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ABSTRACT 

The cumulus parameterization theory presented by Arakawa and 

Schubert (1974) describes the mutual interaction of a cumulus cloud 

ensemble with its large-scale environment. This mutual interaction can 

be subdivided into three interaction loops: feedback, static control, 

dynamic control. The mathematical formulation of each of these inter­

action loops is discussed. The feedback loop describes how the cumulus 

scale transport terms and source terms modify the large-scale tempera­

ture and moisture fields. The static control loop describes the nor­

malized mass flux and the thermodynamic properties of each cloud type in 

terms of the large-scale temperature and moisture fields. The dynamic 

control loop describes how the large-scale fields control the total cloud 

ensemble vertical mass flux and its distribution among the various cloud 

types. The feedback, static control, and dynamic control loops consti­

tute a closed parameterization theory. 

A simple formalism for the diagnostic use of the feedback and 

static control portions of the theory is presented. The relation of the 

subgrid scale flux forms and the detrainment forms of the large-scale 

heat and moisture budgets is also discussed. 
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1. INTRODUCTION 

A cumulus parameterization theory must describe the mutual inter-

action of a cumulus cloud ensemble with the large-scale environment. 

This mutual interaction is shown schematically in Figure 1. It consists 

1 of feedback and control loops. The feedback loop describes how the 

cumulus scale transport terms and source terms modify the large-scale 

temperature and moisture fields. The control loops describe how the 

properties of the cloud ensemble are controlled by the large-scale fields. 

A cumulus parameterization theory describing the mutual interaction 

of a cloud ensemble with the large-scale environment was recently given 

by Arakawa and Schubert (1974) and Schubert and Arakawa (1974)~2 In this 

paper we shall conceptually group the equations given in I and II into 

three categories: feedback, static control, dynamic contro1.3 The math-

ematica1 formulation of the feedback loop is discussed in Section 2, the 

static control loop in Section 3, and the dynamic control loop in Section 

4. Although the theory has been designed for use in large-scale prognos-

tic models, the feedback and static control portions of the theory can be 

used in diagnostic studies. This is discussed in Section 5. The relation 

of the 'subgrid scale' flux forms and the detrainment forms of the heat 

and moisture budget equations is discussed in Section 6. 

1The terms feedback and control were first used in this context by 
Betts (1974). 

2 Hereafter referred to as I and II, respectively. 

3The feedback and static control portions are conceptually similar 
to those given by Ooyama (1971). 
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2. FEEDBACK 

Consider a horizontal area large enough to contain an 'ensemble' of 

clouds but small enough to cover only a fraction of a large-scale dis-

turbance. We shall refer to the vertical transports caused by motions 

on a scale smaller than this area as the subgrid scale transports. 

Let the large-scale environment of the cloud ensemble be divided 

into the subcloud mixed layer, the infinitisimally thin transition layer, 

and the region above (see Figure 2). In the subcloud mixed layer the dry 

static energy s, water vapor mixing ratio q, and therefore the moist 

static energy h, are constant with height, having the respective values 

sM' qM' and hM• The top of the subcloud mixed layer PB is usually some­

what below cloud base PC. Below PB subgrid scale transports are accom­

plished by the turbulence of the mixed layer. This turbulence is confined 

below PB by the stable and infinitesimally thin transition layer. Across 

the transition layer there can be discontinuities in temperature and 

moisture, and also discontinuities in the subgrid scale fluxes. Above 

PB the subgrid scale transports are accomplished by the cloud ensemble, 

which is spectrally divided into 'sub-ensembles' according to the frac-

tional entrainment rate A, small A corresponding to deep clouds and large 

A corresponding to shallow clouds. 

Let us define the subgrid scale fluxes of dry static energy, water 

vapor, and liquid water as 

(la) 

(lb) 
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Fig. 2. TYIJical ITCZ profiles of ~, fi, and fi*. Above PB these profiles are those of Yanai, 
Esbensen and Chu (1973). The schematic sub-ensemble has cloud base Pc slightly above 
PB· The mass flux at p is n(p,A)mS(A)dA, while the mass flux at PB is mB(A)dA. 
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rn(p) 
nCp,A) [qcCp,A) - qCp)] msCA)dA 

F (p) - 0 q 
Po - P 

(Fq)o + [(Fq)B - (Fq)o] 
Po - PB 

rn(p) 
n(p,A)f(p,A) ms(A)dA 

FfCp) - 0 

0 

Below PB the subgrid scale fluxes of sand q are linear in p with 

the values (Fs)o and (Fq)o at the surface Po and the values (Fs)B and 

CFq)B just below PBo The subgrid scale flux of f is zero everywhere 

below PBo 

Above PB the subgrid scale fluxes are accomplished by the cloud 

ensemble. Let scCp,A) be the dry static energy at level p inside sub­

ensemble A and n'(p,A)mBCA)dA be the vertical mass flux at level p due to 

sub-ensemble A 0 Let n(p,A) be the normalized mass flux, having the 

value unity at PB' Then mB(A)dA is the sub-ensemble mass flux at PBo 

We shall refer to IllB (A) as the mass flux distribution function since it 

gives the distribution of mass flux in A space. The upward flux of dry 

static energy inside sub-ensemble A at level p is n(p,A)sc(p,A)mBCA)dAo 

The downward flux in the environment at level p, caused by the induced 

subsidence of sub-ensemble A, is given by n(p,A)s(p)mB(A)dA. Thus, the 

total upward flux at level p due to sub-ensemble A is n(p,A)[s Cp,A) -
c 

5(p)] ~(A)dA. The total ensemble flux at level p is an integral over 

all sub-ensembles which penetrate level p. Sub-ensembles which penetrate 

level p have fractional entrainment rates in the interval o~A~AD(P), where 



6 

AO(p) is the fractional entrainment rate of the sub-ensemble which 

detrains at level p. The subgrid scale fluxes of water vapor and liquid 

water above PB are analogous to that of dry static energy except that 

there is no vertical flux of liquid water in the environment since the 

environment contains no liquid water. 

Certain combinations of the three basic fluxes given in (1) - (3) 

are useful. Thus, let us define the subgrid scale fluxes of virtual dry 

static energy, moist static energy, total water content, and liquid 

water static energy as 

F sv(p) - F (p) + oe(p)LFq(p), (4 ) s 

Fh (p) - F s (p) + LF (p), (5) q 

F .t(p)== F (p) q+ q + F.t(p), (6) 

F L.t(P)== F (p) s- s - LF.t (p) • (7) 

In (4), 0 = 0.608 and s(p) == c T(p)/L. The liquid water static energy 
p 

(s-L.t) is the static energy analog of the liquid water potential 

temperature introduced by Betts (1973a). A discussion of the liquid 

water static energy is given in Betts (1973b). 

The governing equations for the large-scale environment are de-

rived from the heat and moisture budgets for the region above the mixed 

layer, for the infinitisimally thin transition layer, and for the mixed 

layer. These budgets are 

as - \v· 'i/s -as ~ LR + Q , -= - w.:..;::.. + + 
at ap gap s-u R 

(8) 

§= - \v· 'i/q ~ ~ at - ap + gap q+.t - R, (9) 
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(a
PB 

WB) 
lIF s-U _g-l _ + \V .'ilp = + (10) at B B lis 

(a
PB 

- WB) 
~F +£. _g-l __ + W .'ilp +~ (11) 

at B B ~q , 

aSM - w • 'ils + g [(F) (F ) ] + (QR) , (12) --= at M M Po - PB s s B 0 M 

aqM 
- W .'ilq + g [(F) - (F ) B] • (13) at"- M M Po - PB q 0 q 

In addition to large-scale advection terms, the heat and moisture budgets 

above the mixed layer (equations (8) and (9)) contain subgrid scale flux 

divergence terms and the subgrid scale liquid water sink term R, defined 

by 

f
AD (p) 

R(p) _ n(p,A)r(p,A)~(A)dA. 

o 

(14) 

Since n(p,A)r(p,A)mB(A)dA is the sub-ensemble sink of liquid water, R(p) 

is the total ensemble sink of liquid water. QR is the radiational heating. 

The detrainment forms of the heat and moisture budgets above the mixed 

layer were derived in I. The relation of (8) and (9) to the detrainment 

forms is discussed in Section 6. 

Since the transition layer is assumed to be infinitesimally thin, the 

heat and moisture budgets for this layer (equations (10) and (11)) turn 

out to be conditions on the discontinuities across the layer. In (10) and 

(11) the symbol delta represents the jump of a quantity across the transi-

tion layer, e.g., ~s = s(PB-) - sM and ~Fs_L£. = Fs _L£' (PB-) - (F ) • The 
s B 

left hand side of (10) or (11) is the large-scale mass flux into the 
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mixed layer, i.e., the large-scale mass flux relative to the moving PB 

surface. Equations (10) and (11) show that discontinuities in the re1a-

tive large-scale fluxes of sand q must be balanced by discontinuities 

in the subgrid scale fluxes of sand q. 

The heat and moisture budget equations for the mixed layer (equations 

(12) and (13)) are similar to those above the mixed layer except for the 

absence of vertical advection terms and precipitation terms. (QR) is 
M 

the vertically averaged radiational heating of the mixed layer. 

Equations (8) through (13) have several interesting integral prop-

erties. Integrating (8) with respect to p from zero to PB- and combining 

the result with (10) and (12) we obtain 

(15) 

The quantity within the first brackets in (15) is the total dry static 

energy per unit area in a column extending from the surface to the top of 

the atmosphere. Equation (15) shows that cumulus convection increases 

the total dry static energy in the column only if there is precipitation 

from the column. 

Similarly, integrating (9) and combining the result with (11) and 

(13) we obtain 
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The quantity within the first brackets in (16) is the total ~ass of 

water vapor per unit area in a column extending from the surface to the 

top of the atmosphere. Equation (16) shows that cumulus convection 

decreases the total mass of water vapor in the column only if there is 

precipitation from the column. Equations (15) and (16) can be combined 

to give 

a~ !\tg-l (po -PB){~(P) g-ldP! +v·1 \V~g-l (po -PB)+ [!(P)h(P)g-ldP I 
+ I (QR) M g-l (po -PB) + J:~R (p) g-ldp ! 

(17) 

which shows that the total moist static energy per unit area in the 

column is unaffected by cumulus convection. The cumulus convection 

simply transports moist static energy from the lower levels to the 

higher levels. 

The fluxes at PB+ can be written in terms of the surface fluxes by 

considering the turbulent energy balance of the mixed layer. This yields 

(FSV) 
B 

keF ) , sv 
o 

(18) 

where k is an empirical constant with a value of approximately 0.20. 
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J

Amax 

ME = mB(A)dA, 

o 

(8) through (13) and (18) can be reduced to 

as - \V· 'Vs -as a F + LR + QR' -= - un- + at ap gap s-Lt 

§= -\v.'Vq- ~ a F - R, at ap + gap q+t 

(19) 

(20) 

(21) 

aSM g I1s 
~t = - WM·'VsM + [(F) + k~(F ) ] + (QR) , (22) 

o Po - PB s 0 usv sv 0 M 

Thus, the temperature and moisture fields above and below PB and the 

pressure at the top of the mixed layer PB can be predicted if we can 

somehow determine Fs_Lt' Fq+t, R, and MB• The cumulus ensemble transport 

terms F TO, F 0, MB and the cumulus ensemble source/sink term R con-
S-L-{.. q+.(.. 

stitute the feedback loop shown in Figure 1. 

From (1), (2), (3), (6), (7), (14), and (19) we can see that this 

is equivalent to determining n(p,A), s (p,A), q (p,A), i(p,A), r(p,A), c c 

AD(p), and ~(A). All except ~(A) are determined from the static control 

loop of the theory, which is discussed in Section 3. mBCA) is determined 

from the dynamic control loop of the theory, which is discussed in 

Section 4. 
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3. STATIC CONTROL 

The sub-ensemble normalized mass flux n(p,A), the sub-ensemble 

moist static energy h (p,A), and the sub-ensemble total water content 
c 

qC(p,A) + i(p,A) are determined from the sub-ensemble mass, moist static 

energy, and total water budget equations. These are 

oi')(p,A) 
op 

o -;;-[n(p,A)h (p,A)] op c 

AH (p) 
p n(p,A), 

AH(p) n(p,A)h(p), 
p 

(25) 

(26) 

AH~P) n(p, )q(p) 

H(p) + n(p,A)r(p,A), (27) 
p 

where H is the scale height RT/g. Between the top of the mixed layer 

~ and the condensation level p , q (p,A) is determined from 
... 15 C C 

o 
op [n (p, A) qc (p, A) ] (28a) 

while above p the air inside the clouds is saturated at a temperature 
c 

only slightly different from the environment, allowing us to write 

- y (p) 1 [ ;:: 
q*(p) + l+y(p) r hc(p,A) - n*(p)], (28b) 

- L (Oq*] where y = c ~ . 
p P 

AO(p) is given implicitly by 

(29) 
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a statement that level p is a level of vanishing buoyancy (in terms of 

virtual dry static energy) for sub-ensemble AD(p). 

If r(p,A) is regarded as a known function of l(p,A), (25), (26), 

(27), (28), and (29) constitute a set of five equations in the five 

1 
unknowns n(p,A), s (p,A), q (p,A), l(p,A), and AD(p) • Thus, the sub-c c 

ensemble budgets (25) through (28a), the saturation relation (28b), and 

the condition of vanishing buoyancy at the detrainment level (29) con-

stitute the static control loop as shown in Figure 1. 

IEquations (25), (26), (27), and (28a) are differential equations 
w~ich are solved from PB upward. The boundary conditions at PB are 
slmply n(PB,A) = 1, h (p,A) = hM' q (PR,A) = qM' and l(PB,A)=O. An 
iterative procedure f8r solving (25J tfirough (29) in a vertically 
discrete model is discussed in II. 
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4. DYNAMIC CONTROL 

In order to predict the large-scale fields from (20) through (24) 

there remains only the problem of determining mB(A). 

Let us define the cloud work function as 

A(A) 
J

PB 
n (p,A)[S (p,A) - 5 (p)]~ vc v p 

PD(A) 

(30) 

A(A) is an integral measure of the buoyancy force. It is also a measure 

of the efficiency of kinetic energy generation for sub-ensemble A. Since 

A(A) is actually a property of the large-scale, its time derivative can 

be written in terms of the time derivatives of sM' qM' PB' s(p), and 

q(p). Thus, 

dA(A) 
dt 

J

PB l as (p) - l 
+ n (p, A) [- 1 + Aa (p, A)] ~t + Ab (p, A) a\~) \ ~ . 

PD(A) 
(31) 

HB is the scale height at PB. a(p,A) and b(p,A) are known weighting 

functions. The terms on the right hand side of (31) can be divided into 

two classes: those which depend on mB(A) and those which do not. Thus, 

(31) can be written 

dA(A) 
dt J

Amax 

K(A,A')mB(A')dA' + FCA), 

o 

(32) 
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where the kernel K(A,A') and the forcing function F(A) are known. 

The quasi-equilibrium assumption discussed in I is as follows. When 

absolutely no convection exists the temperature and moisture fields are 

free to change in a manner which is unconstrained by cumulus convection. 

When some convection exists (i.e., mB(A»o for some A), then the large­

scale tendencies are constrained such that for each A, we must have 

dA(A) 
dt 

dA(A) <0 
dt 

o 

o. 

Thus, for each A, mB(A) must satisfy either 

and 

or 

f

Amax 

K(A,A')mB(A')dA' 

o 

+ F(A) 

f
Amax 

K(A,A')mB(A')dA' + F(A)<O 

o 

o (33a) 

(33b) 

Since the kernel and the forcing function are known, (33) is an integral 

equation for mB(A). The condition on whether to apply the integral 

equality or inequality is in terms of the unknown function mB(A). This 

makes solving (33) a somewhat difficult task. An iterative method of 

solution is discussed in II. 

Equation (33) constitutes the dynamic control loop shown in Figure 

1. The parameterization theory is now closed. 
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5. DIAGNOSTIC USE OF THE THEORY 

The theory described in the preceeding sections was developed for 

use in large-scale prognostic models. However, the feedback and static 

control portions of the theory can be used for diagnostic studies, as has 

been done by Ogura and Cho (1973), Nitta (1974), and Yanai, Chu, and 

Stark (1974). Perhaps the easiest way to understand the diagnostic use 

of the theory is to combine (8) and (9) to obtain 

(34) 

where 
r AD (p) 

~Cp) • J nCp,l)~cCp,l) - fiCp)l~Cl)dl, 
o 

(35) 

The left hand side of (34) has been called QI-Q2-QR by Yanai, Esbensen, 

and Chu (1973). From (34) we can see that the vertical integration of 

QI-Q2-QR from a level PT where Fh is zero downward to a level p will 

yield 

FhCp) • J
P

CQ1-Q2-QR)g-ldP, 

PT 

(36) 

Thus, if the local tendency of h, the horizontal and vertical advection 

of h, and the radiational heating are known, Fh(p) can be computed. Once 

Fh(p) has been computed from (36), and once AD(p), n(p,A), and hc(p,A) 

ha-·je been computed from the equations in Section 3, (35) can be solved as 

a Volterra integral equati~n for mB(A)l. Once mB(A) has been computed, 

either (8) or (9) can be solved for R(p), and some properties of r(p,A) 

can be determined from (14). 

lThe discrete version of (35) is a triangular matrix equation. 
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6. SUBGRID SCALE FLUX FORM vs. DETRAINMENT FORM 

The forms of the equations for s(p) and q(p) given in Section 2 

are the subgrid scale flux forms. Differentiating CIa), (2a), and (3a) 

with respect to p, using (6), (7), and the sub-ensemble budgets of 

Section 3, (20) and (21) can be written 

as - -as - h as 
-- + w·~s + ~ = DCs-s-Lt) + gM -- + QR' at ap cap (37) 

(38) 

where the total detrainment and total cloud mass flux are given by 

and 

and where 

f

ADCP) 

Mc(p) = n(p,A)mB(A)dA, 

o 

s(p) = SC(p,AD(p)) 

q*(p) = qC(p,AD(p)) 

l(p) = l(p,AD(p)), 

(39) 

(40) 

(4la) 

(4lb) 

(4lc) 

Thus, the detrainment forms (37) and (38), which were used in I and II, 

are equivalent to (37) and (38). The subgrid scale flux forms appear 

to have certain advantages, especially in models which are discrete in 

the vertical. 
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7. SUMMARY 

Let us now summarize the cloud ensemble/large-scale interaction 

model in terms of Figure 1. 

The properties of the large-scale environment are given by the dry 

static energy above and within the mixed layer, s(p) and sM' by the 

water vapor mixing ratio above and within the mixed layer, q(p) and qM' 

and by the pressure at the top of the mixed layer PB. 

The properties of the cloud ensemble are given by the sub-ensemble 

profiles of normalized mass flux n(p,A), dry static energy SC(p,A), 

water vapor mixing ratio q (p,A), liquid water mixing ratio l(p,A), by c 

the detrainment pressure PO(A), and by the mass flux distribution 

function mB(A). 

The feedback of the cloud ensemble onto the large-scale occurs 

through the cumulus terms in the prognostic equations for s(p), q(p), 

and PB' i.e., in equations (20), (21), and (24). sM and qM are unaf­

fected by cumulus convection but are affected by the subgrid scale 

turbulent transports of the mixed layer. 

The control of the cloud ensemble by the large-scale can be divided 

into two parts: static control and dynamic control. All the properties 

of the cloud ensemble except mB(A) can be determined from the static 

control, which consists of the subensemble budgets (25), (26), (27), 

(28a), the saturation relation (28b), and the condition of vanishing 

buoyancy at the detrainment level (29). mB(A) can be determined from 

the dynamic control, which consists of the integral equation (33). 
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