer Freeze. Table 5.5 and 5.6 show the

similar error statistics for the algorithm SAE without Layer Freeze and Standard SAE respectively.

The MSE on each different data chunk is considerably lower for the algorithm SAE with Layer

Freeze compared to the other two. This observation is consistent in both pre-training as well as
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Table 5.3: Error statistics for Standard SAE over multiple runs

Pre Training Post Training

Run Training Data Test Data Training Data Test Data

1 39.44 39.69 17.82 20.15

2 38.67 39.23 18.15 20.27

3 38.80 39.12 8.73 17.05

4 39.30 39.43 18.43 20.53

5 40.86 41.01 18.37 20.52

6 40.41 40.62 7.94 16.55

7 39.50 39.91 18.24 20.32

8 39.24 39.76 18.25 20.23

9 40.54 40.63 18.00 20.15

10 40.74 41.17 18.0114 20.1476

Mean 39.75 40.06 16.19 19.59

post-training. The mean MSE after post training on test data is 16.70 for the algorithm SAE with

Layer Freeze. This number is considerably lower than 19.66 and 19.53 which are the corresponding

mean MSE for algorithms SAE without Layer Freeze and Standard SAE. In terms of error after

post training, algorithms SAE without Layer Freeze and Standard SAE have a similarly result.

Table 5.4: Error statistics for SAE with Layer Freeze over multiple data chunks

Pre Training Post Training

Data Chunk Training Data Test Data Training Data Test Data

1 25.42 26.34 10.94 17.25

2 25.55 26.29 8.69 16.39

3 26.22 26.77 11.00 17.34

4 25.71 26.15 9.16 16.45

5 25.42 25.86 10.20 16.41

6 26.01 26.75 9.05 16.52

7 25.67 26.42 10.19 16.75

8 25.49 25.86 12.54 17.72

9 25.61 26.35 8.36 16.01

10 25.86 26.09 8.89 16.19

Mean 25.70 26.29 9.90 16.70
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Table 5.5: Error statistics for SAE without Layer Freeze over multiple data chunks

Pre Training Post Training

Data Chunk Training Data Test Data Training Data Test Data

1 33.23 33.65 18.30 19.80

2 32.82 33.36 18.08 19.71

3 32.72 32.63 18.13 19.66

4 34.45 34.63 18.49 19.56

5 31.18 31.39 18.19 19.63

6 36.39 36.98 18.27 19.71

7 32.13 32.83 18.14 19.72

8 35.67 35.55 18.17 19.50

9 33.00 33.58 18.42 19.70

10 35.69 35.91 18.58 19.63

Mean 33.73 34.05 18.28 19.66

Table 5.6: Error statistics for Standard SAE over multiple data chunks

Pre Training Post Training

Data Chunk Training Data Test Data Training Data Test Data

1 39.70 40.12 17.92 20.22

2 40.24 40.36 18.27 20.28

3 40.11 39.56 17.31 19.84

4 39.83 40.15 17.43 19.66

5 40.11 39.43 17.43 19.84

6 39.56 40.00 13.65 18.39

7 39.55 40.34 17.43 19.78

8 40.64 40.51 15.52 19.00

9 39.83 40.44 17.40 19.81

10 39.76 39.72 13.76 18.47

Mean 39.93 40.06 16.61 19.53

We have also plotted the change of error (MSE) over iterations during the post training. Figure

5.3 compares the decrease in error for the three methods. In this experiment we have used the entire

MNIST training dataset and we have run all the algorithms for 2500 iterations. At the early phase

of the post training, the decrease of error for SAE with Layer Freeze method is more compared

to the other two. At the later phase of training the proposed methods (SAE with Layer Freeze

and SAE without Layer Freeze) show the similar performance in terms of decrease in error. On the

other hand, the decrease of error in standard stacked autoencoder is slow compared to our proposed
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Figure 5.3: Post Training Error over SCG Iteration

algorithms. From this observation we can say our proposed algorithms have initialized the weights

and biases close to the optimal value compared to standard stacked autoencoder. Among our

proposed algorithms SAE with Layer Freeze has found a better initial condition than SAE without

Layer Freeze.

5.2 Dimensionality Reduction using centroid-encoding

Dimensionality reduction is one of the key aspects of Machine Learning. It is especially useful

to visualize high dimensional data in two/three dimensional space. In this section we describe the

details of our experiments and the visualization using our proposed algorithm, centroid-encoding.

We also discuss the effectiveness of our algorithm with respect to PCA and autoencoder. We use

all three datasets to compare the algorithms.
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5.2.1 Experiments

The purpose of this experiment is to compare the low dimensional encoding of high dimen-

sional data using the methods autoencoder and centroid-encoder. The algorithm for centroid-

encoder is defined in Chapter 3. We use three different datasets: gene expression data of Crab

eating Macaque, MNIST handwritten digit data and EEG metal task data.

MNIST is a hand written digit dataset which contains all the digits 0..9. Each of the hand

written digit is 28 x 28 image. Thus the ambient space of each data point is X i ∈ R
784. We

have projected the MNIST data on a 2D plane using centroid-encoder and autoencoder. The two

dimensional visualization is formed by the output of the bottleneck layer using the architecture

784− > [500− > 250− > 125− > 2− > 125− > 250− > 500]− > 784. We randomly select

50,000 samples from the original training set to train the autoencoder and centroid-encoder. We

show the 2D projection of training data and test data for both methods.

The Macaque dataset has 1469 number of biological pathways. We picked the T-cell Receptor

Signaling pathway for our study because this is one of the top pathways which show early biolog-

ical signal in the presence of Ebola virus. This pathway has 96 genes, so the ambient space is R96.

We projected the data on 3 dimensional space using PCA, autoencoder and centroid-encoder. In

the case of PCA, we have projected the data on the first three principal components. We have used

a three layer bottleneck architecture 96− > [25− > 3− > 25]− > 96 to project the data on 3D

space using autoencoder and centroid-encoder. The data is comprised of four classes: pre-bleed

(before inoculation), infection after day one, day two and day three. The pre-bleed class has 30

samples, the sick day one class has seven samples, the sick day two class has twelve samples and

the sick day three class has seven samples. As centroid-encoder is a supervised algorithm, we split

the data into training and test set. We have used 80% of total samples from each class to train the

model and the rest to project on the trained model. In contrast, we have not sequestered a test set

for PCA and autoencoder because they are both unsupervised algorithms.

We have also applied centroid-encoding method on the EEG mental task data. Our aim is to

understand the spatio-temporal relationship among four different mental tasks by visualizing them
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in low dimensional projection. We also want to compare the visualization between autoencoder and

centroid-encoder. The EEG data is collected for four different mental tasks: visual task, counting

task, fist movement task and singing task. The data is collected from an EEG cap which has eight

channels. For each mental task, we have collected 10 seconds of continuous EEG data in each trial

and we have collected the data in five different trials. As we have four different mental tasks so

we have collected 40 seconds of EEG data in each trial. So in five trials, we have collected 200

seconds of EEG data. To be more precise we have collected 50 seconds of EEG data for each

mental task. As the sampling frequency of our EEG device is 256 Hz, we have (256 x 50) samples

from each electrode / channel for a given mental task. If we consider all the eight electrodes, we

have (256 x 50 x 8) samples for a given mental task. For this experiment we have stacked a quarter

of a second data (64 time points) from each channel to constitute a data point. Therefore each data

point is a vector of 64 x 8 = 512 elements. So the ambient space of each data point X i ∈ R
512.

As autoencoder is an unsupervised algorithm, we have used all the five trials to constitute the

training set. As mentioned earlier, we have 50 seconds of EEG data for each mental task and

(256 x 50) samples from each channel, therefore we have (256 x 50 / 64) = 200 data points to

train autoencoder. On the other hand, we have sequestered a test set for centroid-encoder as it is

a supervised algorithm. We have used the EEG data from first four trials to train centroid-encoder

and the data from the fifth trial to test it. Hence, we have (256 x 40 / 64) = 160 points in training

set and (256 x 10 / 64) = 40 points in test set. We then we project the data on 3 dimensional space

using autoencoder and centroid-encoder. We have used different network architecture to see how

the embedding changes.

5.2.2 Results

First we discuss the dimensionality reduction on MNIST data. Figure 5.4 and Figure 5.5 show

the two dimensional embedding of MNIST data using centroid-encoder and autoencoder, respec-

tively. We have added the two dimensional visualization of training data as well as test data. As

centroid-encoder is a supervised learning algorithm we like to consider the embedding on the test
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Figure 5.4: A two dimensional embedding of 500 digits of each class of MNIST data using a 784-500-250-

125-2 centroid-encoder.

data as well. MNIST comprises with handwritten from digit 0..9. These digits have both similari-

ties and dissimilarities among them. It is quite natural to expect that the digits which are similar to

each other will be embedded more closely in the 2D plane. For example, digits 4 and 9 have many

similarities whereas digits 1 and 0 are completely dissimilar. So in the 2D plane we can expect

digits 4 and 9 will be embedded more closely than digits 0 and 1. Now let’s look at Figure 5.4.

On the left side we have the training data and on the right side we have the test data. There are

ten different classes, so ideally one should see 10 different clusters. One could easily figure out

7 different clusters without looking at the colors. The 0s and 1s are put far apart. Similarly the

7s and 0s are also put far apart. On the other hand digit 9 and digit 4 are close in the embedding

plane. So far the embedding of digits 0, 1, 7, 4 and 9 makes sense. Now if we look at the projection

of the digits 8, 5 and 3 on 2D plane, we observe that they are close to each other; although these

three digits have similarities in them. It is also possible that the human hand writing of three digits

are very similar. From this observation we can say that the algorithm probably have given high

importance on this common feature to embed the digits 8, 5 and 3.

Now we look into the embedding of autoencoder. As autoencoder is an unsupervised method,

it does not matter which data we are looking at. The separation between the digits 1 and 0 is very
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Figure 5.5: A two dimensional embedding of 500 digits of each class of MNIST data using a 784-500-250-

125-2 autoencoder.

clear. Digit 7s are also clustered away from digit 0s. But the difference of rest of the digits in 2D

plane is not clearly visible without the help of color annotation. If we go by the color annotation

of different digits we can find structure in the clustering. For example digit 8 is close to digit 6; but

digit 4 and digit 9 are completely overlapped to each other. Beside this there is no visual separation

in the grouping of the digits 9, 6, 5, 4, etc.

If we compare the embedding of these algorithms, It is clear that centroid-encoder reveals

more structured information than autoencoder. This is what one would expect. As the centroids of

each class are different from each other in the ambient space, encoding the centroids would likely

capture structured information in low dimensional space as well. This is exactly what we see in

Figure 5.4. We can also observe that centroid-encoder groups samples of a class more compactly

than autoencoder. We can also discover the fact that centroid-encoder puts the clusters of dissimilar

objects far apart compared to autoencoder. The clusters of digits 1 and 0 clearly reveal this fact.

This is also visible from the digits 7 and 0.
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Now we discuss the 3 dimensional embedding of Macaque data using PCA, autoencoder and

centroid-encoder. Figure 5.6 and Figure 5.7 show the 3 dimensional visualization of T Cell Recep-

tor Signaling pathway from Macaque dataset using the methods PCA and autoencoder respectively.

Figure 5.6: A three dimensional embedding of T Cell Receptor Signaling pathway using PCA.

Clearly these projections do not revealing any structured information about the data. The pre-

bleed subjects (healthy ones) are mixed with the rest of the sick subjects. These plots do not show

any temporal pattern among the sick subjects with respect to the pre-bleed subjects. In contrast, the

3 dimensional visualisation in Figure 5.8 using centroid-encoder reveals more structured informa-

tion about the disease progression in Macaque over time. In most cases the test samples are close

to training samples. Compared to day one, training and test samples on day two are further away

from healthy. On day three the test subjects are clumped together completely with training sub-

jects. This is because the infection gets worse as the day progresses which reveals a biological fact.

This finding is consistent with the results of Rubins et al. [18] who found that the gene expression

of this pathway changes (higher or lower) as the day progresses compared to the baseline values.

33



Figure 5.7: A three dimensional embedding of T cell receptor signaling pathway using autoencoder.

Figure 5.8: A three dimensional embedding of T Cell Receptor Signaling pathway using the supervised

centroid-encoder.

In our case, the drifting of sick subjects from the healthy ones over time tells that the difference of

gene expression between healthy macaque and sick macaque increases over time.
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Now we discuss dimensionality reduction on the EEG data. Figure 5.9 and Figure 5.10 show

the three dimensional embedding of EEG mental task data using standard autoencoder. We used

two different hidden layer structures to capture the low dimensional relationship among the mental

tasks.

Figure 5.9: A 3 dimensional embedding of EEG mental task data using autoencoder. The data is passed

through the network 512->[3,3,3,3,3]->512. Output of the 3rd hidden layer has been plotted in 3D space.

It is clear from these two plots that autoencoder is unable to show any correlation among the

four different mental tasks in low dimension. But it is noteworthy that autoencoder does reveal

a global pattern. Form these plots one can say that EEG mental task data may reside in a low

dimensional manifold (circle/sphere).

In contrast the centroid-encoder does capture the correlation between the mental tasks in three

dimensional space. In Figure 5.11 we used five hidden layers where each of them contains three

hidden units. From this plot one can easily see that the singing metal task is different from the rest.

The overlap between the visual and the count task suggests a strong correlation between them. We

can’t say too much about the fist movement task as some of the points of this task are close to both
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Figure 5.10: A 3 dimensional embedding of EEG mental task data using autoencoder. The data is passed

through the network 512->[10,3,3,3,10]->512. Output of the 3rd hidden layer has been plotted in 3D space.

visual and count task, which are close to singing task. This pattern is consistent in train data as

well as test data.

If we look at the Figure 5.12, we observe similar pattern on the singing task, visual task and

count task that we have seen in Figure 5.11. In this case we use five hidden layers where the first

and fifth ones have ten hidden units and rest of them have three hidden units each. This network

configuration is able to separate the different mental tasks better compared to the previous one

(Figure 5.11). One can see the clustering of fist movement task in training data as well as in test

data.

In Figure 5.13 we have used five hidden layers where the first and fifth ones have five hidden

units each and rest of them have three hidden units each. Qualitatively this figure is quite similar

to Figure 5.11. We see that the singing task clustered separately from the rest; the visual and count

task stay very close to each other.

We like to remark on the variability of these 2D / 3D plots on different initial conditions.

As the optimization problem of neural network is non-convex, the solution will differ based on
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Figure 5.11: A 3 dimensional embedding of EEG mental task data using centroid-encoder. The data is

passed through the network 512->[3,3,3,3,3]->512. Output of the 3rd hidden layer has been plotted in 3D

space.

different initial conditions. To overcome this problem one can run the algorithms (autoencoder

and centroid-encoder) multiple times and pick the solution which gave minimum training error.

We have also analyzed the low dimensional visualization of different mental tasks by plotting

the activity across different EEG channels. Figure 5.14 shows the topographic plot of the variance

of the electrical activity across eight different EEG channels. First we picked a specific point

for each task from the bottleneck layer (3D space) generated by centroid-encoder. For example

we picked four points each from a task from the 3D space of Figure 5.12. Once the points are

fixed in the 3D space, we capture the output of the centroid-encoder for each of those points. The

high dimensional (R512) representation of each sample is then converted to signal across eight

channels where each channel has 64 time samples. Now we calculate the variance of each channel

to generate the topographic plot. For the counting task we see high variance in the channels ’F3’,

’F4’ and ’P4’. There is moderate variance in the channels ’C3’, ’C4’, ’O1’ and ’O2’. The fist
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Figure 5.12: A 3 dimensional embedding of EEG mental task data using centroid-encoder. The data is

passed through the network 512->[10,3,3,3,10]->512. Output of the 3rd hidden layer has been plotted in 3D

space.

Figure 5.13: A 3 dimensional embedding of EEG mental task data using centroid-encoder. The data is

passed through the network 512->[5,3,3,3,5]->512. Output of the 3rd hidden layer has been plotted in 3D

space.
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(a) Counting task (b) Fist movement task

(c) Singing task (d) Visual task

Figure 5.14: Variation of EEG scalp signal across different mental tasks

movement task shows very similar characteristics to the counting task. This is quite evident from

the topographic plot of these two tasks. The similarity among these tasks suggests that for this

subject brain activity was similar for these two tasks. In contrast to these tasks, singing and visual

tasks have considerable differences among them. The singing task shows high variance in the

channels ’F3’ and ’P4’ and moderate variance in channels ’O2’ and ’F4’. In contrast to this, the

visual task shows very high variance in the channels ’F3’, ’F4’ and ’O2’. We also observe that the

’F3’ channel has high variance across all the tasks. At the same time we would like to mention the

variability in the visual task. We noticed that sometimes the channel ’P4’ has moderate variance
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and at the same time channel ’O2’ has low variance. This could be a signature of the visual task

but more analysis needs to be done to understand this better.

5.3 Classification using Centroid-encoding

In this section we illustrate the classification task using centroid-encoding. We focus on how

centroid-encoder can be used as a pre-training step. We compare our results with autoencoder and

standard neural network on multiple architecture.

5.3.1 Experiments

For classification task centroid-encoding can be viewed as a pre-training step. In this step a

sample from a class is mapped to its corresponding centroid through the hidden layers. As each

class of a dataset is different from each other so the corresponding centroids will be different too.

When the model maps each sample to its centroid it automatically learns the difference among the

classes. Hence conceptually, pre-training a neural network model with centroid-encoding may be

beneficial. The steps of classification are mentioned in Algorithm 2

Algorithm 2: Classification with Centroid-encoder.

Step1: Calculate the centroid of each training class.

Step2: Pick a network architecture(input layer,hidden layers, output layer).

Step3: Train the centroid-encoder as mentioned in the algorithm 1.

Step4: Replace the output layer of centroid-encoder by a softmax classification layer.

Step5: Train the classification layer while keeping the weights of the rest of the network

fixed.

Step6: Fine tune the network.

In this experiment our goal is to train centroid-encoder classifier using a single hidden layer and

measure the classification accuracy on test data. From the original MNIST dataset 50,000 samples

are drawn randomly to train our models. The rest 10,000 samples are used as validation set. The

validation set is used to find the optimal network architecture, optimal number of training iteration

etc. We have used the original MNIST test set which has 10,000 samples to test our models. We
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also standardize the data. We used five different bottleneck architectures as mentioned below:

28 x 28 ->[500 -> x -> 500]-> 28 x 28 where x ∈ {3, 10, 20, 40, 80}. The bottleneck architectures

are used to pre-train autoencoder and centroid-encoder. After the pre-training a softmax layer is

added for classification. The softmax layer takes the values from the bottleneck layer and maps

them to the corresponding class values as shown: [x] -> 10 where x ∈ {3, 10, 20, 40, 80} and 10

is the number of classes. This process is followed by a fine tuning/post-training after combining

the pre-trained network with softmax layer. The structure of the fine tuning network is: 28 x 28

->[500 -> x ]-> 10 where x ∈ {3, 10, 20, 40, 80}. In contrast we do not use any pre-training step

for standard neural network. We directly train the fine tuning network to do classification. We

have used Scaled Conjugate Gradient method in error backpropagation. We have also employed

early stopping as a regularization technique to prevent our models from over fitting. We repeat the

experiment three times for each method.

5.3.2 Results

Result of this experiment are in Tables 5.7, 5.8, 5.9, 5.10 and 5.11. While analyzing these

results we want to focus on the following aspects:

• Whether centroid-encoder is a better pre-training step than autoencoder.

• How does the classification accuracy change over the change of hidden units in bottleneck

layer.

To analyze performance of pre-training of centroid-encoder and autoencoder we need to look

into the classification accuracy of softmax layer in autoencoder and centroid-encoder. We used

five different bottleneck architectures. Table 5.7 shows the classification accuracy when the bot-

tleneck layer has only 3 hidden nodes. The classification accuracy on test data after pre-training

for autoencoder is 59.92% which is quite low compared to centroid-encoder. Test accuracy of

centroid-encoder is 95.68%. We also see that centroid-encoder outperforms autoencoder in train-

ing and validation set as well.
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Now we discuss the results, which is in Table 5.8, for the second architecture where we have

10 hidden units in bottleneck layer. We see that this architecture helps to improve the performance

of autoencoder compared to the previous architecture. The accuracies on three different datasets

(training, validation and test) reaches around 81% which is a big jump from the previous results.

At the same time we see that centroid-encoder outperforms autoencoder in all the three datasets

(training, validation and test) for this architecture too; the accuracies reach around 97%.

As the number of hidden units increases in the bottleneck layer the accuracy after pre-training

keeps increasing for autoencoder. This is evident from Table 5.9 to Table 5.11. On the other hand,

centroid-encoder performs better than autoencoder in all of these five bottleneck configurations.

Now we consider the classification accuracies after the fine tuning; we observe that there is no

considerable difference between autoencoder and centroid-encoder. In fact when the bottleneck

layer has 80 hidden units classification accuracy is exactly the same which is 97.96%. We also

note that the classification accuracy for autoencoder improves a lot after fine tuning whereas for

centroid-encoder we do not see too much of an improvement after fine tuning. Therefore fine tun-

ing plays a significant role in autoencoder classification network as opposed to centroid-encoder.

From this observation we can say that pre-training with centroid-encoding puts the solution much

closer to an optimal one.

Now we will discuss the change of classification accuracy over the different size of bottleneck

layer. To emphasize this aspect we will consider accuracies of all the three models: autoencoder,

centroid-encoder and standard ANN. For autoencoder and centroid-encoder we will only consider

the accuracy after fine tuning. Recall that we have used five different architectures for classifica-

tions: 28 x 28 ->[500 -> x ]-> 10 where x ∈ {3, 10, 20, 40, 80}. Table 5.7 shows the classification

accuracies for the first architecture which is 28 x 28 ->[500 -> 3 ]-> 10. We see that, compared

to autoencoder and centroid-encoder, standard ANN has done very poorly. We think that standard

ANN has stuck in a local minima which has caused the results to be poor. Due to the narrow

bottleneck, the optimization function is unable to find a direction to come out of the local minima.

This type of behaviour is common in standard neural network, and this is why now a days people

42



are using very large deep architecture which is more likely to overcome the problem with local

minima since the optimization function can search from a large parameter space. In autoencoder

and centroid-encoder we have used a pre-training step with the architecture: 28 x 28 ->[500 ->

3 -> 500 ] -> 28 x 28. We think that this pre-training has helped to overcome the local minima

problem because the optimization algorithm can search from a larger parameter space compared

to standard ANN. As the number of hidden units increases in the bottleneck layer the performance

of standard ANN starts to increase which is evident from Table 5.8 to Table 5.11. We observe that

the accuracy is slightly higher for standard ANN compared to autoencoder and centroid-encoder

but this difference is not that significant.

Table 5.7: Comparison of classification accuracy among three models where the bottleneck layer has 3

hidden nodes.

Autoencoder Centroid-encoder Standard ANN

Softmax(%) Fine tuning(%) Softmax(%) Fine tuning(%) Accuracy(%)

Training 59.45 99.05 98.72 99.91 69.97

Validation 59.30 95.69 95.16 95.74 67.13

Test 59.92 95.95 95.68 95.68 67.35

Table 5.8: Comparison of classification accuracy among three models where the bottleneck layer has 10

hidden nodes.

Autoencoder Centroid-encoder Standard ANN

Softmax(%) Fine tuning(%) Softmax(%) Fine tuning(%) Accuracy(%)

Training 81.92 99.99 98.53 100 100

Validation 81.13 97.08 97.00 97.56 97.97

Test 82.40 97.17 97.18 97.72 97.87
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Table 5.9: Comparison of classification accuracy among three models where the bottleneck layer has 20

hidden nodes.

Autoencoder Centroid-encoder Standard ANN

Softmax(%) Fine tuning(%) Softmax(%) Fine tuning(%) Accuracy(%)

Training 87.78 100 99.34 100 100

Validation 87.47 97.48 97.46 97.79 98

Test 88.16 97.52 97.52 97.78 98.13

Table 5.10: Comparison of classification accuracy among three models where the bottleneck layer has 40

hidden nodes.

Autoencoder Centroid-encoder Standard ANN

Softmax(%) Fine tuning(%) Softmax(%) Fine tuning(%) Accuracy(%)

Training 90.38 100 99.31 100 100

Validation 89.62 97.42 97.25 97.79 98.23

Test 90.72 97.38 97.58 97.98 98.25

Table 5.11: Comparison of classification accuracy among three models where the bottleneck layer has 80

hidden nodes.

Autoencoder Centroid-encoder Standard ANN

Softmax(%) Fine tuning(%) Softmax(%) Fine tuning(%) Accuracy(%)

Training 92.07 100 99.24 100 100

Validation 91.18 97.90 96.97 97.80 98.26

Test 91.95 97.96 97.25 97.96 98.24
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Chapter 6

Conclusions and Future Work

In this chapter we will present our conclusion on our proposed methods based on the results of

the experiments we have done. We will also propose some of the future direction on our work.

6.1 Pre-training

In this research we have proposed two variations in layer wise pre-training. The results of our

experiments show that pre-training with layer-freeze has performed better compared to pre-training

without layer-freeze and standard stacked autoencoder. The performance of standard stacked au-

toencoder and pre-training without layer freeze is very similar. In Section 3.1 we have explained

how standard stacked autoencoder adds noise in the model. We have hypothesized that if we re-

construct the original input while adding new layers we might be able to reduce the effect of noise

addition in the model. The experimental results support our hypothesis. Pre-training without layer

freeze has not done well compared to pre-training with layer freeze. We think that this is due to

the unlearning of previously trained layers when we add a new hidden layer. This is explained in

detail below.

In our experiments we have used the network architecture: 28x28 ->[1000, 500, 250, 30, 250,

500, 1000] -> 28x28. First we have trained the autoencoder: 28x28 ->[1000] -> 28x28. From

this training we obtain weight matrices w1=[785x1000], which connects input to hidden units, and

w2=[1001x784] which connects hidden units to output. We have then added the new hidden layer

with 500 hidden units. But while training the autoencoder 28x28 ->[1000,500,1000] -> 28x28,

we have allowed the pre-trained weights w1 and w2 to change. This change has caused a loss

of learning in w1 and w2, whereas in layer-freeze approach we have not allowed the pre-trained

weight to change. So in layer-freeze approach the local learning associated in each hidden layer

is intact. We also observe that if we use many iterations in post training, the error-over-iteration

curve of layer-freeze and without layer-freeze converge to each other which can be seen in Figure
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5.3. This is expected. Here we also observe that the error curve in post training for standard

autoencoder is consistently high compared to the other two curves. Both of our proposed pre-

training approaches minimize the addition of noise in the model. Thus we think that the weight

initialization using our pre-training methods puts solution close to the optimal one.

6.2 Centroid-encoding

We have proposed a new supervised learning algorithm that can be used in dimensionality

reduction as well as in classification. Our main motivation is to come up with an algorithm that can

produce a good low dimensional structure of high dimensional data. We are particularly interested

to have a two/three dimensional visualization of MNIST data, EEG data and gene expression data

as the ambient space of both of these dataset is high dimensional. We tried both linear and nonlinear

PCA but the methods were unable to give any interesting structure of the data. Although we note

that on MNIST data autoencoder (nonlinear PCA) has performed relatively well compared to other

two datasets.

For a given dataset, which is labeled, one can expect to have a variance between the classes /

categories. At the same time we can also expect the intra-class variance to be less than the inter-

class variance. This assumption may not hold true for all datasets, but in practice this assumption

may work in most of the cases. Keeping this assumption in mind we can say that the centroid is

a good representative of the corresponding class. We have hypothesized that a nonlinear mapping

from input data to its corresponding centroid through low dimensional space might reveal some

hidden structure in low dimensional space. The three dimensional visualization of crab eating

macaque and EEG data do support our hypothesis. The two dimensional embedding of MNIST

data also supports this claim. The three dimensional embedding of T cell receptor signaling path-

way using centroid-encoding (Figure 5.8) is a remarkable improvement over autoencoder (Figure

5.7). We can make similar comments on EEG data and MNIST data, too. Although the autoencoder

was able to capture a global pattern of EEG data in low dimensional space, the centroid-encoder

captures both the global pattern as well as local pattern in the data. We also want to note that the
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global structure in three dimensional space captured by both the methods suggests that EEG data

may reside in a low dimensional manifold (circle/sphere).

The comparison of classification results among the three methods reveals a lot of information.

First of all the pre-training using centroid-encoding outperforms the pre-training using autoen-

coding. This is clear from the classification accuracy of the softmax layer. This observation is

consistent among the five different bottleneck architectures. Another interesting fact is that fine

tuning does not improve the result as much for centroid-encoder as compared to autoencoder. This

means the pre-training using centroid encoding found the solution very close the optimal one. We

would also like to comments on the result of the standard ANN for the architecture: 28 x 28 ->

[500 -> 3] -> 10. This is the worst result among all of them. We think that this particular archi-

tecture is not suitable for a classification network for MNIST data. Probably the small number of

hidden units in the second hidden layer does not give enough space (dimension) to find an optimal

solution. This particular classification architecture found local minimum very often as compared

to other classification architecture. This is also evident from the results of another classification

network which has more hidden nodes in the second layer. On the other hand autoencoder and

centroid-encoder do not suffer from this problem. This is because the pre-training have helped to

overcome the local minima. In real world problems, we often work with datasets which have low

number of samples but high number of dimensions/features. For this type of dataset a big ANN

architecture is not preferable because the model will most likely to overfit the data. We believe our

centroid-encoder will be a good modeling tool for small datasets.

6.3 Future Work

In this context we would like to mention one potential scope of improvement of our proposed

methods. In the future we would like to mix our layer-wise pre-training approach with RBM

pre-training. In centoid-encoding our main goal was to capture the inter-class variance through a

non-linear mapping. Now this method can be further extended to capture the intra-class variance.

In other words we want to capture the finer local relationships in a class. To do this we can order
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points of a class based on a distance metric. Then we can define a neighborhood Nǫ of a point

xi ∈ Ck ,where Ck is a class/category, such that xj ∈ Nǫ if d(xi, xj) <= ǫ and xj ∈ Ck where

d(xi, xj) is the distance between xi and xj . In the non-linear mapping we will map each point xi

to the centroid of the neighborhood Nǫ.

Overall, we can say that our proposed methods have the potential to produce good results. Fur-

ther investigation needs to be carried out to fully exploit the capabilities of our proposed methods.
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