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ABSTRACT  

 

 

ASSOCIATION MAPPING FOR YIELD, YIELD COMPONENTS AND DROUGHT 

TOLERANCE-RELATED TRAITS IN SPRING WHEAT GROWN UNDER RAINFED AND 

IRRIGATED CONDITIONS 

 

Genome-wide association mapping shows promise for identifying quantitative trait loci 

(QTL) for many traits including drought stress tolerance. Candidate gene analysis also has been 

used to identify functional single nucleotide polymorphisms (SNPs) that can be associated with 

important traits. In 2010 and 2011, we evaluated an International maize and wheat improvement 

center ( CIMMYT) spring wheat association mapping panel under rainfed and full irrigation 

conditions in Greeley, CO, and Melkassa, Ethiopia (total of five environments) for grain yield 

and its components, canopy spectral reflectance, and several other phenological or drought-

related traits. A total of 287 lines were genotyped with Diversity Array Technology (DArT) 

markers to identify associations with measured traits under different moisture regimes. 

Significant differences among lines were observed for most traits within each environment and 

across environments. Best linear unbiased predictors (BLUPs) of each line were used to calculate 

marker-trait associations using 1863 markers with a mixed linear model with population 

structure and a kinship-matrix included as covariates. Three drought responsive candidate genes 

(Dehydration-Responsive Element Binding 1A, DREB1A; Enhanced Response to abscisic acid 

(ABA), ERA1; and Fructan 1-exohydrolase, 1-FEH), were amplified using genome-specific 

primers and sequenced from 126 lines to identify single nucleotide polymorphisms (SNPs) 

within the candidate genes and determine their association with measured traits. For genome 

wide association mapping, the highest number of stable associations was obtained for kernel 
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hardness followed by grain volume weight (test weight), an important trait under drought stress 

conditions. The most stable marker-trait association was obtained for grain yield on chromosome 

2DS. All marker-trait associations for above-ground biomass were environment-specific. Multi-

trait marker-trait association for grain yield and other traits such as harvest index, final biomass, 

thousand kernel weight, plant height and flag leaf length were detected on chromosome 5B. A 

grain yield QTL was again co-localized with harvest index QTL on chromosome 1BS. 

Normalized difference vegetation index (NDVI) shared QTL region with a harvest index QTL on 

chromosome 1AL, while green leaf area shared a QTL with harvest index on chromosomes 5A. 

For drought tolerance candidate genes, SNPs within DREB1A gene were associated with final 

biomass, spikelets per spike, days to heading and NDVI. The 1-FEH gene amplified from the A 

genome showed associations with grain yield, final biomass, NDVI, green leaf area, kernel 

number per spike  and spike length. However, 1-FEH from the B genome was associated with 

traits such as days to heading, days to maturity, thousand kernel weight and test weight. The 

ERA1 gene from the B genome was associated with spike m
-2

, harvest index, grain filling 

duration, leaf senescence, flag leaf width, plant height and spike length, whereas ERA1 from the 

D genome was associated with kernel weight per spike, flag leaf width, leaf senescence, kernel 

number per spike and harvest index. In general, each candidate gene had effects on multiple 

traits under both rainfed and irrigated conditions. Both genome wide and candidate gene 

approaches showed that most of the measured traits are controlled by several QTL/genes with 

minor effects. QTL/genes with pleotropic effects were also detected. Therefore, the information 

generated by this study might be used in marker-assisted selection to improve drought tolerance 

of wheat.  
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CHAPTER 1 

1.0 LITERATURE REVIEW 

1.1 Wheat production and importance 

Hexaploid wheat (Triticum aestivum L.) (2n=6x=42) has a large genome size of about 

17,300 Mb which is approximately 35 times and 110 times larger than that of rice (Oryza sativa 

L.) and Arabidopsis, respectively (Hussain and Rivandi, 2007 ). Hexaploid wheat is an 

allopolyploid (AABBDD) formed first through hybridization of Triticum urartu (2n=2x=14, AA) 

with an unknown source of the B genome, despite speculation tending toward Aegilops 

speltoides (2n=2x=14, BB), and subsequently hybridization with Aegilops tauschii (2n=2x=14, 

DD) (Daud and Gustafson, 1996; Devos and Gale 1997). Repetitive DNA elements account for 

approximately 90% of the wheat genome, and transposable elements make up 80% of this 

(Wanjugi et al., 2009). 

Wheat is the most widely adapted major crop and is grown on a larger land area than any 

other crop worldwide (Reynolds et al. 2011; Munns and Richards, 2007). Wheat is the third most 

important cereal crop next to only maize (Zea mays L.) and rice in annual production (Graybosch 

and Peterson, 2010). One-fifth of the total calories of the world’s population comes from wheat 

(FAO, 2010), making wheat an important component of food security at the global level.  

1.2 Drought and wheat 

Drought in agriculture refers to water deficit in the root zone of plants and results in yield 

reduction during the crop life cycle (Rampino et al., 2006; Passioura, 2007; Nevo and Chen, 

2010; Ji et al., 2010). Therefore, drought tolerance is defined as the ability of plants to survive 

and reproduce under water deficit conditions (Fleury et al., 2010). There are three components of 
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drought resistance viz. dehydration avoidance, dehydration tolerance and dehydration escape. 

Dehydration avoidance is the ability of the plant to maintain its hydration state whereas 

dehydration tolerance refers to a plants’ ability to function after dehydration (Blum, 2011). 

Dehydration avoidance strategies in plants are a deep rooting system to access water, efficient 

use of available water and matching rainfall through life cycle modification (Salekdeh et al., 

2009). In crop plant drought resistance, dehydration avoidance is a more common and effective 

mechanism than dehydration tolerance. The escape mechanism has been used in crop 

improvement efficiently through selection for a shortened crop cycle to develop early maturing 

varieties that escape terminal moisture stress. The disadvantage of the escape mechanism is that 

it is associated with a yield penalty under optimum growing conditions. Moreover, breeders for 

well-developed agricultural regions have already optimized crop flowering time to match the 

growing environments (Passioura, 2007).  

Drought stress is usually unpredictable in its timing, duration and intensity. Plant response to 

drought stress is complex as it involves a number of physiobiochemical processes at the cellular 

level and different interacting component traits with different responses at the whole plant level 

(Witcombe et al., 2008; Kadam, 2012). Hence, drought tolerance is a complex trait with low 

heritability, quantitative in nature and having a high level of genotype by environment (GxE) 

interaction. Further, plant phenology and morphological traits such as plant height and tillering 

can confound plant responses to drought (Fleury et al. 2010). Drought is also commonly 

accompanied by heat stress and the simultaneous occurrence of these two abiotic stresses under 

field conditions can have significantly greater effects on crop productivity than individual stress 

effects (Salekdeh et al., 2009).  
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Plant breeding has improved crop performance under drought conditions in the past 

(Cattivelli et al., 2008). However, previous progress in genetic gain of yield is not enough to 

meet the higher demand for food products as a result of world population increase in the face of 

changing climate. Currently, there is a great interest to increase crop productivity under drought 

conditions through combining knowledge gained on physiological traits, drought tolerance 

genetic control and the target environments (Blum, 2011). The success of physiological trait-

based breeding for drought tolerance depends on the genetic correlation of the trait with final 

yield, extent of genetic variability, level of heritability and extent of GxE interactions (Mir et al., 

2012). With the availability of desired traits at hand, precise phenotyping in target drought 

environments is a key to accurately associate the massive genotypic data available today with 

phenotypic expression of a trait (Salekdeh et al., 2009). 

Drought stress seriously limits wheat productivity around the world. Wheat is grown under a 

wide range of environmental conditions, but it is best adapted to temperate regions where rainfall 

is 30-90 cm (Hussain and Rivandi, 2007). Wheat is also the major cereal grown in dry regions of 

the temperate zone. Nearly 50% of the area sown to wheat is affected by drought on an annual 

basis (Trethowan and Reynolds, 2007) and it can cause up to 50% yield reduction in comparison 

to yield under full irrigation (Nezhadi et al., 2012). Winter wheat is commonly grown in the 

Great Plains following a fallow period, where soil moisture stored during the fallow period is 

used for winter wheat production (Dhuyvetter et al., 1996). Although the soil moisture stored 

during the fallow period is often sufficient for vegetative stage growth and development of wheat 

plants, post-anthesis drought stress often limits wheat productivity in the Great Plains (Mulat, 

2004).  
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Wheat is one of the major cereal crops grown in Ethiopia, and it ranks fourth after teff 

(Eragrostis tef), maize and sorghum (Sorghum bicolor) in area coverage (Bayeh, 2010). Wheat is 

grown in Ethiopia mainly in humid or sub-humid agro-ecological zones, and the average national 

yield is typically below East African and world yield averages (Schneider and Anderson, 2010). 

Drought stress both at early growth stages and during the grain filling stage are among the 

factors contributing to the low productivity of wheat in Ethiopia. 

Genetic studies conducted under water-limited environments have identified quantitative 

trait loci (QTL) underlying yield and yield component traits of wheat (El-Feki, 2010; McIntyre et 

al., 2010; Pinto et al., 2010; Kirigwi et al., 2007). Many chromosomal regions with minor effects 

have been involved in controlling yield, but repeatable QTL across environments and different 

backgrounds are rare, if indeed there are any. This situation has undermined the transferability of 

QTL information into practice in plant breeding programs to increase yield genetic gain under 

water-limited environments. Therefore, focusing on the identification and utilization of genomic 

regions for traits related to drought tolerance (e.g., root traits, reproductive traits) may be a more 

feasible strategy than yield per se approaches.    

1.3 Molecular markers and QTL mapping in wheat 

1.3.1 Molecular markers 

Marker-assisted selection (MAS) may accelerate the variety development process in plant 

breeding. Several marker systems have been used for QTL mapping for different crop species. 

Both bi-allelic and multi-allelic co-dominant markers are suitable for estimating linkage 

disequilibrium (LD). Simple sequence repeats (SSRs) and restriction fragment length 

polymorphisms (RFLPs) are co-dominant markers that have been widely used for QTL mapping 

(Bryan et al., 1997; Landjeva et al., 2007).  Among dominant markers, amplified fragment length 
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polymorphisms (AFLPs) and randomly amplified polymorphic DNAs (RAPDs) have been used 

successfully in QTL mapping despite their low statistical power in relation to co-dominant 

markers (Abdurakhmonov and Abdukarimov, 2008). More recently, however, Single Nucleotide 

Polymorphism (SNPs) and Diversity Array Technology (DArT) markers have been widely 

utilized for genome-wide scanning of QTL in many crop plants. The development of sequencing 

technologies has allowed the discovery of several fold greater numbers of SNPs than DArT 

markers in many crop species (Poland et al., 2012). These marker systems are inexpensive per 

data point and simultaneously assay several thousand loci in a single assay.  

Diversity arrays technology is a hybridization-based alternative similar to a microarray 

platform to detect the presence versus absence of individual DNA fragments in genomic 

representations generated by complexity reduction methods from samples of genomic DNA 

(Jaccoud et al., 2001). The applicability of DArT for hexaploid wheat has been tested by Akbari 

et al. (2006) by comparing with SSR, RFLP and AFLP markers in terms of distribution along 

chromosomes, segregation distortion, level of polymorphism frequency and reproducibility of 

markers. Generally, the increase of ploidy level did not negatively affect the application of DArT 

markers for hexaploid wheat. The data quality for wheat was also similar to the quality of DArT 

data previously generated for barley (Hordeum vulgare L.) and other species. There was no 

significant difference in the distribution of the SSR markers and DArT markers among the seven 

homoeologous chromosome groups of wheat. However, there was a statistically significant 

deficit of DArT markers on the D genome and a greater tendency to map to gene-rich telomeric 

regions than SSR and AFLP markers (Akbari et al., 2006).  

SNP markers are becoming the markers of choice in plant breeding programs for 

construction of high resolution genetic maps, genome wide association mapping, genomic 
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selection, and population evolutionary history studies (Aranzana et al., 2005; Zhao et al., 2007; 

Akhunov et al., 2009). SNPs are generally more abundant, stable, amenable to automation, 

efficient and cost-effective than other forms of genetic variants (Rafalski, 2002; Akhunov et al., 

2009). SNPs can be individually responsible for phenotypic expression of a trait or linked to 

causative SNPs (Langridge and Fleury, 2011). However, selecting the most suitable set of SNPs 

which are either causative SNPs or linked to causative SNPs in a cost-effective manner is an 

important step toward application of molecular markers for crop improvement (McCouch et al., 

2010). 

1.3.2 Quantitative trait loci mapping (QTL) populations 

In crop plants, the standard mapping populations are derived from crosses between two 

parents which have contrasting characters of a trait under investigation; for example, drought 

tolerant versus drought susceptible parents. These bi-parental cross populations have been used 

for determining the number, effect size and chromosomal locations of QTL underlying 

agriculturally important quantitative traits including grain yield of wheat. Some of the 

advantages of bi-parental populations include the requirement of relatively fewer markers for 

genome coverage, no population structure and ability to locate QTL regions along chromosomes 

(Sorrells and Yu, 2009). The disadvantages of bi-parental population mapping approach are: 

1) Only two alleles can be evaluated at a locus. 

2)  Low mapping resolution due to few recombinations. 

3) Longer time required to develop mapping population.  

1.4 Association mapping  

The classical method of QTL identification is conducted by a bi-parental QTL mapping 

approach. Association analysis which does not require development of a bi-parental mapping 
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population is becoming a common method of QTL mapping mainly due to its high resolution, 

broader allele coverage and cost effectiveness. In this method, diverse lines or cultivars can be 

used for obtaining information on marker-trait associations. It has the potential to identify QTL 

associated with a desired trait and even to detect the causal polymorphisms within a gene that are 

responsible for the difference in two alternative phenotypes (Gupta et al., 2005). The resolution 

of QTL is high as only closely linked alleles are in LD due to a long history of recombination 

(Ingvarsson and Street, 2011). Association mapping is also useful for establishing associations 

between haplotype blocks and traits of interest. However, genomic locations of QTL detected by 

the association mapping approach need to be inferred from a consensus genetic map and/or 

physical map for the crop under study. Special mapping populations known as Nested 

Association Mapping (NAM) populations allow simultaneous QTL detection and chromosomal 

position determination (Ersoz and Buckler, 2009). However, NAM populations are currently 

available only for a limited number of crop species like maize. The NAM population in maize 

was developed by crossing 25 diverse inbred lines to a common reference inbred B73 to produce 

25 bi-parental recombinant inbred line families that  have one parent in common (Cook et al., 

2012). 

The steps of association mapping analysis are: (1) selection of a group of individual lines 

or cultivars with wide genetic diversity to form the mapping population or panel; (2) recording 

the phenotypic characteristics; (3) genotyping the mapping population with available molecular 

markers; (4) quantification of the extent of LD for a chromosome and/or a genome using 

molecular marker data of the mapping panel; (5) assessment of the population structure and 

kinship (coefficient of relatedness between each pair of individuals); (6) determination of 

association of phenotypic and genotypic data based on the information gained from LD and 
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population structure using appropriate statistical methods (Abdurakhmonov and Abdukarimov, 

2008). 

Association mapping broadly falls into two major classes: (1) genome-wide association 

mapping, which surveys genetic variation in the whole genome using a large number of markers 

to detect regions associated with the phenotype (Zhu et al., 2008); and (2) candidate-gene 

association mapping, which relates within candidate gene polymorphisms with phenotypic 

variations of the traits. The choice between whole genome scanning and candidate gene 

approaches depends on the extent of LD in the population and the availability of markers. 

Although genome-wide association is a promising approach for scanning the entire genome for 

detecting marker-trait associations with a large number of markers, the candidate gene approach 

is also important to map targeted genes with known function (Tabor et al., 2002).  

The association mapping approach has been used for several crops to identify QTL and 

also to characterize candidate genes. A review of studies involved with both genome-wide and 

candidate gene association mapping approaches is presented below.   

1.4.1 Genome wide association mapping 

1.4.1.1 Genome wide linkage disequilibrium (LD) in wheat 

LD refers to a non-random association between alleles at two loci. It is a pair-wise 

measurement between polymorphic sites. The resolution and power of association studies in a 

collection of cultivars depend on the extent of LD which in turn depends on population history, 

recombination frequency, chromosome region, sample size, mating system and mutation across 

the whole genome (Ersoz et al., 2009; Zhang et al., 2009; Chao et al., 2010). LD decay is a 

function of genetic distance. It may decay over a long or short distance based on the species and 

population under consideration and the region of the chromosome.  
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Association mapping exploits historical recombination events because LD is the net 

result of all the recombination events that occurred since the origin of an allele by mutation. 

Only closely linked loci remain associated and co-segregate for many generations (Morton et al., 

2001). This provides the opportunity to dissect quantitative traits with higher resolution mapping 

at the gene level (Ersoz et al., 2009); hence, causative genes with modest effects can be mapped 

with LD-based association approaches (Hirschorn and Daly, 2005).  

Several LD statistics have been used to estimate the levels of LD and to make inferences 

about recombination rate and mutation history. Among those, r
2 

and D’ are the most commonly 

used statistics to measure LD (Gupta 2005; Sorrells and Yu, 2009). All LD statistics measure the 

difference between the observed and expected haplotype frequencies (Flint-Garcia et al., 2003). 

If a pair of loci with alleles “A” and “a” at the 1
st
 locus X, and “B” and “b” at the 2

nd
 locus Y are 

considered,  

D= PAB-(PA)(PB), where D is LD between two loci, X and Y; PAB is the frequency of gamete  AB 

; PA and PB are the frequencies of alleles “A” and “B” at locus X and Y, respectively. On the 

other hand, the LD statistic D’ (Lewontin, 1988) is calculated as: 

|D’|= (D)
2
/min(PAPb, PaPB) for D <0, where Pa and Pb are the frequencies of allele “a” and 

“b”, respectively. 

|D’|= (D)
2
/min(PAPB, PaPb) for D >0 

Similarly, Hill and Robertson, 1968 defined r
2
 as: 

r
2
= D

2
/PAPaPBPb  

The statistic, r
2
 can be defined as the squared value of the Pearson’s correlation 

coefficient (product moment) of allelic frequencies at two loci. Although the performance of 

both statistics are affected by small sample size and low allele frequencies, r
2
 is less sensitive to 
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sample size and better in indicating how markers might be correlated with QTL of interest (Flint-

Garcia et al. 2003; Martinez et al., 2006). While D’ is useful to estimate recombination 

differences accurately, r
2
 summarizes both recombination and mutation history. Generally, the 

statistic r
2
 is more favored in assessing the extent and patterns of LD than D’ statistics. The value 

of r
2
 approaches one when the frequency of co-segregation of alleles at two loci is high while an 

r
2
 value of zero shows the co-occurrence of alleles at two loci does not differ from what would 

be expected under random sampling (Ersoz et al., 2009). To summarize the structure and patterns 

of LD, r
2
 for pairwise combinations of alleles are plotted against the genetic distances among 

alleles on a chromosome. This type of graphical display is known as a LD decay plot which 

allows fitting decay curve to estimate LD decay for a chromosome or for an entire genome 

(Gupta et al., 2005; Abdurakhmonov and Abdukarimov, 2008).   

Several genome-wide association mapping studies have been reported for many crops. 

Most of those studies mainly focused on the determination of LD, generating information on 

how far the usable levels of disequilibrium extend in the genome, and how much LD pattern is 

affected by mating system, recombination rate, population structure, population history, genetic 

drift and directional selection. Different patterns of LD have been reported for crop plants such 

as rice (Agrama et al., 2007), maize (Wilson et al., 2004), barley (Comadran et al., 2009) and 

wheat (Chao et al., 2007). Broadly, the extent of LD decay over genetic distance occurs at a 

slower rate in self-pollinated crops such as Arabidopsis, rice, wheat, barley and sorghum than 

cross-pollinated crops (e.g., maize) as the number of effective recombinations is lower in self-

pollinated crops compared to cross-pollinated crops.  

The strength and patterns of LD in wheat vary among chromosomes and genomes. 

Analysis of LD for 43 U.S wheat cultivars has shown the intra-chromosome LD decay below r
2
< 
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0.2 within 10 cM (Chao et al., 2007). On the contrary, significant long range LD (over 30 cM 

genetic distance) has been recorded for chromosomes 3DL, 4DL and 6AL. At the genome level, 

the B genome showed the highest proportion of significant LD despite fewer markers. In another 

study conducted on 96 soft winter wheats with SSR markers, LD decayed rapidly within 1 cM 

for chromosome 2D but extended up to 5 cM for chromosome 5A (Breseghello and Sorrells, 

2006). Similarly, Yao et al. (2009) reported that LD decayed on average within 1 cM for 

chromosome 2D, within 0.5 cM for chromosome 3B, but extended up to 2.3 cM on chromosome 

2A of hexaploid wheat implying the presence of large differences among wheat chromosomes in 

rate of LD decay. 

The most comprehensive analysis of LD patterns has been conducted on a total of 478 

spring and winter wheats genotyped with 394 SNP markers. This study revealed that LD 

declined to 50% of its initial value within 6-7 cM for the A, B and D genomes (Chao et al. 2010). 

Genome-wide LD estimation for 251 winter wheat lines with 346 DArT makers also showed on 

average LD declined below r
2
<0.2 at 9.9 cM (Benson et al., 2012). Liu et al. (2010) genotyped 

103 wheat accessions from China with 116 SSR markers on chromosome 4A and found 

extension of LD up to 3 cM with threshold level at r
2
= 0.054. The study conducted on elite 

durum wheat genotypes also showed the dependence of LD on different factors. For elite durum 

wheat(Triticum durum Desf.) lines genotyped with SSR markers, LD extended up to 10 cM to 

reach a critical threshold of r
2
=0.06 (Maccaferri et al., 2011). Another study on durum wheat 

genotyped with 58 SSR markers showed the decay of LD within 10 cM (Maccaferri et al., 2005). 

When both bread and durum wheats are considered together, there was no difference in LD 

patterns between the two. While LD in durum wheat marginally extended over larger distance, 

generally LD decayed within 2-3 cM for both wheat types (Somers et al., 2007). Since studies 
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are different in r
2 

threshold levels, population sample size and marker type, it is difficult to draw 

an overall conclusion regarding LD extent and patterns in wheat.  

In maize, LD decays in 1 kb for landraces, 2 kb for inbred lines and extends up to 100-

500 kb for commercial elite inbred lines (Remington et al., 2001; Ching et al., 2002; Jung et al., 

2004). However, LD extended up to 10 kb for shrunken (sh1), an enzyme in the starch 

biosynthesis pathway, possibly due to its being under direct selection during domestication or 

breeding (Whitt et al., 2002). In rice, LD extended up to 100 kb to over 200 kb for cultivated rice 

(Huang et al., 2010; Mather et al., 2007) while barley had extensive LD up to 20 to 30 cM 

(Hamblin et al., 2010). Recently,  Xu et al. (2012) determined the extent of LD for 188 tomato 

(Solanum lycopersicum) accessions with 192 SNP markers and found LD extended up to 18 cM 

at r
2
=0.3 on average for all chromosomes. Studies on Arabidopsis indicated that LD extended 50-

100 cM even if it breaks down within 10-50 kb for some genes (Tian et al., 2002). Comparison 

of the extent of LD across cereals showed that LD for wheat extends over a longer distance than 

maize and rice but decays faster than LD for barley. Within a species LD decay rate differs 

depending on population type and chromosome regions. Therefore, LD analysis should be done 

at the chromosome level for each association mapping population.    

1.4.2 Population structure  

The association mapping approach has been seen with skepticism by plant genetics and 

breeding communities until recently because of spurious associations as a consequence of the 

confounding effect from population structure. Population structure often leads to a genome-wide 

LD between unlinked loci (Sneller et al., 2009). Structured populations may show significantly 

different allele frequencies due to genetic drift, domestication or background selection; 
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consequently, genetic loci could be spuriously associated with a trait when there is no real 

association.   

The development of a statistical model which allows accounting for population structure 

during association analysis has improved the application of association mapping for QTL 

detection in crop plants. There are two steps to account for population structure using a model-

based approach; the first is to calculate the percentage of membership of each individual to 

population groups using unlinked random markers, and the second is to use the percentage of 

membership as a covariate in the model of testing associations of markers with phenotypic traits 

(Ersoz et al., 2009). In the unified mixed model of Yu et al. (2006), both population structure (Q) 

and family relatedness (K) are simultaneously considered as covariates in the model. This model 

accommodates both fixed and random effects.  

The Q+K mixed model is represented with the following equation: 

y = Xβ + Sα +Qv+ Zu + e 

where y is a vector of phenotypic observations; β is a vector of fixed effects other than marker or 

population structure; α is a vector of marker effects; u is a vector of random polygenic 

background effects; e is a vector of residuals; Q is a matrix from structure relating v to y; and X, 

S and Z are incidence matrices of 1s and 0s relating y to β, α and u, respectively. The variances 

of the random effects are assumed to be Var(u) = 2KVg, and Var(e) = RVR (Yu et al., 2006), 

where K is an n × n matrix of relative kinship coefficients that define the degree of genetic 

covariance between a pair of individuals; R is an n × n matrix with the off-diagonal elements 

being zero and the diagonal elements being the reciprocal of the number of observations for 

which each phenotypic data point was obtained; Vg is the genetic variance; and VR is the 
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residual variance. Best Linear Unbiased Estimates (BLUEs) of β, α and v (fixed effects) and Best 

Linear Unbiased Predictions (BLUPs) are obtained by solving mixed model equations. 

Different levels of population structure have been detected in wheat, from none to highly 

structured populations. Unlike rice and maize, there are no well-known structure or heterotic 

groups for bread wheat (Coviour et al., 2011). From population structure analysis on 96 diverse 

Great Plains winter wheat cultivars and advanced lines developed for genetic study of quality 

traits, eight subpopulations have been detected with 60 SSR loci (Zheng et al., 2009). Another 

study conducted on 376 bread wheat collections from Europe and East Asia using 70 SSR loci 

indicated the presence of only two subgroups in the population where the lines were assigned to 

their known gene pools (Hao et al., 2010).  

1.4.3 Candidate gene association mapping  

Candidate gene association studies are aimed at linking phenotypic variation with allelic 

variation in candidate genes and benefit from several generations of recombination in natural 

populations to identify causative polymorphisms (Gonzalez-Martinez et al., 2008). In plants with 

large genomes, the generation of molecular-linkage maps based on candidate genes (molecular-

function maps) is one way to identify functional markers instead of time-consuming fine 

mapping. 

1.4.3.1 Drought tolerance candidate genes 

A large number of drought inducible genes have been identified and characterized for 

their function (Shinozaki and Yamaguchi-Shinozaki, 2007). There are two categories of genes 

based on their response to the phyto-hormone abscisic acid (ABA): ABA independent and ABA 

dependent. Dehydration-Responsive Element Binding (DREB) genes are ABA independent and 

known for their association with abiotic stress tolerance. Currently, full-length sequences of 
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DREB1 and DREB2 genes have been cloned from Triticum aestivum, Oryza sativa, Zea mays and 

Arabidopsis thaliana (Wei et al., 2009). Transgenic wheat with a DREB1A gene from 

Arabidopsis showed more drought tolerance, more branches and better spike size than non-

transgenic wheat plants (Pellegrineschi et al., 2004). However, in a recent field evaluation the 

transgenic DREB1A-wheat lines did not have a grain yield advantage over control lines under 

water deficit conditions (Saint Pierre et al., 2012), despite their better recovery after severe water 

stress and higher water use efficiency in the greenhouse. It has also been observed that the 

DREB2 gene from wheat improved freezing and osmotic stress in transgenic tobacco plants 

(Kobayashi et al., 2008).  

Fructan 1-exohydrolase (1-FEH) is another ABA independent gene that is implicated in 

cold and drought tolerance through membrane stabilization and remobilization of water soluble 

carbohydrates from stem to developing grain (Lothier et al., 2007; Hincha et al., 2003). The three 

copies of the 1-FEH gene have been mapped to the short arms of group 6 chromosomes, i.e., 

6AS, 6BS and 6DS (Zhang et al., 2008). 

ABA hormone concentration rises rapidly in plant tissues in response to drought or soil 

water deficit, and this in turn leads to expression of  ABA dependent stress-related genes 

(Shinozaki and Yamaguchi-Shinozaki, 2007; Wan et al., 2009). The ERA1 (Enhanced Response 

to ABA) gene which has been cloned from Arabidopsis and hexaploid wheat is ABA dependent 

in its expression. It has been shown that ERA1 mutants increased drought tolerance of 

Arabidopsis through stimulating stomatal closure (Ziegelhoffer et al., 2000).  

 1.4.3.2 Functional markers in candidate genes 

A functional marker refers to a marker developed from SNPs or insertion/deletion sites 

within a gene (Andersen and Lubberstedt, 2003). Functional markers in molecular plant breeding 
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are more advantageous than linked markers because the latter may not be diagnostic due to 

segregation between the marker and putative causative SNPs in subsequent generations. Since 

functional markers are developed from SNPs within a gene, marker information can be used 

confidently across breeding programs to select favorable alleles for a trait of interest (Bagge and 

Lubberstedt, 2008). Several genes for agronomic traits (e.g., semi-dwarfism genes), quality traits 

(e.g., polyphenol oxidase) and drought tolerance (e.g., DREB genes) have been identified for 

wheat (Wei et al., 2009; Bagge and Lubberstedt, 2008), but functional markers have been 

developed only for a few of them. Therefore, more functional markers are needed from the genes 

to enhance the application of molecular markers in crop improvement as the cost of re-

sequencing the genes is dramatically decreasing.   

SNPs may be discovered with different methods. However, the most straightforward 

approach is the direct re-sequencing of amplicons of genes from different genotypes (Rafalski, 

2002). Amplification of DNA segments with genome-specific primers for polyploids like 

hexaploid wheat is challenging due to sequence similarity among gene families. This to some 

extent slows down the application of functional markers in wheat breeding. 

Generally, once genes that determine the genetic basis of a trait are known, developing 

functional markers to select for favorable alleles is an important aspect of using genetic 

information in practical plant breeding (Langridge and Fleury, 2011). However, for successful 

functional marker development, prior information about the level of DNA polymorphisms, 

extent of linkage disequilibrium and within gene nucleotide diversity is required. 

1.4.3.3 SNP-trait associations within candidate genes 

The candidate gene strategy has shown promise for bridging the gap between quantitative 

genetic and molecular genetic approaches to study complex traits (Cattivelli et al., 2008; 
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Ingvarsson and Street, 2011). Along this line, studies involved with the candidate gene approach 

are summarized for wheat and other crops as follows. 

Vernalization requirement in wheat is controlled by four major genes, viz. VRN1, VRN2, 

VRN3 and VRN4, with VRN1 gene copies VRN-A1, VRN-B1 and VRN-D1 located on the long 

arms of chromosomes 5A, 5B and 5D, respectively (Yoshida et al., 2010). An association 

mapping study conducted by Rousset et al. (2011) on 235 hexaploid wheat collections revealed 

the effects of the flowering time candidate genes in modulating flowering time in wheat. In that 

study, genetic variation in VRN-A1, VRN-B1 and VRN-D1 genes has explained a large part of 

phenotypic variation in growth habit. 

Huang and Brule-Babel (2012) studied genetic diversity, haplotype structure and 

association of genes involved in starch biosynthesis in wheat. Genes encoding granule-bound 

starch synthase (GBSSI, also known as waxy or Wx genes) and soluble starch synthase (SSIIa) 

were selected for nucleotide diversity and SNP density study. None of the SNPs within the three 

SSIIa genes and Wx-D1 gene was associated with yield-related traits. However, both SNPs and 

haplotypes within the Wx-A1 gene were associated with seed number per spike, seed weight per 

spike and thousand kernel weight. Another study on grain size of wheat also demonstrated the 

association of haplotype of a grain size gene (TAGW2) with larger grain size, earlier heading date 

and maturity in hexaploid wheat (Su et al., 2011).  

Candidate gene association analysis has been used for cereal crops other than wheat. 

Transcription factors such as the gibberellin-regulated Myb factor (GAMYB), the barley leucine 

zippers 1 and 2 (BLZ1, BLZ2), and the barley prolamin box binding factor (BPBF) were 

evaluated for their association with agronomic traits in barley. SNPs within BLZ1 were 

associated with days to flowering, and its haplotype was also associated with both days to 
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flowering and plant height. The haplotype of BLZ2 was associated with thousand kernel weight 

while the haplotype of the BPBF gene was associated with both crude protein and starch in 

barley endosperm (Haseneyer et al., 2010). However, the candidate genes explained only a small 

portion of the total genetic variation. Similarly for maize, sorghum and rice, candidate genes 

involved in starch biosynthesis were associated with the expected traits and the results were in 

agreement with QTL studies (Wilson et al., 2004; Bao et al., 2006; Figueiredo et al., 2010).  

The most comprehensive candidate gene association results have been recently reported 

for SNPs identified from 540 genes putatively involved in accumulation of carbohydrate and 

ABA metabolites during stress for maize (Setter et al., 2011). In that study, the SNP from a 

homologue of an Arabidopsis MADS-box gene was significantly associated with phaseic acid in 

ears of irrigated plants while a SNP in pyruvate dehydrogenase kinase was significantly 

associated with silk sugar concentrations. Similarly, a SNP from an aldehyde oxidase gene was 

associated with ABA levels in silk under non-irrigated conditions. 

The candidate gene association mapping approach has been widely applied in forest tree 

genetics studies as developing a bi-parental population is practically unfeasible for most conifers. 

Gonzalez-Martinez et al. (2006) studied the pattern of polymorphisms of 18 drought responsive 

candidate genes in 32 Pinus taeda L. individuals. LD within the sequenced gene regions varied 

from low to high depending on the candidate gene locus. Thirteen genes had r
2
 greater than 0.1, 

but they did not find tight LD among sites within the gene or sites of genes located on the same 

chromosomes. A total of 196 SNPS and 82 LD blocks were obtained in 18 candidate gene loci. 

By constructing LD blocks, 94 haplotype SNPS were identified to improve the LD values and 

were successfully used in detecting significant r
2 

values for LD blocks study. The same authors 

evaluated the association of four candidate genes belonging to different functional classes with 
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carbon isotope discrimination (CID) at two locations. The genes were general protection factor 

(dhn-1), anti-oxidants (sod-chl), transcription factor (wrky-like) and putative cell wall protein 

(lp5-like). Anti-oxidant (sod-ch1) and Cu/Zn superoxide dismutase genes showed significant 

association with CID at both locations. However, none of the significant associations explained a 

substantial amount of phenotypic variance in CID.  

 1.5 Yield and yield component traits, and their genetic control 

1.5.1 Grain yield  

Grain yield improvement is the ultimate goal for most wheat breeding programs across 

the world. Although grain yield is a complex trait with low heritability and highly influenced by 

genotype x environment interaction, high yielding commercial varieties of many crops including 

wheat have been developed through direct selection for grain yield even if the relationship of 

yield with its component traits has already been established. The major grain yield determining 

traits of wheat are kernel number per unit of land area, harvest index and kernel weight. 

Understating the genetic basis of yield and yield component traits is critical for crop 

improvement. Several studies have been reported on the genetic control of yield and its 

component traits. Major findings related to the genetic basis of hexaploid wheat yield and yield 

components are summarized in the following section. 

Previous studies have shown that all 21 wheat chromosomes have been involved in 

controlling grain yield in wheat. Cuthbert et al. (2008) evaluated 402 doubled haploid (DH) lines 

derived from two spring wheat parents with contrasting yielding ability at six locations for two 

years in Canada. Five major QTL on chromosomes, 1A, 2D, 3B, and 5A were detected for grain 

yield. Out of these, a QTL on chromosome 5AL was the most significant and explained 17.4 % 

of the phenotypic variation in grain yield. This QTL was also detected for heading date, harvest 
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index, kernel number spike
-1

 and kernel weight spike
-1

. In that study QTL detected for yield were 

largely consistent across environments and overlapped with QTL of at least one yield 

component. Among yield components, kernel weight spike
-1

 and kernel number spike
-1

 had more 

QTL in common with yield whereas number of spikes m
-2

 was the least coincident yield 

component. Huang et al. (2003) genotyped 72 lines from advanced backcross population using 

210 SSR markers to identify QTL for yield and some yield component traits. They found yield 

QTL on chromosomes 1AL, 1BL, 3AS, 2BL, 2DL, 3BS, 4DS and 5BS.  

Kumar et al. (2007) found a QTL for five traits (grain yield, harvest index, spike length, 

spikelet per spike and kernel number per spike) on chromosome 2DS, and another multi-trait 

QTL for three traits (biological yield, harvest index and spikelet per spike) on chromosome 4AL. 

Marza et al. (2006) found 10 yield QTL on chromosomes 1AL, 1B, 2BL, 4AL, 4B, 5A, 5B, 6B, 

7A and 7D. Out of these, the QTL on 5A explained the largest grain yield variation (18.5%). El-

Feki (2010) reported the most stable yield QTL on chromosome 5A from a study conducted 

under contrasting moisture levels in Colorado. 

The significant phenotypic correlations and coincidence of QTL for grain yield and yield 

components have been implicated in some QTL studies (Kuchel et al., 2007b; Kumar et al., 

2007). For instance, the pattern of correlations in the Cuthbert et al. (2008) study was consistent 

with the number of QTL shared between yield and its component traits. Positive and significant 

phenotypic correlation was observed for yield with thousand kernel weight, kernel weight spike
-

1
, harvest index and kernel number spike

-1
, whereas its phenotypic correlations with number of 

spike m
-2

, grain filling time, heading and maturity date were low and negative. However, Huang 

et al. (2003) found phenotypic correlations for yield with thousand kernel weight, plant height, 

ear emergence and tiller number m
-2

 to be low and inconsistent across locations. Besides QTL 
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results and phenotypic correlations, the Cuthbert et al. (2008) study reported the highest 

heritability for number of spikes m
-2

 (0.98), and the lowest heritability for yield (0.48) and days 

to maturity (0.48). Heritability estimates were higher for yield components such as thousand 

kernel weight (0.77), kernel weight spike
-1

 (0.97) and kernel number spike
-1

 (0.58) than for 

phenological traits such as grain filling duration (0.52), heading date (0.49) and days to maturity 

(0.48).  

McIntyre et al. (2010) also found high heritability estimates (>0.70) for days to anthesis, 

plant height, hectoliter weight and grain weight; moderate heritability estimates (0.40-0.70) for 

grain per spike, grain yield, harvest index, grain number m
-2

 and spike number m
-2

; and low 

heritability estimates (<0.40) for biomass at anthesis and maturity.   

Kirigwi et al. (2007) detected major QTL on chromosome 4AL for grain yield, biomass, 

spike density, kernel number m
-2

, grain fill rate, biomass production rate and drought 

susceptibility index. Li et al. (2007) evaluated 131 recombinant inbred lines (RIL) of wheat in 

four environments and detected five QTL for grain yield on chromosomes 2A, 2D, 3B and 6A in 

three environments. They also identified stable QTL for spike number on chromosome 7D which 

explained up to 52% of phenotypic variation, and on chromosome 1D for thousand kernel weight 

and spike number. Putative yield QTL have been reported also for grain yield on chromosomes 

6AS, 6AL and 7AS based on 194 recombinant inbred lines evaluated in nine Australian 

environments (McIntyre et al., 2009).  

Huang et al. (2006) reported the presence of three yield QTL on chromosomes 5A, 7A 

and 7B which explained from 8 to 11% of the phenotypic variation by evaluating DH lines at 

three locations for a total of 6 environments in Canada. McCartney et al. (2005) detected the 
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most significant yield QTL on chromosomes 2B and 4A from QTL analysis conducted on 185 

DH lines evaluated at a total of eight site-years in Manitoba, Canada.  

The genome-wide association mapping approach has been applied recently for QTL 

detection in wheat. Neumann et al. (2011) studied a winter wheat association mapping panel 

which consisted of 96 diverse lines obtained from a larger collection from 21 countries. The 

entries were investigated for up to eight seasons for 20 morphological and agronomic traits with 

835 DArT markers. Of all morphological and agronomic traits studied, the highest number of 

marker-trait associations (MTAs) was recorded for number of spikelets per spike (38), whereas 

the lowest number of MTA was obtained for thousand kernel weight and harvest index. 

Similarly, the highest number of trait-specific MTA was obtained for biomass (13) followed by 

grain number per spike and spike length (each 12). Four grain yield-specific MTA were detected 

on chromosomes 3A, 3B, 4B and 5B, and another six multi-trait markers on chromosomes 1A, 

3A, 4A, 6B, 7A and 7B were also associated with grain yield.  

Crossa et al. (2007) conducted association analysis for yield and disease resistance using 

170 spring wheat lines which were genotyped with DArT markers. They found MTA for yield on 

all chromosomes with the exception of chromosome 4D, indicating the power of association 

mapping to detect many QTL in a single population, which otherwise would be achieved only 

with many independent bi-parental populations.  

1.5.2 Thousand kernel weight and kernel weight per spike 

Thousand-kernel weight is one of the three main yield components of wheat. It has a high and 

consistent heritability value. Thousand-kernel weight is also phenotypically the most stable yield 

component (Sun et al., 2009), and the effects of most genes affecting thousand kernel weight are 
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additive. Hence, early generation selection for thousand-kernel weight is most likely effective 

(Wang et al., 2012).  

Kernel weight is a function of kernel length and kernel width. The critical period of 

kernel weight determination starts shortly before anthesis and continues throughout the period 

after anthesis during grain-filling duration in which the final grain size is determined in wheat 

(Sinclair and Jamieson, 2006; Ji et al., 2010). Unfavorable environmental factors (e.g., high 

temperature and water deficit) during grain-filling duration reduce kernel weight significantly. 

Kernel weight and kernel number are at least partially controlled genetically by different 

loci. This is mainly because environmental factors (e.g., drought stress) affect these traits in 

different reproductive structures and at different developmental stages (Ji et al., 2010). Kernel 

number is mainly determined at pre-anthesis stages whereas kernel weight is determined during 

the grain-filling stage, even if there is some overlap of critical periods for kernel weight and 

kernel number. The existence of flexibility in compensation effect between kernel number and 

kernel weight of wheat also hinders improvement of yield potential through simultaneously 

increasing both kernel number and kernel weight (Sinclair and Jamieson, 2008).  

Kernel traits of wheat are generally quantitative in nature, affected by many QTL and 

GXE interaction (Sun et al., 2009). McCartney et al. (2005) detected two major QTL for 

thousand kernel weight on chromosomes 4BS and 4DS in the region of Rht-B1b and Rht-D1b 

with QTL on 4DS explaining 31.8% of the phenotypic variation. For both regions, the reduced 

plant height was correlated with reduced thousand kernel weight for the test environments. Other 

minor QTL were also detected on chromosomes 2A, 3D, 4A and 6D for thousand kernel weight. 
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Nezhad et al. (2012) evaluated 133 F2:3 families of bread wheat under stress and fully-

irrigated conditions both in the field and greenhouse for detecting QTL under post-anthesis 

drought stress for thousand kernel weight. They found QTL on chromosomes 7AS and 7DS 

which were consistently detected for both moisture stress treatments, both under the field and 

greenhouse conditions. From a study conducted on 402 spring wheat DH lines, Cuthbert et al. 

(2008) detected six QTL for thousand kernel weight on chromosome 2D, 3B, 5A and 7A, with 

the QTL on 5AS explaining about 11% of phenotypic variation. Similarly, seven QTL have been 

detected for average kernel weight spike
-1

 on chromosomes 1A, 3B, 5A, 5B, 5D and 7B with the 

QTL on 5AL explaining 20.9% of the phenotypic variation.  

Wang et al. (2009) reported 21 QTL controlling thousand kernel weight on chromosomes 

1B, 2A, 2D, 3B, 4A, 4D, 5A, 6D and 7D from 142 recombinant inbred (RIL) lines of winter 

wheat evaluated across four environments. Furthermore, thousand kernel weight was positively 

and significantly correlated with kernel weight spike
-1

, kernel number spike
-1

, days to maturity 

and grain filling duration. They also identified 10 QTL for kernel weight spike
-1

 on 1A, 2A, 3B, 

4B, 4D, and 6B explaining 5.93% to 24.06%, but none of these QTL were expressed across test 

environments. 

Wang et al. (2012) evaluated 262 wheat accessions in China in five environments and 

genotyped them with 531 SSR markers to detect QTL for thousand-kernel weight using the 

association mapping approach. The detected QTL were distributed on homoeologous groups 1, 

2, 3, 5 and 7. Liu et al. (2010) detected marker-trait associations on chromosome 4A (9.9 and 

70.6 cM) for thousand kernel for 103 Chinese wheat accessions with 116 SSR markers mapped 

on chromosome 4A. Huang et al. (2003) found QTL for thousand kernel weight on chromosomes 

2DL, 4DS, 5BS, 7AS and 7B. However, in another independent experiment on 185 DH lines 
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evaluated in a total of six Canadian environments, Huang et al. (2006) detected thousand kernel 

weight QTL on chromosomes 2B, 2D, 4B, 4D and 6A, with QTL on 4D explaining 26.3 % of the 

phenotypic variation. Marza et al. (2006) reported QTL for kernel weight per spike on 

chromosomes 1B, 2BL, 2DL, 3BL, 3BS, 5A and 6B from 132 F2–derived recombinant inbred 

lines. El-Feki (2010) studied 185 DH winter lines in four Colorado environments and detected 

kernel weight QTL on chromosomes 1A, 1B, 2B, 2D, 3B, 6A and 7D.  

1.5.3 Kernel number  

Kernel number is the primary determinant of yield increase in wheat. Genetic gains in 

wheat have been achieved due to improvement in kernel number with little or no change in 

individual grain weight (Gaju et al., 2009). The critical period of final kernel number 

determination is from the onset of stem elongation to anthesis and occurs throughout spike 

development. More specifically, this critical period spans 20 days before anthesis and 10 days 

after anthesis (Ugarte et al., 2007). Both high temperature and water deficit in this period may 

result in significant reduction of final kernel number and yield. Kernel number is the most 

susceptible yield component to abiotic stress in grain crops, accounting for greater yield loss than 

reduction in kernel weight (Dolferus et al., 2011). One of the direct effects of drought stress on 

wheat is the abortion of pollen development which leads to fewer kernels (Ji et al., 2010). The 

amount of nitrogen and carbon accumulated in the crop at anthesis also limits the final number of 

kernels and consequently grain yield (Sinclair and Jamieson, 2006). Drought stress increases the 

number of sterile tillers and only about half of the formed tillers of wheat survive to produce 

grains in semi-arid environments (Duggan et al., 2005).      

Knowledge of the genetic basis of kernel number is important for wheat improvement as 

kernel number is the primary component of grain yield. Three putative QTL have been detected 
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on chromosomes 1B, 6A and 7A in 194 lines of a bi-parental spring wheat population evaluated 

at three locations from 2002 to 2006 in Australia (McIntyre et al., 2010). Pinto et al. (2010) 

identified QTL for kernel number on chromosomes 1B, 3B, 4A, 5B and 6B which explained 

from 4.4-12.5% of the phenotypic variation. With association analysis, kernel number QTL were 

detected on chromosomes 4A and 6B, with the former showing consistency across test 

environments (Neumann et al. 2011). Dodig et al. (2012) also detected a QTL on chromosome 

2AS both under irrigated and dry conditions for kernel number using an association mapping 

panel of 96 diverse lines. Marza et al. (2006) detected QTL for kernel number per spike on 

chromosomes 1AL, 1B, 2BS, 2DL, 3BS, 4B, 6A and 7BS from an experiment conducted on 132 

recombinant inbred lines evaluated at three locations for three seasons at Oklahoma. However, 

they found only one QTL for spike number on chromosome 3BS. 

1.5.4 Harvest index (HI) 

Harvest index indicates the efficiency of a crop in converting photosynthetic products or 

assimilates produced before and after anthesis into final grain yield. Most often it is expressed as 

the ratio of grain yield to above-ground dry matter. Although harvest index was not used as a 

selection criterion in wheat yield improvement in the past (e.g., during the Green Revolution), 

the achieved yield progress was actually due to an increase in the number of kernels and a 

genetic shift towards greater harvest index (Blum, 2005; Zhang et al., 2012). 

The response of harvest index to environmental constraints (e.g., water deficits) depends 

on the intensity of the stresses. Harvest index, in the absence of stresses or with mild stresses, is 

fairly constant for several crops (Hay, 1995). However, progressive stresses which are sufficient 

to reduce biomass production by 30-40% can reduce harvest index, and the reduced biomass 

indicates the intensity of stress a crop has experienced (Fereres and Soriano, 2007). Cotton 
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(Gossypium hirsutum) and sorghum are the only two crops for which harvest index increases 

under moderate stresses (Fereres and Gonzalez-Dugo, 2009). Harvest index in wheat, however, 

is determined by the pattern of water use of the crop in the period before and after anthesis 

(Passioura, 1977).  

The harvest index improvement in wheat has been mostly due to introduction of dwarfing 

gene alleles, Rht-D1b and Rht-B1b, into the background of modern cultivars. These genes 

reduced overall plant height and improved availability of assimilates which increased survival of 

growing florets to increase potential kernel number (Rebetzke et al., 2012). The harvest index of 

spring wheat is lower than that of winter wheat, and it rarely exceeds 45% for the former (Zhang 

et al., 2012). In spring wheat and winter wheat, harvest indexes of 50 and 55%, respectively, 

have already been realized in modern cultivars despite an estimated theoretical upper limit of 62-

64% (Shearman et al., 2005). Generally, for spring wheat there is a potential of further yield 

improvement by increasing harvest index, as current values in breeding programs are in the 

range of 45 to 55% (Gaju et al., 2009).  

Apart from understanding the physiological basis of the harvest index, knowledge of its 

QTL/genes is crucial for indirect selection for yield in wheat breeding. In the association study 

conducted by Neumann et al. (2011), trait-specific MTA have been detected for HI on 

chromosomes 1A, 3A, 7A and 7B, and multi-trait MTA have been identified on chromosomes 

4A and 5A. In another association analysis with 96 diverse winter wheat lines, repeatable 

marker-trait associations have been detected on chromosomes 1DL and 2DS (Dodig et al., 2012). 

Cuthbert et al. (2008) also reported five QTL for harvest index on chromosomes 1A, 3A, 3B, 5A 

and 5B, and these QTL explained 4.2-11.9% of the phenotypic variation. El-Feki (2010) reported 

a total of eight harvest index QTL on chromosomes 1A, 1B, 2B (2), 2D (2), 3A and 6B. 
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1.5.5 Spike characters: spikelet number, spike length, kernel number per spike and spike 

number   

Spikelet number affects the total number of kernels per unit area. The more spikelets per 

spike, the more kernels per spike, which may influence the final kernel number per land area. 

Neumann et al. (2011) identified trait-specific marker-trait association on chromosome 5B for 

spikelet number. Multi-trait markers on chromosomes 2B, 2D, 3A, 4A, 6B and 7B were also 

associated with spikelet number. Yao et al. (2009) detected four different QTL on chromosome 

4A for spikelet number per spike using SSR markers.  

Mao et al. (2007) reported a QTL on chromosome 7DS which controls both spike length 

and spikelet number per spike. Chromosomes 2DL and 5A also harbored QTL for spikelet 

number per spike. Liu et al. (2010) detected marker-trait associations for spikelet number and 

spike length on chromosome 4AL by conducting association analysis with 116 SSR markers 

mapped on chromosome 4A for 103 Chinese spring wheats. Chromosome 4DL is also involved 

in controlling spikelet number (Chu et al., 2008). 

Long spikes with high spikelet number per spike may offer an avenue for increasing 

kernel number and harvest index in wheat (Gaju et al., 2009). Spike modification for increasing 

spikelets and kernel number per spike through breeding requires an understanding of the genetic 

bases underlying these traits. Many chromosome regions that affect spike length have been 

reported for wheat. Multi-trait marker-trait associations have been identified for spike length by 

Neumann et al. (2011) on chromosomes 2B, 2D, 3A, 3B, 5B, 6B and 7A, but spike length 

specific MTA were also located on chromosomes 3A, 4A, 5B and 7B (2). One of the MTA on 

chromosome 7B was significantly associated with spike length in all study years. Marza et al. 

(2006) also reported 10 QTL located on chromosomes 1AL, 1AS, 1B, 2BL, 2BS, 3BL, 4B, 5B, 
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7AS and 7BS for spike length. The QTL on chromosome 3BL was consistently detected in all 

test environments. Seven spike length QTL were detected by El-Feki (2010) and two QTL on 

chromosomes 1A and 1D were detected in all four test environments.  

Yao et al. (2009) found marker-trait associations for spike length both on short and long 

arms of chromosome 2A, and most of the associated markers were located near QTL for multiple 

traits such as number of spikelets per spike and grain per spike. Ma et al. (2007) studied 136 

recombinant inbred lines and detected major QTL for spike length on chromosome 7D and minor 

QTL on chromosomes 1A, 2D, 4A, 5A and 5B. Liu et al. (2010) detected four marker-trait 

associations for spike length on chromosome 4A. Dodig et al. (2012) found strong marker-trait 

associations for spike length on chromosomes 2DS and 6DS. However, Chu et al. (2008) 

reported QTL for spike length on chromosomes 3D, 4A and 5A. 

Yao et al. (2009) found marker-trait associations using SSR markers on chromosome 2A 

on both arms for grain per spike. Cuthbert et al. (2008) also reported five QTL for kernel number 

spike
-1

 on chromosome 1A, 2D, 3B, 5A and 7A, and higher phenotypic variation has been 

explained (16%) by QTL on the long arm of chromosome 5A. Wang et al. (2009) found eight 

QTL which were mapped on chromosomes 1D, 3A, 4D, and 6A for kernel number spike
-1

.  Liu 

et al. (2010) found six marker-trait associations on chromosome 4A. McIntyre et al. (2010) 

detected three putative QTL which explained 5-8% of the variation on chromosomes 1D, 4D and 

6B for high kernel number per spike. All three QTL were co-located with QTL for high harvest 

index, and two of them were also co-located with QTL for high kernel weight.  

Spike number is strongly related with kernel number per unit area, the main yield 

component of wheat. In the study conducted by Neumann et al. (2011), five multi-trait MTA 
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were identified on 1A, 1D, 4A, 5B and 7A. However, spike number-specific MTA were found 

on chromosomes 2A, 2B and 7B with significant MTA on 2B in all years. Cuthbert et al. (2008) 

also found five QTL on chromosomes 3B, 5A (2), 5B and 7D with the QTL on chromosome 3B 

explaining about 10% of the phenotypic variation in spike number m
-2

. Huang et al. (2003) found 

QTL on chromosomes 1BL, 2AL, 2DL, 3BS, 4DS, 5DL, 6DL and 7AS for tiller number per m
2
. 

1.5.6 Above ground dry biomass  

Wheat yield genetic gain has been achieved mainly through increasing harvest index. Dry 

matter accumulation is the focus of future wheat yield increase as the optimum harvest index has 

already been achieved in modern winter wheat cultivars. Since dry biomass is a quantitatively 

inherited trait, it is important to understand the genetic bases for biomass production in wheat. 

Several studies have been conducted for biomass QTL/genes identification. A total of 12 trait-

specific MTA were detected for above ground biomass by Neumann et al. (2011). Those 

associated markers were located on chromosomes 1D, 3B, 4B, 5B, 6A, 6B and 7B. Kirigwi et al. 

(2007) also reported QTL for biomass and biomass production rate on chromosome 4AL. Kadam 

et al. (2012) detected three QTL for shoot biomass on chromosome 4B despite inconsistency of 

positive allele contributions across environments. Eight QTL with intermediate effect (explained 

5.6 to 8.2% phenotypic variation) were detected under different moisture levels in Colorado 

environments, and only one QTL detected on chromosome 2D showed consistency across 

environments (El-Feki, 2010). 

1.5.7 Single kernel characters and test weight 

The single kernel characterization system (SKCS) (Perten Instruments, Springfield, IL) is 

an instrument designed to measure traits such as single kernel weight, single kernel diameter and 

single kernel hardness by crushing the kernels (Osborne and Anderssen, 2003). Single kernel 
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characters such as single kernel weight and single kernel diameter affect grain yield. Grain 

hardness and test weight are also important quality traits in wheat. Hence, understanding the 

genetic basis of these traits is important to improve both grain yield and end use quality of wheat. 

Campbell et al. (1999) evaluated 78 RILs of wheat across six environments and detected QTL 

for kernel width on chromosomes 1A, 2A, 2B, 2DL and 3DL. Similarly, markers on 

chromosomes 1A, 1B, 3B and 7A were associated with test weight (grain volume weight). 

Although kernel width had many QTL in common with kernel area (obtained from digital image 

analysis) and test weight, it had no QTL in common with kernel length (Campbell et al., 1999). 

El-Feki (2010) reported QTL for kernel diameter on chromosomes 1A, 2B, 2D, 3B, 6A, 7B and 

7D. 

Huang et al. (2006) found QTL for test weight on chromosomes 4A, 4D, 2D, 5A and 7A 

with the QTL on 4D explaining the maximum 13.1% of the phenotypic variation. McCartney et 

al. (2005) found 10 QTL for test weight on chromosomes 1B, 1D, 2B, 2D, 3B, 3D, 4D, 5D, 6B 

and 7D with the most significant QTL on chromosomes 3B and 4DS. The QTL on 4DS 

coincided with a plant height QTL and explained 17.4% of the test weight variation. The reduced 

plant height at this QTL was also associated with reduced test weight. Test weight QTL were 

detected on chromosomes 1B, 6B, 7A and 7D in the study conducted by El-Feki (2010) in winter 

wheat in Colorado environments. 

1.6 Phenological, morphological and drought related traits and their genetic control 

1.6.1 Phenological traits: days to heading, days to maturity and grain filling duration 

Heading time is an important trait for adaptation of wheat to its target environments 

including moisture stress areas (Lin et al., 2008). It is one of the traits effectively used in 

classical plant breeding programs as a mechanism of escaping terminal moisture stress and 
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freezing injury in early spring. Furthermore, heading date is a highly heritable trait in wheat and 

hence selection is usually effective.   

Heading date is regulated by three well-characterized groups of loci namely, 1) 

vernalization requirement (VRN), 2) photoperiod response (Ppd) and 3) earliness per se (Eps). 

The requirement of exposing seeds to a period of cold temperature for flower induction in winter 

wheat is controlled by VRN genes (VRN1 and VRN2). Vernalization genes, VRN1 and VRN2, 

play an important role in vernalization pathways of both wheat and barley (Bennet et al., 2012; 

Fu et al., 2005). The VRN1 genes are dominant for the spring growth habit whereas the VRN2 

genes are dominant for the winter growth habit (Yan et al., 2003, 2004a, 2004b).  In wheat, the 

VRN1 genes (Vrn-A1, Vrn-B1 and Vrn-D1) have been mapped on the homoeologous group 5 

chromosomes (5AL, 5BL and 5DL) (Lin et al., 2008). The VRN2 locus is located on 

chromosome 5BL over 50 cM distal to the Vrn-B1 gene, but it had strong epistatic interaction 

with the VRN1 genes (Bennet et al., 2012). A dominant allele of VRN3, another vernalization 

gene mapped to chromosomes 7BS and 7DS, is responsible for spring growth habit (Kuchel et 

al., 2006; Yan et al., 2006; Chen et al., 2010). Generally, there are three types of wheat based on 

vernalization requirement, viz. winter, semi-winter (or facultative) and spring types. 

Genes that regulate photoperiod sensitivity in wheat are located on group 2 

homoeologous chromosomes. In order of their potency, these genes are Ppd-D1, Ppd-B1 and 

Ppd-A1, located on chromosomes 2DS, 2BS and 2AS, respectively (Bennet et al., 2012; Beales 

et al., 2007; Worland et al., 1998). Wheat is naturally a long-day plant, and photoperiod-sensitive 

varieties need an extended period of long days to initiate floral primordia. There are some 

genotypes that can flower under short days (Griffiths et al., 2009). Photoperiod insensitivity in 

bread wheat is controlled by dominant alleles at the Ppd-D1 and Ppd-B1 loci, which ensure early 



 

33 

 

heading both under short-days and long-days by reducing sensitivity to photoperiod (Worland et 

al., 1994). Bennet et al. (2012) evaluated 368 doubled haploid lines in seven environments and 

genotyped the lines with 850 SSR markers. They found the most significant QTL for ear 

emergence time on chromosomes 2BS and 2DS which coincided with positions of Ppd-B1 and 

Ppd-D1, respectively. They also detected significant QTL on chromosome 5BL where the Vrn-

B1 gene had been previously mapped. QTL were also detected on the homoeologous group 7 

chromosomes, possibly associated with VRN3 which was physically assigned to the chromosome 

arms 7AS, 7BS and 7DS (Yan et al., 2006). 

Vernalization and photoperiod genes confer mainly gross adaptation to mega-

environment. However, local adaptation (i.e., fine-tuning flowering time) is facilitated by the 

earliness per se (Eps) genes, which promote flowering independent of environmental signals (or 

vernalization and photoperiod response) (Bennet et al., 2012; Griffiths et al., 2009). Previous 

studies have shown that all chromosomes of wheat have been involved in the genetic control of 

earliness per se (Bennet et al., 2012). Chromosomes that harbored QTL for earliness per se 

include 2BL, 3A, 4B, 4D, 6B and 7B ( Scarth and Law, 1983; Flood and Halloran, 1983).  

However, overall earliness per se genes are known to map to group 2 and 4 chromosomes and 

chromosomes 3A, 6B and 7B (Shah et al., 1999). From a study on recombinant inbred lines 

developed from spring wheat parents, Lin et al. (2008) observed that QTL for earliness per se 

contributed more to the flowering time variation in the population than vernalization and 

photoperiod genes. 

Cuthbert et al. (2008) found seven QTL on chromosomes 1B, 2D, 3A, 5A, 6B, 7B and 

7D, with the QTL on 5AS  explaining 14.6% of the phenotypic variation in heading date. QTL 

for days to maturity were detected on chromosomes 1B, 3B, 5A, 5B, 6B, 7A, 7B and 7D. Out of 
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these, QTL on 6B explained the largest proportion of phenotypic variation (16.8%) followed by 

QTL on 7B (11.9%) and 5B (11.8%).  

Wang et al. (2009) detected a total of eight QTL on chromosomes 1B, 2B, 3B, 5D and 

6D for flowering time by evaluating 142 RIL in four environments while seven QTL were 

detected on chromosomes 1B, 2A, 4B, and 6D for days to maturity.  Huang et al. (2006) found 

QTL for days to maturity on chromosomes 2D, 5D and 7D, and the maximum phenotypic 

variation was explained by QTL on chromosome 7D. Results from Marza et al. (2006) also 

indicated the presence of QTL on chromosomes 3BL, 5B and 6B for heading date, while 

maturity date QTL were detected on chromosomes 1B, 3AS and 6B. Kulwal et al. (2012) studied 

208 elite soft white winter wheat lines for one year and detected QTL for days to heading on the 

short arm of chromosome 2B. Chu et al. (2008) detected QTL for heading date on chromosomes 

5AL and 5BL by studying 120 doubled haploid wheat lines, with a QTL detected on 5BL 

explaining 39% of the phenotypic variation in heading date. In the association analysis of 

Neumann et al. (2011) marker-trait associations shared between heading date and flowering time 

were located on chromosomes 1B, 5D, 6A and 7A. El-Feki (2010) found seven QTL for heading 

date; a QTL detected on chromosome 7D within the interval of the VRN3 gene was detected in 

all test environments and explained 32.1 to 42.6% of the phenotypic variation. 

According to the study conducted by Cuthbert et al. (2008) on doubled haploid lines 

derived from two spring wheat parents, QTL for grain-filling duration (a period from heading 

date to physiological maturity) were detected on chromosomes 2D, 3A, 5A, 5B and 7D; the 

explained phenotypic variation was in the range of 3.9-7.2%. Hanocq et al. (2007) conducted 

meta-QTL analysis from 13 previous independent studies and found that photoperiod response 

genes on group 2 and vernalization genes on group 5 chromosomes were frequently involved in 
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controlling heading date in wheat with intermediate effects of other heading date QTL on 

chromosomes 2B, 4A, 4B and 5B.  

Wang et al. (2009) identified six QTL for grain-filling duration on chromosomes 1A, 3B, 

5D and 6D across two environments. Moreover, the phenotypic correlation of grain-filling 

duration with flowering time was negative and significant, whereas its correlation with days to 

maturity was negligible. Furthermore, the heritability of grain-filling duration was the lowest of 

all the traits evaluated such as grain filling rate, thousand kernel weight, flowering time, kernel 

number spike
-1

, kernel weight spike
-1

, days to maturity and plant height. It has been suggested 

that yield improvement efforts should be focused more on grain-filling rate than grain-filling 

duration (Wang et al., 2009). Kirigwi et al. (2007) identified QTL for grain-filling rate on 

chromosome 4A.  

1.6.1.2 Leaf senescence 

“Stay green” or delayed senescence plays an important role in grain development during 

stress conditions by allowing plants to retain their green leaves for a prolonged grain filling 

period (Kumari et al., 2012). Leaf senescence is a genetically programmed cell death that can be 

modified by both abiotic and biotic factors. It is a result of catabolism of chlorophyll, proteins, 

lipids and nutrient remobilization into developing grains (Vijayalakshimi et al., 2010; Srivalli 

and Khanna-Chopra, 2009).  Stay green might contribute to higher yield and enhance heat 

tolerance if normal photosynthesis duration is prolonged and/or there is high intrinsic chlorophyll 

concentration. There is a stay green type which results from the lesions in the chlorophyll 

catabolism and a lack of photosynthesis competence (Kumar et al., 2010; Keran et al., 2007; 

Kumari et al., 2007).  
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The genetic basis of the stay green trait has been studied in crops including rice, soybean 

(Glycine max (L.), sorghum, maize and bread wheat (Kumar et al., 2010; Joshi et al., 2007a; 

Spano et al., 2003; Silva et al., 2000).  Those studies confirmed the presence of genetic variation 

and the quantitative nature of the stay green trait for different crop species (Vijayalakshimi et al., 

2010; Thomas and Howarth, 2000). For rice, 46 QTL distributed on all 12 chromosomes have 

been reported while 83 stay green QTL have been reported for sorghum in a total of seven 

studies (Mace and Jordan, 2011). Stay green QTL have also been reported for maize (Bertin and 

Gallais, 2001). The winter wheat flag leaf senescence QTL were detected on long arms of 

chromosomes 2D and 2B under drought stress and irrigated condition, respectively (Verma et al., 

2004).  Another stay green QTL mapping study in  wheat identified  three QTL on chromosomes 

1AS, 3BS and 7DS from a recombinant inbred population developed from crossing stay green 

and non-stay green parents (Kumar et al., 2010). The QTL of stay green on 3BS was found in the 

same region with QTL for plant height. In that study, stay green was positively correlated with 

grain-filling duration, grain yield and biomass, indicating the importance of stay green for grain 

yield particularly under stress conditions. A QTL mapping study conducted in a winter wheat 

population of 101 RIL indicated that QTL for leaf senescence-related traits were distributed on 

most chromosomes under optimum conditions, but under heat stress they were mainly located on 

chromosomes 2A, 6A and 6B (Vijayalakshimi et al., 2010). Naruoka et al. (2011) detected stable 

QTL on chromosomes 2D and 5B for green leaf duration after heading by evaluating 91 RIL of a 

bi-parental spring wheat mapping population across several environments. These QTL co-

segregated with Ppd-D1 and Vrn-B1 genes.  El-Feki (2010) detected only two QTL on 

chromosomes 2B and 7D for flag leaf senescence measured  in a single environment. 
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1.6.2 Morphological and drought related traits 

1.6.2.1 Plant height 

Optimum plant height is required for better yield in wheat, as tall plants are susceptible to 

lodging and excessively short plants are often associated with a yield penalty in resource limited 

areas (e.g., moisture stress environment) (Griffiths et al., 2012). Dwarfing genes Rht-D1b and 

Rht-B1b, which are insensitive to gibberellic acid, have increased grain yield in most resource 

rich environments through reducing lodging susceptibility and increased grain number (Rebetzke 

et al., 2012). Since the Rht-D1b and Rht-B1b alleles are also associated with reduced coleoptile 

length and poor seedling vigor, there is an interest in introducing alternative gibberellic acid 

responsive dwarfing alleles with a potential for reducing plant height without affecting coleoptile 

length. The Rht8 gene on chromosome 2DS is a potential candidate in the development of semi-

dwarf wheat varieties with long-coleoptiles (Rebetzke et al., 2012; Griffiths et al., 2012).  

Besides dwarfing genes, photoperiod-insensitive alleles at Ppd-D1 on chromosome 2DS 

and Ppd-B1 on 2BS have pleiotropic effects on plant height (Griffiths et al., 2012). In addition to 

these major genes, several studies indicated the presence of QTL for plant height.  In the 

Neumann et al. (2011) study, marker-trait associations common to plant height and peduncle 

length were detected on chromosomes 1A, 2B, 4A and 7B and plant height-specific markers 

were located on chromosome 1B, 4A, 6B and 7A.   

A significant association of DArT marker wpt730772 with plant height was detected on 

chromosome 6AS by Kulwal et al. (2012) who studied 208 elite soft white winter lines for one 

season in a single environment. Haung et al. (2003) found plant height QTL on chromosomes 

2BL, 4BL, 4DS, 6AL and 7BS. However, McCartney et al. (2005) detected plant height QTL 

next to Rht-D1 gene on chromosome 4D; they also found another minor plant height QTL on 
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chromosome 2D that was not related to Rht8 or Ppd-D1, but may correspond to the peduncle 

length QTL reported  by Borner et al. (2002). Marza et al. (2006) found QTL for plant height on 

chromosomes 2BL, 2BS, 2DL, 3BL, 4B and 6A based on a RIL population evaluated at three 

locations for three seasons. 

Wang et al. (2009) detected a total of six QTL for plant height on chromosomes 1D, 2D, 

3D and 4D in two of the total four environments.  Griffiths et al. (2012) studied four doubled 

haploid populations with population size ranging from 93 to 202, and found 16 QTL for plant 

height on chromosome 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4D, 5A, 5B, 6A, 6B and 6D. With the 

exception of homoeologous group 7, at least one chromosome from all homoeologous groups 

harbors a region that affects plant height. Liu et al. (2010) detected a marker-trait association for 

plant height on chromosome 4A (7.6 cM). Huang et al. (2006) found four QTL for plant height 

on chromosomes 4B, 4D, 5D and 7B using 185 DH lines, and the QTL on chromosome 4D 

(closest marker Xwmc52) explained 29.2% of the phenotypic variation. Ten plant height QTL 

were detected in the study conducted in Colorado environments, and a QTL detected on 

chromosome 6A was stable across environments (El-Feki, 2010). 

1.6.2.2 Flag leaf width, length and flag leaf area 

Flag leaf photosynthesis contributes 30 to 50% of the canopy photo-assimilates during 

grain-filling in wheat (Lupton, 1966). Inoue et al. (2004) also found a higher photosynthetic rate 

for a drought tolerant wheat cultivar compared to a drought sensitive one. However, water deficit 

during the period of leaf expansion reduces crop leaf area, radiation interception and green leaf 

duration, and accelerates senescence; consequently, yield component traits such as kernel 

number and harvest index are directly affected (Araus et al., 2008). Although flag leaf width and 

length measurements can be conducted more quickly than most other yield component traits, 
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previous studies showed that the associations of these traits with economically important traits 

(e.g., grain yield) were either absent or inconsistent across environments (Hansen et al., 2005; 

Blake et al., 2007). Nine flag leaf QTL that individually explained 5.2 to 11.0% of the 

phenotypic variation were reported by El-Feki (2010), and three QTL on chromosomes 1B, 2B 

and 6B were detected in two environments. In the same study, eight QTL were obtained for flag 

leaf width, and only two QTL on chromosome 1B and 2D were detected in two environments. 

The remaining flag leaf width QTL were environment specific. 

1.6.2.3 Normalized difference vegetation index (NDVI) and drought susceptibility index  

Spectral reflectance indices have shown promise to estimate biomass production, yield, 

relative water content and nutrient deficiencies (Gutierrez et. al., 2010; Prasad et al., 2007). The 

basic idea of spectral reflectance properties is that a trait is associated with absorption of light at 

specific wavelengths and show unique reflectance patterns at specific wavelengths of the light 

spectrum (Reynolds et al., 1999). NDVI has been applied for estimating overall canopy 

greenness, nitrogen use efficiency and grain yield in wheat drought tolerance research. It has 

been hypothesized that NDVI may be used for indirectly selecting for higher biomass and yield 

in breeding programs. However, there have been contradictory reports regarding the relationship 

between NDVI measurements at different growth stages and yield (Hazratkulova et al., 2012). 

Some studies indicated that NDVI was well associated with yield during the grain-filling stage 

but not during the vegetative stage (Freeman et al., 2003; Hazratkulova et al., 2012), and other 

studies showed an association of NDVI with yield at the booting, heading and grain-filling stages 

of wheat (Babar et al., 2006; Wang et al., 2010). Identifying the chromosome regions that NDVI 

shares with biomass and yield might be useful to understand the genetic basis for the relationship 
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between NDVI with other traits and efficiently utilize the trait as an indirect selection criterion in 

grain yield improvement.  

Association analysis of 305 diverse maize lines genotyped for 2052 SNPs indicated that 

30 SNPs (23 QTL) were associated with NDVI measured at seven stages, both under dry and 

irrigated conditions, with three loci in common with plant height (Lu et al., 2012). In wheat, 

QTL have been detected for NDVI on chromosomes 2BL and 3BS based on the study conducted 

on a population of 249 RILs of durum wheat which were evaluated across a broad range of 

Mediterranean environments (Maccaferri et al., 2008). El-Feki (2010) identified three marginally 

significant QTL for NDVI on chromosomes 3A, 4B and 6A in a single environment for a winter 

wheat bi-parental doubled haploid population.  

The drought susceptibility index (DSI) has been used as a criterion for distinguishing 

drought tolerant genotypes from susceptible ones. It is derived from the yield difference between 

non-stress and stressed environments (Blum et al., 1989). Kirigwi et al. (2007) studied 127 RILs 

of spring wheat under irrigated and moisture stress conditions, and detected QTL for DSI on 

chromosome 4AL at marker positions 64.4, 80.3 and 84.9 cM with the QTL detected at marker 

position 64.4 cM explaining 41% of the phenotypic variation. Similarly, Kadam et al. (2012) 

evaluated 206 spring wheat RILs derived from a cross between a high yielding but drought 

susceptible variety and a low yielding but drought tolerant variety under drought and control 

conditions for two years. A consistent QTL for DSI was detected on chromosome 4BS. This 

QTL was also associated with grain yield per plant, harvest index and root biomass under 

drought.  El-Feki (2010) reported DSI QTL on chromosomes 5B and 7B for a winter doubled 

haploid bi-parental mapping population that was evaluated under moisture stress and irrigated 

conditions in Colorado. 
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Although many QTL have been reported for yield and yield components, and drought- 

related traits for wheat, the majority of the QTL have been detected with bi-parental populations 

with low resolution. In addition, limited information is available for effects of drought tolerance 

candidate genes on yield, yield components, and drought tolerance related traits. 

Therefore, the objectives of the current study are: 

1. To test the association of chromosome regions with yield, yield components, and 

drought tolerance-related traits using a genome-wide association mapping approach. 

2. To associate polymorphisms in selected drought tolerance candidate genes with yield, 

yield components, and drought tolerance-related traits.   
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CHAPTER 2 

Genome Wide Association Mapping for Yield and Yield Components of Spring Wheat 

under Contrasting Moisture Regimes  

 SUMMARY  

Genome-wide association mapping is becoming a widespread method to identify 

quantitative trait loci (QTL) in crop plants including wheat (Triticum aestivum L.). Its benefit 

over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium 

(LD) in the mapping population and dense marker coverage across the genome.  

The objectives of this study were to determine LD decay rate and population structure in 

a spring wheat association mapping panel and to identify markers associated with yield and yield 

components, morphological, phenological, and drought tolerance-related traits. The study was 

conducted under fully irrigated and rainfed conditions at Greeley, CO and Melkassa, Ethiopia in 

2010 and 2011 (five total environments). The size of the panel varied from 285 to 294 depending 

on the location and year. 

 Genotypic correlation coefficients and heritability estimates were calculated for each 

trait. Grain yield was positively correlated with kernel number, harvest index, final biomass and 

test weight, but negatively correlated with days to heading. Grain volume weight and single 

kernel weight, diameter, and hardness had higher heritability estimates than yield and the 

remaining yield component traits.  

Genotypic data was generated for 287 lines using Diversity Array Technology (DArT) 

markers. LD, population structure and kinship were determined for the mapping population from 
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the marker data. LD decay rate extended over a longer genetic distance (6.8 cM) for the D 

genome than for the A and B genomes (1.7 and 2.0 cM, respectively). Population structure, 

kinship and marker data were used in a mixed model to associate markers with phenotypic traits. 

A stable QTL was detected for grain yield on chromosome arm 2DS both under irrigated and 

rainfed conditions. A multi-trait region significant for yield and yield components was detected 

on chromosome 5B. A grain yield QTL on chromosome 1BS was co-localized with harvest 

index QTL, explaining the high positive genotypic correlation between grain yield and harvest 

index. A QTL for NDVI overlapped with a harvest index QTL on chromosome 1AL, while green 

leaf area shared a QTL region with harvest index on chromosome 5A. Clusters of QTL for flag 

leaf characters (leaf area, length, and width) were detected on chromosome arms 3BL and 5BL. 

Heading date QTL were detected on chromosomes 2B, 3AL, 3B and 7DS, while plant height 

QTL were detected on chromosome arms 3BL, 6AS and 7BL. Generally, in this study both 

stable and environment-specific QTL were detected for yield, yield components, and drought 

tolerance-related traits. After validation of their effects, the detected QTL may be used in 

breeding programs to improve performance of wheat under both irrigated and rainfed conditions.  
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2.0 INTRODUCTION 

Wheat is the world’s third most important food crop next to maize (Zea mays L.) and rice 

(Oryza sativa L.) (Green et al., 2012). It accounts for 19% of total production among major 

cereal crops and provides 55% of the carbohydrates consumed by humans around the world 

(Gupta et al., 1999; Bagge et al., 2007). However, its productivity is often reduced by both biotic 

and abiotic stresses and its potential yield is rarely achieved.  

Drought is one of the most serious factors reducing crop productivity throughout the 

world (Peleg et al., 2009; Salekdeh et al., 2009; Ahuja et al., 2010), regularly affecting as much 

as 50% of the global wheat production area (Pfeiffer et al., 2005).  Since water is a limiting 

factor in crop production, all factors that limit plant access to water aggravate the impact of 

drought. Furthermore, anticipated world-wide climate change will elevate temperature which 

accelerates evaporative-transpiration loss during the day and increases photorespiration at night 

(Habash et al., 2009; Mir et al., 2012). This results in reduced crop productivity and thus food 

insecurity on a global scale.  

Plant breeding has successfully improved crop resistance to both biotic and abiotic 

stresses, including drought, through phenotypic selection (Araus et al., 2008; Cooper et al., 

2009). However, the progress has generally been slow, and there is a large yield gap between 

drought prone areas and ideal production regions for most crops, including wheat. Many 

previous studies have shown that tolerance to drought is a complex quantitative trait that 

involves multiple chromosome regions (Fleury et al., 2010; Barnabas et al., 2008; Ravi et al., 

2011; Mir et al., 2012). It is further complicated by the fact that the degree of drought effects on 

plants depends on timing, duration and intensity of drought, and different traits may be required 

for different patterns of drought (Passioura, 2012). Plant drought resistance can be broadly 
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categorized into three mechanisms (Levitt, 1972): 1) dehydration avoidance, maintaining cellular 

moisture through strategies of increasing soil moisture capture, water use efficiency and osmotic 

adjustment 2) dehydration tolerance, e.g., stem reserve mobilization and delayed senescence (i.e., 

stay green) 3) dehydration escape, e.g., early flowering. Suitable crop cultivars should combine 

drought resistance mechanisms with high and stable yield for sustainable crop production in 

drought prone regions (Habash et al., 2009).   

Genetic improvement under drought requires identifying sources of traits associated with 

drought tolerance and introgressing the genes underlying the target traits to locally adapted 

cultivars. The challenge for implementing this strategy in breeding programs is the identification 

of the most suitable target traits in a time-efficient and cost-effective way for different drought 

scenarios (Passioura, 2012). Recent advancements in high throughput genotyping and 

phenotyping have improved understanding of the physiological and molecular bases underlying 

complex traits including drought tolerance (Collins et al., 2008; Habash et al., 2009; Mir et al., 

2012; Sinclair, 2012). QTL mapping is a key approach for understanding the genetic architecture 

of complex traits in plants (Holland, 2007). However, QTL mapping using bi-parental 

populations explains only a small portion of the genetic architecture of a trait because only two 

alleles per locus can be evaluated at a time. Other limitations of bi-parental populations are low 

mapping resolution, population specificity of detected QTL, and the long time required to 

develop mapping populations. These limitations have partly contributed to the slow transfer of 

knowledge from bi-parental QTL studies to practical applications in plant breeding.  

The advent of association mapping approaches has overcome some of the limitations of 

bi-parental mapping populations. Since association mapping utilizes diverse germplasm, QTL for 

many traits can be detected at high-resolution in a single study, making the method more 
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efficient and less expensive than bi-parental QTL mapping (Breseghello and Sorrells, 2006; 

Ersoz et al., 2009; Sorrells and Yu, 2009; Waugh et al., 2009). The resolution and power of 

association studies, however, depend on the extent of LD across the genome. LD needs to be 

determined in each study as it is affected by several factors such as population history, 

recombination frequency and mating system. 

The correlation of allele frequency (r
2
) among the markers is the common statistic used to 

measure LD (Gupta, 2005; Sorrells and Yu, 2009). LD is expected to decay as a function of the 

nucleotide or linkage distance, as recombination reduces LD. This guides decisions on the 

number of markers required to conduct association mapping in a crop species (Waugh et al., 

2009). To visualize LD patterns and the rate of LD decay for a chromosome, r
2
 values are 

usually plotted against nucleotide or linkage distance (Abdurakhmonov and Abdukarimov, 

2008).  

Previous studies have demonstrated unique LD patterns for different crop species and 

populations within a species, with rapid levels of LD decay observed in cross-pollinated species 

(e.g., maize) compared to self-pollinated species (e.g., wheat) (Wilson et al., 2004; Chao et al., 

2007; Comadran et al., 2009).  Although association mapping has advantages over bi-parental 

populations, QTL identification could be confounded by population subgroups and plant 

phenology. Another limitation of this method is that markers with low allele frequencies are 

often not considered in association analysis. However, statistical models have been developed to 

account for population structure and familial relationship among the genotypes in the mapping 

panel (Yu et al., 2006). 

Association mapping has been used successfully to detect QTL in wheat for disease 

resistance (Crossa et al., 2007; Maccaferri et al., 2010; Yu et al., 2011; Yu et al., 2012; Adhikari 
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et al., 2012); end-use quality traits (Breseghello and Sorrells, 2006; Zheng et al., 2009), Russian 

wheat aphid (Diuraphis noxia) resistance (Peng et al., 2009), and yield and yield component 

traits (Maccaferri et al., 2011; Neumann et al., 2011). The suitability of DArT markers for 

association studies has been proved particularly for species lacking cost effective single 

nucleotide polymorphism (SNP) markers (Benson et al., 2012). However, the majority of 

previous studies have been conducted either with low marker density or a small number of lines 

in the mapping population. Therefore, the objectives of the present study were to (1) determine 

LD decay rate in a spring wheat association mapping panel, (2) analyze population structure in 

the panel, and (3) identify markers associated with yield and yield components, morphological, 

phenological and drought tolerance-related traits.  

. 
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2.1 MATERIALS AND METHODS 

2.1.1 Mapping population 

The spring wheat association mapping panel used in this study (WAMII, wheat 

association mapping II) was originally developed by the International Maize and Wheat 

Improvement Center (CIMMYT) with the intention of identifying QTL/genes for drought and 

heat tolerance. The panel comprised a total of 294 diverse lines which were assembled from the 

Elite Spring Wheat Yield Trial (26
th

, 27
th

 and 28
th

 ESWYT), Semiarid Wheat Yield Trial (1
st
 to 

16
th

 SAWYT) and High Temperature Wheat Yield Trial (HTWYT) (Lopes et al., 2012). Many 

synthetic hexaploid-derived wheat lines were included in the panel (Lopes and Reynolds, 2012). 

A complete list of the association mapping panel (WAMII) is presented in Table A.1. In the 

study reported here, 283 to 294 lines were evaluated depending on the location and year due to 

limitations in seed quantity. 

2.1.2 Experimental design and phenotypic trait evaluation  

In 2010, a total 285 lines (including two local check cultivars, Reeder and Butte 86 

(Mergoum et al., 2006)) were evaluated under fully irrigated conditions at the USDA-

Agricultural Research Service Limited Irrigation Research Farm in Greeley, CO (latitude 40º 27’ 

N; longitude 104º 38’ W; elevation 1427 m). The trial was planted on April 5, 2010. The soil at 

the site is well-drained with fine sandy loam to clay loam texture and a pH range of 7.4-8.4. The 

site received a total of 271 mm of rainfall from January through July in 2010 (Table A.2), and 

the experimental plots were supplemented with 93.8 mm from three irrigations (twice during the 

vegetative stage and once after heading). 

In 2011, we evaluated 288 lines (including two local checks, SD3870, a breeding line 

form South Dakota and Granger (Glover et al., 2006)) at Greeley under both fully irrigated and 
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rainfed conditions. The irrigated treatment was supplemented three times with drip irrigation, 

(twice before flowering and once during the grain filling stage), while the rainfed treatment was 

irrigated only once at flowering to avoid complete failure of the experiment. Therefore, the 

irrigated treatment received a total of 313 mm water (rain plus irrigation) whereas the rainfed 

treatment received only 192 mm water (rain plus irrigation) from January to July (Table A.3).  

In the 2010 and 2011 experiments at Greeley, the lines were planted in four-row plots 

1.52 m wide and 0.92 m long with 0.20 m spacing between rows and a seeding rate of 

approximately 173 seeds m
-2

. Each entry was replicated twice in a Latinized incomplete block 

row-column design with CycDesign 3.0 software (www.cycdesign.co.nz). The experimental field 

was maintained free of weeds by manually removing weeds as required. In both seasons, the 

plants experienced heat stress mainly from heading through physiological maturity, as maximum 

temperatures were over 30
o
C for a total of 13 days in June and 22 days in July 2010; 

temperatures exceeded 30
o
C for 15 days in June and 27 days in July 2011.  

A total of 294 lines was planted at the Melkassa Agricultural Research Center of the 

Ethiopian Institute of Agricultural Research, Melkassa, Ethiopia (latitude 8
o
 24’ N; longitude of 

39
o
 21’E, elevation 1550 m), on 17 July 2011 on wet soil from rain in the previous few days. The 

same set of lines was planted on drier soil on 19 July 2011. The dominant soil type at Melkassa 

is sandy loam (Andosol of volcanic origin) with pH ranging from 7.0 to 8.2 (). The experiment 

was laid out as an alpha lattice design with 14 entries per incomplete block and two replications. 

A two-row plot of length 2.5 m, width 0.4 m and between row spacing of 0.20 m was used. 

Seeding rate was based on the local recommendation of 150 kg ha
-1

. Nitrogen fertilizer was 

applied in split doses at planting and tillering at a rate of 50 kg ha
-1

 for each dose. Phosphorus 

fertilizer was applied as diammonium phosphate at planting at the rate of 100 kg ha
-1

. The site 

http://www.cycdesign.co.nz/
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received a total of 533 mm rainfall during the growing season (July-September, 2011). The 

average maximum and minimum temperatures for the four month period (July-October, 2011) at 

Melkassa were 27.3 
o
C and 8.5 

o
C, respectively (Table A.4). The temperature was below 30 

o
C 

for all days from emergence time through physiological maturity. 

The phenotypic traits evaluated in this study are defined as follows. Plant height was 

recorded as the average of three values for each plot measured in cm from the soil surface to the 

tip of the spike excluding awns. Days to heading was recorded as the number of days from 

planting until 50% of the spikes in each plot had completely emerged above the flag leaves. Days 

to maturity was recorded as the number of days from planting until 50% of the peduncles in each 

plot had turned yellow. Grain filling duration was calculated as the difference between the days 

to heading and days to maturity. Normalized vegetation index (NDVI) was obtained by scanning 

plants in each plot at the grain filling stage with a GreenSeeker instrument model 3541 (NTech 

Industries Inc., Boulder, CO). Green leaf area was obtained from a photo taken at a height of 

approximately 0.5 m directly above each plot with a digital camera (Coolpix S8100, Nikon 

Corp., Japan) during vegetative stage , and pictures were processed with Breedpix software 

(Casadesus et al., 2007). Leaf senescence was scored on a scale from 0 to10, where 0 indicates 

completely green leaves and 10 indicates that all leaves in a plot had changed completely to 

yellow. Flag leaf length (measured from the leaf collar to the tip) and width (measured at the 

widest part of the flag leaf) were recorded as the average measurement of three flag leaves per 

plot. Flag leaf area (cm
2
) was calculated as flag leaf length x flag leaf width x 0.75.  

Single kernel diameter (mm), kernel hardness and single kernel weight (mg) were 

determined from 100 seeds (sampled from grain yield of biomass sample) in a single kernel 

characterization system instrument Model 4100 (Perten Instruments, Springfield, IL). Spike 
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length, spikelet number per spike, kernel number and weight (g) per spike, and kernel number 

per spikelet were recorded as the average of five spikes per plot. Thousand kernel weight was 

determined by extrapolation after counting seeds of five spikes with a seed counter (International 

Marketing and Design Corp Model 900-2; San Antonio, TX) and obtaining the weight of the 

seeds. Number of spikes m
-2 

was calculated by dividing the number of kernels m
-2

 by kernel 

number per spike. The number of kernels m
-2

 was obtained from the ratio of grain weight m
-2

 to 

thousand kernel weight, multiplied by 1000. Final dry biomass was determined by weighing 

samples after 48 hours in a 40 
o
C drier. These samples were threshed to obtain grain weight, and 

harvest index was recorded as the ratio of grain weight to oven-dried biomass of the 1-m strip. 

Grain yield was the total weight of seed yield in each plot divided by the plot area and expressed 

as kg ha
-1

.  

Test weight (kg hL
-1

) was determined using standard procedures from a small sample of 

the grain collected at harvest. Drought susceptibility index (DSI) was calculated using grain yield 

and kernel number m
-2

 under irrigated and rainfed conditions as described by Fisher and Maurer 

(1977). DSI= (1-Yd/Yi)/DII, where Yd=yield of each line in the dry treatment, Yi=yield of each 

line under fully irrigated conditions and DII =1-(Ydm/Yim) where Ydm is the average yield of the 

dry treatment and Yim is the average yield of the irrigated treatment. Traits measured in this study 

are presented in Table 2.1. Some of the traits were not measured in all environments.  
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Table 2.1. Lists of Traits evaluated in the WAMII spring wheat association mapping panel in 

five environments. 

  

Traits 

Environments† 

Abbreviations GRW10 GRW11 GRD11 MLKW11 MLKD11 

Grain yield GYLD X X X X X 

Thousand kernel weight TKW X X X X X 

Harvest index HI X X X X X 

Kernel number m
-2

 KN X X X X X 

Spike length  SL X X X X X 

Kernel number spike
-1

 KNS X X X   

Spike number  SN X X X   

Single kernel weight SKW X X X   

Single kernel diameter  SKD X X X   

Single kernel hardness SKH X X X   

Kernel weight spike
-1

 KWS X X X   

Kernel number spikelet
-1

 KNL X X X   

Spikelet number spike
-1

  SPN X X X X X 

Biomass  BM X X X X X 

†GRW10, Greeley irrigated treatment in 2010; GRW11; Greeley irrigated treatment in 2011; GRD11, 

Greeley rainfed in 2011; MLKW11; Melkassa non-stressed treatment in 2011; MLKD11, Melkassa stressed 

treatment 2011. 
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†GRW10, Greeley irrigated treatment in 2010; GRW11; Greeley irrigated treatment in 2011; GRD11, Greeley 

rainfed in 2011; MLKW11; Melkassa non-stressed treatment in 2011; MLKD11, Melkassa stressed treatment 2011. 

Table 2.1. Continued  

Traits 

Environments† 

Abbreviations GRW10 GRW11 GRD11 MLKW11 MLKD11 

Test weight  TW X X X   

Day to heading DH X X X X X 

Days to maturity  DM X X X X X 

Grain filling duration GFD X X X X X 

Flag leaf length LL X X X X X 

Flag leaf width  LW X X X X X 

Flag leaf area  LA X X X X X 

Leaf senescence  LS X  X   

Plant height  PHT X X X X X 

Normalized difference  

vegetation index 

NDVI X X X   

Green leaf area  GA X X X X X 

Kernel number- based 

drought susceptibility 

index  

DSI_KN  

X X 

Grain yield-based drought 

susceptibility index 

DSI-YLD  

X X 
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2.2 Statistical analysis 

2.2.1 Phenotypic data analysis 

The phenotypic data analyses were conducted with SAS v. 9.3 software (SAS Institute 

Inc., Cary, NC). First, the general linear model (GLM) procedure was used get best linear 

unbiased estimates, considering genotype, replications, rows and columns as fixed in the model 

for each environment. Normality of the data for each trait was checked using a Q-Q plot of 

residuals in the SAS GLIMMIX procedure. The presence of statistically significant differences 

among the genotypes for each trait was also checked with the GLM procedure. Then, best linear 

unbiased predictions (BLUPs) and variance components were obtained for all traits using a 

Mixed model procedure, considering genotypes as random and all other factors in the model as 

fixed. Environment was considered fixed in the combined data analysis. To account for spatial 

variations in the experimental field, four spatial variability adjustment models (spatial power, 

anisotropic spatial power, Matérn spatial and autoregressive) were tested for each trait. The 

correlation values due to spatial variability in each model were found to be very low for all data 

sets except for Greeley in 2010. Thus, the autoregressive spatial adjustment model was applied 

for the data set in 2010, but no adjustment was made for the remaining environments.  

Broad sense heritability (h
2
) for all traits in each environment and the combined dataset was 

calculated from variance components (obtained from SAS PROC VARCOMP) as: h
2 

= 

genotypic variance / (genotypic variance + error variance/r) where r = number of replications for 

a single environment. For combined data, heritability estimates were calculated as genotypic 

variance/ ((genotypic variance + (GxE variance/n) + (error variance/nr)) where, n =number of 

environments. Genotypic correlations among traits were estimated using the restricted maximum 
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likelihood estimation (REML) of genotypic variance and covariance components as described by 

Holland (2006). 

2.1.3 Genotypic data analysis  

DArT marker genotypes were obtained following the procedures of Akbari et al. ( 2006) 

at Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au), a whole genome 

profiling service laboratory. A total of 1863 DArT markers were used in the analyses, after 

markers with < 5% allele frequency and those with a high percentage of missing data points (> 

6%) were removed. Genome-wise distribution of the markers was 558 on genome A, 617 on 

genome B, and 290 on genome D (http://www.triticarte.com.au). Chromosome map positions 

were not known for 398 markers. A DArT marker physical map (based on Chinese spring wheat 

deletion lines) (http://www.cerealdb.uk.net/) was used to assign trait-associated markers to 

chromosome arms.  

2.1.3.1 Population structure and linkage disequilibrium analyses 

Seventy-eight markers (3-4 markers spaced > 10 cM per chromosome) were selected 

from all chromosomes (except for chromosome 4D and 5D) from a total of 1863 markers for 

analysis of population structure. To determine population structure, an admixture model with 

correlated allele frequency in STRUCTURE software was applied (Pritchard et al., 2000). A 

burn-in of 20, 000 iterations followed by 20,000 Monte Carlo Markov Chain (MCMC) replicates 

was conducted to test k values (number of subpopulations) in the range of three to 12. Each k 

was replicated five times and the run that assigned the most lines with probability >0.5 in all 

clusters was used. The likely number of subpopulations was determined using the approach of 

Evanno et al. (2005) and the likelihood distribution of k was examined. Genetic distance-based 

cluster analysis was conducted using hclust script in the R package (www.cran.r-project.org) 

http://www.triticarte.com.au/
http://www.triticarte.com.au/
http://www.cerealdb.uk.net/
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using the same 78 markers to compare results with STRUCTURE software output. Multiple 

regression analysis was also done for all phenotypic traits using population subgroups in the 

model to determine the extent of the confounding effect of population structure on the 

phenotypic traits. 

LD among markers was calculated using observed versus expected allele frequencies of 

the markers in TASSEL v.3.0 (Bradbury et al., 2007). Only mapped markers were used for LD 

calculation both for the panel and for model-based subgroups. The critical r
2
 value beyond which 

LD is due to true physical linkage was determined by taking the 95
th 

percentile of the square root 

transformed r
2
 data of unlinked markers (Breseghello and Sorrells, 2006). The percentage of 

marker pairs significant at different critical r
2
 values (0.2 and 0.2641) and P<0.001 was 

determined for each chromosome to compare the degree of LD among chromosomes. Locally 

weighted polynomial regression (LOESS) based curves were fitted on scatter plots of r
2
 versus 

distance among markers. LOESS is a non-parametric method of estimating local regression 

surfaces, and it is a robust fitting method particularly when there are outliers in the data 

(Cleveland, 1979). The LOESS model is written as: 

yi = g(xi) + εi, where yi is i
th

 measurement for a response variable y, xi is the 

corresponding measurement of a predictor variable x, εi is a random error and g is the regression 

function. 

Analysis of molecular variance was conducted using the seven groups with Arlequin 

software (http://cmpg.unibe.ch/software/arlequin3).  

http://cmpg.unibe.ch/software/arlequin3
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2.1.3.2 Marker-trait association (MTA) analysis 

A total of 1863 high quality DArT markers (missing data <6%) was used in this study. 

The GAPIT (Genomic Association and Prediction Integrated Tool) R package (Lipka et al., 

2012) was used to determine the association between markers and phenotypic traits. GAPIT uses 

all algorithms implemented in TASSEL software, but association analysis can be done much 

faster in GAPIT than TASSEL. MTA analysis was conducted for each environment separately 

and combined data using BLUPs for each trait. A mixed linear model was employed by 

including BLUPs, markers, kinship matrix (K) and probability of membership of each line (Q) in 

the model for each trait (Yu et al., 2006). The kinship matrix was calculated as implemented in 

TASSEL software. Kinship is calculated in TASSEL as the proportion of alleles shared between 

each pair of lines. Once this matrix is calculated, the numbers are rescaled between 0 and 2 

(Bradbury et al., 2007). 

Model comparison was made among K (kinship) using the GLM model, Q+K 

(population structure and kinship) using the mixed model, and P+K (principal component and 

kinship) using the mixed model. Mean square of the difference (MSD) based on observed P-

values and expected P-values, and a Q-Q plot were used to compare the models; MTA P-values 

for yield of five environments plus the combined data set were used for model comparisons. 

Among the three models, the model taking into account population structure and genotype 

relationship showed the least deviation from the nominal alpha level in most cases, and it was 

found to be better in controlling false positives. For multiple comparison adjustment, false 

discovery rate (FDR) adjusted P-values were calculated for each trait (Benjamini and Hochberg, 

1995), and FDR=0.05 was taken as the threshold for significance of marker-trait associations. 
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However, since many markers within 10 cM distance were in LD, FDR adjustment is still too 

stringent as it assumes independent testing.   

2.2 RESULTS 

Wide differences among the study materials were visually observed for many traits 

during field evaluations. Water deficit reduced full expression of those traits in rainfed 

treatments despite increased expression for some drought related traits (e.g., leaf waxiness). The 

rainfed treatments at Melkassa experienced water deficit only at the emergence stage, whereas at 

Greeley the rainfed treatment was exposed to water deficit starting from vegetative stage through 

grain filling. Data were collected for a total of 26 traits, but this number varied depending on the 

year and location. 

2.2.1 Agronomic trait means 

Analysis of variance showed significant differences (P<0.05) among genotypes for most 

traits in all environments and for the combined analysis across environments. The mean grain 

yield of individual lines in the five environments were within the range of 1087 kg/ha (recorded 

at Greeley in 2011 under rainfed conditions) to 5377 kg/ha (obtained at Melkassa under non-

stressed conditions). The mean grain yield (2156 kg/ha) recorded under fully irrigated conditions 

in 2010 was the highest of the three trials grown in Greeley (Table 2.2). The vegetative stage of 

the lines (calculated as the number of days from planting to heading) was longer in the Greeley 

environments (mean 68 days) than in the Melkassa environments (mean 55 days). However, the 

grain filling duration at Melkassa was longer than that of the Greeley environments (39 vs 34 

days). On average, the genotypes headed 13 days earlier at Melkassa than at Greeley. Heading 

date ranged from 47 to 69 days at Melkassa and from 63 to 72 days at Greeley (Tables 2.2 and 

2.3). In Melkassa environments plants grew taller than in the Greeley environments. 
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Table 2.2. Mean values of the WAMII spring wheat association mapping panel for traits measured under rainfed and well-watered 

conditions at Greeley, CO in 2010 and 2011.  

  Environments†   

 GRW10 (285) GRW11 (288) GRD11(288)  

Trait‡ Mean Standard 

deviation 

Range Mean 

(W) 

Standard 

deviation 

Range Mean 

(D) 

Standard 

deviation 

Range % reduction 

(D/WX100) 

YLD 2156.00 229.58 1510.00-

2791.00 

1524.00 116.63 1179.00-

1943.00 

1304.00 74.18 1087.00-

1511.00 

14.38 

TKW 35.65 2.33 31.00-

43.20 

21.46 0.86 18.90-

24.50 

25.15 1.64 20.80-

31.60 

-17.21 

DH 67.18 1.37 62.50-

71.60 

70.03 1.01 67.70-

72.30 

68.37 1.04 65.60-

71.10 

2.38 

LL 16.07 1.49 13.00-

21.40 

15.49 0.68 13.30-

19.00 

12.27 0.67 10.40-

14.20 

20.79 

LW 1.51 0.10 1.30-2.00 1.31 0.03 1.20-1.40 1.24 0.03 1.20-1.30 5.50 

DM 103.26 1.37 99.60-

107.20 

104.14 0.86 102.10-

106.80 

99.68 1.24 97.30-

106.80 

4.28 

HI 0.25 0.02 0.20-0.30 0.29 0.03 0.20-0.40 0.36 0.01 0.30-0.50 -26.87 

PHT 62.63 6.21 47.60-

78.80 

63.50 4.11 47.60-

73.60 

49.49 3.35 40.80-

58.80 

22.09 

SPN 16.38 0.47 14.70-

17.70 

16.02 0.40 15.10-

17.30 

15.77 0.49 14.40-

17.40 

1.54 

BM 7818 318.32 6297.00-

8793.00 

4311 55.34 4165.00-

4458.00 

3866 168.77 3279.00-

4290.00 

10.30 

TW 77.95 1.37 72.30-

82.00 

65.61 1.38 60.30-

69.70 

69.31 1.80 62.50-

78.20 

-5.64 

NDVI 0.67 0.01 0.60-0.70 0.40 0.02 0.36-0.45 0.27 0.01 0.25-0.31 33.07 

GA 0.61 0.02 0.56-0.66 0.28 0.03 0.20-0.38 0.12 0.01 0.08-0.18 56.53 

KN 6276.00 677.54 4372.00-

8120.00 

7272.00 449.17 6102.00-

9027.00 

5315.00 321.83 459.00-

6641.00 

26.90 

SL 9.25 0.70 7.20-11.30 8.82 0.75 6.80-11.00 8.65 0.71 6.40-10.60 1.88 

KNS 35.22 1.91 29.20-

41.00 

38.79 0.66 37.10-

40.50 

38.63 1.98 32.90-

45.80 

0.40 

†GRW10 (285), Greeley wet 10; GRW11 (288), Greeley wet 11; GRD11(288), Greeley dry 11; W, grain yield under wet; D, grain yield under dry; 

numbers in parenthesis  stand for number of lines evaluated at each environment. ‡ Trait description is as given in Table 2.1. 
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Table 2.2. Continued. 

 
  Environments†   

 GRW10 (285) GRW11 (288) GRD11(288)  

Trait‡ Mean Standard 

deviation 

Range Mean 

(W) 

Standard 

deviation 

Range Mean 

(D) 

Standard 

deviation 

Range % reduction 

(D/WX100) 

SKW  35.60 2.29 30.90-

41.40 

25.74 1.79 21.50-

30.90 

27.10 2.05 22.40-

32.30 

-5.33 

SKD 2.87 0.07 2.70-3.10 2.53 0.07 2.40-2.80 2.56 0.08 2.34-2.80 -1.18 

SKH 72.17 9.79 30.90-

88.20 

67.65 11.84 17.20-

83.00 

68.15 11.75 21.54 -0.69 

KWS 1.25 0.07 1.10-1.40 0.84 0.02 0.80-0.90 0.97 0.03 0.89 -15.38 

GFD 36.06 0.98 32.50-

40.20 

34.10 0.47 32.90-

36.00 

31.35 0.68 29.72 8.11 

LA 18.25 2.43 12.80-

27.60 

15.27 0.99 12.80-

19.10 

11.47 0.86 8.97 24.90 

KNL 2.14 0.11 1.77-2.46 2.42 0.05 2.30-2.60 2.45 0.08 2.18 -1.12 

LS 5.40 0.83 3.30-8.20 NA NA NA 7.71 0.42 6.49 NA 

†GRW10, Greeley wet 10; GRW11, Greeley wet 11; GRD11, Greeley dry 11; W, grain yield under wet; D, grain yield under dry; Numbers in Parenthesis stand 

for number of lines evaluated at each environment. 

NA=data not available 

‡ Trait description is as given in Table 2.1. 
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Table 2.3. Mean values of the WAMII spring wheat association mapping panel for traits measured under rainfed (D) and non-stressed 

(W) conditions at Melkassa, Ethiopia in 2011. 

                             Environments†   

 MLKW11 (W) MLKD11 (D)                    Drought reduction                                                                             

(D/Wx100)                  

Trait‡ Mean Standard 

deviation 

Range Mean Standard 

deviation 

Range 

 

YLD  4378.00 546.98 2592.00-5507.00 3862.00 454.33 2444.00-5377.00 11.79 

TKW  25.52 3.37 16.28-34.73 22.87 2.14 16.66-30.39 10.38 

DH 55.05 2.86 49.78-68.03 55.83 3.70 47.91-69.27 -1.43 

LL 20.21 0.60 18.58-21.83 22.17 0.87 19.92-24.89 -9.70 

LW  1.29 0.03 1.15-1.38 1.34 0.04 1.25-1.66 -3.88 

DM 93.02 2.75 87.74-99.13 95.09 1.69 89.86-99.7 -2.23 

HI 0.27 0.03 0.15-0.38 0.23 0.02 0.15-0.30 14.81 

PHT 81.84 2.44 74.74-87.98 NA NA NA NA 

SPN 16.55 0.97 13.88-20.09 NA NA NA NA 

BM  16231.00 642.36 14478.00-18639.00 17160.00 600.22 15511.00-18967.00 -5.72 

KN  17442.00 2179 10329.00-21940.00 16993.00 1460.00 13541.00-21869.00 -2.57 

GA 0.77 0.05 0.58-0.88 0.84 0.023 0.75-0.89 -9.09 

GFD 37.97 1.38 32.85-42.47 39.26 1.74 33.63-44.91 -3.40 

LA (cm
2
) 19.65 1.07 16.50-22.65 22.42 1.37 19.54-31.42 -14.10 

†MLKW11 (W), Melkassa wet 11; Melkassa dry 11 (D); W, grain yield under wet; D, grain yield. 

NA=data not available or analysis not possible. 

‡ Trait description is as given in Table 2.1. 
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The effect of water deficit on the phenotypic traits was assessed based on the ratio of 

mean performance of the genotypes under rainfed conditions to their performance under full 

irrigated conditions, expressed in percentage units (Table 2.2). Of all traits evaluated at Greeley 

in 2011, green leaf area (57%) and NDVI (33%) were affected the most by moisture stress, 

followed by spike number m
-2

 (29%), kernel number m
-2

 (27%) and plant height (22%). Grain 

yield was reduced by 14%, which is about 200 kg ha
-1

. However, traits such as thousand kernel 

weight, harvest index, test weight, kernel weight spike
-1

 and single kernel weight showed from 

5% to 26% increase under moisture stress conditions at Greeley. Harvest index was the trait most 

affected by moisture stress conditions during the early growth stage at Melkassa (Table 2.3) 

2.2.2 Genotypic correlations  

The genotypic correlation coefficients of grain yield and NDVI with other measured traits 

are presented in Tables 2.4 and 2.5, respectively. Genotypic correlation coefficients among all 

phenotypic traits measured in five environments are given in Table A.5 through Table A.9. Grain 

yield showed consistently high and positive genotypic correlation with kernel number m
-2

, test 

weight and final biomass regardless of the moisture level. Grain yield had high and positive 

genotypic correlations (rg=0.73 to 0.91) with harvest index except at Greeley under moisture 

stress condition (rg=0.118). The genotypic correlation for grain yield and thousand kernel weight 

was positive but weak in all Greeley environments (rg=0.11 to 0.22), but much larger in the two 

Melkassa environments (rg=0.61 and 0.77). Grain yield was negatively associated with days to 

heading in all environments. The genotypic correlation of yield with NDVI was weak under fully 

irrigated conditions (rg=0.13 and 0.16 for GRW10 and GRW11, respectively), but considerably 

higher (rg=0.42) under moisture stress conditions (GRD11).  
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Genotypic correlation values of NDVI with leaf area, days to heading and days to 

maturity were positive and significant in all environments where NDVI data were collected 

(Table 2.5). Plant height also had a strong positive genotypic correlation with NDVI in two of 

the three Greeley environments. The genotypic correlation of NDVI with leaf green area (GA) 

was consistently positive and high under all moisture conditions. On the other hand, NDVI was 

negatively correlated with leaf senescence both under irrigated and moisture stress conditions. 

The genotypic correlation values of NDVI with final biomass was low (0.15 to 0.36) in this 

study. 

2.2.3 Heritability estimates of agronomic traits  

The estimated heritability values for each measured phenotypic trait in each environment 

and combined across environments are presented in Table 2.6. High (>75%) heritability 

estimates were obtained for days to heading, single kernel weight, test weight, single kernel 

diameter and kernel hardness. Most yield component traits showed low and inconsistent 

heritability estimates in different environments. Moderate (>50%) heritability estimates were 

obtained for yield, green leaf area, grain filling duration and flag leaf area in four out of six 

environments. Above ground biomass, NDVI, kernel weight spike
-1

, kernel number spikelet
-1

, 

spike number m
-2

, and kernel number spike
-1

 had low heritability estimates in individual 

environments despite heritability values over 50% obtained for above ground biomass, number 

of spikes m
-2

 and number of kernel m
-2

 for combined data across environments. 

 

 

  



 

64 

 

Table 2.4. Genotypic correlation coefficients between grain yield and other measured traits in 

the WAMII spring wheat association mapping panel grown in five environments. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 MLKW11 MLKD11 

Kernel weight  0.22** 0.11ns 0.15** 0.77** 0.61** 

Harvest index  0.75** 0.73** 0.12* 0.91** 0.90** 

Kernel number  0.77** 0.99** 0.71** 0.99** 0.74** 

Spike length  -0.11ns 0.01ns 0.20** 0.12* 0.37** 

Spikelet number  -0.15* -0.45** -0.12* -0.24** NA 

Biomass 0.47** 0.84** 0.63** 0.50** 0.39** 

Kernel number spike
-1

 0.47** 0.23** 0.10ns NA NA 

Kernel weight spike
-1

  0.58** 0.25** 0.35** NA NA 

Spike number  0.19** 0.99** 0.75** NA NA 

Kernel spikelet
-1

 0.55** 0.56** 0.27** NA NA 

Test weight  0.37** 0.48** 0.38** NA NA 

Single kernel weight  0.23** 0.29** 0.12* NA NA 

Hardness index  0.01ns -0.21** -0.12* NA NA 

Days to heading  -0.32** -0.26** -0.04 ns -0.54** -0.68** 

Days to maturity  -0.21** -0.30** -0.06ns -0.44** -0.67** 

Grain filling duration  0.12ns 0.01ns -0.03ns 0.13* 0.55** 

Leaf length  -0.11ns -0.14* 0.10ns -0.48** 0.06ns 

Leaf width  -0.18ns -0.07ns -0.06ns 0.01ns 0.03ns 

Leaf area  -0.20** -0.09ns 0.06ns -0.27** 0.03 ns 

Plant height  -0.05ns -0.41** 0.45** 0.35** NA 

NDVI -0.13ns 0.16** 0.42** NA NA 

†GRW10, Greeley wet 11; GRW11, Greeley wet 11; GRD11, Greeley dry 11; MLKW11, Melkassa wet 11; 

MLKD11,Melkassa wet 11; 

‡Traits description is as given in Table 2.1 

 ns= non-significant at p<0.05; *=significant at P<0.05; **=significant at P<0.01; NA= data not available or analysis 

not possible. 
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Table 2.4 Continued. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 MLKW11 MLKD11 

Green Leaf area (GA) -0.08ns 0.267** 0.34** 0.24** -0.22** 

Leaf senescence (LS) 0.20** NA -0.21** NA NA 

†GRW10, Greeley wet 11; GRW11, Greeley wet 11; GRD11, Greeley dry 11; MLKW11, Melkassa wet 11; 

MLKD11,Melkassa wet 11; 

‡Traits description is as given in Table 2.1 

 ns= non-significant at p<0.05; *=significant at P<0.05; **=significant at P<0.01; NA= data not available or analysis 

not possible. 
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Table 2.5. Genotypic correlation coefficients between NDVI measured after heading and 

phenological and morphological traits of the WAMII spring wheat association mapping panel. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 

Days to heading  0.27** 0.50** 0.49** 

Day to maturity  0.37** 0.39** 0.71** 

Grain filling duration  0.14* -0.28** 0.42** 

Leaf senescence  -0.84** NA -0.74** 

Green leaf area 0.99** 0.57** 0.62** 

Flag leaf length  0.65** 0.31** 0.39** 

Flag leaf width  -0.09ns 0.14* 0.02ns 

Flag leaf area  0.39** 0.27** 0.27** 

Plant height  0.70** -0.18** 0.96** 

Biomass  0.36** 0.16* 0.15* 

†GRW10, Greeley wet 10; GRW11, Greeley wet 11; GRD11, Greeley dry 11. 

 ns, non-significant; *, significant at P<0.05; **, significant at P<0.01.  
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Table 2.6. Heritability estimates of agronomic and morphological traits in the WAMII spring 

wheat association mapping panel grown in five environments. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

Yield  0.60 0.43 0.40 0.68 0.61 0.61 

Thousand kernel 

weight  

0.74 0.31 0.51 0.80 0.65 0.81 

Harvest index  0.38 0.58 0.16 0.68 0.57 0.45 

Kernel number  0.55 0.31 0.32 0.68 0.48 0.45 

Spike length   NA 0.83 0.60 0.74 0.04 NA 

Spikelet number  0.45 0.44 0.54 0.73 NA 0.57 

Biomass  0.32 0.07 0.23 0.40 0.32 0.48 

Kernel weight per 

spike  

0.28 0.11 0.19 NA NA 0.54 

Kernel number per 

spikelet  

0.26 0.14 0.28 NA NA 0.40 

Spike number   0.15 0.01 0.28 NA NA 0.31 

Kernel number per 

spike  

0.26 0.11 0.38 NA NA 0.45 

Test weight  0.77 0.65 0.84 NA NA 0.75 

Single kernel diameter  0.12 0.79 0.78 NA NA 0.86 

Single kernel weight  0.75 0.77 0.75 NA NA 0.85 

Single kernel hardness 0.95 0.93 0.96 NA NA 0.97 

Days to heading  0.83 0.72 0.69 0.89 0.93 0.75 

Days to maturity  0.82 0.66 0.56 0.83 0.67 0.69 

† GRW10, Greeley wet 10; GRW11, Greeley wet 11; GRD11, Greeley Dry 11; MLKW11, Melkassa 

wet 11; MLKD11, Melkassa dry 11; Combined, combined data across five data sets. 

NA=data not available or analysis not possible. 

‡Trait description is as given in Table 2.1. 
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Table 2.6 Continued. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 MLKW11 MLKD1

1 

Combined 

Grain filling duration  0.67 0.37 0.38 0.58 0.63 0.55 

Leaf length  0.66 0.45 0.61 0.28 0.46 0.72 

Leaf width  0.75 0.42 0.38 0.27 0.23 0.62 

Leaf area  (LA) 0.70 0.47 0.55 NA NA 0.67 

Plant height (PHT) 0.83 0.78 0.76 0.43 NA 0.83 

Normalized 

vegetation index 

(NDVI) 

0.28 0.49 0.32 NA NA 0.62 

Green leaf  area (GA) 0.31 0.63 0.52 0.63 0.41 0.55 

Leaf senescence (LS) 0.76 0.44 NA NA NA 0.73 

† GRW10, Greeley wet 10; GRW11, Greeley wet 11; GRD11, Greeley Dry 11; MLKW11, Melkassa 

wet 11; MLKD11, Melkassa dry 11; Combined, combined data across five data sets. 

NA=data not available or analysis not possible. 

‡Trait description is as given in Table 2.1. 

2.2.4 Model-based population structure and linkage disequilibrium  

Population structure analysis of 287 spring wheat lines conducted with the STRUCTURE 

program indicated the likely number of subpopulations was seven based on change of k (Figure 

2.1). Of these, subpopulations II, IV, V and VI were dominated by the lines with Kauz, Pastor, 

TUI and WBLL1 background, respectively (Figure 2.2). Lines with different backgrounds were 

grouped together for subpopulations I, III and VII. There was evidence for the presence of 

population structure from the cluster analysis based on genetic distance using the Ward method 

(Figure A. 1). Molecular variance analysis for the seven model-based populations indicated that 

78.5% of the total variation is explained by within-population variation, whereas 21.5% of the 

variation is due to among-population variation (Table 2.7). Population differentiation (Fst) 
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values ranged from 0.14 to 0.73 and were highly significant (P<0.0001) for all pairs, supporting 

the presence of population structure. There were highly significant (P<0.0001) differences 

among the populations. 

Linkage disequilibrium among markers was calculated for all chromosomes (except 

chromosomes 4D and 5D that were represented by only a single marker each). A critical value of 

r
2
 > 0.264 was determined to be the appropriate threshold for LD due to physical linkage. 

Chromosomes 4A (62%) and 1B (55%) showed a higher percentage of significant (P<0.01) 

marker pairs in LD whereas chromosomes 5A (20%), 2B (23%) and 7A (23%) had the least 

number of significant (P<0.01) marker pairs (Figure 2.3; Table A.10). The percentage of marker 

pairs due to physical linkage was high for chromosome 3D (24%) followed by chromosomes 2D 

(17%) and 1B (16%). The percentage of LD due to physical linkage mimics the percentage of 

LD at r
2
 > 0.2 for all chromosomes, but had no similarity with that of LD at P <0.01. Marker 

pairs at r
2
 > 0.2 and r

2
 > 0.264 were significant at P < 0.001 for all 19 chromosomes considered 

in this study. 

Linkage disequilibrium decay rate evaluation was conducted at the genome and 

individual chromosome level. The genome level LD decayed below r
2
=0.2 at about 1.7 cM for 

the A genome (Figure 2.4), while the smoothing curve crossed the r
2
=0.2 line at approximately 2 

cM for the B genome (Figure 2.5). For the D genome, the curve crossed the r
2
=0.2 line near 6.8 

cM genetic distance (Figure 2.6). For all 19 chromosomes, the LD decay curve crossed the 

r
2
=0.2 line at about 3.4 cM (Figure 2.7). We were able to determine the genetic distance at the 

baseline r
2
=0.2 for four out of the seven model-based subgroups for all chromosomes together; 

LD decayed below r
2
=0.2 within 8-9 cM for three of them and within 6 cM for the fourth sub-

population.  
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Multiple regression analysis with population structure in the model showed that plant 

height (29.5%) was the trait most affected by the genotype groupings, followed by single kernel 

weight (25.9%), thousand kernel weight (21.0%), single kernel diameter (20.5%) and NDVI 

(18.9%) (Table 2. 8). On the other hand, the variations explained due to population structure 

were non-significant for kernel number m
-2

, drought susceptibility index, kernel hardness, 

harvest index and days to maturity. Moreover, population structure explained only about 5% of 

the total variation in days to heading, test weight and kernel weight per spike. The variation 

explained due to population structure in grain yield (7.5%) was also low. 
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     Figure 2.1. Change of k values between k=3 and k=12 for 287 spring wheat lines  

of the association mapping panel based on STRUCTURE software. 
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Figure 2.2. Population structure for 287 genotypes in a spring wheat association mapping 

 panel based on 78 DArT markers. 
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Table 2.7. Variability among and within seven clusters of the spring wheat association  

mapping panel based on 78 DArT markers. 

 
Source of variation DF Sums of squares Variance components Percentage 

of variation 

Among populations 6 620.60 2.36 21.51 

Within populations 280 2408.81 8.60 78.49 

Total 286 3029.41 10.96  

 

 

 

Chromosomes 

Figure 2.3. Percentage of significant linkage disequilibrium at r
2
 >0.2641, r

2
> 0.2 and r

2
 at 

P<0.01 for 19 hexaploid wheat chromosomes in 287 lines of the spring wheat association 

mapping panel. 
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Figure 2.4. Linkage disequilibrium (r
2
) plot of all chromosomes of the A genome in 287  

lines of a spring wheat association mapping panel. 
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Figure 2.5. Linkage disequilibrium (r
2
) plot of all chromosomes of the B genome in 287 

 lines of a spring wheat association mapping panel.  
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Figure 2.6. Linkage disequilibrium (r
2
) plot of all chromosomes on the D genome in 287 

 lines of a spring wheat association mapping panel. 
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Figure 2.7. Linkage disequilibrium (r
2
) plot for 19 chromosomes of 287 lines of a spring 

 wheat association mapping panel. 
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Table 2.8. Percent of phenotypic variation explained (R
2
) by population structure based on 

combined data across environments. 

Trait Environments † R
2
 (%) P-value 

Thousand kernel weight 5 21.0 0.0001 

Days to heading 5 4.7 0.0362 

Flag leaf length 5 11.4 0.0001 

Flag leaf width 5 9.4 0.0001 

Days to maturity 5 3.0 0.1970 

Harvest index 5 2.2 0.3950 

Plant height 4 29.5 0.0001 

Grain yield  5 7.4 0.0015 

Kernel number 5 3.5 0.1182 

Spikelet number 3 13.0 0.0001 

Biomass 5 12.4 0.0001 

NDVI 3 18.9 0.0001 

Leaf green area 5 14.4 0.0001 

Test weight 3 5.0 0.0212 

Kernel weight per spike 3 5.3 0.0200 

Grain filling duration 5 9.1 0.0001 

Flag leaf area 5 13.2 0.0001 

Kernel hardness 3 1.9 0.5060 

Single kernel weight 3 25.9 0.0001 

Kernel number per spikelet 3 9.0 0.0002 

Spike number per m
2
 3 5.6 0.0140 

Single kernel diameter 3 20.5 0.0001 

Kernel number per spike 3 15.7 0.0001 

†
 Number of environments used in the combined data analysis.  
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2.2.5 Marker-trait associations (MTA) 

Although MTA were detected at P<0.05 for all traits, we are reporting only strong MTA 

(P<0.001) for single environments and moderate MTA significant (P<0.01) in at least half of the 

test environments. Consistency across environments was used as an additional criterion for MTA 

significant at P<0.01 in order to reduce the risk of including false MTA. A summary of MTA in 

different environments for each phenotypic trait is given in Table 2.9.  

Considering both criteria together (P<0.001 and P<0.01 in half or more of the 

environments), a total of 565 MTA was detected in one or more environments for 26 measured 

or calculated phenotypic traits in five environments plus combined data across environments. 

Out of these, about 20% of the MTA were detected only in a single environment and the 

remaining 80% were observed in two or more environments. A total of 130 (22.9%) of MTA 

involved unmapped markers. The numbers of MTA detected for grain yield both under irrigated 

and rainfed treatments at Greeley were similar, while at Melkassa the number of MTA detected 

for grain yield under the stressed treatment was lower than the number of MTA detected under 

the non-stressed treatment for grain yield (Table 2. 9). The highest number of MTA was 

recorded for kernel hardness (113) followed by test weight (44) and flag leaf length (39) while 

the fewest MTA were obtained for drought susceptibility index, flag leaf senescence, kernel 

number per spikelet, kernel number per spike and spikelet number per spike. Moreover, kernel 

hardness had the largest number of stable MTA (15) followed by test weight (9). Chromosome-

wise, the highest number of MTA was detected on chromosomes 5B, 3B, 7A and 1B, while 

chromosomes 1A, 2A, 2D, 3A and 5A harbored the fewest MTA in this study. No MTA were 

detected for chromosomes 4D and 6D (Figure 2.9). 
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Grain yield MTA were detected on chromosomes 1BS, 2DS, 5B (73 and 76.4 cM) and 

7B. Unmapped marker wpt0419 was also associated with grain yield at Melkassa under non-

stressed conditions. The marker wpt6531 on chromosome 2DS was associated with yield in four 

out of six environments including both irrigated and rainfed conditions, and can be considered a 

stable marker for grain yield. However, wpt3457 (5B) showed the strongest association with 

yield under rainfed condition at Greeley in 2011 (Figure 2.8; Table 2.10).  

Stable MTA were also detected for the major yield component traits kernel number per 

m
2
 on chromosome 7AS and harvest index on chromosomes 5AL, 5B (72.4 cM) and wpt0286 

(unmapped). Regions of chromosomes 1BL, 3BS, 4A, 5B (72.4 cM) and 5BL were also 

consistently associated with thousand kernel weight. Regions of chromosome 4B, 5B, 6B, 7AS 

and 7AL were associated with spike number per m
2
 at two environments. However, all MTA 

obtained for final biomass on chromosomes 1AS, 5B (72.4 cM), 7BL, 7D, 7DL and 7DS were 

environment-specific (Table 2.10). Similarly, all MTA detected for number of spikelets per spike 

(2B and 7B), kernel number per spikelet (1DL, 7A and 7BL) and kernel number per spike (1AS, 

3BS and 7A) were detected only at single environments despite the presence of very strong 

associations for some MTA (Table 2.10). 

Single kernel traits such as single kernel weight and diameter and kernel hardness had 

more stable MTA than most of the yield component traits. The MTA for single kernel weight 

were distributed on chromosomes 1BL, 1D, 4A, 2AL, 4BL and 5BL while MTA of single kernel 

diameter were detected on chromosomes 1BL, 2D, 3AS, 3B, 3D, 4AL, 6BS, 7BL and 7DL. 

Several MTA were obtained for kernel hardness and the most stable ones (those detected in all 

environments) were found on chromosomes 1BL, 1D, 3AS, 3D, 4AL and 7A. Similarly, many 



 

80 

 

stable MTA were obtained for test weight, with chromosomes 2DL, 3BS, 4A, 4BL and 7BL 

comprising the location of MTA detected in three out of the total four environments. 

The most stable MTA for days to heading was detected on chromosome 1DS (four out of 

six environments), followed by MTA on chromosomes 2B, 3AL, 3B and 4BL (three out of six 

environments each). The most significant MTA (P<0.001) was detected on chromosome 2AL for 

marker wpt9277 at GRW10. This same marker was consistently associated with days to maturity. 

Grain filling duration had stable MTA on chromosomes 1BL, 3BS and 7AL (each showing up in 

three of six environments).  

Marker-trait associations were found for plant height on chromosomes 3BL, 5BS, 6AS, 

7AS and 7BL, of which the MTA on chromosomes 6AS and 7BL were the most consistent. QTL 

regions for flag leaf length were noted on chromosomes 1BS, 1BL, 2BL, 3BL, 3AL and 5B. 

Most of these associations were consistent, particularly marker wpt5072 on chromosome 3BL 

which was detected in five out of six environments. For flag leaf width, however, only 

wpt667461 (unmapped) was consistently associated with the trait despite the presence of flag 

leaf width associated markers on chromosomes 2DL, 3BL, 5BS, 6A and 7AS. Both stable and 

environment-specific MTA were detected for flag leaf area; the chromosomes 3BL and 5BL 

harbored stable QTL for this trait. Unmapped markers wpt0605 and wpt1370 were also 

consistently associated with flag leaf area. 

Significant MTA were also obtained for drought tolerance-related traits and vegetation 

indices. Regions of chromosome 4AL, 7A and 7BL comprised QTL for drought susceptibility 

index. Leaf senescence QTL were found in three regions of chromosome 6B (36.1, 50.6 and 84.6 

cM) and another five unmapped markers also showed associations with leaf senescence. Regions 
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of chromosomes 1AL, 1BS, 2AS and 6BL harbored QTL for NDVI, and unmapped marker 

wpt0694 was also associated with NDVI in two environments. 

Some of the MTA were significant at FDR=0.05 after correcting for multiple 

comparisons. These significant MTA at FDR=0.05 were obtained for spikelet number spike
-1

 on 

chromosome 2BS, plant height on chromosome 6AS, grain filling duration on chromosome 3BS 

and green leaf area on chromosome 1BL. Associations of unmapped markers with flag leaf width 

(wpt730263), spike number per spike (wpt666595 and wpt667101) and drought susceptibility 

index (wpt0419) were also significant at FDR 0.05 (Table 2.11). None of the MTA obtained for 

the remaining traits survived the FDR adjustment for multiple testing. At a relaxed FDR of 0.25, 

however, MTA were identified for test weight, biomass, leaf green area, harvest index, leaf 

length, leaf width, single kernel diameter, kernel hardness, flag leaf area, kernel per spikelet and 

kernel number- based drought susceptibility index (data not shown). 

Multi-trait MTA were detected in many chromosome regions. Their chromosome 

positions are shown with other trait-specific QTL in Figure 2.10. Clusters of QTL were detected 

for kernel size-related traits on chromosomes 1BL, 4AL and 7DL. Kernel quality traits (SKH and 

TW) had QTL in common with one or more kernel size-related traits on chromosomes 1D, 2DL, 

3BS, 3D, 4AL, 5B and 7AS. Markers near the centromeric region of chromosome 5B (67.7-76.4 

cM) were associated with yield, spike number per m
2
, biomass, plant height, harvest index, 

thousand kernel weight and test weight. A region of chromosome 1AL was associated with both 

harvest index and NDVI, and QTL for green leaf area was detected close to the region of a 

harvest index QTL on chromosome 5AL. The QTL on 1BL for leaf green area was in the same 

region with a QTL detected for SKD, while green leaf area QTL on 3BL was close to the QTL 

region for TKW, TW and GFD. Similarly, yield and harvest index had QTL in common on 
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chromosome 1BS. Flag leaf area and flag leaf length had QTL in common on chromosomes 3BL 

and 5BL as well.  

Multi-trait QTL were also detected among drought tolerance-related traits and vegetation 

indices. Marker-trait associations were obtained on chromosome 6BL for NDVI, leaf senescence 

and leaf green area index. However, only MTA for leaf senescence and leaf green area were 

roughly in the same region (within 3 cM). Among QTL detected for drought susceptibility index, 

QTL on chromosome 4AL was in the same region with the QTL for single kernel diameter, 

single kernel weight and thousand kernel weight. Similarly, a QTL on 7A was detected in the 

same region with QTL detected for kernel number, kernel number per spikelet and kernel 

number per spike. Drought susceptibility QTL on 7BL was detected at a distance of 3.4 and 3.9 

cM away from plant height and spike number QTL, respectively. 
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Table 2.9. Summary of marker-trait associations detected for agronomic traits and drought 

related indices detected in five environments. 

 Environments† 

Trait‡ GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined Total§ 

BM 0 1 1 4 0 0 6 

DH 4 3 3 3 3 4 20 

DM 1 1 2 1 0 1 6 

DSI_KN NA NA NA NA NA NA 2 

DS_YLD NA NA NA NA NA nA 1 

GA 8 7 8 0 0 9 32 

GFD 9 3 2 3 2 4 23 

HI 0 5 1 5  4 2 17 

SKH 23 30 21 5 0 34 113 

KN 1 4 2 1 3 4 15 

KNL 1 0 4 0 0 0 5 

KNS 3 0 2 0 0 0 5 

KWS 5 1 0 0 0 5 11 

LA 6 3 6 0 3 7 25 

LL 8 5 4 5 6 11 39 

LS 1 2 1 0 0 0 4 

LW 3 1 2 1 6 2 15 

NDVI 2 2 1 0 0 5 10 

PHT 7 5 3 8 0 9 32 

SKD 6 8 9 0 0 15 38 

SKW 8 8 6 0 0 16 38 

SL 1 4 3 0 0 0 8 

SN 4 1 6 0 0 7 18 

SPN 0 - 4 1 0 0 5 

TKW 1 5 3 3 4 5 21 

TW 6 8 15 0 0 15 44 

YLD 0 3 3 4 2 3 15 

† GRW10, Greeley wet 2010;  GRW11, Greeley wet 2011;  GRD11, Greeley dry  2011; MLKW11, Melkassa non-

stressed 2011;  MLKD11, Melkassa stressed 2011; Combined, combined data across environments;  

‡  Trait description is as given in Table 2.1. 

§ Total number of marker-trait associations detected for traits across environments. 
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Table 2.10. Marker-trait associations detected in five environments and combined across environments for agronomic traits. 

    Marker-trait association P-values at each environment†  

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

BM wPt1405 7DL 170.7    0.000166   

 wPt1548 5B 72.4   0.000704    

 wPt4177 1AS 19.8    6.99E-05   

 wPt4300 7BL 210.9  0.000677     

 wPt745106 7DS 1.1    0.000132   

 wPt8422 7DL 170.6    0.000904   

DH wPt10142 3B 75.1 0.000437      

 wPt10991 3B 30.2    0.00314 0.002824 0.004188 

 wPt4199 2B 81.6    0.009216 0.006652 0.007951 

 wPt5996 4BL 104.9 0.004347 0.007476 0.000269    

 wPt6979 1DS 19.5 0.002156 0.002914 0.000806   0.009662 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; MLKD11; Melkassa dry 

2011; Combined, combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt732035 Unknown   0.000938     

 wPt733104 7DS 1.4   0.000669    

 wPt9277 2AL 109.4 9.99E-05      

 wPt9422 3AL 166.7    0.006001 0.006033 0.003054 

DM wPt3728 2D 90.5   0.00056    

 wPt6013 7AL 145.2  0.000875     

 wPt669696 Unknown     0.000616   

 wPt9277 2AL 109.4 0.003722  0.005515   0.003878 

DSI_KN tPt1755 7A 79   0.000353    

 wPt5069 7BL 224.9   0.00077    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

DSI_yld wPt5003 4AL 87.9     0.000528  

GA rPt9074 1BL 88.3 0.002971 0.000569 0.00514   7.44E-06 

 wPt0944 Unknown  0.006707 0.007166    3.32E-05 

 wPt0950 Unknown  0.001249  0.004379   0.006217 

 wPt3728 2D 90.5  0.001648    0.007637 

 wPt5270 6BL 87.7 0.002306     0.000539 

 wPt5374 2BS 37.9 0.008236  0.006542   0.005234 

 wPt664378 Unknown  0.000355  0.005287    

 wPt665030 Unknown   0.001154    0.009245 

 wPt667089 Unknown  0.000355  0.005287    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt669484 1AS 2.7   0.00049    

 wPt6945 3B 56.5  0.006373    0.007626 

 wPt7225 3BS 12.9  0.00736 0.009469    

 wPt734145 5AL 122.9 0.005019  0.008303    

 wPt9094 5AL 46.2  0.006475    0.00646 

GFD wPt0959 Unknown     0.002797 0.001897 0.008037 

 wPt3226 7AL 158.4 0.004059   0.009257 0.005011  

 wPt5836 3BS 39.1 3.41E-05  0.007319   0.000988 

 wPt8168 1BL 41.1 0.000307 0.000871    0.000284 

 tPt8942 5BS 35.1   0.000218    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 tPt9267 3BS 24.6 2.05E-05      

 wPt10006 3BS 20.8 0.000843      

 wPt3566 1BL 45 0.000649      

 wPt665725 1AL 76.6    0.000613   

 wPt740564 3D 39.4  0.000115     

 wPt741750 3BS 25.1 5.68E-05      

 wPt742337 3BS 14.2 0.000682      

HI rPt3825 Unknown      0.000148  

 wPt0286 Unknown     0.000836 0.001344 0.000208 

 wPt0419 Unknown     0.00072   

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt1911 1BS 21.6    0.000778   

 wPt3509 5AL 42.3    0.00191 0.002286 0.000159 

 wPt6105 5B 72.4   0.008134 0.008043 0.009944  

 wPt742925 5A 40.6  0.000156     

 wPt744567 5A 40.9  0.000141     

 wPt7769 5AL 41.2  0.0002     

 wPt8347 1AL 63.6  0.000732     

 wPt9641 4AL 98.4  0.000575     

SKH wPt0137 Unknown  0.004302 0.003792 0.001374   0.001254 

 wPt0551 Unknown  0.000558 0.001258 0.001846   0.000916 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt0929 Unknown  0.001147 0.001112 0.000541   0.000494 

 wPt1400 4B 38.2    0.00582  0.00476 

 wPt1862 1AS 35.7    0.00315  0.007219 

 wPt665999 Unknown   0.001002 0.004767   0.002459 

 wPt2424 6B 58.1  0.008014    0.007526 

 wPt2523 7AS 10.4 0.000162 0.000597 0.003398   0.000771 

 wPt3373 7A 77.8 0.001994 0.000726 0.000435   0.000362 

 wPt3572 7AS 11.2 0.000638 0.002796    0.003775 

 wPt4166 Unknown   0.003184    0.003311 

 wPt5167 1AL 125.4 0.003516     0.007256 

† GRW10, Greeley wet 2010; Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; Combined, 

Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt5333 6BS 37.6 0.008965     0.002357 

 wPt5590 7AS 9.8 0.000558 0.001258 0.001846   0.000916 

 wPt5604 5BL 97.4 0.009916 0.004339    0.005253 

 wPt5987 7AL 107.1 0.001111 0.00376    0.002277 

 wPt6477 2BS 70  0.006261  0.002491   

 wPt664824 1D 51.6 0.003589 0.000615 0.003054   0.001745 

 wPt666111 Unknown   0.00059 0.003221   0.001625 

 wPt666162 Unknown  0.004302 0.003792 0.001374   0.001254 

 wPt6667 6BS 14.3  0.002741 0.009731   0.00533 

 wPt669314 Unknown   0.001107 0.005713   0.002613 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt6979 1DS 19.5    0.006422  0.003008 

 wPt7160 1BL 73.5 0.000318 0.000583 0.000899   0.000588 

 wPt7280 4AL 71.3 0.004626 0.006512 0.006557   0.004044 

 wPt732636 Unknown  0.004881 0.000902 0.008391   0.0034 

 wPt732908 3DL 160.2 0.007523 0.001379    0.004839 

 wPt740691 3D 49.9 0.008374 0.005753 0.004555   0.008061 

 wPt741961 3D 66.1 0.000324 0.001177 0.000278   0.000637 

 wPt742360 Unknown  0.006869  0.007036    

 wPt745076 3AS 71 0.001777 0.000434 0.001627   0.00052 

 wPt7662 6BS 6.1  0.009413 0.005648    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt8183 6B 54.3  0.001226    0.005346 

 wPt8492 2BS 65.7    3.14E-06  0.003729 

 wPt8796 4B 65  0.002809    0.001263 

 wPt9467 5B 44.8 0.008418 0.006841    0.008685 

 wPt9913 Unknown  0.00229 0.00036 0.003524   0.001369 

KN rPt4199 7AS 13.1  0.006548   0.006048 0.0008 

 tPt1755 7A 79   0.000957    

 wPt0065 Unknown       0.000636 

 wPt0419 Unknown     0.000563   

 wPt0866 Unknown      0.000776  

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt4936 5B 59.8 0.000145      

 wPt5265 4BL 108.3      0.000792 

 wPt5896 5B 93.7     0.000264  

 wPt671560 3D 46.4  0.000257     

 wPt740903 3D 51.6  0.000286     

 wPt8279 1BL 50.2  0.000492     

 wPt8292 4BL 110.8      0.000792 

 wPt8473 7AS 13.7   0.000502    

KNL tPt1755 7A 79   9.17E-05    

 wPt1445 1DL 88.5 0.000682      

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt2994 7BL 158   0.000821    

 wPt5987 7AL 107.1   0.000235    

 wPt8981 7BL 149.5   0.000785    

KNS tPt1755 7A 79   0.000733    

 wPt0065 Unknown  0.000445      

 wPt664939 Unknown  0.000923      

 wPt665174 1AS 11.4   0.000938    

 wPt733544 3BS 39.1 0.000946      

KWS wPt0065 Unknown  0.000489      

 wPt1272 4B 16.6 0.003124     0.004445 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt1445 1DL 88.5 0.007878     0.003755 

 wPt5680 2BL 88.3 0.002362     0.00975 

 wPt7011 2A 86.1  0.001235    0.005965 

 wPt8399 7AL 85 0.001662     0.004129 

LA wPt0605 Unknown  0.001629  0.004014   0.001502 

 wPt1370 Unknown  0.001693  0.005471   0.001807 

 wPt3183 3DL 155.2     3.53E-05  

 wPt3833 5BS 25.6  0.000923     

 wPt4091 5BL 150.6 0.001786  0.004978   0.003525 

 wPt4996 5BS 41.1   0.000257   0.006799 

 † GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 

2011; Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt5072 3BL 131.5 0.009134    0.001175 0.000385 

 wPt6971 5BL 154.4 0.006511 0.004622 0.00583   0.006384 

 wPt7160 1BL 73.5   0.000312    

 wPt729877 6AS 8.9 0.000903      

 wPt7350 2BL 101.6  0.000635     

 wPt8168 1BL 41.1     0.000106  

 wPt8513 3BL 128.8      0.000905 

LL wPt0049 Unknown   0.000996     

 wPt0471 Unknown  0.003603    0.006753 0.002156 

 wPt0605 Unknown  0.000771      

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt0605 Unknown  0.000771  0.004913   0.002063 

 wPt0837 Unknown     0.005756 0.006833 0.000636 

 wPt0896 Unknown  0.002415 0.004702   0.006959 0.001813 

 wPt1370 Unknown  0.001509  0.009164   0.004149 

 wPt3109 2BL 85.9 0.003603    0.006753 0.002156 

 wPt4366 1BS 17.7      0.000919 

 wPt4628 5B 69.4    9.47E-05  0.0006 

 wPt5072 3BL 131.5 0.000686 0.008348  0.007765 0.001414 0.000304 

 wPt6135 5B 76.4    0.00077   

 wPt6971 5BL 154.4  0.002935 0.009873   0.001155 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt7160 1BL 73.5   0.000518    

 wPt730156 3AL 183    0.000499   

 wPt8513 3BL 128.8 0.001293    0.002402 0.000271 

 wPt9422 3AL 166.7  0.00043     

LS wPt666826 6BL 84.8 0.000194  0.007055    

 wPt666829 6B 36.1  0.000231     

 wPt666839 6B 50.6  0.000513     

LW wPt3833 5BS 25.6  0.000139     

 wPt4329 2DL 103.6 0.000273      

 wPt4996 5BS 41.1      0.000553 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt666266 6AS 41   0.000463    

 wPt667461 Unknown  0.009363    0.00198 0.003527 

 wPt667618 6AS 41.8     0.000353  

 wPt7063 6AS 43.2     0.000459  

 wPt730263 Unknown      7.58E-06  

 wPt740561 7AS 13.1    0.000144   

 wPt742357 Unknown      0.000628  

 wPt742493 Unknown      0.000549  

 wPt8845 3BL 125.5   0.000284    

 wPt9256 6BL 115.2 0.000683      

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

NDVI wPt0694 Unknown  0.005054     0.009837 

 wPt3107 1AL 63.7  0.000426    0.003346 

 wPt3168 6BL 65.7   0.008064   0.000914 

 wPt667155 1BS 13.5  0.003696    0.007153 

 wPt9320 2AS 71.9 0.004456     0.004062 

PHT wPt0934 Unknown     0.000809   

 wPt2810 5BS 37      0.000888 

 wPt3226 7A 158.4       

 wPt3457 5B 73   0.000639    

 wPt5261 3BL 122.1    0.000668  0.000817 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt5704 3BL 101.2 0.008339 0.006755    0.004711 

 wPt5816 7BL 221.5 0.000697 0.000154 0.001798   0.001349 

 wPt6105 5B 72.4   0.000646    

 wPt667618 6AS 41.8 0.005742   0.000258  0.000107 

 wPt667746 3BL 97.5    0.000217  0.000624 

 wPt7037 3BL 115.5    0.000166   

 wPt7063 6AS 43.2 0.003   0.000198  5.65E-05 

 wPt729839 6AS 45.4 0.000473 0.005548  0.000383  3.83E-06 

 wPt731499 Unknown  0.001982   0.001655  0.004002 

 † GRW10, Greeley wet 2010; GRW2011, Greeley wet 11; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 

2011; Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt742680 6AS 8.8  0.000284     

 wPt8418 7AS 9.8 0.000615      

 wPt9925 5BS 17.3  0.000552     

SKD rPt9074 1BL 88.3   0.005021   0.001799 

 wPt0408 Unknown   0.008762 0.008971   0.008124 

 wPt0944 Unknown    0.007321   0.006843 

 wPt1770 1BL 106.5  0.001188 0.000912   0.000993 

 wPt2994 7BL 158  0.005241 0.000109   0.00141 

 wPt3150 4AL 88.9  0.004905    0.004385 

 wPt3349 4AL 84.8  0.009168    0.006299 

† GRW10, Greeley wet 2010; GRW2011, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 



 

104 

 

Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt4209 3B 57.1 0.000658      

 wPt4364 3B 68.6  0.000373    0.006929 

 wPt667054 2D 101.2 0.000576     0.005703 

 wPt671560 3D 46.4  0.000639 0.00617   0.003204 

 wPt731910 3B 70.8  0.000373    0.006929 

 wPt744556 Unknown    0.003057   0.007688 

 wPt8034 7DL 170.7 0.007909  0.008938    

 wPt9601 6BS 10.7 0.003538     0.008678 

 wPt9833 4AL 77 0.007617  0.009332   0.005204 

 wPt9928 3AS 52.2 0.006851     0.004044 

 † GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 

2011; Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1.  
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

SKW wPt0551 Unknown   0.008219    0.007478 

 wPt1387 1D 50.4 0.004681     0.003976 

 wPt1480 2AL 110.2  0.004778 0.009378   0.003465 

 wPt1492 7DL 172.1 0.001149     0.005852 

 wPt1770 1BL 106.5  0.000323 0.00075   0.000466 

 wPt3150 4AL 88.9  0.004341    0.008195 

 wPt4091 5BL 150.6  0.000227     

 wPt5338 4BL 114.6  0.001216 0.008546   0.002367 

 wPt5590 7AS 9.8  0.008219    0.007478 

 wPt663755 7DL 172 0.001646     0.005145 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 11; MLKW11, Melkassa wet 11; Melkassa dry 11; Combined, 

Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt664012 7DL 171.7 0.002189     0.007041 

 wPt667506 7DL 172.2 0.001427     0.007078 

 wPt7280 4AL 71.3 0.002435     0.002021 

 wPt731740 5BL 163.3  0.000413     

 wPt744556 Unknown    0.004886   0.007662 

 wPt7924 4A 64.3   0.003966   0.007241 

 wPt8034 7DL 170.7 0.004708     0.006441 

 wPt9833 4AL 77 0.004957  0.008352   0.005533 

SL wPt1272 4B 16.6  0.009716 0.007468    

 wPt1912 1BS 7.4 0.009036 0.002644     

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt2810 5BS 37  0.003275 0.005618    

 wPt5506 Unknown   0.002878 0.003924    

SN wPt1409 5B 67.7 0.000746     0.002499 

 wPt2424 6B 58.1   0.00882   0.004164 

 wPt4140 7BL 228.8  0.000392     

 wPt4172 7AS 10.6   0.000426    

 wPt6273 7AS 10.5   0.000426    

 wPt666595 Unknown  2.93E-06     0.00084 

 wPt667101 Unknown  2.78E-05     0.005074 

 wPt730835 Unknown    0.000609    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt732448 4B 16.6   0.004362   0.002591 

 wPt8399 7AL 85 0.008202     0.001663 

 wPt8473 7AS 13.7   0.00023   0.003432 

SPN  wPt1294 2BL 78.9   7.58E-05    

 wPt3132 2B 77.7   0.000863    

 wPt4230 7B 134.5   8.53E-05    

 wPt742806 Unknown    0.000325    

 wPt8492 2BS 65.7    3.14E-06   

TKW wPt0419 Unknown      0.000793  

 wPt0965 Unknown   0.000446     

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt1770 1BL 106.5  0.001409 0.004722   0.002258 

 wPt4091 5BL 150.6  0.003613 0.000396   0.005111 

 wPt6043 3BS 15.6    0.005306 0.005267 0.006119 

 wPt6105 5B 72.4    0.002784 0.001019 0.000626 

 wPt666266 6AS 41     0.00017  

 wPt7024 2AL 81.2  0.000874     

 wPt7280 4A 71.3 0.0004   0.003639  0.003943 

 wPt9645 4AL 94.6  0.000159     

 wPt9833 4AL 77   0.00044    

TW tPt3719 5B 72.4   0.006423   0.002304 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1.  
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 tPt4614 7DL 172 0.005728     0.003427 

 tPt6105 2BL 126.8 0.007203  0.004691    

 wPt0817 Unknown   0.004906 0.009478   0.005752 

 wPt1264 6B 114.6  0.001573    0.002612 

 wPt1733 5BL 93.6  0.001592 0.001985   0.002077 

 wPt2994 7BL 158   0.000896    

 wPt5040 Unknown   0.002979    0.006773 

 wPt5338 4BL 114.6  0.001539 0.000349   0.000865 

 wPt5892 7BL 192.4  0.002273 0.006053   0.001465 

 wPt6064 2DL 103.6 0.000183  0.000789   0.000229 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt6132 3BS 24.6 0.001485  8.85E-05   0.0011 

 wPt666459 Unknown  0.009043  0.005173   0.004961 

 wPt742337 3BS 14.2 0.008509  0.002457    

 wPt744897 7AL 153.4   0.002139   0.007029 

 wPt7946 1D 45.6   0.000873   0.006468 

 wPt9299 7BL 185.2  0.000866 0.007053   0.000794 

 wPt9738 4A 7  0.001025 0.00829   0.003347 

YLD tPt7183 1B 27.4   0.000374    

 wPt0419 Unknown     0.000563   

 wPt3457 5B 73  0.000558 0.000137    

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; 

Combined, Combined data across environments. 

‡ Trait description is as given in Table 2.1. 
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Table 2.10. Continued.  

    Marker-trait association P-values at each environment† 

Trait‡ Name Chromosome arm Position 

(cM) 

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined 

 wPt6135 5B 76.4  0.00055     

 wPt1911 1BS 21.6    0.007398 0.005631 0.008713 

 wPt6531 2DS 67.3  0.000961 0.008817 0.002462  0.003398 

 wPt8211 7B 69.6    0.002938 0.008011 0.004128 

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; Melkassa dry 2011; Combined, Combined 

data across environments. 

‡ Trait description is as given in Table 2.1. 

 

  

 



 

113 

 

Table 2.11. Marker-trait associations significant at FDR=0.05 for phenotypic traits measured in 

the WAMII spring wheat association mapping panel in five environments. 

Trait Environment Marker Chromosome Position 

(cM) 

R 
2
(%) FDR_P-values 

Green leaf area Combined wPt4532 1BL 88.3 5.6 0.0097 

Green leaf area Combined wPt0944 unknown  4.9 0.0206 

Flag leaf width MLKD11 wPt730263 unknown 9.0 7.3 0.014 

Plant height Combined wPt729839 6AS 45.4 5.3 0.0071 

Spikelet number MLKW11 wPt8492 2BS 65.7 7.0 0.0058 

Spike number GRW10 wPt666595 unknown NA 8.2 0.0054 

Spike number GRW10 wPt667101 unknown NA 6.6 0.026 

Grain filling duration GRW10 tPt9267 3BS 24.6 6.3 0.0317 

Grain filling duration GRW10 wPt5836 3BS 39.1 6.0 0.0317 

Grain filling duration GRW10 wPt798970 3BS 25.1 5.6 0.0353 

Kernel number-based 

drought  susceptibility 

index 

Melkassa wPt0419 unknown NA 6.0     0.0226              
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Figure 2.8. Graphical display of marker-trait associations for grain yield at P<0.01. 
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Figure 2.9. Chromosome-wise distribution of marker-trait associations for 26 phenotypic traits 

significant at P<0.001 for single environments or P<0.01 for two or more environments. 
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Figure 2.10. Chromosomal regions of QTL identified for phenotypic traits measured in this 

study. 
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Figure 2.20. Continued. 
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2.3 DISCUSSION 

Trait means, correlation, and heritability 

The spring wheat association mapping population panel (WAMII) used in this study was 

developed by CIMMYT with the intention of identifying QTL/genes underlying drought and 

heat tolerance related traits. The accessions in the panel had wide differences in morphological 

characters and agronomic traits. These allowed us to apply a genome-wide association mapping 

approach for studying the genetic basis of phenotypic variation for traits evaluated under a wide 

range of environmental factors. The accessions have been exposed to water stress (as low as 192 

mm for the entire growing season under rainfed conditions at Greeley in 2011) and heat stress 

(maximum temperature > 30
o
C for a majority of the days after heading throughout the grain 

filling period at Greeley). For wheat anthesis and grain filling, the optimum temperature ranges 

from 12 to 22 
o
C (Farooq et al., 2011). Temperatures above 30 

o
C during floret formation in 

wheat may lead to complete sterility (Saini and Aspinal, 1982).  

The measured phenotypic traits responded differently to water deficit and high 

temperature stresses. The effect was more severe on vegetation indices (NDVI and GA) followed 

by spike number, kernel number and plant height (Table 2.2). The large effect of water deficit on 

traits measured at the vegetative stage was reflected mainly on kernel number followed by grain 

yield due to the severe effect of water deficit on tiller production. Spike number m
-2

 had strong 

positive genotypic correlation coefficients with both kernel number m
-2

 and grain yield in most 

of the environments. Generally, kernel-size related traits were increased under drought 

conditions in this study, and El-Feki (2010) also found similar results for single kernel traits such 

as kernel diameter and kernel weight for a winter wheat bi-parental population evaluated at the 

same location (Greeley, CO) as the current study. 
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Grain yield had significantly negative genotypic correlations with heading date (rg=-0.26 

to -0.68) in four out of five environments, including where water was not a limiting factor. This 

may be due to high temperature at the end of the growing season, implying that the escape 

mechanism of stress avoidance is not only useful for terminal drought stress but also for high 

temperature stress.  

Selection for earliness has been effectively used in wheat breeding programs to avoid 

drought stress. The phenology was restricted in a narrow range during the assembly of this panel 

to minimize the confounding effect of phenology on QTL detection (Reynolds et al., 2009; Pinto 

et al., 2010). The presence of significant genotypic correlations between yield and heading date 

indicates that a small range of heading date may be sufficient to modulate plant adaptions to 

growing conditions as previously observed by Dodig et al. (2012) and Maccaferri et al. (2011) 

for Mediterranean environments. The genotypic correlations of grain yield with plant height 

under irrigated conditions at Greeley (GRW11) were negative while the genotypic correlation 

under water deficit conditions at Greeley (GRD11) was significant and positive. This is in 

agreement with the conceptual model of drought tolerance that taller plants provide higher yield 

under drought stress than shorter plants, which can adapt better to resource-rich environments 

(Dodig et al., 2012; Reynolds et al., 2005). 

Correlation coefficients among phenotypic traits varied depending on the environment. 

Lopes et al. (2012) reported weak or absence of phenotypic correlations of yield with yield 

components and other phenotypic traits for the same panel used in the current study but 

evaluated in different environments. In their report (based on combined means across 12 

environments), grain yield was not correlated with thousand kernel weight, days to heading, days 

to maturity and plant height, but it had a moderate correlation coefficient with kernel number m
-2 
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(rp=0.45). However, we found significant phenotypic correlation coefficients for yield with TKW 

(rp=0.475), PHT (rp=0.285), DH (rp=-0.526), DM (rp=-0.452) and KN (rp=0.857) for the 

combined means. In individual environments, however, except for the correlation of grain yield 

with kernel number, there was inconsistency in magnitude of phenotypic correlation coefficients 

of grain yield with the remaining traits. For example, unlike Ethiopian environments where the 

phenotypic correlation coefficients of yield with thousand kernel weight, days to flowering and 

days to maturity were significantly positive, the phenotypic correlations of yield with these traits 

in the Colorado environments were weak and non-significant in most cases (data not shown).  

Again, we found consistently strong positive genotypic and phenotypic correlation coefficients 

for yield with kernel number m
-2

, harvest index, final biomass and test weight for individual 

environments. These discrepancies of our correlation results with the same panel tested in 

different environments confirms the importance of environmental factors in changing the 

magnitude and direction of correlations among traits.  

Among drought related indices, NDVI recorded at heading date showed relatively higher 

genotypic correlation (rg=0.419) with grain yield under rainfed conditions (GRD11) than in more 

favorable environments (GRW10 and GRW11). Low positive genotypic correlations of NDVI 

with final biomass were recorded except in one case (GRW10). However, the genotypic 

correlations between biomass and grain yield were significant and positive in all environments. 

Prasad et al. (2007a) reported high genotypic correlation of yield with three spectral reflectance 

indices such as red normalized difference vegetation index (RNDVI), green normalized 

vegetation index (GNDVI) and simple ratio (SR) taken at booting, heading and grain-filling 

stage under rainfed conditions with few exceptions. However, Hazratkulova et al. (2012) 

recently reported the absence of phenotypic correlation between grain yield and NDVI at two 
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locations for two years both at booting and flowering stages, while there was strong positive 

correlation for NDVI measurements at milk and dough stages. In our study, we found that NDVI 

is a good indicator of leaf senescence, as it was consistently negatively correlated with leaf 

senescence both under irrigated and rainfed conditions. Therefore, stay-green differences among 

wheat cultivars during grain filling can be quantitatively assessed using NDVI, as previously 

reported by Lopes and Reynolds et al. (2012).  

In the current study, none of the NDVI measurements collected during the vegetative 

stage showed genotypic differences among the entries. Previous studies have reported similar 

non-significant variation for NDVI measurements before heading (Babar et al., 2006; Prasad et 

al., 2007a) and it has been suggested that NDVI measurements taken at heading and grain-filling 

stages are the best estimates of yield and biomass (Marti et al., 2007; Prasad et al., 2007b). Since 

NDVI also had a high correlation with leaf green area index recorded with a digital camera, the 

latter may be used as an alternative for assessing canopy greenness during the vegetative stage 

because of its ability to discriminate among genotypes before booting stage as observed in our 

study (data not shown). In the current study, heritability estimates of NDVI, which ranged from 

0.28 to 0.62, were comparable with grain yield heritability values (ranging from 0.40 to 0.61). 

However, Prasad et al. (2007a) reported greater repeatability of NDVI heritability estimates 

compared to those for yield.   

In the current study, heritability estimates of yield were higher than the heritability 

estimates recorded for the major yield components including harvest index, kernel number and 

final biomass in most cases. However, traits such as thousand kernel weight, single kernel 

weight, kernel diameter, test weight and kernel hardness showed consistently higher heritability 

than yield and yield components. The heritability estimate for yield based on combined data 
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across environments in this study is roughly similar to that reported by Lopes et al. (2012) (0.61 

vs 0.64). However, our heritability estimates (ranging from 0.45 to 0.83) for kernel number m
-2

, 

thousand kernel weight, days to heading, days to maturity and plant height are lower than that in 

the Lopes et al. (2012) report (ranging from 0.83 to 0.97), indicating more environmental 

influence in the current study. This may be due to artificial environmental stresses imposed, in 

our case, by withholding water during the vegetative stage in one environment.    

Population structure and linkage disequilibrium 

Population structure can lead to false associations between markers and traits if not taken 

into account during association analysis (Zhao et al., 2007). A model-based approach was used 

to detect subgroups for 287 spring wheat lines in the association mapping panel, and we were 

able to detect seven subpopulations. In the molecular variance analysis of our study, the 

significant (P<0.001) population differentiation (Fst ranged from 0.14 to 0.73) for the seven 

groups reaffirms the presence of population structure. Genetic distance-based cluster analysis 

also provided evidence for the presence of subpopulations despite the lack of similarity between 

its clusters and the subgroups of model-based analysis in STRUCTURE. The majority of the 

variation was explained by within-population variation (78.5%), and among-population variation 

accounted for 21.5% of the variation. The higher within-population variation demonstrates the 

impact of selection in maintaining allele diversity in the breeding populations. The magnitude of 

among- population variation in this study is comparable to variation explained due to differences 

between European and Asian wheat germplasm (Hao et al., 2010), and even higher than the 

variation explained due to differences among geographical groups of wheat populations in 

Europe (Roussel et al., 2005). Chao et al. (2010) reported a higher among-subpopulation genetic 

variation in spring wheat (17.2%) than in winter wheat (10.5%) from the United States and 
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CIMMYT breeding programs. Although lines from CIMMYT were used in the present study, the 

subpopulations are more genetically differentiated than the U.S. spring wheat subpopulations in 

the study by Chao et al. (2010). In our mapping panel, a substantial number of lines shared one 

or more parents. Therefore, some of the groups were dominated by lines that trace back to a 

common parent (data not shown). Because a few elite lines are routinely used as parents of 

crosses in many breeding programs, this can be expected to lead to some sort of population 

structure as observed in the current study. 

LD information is critical in association studies because LD values can be affected by 

many factors such as population type, chromosome region and mating system. The number of 

markers needed for association studies depends on the extent of LD under consideration. In the 

current population, chromosomes showed large differences in the proportion of marker pairs in 

significant LD (P<0.01) from the maximum 62% for chromosome 4A to the minimum 20% for 

chromosome 5A. Although chromosome 4A contained more markers in LD at P<0.01, markers 

on chromosome 3D are more physically linked (r
2
=0.264). However, the proportions of marker 

pairs at r
2
=0.2 and r

2
=0.264 are comparable for all chromosomes implying the importance of 

choosing an appropriate r
2
 value as a threshold in addition to statistical significance. In the 

current analysis, r
2
=0.2 was used only for chromosomes with weak LD which do not allow 

evaluating LD decay rate at the threshold level of physically linked markers (r
2
=0.264).  

The magnitude of LD across a genome or chromosome is a function of nucleotide or 

linkage distance. LD decay rate was determined both at the genome and individual chromosome 

level. LD decayed within 2 cM for both A and B genomes, while it extended up to ~ 6.8 cM of 

genetic distance for the D genome. Chao et al. (2010) reported a similar finding using 394 

genetically mapped SNP markers on 478 spring and winter wheat cultivars. The reason for more 
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extended LD in the D-genome than in the A- and B-genomes could be the introduction of new 

haplotypes, which can increase the extent of LD, from Aegilops tauschii (D-genome donor) into 

the D-genome of hexaploid wheat germplasm through synthetic wheats. Many lines with 

synthetic background were included during assembly of this association mapping panel (Lopes et 

al., 2012). Another potential explanation for extended LD is the genetic bottleneck that occurred 

with the D-genome as a result of hybridization of tetraploid wheat with few plants of Ae. tauschii 

to form hexaploid wheat (Warburton et al., 2006; Chao et al., 2010). On the other hand, the 

greater genetic diversity of the A and B genomes is most likely due to early gene flow occurring 

between hexaploid T. aestivum and its tetraploid progenitor T. turgidum, but with no similar gene 

flow occurring between the hexaploid and Ae. tauschi (DD) (Berkman et al., 2013).  

The LD decay rate was also determined for subpopulations. Generally, LD extended over 

longer nucleotide or linkage distances (6-9 cM) for subpopulations than the whole panel, which 

is expected because grouping of genetically similar genotypes reduces within sub-population 

genetic diversity; consequently, large blocks of a chromosome region could be in LD. We were 

able to fit LOESS curves only for four out of the seven model-based subpopulations; three of 

them had similar LD decay rates (within 8-9 cM), and for one group LD decayed relatively faster 

(within 6 cM) at r
2
=0.2. When all subpopulations were considered together, on average LD 

decayed below the base line r
2
=0.2 at ~3.4 cM which is about 50% of the genetic distance within 

subpopulations. In other words, this translated to the doubling of genetic distance over which LD 

extended just by grouping similar genotypes together or using closely related genotypes for 

assessing LD levels.  

The effect of subpopulations on phenotypic traits was assessed with multiple regression 

analysis. Among the traits confounded by population structure, plant height, kernel traits (single 
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kernel weight, thousand kernel weight and single kernel diameter) and NDVI showed the 

greatest percentage of phenotypic variation explained by population structure. Interestingly grain 

yield, kernel number m
-2

, spike number m
-2

, harvest index and phenological traits (DH, DM and 

GFP) were among the group of traits least affected by subpopulations. Except for TKW and HI, 

these results are in agreement with Dodig et al. (2012) who reported large effects of population 

structure in winter wheat on stem related traits (stem height, peduncle length and peduncle 

extrusion); a moderate influence on sterile spikelets spike
-1

 and biomass per plant; and a low 

effect on yield and yield components (KN, TKW and SN). The greatest effect of population 

structure on kernel-size related traits in our panel may be due to intensive selection for kernel 

size in CIMMYT’s breeding program (Ravi Singh, personal comm.). Elite lines are most likely 

larger in kernel size than the remaining lines included in the panel for the purpose of maintaining 

genetic diversity during assembly of the mapping panel. The low effect of population structure 

on heading date indicates the minimum confounding effect of phenology on population structure, 

unlike plant height and kernel size.  

Marker-trait associations 

Although grain yield QTL were detected on all wheat chromosomes in previous studies, 

relatively consistent MTA in our study were detected on chromosomes 1BS, 2DS, 5B and 7B. 

Broad comparison of MTA results from the current study with previous studies were made using 

chromosome arms because of differences in marker type and marker positions on different 

genetic maps. The DArT marker wpt6531 on the short arm of chromosome 2D, which was 

associated with yield in the current study, is about 8 cM away from the wpt4144 marker, which 

was associated with yield in the Crossa et al. (2007) study. Kumar et al. (2007) detected QTL for 

yield in this region linked to SSR marker gwm261 which is 14.4 cM distal to Ppd-D1 and 0.6 cM 
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distal to the height-reducing semi-dwarfing Rht8 locus (Korzun et al., 1998; Ellis et al., 2007). 

Dodig et al. (2012) also detected QTL on chromosome 2DS (near gwm484) that explained about 

22% of the phenotypic variation for grain yield. Therefore, the stable and highly significant grain 

yield MTA on 2DS in the current study is probably due to a grain yield QTL in proximity to the 

Ppd-D1 locus, which is known for its influence on wheat yield through optimization of flowering 

time (Worland, 1996). Significant MTA for yield were detected on the short arm of chromosome 

1B in the Crossa et al. (2007) study. Quarrie et al. (2005) found major QTL which explained up 

to 35% of the phenotypic variation and were expressed in 11 out of 24 trials on 7BL.  

In the current study, wpt8211 on chromosome 7B (69.6 cM) was associated with yield in 

three environments. This marker (wpt8211) had sequence similarity with transposable element-

related sequences in the Triticeae repeat-sequence (TREP) database based on the DArT 

characterization study of Marone et al. (2012). The marker wpt3457 on chromosome 5B (73 cM) 

was associated with yield both under irrigated and rainfed conditions, and marker wpt6135, 

which was physically in LD and 3.4 cM away from wpt3457, was strongly associated with yield 

under irrigated conditions. Moreover, many other markers consistently associated with traits 

such as thousand kernel weight, final biomass, harvest index, plant height and flag leaf length 

also resided close to either side of the QTL position for yield on 5B, indicating the importance of 

this region in influencing yield and yield components. This region may explain a portion of the 

genotypic correlations of yield with yield component traits.  

In previous studies, yield QTL have been detected on both long and short arms of 

chromosome 5B (Neumann et al., 2011; Crossa et al., 2007; Marza et al, 2006; Groos et al, 2003; 

Huang et al., 2003) and some of their QTL may coincide with the QTL detected here on 

chromosome 5B. However, to our knowledge, there are no reports on the presence of multi-trait 
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QTL near the centromeric region of chromosome 5B. In fact, chromosome 5B comprised the 

highest number of MTA in this study. Kumar et al. (2007) reported multi-trait QTL for yield and 

yield components on chromosomes 2DS and 4AL. No multi-trait regions were observed on 2DS 

for the yield component traits in this study, but a region of chromosome 4AL was identified as a 

multi-trait QTL region for kernel size and quality traits.  

Grain yield and harvest index shared an association region on chromosome 1BS, 

implying that there is a genetic basis for the high and consistent genotypic correlation observed 

between grain yield and harvest index. In addition, NDVI has QTL in common only with harvest 

index on chromosome 1AL of all yield component traits, while green leaf area shared QTL with 

harvest index on chromosomes 5A (42.3 cM) and with single kernel diameter on chromosome 

3B (56.5 cM). The benefits of assessing yielding ability of wheat with these vegetation indices 

may be dictated by the expression of genes in the chromosome regions that harvest index and 

single kernel diameter shared with the indices. 

Trait-specific stable MTA were detected for main yield component traits such as kernel 

number per m
2
, harvest index and thousand kernel weight. Unlike harvest index and thousand 

kernel weight, only one marker on chromosome 7AS showed consistency across environments 

for kernel number. Among environment-specific MTA for kernel number, the unmapped marker 

wpt0866 had sequence similarity with 1, 3-beta glucan synthase (Marone et al., 2012). Similarly, 

all MTA of final biomass, kernel number per spikelet and kernel number per spike were 

environment-specific, showing the presence of higher genotype by environment interaction for 

these yield component traits than yield itself. Among yield and yield component traits, however, 

very strong (FDR=0.05) MTA were obtained for spikelet number per spike on chromosome 2BS 

(wpt8492), and for spike number per m
2
 for two unmapped markers wpt666595 and wpt667101. 
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None of these MTA are in agreement with previously detected QTL in bi-parental populations 

with the exception of MTA noted for spikelet number on chromosomes 2B and 7B by Neumann 

et al. (2011) which may be comparable with our current findings. 

Stacking QTL that control traits of interest from different chromosome regions into one 

background is a challenging and time consuming task in plant breeding. Using multi-trait 

markers in marker-assisted selection may increase QTL pyramiding efficiency. With the 

exception of chromosomes 4D, 5D and 6D, two or more traits shared the same region or reside 

within 5 cM in all chromosomes. Kernel size-related traits (single kernel weight, single kernel 

diameter and thousand kernel weight) had QTL in common on chromosomes 1BL, 4AL (SKW, 

SKD and TKW) and 7DL (SKW and SKD). Test weight also shared the same regions with one 

or more kernel size-related traits on chromosomes 1B, 2DL, 4BL, 7BL and 7DL. These traits 

could be under the same genetic control and markers in those multi-trait regions could be used in 

future for improvement of kernel size-related traits through marker-assisted selection. 

Similarly, clusters of QTL for flag leaf characters (LA, LL and LW) were found on 

chromosomes 3BL and 5BL. Moreover, there is a pattern of coincidence between leaf character 

QTL and kernel size-related traits TKW or SKW. This may be related with the translocation of 

flag leaf photosynthetic product to kernels during grain filling period (Lupton, 1966). 

Although a wide range of mean phenotypic values were recorded for plant height from 41 

cm (GRD11) to 88 cm (MLKW11), the major plant height reducing loci Rht-D1 and Rht-B1 

were not detected in this panel. This could be due to low marker coverage in the region of semi-

dwarfing genes (e.g., only two markers on chromosome 4D). However, we detected MTA in the 

regions of previously reported plant height QTL on chromosomes 3BL (Maccaferri et al., 2011), 
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5B (Cadalen et al., 1997; McIntyre et al., 2010; McCartney et al., 2005), 6AS (Spiel Meyer et al., 

2005) and 7BL (McCartney et al., 2005). Similarly, regions of group 5 chromosomes where 

VRN-1 genes reside were not detected for heading date in this panel. Nonetheless, in agreement 

with the results in this study, QTL that affect flowering time in wheat have been reported on 

chromosomes 2B, 3AL, 3B and 7DS (Borner et al., 2002; Marza et al., 2006; Cuthbert et al., 

2008; Wang et al., 2009).  

Photoperiod genes which have been mapped on short arms of homoeologous group 2 

chromosomes were not detected for heading date in this study. However, the QTL detected on 

3AL may indicate variation in an earliness per se gene as this gene has been mapped on 

chromosome 3AL (Borner et al., 2002). During assembly of association mapping panel, a wide 

range of variation both in heading date and plant height is not desired. In this particular 

population, most likely the number of spurious MTA due to confounding effects from major 

plant height reducing genes, vernalization genes and photoperiod response genes are minimal, 

implying the validity of the panel to conduct association studies for traits of interest with dense 

SNP markers. 

In conclusion, we have shown that LD decay varied both at the genome and chromosome 

levels. Genome-wide association mapping effectively detected both stable and environment-

specific QTL for yield, yield components, and drought-related traits. Multi-trait chromosome 

regions have been detected and particularly the region on chromosome 5B associated with yield 

and yield component traits may be useful in MAS following proper validation. In the context of 

drought tolerance, QTL regions that control both drought tolerance-related traits and yield 

component traits were detected on chromosomes 1AL (NDVI and harvest index), 5AL (green 
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leaf area and harvest index) and 3B (green leaf area and single kernel diameter), implying the 

possibility of using vegetation indices for indirect assessment for certain yield component traits.   
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 CHAPTER 3 

Association Mapping and Nucleotide Sequence Variation in Five Drought Tolerance 

Candidate Genes in Spring Wheat 

SUMMARY 

Drought tolerance is an integrative trait that involves the expression of many genes. 

Functional markers are needed for key genes to facilitate the application of marker-assisted 

selection (MAS) for improvement of drought stress tolerance.  

The objectives of this study were to (1) characterize five drought tolerance candidate 

genes in wheat (Triticum aestivum L.) for nucleotide and haplotype diversity, Tajima’s D value, 

and linkage disequilibrium (LD), and (2) determine the association between within-gene single 

nucleotide polymorphisms (SNPs) and phenotypic traits in a spring wheat association mapping 

panel.  

Five candidate genes, namely dehydration responsive binding 1A (DREB1A), enhanced 

response to abscisic acid (ERA1-B and ERA1-D), and fructan 1-exohydrolase (1-FEH-A and 1-

FEH-B), were amplified and sequenced from 126 spring wheat lines. The lines were evaluated in 

field experiments under contrasting moisture regimes at Greeley, CO, USA and Melkassa, 

Ethiopia. Polymorphic sites were identified within DNA sequences of each gene. Differences 

were observed among the candidate genes for nucleotide and haplotype diversity, Tajima’s D 

test, and patterns of LD. The genes were associated (PFDR=0.1) with yield, yield components, 

and morphological and phenological traits in one or more environments. If validated in relevant 

genetic backgrounds, the identified marker-trait associations may be applied to functional MAS. 
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3.0 INTRODUCTION 

Drought tolerance is a complex trait that involves the expression of many genes. A better 

understanding of the roles and relative importance of those genes would aid the development of 

drought tolerant crop cultivars. A drought tolerance candidate gene is a DNA sequence that co-

maps with a drought tolerance quantitative trait locus (QTL) and encodes a protein that can be 

functionally associated with the stress response/adaptation process (Cattivelli et al., 2008). In 

plants, the construction of molecular linkage maps based on candidate genes is one way of 

identifying the genes underlying QTL instead of time-consuming fine mapping. This candidate 

gene strategy shows promise for bridging the gap between quantitative genetic and molecular 

genetic approaches to study complex traits like drought tolerance. Candidate gene association 

mapping is aimed at linking phenotypic variation with polymorphic sites in candidate genes to 

identify causative polymorphisms (Gonzalez-Martinez et al., 2008).  

Drought stress induces a large number of genes that have been identified and 

characterized for their function (Shinozaki and Yamaguchi-Shinozaki, 2007). There are two 

categories of genes in terms of response to the phyto-hormone abscisic acid (ABA): ABA- 

independent and ABA-dependent. For example, ABA-independent dehydration responsive 

element binding (DREB) genes are known for their association with abiotic stress tolerance 

(Latini et al., 2007). Full-length sequences of DREB1 and DREB2 genes have been cloned from 

rice (Oryza sativa), maize (Zea mays), Arabidopsis thaliana, and wheat, and the DREB1 gene 

sequences from the three genomes of wheat have been mapped to chromosomes 3A, 3B and 3D 

(Wei et al., 2009). Transgenic wheat with the DREB1A gene from Arabidopsis controlled by the 

stress-inducible rd29a promoter showed greater root branching, increased drought tolerance, and 

larger spike size than non-transgenic wheat plants in a greenhouse study (Pellegrineschi et al., 
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2004). However, in a recent field evaluation the transgenic DREB1A-wheat lines did not have a 

grain yield advantage over control lines under water deficit conditions (Saint Pierre et al., 2012), 

despite their better recovery after severe water stress and higher water use efficiency in the 

greenhouse. In transgenic groundnut (Arachis hypogea) plants, DREB1A improved transpiration 

efficiency (Bhatnagar-Mathurwater et al., 2007), increased root/shoot ratio (Vadez et al., 2007), 

and increased root length density in deeper soil layers under water deficit conditions, thereby 

enhancing water uptake of transgenic plants (Vadez et al., 2013).The DREB2 gene from wheat 

improved freezing and osmotic stress tolerance when expressed in tobacco (Nicotiana tabacum) 

plants (Kobayashi et al., 2008). Fructan 1-exohydrolase (1-FEH) is another ABA-independent 

gene that is implicated in cold and drought tolerance through membrane stabilization and 

remobilization of water-soluble carbohydrates from stem to developing grain (Lothier et al., 

2007; Hincha et al., 2003). The three copies of the 1-FEH gene were mapped to the short arms of 

group 6 chromosomes, i.e., 6AS, 6BS, and 6DS (Zhang et al., 2008).  

Increased ABA production under drought conditions activates expression of ABA-

dependent drought tolerance-related genes (Shinozaki and Yamaguchi-Shinozaki, 2007). 

Expression of the ERA1 (Enhanced Response to ABA) gene, which has been cloned from 

Arabidopsis (Cutler et al., 1996) and hexaploid wheat (Manmathan et al., 2013), is ABA-

dependent in its expression. It has been shown that ERA1 mutants increased drought tolerance of 

Arabidopsis through ABA stimulated stomatal closure, thereby effectively reducing water loss 

through transpiration (Pei et al., 1998; Ziegelhoffer et al., 2000).  

Marker-assisted selection has increased the precision of the variety development process 

in classical plant breeding for genes of relatively large effect. Single nucleotide polymorphisms 

are becoming the markers of choice in plant breeding programs for construction of high-
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resolution genetic maps and genomic selection. SNPs are generally more abundant, stable, 

amenable to automation, efficient, and cost-effective than other forms of genetic markers 

(Rafalski, 2002; Akhunov et al., 2009). SNPs can be individually responsible for phenotypic 

variation of a trait or linked to causative SNPs (Langridge and Fleury, 2011). However, selecting 

the most suitable set of SNPs (either causative or linked) in a cost-effective manner is a key step 

toward application of molecular markers for crop improvement (McCouch et al., 2010). 

SNPs may be discovered with different methods. However, the most straightforward 

approach is direct re-sequencing of amplicons of genes from different genotypes (Rafalski, 

2002). Amplification of DNA segments with genome-specific primers for polyploids like 

hexaploid wheat is challenging due to sequence similarity among gene copies on homoeologous 

chromosomes, and among genes within a gene family. This may slow down to some extent the 

application of functional markers in wheat breeding. 

A functional marker is a marker developed from a SNP or insertion/deletion (indel) 

within a gene that is responsible for variation in the trait of interest (Andersen and Lubberstedt, 

2003). The use of functional markers in molecular plant breeding is more advantageous than 

linked markers because the latter are not diagnostic across breeding populations due to 

recombination between the marker and the putative causative SNP region in subsequent 

generations. Since functional markers are developed from SNPs within a gene, marker 

information can be used confidently across breeding programs to select favorable alleles for a 

trait of interest (Bagge and Lubberstedt, 2008). Several genes for agronomic traits (e.g., semi-

dwarfism genes) and quality traits (e.g., polyphenol oxidase) have been identified for wheat (Wei 

et al., 2009; Bagge and Lubberstedt, 2008), but functional markers have been developed for only 
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a few of them. Therefore, more functional markers are needed to enhance the application of 

molecular markers in crop improvement.  

Generally, once genes that determine the genetic basis of a trait are known, developing 

functional markers to select for favorable alleles is an important aspect of using genetic 

information in practical plant breeding (Langridge and Fleury, 2011). However, for successful 

functional marker development, prior information about the level of DNA polymorphism, extent 

of linkage disequilibrium, and within gene nucleotide diversity is required. This information is 

rare for drought tolerance genes in hexaploid wheat. Therefore, the objectives of this study were 

to (1) characterize five drought tolerance candidate genes in wheat for nucleotide and haplotype 

diversity, Tajima’s D value, and LD, and (2) determine the association between within-gene 

SNPs and phenotypic traits in a spring wheat association mapping panel. 
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3.1 MATERIALS AND METHODS 

Plant materials 

A total of 126 lines was selected based on their phenotypic diversity from a set of 294 

spring wheat lines of an association mapping panel (WAMII), which was developed by the 

International Maize and Wheat Improvement Center (CIMMYT) from entries in the Elite Spring 

Wheat Yield Trial (26
th

, 27
th

 and 28
th

 ESWYT), Semiarid Wheat Yield Trial (1
st
 to 16

th
 SAWYT) 

and High Temperature Wheat Yield Trial (HTWYT) (Lopes et al., 2012). The panel was 

developed to identify QTL or genes for drought and heat tolerance, and included many synthetic 

hexaploid-derived wheat lines (Lopes and Reynolds, 2012). The entire mapping panel was grown 

and self-pollinated for one generation before sub-sampling. The lines in the sub-sample were 

chosen based on their diversity in morphology and agronomic characters in field evaluations 

under rainfed and irrigated conditions in 2011 at Greeley, CO. The pedigree of each line was also 

taken into account to minimize parental relatedness. 

Phenotypic evaluation 

The field trial was conducted at Greeley, CO (latitude 40.45N, longitude 104.64E, 

elevation 1427 m) in 2010 and 2011, and at Melkassa, Ethiopia (latitude 8.40 N, longitude 39.33 

E, elevation 1550 m) in 2011. The soil at the Greeley site is well-drained with fine sandy loam to 

clay loam texture and a pH of 7.4-8.4. The dominant soil type at Melkassa is sandy loam 

(Andosol of volcanic origin) with pH ranging from 7.0 to 8.2 (Ethiopian Institute of Agricultural 

Research, Melkassa Agricultural Research Center).  

On 5 April 2010, we planted 285 lines for evaluation under fully irrigated conditions in 

Greeley. The site received a total of 271 mm of rainfall from January through July, and the plots 

were supplemented with 94 mm from three irrigations (twice during the vegetative stage and 
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once after heading). In 2011 we evaluated 288 lines at Greeley under both fully irrigated (“wet”) 

and rainfed (“dry”) conditions. Both treatments were irrigated similarly at planting (15 April), 

but later the wet treatment was supplemented three times with drip irrigation during the 

vegetative and grain filling stages, while the dry treatment received supplemental irrigation only 

once at heading to avoid complete failure of the experiment. The wet treatment received a total 

of 313 mm water (rainfall plus irrigation), whereas the dry treatment received 192 mm of water 

(rainfall plus irrigation) during the growing season and the preceding three months (January 

through July). 

In both years each entry was replicated twice in a Latinized row-column design prepared 

with CycDesign 3.0 software (www.cycdesign.co.nz). Each line was planted in four-row plots 

1.53 m long and 0.92 m wide with 0.20 m spacing between rows. The seeding rate was 

approximately 173 seeds m
-2

. Weeds were controlled manually as required.  

At Melkassa Ethiopia, 294 lines were planted on 17 July 2011 on wet soil and on 19 July 

2011 drier soil in an adjacent field. The experiment was laid out as an alpha lattice design with 

14 plots per block and two replications. Plots were two rows, 2.5 m long, with 0.2 m spacing 

between rows and 0.4 m spacing between plots. Seeding rate was based on local 

recommendation of 150 kg ha
-1

. Nitrogen fertilizer was applied in split applications at planting 

and tillering at a total rate of 50 kg ha
-1

. Phosphorus fertilizer was applied at planting as 

diammonium phosphate at a rate of 100 kg ha
-1

. The site received a total of 533 mm rainfall 

during the growing season (July-September, 2011).  
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Morphological and phenological traits  

Flag leaf maximum length (measured in cm from leaf collar to the tip) and maximum 

width (measured in cm on the widest part of the leaf) were recorded as the average measurement 

of three flag leaves per plot, and flag leaf area (cm
2
) was calculated as flag leaf length x flag leaf 

width x 0.75.  

Plant height was recorded as the average of three values measured in cm from the soil 

surface to the tip of the spike excluding awns. Days to heading was recorded as the number of 

days from planting until 50% of the spikes in each plot had completely emerged above the flag 

leaves. Days to maturity was recorded as the number of days from planting until 50% of the 

peduncles in each plot had turned yellow. Grain filling duration was calculated as the difference 

between the days to heading and days to maturity.  

Vegetation indices and leaf senescence 

Normalized vegetation index (NDVI) was obtained by scanning plants in each plot during 

the grain filling stage with a GreenSeeker instrument model 3541 (NTech Industries Inc., 

Boulder, CO). A green leaf area index was obtained from a photo taken at a height of 

approximately 0.50 m directly above each plot with a digital camera (Coolpix S8100, Nikon 

Corp., Japan), and processed with Breedpix software (Casadesus et al., 2007). Leaf senescence 

was scored during grain filling stage a week before physiological maturity time on a scale from 0 

to10, where 0 indicates completely green leaves and 10 indicates that all leaves in a plot had 

changed completely to yellow.  

Kernel and grain yield-related traits 

Biomass samples were taken by cutting all the plants at ground level in one row of each 

plot at maturity. Final dry biomass was determined by weighing samples after 48 hours in a 40 
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o
C drier. Those samples were threshed and the grain weight was used to calculate harvest index 

as the ratio of grain weight to total biomass weight. The remaining plants in each plot were 

harvested by a combine. Grain yield was the total weight of seed in each plot (combine harvest + 

biomass grain weight) divided by the plot area and expressed as kg ha
-1

. Spike length, spikelets 

number per spike, kernel number and weight (g) per spike, and kernel number per spikelet were 

recorded as the average of five spikes per plot. Thousand kernel weight was determined by 

extrapolation after counting seeds of five spikes with a seed counter (International Marketing and 

Design Corp. Model 900-2, San Antonio, TX) and obtaining the weight of the seeds. Number of 

spikes m
-2 

was calculated by dividing the number of kernels m
-2

 by kernel number per spike. The 

number of kernels m
-2

 was obtained from the ratio of grain weight m
-2

 to thousand kernel weight, 

multiplied by 1000 (= (YLD (g/m
-2

/TKW (g)) x 1000). Single kernel diameter (mm), kernel 

hardness and single kernel weight (mg) were determined from 100 seeds using a Single Kernel 

Characterization System Instrument model 4100 (Perten Instruments, Springfield, IL). Test 

weight (kg hL
-1

) was determined using standard procedures from a small sample of the grain 

collected at harvest.  

Phenotypic data analysis 

Analysis of variance for the phenotypic data was conducted first using the GLM 

procedure of SAS v. 9.3 (SAS, Institute, 2011), considering genotype as a fixed effect. Normality 

of the data for each trait was checked using a Q-Q plot of residuals in the SAS GLIMMIX 

procedure, and all traits were consistent with a normal distribution. Best linear unbiased 

predictions (BLUPs) and variance components were obtained for all traits using the Mixed 

procedure in SAS, considering genotype as a random variable. In the combined data analysis, 

environment was considered a fixed variable. To account for spatial variation in the experimental 
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field, four spatial models (spatial power, anisotropic spatial power, Matérn spatial, and 

Autoregressive models (AR1 x AR1)) were compared using minimum Akaike Information 

Criterion and Bayesian Information Criterion for each trait (SAS Institute, 2006). Since the 

correlation value due to spatial variability in each model was very low for each data set (except 

at Greeley in 2010), there was little benefit from spatial adjustment in this study.  

Candidate gene selection and analysis 

Three drought tolerance candidate genes (ERA1, DREB1A and 1-FEH) were selected for 

SNP identification, nucleotide diversity, and association analyses. Reference DNA sequences of 

two genes, DREB1A and, 1-FEH were obtained from National Center for Biotechnology 

Information (NCBI) GenBank database (www.ncbi.nlm.nih.gov). The third candidate gene, 

ERA1, was recently cloned from wheat (Manmathan et al., 2013). Its cloning involved designing 

primers from conserved regions of previously identified homologous genes of related species, 

amplifying the gene region from hexaploid wheat, cloning the PCR products into plasmids, and 

sequencing plasmid clones to identify sequences of the gene on the A, B, and D genomes. A 

primer pair reported by Wei et al. (2009) was used to amplify the DREB1A gene. Both coding 

and non-coding regions were amplified with this primer pair. The primers used to amplify ERA1 

and 1-FEH, however, were designed for genome-specific amplification with primers designed 

from unique regions of the genes using primer3 software (frodo.wi.mit.edu/). The gene structure 

for ERA1 was predicted using GeneMark software (http://exon.gatech.edu/). All primer pairs 

used to amplify 1-FEH were from non-coding regions of the gene copies. Genome specificity of 

the primers was verified by PCR amplification of the corresponding gene in the hexaploid wheat 

progenitors T. urartu (AA, 2n=2x=14), Aegilops speltoides (BB, 2n=2x=14) and Ae. tauschii 

(DD, 2n=2x=14). A complete list of the genome-specific primers is given in Table 3.1. 

http://www.ncbi.nlm.nih.gov/
http://exon.gatech.edu/
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Table 3.1. Primer sequences used to amplify drought tolerance candidate genes. 

Target gene Primer  Sequence 

DREB1A P21F 5’-CGGAACCACTCCCTCCATCTC-3’ 

 P21R 5’-CGGTTGCCCCATTAGACGTAA-3’ 

ERA1-B ERA1BF 5’-GATGTGACAATACATTACATATGCAGCT-3’ 

 

 ERA1BR 5’-GGTGGGTACGTTTCTAAGGATGG-3’ 

ERA1-D ERA1DF 5’-CAACTCTGAACTATTGCAAAAGTGAACTTTC-3’ 

 ERADR 5’-CTGCAATATCGGTGAGTTTCTTGTAGTTAA-3’ 

1-FEH-A W12F 5’-TATGCCACTTCCATGCTGGTA-3’ 

 

 W12R 5’-CGATGCTGCTGCCAAGAATATAC-3’ 

 

1-FEH-B W32F 5’-CAAGAACTGGATGAACGGTACAT-3’ 

 

 W32R 5’-CAATGGCTACTTGTGTTTAGCC-3’ 
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To extract DNA, leaf tissues were sampled from 2-week-old seedlings of the 126 lines 

grown in a greenhouse. The leaf samples were immediately transferred to 2-mL tubes and stored 

at -80 
o
C. DNA was extracted following a standard Cetyl Trimethyl Ammonium Bromide 

(CTAB) extraction method with minor modification (Wei et al., 2009). 

The following PCR protocol was used for the ERA1 and 1-FEH genes. A total volume of 

25 μL containing 100 ng of genomic DNA, 1x PCR reaction buffer, 0.20 μM of each primer, 

0.20 mM dNTPs, 1.5 mM MgCl2,0.5 U of VELOCITY DNA polymerase (www.bioline.com), 

and 3% dimethyl sulfoxide (DMSO) was used. The PCR was carried out on a MJ PTC-200 

programmable thermal controller (MJ Research, Bio-Rad, Hercules, CA) as follows: initial 

denaturation at 98 
o
C for 2 min; 30 cycles of 98 

o
C for 1 min, an annealing step at 68 

o
C for 

ERA1 and 64 
o
C for 1-FEH for 1 min, and 72 

o
C for 1.5 min; and final extension at 72 

o
C for 10 

min. Amplification of DREB1A was conducted using a total volume of 25 μL containing 100 ng 

of genomic DNA, 1x PCR reaction buffer, 0.25 μM of each primer, 0.45 mM dNTPs, 4.0 mM 

MgCl2, and 1.6 U of Taq DNA polymerase (Promega, Madison, WI). The PCR amplification 

was done on a MJ PTC-200 programmable thermal controller at an initial denaturation 

temperature of 94 
o
C for 3 min, followed by 34 amplification cycles at 94 

o
C for 1 min, 

annealing temperature of 63 
o
C for 1 min, and 72 

o
C for 1.5 min, and final extension at 72 

o
C for 

10 min. For each candidate gene, a primer optimization step was done on two genotypes from the 

mapping panel. 

The expected size of each PCR product was confirmed by separation on 1.5-2% agarose 

gels, stained with ethidium bromide, and visualized under UV light. The amplified PCR products 

were purified and sequenced on an ABI sequencing instrument at Beckman Coulter Genomics 

(Beckman Coulter Genomics, Danvers, MA). Sequences were initially obtained from 32 
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representative diverse genotypes. After confirming the presence of SNPs within the genes, PCR 

products from the remaining 94 lines were sequenced. The overall sequence data quality was 

high, with a pass rate of 96.35% and 97.60% for the 32 diverse genotypes and the remaining 94 

lines, respectively. 

To identify SNPs, consensus sequences were first obtained by aligning reverse and 

forward sequences with the reference sequences of each gene using SeqMan software 

(www.dnastar.com/t-nextgen-seqman-ngen.aspx). Those sequences that showed less than 80% 

sequence identity with the references were excluded from subsequent analyses. Aligned 

sequences of each gene were analyzed for sequence diversity by characterizing nucleotide 

diversity, haplotype diversity, and linkage disequilibrium using DnaSP version 5 software 

(Rozas et al., 1999). Genome-specific sequences of the ERA1 gene were mapped to the long 

arms of chromosomes 3A, 3B, and 3D through a BLAST search against the survey sequences of 

all individual chromosomes of bread wheat in the International Wheat Sequencing Consortium 

database (www.wheatgenome.org). 

Population structure, LD, and marker-trait association analysis 

Diversity Array Technology (DArT) markers (Triticarte Pty. Ltd., Canberra, Australia; 

www.triticarte.com.au; Akbari et al., 2006) were used to account for population structure and 

genetic relationship of the evaluated lines. A total 78 DArT markers (spaced > 10 cM) was 

selected from all chromosomes to determine the population structure. An admixture model with 

correlated allele frequency model in STRUCTURE software (Pritchard et al., 2000) was applied 

with a burn-in of 20,000 iterations and 20,000 Markov Chain Monte Carlo (MCMC) duration to 

test a k value in the range of 3 to 12. Each K was replicated five times and the run that assigned 

http://www.dnastar.com/t-nextgen-seqman-ngen.aspx
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more lines with probability of >0.5 in all clusters was used. The likely number of subpopulations 

was determined using the approach of Evanno et al. (2005).  

Single nucleotide polymorphisms within each gene were used to determine pair-wise LD 

with GGT2 computer software (www.plantbreeding.wur.nl/uk). Fisher’s exact test was used to 

decide the significance of the LD among SNPs. Linkage disequilibrium was calculated across 

chromosomes 3A and 6A to compare the extent of LD decay around DREB1A, ERA1, and 1-

FEH genes.  

Phenotypic data collected from five environments were used to determine the effects of 

SNPs within each gene on the phenotypic traits. Since the selected lines were highly 

homozygous breeding lines developed via several generations of self-pollination, only a few sites 

were found to be heterozygous and these sites were considered as missing values in association 

analysis. DArT markers were used to calculate kinship matrices among the lines as suggested by 

Bernardo (1993). A false discovery rate adjusted probability value of 0.1 was used as the 

threshold for significance of SNP-trait associations (Benjamini and Hochberg, 1995). A mixed 

linear model (Yu et al., 2006) with population structure and kinship in the model, as 

implemented in the TASSEL software version 3.0 (Bradbury et al., 2007), was applied for 

association analysis. This model showed least deviation of observed P-values from expected P-

values in Q-Q plot when compared with that of Q (population structure) or K (kinship) model 

only. For SNPs that explain larger portions of phenotypic variation, phenotypic means for 

genotypic classes were graphically displayed to compare the effects of common alleles against 

that of rare allele of each SNP. Haplotype-trait associations were also conducted using within-

gene SNP combinations in the TASSEL software.  

  

http://www.plantbreeding.wur.nl/uk
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3.2 RESULTS 

Phenotypic Evaluation 

Analysis of variance revealed significant differences (P<0.05) among the genotypes for 

most traits in all environments. A total of 26 traits were measured or scored in this study, but this 

number varied depending on the year and location. In the combined data analysis, variation due 

to genotype by environment interaction was about 20% of the total variation while about 13% of 

the total variation was due to genotypic differences. The mean yield of individual lines ranged 

from a low of 1087 kg ha
-1

 at Greeley under dry conditions in 2011 to 5513 kg ha
-1

 at Melkassa 

under non-stressed conditions in 2011 (Table 3.2). The mean yield performance of genotypes in 

the non-stressed treatment at Melkassa was about three-fold higher than that of the irrigated 

treatment at Greeley in the same year (Table 3.2). Furthermore, the genotypes had longer flag 

leaves, greater plant height, longer grain filling duration, more final biomass production, and 

consequently, higher grain yield at Melkassa compared to Greeley. Although days to heading 

occurred within a range of four to seven days in the Greeley environments for the sub-sampled 

population, the range at Melkassa was 15 to 18 days (Table 3.2).  
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Table 3.2. Phenotypic mean and range of selected spring wheat association mapping panel entries evaluated at five environments. 

  
 Environments† 

 GRW10 GRW11 GRD11 MLKW11 MLKD11 

Trait‡ Mean Range Mean Range Mean Range Mean Range Mean Range 

YLD  2179 1510-2791 1528 1241-1865 1301 1087-1511 4420 2615-5513 3904 2444-4893 

TKW 35.45 31.00-41.48 21.37 18.93-23.90 25.11 20.81-31.64 25.53 16.28-34.73 22.6 16.66-27.74 

TW  77.84 72.30-81.97 65.46 62.43-68.97 69.07 62.54-72.83     

DH 67.24 62.88-69.67 69.96 67.87-72.30 68.29 65.56-70.80 54.92 50.75-66.10 55.68 50.61-68.34 

DM 103.22 99.64-105.65 104.04 102.06-106.01 99.58 97.30-106.76 92.78 88.09-98.89 95.16 92.05-98.52 

GFD 35.98 31.67-41.40 34.00 32.05-37.32 30.59 28.59-38.25 37.86 32.79-43.68 39.47 30.18-44.97 

KN 6368 4701-7684 7319 6268-9027 5304 4610-6641 17610 10419-21964 17296 13577-

20097 

HI 0.25 0.20-0.29 0.29 0.21-0.39 0.36 0.33-0.41 0.28 0.16-0.35 0.23 0.15-0.28 

PHT  62.79 47.61-76.23 63.38 53.50-71.85 49.53 40.84-58.79 81.91 75.33-87.51   

NDVI 0.67 0.64-0.70 0.4 0.356-0.449 0.2716 0.25-0.29     

BM 7798 7092-8501 4315 4187-4437 3863 3435-4236 16246 14494-18621 17237 15893-

18848 

†GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11,Melkassa wet 2011; MLKD11, Melkassa dry 2011. 

‡SKD, Single kernel Diameter; SKW, Single Kernel Weight; KNL, Kernel number per spikelet; KWS, Kernel weight per spike; TW, Test Weight; NDVI, 

Normalized difference Vegetation index; BM, Biomass; SPN, Spikelet number; SL, spike length; KN, kernel number; PHT, Plant Height; DH, Days to 

heading; TKW, Thousand Kernel weight; HI, Harvest index;  DM, Days to maturity;  LL, Flag leaf length; LW, Flag leaf with; SN, Spikes number m
-2

 ;  

LA, Leaf area; KNS, Kernel number  spike
-1

. 
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Table 3.2. Continued. 
 

  Environments†    

 GRW10 GRW11 GRD11 MLKW11 MLKD11 

Trait‡ Mean Range Mean Range Mean Range Mean Range Mean Range 

LL 15.84 13.02-21.42 15.41 13.66-17.77 12.17 10.35-13.95 20.179 18.70-21.63 22.22 19.92-24.52 

LW 1.51 1.26-2.02 1.31 1.17-1.39 1.23 1.16-1.32 1.29 1.16-1.37 1.34 1.28-1.58 

LS 5.43 3.89-7.62   7.75 6.49-8.53     

KNS   38.69 37.08-40.45 38.71 34.12-45.78     

SPN 16.4 14.78-17.52 16 15.05-17.33 15.8 14.43-17.06 16.58 14.02-18.88   

KWS  1.24 1.05-1.41   0.97 0.90-1.04     

SN   198.94 198.38-199.83 140.62 122.55-178.16     

SL 9.33 7.59-11.33 8.89 7.20-10.89 8.73 6.64-10.62     

KNL 2.12 1.77-2.37 2.41 2.28-2.58 2.38 2.27-2.69     

SKD  2.87 2.69-3.03 2.53 2.35-2.73 2.56 2.36-2.80     

SKW  35.46 30.92-41.44 25.71 21.54-30.63 27.08 22.53-32.10     

†GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11,Melkassa wet 2011; MLKD11, Melkassa dry 2011. 

‡SKD, Single kernel Diameter; SKW, Single Kernel Weight; KNL, Kernel number per spikelet; KWS, Kernel weight per spike; TW, Test Weight; NDVI, 

Normalized difference Vegetation index; BM, Biomass; SPN, Spikelet number; SL, spike length; KN, kernel number; PHT, Plant Height; DH, Days to heading; 

TKW, Thousand Kernel weight; HI, Harvest index;  DM, Days to maturity;  LL, Flag leaf length; LW, Flag leaf with; SN, Spikes number m
-2

 ;  LA, Leaf area; 

KNS, Kernel number  spike
-1

. 
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Sequence diversity and SNP-trait association analyses 

The amount of genetic variation at the DNA level can be assessed by the average of 

pairwise nucleotide differences among sequences from different individuals or by the number of 

segregating sites along the length of DNA sequences (Tajima, 1989). Therefore, in this study 

nucleotide diversity (π), i.e., the average number of pairwise nucleotide differences per site (Nei, 

1987), per site estimates of diversity (θ), and haplotype diversity for each gene were determined 

(Table 3.3). A total of 37 SNPs with minor allele frequency greater than 5% was detected in the 

126 genotypes that were sequenced over a total length of 5038 bp. This is roughly one SNP per 

136 bp. Large differences were found among the candidate genes both in number of SNPs and 

nucleotide diversity parameters. The number of SNPs varied from one in 1-FEH-B to 16 in 

DREB1A. Similarly, the nucleotide diversity ranged from 0.00078 to 0.18 for 1-FEH-B and 

DREB1A, respectively (Table 3.3).  
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Table 3.3. Summary of measures of nucleotide variability in drought tolerance candidate gene sequences. 
 

 

 

 

 

*, *** Significant at the 0.05 and 0.001 probability levels, respectively. NS=non-significant. 

† MAF, minor allele frequency > 0.05.  

Gene Sample n Length 

(bp) 

SNPs 

(MAF>0.05)† 

Nucleotide 

diversity (π) 

Theta 

(θ)/site 

Haplotype 

diversity (hd) 

Tajima’s D Fu and Li’ F* 

test 

DREB1A 126 971 16 0.180 0.392 0.948 -1.809* -0.61NS 

ERA1-B 122 1410 8 (5 INDELS) 0.00094 0.0065 0.508 -2.649*** -6.95** 

ERA1-D 121 1388 7 0.0023 0.011 0.826 -2.457*** -5.91** 

1-FEH-A 126 601 5 0.00224 0.0035 0.45 -0.896NS -1.94NS 

1-FEH-B 124 668 1 0.00078 0.0049 0.153 -2.307*** -2.52* 
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With the exception of DREB1A, the nucleotide diversity values obtained for the 

remaining four genes are within the range of nucleotide diversity values (0-0.003) reported for 

cultivated wheat by Haudry et al. (2007). Except for DREB1A, all SNPs for the remaining genes 

were detected in non-coding regions of the genes (Table 3.4). On average, the number of 

transversions (nucleotides changes from purine to pyrimidine or vise-versa) was higher than 

average number of transitions (nucleotide changes from purine to purine or pyrimidine to 

pyrimidine). However, for some genes (e.g., DREB1A) number of transition SNPs was higher 

than number of transversion SNPs. 
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Table 3.4. Summary of SNP properties for five drought tolerance candidate genes 

Gene  Non-coding 

SNPs 

Coding SNPs Transitions SNPs Transversion SNPs 

Synonymous Nonsynonymous 

DREB1A 10 3 3 9 7 

ERA1-B 3 0 0 0 3 

ERA1-D 7 0 0 2 5 

1-FEH-A 5 0 0 0 5 

1-FEH-B 1 0 0 1 0 
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The effect of selection on the candidate genes was assessed using Tajima’s D statistics. 

The Tajima’s D test showed that there was significant difference between π and θ for ERA1-B, 

ERA1-D, 1-FEH-B, and DREB1A, indicating that those genes are under selection (Table 3.3). 

The negative sign for all candidate genes shows that selection has resulted in the accumulation of 

many low frequency SNPs with respect to predictions of the neutral theory (Fusari et al., 2007; 

Giordani et al., 2011). However, the estimate of Tajima’s D, and Fu and Li’s F* test were non-

significant for the 1-FEH-A gene, indicating the absence of a selection footprint for this gene. 

Except for DREB1A gene, the significance test for Tajima’s D estimate, and Fu and Li’s F* test 

statistic agreed for the remaining genes (Table 3.3). 

The candidate genes also differed in the extent of LD among SNPs. Although large 

numbers of SNPs were observed for ERA1-B and DREB1A, the percentages of significant 

pairwise comparisons among SNPs were higher for 1-FEH-A (40%) followed by ERA1-D (24%) 

as shown in Table 3.5.  
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Table 3.5. Linkage disequilibrium (LD) analysis of five drought tolerance candidate genes.  

 

 

 

 

 

 

†MAF, minor allele frequency 

Gene  Length 

(bp) 

Number of 

informative SNPs 

(MAF>0.05)
†
 

Number  of  

pairwise 

comparisons 

Number of significant 

pairwise comparisons 

(Fisher exact test, 

P<0.01)  

% of significant 

pairwise 

comparisons 

SNP pairs in 

complete LD 

DREB1A 971 16 121 17 14 None 

ERA1-B 1410 8 (5 indels) 28 2 7 None 

ERA1-D 1388 7 21 5 24 None 

1-FEH-A 601 5 10 4 40 3 (30%) 

1-FEH-B 668 1 - - - - 
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When the recombination rate is low, LD is extended over a large genetic distance and 

more SNPs in that range would show significant pairwise associations. Except for SNPs within 

1-FEH-A, SNP pairs for other genes varied from weak LD to strong LD (Figure 3.1- 3.4) 

indicating the inconsistency of LD within a gene region.  

 

Figure 3.1. Graphical representation of linkage disequilibrium in the DREB1A gene.  

 

r2 
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Figure 3.2. Graphical representation of linkage disequilibrium (LD) in the ERA1-B gene.  

r
2
 



 

156 

 

 

Figure 3.3. Graphical display of single nucleotide polymorphisms (SNPs) within the ERA1-D 

gene.  
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Figure 3.4. Graphical display of single nucleotide polymorphisms (SNPs) within the 1-FEH-A 

gene.  
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The LD decay curves were fitted for chromosomes 3A and 6A using 37 and 53 DArT 

markers, respectively. The LD decayed below r
2
=0.2 at ~3.69 cM for chromosome 3A, on which 

DREB1A is located, while LD decayed below r
2
=0.2 at 2.27 cM for chromosome 6A, which 

harbors 1-FEH-A (Figure 3.5 and Figure 3.6). 

 

Figure 3.5. Linkage disequilibrium (LD) decay for chromosome 3A of hexaploid wheat.  
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Figure 3.6. Linkage disequilibrium (LD) decay for Chromosome 6A of hexaploid wheat.  

 

The use of functional markers in marker-assisted plant breeding depends on the degree to 

which economically important traits are affected by a gene. SNPs within DREB1A were 

associated with several traits, including final biomass, normalized vegetation index, days to 

heading, and spikelet number (Table 3.6). The percentage of phenotypic variation explained by 

those SNPs ranged from 6.4% for heading date to 9.7% for NDVI. Among the six SNPs detected 

in the coding region of DREB1A, only one SNP (DREB1A_870) showed association with a trait 

(NDVI at GRW10). The change of the nucleotide C to nucleotide T at this site was synonymous 

substitution, and NDVI mean for lines carried the C nucleotide (common allele) was higher than 
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that of lines carried the T nucleotide (rare allele) (Figure 3.7). Other SNPs that showed non-

synonymous substitution in the coding region of DREB1A did not show associations with any 

phenotypic trait in this study. In association mapping, a QTL that explains about 10% of the 

phenotypic variation can be considered a major QTL according to definitions for QTL classes 

suggested by Flint-Garcia et al. (2005). The haplotypes based on combinations of the SNPs 

within DREB1A were also associated with yield and yield component traits such as kernel 

number m
-2

, kernel weight, spikelet number, spike length and spike number m
-2

 (data not 

shown).  



 

161 

 

Table 3.6. Marker-trait associations for SNPs within five drought tolerance candidate genes and phenotypic traits in individual 

environments and combined across environments. 

Gene SNP name  Trait  Environments† PFDR
‡
 R

2 
(%)§ 

DREB1A DREB1A_108 Spikelet number GRW10 0.0518 7.4 

 

 

DREB1A_174 Days to heading Combined data 0.054 7.5 

DREB1A_252 Days to heading GRW10 0.085 6.9 

DREB1A_252 Days to heading MLKW11 0.10 6.4 

 DREB1A_870 Final biomass GRD11 0.069 7.9 

  NDVI GRW10 0.014 9.7 

ERA1-B ERA1B_126 Plant height GRW10 0.067 5.6 

 ERA1B_AIN_172 Harvest index GRW11 0.0378 9.3 

ERA1B_AIN_183 Flag leaf width MLKW11 0.0046 10.2 

ERA1B_CIN_185 

 

Harvest index GRW10 0.0599 5.0 

Grain filling 

duration 

GRW10 0.0059 9.7 

Grain filling 

duration 

Combined data 0.044 7.14 

Leaf senescence GRW10 0.029 6.6 

Spike length GRW11 0.07024 5.2 

 ERA1B_932 

 

Spikes m
-2

 Combined data  0.0618 6.1 

 Spikes m
-2

 GRW10 0.003 11.3 

ERA1-D ERA1D_235 Flag leaf width GRD11 0.0331 8.6 

 ERA1D_240 Kernel weight per 

spike 

GRD11  0.0259 6.7 

Flag leaf width GRD11 0.093 3.6 

ERA1D_241 Leaf senescence GRD11 0.044 6.3 

ERA1D_1203 Kernel number per 

spike 

GRW10 0.048 8.8 

ERA1D_1207 Flag leaf width  GRW10 0.0487 6.45 

Harvest index GRD11 0.102 4.8 

1-FEH-A FEHA_127 Green leaf area  GRD11 0.064 4.0 

Flag leaf length  GRW10 0.0091 7.3 

Grain yield  GRW10 0.072 5.8 

Flag leaf length  Combined data 0.043 5.8 

Flag leaf area  GRW10 0.055 5.4 
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Table 3.6 Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

† GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011. 

‡ False Discovery Rate adjusted P-value. 

§ Percent phenotypic variance explained by the SNP. 

 

 

 

 

 

 

 

     

     

 

SNP name 

 

Trait 

 

Environments 

 

PFDR‡ 

 

R
2
 (%)§ 

FEHA_145,  

FEHA_149 and 

FEHA_151 

Spike length GRW10 0.026 4.7 

 FEHA_412 Green leaf area  GRD11 0.064 4.2 

  NDVI GRW10 0.0034 9.8 

  Flag leaf length GRW10 0.0091 7.0 

  Final biomass GRW10 0.0132 6.6 

  Grain yield  GRW10 0.0513 4.3 

  Kernel number per 

spike 

Combined data  0.0546 4.5 

  NDVI  Combined data  0.079 5.0 

1-FEH-B FEH-B-_561 Days to maturity GRD11 0.0064 5.3 

Thousand Kernel 

Weight 

GRW11  0.034 3.7 

Test weight  GRW11 0.048 3.3 

Days to heading MLKW11 0.041 4.2 

Gene 
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Figure 3.7. Mean of NDVI for two genotypic classes based on SNP (DREB1A_870) of DREB1A that associated with NDVI evaluated 

at Greeley under irrigated conditions in 2010 
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The SNPs within ERA1-B were associated with harvest index, spikes m
-2

, and grain 

filling duration either in two environments or in one environment plus combined data across 

environments. SNPs in that gene were associated in a single environment with plant height, leaf 

senescence, spike length, and leaf width. These SNPs explained the largest phenotypic variation 

in spike m
-2

 (11.3%) followed by flag leaf width (10.2%), grain filling duration (9.7%), and 

harvest index (9.3%). Interestingly, the mean of spike m
-2

 of lines carried rare allele was higher 

than mean of spike m
-2

 for common allele (Figure 3.8). The haplotypes within ERA1-B also 

showed associations with harvest index, grain filling period, kernel weight spike
-1

, and kernel 

number m
-2

. ERA1-D was also associated with the yield component traits kernel weight spike
-1

, 

kernel number spike
-1

, harvest index, flag leaf width, and leaf senescence. The majority of the 

SNP-trait associations for ERA1-D were obtained under rainfed conditions. The largest 

phenotypic variation was explained by the SNP ERA1D_1203 in ERA1-D for kernel number 

spike
-1

, but the mean of lines carried rare allele was lower than the mean of kernel number spike-

1 of common allele at this site (Figure 3.9). The haplotypes within ERA1-D were associated with 

yield, spike length, kernel number m
-2

 and flag leaf width (data not shown). Both ERA1-B and 

ERA1-D were associated with leaf senescence, harvest index, and flag leaf width (Table 3.6), 

suggesting the importance of ERA1 for drought tolerance in wheat, as some of these traits (e.g., 

delayed leaf senescence) are related to productivity under dry conditions. Manmathan et al. 

(2013) recently reported reduced stomatal conductance, increased water use efficiency, and 

better relative water content in wheat plants silenced for ERA1 via virus induced gene silencing 

compared to the control.  
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Figure 3.8. Mean of number of spikes m
-2

 for two genotypic classes based on SNP (ERA1B_932) of ERA1-B that associated with 

number of spikes m
-2

 evaluated at Greeley under irrigated conditions in 2010. 
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Figure 3.9. Mean of number of kernel number spike
-1

 for two genotypic classes based on SNP (ERA1D_1203) of ERA1-D that 

associated with kernel number of spike
-1

 evaluated at Greeley under irrigated conditions in 2010. 
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The 1-FEH-A gene was associated with yield, kernel number spike
-1

, spike length, NDVI, 

biomass, flag leaf length and area, and green leaf area index (Table 3.6). The SNPs in this gene 

explained the highest phenotypic variation for NDVI (9.8%) followed by flag leaf length (7.0%) 

and biomass (6.6%). The phenotypic mean of NDVI for the lines carried rare allele was lower 

than that of common allele (Figure 3.10). The 1-FEH-A haplotype was also associated with 

yield, biomass, NDVI, plant height, days to heading, leaf length, spike length, and green leaf area 

index (data not shown). Only a single SNP was detected for 1-FEH-B and this SNP was 

associated with days to maturity, kernel weight, test weight and days to heading (Table 3.6). The 

phenotypic mean of lines carried rare allele was lower that of common allele for thousand kernel 

weight (Figure 3.11). In genome-wide association analysis with DArT markers for the complete 

panel described here (n=294), we detected QTL on chromosome 6AS, where 1 FEH-A resides, 

for several traits, including thousand kernel weight, plant height, flag leaf area and width. A 

previous bi-parental QTL mapping study detected QTL for stem water soluble carbohydrate, 

thousand kernel weight, and grain filling efficiency on chromosome 6AS (Yang et al., 2007). 

Thus, our results, supported by the previous study, suggest that 1-FEH genes are associated with 

yield-related traits that are important in both irrigated and rainfed conditions.   
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Figure 3.10. Mean of NDVI for two genotypic classes based on SNP (1-FEHA_412) of 1-FEH-A that associated with NDVI data 

obtained from Greeley under irrigated conditions in 2010. 
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Figure 3.11. Mean of number of thousand kernel weight for two genotypic classes based on SNP (1-FEH-B_561) of 1-FEH-B that 

associated with thousand kernel weight evaluated at Greeley under irrigated conditions in 2011. 
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Very few SNP-trait associations were detected for the Melkassa environments, and we 

are uncertain of the reason for this. One explanation may be the wide range of heading dates at 

that location (15 to 18 days), which may have confounded the effects of the candidate genes on 

the yield-related traits. Another factor is that the number of traits evaluated in Melkassa was less 

than the number evaluated in Greeley, so there were fewer opportunities to detect significant 

associations. 

3.3 DISCUSSION 

Information on nucleotide diversity and SNP density is very rare for hexaploid wheat. To 

our knowledge, this study is the first report on nucleotide diversity for drought tolerance genes of 

hexaploid wheat.  

Orthologous genes on homoeologous chromosomes showed differences in almost all 

diversity parameters considered here, including nucleotide diversity, haplotype diversity, 

Tajima’s D values, Fu and Li’s test, and LD patterns. ERA1-B and ERA1-D were amplified from 

homoeologous chromosomes on the B and D genomes of hexaploid wheat, respectively. 

However, ERA1-B is less diverse than ERA1-D based on these diversity parameters. This is an 

unexpected result because both the A and B genomes of wheat are more diverse than the D 

genome (Chao et al., 2010) based on differences in LD decay rate among the genomes. In the 

current study also, the percentage of SNP pairs in LD for ERA1-D is higher than that of SNP 

pairs in LD for ERA1-B (Table 3.5). Similarly, 1-FEH-A is more diverse than 1-FEH-B and 

selection impact is high on the latter. Selection resulted in accumulation of rare SNPs with 

frequency <5% for 1-FEH-B, while the number of rare alleles is in agreement with neutral 

expectation for 1-FEH-A. Tajima’s test may not provide complete information about the action 
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of selection as demographic processes such as population bottleneck, recombination, population 

structure, and sample size can bias the results (Figueiredo et al., 2010). We are unable to 

compare the extent of LD between these genes as only one SNP showed minor allele frequency 

>5% for 1-FEH-B. However, 1-FEH-A had a higher number of SNP pairs with significant LD of 

all the candidate genes in this study.  

The average number of SNPs within a gene varies depending on the species, region of a 

chromosome, and selection pressure. Although the SNP frequency is greatly gene dependent, the 

average of one SNP per 136 bp obtained in this study is higher than SNP density reported for 

wheat by Ravel et al. (2007). However, it is far less than SNP density reported for other crops 

such as maize (1 SNP/104 bp), sorghum (Sorghum bicolor) (1 SNP/123 bp), sunflower 

(Helianthus annuus) (1 SNP/69 bp), and rice (1 SNP/113 bp and 1 SNP/100 bp) (Fusari et al., 

2008). The presence of low genetic diversity in hexaploid wheat is partly explained by low 

effective recombination, as wheat is highly self-pollinated. In addition to this, both domestication 

and modern breeding for high yield and disease resistance have reduced genetic diversity in 

wheat (Reif et al., 2005; Akhunov et al., 2010).  

In the context of our current study, LD is a non-random association of polymorphic sites 

(SNPs) within a gene. Graphical displays of LD (Figure 3.1- 3.4) in terms of r
2
 showed the 

patterns of association among polymorphic sites within all tested genes. The orthologous genes 

amplified from different genomes of hexaploid wheat showed different LD patterns. This 

information is useful in deciding how many functional markers need to be developed per gene, as 

the degree of associations of SNPs within a gene is different for different SNPs. The 

chromosome-wide LD analysis with DArT markers also confirmed differences in the extent of 

LD among chromosomes harboring the candidate genes as expected. On average, LD decays 
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faster for chromosome 6A than chromosome 3A, implying a better chance of tagging DREB1A 

with linked genome-wide markers than the 1-FEH-A gene provided that there is no change in 

relationship of average LD decay rates around the two genes.  

In this study we found that SNPs that reside within a few base pairs were associated with 

different traits. A potential weakness of genome-wide QTL scanning is the possibility of over-

looking SNPs at a locus that may be associated with a trait of interest, because QTL regions may 

not be represented with enough markers (Haseneyer et al., 2010). 

Although previous reports indicated that the five drought tolerance candidate genes are 

stress-induced and confer drought tolerance under stress conditions, SNP-trait associations were 

detected both under dry and irrigated conditions for all genes in this study. It is possible that even 

the trials grown under wetter conditions experienced some degree of moisture stress, thereby 

inducing expression of the evaluated genes. Most of the detected associations were significant 

only in a single environment, which is consistent with the high level of genotype by environment 

interaction that occurred in this study. Therefore, the advantage of these genes for yield or 

drought tolerance will depend on variable environmental conditions, as the genes may show 

different expression patterns in different environments (Wei et al., 2009; Mochida et al., 2003).  

All drought tolerance candidate genes showed associations with yield and yield 

components, morphological and phenological traits both at individual SNP and haplotype levels. 

The genes explained substantial amounts of phenotypic variation for yield component traits (e.g., 

spikes m
-2

), morphological traits (e.g., flag leaf width), and drought tolerance-related indices 

(e.g., NDVI). However, before the SNPs identified in this study are converted into functional 

markers for use in breeding, confirmation of their benefits is needed. 
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In conclusion, gene sequence variability analysis of hexaploid wheat indicated the 

presence of sufficient polymorphic sites in the evaluated genes for development of functional 

markers. The homoeologous genes on different wheat genomes showed clear differences in 

nucleotide diversity, LD patterns, and SNP-trait associations. Since gene copies on different 

homoeologous chromosomes showed different SNP-trait associations, the development of 

functional markers requires consideration of the economic importance of a trait and the amount 

of phenotypic variation explained by each gene copy. Future research on DREB1A, ERA1, and 1-

FEH should validate the relative importance of the orthologous genes in different genetic 

backgrounds across a range of moisture conditions.  
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APPENDIX 

 

Table A.1. Lists of lines in the spring wheat association mapping (WAMII) evaluated in five environments. 

GID Entry Cross Name 

450975 9001 COOK/VEE//DOVE/SERI/3/BJY/COC 

610288 9002 JUP/ZP//COC/3/PVN/4/GEN 

41868 9003 PFAU/VEE#5 

3895 9004 SERI M 82 

42893 9005 VORONA/GEN 

601549 9006 KAUZ/GEN 

80836 9007 KEA/TOW//LIRA 

613415 9008 LIRA/URES//MILO 9G19-2-26 

552808 9009 MYNA/VUL//PRL 

3828077 9010 JUPARE C 2001 

68315 9011 TIA.3 

85599 9012 CHOIX M 95 

222973 9013 KAUZ*2/FN//KAUZ 

295261 9014 KAUZ*2/MNV//KAUZ 

80662 9015 PAT10/ALD//PAT72300/3/PVN/4/URES/5/PFAU 

130819 9016 PRINIA 

222939 9017 CAR422/ANA//URES 
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Table A.1. Continued 

GID Entry Cross Name 

4248 9018 CIANO T 79 

222912 9019 HD2206/HORK//BUC/BUL 

144712 9020 PAT10/ALD//PAT72300/3/PVN/4/BOW 

42423 9021 VORONA/CNO79 

595693 9022 AZ//KAL/BB/3/PGO 

16122 9023 BACANORA T 88 

547311 9024 FCT/3/GOV/AZ//MUS/4/DOVE/BUC 

294897 9025 INIFAP M 97 

295213 9026 KAUZ*2//DOVE/BUC/3/KAUZ 

1065811 9027 KAUZ*2/TRAP//KAUZ 

294568 9028 LIRA/BUC 

294800 9029 PARA2//JUP/BJY/3/VEE/JUN/4/2*KAUZ 

434375 9030 RHEA 

294705 9031 TOBARITO M 97 

458377 9032 TRAP#1/BOW 

294548 9033 TURACO/CHIL 

1066760 9034 KAUZ*3//TC*6/RL5406(RL6043) 

1066924 9035 KAUZ*2//TC*6/RL6081/3/KAUZ 
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Table A.1. Continued. 

GID Entry Cross Name 

1066245 9036 KAUZ*2/YACO//KAUZ 

421503 9037 PRL/VEE#6 

217743 9038 UP 2338 

377174 9039 ATTILA//ALTAR 84/AOS/3/ATTILA 

1339454 9040 FANG60/7C 

358957 9041 HP 1761 

30709 9042 HYBRID DELHI 2172 

369673 9043 KAUZ//ALTAR 84/AOS 

1101307 9044 MNCH/3*BCN 

16004 9045 RAYON F 89 

1339633 9046 SERI/7C 

370194 9047 SERI/NKT//2*KAUZ 

342263 9048 STAR//KAUZ/STAR 

342253 9049 TILHI 

3828077 9050 JUPARE C 2001 

342152 9051 URES/RAYON 

1301292 9052 COMARA/TEG//WEAVER/3/LAJ3302 

1314999 9053 PICUS/4/CS(5A)/5RL-1//BUC/BJY/3/ALD/PVN/5/LAJ3302 
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Table A.1. Continued. 

GID Entry Cross Name 

523085 9054 TIA.2/KAUZ 

358954 9055 HP 1731 

1212664 9056 IAS62/ALDAN//2*SKAUZ 

1811686 9057 KAUZ/RAYON 

2460025 9058 KEA/TAN/4/TSH/3/KAL/BB//TQFN/5/PAVON/6/SW89.3064 

2460334 9059 PASTOR/2*SITTA 

391994 9060 BHRIKUTI 

2668073 9061 BL 1724 

3628874 9062 BOW/PRL*3/6/WRM/4/FN/3*TH//K58/2*N/3/AUS-6869/5/PELOTAS-ARTHUR/7/HE1/3*CNO79//2*SERI 

3599378 9063 BUC/PRL//WEAVER 

3582667 9064 CHUM18/5*BCN 

2460291 9065 LAJ3302/2*MO88 

3613474 9066 MILAN/3/JUP/BJY//URES 

2668072 9067 NL 750 

376804 9068 PUNJAB 96 

1302305 9069 RABE/2*MO88 

3591880 9070 SW89-5124*2/FASAN 

3600263 9071 TIA.4/WL6572//RL6043/3*GEN/3/LUAN 
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Table A.1. Continued. 

GID Entry Cross Name 

1082613 9072 CAZO/KAUZ//KAUZ 

4085042 9073 CHIR1//SHA5/WEAVER 

3616330 9074 HUITES/4/CS/TH.SC//3*PVN/3/MIRLO/BUC 

3597332 9075 KAUZ//BOW/NKT 

2463808 9076 KAUZ/WEAVER 

3586080 9077 MINO 

1563731 9078 OASIS/SKAUZ//4*BCN 

4097301 9079 SHA3/SERI//SHA4/LIRA/3/CHIR1/4/SHA7//PRL/VEE#6/3/FASAN 

3578100 9080 SW89.5181/KAUZ 

3592850 9081 W462//VEE/KOEL/3/PEG//MRL/BUC 

3619633 9082 GUAM92/KAUZ 

4320047 9083 CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/2*KAUZ 

3605299 9084 CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/KAUZ 

4319277 9085 CMH84.3379/CMH78.578//MILAN 

4048654 9086 HUAYTU CIAT 

4318107 9087 OTUS 

3617481 9088 TARACHI F 2000 

3612293 9089 SITE/MO/4/NAC/TH.AC//3*PVN/3/MIRLO/BUC 
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Table A.1. Continued. 

GID Entry Cross Name 

3592403 9090 SKAUZ*2/FCT 

2406044 9091 SURUTU-CIAT 

3587319 9092 TAURUM 

1491661 9093 INQALAB 91 

3827755 9094 SKAUZ*2/FCT 

3585839 9095 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER/5/2*KAUZ 

4316539 9096 KETUPA*2/PASTOR 

4755104 9097 WEAVER/3/SAPI/TEAL//HUI/4/CROC_1/AE.SQUARROSA (213)//PGO/5/SKAUZ*2/SRMA 

4755489 9098 KAUZ*2/TRAP//KAUZ/3/PASTOR/4/SKAUZ*2/SRMA 

4755706 9099 REH/HARE//2*BCN/3/CROC_1/AE.SQUARROSA (213)//PGO/4/HUITES 

3828077 9100 JUPARE C 2001 

4755979 9101 ATTILA/3*BCN//BAV92/3/TILHI 

4757265 9102 CROC_1/AE.SQUARROSA (205)//BORL95/3/PASTOR 

4760307 9103 CHEN/AE.SQ//WEAVER/3/SSERI1 

4763836 9104 BAV92/3/OASIS/SKAUZ//4*BCN/4/PASTOR 

4881156 9105 CROC_1/AE.SQUARROSA (205)//KAUZ/3/2*KAUZ*2/YACO//KAUZ 

4905340 9106 WBLL1*2/KUKUNA 

4905617 9107 ROELFS F2007 
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Table A.1. Continued 

GID Entry Cross Name 

3820458 9108 HD2687 

3822974 9109 PBW450 

4754390 9110 MILAN/S87230//BAV92 

4756035 9111 ATTILA/3*BCN*2//BAV92 

4757869 9112 TOBA97/PASTOR 

4905071 9113 FRET2*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 

4940559 9114 ALTAR 84/AE.SQUARROSA (221)//3*BORL95/3/URES/JUN//KAUZ/4/WBLL1 

4835368 9115 TUKURU//BAV92/RAYON 

4835640 9116 SUNSU/CHIBIA 

5106646 9117 WBLL1*2/4/YACO/PBW65/3/KAUZ*2/TRAP//KAUZ 

5106632 9118 WBLL1*2/VIVITSI 

449286 9119 F6.74/BUN//SIS/3/YR/PAM 

41372 9120 PASTOR 

14103 9121 GALVEZ S 87 

2457 9122 PAVON 

88208 9123 VEE#8/5/VEE/4/KLTO//S12/J9281.67/3/MO/JUP 

88522 9124 IRENA 

41830 9125 BB//TOB/CNO67/3/HUAC/4/TI-R/3/BB/PL//SX 
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Table A.1. Continued. 

GID Entry Cross Name 

42174 9126 CULIACAN T 89 

88509 9127 KITE/PGO 

88442 9128 PSN/BOW//SERI 

88701 9129 GIM/LIRA 

88710 9130 URES/JUN//KAUZ 

72533 9131 PROINTA FEDERAL 

126306 9132 HI.1077 

42274 9133 SITTA 

640876 9134 URES//BUC/FLK/3/KAUZ 

86005 9135 ARIVECHI M 92 

82710 9136 TIA.1 

85861 9137 RL6043/4*NAC 

80512 9138 F60314.76/MRL//CNO79 

268922 9139 ATTILA 

222478 9140 PFAU/VEE#9 

170046 9141 BAU/OPATA 

85587 9142 PRINIA 

66363 9143 GRANERO INTA 
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Table A.1.Continued. 

GID Entry Cross Name 

431445 9144 HUITES F 95 

222492 9145 KEA/BUC//FCT 

4970584 9146 KITE/GLEN 

270393 9147 CHIL/BUC 

324452 9148 FILIN 

515272 9149 PRL/SARA//TSI/VEE#5 

3828077 9150 JUPARE C 2001 

270402 9151 PJN/BOW//OPATA 

270428 9152 VEE/PJN//TUI 

324715 9153 PARA2//JUP/BJY/3/VEERY#5.4/JUN/4/TUI 

741166 9154 VEE/PJN//2*TUI 

270453 9155 URES/BBL//KAUZ/3/KAUZ 

346047 9156 ALTAR 84/AEGILOPS SQUARROSA (TAUS)//OPATA 

851963 9157 DUCULA//HUI/TUB/3/CAZO 

902339 9158 SHUHA 

1995922 9159 PROINTA GRANAR 

1370653 9160 TZPP/SERI//BUC 

1493157 9161 PIFED/DERN 
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Table A.1. Continued. 

GID Entry Cross Name 

1987914 9162 HIDHAB 

35054 9163 W3918A/JUP 

346095 9164 JUN/GEN 

346200 9165 K134(60)/VEE//BOW/PVN 

346303 9166 ESDA/4/BD120/3/GTA/MXP//RUFF/FGO 

346403 9167 VEE#8//JUP/BJY/3/F3.71/TRM/4/BCN/5/KAUZ 

346459 9168 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER 

346479 9169 HXL-F86/2*BAU 

1706327 9170 VI/PIFED//VEE#8 

393392 9171 GOV/AZ//MUS/3/SARA 

358192 9172 MON/IMU//ALD/PVN 

1093624 9173 TUI*2/MILAN 

217385 9174 KAUZ*2/BOW//KAUZ 

1812971 9175 SIMORGH 

766786 9176 CAR853/COC//VEE/3/BOW/4/TUI/5/TUI 

781213 9177 NANJING 8646/KAUZ//BCN 

778966 9178 TUI/3/TMP64/TWN//SDY/4/RAYON 

763509 9179 VEE#5/SARA//DUCULA 
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Table A.1. Continued. 

GID Entry Cross Name 

1328764 9180 CLC89//ESDA/KAUZ/3/BJY/COC//PRL/BOW 

2244167 9181 NS-732/HER//KAUZ 

1403850 9182 3VASKAR/G303.1M.1.3.2.2.2//KAUZ/3/SKAUZ/4/KAUZ 

1405071 9183 TODY/3/JUP/BJY//SARA/4/TRAP#1/BOW/5/NL456/VEE#5 

1403557 9184 CROC_1/AE.SQUARROSA (205)//JUP/BJY/3/SKAUZ/4/KAUZ 

1498555 9185 PASTOR/3/VEE#5//DOVE/BUC 

1558746 9186 VEE#5//PF70354/MUS/3/PIFED/4/OR791432/VEE#3.2 

1658710 9187 KAUZ/5/PAT10/ALD//PAT72300/3/PVN/4/BOW 

1661139 9188 MRL/BUC//LIRA/5/BB//TOB/CNO67/3/HUAC/4/TI-R/3/BB/PL//SX 

1812527 9189 SAAR 

2454848 9190 MNCH/3*BCN 

1389162 9191 JUP/BJY//URES/3/HD2206/HORK//BUC/BUL 

1395073 9192 SITE/PIOS 

2478018 9193 PASTOR//SITE/MO/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN 

3616959 9194 FILIN/IRENA/5/CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER 

3567684 9195 CROC_1/AE.SQUARROSA (205)//KAUZ/3/ENEIDA 

3630926 9196 F60314.76/MRL//CNO79/3/CHIL/PRL 

3669874 9197 PASTOR/BAV92 
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Table A.1. Continued. 

GID Entry Cross Name 

2671579 9198 BARBET1 

2671697 9199 MILVUS2 

3828077 9200 JUPARE C 2001 

2601142 9201 WEEBILL1 

2601477 9202 KAMBARA1 

2672707 9203 BABAX.1B.1B*3/PRL 

2672710 9204 PEWIT1 

2448313 9205 FRET2 

2673150 9206 WEEBILL4 

3686320 9207 ATTILA*2/9/KT/BAGE//FN/U/3/BZA/4/TRM/5/ALDAN/6/SERI/7/VEE#10/8/OPATA 

3686333 9208 ATTILA*2/PBW65 

3686491 9209 BABAX/KS93U76//BABAX 

3607146 9210 SUJATA/SERI 

2478027 9211 PASTOR/3/MUNIA//CHEN/ALTAR 84/5/CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER 

3630912 9212 URES/PRL//BAV92 

3855011 9213 VOROBEY 

3855085 9214 SOROCA 

3855762 9215 FILIN/2*PASTOR 
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Table A.1. Continued. 

GID Entry Cross Name 

3827936 9216 URES/JUN//KAUZ/3/BAV92 

3853128 9217 NAI60/HN7//BUC/3/PSN/BOW//TUI 

3686338 9218 ATTILA*2/4/CAR//KAL/BB/3/NAC 

2673154 9219 KAMBARA2 

3822784 9220 PRL/2*PASTOR 

3827649 9221 PBW65/2*PASTOR 

3872312 9222 ATTILA*2/PASTOR 

3868699 9223 SERI*3//RL6010/4*YR/3/PASTOR/4/BAV92 

3888096 9224 PASTOR//HXL7573/2*BAU 

3827938 9225 SOKOLL 

4314513 9226 CROC_1/AE.SQUARROSA (213)//PGO/3/BAV92 

4556647 9227 MILAN/KAUZ//PRINIA/3/BAV92 

4315350 9228 ALTAR 84/AE.SQUARROSA (221)//PASTOR/3/PASTOR 

4563437 9229 MILAN/KAUZ//PASTOR 

4563443 9230 FLORKWA-1/DHARWAR DRY 

4563455 9231 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER/5/PASTOR 

4563461 9232 VEBOW/IRENA 

4563470 9233 PASTOR/DHARWAR DRY 
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Table A.1. Continued. 

GID Entry Cross Name 

4563487 9234 BJY/COC//PRL/BOW/3/FRTL 

4342318 9235 PASTOR//HXL7573/2*BAU 

4569255 9236 SRMA/TUI//PASTOR 

4577785 9237 SKAUZ/PASTOR/3/CROC_1/AE.SQUARROSA (224)//OPATA 

4577847 9238 CNO79//PF70354/MUS/3/PASTOR/4/BAV92 

4577963 9239 MILAN/KAUZ/3/URES/JUN//KAUZ/4/CROC_1/AE.SQUARROSA (224)//OPATA 

4753157 9240 KABY/BAV92/3/CROC_1/AE.SQUARROSA (224)//OPATA 

4753188 9241 BOW//BUC/BUL/3/KAUZ/4/BAV92/5/MILAN/KAUZ 

4578411 9242 PASTOR//MILAN/KAUZ/3/VEE/PJN//2*TUI 

4578503 9243 BJY/COC//PRL/BOW/3/MILAN/KAUZ/4/BAV92 

4578860 9244 KAUZ/BAV92/3/BJY/COC//PRL/BOW 

4564440 9245 FRAME/BUCHIN 

4799210 9246 TEMPORALERA M 87*2/KONK 

4883041 9247 FRAME*2/3/URES/JUN//KAUZ 

4882998 9248 CROC_1/AE.SQUARROSA (224)//OPATA/3/PASTOR/4/PASTOR*2/OPATA 

4885594 9249 RL6043/4*NAC//2*PASTOR 

3828077 9250 JUPARE C 2001 

4885599 9251 CROC_1/AE.SQUARROSA (224)//OPATA/3/PASTOR/4/JARU 
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Table A.1. Continued. 

GID Entry Cross Name 

4879809 9252 ALTAR 84/AE.SQ//2*OPATA/3/PIFED 

4963944 9253 KRICHAUFF/2*PASTOR 

4878600 9254 KABY//2*ALUBUC/BAYA 

4878569 9255 CNO79//PF70354/MUS/3/PASTOR/4/CROC_1/AE.SQUARROSA (224)//OPATA 

4878677 9256 BUC/MN72253//PASTOR/3/BAV92 

4961148 9257 SCA/AE.SQUARROSA (409)//PASTOR/3/PASTOR 

4961206 9258 CROC_1/AE.SQUARROSA (224)//OPATA/3/BJY/COC//PRL/BOW/4/BJY/COC//PRL/BOW 

4961235 9259 CHEN/AE.SQ//2*OPATA/3/BAV92/4/JARU 

4961444 9260 TIE CHUAN 1*2/3/HE1/3*CNO79//2*SERI 

4934637 9261 ALTAR 84/AEGILOPS SQUARROSA (TAUS)//OPATA/3/ATTILA 

4774392 9262 OASIS/5*BORL95/5/CNDO/R143//ENTE/MEXI75/3/AE.SQ/4/2*OCI 

3844835 9263 PASTOR//TRAP#1/BOW/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN 

3822784 9264 PRL/2*PASTOR 

5535278 9265 ND643/2*WAXWING 

5535298 9266 ND643//2*PRL/2*PASTOR 

5535434 9267 KIRITATI//2*PRL/2*PASTOR 

5535482 9268 KIRITATI//2*ATTILA*2/PASTOR 

5552132 9269 SAAR/WBLL1 



 

230 

 

Table A.1. Continued. 

GID Entry Cross Name 

5552181 9270 CHONTE 

5551747 9271 CHEWINK 

5551765 9272 WHEAR/KIRITATI/3/C80.1/3*BATAVIA//2*WBLL1 

5551787 9273 WHEAR/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/C80.1/3*BATAVIA//2*WBLL1 

5551820 9274 WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2*WBLL1 

5551860 9275 WHEAR/JARU/3/C80.1/3*BATAVIA//2*WBLL1 

5551870 9276 WHEAR/TUKURU/3/C80.1/3*BATAVIA//2*WBLL1 

5551892 9277 WHEAR/KURUKU/3/C80.1/3*BATAVIA//2*WBLL1 

5551918 9278 WHEAR//2*PRL/2*PASTOR 

5551926 9279 WHEAR//2*PRL/2*PASTOR 

5534314 9280 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER/5/2*KAUZ/6/PRL/2*PASTOR 

5534324 9281 PRL/2*PASTOR/4/CHOIX/STAR/3/HE1/3*CNO79//2*SERI 

5534339 9282 PRL/2*PASTOR/4/CHOIX/STAR/3/HE1/3*CNO79//2*SERI 

5534344 9283 PFAU/MILAN/5/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/VEE#7/BOW/4/PASTOR 

5534451 9284 PRL/SARA//TSI/VEE#5/3/TILHI/4/ATTILA/2*PASTOR 

5551628 9285 ELVIRA/5/CNDO/R143//ENTE/MEXI75/3/AE.SQ/4/2*OCI/6/VEE/PJN//KAUZ/3/PASTOR 

5534403 9286 HEILO//MILAN/MUNIA 

4755013 9287 KAUZ//ALTAR 84/AOS/3/MILAN/KAUZ/4/HUITES 
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Table A.1. Continued. 

GID Entry Cross Name 

5398757 9288 QUAIU #1 

5398462 9289 PAURAQUE 

5398279 9290 FRET2*2/BRAMBLING 

5398125 9291 BECARD 

5343251 9292 CROC_1/AE.SQUARROSA (205)//BORL95/3/PRL/SARA//TSI/VEE#5/4/FRET2 

5343245 9293 CROC_1/AE.SQUARROSA (205)//BORL95/3/PRL/SARA//TSI/VEE#5/4/FRET2 

5344026 9294 BETTY/3/CHEN/AE.SQ//2*OPATA 
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Table A.2. Meteorological data for Greeley in 2010. 

Month Tmax 

(
O
C) 

Tmin 

(
O
C) 

Precipitation 

(mm) 

Wind 

speed 

(mph) 

Soil 

Temp 

(
O
C) 

RH (%)† 

10-Jan 4.73 -10.40 0.76 11.91 -2.56 45.25 

10-Feb 4.66 -9.30 6.604 14.28 -1.48 38.56 

10-Mar 12.65 -4.06 7.11 20.09 1.51 30.13 

10-Apr 16.69 0.26 84.33 25.37 6.05 25.67 

10-May 20.57 4.34 50.4 24.48 9.99 27.45 

10-Jun 28.15 11.86 80.52 21.72 17.15 26.67 

10-Jul 31.14 13.63 41.66 19.32 19.48 25.41 

Total   271.02    

† RH (%), Relative humidity in percentage 
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Table A.3. Meteorological data of Greeley 2011. 

Month Tmax 

(
O
C) 

Tmin 

(
O
C) 

Prec 

(mm) 

Wind 

speed 

(mph) 

Soil 

T (
O
C) 

 RH (%) † 

11-Jun 4.55 -11.94 0.51 17.25 -1.05 42.58 

11-Feb 6.61 -12.94 1.27 20.81 -1.61 30.79 

11-Mar 14.81 -3.66 5.08 22.27 2.85 20.48 

11-Apr 16.99 0.24 21.34 28.91 6.25 21.99 

11-May 18.87 4.23 97.28 22.36 9.39 33.59 

11-Jun 28.99 10.59 20.32 22.19 15.24 18.82 

11-Jul 32.64 15.04 27.18 19.32 20.08 22.39 

       

† RH (%), Relative humidity in percentage 
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 Table A.4. Metrological data of the experimental year (January 2011-February 2012) at Melkassa, Ethiopia. 

Month Tmin 

(
O
C) 

Tmax 

(
O
C) 

Soil T (
O
C) Wind speed   

(m/sec) 

RH (%) † total Rainfall (mm) 

January - - 25.4 2.14 48 0.0 

February - - 27.0 2.33 38 1.5 

March 9.3 28.3 27.3 2.64 36 37.9 

April 10.7 32.8 28.8 2.41 38 45.6 

May 11.9 31.6 28.2 2.14 47 38.2 

June 11.5 31.0 28.2 2.27 52 102.0 

July 10.3 27.6 25.2 2.31 64 126.4 

August 10.4 26.2 24.8 1.93 71 208.8 

September 8.8 26.7 23.5 1.25 71 197.5 

October 4.5 28.6 25.5 1.79 41 0.0 

† RH (%), Relative humidity in percentage 
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Figure A.1. Dendrogram of 287 spring wheat with 1864 DArT markers 

 

 

 

Genotypes 
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Table A.5. Genotypic correlation among yield and yield component traits at Greeley 2010 under full irrigation.  

Trait† TKW HI YLD KN SL SPN BM KNS KWS SN KNL TW SKW SKH 

TKW 1  

 

            

HI -0.06 

ns 

1             

YLD 0.22 

** 

0.754 

** 

1            

KN -0.42 

** 

0.745 

** 

0.770 

** 

1           

SL 0.39 

** 

-0.11 

ns 

-0.11 

ns 

-0.36 

** 

1          

SPN -0.41 

** 

0.09 

ns 

-0.15 

* 

0.12 

* 

0.03 

ns 

1         

BM 0.33 

** 

-0.17 

** 

0.47 

** 

0.18 

** 

0.33 

** 

-0.25 

** 

1        

KNS -0.20 

** 

0.50 

** 

0.47 

** 

0.60 

** 

-0.21 

** 

0.41 

** 

-0.03 

ns 

1       

KWS 0.45 

** 

0.47 

** 

0.58 

** 

0.28 

** 

0.05 

ns 

0.12 

* 

0.20 

** 

0.77 

** 

1      

SN -0.23 

** 

0.52 

** 

0.19 

** 

0.32 

** 

-0.02 

ns 

-0.48 

** 

0.36 

** 

-0.54 

** 

-0.66 

** 

1     

KNL -0.05 

ns 

0.51 

** 

0.55 

** 

0.58 

** 

-0.24 

** 

0.01 

ns 

0.04 

ns 

0.91 

** 

0.80 

** 

-0.43 

** 

1    

TW 0.00 

ns 

0.10 

ns 

0.37 

** 

0.30 

** 

-0.03 

ns 

-0.03 

ns 

0.36 

** 

0.29 

** 

0.28 

** 

0.068 

ns 

0.31 

** 

1   

SKW 0.98 

** 

-0.07 

ns 

0.23 

** 

-0.43 

** 

0.42 

** 

-0.42 

** 

0.36 

** 

-0.23 

** 

0.43 

** 

-0.21 

** 

-0.08 

ns 

0.01 

ns 

1  

SKH -0.32 

** 

0.10 

ns 

0.01 

ns 

0.25 

** 

-0.15 

* 

0.05 

ns 

0.01 

ns 

0.11 

ns 

-0.13 

ns 

0.29 

** 

0.07 

ns 

0.13 

* 

-0.33 1 

†SKD, Single kernel diameter; SKW, Single kernel weight; KNL, Kernel number per spikelet; KWS; Kernel weight per spike; TW, Test weight; SPN, 

 Spikelet number; SL, spike length; GN, Grain number; TKW, Thousand kernel weight; HI, Harvest index; SN, Spikes number m
-2

;  SKH,  

single kernel hardness; KNS=Kernel number spike
-1

. 

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.6. Genotypic correlation among morphological, phenological and drought related traits at Greeley in 2010 under full 

irrigation. 

Trait† LL LW DH DM PHT LS NDVI GA LA GFP YLD BM 

LL 1            

LW 0.49** 1           

DH 0.04 

ns 

0.010 

Ns 

1          

DM -0.02 

ns 

0.12 0.68 

** 

1         

PHT 0.37 

** 

0.17 0.15 0.19 1        

LS -0.18 

 

-0.17 -0.52 

** 

-0.78 

** 

-0.47 

** 

1       

NDVI 0.65 

** 

-0.09 

Ns 

0.27 

** 

0.37 

** 

0.70 

** 

-0.84 

** 

1      

GA 0.16 -0.14 0.18 0.42 

** 

0.13 -0.59 

** 

0.99 

** 

1     

LA 0.90 

** 

0.82 

** 

0.04 

ns 

0.05 0.31 

** 

-0.22 

** 

0.39 

** 

0.02 1    

GFD -0.06 0.14 -0.39 

** 

0.41 

** 

0.06 -0.33 

** 

0.14 0.32 

** 

0.03 1   

YLD -0.11 -0.18 -0.32 

** 

-0.21 

** 

-0.05 0.20 

** 

-0.13 -0.08 -0.20 0.12 1  

BM 0.26 

** 

0.01 

Ns 

-0.05 0.18 0.63 

** 

-0.53 

** 

0.36 

** 

0.42 

** 

0.16 0.27 

** 

0.47 

** 

1 

†LL, Flag leaf length; LW, Flag leaf width; DH, Days to heading; DM, Days to maturity;  PHT, Plant height; LS, Leaf senescence;  

NDVI, Normalized difference Vegetation index;  GA, Green area; LA, Leaf area;  GFD, Grain filling duration; YLD, Grain yield; BM, Biomass;  

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.7. Genotypic correlation among yield and yield component traits at Greeley in 2011 under full irrigation condition (below 

diagonal) and moisture stress (above diagonal). 

Trait† TKW HI YLD KN SL SPN TW SN BM KNS KWS KNL SKW SKD SKH 

TKW 1 0.02 

ns 

0.15 

** 

-

0.57 

** 

0.39 

** 

-0.38 

** 

0.42 

** 

-0.17 

** 

0.21 

** 

0.63 

** 

0.50 

** 

-0.61 

** 

0.99 0.92 

** 

-0.29 

** 

HI 0.54 

** 

1 0.12 

* 

0.00 -

0.13 

* 

0.38 

** 

0.27 

** 

-0.14 

* 

-0.51 

** 

-0.08 

ns 

-0.04 

ns 

-0.22 

** 

-0.30 

** 

-

0.19 

** 

-0.13 

* 

YLD 0.11 

ns 

0.73 

** 

1 0.71 

** 

0.20 

** 

-0.12 

* 

0.38 

** 

0.75 

** 

0.63 

** 

0.10 

ns 

0.35 

** 

0.27 

** 

0.12 

* 

0.00 -0.13 

* 

KN -0.09 

ns 

0.44 

** 

0.99 

** 

1 -

0.12 

ns 

0.12 

* 

0.00ns 0.82 

** 

0.30 

** 

0.43 

** 

-0.13 

* 

0.57 

** 

-0.66 

** 

-

0.65 

** 

0.14 

* 

SL 0.22** -0.27 

** 

0.00 -

0.10 

ns 

1 -0.14 

* 

0.23 

** 

0.11 

Ns 

0.29 

** 

-0.26 

** 

0.17 

** 

-0.30 

** 

0.52 

** 

0.44 

** 

-0.16 

** 

SPN -0.22 

** 

-0.30 

** 

-0.45 

** 

-

0.51 

** 

0.01 

ns 

1 -0.23 

** 

-0.38 

** 

-0.30 

** 

0.78 

** 

0.46 

** 

0.42 

** 

-0.41 

** 

-

0.40 

-0.03 

ns 

TW 0.36 

** 

0.51 

** 

0.48 

** 

0.51 

** 

-

0.07 

ns 

-0.26 1 0.29 

** 

0.23 

** 

-0.37 

** 

0.07 

ns 

-0.37 

** 

0.42 

** 

0.40 

** 

0.06 

ns 

SN -0.44 

** 

0.04 

ns 

0.99 

** 

0.99 

** 

0.36 

** 

-0.99 

** 

0.07 

ns 

1 0.33 

** 

-0.20 

** 

-0.36 

** 

0.03 

ns 

-0.30 

** 

-

0.33 

** 

0.10 

ns 

BM 0.65 

** 

0.76 

** 

0.84** 0.14 

** 

0.30 

** 

-0.63 

** 

0.47 

** 

-0.01 

Ns 

1 0.16 

** 

0.46 

** 

0.49 

** 

0.15 

** 

-

0.07 

ns 

-0.16 

** 

KNS -0.75 

** 

0.45 0.23** 0.85 

** 

-

0.61 

** 

0.41 

** 

0.20 

** 

0.66 

** 

-0.99 

** 

1 0.38 

** 

0.89 

** 

-0.58 

** 

-

0.54 

** 

0.14 

* 

† TKW, Thousand kernel weight; HI, Harvest index; YLD, Grain yield; KN, Kernel number; SL, Spike length; SPN, Spikelet number; 

TW, Test weight; SN, Spike number; BM, Biomass; KNS, Kernel number per spike; KWS, Kernel weight per spike; KNL, Kernel number 

per spikelet; SKW, Single kernel weight; SKD, Single kernel diameter; SKH, Single kernel hardness. 

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.7. Continued. 

 
Trait† TKW HI YLD KN SL SPN TW SN BM KNS KWS KNL SKW SKD SKH 

KWS 0.56 

** 

0.91 

** 

0.25** 0.56 

** 

-

0.24 

** 

0.21 

** 

0.52 

** 

-0.46 

** 

-0.33 

** 

0.25 

** 

1 0.25 

** 

0.73 

** 

0.58 

** 

-0.22 

** 

KNL -0.51 

** 

0.62 

** 

0.56** 0.99 

** 

-

0.56 

** 

-0.28 

** 

0.39 

** 

0.99 

** 

-0.93 

** 

0.76 

** 

0.21 

** 

1 -0.52 

** 

-

0.46 

** 

0.22 

** 

SKW 0.999 

** 

0.41 

** 

0.29** -

0.46 

** 

0.29 

** 

-0.40 

** 

0.36 

** 

-0.99 

** 

0.34 

** 

-0.19 

** 

0.99 

** 

0.11 

ns 

1 0.99 

** 

-0.23 

** 

SKD 0.99 

** 

0.23 

** 

0.18** -

0.52 

** 

0.21 

** 

-0.46 

** 

0.36 

** 

-0.99 

** 

-0.15 

* 

-0.17 

** 

0.99 

** 

0.16 

** 

0.84 

** 

1 0.09 

ns 

SKH -0.23 

** 

-0.21 

** 

-

0.21** 

0.12 

ns 

-

0.13 

* 

0.01 

ns 

0.19 

* 

0.02 

Ns 

-0.17 

** 

0.12 

* 

-0.14 

* 

0.10 

ns 

-0.30 

** 

0.09 

ns 

1 

† TKW, Thousand kernel weight; HI, Harvest index; YLD, Grain yield; KN, Kernel number; SL, Spike length; SPN, Spikelet number; TW,  

Test weight; SN, Spike number; BM, Biomass; KNS, Kernel number per spike; KWS, Kernel weight per spike; KNL, Kernel number per spikelet; 

 SKW, Single kernel weight; SKD, Single kernel diameter; SKH, Single kernel hardness. 

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.8. Genotypic correlation among phenological, morphological and drought related traits at Greeley in 2011 under 

 full irrigation condition (below diagonal) and moisture stress (above diagonal). 

 

 Trait† DH DM LL LW GA GFP LA NDVI YLD 

DH 1 0.75 

** 

0.16 

** 

0.41 

** 

0.43 

** 

0.03 

ns 

0.25 

** 

0.49 

** 

-0.04 

ns 

DM 0.77 

** 

1 0.12 

* 

0.35 

** 

0.23 

** 

0.69 

** 

0.22 

** 

0.71 

** 

-0.06 

ns 

LL 0.10 

ns 

0.14 

* 

1 0.80 

** 

-0.03 

ns 

0.00 0.97 

** 

0.39 

** 

0.10 

ns 

LW 0.20 

** 

0.25 

** 

0.70 

** 

1 -0.34 

** 

0.10 

ns 

0.91 

** 

0.017 

ns 

-0.06 

ns 

GA 0.33 

** 

0.30 

** 

-0.13 

* 

-0.14 

* 

1 -0.16 

** 

-0.15 

* 

0.62 

** 

0.34 

** 

GFD -0.51 

** 

0.12 

* 

0.01 

Ns 

-0.01 

ns 

-0.1 

ns 

1 0.06 

ns 

0.42 

** 

-0.03 

ns 

LA 0.14 

* 

0.18 

** 

0.95 

** 

0.86 

** 

-0.14 

* 

0.00 1 0.27 

** 

0.06 

ns 

NDVI 0.50 

** 

0.39 

** 

0.31 

** 

0.14 

* 

0.57 

** 

-0.28 

** 

0.27 

** 

1 0.42 

** 

† DH, Days to heading; DM, Days to maturity; LL, Leaf  length; LW, Leaf width; GA, Green area; GFD, Grain filling duration;  

LA, Leaf area; NDVI, Normalized difference vegetation index; YLD, Grain yield. 

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.9. Genotypic correlation among agronomic traits at Melkassa under stressed (below diagonal) and non-stressed (above 

diagonal) in 2011. 

Trait† TKW DH DM HI Yld KN BM LA LL LW SL GFP GA SPN 

TKW 1 -

0.55 

** 

-0.47** 0.71** 0.77** 0.77** 0.27** 0.02ns -0.17** 0.19** 0.19** 0.12* 0.14* -

0.40** 

DH - 1 0.82** -

0.62** 

-

0.54** 

-0.54** 0.03ns -0.02ns 0.001ns -0.031 

ns 

0.13 

* 

-0.28 

** 

0.54** 0.63** 

DM -0.35 

** 

0.88 

** 

1 0.59** -

0.44** 

-0.44** 0.15* 0.01ns -0.03ns 0.06ns 0.24** 0.32** 0.54** 0.62** 

HI 0.68 

** 

-

0.81 

** 

-0.801 

** 

1 0.91** 0.91** 0.081ns -0.319** -0.530** -0.06ns 0.009ns 0.036ns -

0.103ns 

-

0.40** 

YLD 0.61 

** 

-

0.68 

** 

-0.671 

** 

0.902 

** 

1 0.99** 0.49** -0.268** -0.47** 0.016ns 0.12* 0.13* 0.24** -

0.24** 

KN -0.07 

ns 

-

0.40 

** 

-0.56 

** 

0.57 

** 

 

0.74 

** 

1 0.50** -0.27** -0.47** 0.016ns 0.12* 0.13* 0.24** -

0.24** 

BM -0.04 

ns 

0.11 

ns  

0.20 

** 

-0.01 

** 

0.39 

** 

0.53 

** 

1 0.012ns -0.09ns 0.14* 0.27** 0.17** 0.81** 0.23** 

LA 0.34 

** 

0.02 

ns 

0.25 

** 

-0.12 

** 

0.03 

ns 

-0.17 

** 

0.40 

** 

1 0.91** 0.88** 0.29** 0.03ns -0.18** 0.05ns 

LL 0.25 

** 

-

0.13 

* 

0.03 

ns 

0.01 

Ns 

0.06 

ns 

-0.08 

ns 

0.14 

** 

 

0.90 

** 

1 0.59** 0.10 

ns 

-0.04 

ns 

-0.47 

** 

-0.02 

NS 

LW 0.31 

** 

0.15 

** 

0.39 

** 

-0.25 

** 

-0.03 

ns 

-0.22 

** 

0.53 

** 

0.85 

** 

0.52 

** 

1 0.44** 0.12* 0.20** 0.10 

ns 

SL -0.03 

ns 

0.08 

ns 

0.08 

** 

0.20 

** 

0.37 

** 

0.35 

** 

0.77 

** 

0.43 

** 

0.10 

ns 

0.59 

** 

1 0.20** 0.24** 0.66** 

GFD 0.68 

** 

-

0.90 

** 

-0.56 

** 

0.63 

** 

0.55 

** 

0.16 

** 

0.00 0.15 

* 

0.19 

** 

0.06 

ns 

-0.13 

* 

1 0.01ns 0.03ns 

GA -0.23 

** 

0.66 

** 

0.93 

** 

-0.56 

** 

-0.22 

** 

-0.10 

Ns 

0.68 

** 

0.58 

** 

0.29 

** 

0.66 

** 

0.99 

** 

-0.30 

** 

1 0.45** 

†TKW, Thousand kernel weight; DH, Days to heading; DM, Days to maturity; HI, Harvest index; YLD, Grain yield; KN, Kernel number; BM, Biomass; LA, 

Leaf area; LL, Leaf length; LW, Leaf width; SL, Spike length; GFD; Grain filling duration; GA, Green area; SPN, Spikelet number. 

*=significant at 5%, **=significant at 1%, ns=non-significant. 
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Table A.10. Summary of linkage disequilibrium greater than critical value (r
2
>0.2641) for wheat chromosomes.  

 
Chromosome Total pairs % r

2
 at 

P<0.01† 

 % r
2
 > 0.2‡ 

 

a
 % r

2
>0.2641 Average 

LD at 

r
2
>0.2641 

Average LD 

for all pairs 

1A 2016 31.30 7.09 6.15 0.5723 0.06 

1B 1771 54.60 19.42 16.37 0.5984 0.14 

1D 190 35.26 14.21 13.16 0.5289 0.09 

2A 1035 26.67 7.05 6.38 0.6351 0.06 

2B 2628 23.17 3.31 2.32 0.5297 0.03 

2D 595 36.81 18.99 17.14 0.6935 0.14 

3A 666 45.50 7.50 6.16 0.6206 0.08 

3B 2556 23.12 3.36 2.74 0.5624 0.03 

3D 276  42.39 25.72 24.28 0.5561 0.15 

4A 903 62.35 11.74 8.08 0.5243 0.10 

4B 253 33.20 4.74 4.35 0.6616 0.05 

5A 210 20.00 5.24 4.29 0.8206 0.05 

5B 1485 26.60 3.03 2.15 0.5423 0.03 

6A 1378 35.78 7.47 6.09 0.5620 0.06 

† Percent of r
2
 at 0.2 is significant at P<0.001. 

‡ Percent of r2 at 0.2641 is significant at P<0.001. 
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Table A.10. Continued. 

Chromosome Total pairs % r
2
 at 

P<0.01† 

 % r
2
 > 0.2‡ 

 

a
 % r

2
>0.2641 Average 

LD at 

r
2
>0.2641 

Average LD 

for all pairs 

6B 2485 33.12 6.24 4.39 0.5236 0.05 

6D 55 30.91 14.55 7.27 0.912 0.10 

7A 1035 22.51 2.61 2.5 0.5301 0.03 

7B 903 44.85 14.51 12.29 0.5807 0.10 

7D 300 36.33 15.00 11.67 0.6222 0.10 

 † Percent of r
2
 at 0.2 is significant at P<0.001. 

‡ Percent of r2 at 0.2641 is significant at P<0.001. 
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LISTS OF ABBREVIATIONS 

 

Abbreviation Description 

AFLP Amplified fragment length polymorphism 

BLUE Best linear unbiased estimators 

BM Biomass  

BLZ Barley leucine zippers 

BPBF Barley prolamin box binding factor 

CID Carbon isotope discrimination 

DH Days to heading 

DM Days to maturity  

DSI Drought susceptibility index 

GA Green leaf area  

GAMyB Gibberellin-regulated Myb factor 

GBSSI Granule bound starch synthase 

GXE Genotype by Environment 

GFD Grain filling duration 

GRD11 Greeley dry 2011 

GRW10 Greeley wet 2010 

GRW11 Greeley wet 2011 

GYLD Grain yield  

HI Harvest index  

SKH Kernel hardness 

KN Kernel number  

KNL Kernel number per spikelet 

KWS Kernel weight per spike 

KNS Kernel number per spike 

LL Flag leaf length  

LA Flag leaf area  
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Abbreviations Description 

  

LW Flag leaf width  

LS Leaf senescence  

MAS Marker assisted selection 

MLKW11 Melkassa wet 11 

MELKD11 Melkassa dry 11 

NDVI Normalized vegetation index 

PHT Plant height  

QTL Quantitative Trait Locus 

RAPD Random amplified polymorphic DNA 

RFLPs Restriction fragment length Polymorphism 

SL Spike length  

SN Spike number per m
2
 

SKD Single kernel diameter  

SKW Single kernel weight  

SPN Spikelet number per spike 

SSIIa Soluble starch synthase 

SSR Simple sequence repeat 

VRN Vernalization 

TAGW2 Triticum aestivum grain weight gene 

TKW Thousand kernel weight 

TW Test weight 


