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ABSTRACT 
 
 
 

INVESTIGATIONS OF THE UNCERTAINTIES ASSOCIATED WITH HID 

ALGORITHMS AND GUIDING INPUT TO A NOVEL, SYNTHETIC POLARIMETRIC 

RADAR SIMULATOR 

 
 
 

A methodology for model evaluation against observations is presented. With the 

advent of polarimetric radars, the need to produce simulated radar observables from 

model has also become apparent, in order to directly compare the same quantities 

between observations and models (e.g. rain rate calculations, hydrometeor identification 

- HID). To the end of evaluating model performance, for both a spectral bin 

microphysics (SBM) scheme and bulk microphysics scheme (BMS), a novel, synthetic 

polarimetric radar simulator created by Matsui et al. (2017) was implemented in this 

study: POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS). 

POLARRIS takes in model data and simulates polarimetric radar variables in the 

forward component (POLARRIS-f), and then the inverse component of POLARRIS 

(iPOLARRIS) utilizes retrieval algorithms that are also employed in observations to 

make direct 1-to-1 comparisons between model simulations and observations. This 

inverse component is novel in its ability to help bridge the gap between model output 

and observations due to the fact that model output and observations without this 

framework are not directly comparable.  

The simulation of ice hydrometeors is not straightforward, and several 

assumptions are required to create polarimetric data for these species, such as the 

assumption of the size distribution, particle densities, particle melting, the input axis 

ratio, and canting angle assumptions. The last two variables are notoriously difficult to 

pin down for ice hydrometeors. This work aims to narrow down the appropriate inputs 

for axis ratio and canting angle assumptions that create the most comparable results 
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with observations for three ice hydrometeors: aggregates, ice crystals, and graupel for 

two different meteorological regimes (mid-latitude supercell and tropical, monsoon 

MCS). Rain was also carried through as a check on model output. Through various 

sensitivity tests, it was concluded that, when run through the range of potential values, 

changes in axis ratio had a larger impact on the resulting polarimetric data than did 

changes in the canting angle assumptions.  

With this in mind, the 18 Z integrated hour from the 23 January 2006 monsoon 

MCS TWP – ICE case and the 22 Z integrated hour mid-latitude supercell from the 23 

May 2011 MC3E case were simulated to help determine, for each hydrometeor type, 

the most appropriate axis ratio value(s) and canting angle assumptions that produced 

comparable results with observations. It was found using co-variance plots that, for 

4ICE, the use of a singular axis ratio, mean canting angle, and degree of particle 

tumbling often produced differential reflectivity and specific differential phase values that 

converged to one value. While these values were within the observed values, they did 

not manage to simulate the breadth of observed values. Reflectivity values were also 

much too low compared to observations. SBM results, regardless of the type of input 

assumptions, tended to produce broader ranges for these variables, and also managed 

to better capture the reflectivity range seen in observations than was the case for the 

BMS. However, the reflectivity ranges seen in SBM were at times too expansive. The 

differences between SBM output and BMS output is likely due to the differing inherent 

assumptions in each microphysical scheme. The sensitivity of the simulated 

hydrometeors’ polarimetric data was also probed against changing axis ratio and 

canting angle input assumptions. It was found that, in particular, BMS differential 

reflectivity values were quite sensitive to changes in input assumptions, regardless of 

the regime (tropical MCS vs. mid-latitude supercell).  
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HID was found to be the most effective method to evaluate the performance of 

the two different model microphysical schemes (SBM vs. BMS) with respect to 

observations. Input assumptions that produced the most comparable results with 

respect to observations for each hydrometeor were compared using HID stacked 

frequency by altitude (SFAD) diagrams for convective and stratiform precipitation. This 

analysis found that although the co-variance plots revealed many model shortcomings, 

the HID proved to be fairly robust, especially for MC3E. The sensitivity of the HID 

retrieval itself was also investigated with respect to changing inputs (i.e. the 

membership beta functions) to the HID algorithm. The resulting HID was fairly sensitive 

to changes in the inputs to HID, particularly for model simulations. Observations 

seemed less responsive to changes in these input assumptions to HID. Longer 

simulation time frames, the potential inclusion of simulated melting hydrometeors, and 

investigation of other radar wavelengths are all suggested to help further utilize this 

methodology for evaluating model microphysical schemes’ abilities to accurately 

simulate polarimetric data and HID retrievals with respect to observations. 
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CHAPTER 1: INTRODUCTION 
 
 

With the advent of polarimetric radar, several improvements in observations have 

been made with accurately measuring rainfall, hydrometeor identification (HID), and 

quality controlling of radar data (Ryzhkov et al. 2005b). Dual-polarization has the benefit 

of helping improve weather model microphysical parameterizations, as well as the 

assimilation of radar data into models (Ryzhkov et al. 2011; hereafter R11). Additionally, 

models can help understand polarimetric radar data via quantitatively evaluating and 

deciphering their signatures. Models also have the ability to help us understand 

hydrometeor distributions in areas of convection where collecting in situ data is not 

straightforward, or even dangerous (R11). With all the potential benefits provided by 

comparisons of these types of quantities, there is then a great need to evaluate models 

against observations.   

The importance of ensuring the accuracy of cloud-resolving models (CRMs) is 

critical, due to their ever-growing use in the climate research community. Several 

studies have developed and tested polarimetric radar simulators to evaluate CRMs for 

both bulk microphysics schemes (BMSs) (e.g. Vivekanandan et al. 1993; Huang et al. 

2005; Pfeifer et al. 2008; Jung et al. 2008, 2010; Putnam et al., 2014 and 2017) and 

spectral bin microphysics (SBM) schemes (e.g. R11). The constraints in using simulated 

polarimetric radar variables and radar retrievals (e.g. HID) to validate a CRM’s output 

are better than those utilized when polarimetric variables are not available (i.e. when 

using single radar reflectivity data, which can be calculated in a model from the 6th 

moment of drop size distribution). To this end, this work tests the ability of a novel 

polarimetric radar simulator’s ability to accurately reproduce radar observables with 

respect to observations. This simulator is termed, POLArimetric Radar Retrieval and 

Instrument Simulator (POLARRIS). POLARRIS, described in detail in Section 2.3, has 

the capability to take in model data and simulate polarimetric radar variables, which are 
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then run through an analysis framework identical to that applied to observations (e.g. 

HID, dual-Doppler analysis, rainfall retrievals). Finally, model output and observations 

are actually made comparable, thus allowing the opportunity to evaluate both model 

microphysics and the use of retrievals that have long been applied to observations. 

However, there are several assumptions that have to be made when computing 

polarimetric variables from model output, such as wavelength, temperature, particle 

density, particle shape and fall mode. The various properties of rain, such as its general 

size, shape, canting behavior and tumbling behavior, and its particle size distributions 

have been studied in-depth (e.g. Pruppacher and Beard 1970; Pruppacher and Pitter 

1971; Green 1975; Goddard et al. 1982; Goddard and Cherry 1984; Beard and Chuang 

1987; Keenan et al. 2001; Brandes et al. 2002) and now fairly accurate polarimetric 

radar variable values can be calculated for that category (R11). Ice phase hydrometeors 

are notoriously more difficult to simulate, in part due to the fact that observations of 

particle shape, fall mode, and density are relatively rare for ice particle types such as 

graupel and aggregates. To this end, this work aims to help clarify the assumptions 

needed to properly simulate snow aggregates, graupel, and ice crystals. Rain will also 

be carried through the simulations as a check on how well POLARRIS is performing 

overall, given that rain should be the most straightforward to simulate (based on the 

extensive literature studying its various behaviors). 

The above-mentioned assumptions include the values for axis ratio (which 

describes a particle’s shape) and canting angles, which determine a hydrometeor’s 

shape and its tendency to flutter/tumble. These have historically been difficult to 

determine for ice hydrometeors. Some in situ analysis has been performed for certain 

hydrometeor types (Garret et al. 2015, Kumjian et al. 2016), however more needs to be 

done to document the observed ranges in axis ratio and canting angle values. There 

could be large variability in these values in nature, possibly being a function of storm 

type or location. This all has to be captured in the simulations run with POLARRIS in 
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order for the resulting HID analysis to compare with what is observed. Therefore, the 

objective is to determine axis ratio and canting angle values for aggregates, ice crystals, 

and graupel that produce the closest possible output as is seen in HID analysis 

performed on observational data. 

The sensitivity of simulated polarimetric radar variables is investigated with 

respect to changing inputs for axis ratio and canting angle assumptions. Since these 

assumptions are not as well understood for ice hydrometeors as for rain, it is important 

that the uncertainties and sensitivities associated with them are explored. That is, how 

much of an impact does a change in either the axis ratio or canting angle assumption 

have on the resulting radar observables, or the resultant retrieved parameters in 

iPOLARRIS? Thus, ideally, the gap between simulated and observed radar observables 

is decreased by implementing values for axis ratio and canting angle assumptions that 

output results from the POLARRIS framework which are comparable to observations. 

Another important component of this work is the comparison of the Colorado 

State University (CSU HID) algorithm with model output and observations. The way in 

which variations in axis ratio and canting angle assumptions affect the classification of 

HID underscores the importance of a proper range of inputs for axis ratio to POLARRIS. 

Comparisons of iPOLARRIS HID output between simulations and observations helps 

understand the amount to which different microphysical schemes drive model results, 

as well as the amount to which differing regimes (where the microphysics may greatly 

differ) impact model results and their comparability to observations. From this, one can 

glean which factor may be the bigger driver in differences between observations and 

model output, as well as the extent to which the HID is sensitive to each of these 

factors. Note that the goal is to make the model simulation results comparable to 

observations. THE CSU HID also has to make some assumptions to retrieve 

hydrometeor types in a 3D radar volume. This means it cannot be taken as truth, thus 
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this work is focused solely on improving the comparability of simulated data results to 

observations through the POLARRIS framework.  

One could make the argument that to evaluate the hydrometeor identification of 

the model against observations, the intermediate step of creating a radar forward model 

simulator is unnecessary. Not only does it introduce more uncertainty and potential for 

error, but the model outputs mixing ratio values for each hydrometeor type for every 

point in the 3D grid. Combined with the synthetic reflectivity field, this could be sufficient 

to classify hydrometeors. While true, there’s more merit to what is done in this thesis 

with the creation of a radar forward model simulator than simply comparing model 

output and radar output apples-to-apples. Simulating polarimetric radar variables also 

allows for evaluation of the model microphysics, as to how they are able, or unable, to 

reproduce known polarimetric radar signatures (e.g., the Zdr arc that appears because of 

the presence of large drops at the leading edge of convection created due to size 

sorting processes, or the Zdr column showing the presence of supercooled liquid water 

drops lofted above the 0° C level). In doing this, we gain valuable information that helps 

to identify regularly-occurring model errors, which in turns helps to improve the model 

microphysics. It also then, in a sense, allows for the evaluation of the utility of an HID 

algorithm. Simulating polarimetric radar variables also, as has been mentioned already, 

allows for evaluation of polarimetric radar signatures in regions of storms from which it’s 

not straightforward, or not practical, to obtain in situ observations (e.g., tornado debris 

region or graupel/hail regions). Finally, as will be shown in the results, while the HID 

algorithm used is highly dependent on the reflectivity, there are changes that are 

introduced in the classification results whenever the differential reflectivity and specific 

differential reflectivity ranges are modified (via changes in axis ratio and canting angle 

assumptions, or in manual modification of the HID algorithms themselves). Hence, 

although we glean a good amount of information with the synthetic reflectivity field 

already output by the model, it is worthwhile to take the next step of trying to pull out the 
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other polarimetric radar variables as well. Thus, although the introduction of a forward 

simulator introduces uncertainties of its own, the potential benefits gained from doing so 

merits the effort. 

The final component of this work involves further probing the sensitivity of the 

HID algorithm, and investigating the impact of modifying inputs to HID (based on 

analysis performed on observations) on resultant HID retrievals. Membership beta 

functions (MBFs, described in more detail in section 2.2) visualize the ranges that 

polarimetric radar variables and temperature occupy for specific hydrometeors types. 

The MBFs are modified in iPOLARRIS and applied to both observations and simulated 

POLARRIS-f output to better fit results from observations used here in. With these 

modified MBFs, the HID calculations are rerun for both model output and observations, 

where the impact of these modified MBFs can be studied. Thus, the same questions as 

mentioned earlier are probed here as well (i.e. to what extent is the HID classification 

affected by each microphysical scheme, by each regime, to what extent does the model 

output match what is seen in observations). 

However, with these modified MBFs, new questions arise, including what effects 

does the chosen inputs to the HID itself affect the HID classification process? Are there 

certain hydrometeors that are more sensitive to changes in these inputs than others? Is 

one microphysical scheme (BMS vs. SBM), or regime, more sensitive than the other to 

these changes? In doing these simulations, and simulations with the original inputs to 

HID, this work demonstrates that comparing model-derived HIDs to observed HIDs is an 

effective way to validate the cloud model’s microphysical parameterizations, as well as 

an effective means for characterizing the uncertainty in the CSU HID.  Additionally, 

these tests allow the evaluation of whether the fit between model results and 

observations is dependent more so on the regime in question, or rather on the type of 

microphysics scheme employed. Note that due to the limited nature of the locations and 

times chosen to simulate in the POLARRIS framework, this work makes no attempt to 
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actually “improve” the CSU HID (which is the HID used in POLARRIS). Rather the aim 

is to probe the sensitivity of of HID classification to changing MBF functions. 

1.1. ORGANIZATION 
 

The organization of this master’s work is as follows. In Chapter 2, important 

background components to the research are outlined, including an overiew of 

differences between the two different microphysics scheme employed here in, an 

explanation of theoretical scattering simulations, the CSU HID, a description of 

POLARRIS, and some background on the simulated cases. In Chapter 3, the 

methodology from the initial data quality control (QC), up through comparisons between 

POLARRIS analysis using simulations and actual observations is discussed. In 

essence, the process to get to that end point is explained. From there, Chapter 4 details 

the results, including important findings related to the various sensitivity tests, and the 

MBF modifications in CSU HID. Chapter 5 wraps up conclusions and discusses areas 

for future research and other questions brought up by this work.  
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CHAPTER 2: BACKGROUND 
 
 

 In this chapter, we explore fundamental concepts related to model microphysical 

schemes, the simulation of polarimetric radar variables and discussion of polarimetry, 

as well as the background on the HID implemented in this study, POLARRIS, and field 

campaign cases that relate to this work. This background knowledge serves as a primer 

for the methodology employed in Chapter 3. Note that the dual-Doppler background 

information is given primarily because the results from those analyses were used to 

characterize echoes, as well as being used to facilitate initial comparison between 

model results and observations. This was done to ensure the most comparable results 

between WRF simulation results (for both 4ICE and SBM) and observations. 

2.1.!MODEL AND MICROPHYSICS SCHEMES 
 

There are two basic schools of thought when it comes to implementing a 

microphysical scheme, that of using BMSs, and that of SBM schemes.  POLARRIS is 

set up to be able to take in NASA-Unified Weather Research and Forecasting (NU-

WRF) model output that implemented either of these microphysics schemes (for more 

information on WRF run configurations, see Table 2.1). Both have some similarities, 

however they both also evolve very differently and do not have a similar method for 

treating, for example, a hydrometeor’s size distribution. This has the potential to then 

affect the simulated radar observables, and thus the HID classification. To understand 

what is being compared later on between POLARRIS output and observations, an 

overview of the two considered types of microphysics scheme is warranted. 

Khain et al. (2015) summarize the most up-to-date information on differences 

between bulk microphysics and SBM. Bulk parameterizations are significantly less 

computationally expensive/more computationally efficient (i.e. they require less memory 

and run much faster than SBM) when compared to SBM due to the fact that they 
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parametize many aspects of cloud properties. The deeper reason, however, behind bulk 

microphysics efficiency is due to the fact that the microphysical equations are related to 

the number of particle size distribution (PSD) moments, and not related specifically to 

PSDs of various hydrometeors. Single-moment/one-moment, and two-moment 

schemes, which predict mass content, and mass content and number concentrations 

(usually), respectively, are the most common. Sometimes a three-moment scheme is 

used, wherein the predicted variables are (usually) number concentration, mass density, 

and reflectivity. Every PSD is represented by mathematical equations that are only 

dependent on a few parameters. Though there are now several different flavors of bulk 

microphysical schemes, every single one assumes a certain shape for the PSDs of 

individual hydrometeors. Typically, the shapes are approximated by a gamma or an 

exponential distribution (Khain et al. 2015).  

The particular bulk microphysics scheme employed here in is the single-moment 

four-ice class (1M 4ICE) that was created for the Goddard Cumulus Ensemble (GCE) 

model (Lang et al. 2014; Tao et al. 2016). The 1M 4ICE scheme used in the GCE is 

built upon modifications made to the Goddard 1M three-ice (3ICE) class bulk 

microphysics scheme (Lang et al. 2007; Lang et al. 2011). The above BMSs are based 

upon work done in Lin et al. (1983), with additional features brought in from Rutledge 

and Hobbs (1983, 1984). Included in 4ICE is cloud ice, snow, graupel, and hail-frozen 

drops (Lang et al. 2011). While the above papers have provided an excellent basis on 

which to create the improved BMS in Lang et al. (2011), they have their limitations (e.g. 

having arbitrarily set thresholds for graupel initiation; Rutledge and Hobbs 1984). Work 

has been done to modify some of these assumptions and make them more realistic 

(Lang et al. 2007; Lang et al. 2011). Hail accounts for large reflectivity values and higher 

fall speeds compared to graupel, and its inclusion allows the Goddard 1M BMS to cover 

a wider range of meteorological situations than if graupel were upgraded to a two-

moment scheme (Lang et al. 2014).  
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While being more computationally taxing, SBM makes its goal that of simulating 

microphysics and precipitation processes more accurately (e.g. closer in line with what 

is observed in nature) for various cloud types. In SBM, PSDs do not need to be 

assumed, but rather are solved by a bin model arrangement, where microphysical 

processes lead to constantly changing particle concentrations as a function of size. That 

is, where 4ICE prescribes a set semi-empirical size distribution for PDFs, SBM allows it 

to develop for each particle size. This makes SBM more computationally taxing than 

4ICE, since there are no assumptions made about how particles are distributed in the 

various assigned bins.  

 The SBM microphysical package utilized in this work is the Hebrew University 

Cloud Model (HUCM) SBM (Khain and Sednev 1995; Phillips et al. 2007; Khain et al. 

2011; Iguchi 2012a and 2012b). Within HUCM’s SBM cloud hydrometeors there is one 

liquid hydrometeor type (water droplets, ranging from cloud droplets to precipitation-

sized droplets), and six ice hydrometeor types (ice crystals, comprised of plates, 

columns, and dendrites; snow aggregates; graupel; and hail). Aerosols acting as cloud 

condensational and ice nuclei are also included (Khain et al. 2011; Iguchi et al. 2012a, 

2012b). PSDs of individual hydrometeors are described with 43 doubling mass bins 

(Khain et al. 2011; Iguchi et al. 2012a).  

2.2.!POLARIMETRIC RADAR OBERVABLES 
 

Before delving into the methodology used to simulate polarimetric radar 

variables, a discussion on the variables to be simulated is warranted. Radar reflectivity 

is the most basic of the variables, and the most widely-used variable, considering it was 

an observable that could be calculated before the advent of polarimetric radar. Radar 

reflectivity is sensitive to the size and the concentration of particles (as well as the 

phase of particles). As such, large, wet hail will have much larger reflectivity values than 

drizzle or ice crystals, for example. Similarly, a region of heavy rainfall would have high 
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reflectivity, as would heavy rainfall mixed with hail (the latter of which is distinguishable 

with the inclusion of specific differential phase, which will soon be defined). As is 

defined by Bringi and Chandrasekar (2001),     

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Z# =
%&

'( )*
+ S## r, D

0N D dD             (1) 

where λ is the radar’s wavelength, Shh is the horizontal component of the transmitted 

and backscattered waves, Kp is the particle’s dielectric constant, D is the particle’s 

diameter, and N(D) is the PSD for the range of diameters. To calculate reflectivity for a 

vertically-polarized wave, the calculation is quite similar, where Shh is instead replaced 

by Svv. Since Shh scales approximately as D6 for Rayleigh conditions, this substitution 

(Shh ≅ D6) can made made into Eqn. 1, yielding 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Z# =
%&

'( )*
+ D3N D dD.                                                          (2) 

Thus, Zh can be said to represent the sixth moment of the particle size (Bringi and 

Chandrasekar 2001). In Eqns. 1 and 2, Zh has units of mm6 m-3. Radar reflectivity, 

depending on the incident wavelength, can measure anything from fog to very large, 

wet hail, and the reflectivity values therefore can range several orders of magnitude. To 

circumvent this issue, and to make values more physically comprehensible, logarithmic 

values are employed: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Z# = 10log9: z                                                                    (3)  

where z is the reflectivity in linear units (mm6 m-3), and Zh is the logarithmic radar 

reflectivity, measured in units of dBZ (Rinehart 2010). 

 Differential reflectivity is simply the ratio of the horizontal to vertical power 

returned to the radar from hydrometeors (given in dB). That is, as is given in Bringi and 

Chandrasekar (2001) (for matrix form, 4, and logarithmic form, 4a), 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Z<= =
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                                                  (4) 
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where Zv is calculated in the same way as Zh in Eqn. 1. Differential reflectivity is a 

function of size, shape, and particle phase. Zdr measurements are particularly useful for 

determining particle shape. If the backscattered components of both the horizontal and 

vertical components of a wave are approximately equal, Zdr tends towards zero. This 

would be the case for drizzle, or tumbling hail (where the particles in a radar volume 

look like spheres to the radar). However, with increasingly oblate axis ratios (a/b < 1), 

more energy is scattered back to the radar in the horizontal direction than in the vertical, 

which causes Zdr to increase. This would be the case for large raindrops, which begin to 

flatten out as they increase in size (this is shown in Fig. 2.1, for rain drops). Note that 

axis ratio is also known as aspect ratio, or the ratio of the length of the vertical to 

horizontal axis. A value of one indicates the same length in the horizontal and vertical 

axes, or a sphere. A value of less than one indicates an oblate, or flattened (e.g. like a 

pancake) particle. A value greater than one indicates a prolate particle (e.g. such as a 

vertically aligned needle). 

 Specific differential phase is different from reflectivity and differential reflectivity in 

that its measurement does not depend on the strength of the received backscattered 

energy, but rather it depends on the phase of the received signal (Rinehart 2010). The 

electromagnetic (EM) energy emitted by a radar travels much faster through air than it 

does through ice, and especially through water. As the EM energy passes through, for 

example, raindrops, since there is more dielectric material in the horizontal than in the 

vertical, the horizontal component of the EM wave begins to lag behind the vertical 

component of the EM wave, which had less dielectric material to pass through. Thus, 

when the backscattered energy reaches the radar again, the phase of the horizontal 

component of the wave will lag that of the vertical component. This effect becomes 

more and more noticeable with increasing concentrations of liquid water and ice in a 
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volume of air. From this, a phase difference can then be measured, which is referred to 

as the differential propagation phase (Rinehart, 2010). This quantity is represented as 

the degree difference in phase shift between the horizontal and vertical component, and 

is given by 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!DEF = DGG − DII                                                        (6) 

where the subscript hh refers to horizontally-polarized received signal, and the 

horizontally-polarized transmitted signal. The convention is the same for the subscript 

vv, but this refers to a vertically-polarized signal (Rinehart 2010). This quantity is 

dependent upon the length chosen for the range gate, as well as the concentration of 

particles in the range gate (i.e. the intensity of precipitation), and a particle’s 

orientation/shape as it falls. The problem with this quantity, as given by Otto (2007) is 

that it is cumulative, and the longer a ray travels, the larger the value (usually) becomes. 

Identifying the exact region of heavy precipitation then becomes difficult. Additionally, at 

low rain rates and low elevation angles, the signal can become quite noisy. Reflectivity 

gradients can also affect the value of differential phase. However, this measurement is 

also not dependent on the power of the signal, and is not affected by signal attenuation, 

or calibration errors in a radar (Otto 2007).  

 In order to address these issues in differential phase, the quantity specific 

differential phase (Kdp) was created: 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!JEF =
KLM N+ OKLM(NQ)

0(N+ONQ)
                                                 (7a) 

where Kdp is essentially a range derivative of φdp and is given in ° km-1 (Bringi and 

Chandrasekar 2001; Rinehart 2010), where the factor of 2 accounts for the outgoing 

and incoming signal. Though Kdp has several qualities that make it a desirable quantity 

(as mentioned below), the process that has to be done before the above calculation of 

Kdp can take place makes this radar observable sometimes difficult to obtain. That is, 

phase folding in φdp first has to be unwrapped, then a threshold is placed on the data to 
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ensure only good values of Kdp appear (usually a minimum allowed correlation 

coefficient – defined shortly – value), and then some sort of low pass filter is then 

applied to φdp to help take out some of the wild variations that can occur in the data, 

especially in the case of strong convection (Otto 2007). Finally, one must select a path 

length over which to calculate Kdp, the value of which determines the amount of 

smoothness in the final field. Only after steps such as these can Kdp then be calculated 

from Eqn. 7 (Otto 2007).  

 Kdp can also be defined in two other ways, where these two relationships show 

how Kdp is proportional to the liquid-water content and to the ice-water content. The 

equation relating Kdp to liquid water content is given in Bringi and Chandrasekar (2001) 

as 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!K<T =
9U:

%
10OVCW(1 − rY)                                  (7b) 

where λ indicates the chosen radar wavelength (m), C≅ 3.75 is a dimensionless unit 

and is independent of the radar wavelength chosen, ZY is the mass-weighted mean axis 

ratio, and W is the rain-water content (i.e. the liquid water content) and is defined by 

Bringi and Chandrasekar (2001) as the following equation: 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!W! =
'

3
[\ ]V^ ] _]

`

:
                                       (7c) 

where ρw is the density of water and is set to 1.0 g cm-3, D is the particle diameter, and 

N(D) is the PSD. In the form where Kdp is proportional to the ice-water content, Kdp is 

given in Bringi and Chandrasekar (2001) as 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!K<T =
9U:

%
10OVCρT(IWC)(1 − r)                                  (7d) 

where λ indicates the chosen radar wavelength (m), C≅ 1.6 (g cm-3)-2, ρp is the particle 

density (g cm-3), IWC is the ice-water content (g cm-3), and r is the particle radius. 
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Kdp, as was the case with φdp, is not dependent on the calibration of the radar, 

any attenuation of the radar signal, or beam blockage. It is instead dependent upon the 

particle size, phase (since the index of refraction is different from water to ice), and 

particle shape/orientation. It is also inversely dependent on λ (see eqns. 7b and 7d). 

Thus, as the larger wavelengths are considered, the overall magnitude of Kdp values 

decreases. Since Kdp is not a path integrated quantity, its readability and usefulness in 

locating areas of heavy precipitation are more useful than φdp. Kdp is particularly useful in 

determining locations of heavy rain, and in conjunction with Zdr, areas of heavy rain 

mixed with hail. Since hail tumbles as it falls, the random orientation of hail appears to 

the radar as if they were isotropic particles (i.e. spherical particles). Kdp is insensitive to 

these types of particles, since there is not a large difference in phase between 

horizontally- and vertically-polarized waves travelling through a region of spherical 

particles. However, the rain is likely to be fairly oblate (if the drops are large), and thus a 

positive phase shift will still occur in those volumes of heavy rain with hail. Hence, Kdp is 

helpful for locating areas of heavy rain, regardless of the presence or not of large hail, 

because of its insensitivity to spherical particles and because it is proportional to liquid 

water content. Further confirmation of the presence of hail and rain can also be verified 

if that region shows high Zh and low, or near zero, Zdr values. Negative values of Kdp can 

also occur if a particle has its larger axis oriented in the vertical rather than in the 

horizontal, such as conical graupel or vertically aligned ice crystals such as those 

aligned in a strong electric field (Caylor and Chandrasekar 1996; Rinehart 2010). 

 The last simulated quantity is the co-polar correlation coefficient. This is given in 

Bringi and Chandrasekar (2001) as 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! [GI =
cdeedff

( c dee
+ c dff

+ )
Q
+
                                             (8) 

where n is the number of particles per unit volume. Rinehart (2010) gives a good 

overview of this radar observable. Correlation coefficient describes the correlation 
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between the vertically- and horizontally-polarized signals at a point in space, at one 

exact time. This quantity is not sensitive to the radar calibration or propagation effects. 

However, it is sensitive to noise, and shape/orientation of particles in the volume. In the 

instance where the horizontally- and vertically-polarized signals are perfectly correlated, 

the co-polar correlation coefficient value would be 1.0. Drizzle almost attains this value, 

though is slightly lower than 1.0 because not all drizzle is perfectly spherical. Rain has a 

lower value yet, although it is generally greater than 0.95. In the case of irregularly-

shaped ice crystals, snow, and other frozen hydrometeors this value depresses even 

more to almost 0.8. Additionally, non-meteorological targets, such as insects or ground 

clutter, depress ρhv values to usually less than 0.9. In the mixed-phase region of storms, 

ρhv is usually depressed, due to the mixtures of ice and water hydrometeors which have 

different dielectric constants and different liquid (or liquid equivalent) water contents. 

Water and ice hydrometeors are also usually shaped very differently, and do not 

necessarily tumble or cant in the same fashion.  Thus, ρhv can be used to identify rain 

from ice, from non-meteorological targets (Rinehart 2010).   

Simulating accurate values of ρhv can be quite difficult simply because it is not 

always straightforward to capture the true range of observed axis ratios, unless there is 

a situation with a homogeneous set of particles (which rarely occurs in nature). In 

particular, the correlation coefficient is challenging to simulate in mixed-phase regions. 

There are not only axis ratios of various degrees of eccentricity (i.e. some particles may 

be quite oblate, some nearly spherical, and some even slightly prolate), but there are 

also various mean canting angles and tumbling behaviors occurring, various sizes of the 

particles in general, as well as changing dielectric constants due to the fact that it is a 

mixed-phase region (Zrnic et al. 1994). These all heavily influence the depression of ρhv 

in mixed-phase precipitation. 
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2.3.!THEORETICAL CALCULATIONS OF POLARIMETRIC RADAR OBSERVABLES 
 

The forward component of POLARRIS (POLARRIS-f) uses the methodology 

described herein to calculate synthetic polarimetric radar variables. More on the exact 

details of how this process relates to POLARRIS-f are given in section 2.5.  

Carrying out theoretical scattering simulations involves the input of transition (T) 

matrices into Muller matrices to calculate radar moments (Barber and Yeh 1975, 

Vivekanandan et al. 1991). Essentially, as Matsui et al. (2017; hereafter M17) 

summarize the complicated mathematics in Vivekanandan et al. (1991), “the effect of a 

scattering field on the polarization can be determined by constructing the Stokes vector 

for the input radiation field and applying Mueller matrix to obtain the Stokes vector of the 

radiation leaving the system”, where the set of values that make up the Stokes 

parameters defines the electromagnetic radiation’s polarization state. T-Matrix 

calculates the 2x2 scattering matrix (phase and amplitude). That is, the T-Matrix gives 

the resultant backscattering cross-section of single hydrometeor of a given size 

(Vivekanandan et al. 1991). The T-Matrix calculations are performed for an arbitrary 

non-spherical dielectric body (Barber and Yeh 1975). Hence, required inputs to the T-

matrix for a specific hydrometeor type include particle diameter (specifically, equivalent 

volume spherical diameter), axis ratio, temperature, radar wavelength, and particle bulk 

density. 

The important variables for discussing tumbling tendencies of particles are the 

mean canting angle θ (the average degree at which a particle is tilted during free fall), 

and the standard deviation of the canting angle σ (the degree to which a particle flutters 

or tumbles as it falls). The importance of the particular canting angle distribution (i.e. the 

assumed shape of the distribution) to changes in simulated radar observables is not 

explored here in, but could be investigated in future studies. The canting angle 

distribution can be simplified to a one-dimensional distribution, where generally a 
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Gaussian distribution is assumed (R11; Putnam et al. 2017; Kollias and Tatrevic 2017). 

This distribution is employed in this work. Of particular interest is identifying the most 

appropriate ranges for axis ratio and canting angle distributions that result in the most 

realistic radar observables. Thus, several different sets of assumptions for these 

variables will be input to the T-Matrix, Mueller matrix framework. 

Transformations are then applied to the resulting 2x2 T-matrices, for one radar 

elevation angle, for a given canting angle distribution, and for a given axis ratio 

assumption, based on the scattering angle of the incident wave. The result of this is a 

single-particle 4x4 Mueller Matrix. In the case of SBM, the PSD is explicitly expressed 

through 43 doubling mass bins. These mass bins are integrated based on how the 

model evolved that hydrometeor’s particle size distribution (PSD). For 4ICE simulations, 

the PSD is prescribed. There are 70 defined effective radii (which describe the 

distribution of mass in the prescribed PSD). For each of those potential forms of the 

PSD, results are integrated over size. From these integrations results a size-integrated 

Mueller matrix for that hydrometeor species (Vivekanandan et al. 1991; M17). Just as 

the T-matrix outputs results for a single hydrometeor, the Mueller matrix also outputs a 

single value of a radar moment for a given size distribution, or “radar volume”. In other 

words, the assumed size distribution resides within that particular radar volume. Note 

that, after integrating over size, the Mueller matrices for 4ICE are scaled by the 

corresponding model mixing ratio for that hydrometeor. For SBM, each mass bin (after 

the model has evolved the hydrometeor’s size distribution) is scaled by the output 

model mixing ratio prior to integration over the mass bins. In order to obtain mixtures of 

variables, the size-integrated Mueller matrices for SBM and the Mueller matrices 

calculated for 4ICE were then summed over all species. Following this integration step, 

polarimetric radar observables (reflectivity, Zh, differential reflectivity, Zdr, specific 

differential phase, Kdp, and correlation coefficient, ρhv) are then calculated. 
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2.4.!COLORADO STATE UNIVERSITY HYDROMETEOR IDENTIFICATION (CSU HID) 
 

The technique utilized to classify hydrometeors in the CSU HID is fuzzy logic. 

Fuzzy logic uses membership functions that define ranges of expected variability for 

different measurements, using functions that permit overlap between different 

hydrometeor types (Liu and Chandrasekar 2000; Zrnic et al. 2001; Dolan and Rutledge 

2009, hereafter DR09; Dolan et al. 2013). For example, both light rain and snow can 

have similar reflectivity membership functions. In the fuzzy logic framework, 

measurements such as radar moments and temperature are fit to a membership set 

and are assigned a score (from zero implying no fit, to one implying a perfect fit) for 

each hydrometeor based on their consistency with the fit (Liu and Chandrasekar 2000). 

In HID analysis, a membership set for each radar moment is made up of hydrometeor 

types’ membership functions that are specific to that moment (e.g. a membership set for 

Zdr is made up of the Zdr MBFs belonging to each hydrometeor considered in the HID).  

In general, membership functions are expected to have an expansive, flat region 

where the membership value assumes a value of unity for a given hydrometeor. For 

rain, reflectivities can easily span from 25 dBZ to 60 dBZ, so its membership value in 

that range would be unity (Liu and Chandrasekar 2000). Since there is no sharp cut-off 

at which membership functions cease to be uniquely related to real hydrometeors, one 

which embodies this smoothly decaying edge is preferred. For these reasons, beta 

functions are chosen as the ideal form for a membership function (example set of MBFs 

for reflectivity in Fig 2.2), where the shape of this function is given by Eq. 9, where x is 

the observational value, m is the midpoint, a is the half-width of the membership beta 

function, and b is the slope (DR09),  

                                       g = !
9

9h!
ijk

l

+ m.                                                  (9)             
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Different variables have weights applied to them depending on the confidence in 

the measurement which are factored into the scoring of each hydrometeor type. These 

weights were determined subjectively, where reflectivity and temperature are heavily 

weighted compared to differential reflectivity (weight of 0.8), specific differential phase 

(weight of 1.0), and correlation coefficient (weight of 0.1) (Dolan et al. 2013). The 

validity of these subjectively-determined weights leaves obvious/significant room for 

investigation and possible modification. After summing the scores for each hydrometeor 

type, the highest-scoring hydrometeor is chosen as the hydrometeor type that best 

explains the various polarimetric measurements within the radar volume (DR09; Dolan 

et al. 2013). The overall score assigned to a hydrometeor is shown in Eq. 10, where i 

represents the hydrometeor type, W is each variable’s assigned weight, and β is the 

score awarded to a certain hydrometeor for a particular polarimetric radar variable (Eq. 

9) (Dolan et al. 2013). The fact that reflectivity and temperature influence the overall 

score the most, reflecting the confidence in these variables over the others, is shown in 

that each hydrometeor score is multiplied by the scores for reflectivity and temperature 

in a so-called ‘hybrid –scoring’ method (Lim et al. 2005; DR09) 

                      no =
pqLr

sqLr,t
hpuLM

suLM,t
hpvef

svef,t

pqLr
hpuLM

hpvef

gw,ogxe,o.                        (10) 

Determination of the specific ranges of values associated with each polarimetric 

radar variable and each hydrometeor type can be made several different ways, 

including from observations, subjective experience, and theoretical simulations. Several 

studies have developed theoretical simulations of radar moments for various 

hydrometeor types (Liu and Chandrasekar 2000; DR09; Dolan et al. 2013; Thompson et 

al. 2014). With these simulations, a standard set of MBFs can be defined for each 

hydrometeor type and radar moment (set up similarly those those seen in Fig. 2.2). 
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These theoretical functions are particularly useful when radar wavelengths shorter than 

10 cm are employed due to non-Rayleigh scattering impacting the radar moments in 

complicated ways (DR09; Dolan et al. 2013). The DR09 and Dolan et al. (2013) MBFs 

that serve as the foundations of this study were developed from a theoretical standpoint, 

where extensive literature reviews of the different parameters (particle density, size 

distributions, canting angles, etc.) were undertaken for ten different hydrometeor types: 

drizzle, rain, big drops, ice crystals, snow /aggregates, wet snow, low-density graupel, 

high-density graupel, hail, and vertically aligned ice crystals. 

2.5.!POLARRIS 
 

The overall goal of POLARRIS is to help evaluate/validate model output, to help 

with data assimilation, and to allow for self-consistent testing of polarimetric radar 

retrievals, in an attempt to evaluate model output when compared with retrievals from 

observations. POLARRIS is composed of two parts: a forward model (POLARRIS-f) 

which calculates synthetic radar observables based on model outputs, and an inverse 

model (iPOLARRIS) that performs the same radar retrievals on model output as is done 

for observations, and serves as the tool with which one can evaluate a CRM’s 

performance (M17). To facilitate better understanding of how POLARRIS functions, Fig. 

2.3 shows a visual schematic of the POLARRIS framework. 

2.5.1! POLARRIS-f 

POLARRIS-f runs through the same process indicated for the theoretical 

calculation of polarimetric radar variables in section 2.3. The forward component has its 

roots in the Goddard Satellite Data Simulator Unit (G-SDSU) that has an “end-to-end 

multi-instrument satellite simulator” specially made for CRMs (M17). POLARRIS-f runs 

through the T-Matrix and Mueller-Matrix processes to produce polarimetric radar 

variables (as well as Doppler and radial velocity), where the single-scattering properties 
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are guided by the PSDs, density, and phases of BMSs and SBMs found in CRMs 

(M17). 

One of the inputs to the T-Matrix includes the “effective” dielectric constant (εff 

which is dependent upon the particle density and water content) (R11). POLARRIS-f 

allows a choice between three different dielectric constants (M17): Maxwell-Garnett 

(Maxwell Garnett 1904), effective medium (Bruggeman 1935) and Debye (Debye 1929). 

In the end, the Maxwell-Garnett function, which assumes ice inclusion within an air 

matrix, was input as the dielectric constant for all simulations herein. The other 

constants were explored, and while they modified results slightly, the largest differences 

still seemed more dependent on the axis ratio and canting angle assumptions. Once εff 

is calculated, it can then be mixed with water so that mixed-phase hydrometeors can be 

derived (e.g. aggregates or graupel; M17).  

In T-Matrix, as was mentioned previously, the assumption of an arbitrary non-

spherical, dielectric body is used to calculate the T-Matrix. POLARRIS-f allows the user 

to define a specific axis ratio that applies to all simulated diameters in T-matrix (M17). 

This ability is utilized extensively in this work to try and pull out the most optimal value 

for axis ratio (though, this proves to be not straight forward). The canting angle 

distribution can be simplified to a one-dimensional distribution, which is often a 

Gaussian distribution (M17). For this kind of distribution, the main factors to take into 

consideration are θ and σ (see Sec. 2.3; M17). The ability to change these variables is 

also available, although their effect (to an extent) had much less impact on the 

simulated polarimetric radar variables than that of axis ratio. Finally, the equi-volume 

spherical diameters, temperatures, and particle bulk density are supplied by the model 

output, while the radar wavelength is the other input to T-Matrix specified by the user 

(M17). 
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2.5.2! The Look-up Table (LUT) 

 One part of POLARRIS that is particularly remarkable is the use of a look-up 

table (LUT) to significantly cut down the computer time to run POLARRIS-f. Running 

several hours of standard WRF output explicitly through the T-Matrix and Mueller Matrix 

modules as they are requires a few hours with 1600 cores utilizing parallel processing 

(M17). To reduce computational time, a LUT was created. Given a user-specified axis 

ratio (or axis ratio distribution), canting angle assumptions, and given the type of 

microphysics employed (the single-particle SBM approach, or the use of size-integrated 

BMS), the 2x2 forward-scattering amplitude matrix from T-Matrix and the 4x4 Mueller 

scattering matrix are computed (M17). This is done for the ranges of size bins, 

temperatures, and radar elevation angles given in section 3.6 for SBM (where the mass 

bins are related to the size of the particle) and BMSs.  

Since BMSs are assigned a pre-determined, semi-empirical PSD, this process 

need only be done once assuming a unit mixing ratio, for the range of effective radii 

given in Sec. 3.6. In the case of SBM, however, as has been described previously, the 

PSD is allowed to develop naturally. HUCM SBM has 43 doubling mass bins in which 

the particular mass is allowed to evolve organically (accounting as well for the effects of 

particle riming in the process). For a given mass bin and unit mixing ratio, the scattering 

matrices are calculated. Note that no integration is performed over the mass bins in the 

SBM LUT, whereas the 4ICE LUT includes integration over sizes. This results in a 

longer LUT generation time for size-integrated bulk microphysics processes than for 

SBM processes (M17).  

 M17 states that each radar frequency and microphysics scheme has its own 

generated LUT. Once these are generated, multiple tests at each radar frequency and 

microphysics scheme in POLARRIS-f and iPOLARRIS can be performed without having 

to re-generate the LUT each time. Capitalizing on this fact, these processes can be 

parallelized, resulting in LUT generation times of a quarter of an hour for BMSs and just 
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a few minutes for SBM. After the generation of the LUT, as was described in Sec. 2.3, 

4ICE radar observables are scaled by the output model mixing ratio and then the size-

integrated Mueller Matrix is integrated over all species to produce radar observables at 

each grid point. In SBM, the species still need to first be integrated over the mass bins 

based on how the model evolved the PSD. These resultant radar observables are then 

scaled by the output model mixing ratio. After this, as was done in 4ICE, the integrated 

Mueller Matrices for SBM radar observables are then integrated over all species (M17). 

2.5.3! iPOLARRIS 

 The iPOLARRIS framework was created to help bridge the gap between the way 

model output is presented as compared to observations and retrievals from 

observations, since on their own the parameters are not directly comparable. 

iPOLARRIS is composed of retrieval algorithms utilized in observations, allowing the 

model output to be visualized in the same method as is done with observations. This 

allows a direct comparison between the synthetic radar variables produced with 

POLARRIS-f output and observations (M17). Hence, one can use the iPOLARRIS 

framework to evaluate the model microphysics/dynamics, while also validating the 

retrieval algorithms themselves.  

 With iPOLARRIS, several different methods can be used to compare model 

output (run through the POLARRIS-f framework) and observations. For example, the 

same HID algorithm described in section 2.4 for the CSU HID can be applied to 

simulation polarimetric radar variables from POLARRIS-f. This could be analyzed for 

different microphysics schemes, and then a comparison of whether bulk vs. bin 

microphysics performs more in accordance with observed polarimetric radar variables 

can be conducted via stacked frequency by altitude (SFAD) HID plots. This can also be 

broken down into convective vs. stratiform components of rainfall and how HID 

compares from the model to observations in these specific precipitation types. HID 
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classifications of observations can also be compared to mixing ratio quantities of 

hydrometeors from the model. Also, the polarimetric radar variables (simulated and 

observed) themselves can be compared. That is, after using mixing ratios from the 

model to limit hydrometeors to one of choice, a joint probability distribution function 

(PDF), Z-Zdr plot from model results can be compared to a Z-Zdr plot from observations 

(where a retrieval of these variables for a certain hydrometeor was made with the CSU 

HID). These plots are also referred to as 2D co-variance of radar variable plots. 

Comparisons can even be made between polarimetric rainfall retrievals or vertical 

velocity retrievals from the model and from observations. The utility of iPOLARRIS is 

quite great, as it allows for an evaluation/validation of model microphysics, kinematics, 

and dynamics, as well as validating the use of the retrieval algorithms that have been 

applied widely to observations.  

2.6.!MC3E 
 

One of two datasets used in this work is from the Midlatitude Continental 

Convective Clouds Experiment (MC3E). The United State Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and 

Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission led 

the project. MC3E ran from April 22nd to June 6th of 2011, centered in the DOE ARM 

Southern Great Plains (SGP) site in north-central Oklahoma (Jensen et al. 2016).  

As is shown in Fig. 2.4, a wide variety of instruments were employed, including a 

pentagon-shaped sounding network, a disdrometer network, the array of atmospheric 

state measurements at the ARM SGP facility, and several ground-based radars, as well 

as a few different aircraft (though not picture in Fig. 2.4, data was also taken with the 

highly instrumented UND Citation II aircraft). Of interest to this work were some of the 

scanning radars: ARM’s scanning precipitation radars (C-SAPR and X-SAPR), and 

NASA’s S-Band dual-polarization Doppler radar (N-POL), as well as data from the 
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Citation II aircraft. The C-SAPR radar scanned with six-minute volumes of 360° plan 

position indicator (PPI) scans, with 17 elevation angles for better vertical resolution 

(ranging from 0.5° to 42°; Collis et al. 2012). Additionally, range height indicator (RHI) 

scans were performed in conjunction with aircraft overflies as they occurred. NPOL 

performed a variety of pre-determined scans based on scientific objectives. Data from 

NPOL became available very late on May 23rd, since the radar was down before that 

time, and thus this work’s concentration is on CSAPR data taken on the 23rd May 

(additionally, comparisons from the POLARRIS framework are made with CPOL from 

TWP-ICE, thus using another C-Band radar to compare against was ideal). 

MC3E provided a rich dataset of several different modes of convection in the 

southern Great Plains. For this thesis, the supercell event (May 23rd, for the integrated 

22 Z hour) was chosen as the case of interest. Largely this had to do with the fact that 

this particular case was reasonably represented in the Nu-WRF simulations. 

Additionally, the location of the supercell was favorable with respect to CSAPR and the 

X-Band XSAPR radars. This event began with a strong southwest to northeast oriented 

dryline (Fig. 2.5) whose advancement was the genesis of the day’s intense convection. 

This dryline triggered eastward travelling convection that reached the MC3E domain by 

22 Z (hence, the use of the 22 Z hour for analysis). The core of the convection, which 

reached up to 15 km in depth, showed high reflectivities (reaching into the low 60 dBZs) 

that contained a large amount of hail (Fig. 2.6 shows example of convection at 2229 Z). 

Melting hail and big rain drops reached the surface as indicated by the HID (see Fig. 

11b in Jensen et al. 2016). Updrafts exceeded 25 m s-1, with upward air motion out 

ahead of the supercell as well (Jensen et al. 2016). Citation II flew in areas of both 

rainfall and ice crystal/dry snow areas (see Fig 2.7). The HVPS probe, which flew on the 

UND Citation II, data sampled in the latter of the two areas was used to create an axis 

ratio – size dependent relationship to be used for snow aggregates.  
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2.7.!TWP – ICE 
 

The second of the two datasets used in this work comes from the Tropical Warm 

Pool International Cloud Experiment (TWP-ICE) campaign that took place in Darwin, 

Australia in January and February of 2006. The setup for instrumentation employed in 

TWP-ICE is shown in Fig. 2.8. TWP-ICE had a rich ground network of observations, as 

well as some aircraft observations. The ground network included the Bureau of 

Meteorology (BoM) instrumentation, the DOE ARM Program Atmospheric Cloud and 

Radiation Facility, a radiosonde network, surface energy flux systems, radar wind/cloud 

profilers, microwave instrumentation, Atmospheric Emitted Radiance Interferometers, 

ocean observations, and a lightning detection network. Of interest to this work is the 

BoM’s Doppler C-Band (non-polarimetric) radar, Berrima, and the BoM’s C-Band, dual-

polarization, Doppler radar (CPOL). Dual-Doppler analysis was performed on these two 

radars and microphysical studies were perform with polarimetric radar data form CPOL 

(which contributes to analysis shown later).  

The TWP-ICE campaign collected a great observational dataset, including two 

distinct convective regimes. There were several days of active “monsoon” conditions. 

Flow in this setup comes from over the Indian Ocean, bringing with it plenty of moisture. 

During these periods, mesoscale convective system (MCS)-like storms passed through 

the area, with leading convection propagating through first, followed by large swaths of 

stratiform precipitation (May et al. 2008). Following these active monsoon conditions are 

break convection periods, where easterly low-level flows are observed. With this setup, 

less moisture is available and CAPE values are higher than during monsoon periods, 

owing to reduced cloudiness and increased surface heating. More intense, discrete 

continental convection develops during these periods (May et al. 2008). The same 

methodology to determine monsoonal vs. break convection as was employed in Dolan 

et al. (2013) is used here: when the sustained mean zonal wind at 850-hPa is greater 

than 2 m s-1 (for at least 24 hours) the regime is determined to be monsoonal, whereas 
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if the sustained mean zonal wind at 850-hPa were less than -2 m s-1, this would result in 

a break convection classification. This mean zonal wind flow at 850-hPa was calculated 

from Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

reanalysis data that was centered on C-POL’s location (Dolan et al. 2013). 

Chosen from this was the integrated 18Z hour of the 23 January 2006 monsoon 

case. This was an interesting case, as while winds at the 700 mb level were indicated 

as westerly, convection observed is still travelling westward. Although this was the case, 

the convection itself was monsoon-like in nature: initially intense pockets of convection 

moved through the area (with reflectivities reaching up to the mid 60 dBZs), which 

conglomerated into one larger area of intense convection, followed by large areas of 

stratiform precipitation (characterized by lower-intensity, large raining areas; see Fig. 

2.9). These MCS-like events are marked by large rain accumulation from the swaths of 

stratiform rain associated with MCSs, compared to the intense, but quickly passing 

break convection (Keenan and Carbone 1992; Rutledge et al. 1992; May and Ballinger 

2007).
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Table 2.1: WRF model simulation configurations for the 23 January 2006 TWP-ICE and the 23 May 2011 
MC3E cases 

 
TWP$ICE MC3E

Grid%scale+cloud+microphysics:+Goddard+Cumulus+Ensemble+(GCE)+ Grid%scale+cloud+microphysics:+Goddard+Cumulus+Ensemble+(GCE)+

single%moment+4ice+bulk+microphysics+(Tao+et+al.+2014) single%moment+4ice+bulk+microphysics+(Tao+et+al.+2014)

Sub%grid+cumulus:+Grell+Freitas+ensemble+cumulus+parameterization Sub%grid+cumulus:+Grell+Freitas+ensemble+cumulus+parameterization

(Grell+and+Freitas+2014;+only+for+9%km+grid+intervals) (Grell+and+Freitas+2014;+only+for+9%km+grid+intervals)

Goddard+shortwave+and+longwave+radiation+schemes+(2014+version) Goddard+shortwave+and+longwave+radiation+schemes+(2014+version)

(Chou+and+Suarez+1999+&+2001) (Chou+and+Suarez+1999+&+2001)

Planetary1Boundary1Layer1and

Sub$grid1Scale1Turbulence

Land1Surface1Processes/

Surface1Heat1Flux

Calculated+from+interim+reanalysis+data+from+European+Centre+for+ National+Centers+for+Environmental+Prediction+(NCEP)+final+(FNL)+operational

Initial1Meteorological1Conditions Medium%Range+Weather+Forecasts+(ECMWF)+model+(Dee+et+al.+2011) global+analysis+data+(NCEP/NWS/NOAA/U.S.+Dept.+of+Commerce,+2000),

(all1domains),1Lateral1Boundary (spectral+T255+horizontal+resolution) with+grid+spacing+of+1°+(latitude+and+longitude)

Condition1(91km1domain) *WRF+coupled+with+spectral+bin+microphysics+(WRF%SBM;+Iguchi+et+al.+2014)+ *WRF+coupled+with+spectral+bin+microphysics+(WRF%SBM;+Iguchi+et+al.+2014)+

simulated+innermost+domain+(1+km)+on+only+23+January+2006 simulated+innermost+domain+(1+km)+for+all+times

Parameterizations

Atmospheric1Radiation

Vertical1Domain

Horizontal1Domain

Simulation1Length/Time1Frame 120+hours+run+from+00+UTC+21+%+00+UTC+26+January+2006

9+km+:+300x300,+3+km:+286x286,+1+km:+334x334

20+km+height,+with+60+layers+(intervals+increasing+with+altitude)

24+hours+run+from+12+UTC+23+%+12+UTC+24+May+2011

9+km+:+513x389,+3+km:+496x424,+1+km:+673x595

20+km+height,+with+60+layers+(intervals+increasing+with+altitude)

Level+2.5+Mellor%Yamada+Janjic+turbulence+closure+scheme+(Janjic+1990)

Unified+community+Noah+land+surface+model+(Tewari+et+al.+2004)

Level+2.5+Mellor%Yamada+Janjic+turbulence+closure+scheme+(Janjic+1990)

Unified+community+Noah+land+surface+model+(Tewari+et+al.+2004)
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Figure 2.1: Average Zdr values seen for rain (and hail), as a function of the size. This demonstrates the 
increase in Zdr as rain becomes increasingly oblate due to the need to balance gravitational and surface 

tension forces (Bringi and Chandrasekar, 2001). 
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Figure 2.2: Example of summer-time reflectivity MBFs from Liu and Chandrasekar (2000). CSU 
HID MBFs have a similar shape, and thus this serves as a good example. 
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Figure 2.3: POLARRIS flow chart, showing the separate POLARRIS-f and iPOLARRIS components, 
which in the end yield retrieved parameters and polarimetric parameters. 
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Figure 2.4: MC3E field campaign design. This shows how the sounding network 
encompasses the central radar array (N-Pol, C-SAPR, triangular array of X-band radars in 

yellow, and 915-MHz profilers in green triangles) and SGP CF (Jensen et al. 2016). 
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Figure 2.5: 1200 UTC 23 May 2011 surface meteorological analysis based on NARR output showing the surface 
pressure (hPa; contours) and surface temperature (colors). The MC3E sounding array hexagon is indicated by the 

dashed lines (Jensen et al. 2016). 
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Figure 2.6: C-SAPR RHI of reflectivity along a 189° azimuth at 222938 UTC. Vectors are storm-
relative winds resulting from a multiple-Doppler synthesis from C-SAPR, two X-SAPRs, and KVNX at 

2223 UTC (Jensen et al. 2016). 
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Figure 2.7: CSAPR (a) Reflectivity CAPPI, (b) HID CAPPI, (c) Reflectivity RHI, and (d) HID RHI for the 23 May 2011 
MC3E case at 21:34 UTC. The black/white lines show the path of the UND Citation II aircraft. 
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Figure 2.8: The TWP-ICE domain setup. The large blue circle indicates a 150-km radius centered on the C-
Pol radar. The two interlocking circles near the center of the domain indicate the dual-Doppler lobes 

associated with the C-Pol and Berrima radars (May et al. 2008). 
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Figure 2.9: C-POL TWP-ICE PPI of convection at 2 km in height at 1830 UTC, 23 January 2006. 
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CHAPTER 3: METHODOLOGY 
 
 

In this chapter, the specific methodology for implementing radar data quality 

control, dealiasing, and dual-Doppler framework are discussed. Additionally, the data 

analysis between the POLARRIS framework output and observations methodology is 

presented. 

3.1! QUALITY CONTROL 
 

Different methods were utilized in order to correct data from C-SPAR (MC3E) 

and C-POL and Berrima (TWP-ICE), as the data was provided in differing states. First, 

the quality control (QC) performed on C-POL and Berrima in TWP-ICE will be 

discussed, followed by the methods used to QC C-SAPR in MC3E. 

For the C-POL radar used in TWP-ICE, the reflectivity and differential reflectivity 

biases were already accounted for, as well as attenuation and differential attenuation, 

and Kdp had already been calculated (see Dolan et al. 2013 for a review of how these 

processes were completed). Therefore, what remained was to clear up general noise in 

the data, as well as to remove second-trip echoes, and to attempt to unfold aliased 

velocity data with automatic algorithms. In order to remove second-trip echoes, a 

threshold was placed on the reflectivity data based on bad/noisy velocity. Remaining 

noise in the data was handled by employing the despeckle function from the CSU Radar 

Tools python package (https://github.com/CSU-Radarmet/CSU_RadarTools; 

https://doi.org/10.5281/zenodo.1035908). This array was then run through the 

despeckle function, where it checked along each ray (for each azimuth and elevation 

angle) for bad values. For this data, if eight contiguous gates were identified with good 

data (i.e. data with no values identified as bad), then no masking of the data occurred. 

Otherwise, the data was flagged as bad. For Berrima, only its radial velocity was used in 

this analysis, with the only necessary correction being unfolding. Dealiasing velocity on 
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both radars took a significant amount of time and effort, the process for which is 

described in section 3.2.   

Previously gridded, velocity-corrected C-SAPR data for the MC3E case (23 May 

2011) with all QC performed was available for this study (Matthews 2014). However, 

radar data for 24 May 2011 had had none of these processes performed. Since 24 May 

2011 was initially also under consideration, and due to the fact that other users were 

interested in using this radar data in POLARRIS, it had to be run through the same 

processes applied to the 23 May 2011 case. The Dual-Polarization Radar Operational 

Processing System (DROPS) was used to bias correct reflectivity and differential 

reflectivity, as well as calculate Kdp (based on methods described in Wang and 

Chandrasekar, 2009) and a flag field for bad and good values based on thresholds of 

ρhv and standard deviation of the differential phase. Despeckling to remove noise, 

second trip echo removal, and automatically unfolding velocities was performed with the 

same framework as was done with TWP-ICE. 

3.2! RADIAL VELOCITY CORRECTIONS 
 

In order to be able to perform dual-Doppler wind synthesis, at times pretty 

significant treatment of aliased velocities had to be undertaken. Velocity aliasing, 

otherwise known as velocity folding, occurs when the the range of unambiguous 

velocities is smaller than the range of actual velocities observed in nature (American 

Meteorological Society 2017). The range of unambiguous velocities is determined 

based on the Nyquist velocity, which is given by 

        V"#$ =&
±()*+,

-
                                               (11) 

where fmax is given by 

."#$ =&
/01

-
                                                    (12) 
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and the PRF is the radar’s pulse repetition frequency (Rinehart 2010). Subbing Eqn. 12 

into 11, we get 

V"#$ =&
±/01,

2
                                                (13) 

 

from which we see that that the value of the Nyquist velocity is largely dependent on the  

chosen PRF and radar wavelength (Rinehart 2010). Velocities in the Nyquist velocity 

range create a +- π radians phase shift (Rinehart 2010). Velocity aliasing occurs when 

there is a phase shift greater than +/- 180° of the transmitted phase (Rinehart 2010). On 

a radar, this appears as regions of velocity where there are both the maximum-possible 

velocities towards, and away, from the radar directly next to each other (Rinehart 2010).  

In order to correct aliased (or folded) velocities, several steps were taken. First, 

aliased velocities were unfolded via two different automatic unfolding python programs 

available in PyART (Heistermann et al. 2014): a region-based method, and a scheme 

using the four-dimensionality (time, the vertical axis and the horizontal axes) of Doppler 

radar. In the region-based method (Helmus et al. 2015; Helmus and Collis, 2016), the 

velocity unfolding is similar to what occurs with hand unfolding of velocities. Velocity 

differences in a region are minimized between bordering edges for regions of similar 

velocities. The algorithm starts with the largest area of similar velocities, and works from 

there. The other scheme (4DD) was created to deal with the often complex nature of 

aliasing, and in initial studies found that it performed well even in complex aliased 

situations and low Nyquist velocities. This method dealiases for each radar tilt based on 

either a previously unfolded radar volume, or a background sounding wind field. The 

method attempts to make minimize differences between nearest gates, and even 

reverts to velocity azimuth display (VAD) if previous methods to correct velocities fail 

(James and Houze Jr. 2001). 
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For C-POL, the 4DD method seemed to work the best for initial unfolding of 

aliased velocities, while for C-SAPR and Berrima the region-based method performed 

significantly better. Despite these initial corrections, however, hand-unfolding of 

velocities was still required. These user-driven corrections of velocities were performed 

with the ARM Radar Toolkit Viewer (ARTview, https://doi.org/0.5281/zenodo.594051) 

that is built on Py-ART (Helmus and Collis, 2016). Although automatic unfolding helped 

cut down time spent on hand unfolding, significant unfolding was required for Berrima. 

C-POL required far less and unfolding done in this master’s work on C-SAPR did not 

require any additional hand unfolding. 

3.3! GRIDDING RADAR DATA 
 

C-SAPR data was gridded to a Cartesian grid, centered at the location of the 

Central Facility (CF) of the SGP Atmospheric Radiation Measurement (ARM) site in 

Lamont, OK via the Radx2Grid function in the Radx package 

(https://ral.ucar.edu/projects/titan/docs/radial_formats/radx.html). The horizontal and 

vertical resolution were set to 1 km. The vertical part of the domain ranges from 1 km to 

18 km in altitude, and the domain ranges 100 km from the center of the grid (thus, 200 

km by 200 km in the x- and y-direction). C-POL and Berrima follow the same gridding 

process, where the grid was centered on C-POL, and possess the same horizontal 

resolution and domain size in the horizontal, however, the vertical resolution was set to 

be 0.5 km, and ranged from 0.5 to 20 km. 

3.4! DUAL-DOPPLER AND MULTI-DOPPLER ANALYSIS 
 

Once data was gridded, the data was run through the NCAR CEDRIC package 

(Mohr and Miller 1983). This package was designed to calculate three-dimensional air 

motions based on information from two or more Doppler radars (i.e. dual- or multiple-

Doppler analysis). The 700 mb level of the most closely matching times to C-

POL/Berrima radar volumes from soundings taken in Darwin, Australia (DWN) were 
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used as input to advect these radar volumes to a common time. This advection 

correction was required based on the fact that both Berrima and C-POL scan complete 

six-minute PPI volumes followed by RHI scan and vertically-pointing scans. These add 

up to be 10-minute long scan periods. Since convection tends to evolve fairly quickly, 

this 10-minute period does not adequately sample the storm’s actual advection. In that 

10-minute period, the storm evolved and, potentially, was located in a different location 

at the end of that period. Hence, an advection correction is applied to account for this 

shortcoming. This resulted in 10 minute intervals of output dual-Doppler files from the 

NCAR CEDRIC package.  

Fall speeds from particles were removed from the radial velocity components via 

fall speed – reflectivity (Vt – Zh) relationships based different hydrometeor types 

(Giangrande et al. 2013). The radar data is first run through an HID (for this work, the 

CSU HID) to determine bulk hydrometeor types. Areas where there are liquid particles 

(drizzle, rain, and big drops), where there are graupel/hail particles (low-density graupel, 

high-density graupel, and hail), areas where there are snow particles (ice crystals, snow 

aggregates, and vertical ice crystals), and areas where wet snow are identified. The 

corresponding Vt – Zh relationships were then applied to each respective hydrometeor 

type (save for areas of wet snow), with the following equations (where Zh is expressed 

as dBZ), 

V3,5#67 = 3.15 ∗ 10
>?,@ABC

DE

E.EFG

                                      (14) 

     V3,H5#IJKL/N#6L = 2.2 +& 10

QR,ST*UV/R*WXYZZ
DE

                               

(15) 

   V3,[5\&]7^_ = 1.0.                                                   (16) 
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The fall speed, calculated at each radar point from the above equations for 

CPOL, was then utilized to remove a particle’s fall velocity from the radial velocity field. 

After this, the three-dimensional velocities were calculated in CEDRIC via the MASS2 

command. MASS2 integrates the mass continuity equation for 2-radar synthesis as 

according to the CEDRIC manual (Mohr and Miller 1983). Vertical velocities are then 

calculated using INTEGRATE from the convergence of u and v winds calculated in 

MASS2, using a variational integration (Wvar) approach (Mohr and Miller 1983).  In the 

calculation of Wvar, vertical velocities at the surface are forced to be equal to 0 m s-1 

after downward integration of the continuity equation is performed, and any remaining 

vertical velocities at the surface are redistributed through a column of a specified height 

to keep the surface boundary condition satisfied (O’Brien 1970; Dolan and Rutledge 

2010).  

3.5! SENSITIVITY TESTS WITH ORIGINAL T-MATRIX, MUELLER MATRIX 
FRAMEWORK 
 

Before modifying and testing anything in the POLARRIS framework, one goal 

was to determine the extent to which polarimetric radar data is affected by either 

changes in axis ratio, or changes in canting angle assumptions. To investigate these 

sensitivities, experiments were designed for aggregates, high-density graupel, and low-

density graupel in the “original” T-Matrix and Mueller Matrix framework (i.e. tests were 

run for the setup described in section 2.3 not using the LUT framework described in 

section 2.5.2). The reasoning behind the choices of aggregates and the two types of 

graupel was because of the desire to incorporate in these sensitivity tests results from 

in-situ data of these hydrometeors reported in Garrett et al. (2015). In that study (from 

hereon, termed GE15), almost 73,000 photos were taken with a Multi-Angle Snowflake 

Camera (MASC) of snow, rimed particles, and graupel. In the analysis of these pictures, 

GE15 found that there is a larger range of orientation angles than what has been shown 

in previous studies. Not only are there larger ranges of orientation angles at which 



 44 

particles flutter, but the mean canting angle at which ice hydrometeors tend to fall can 

be much greater than what is usually assumed (normally, 0°). 

Assumptions from both DR09 and GE15 were input to the T-Matrix, Mueller 

Matrix framework to see which assumptions in the end had a larger impact on the 

resulting polarimetric radar data, or if both axis ratio and canting angle assumptions 

mattered equally. To ensure that differences seen were largely attributable to either axis 

ratio or canting angle, several other parameters were set, based on DR09. These are 

described in Table 3.1. Results from these tests are found in section 4.1. 

3.6! SENSITIVITY TESTS IN LUT OF POLARIMETRIC RADAR VARIABLES TO 
MICROPHYSICAL ASSUMPTIONS 
 

The 1M 4ICE BMS is simulated for six species – cloud droplets, rain, cloud ice, 

snow, graupel, and hail/frozen drops (though the ones of importance herein are rain, 

snow, graupel, and ice crystals). The scheme includes temperature range for ice 

hydrometeor temperatures ranging from 180 K to 280 K and was comprised of 12 

values. Scaling of these temperature ranges are different for liquid versus ice 

hydrometeors. Sizes are referenced in terms of “effective radius” (related to the slope of 

the particle size distribution, PSD).  There are 70 discrete effective radii sizes ranging 

from 10-3 to 102 µm for cloud ice and 10-1 to 104 µm (10 mm) for other ice hydrometeors. 

Simulated elevation angles go from 0° to 90° (in increments of 1°).  

In SBM, temperatures associated with specific hydrometeor types vary as they 

do in the BMS, and the radar elevation angles are also the same. Homogeneous and 

heterogeneous nucleation (deposition, condensation-freezing, and immersion-freezing) 

of ice particles is simulated, as well as ice multiplication (Iguchi et al. 2012a). There are 

43 doubling mass bins in which allow the particle at that mass/size is allowed to evolve 

organically in a model simulation. Riming is taken into account as well in these mass 

bins. These mass bins range from 3.35 x 10-11 g to 1.47 x 102 g, which corresponds to 
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sizes of 2 µm to 32.8 mm (Iguchi et al. 2012a). SBM is simulated for one liquid 

hydrometeor species (ranging in size from cloud droplets to large raindrops), and six ice 

hydrometeor species (ice crystals: plates, columns, and dendrites; snow aggregates; 

graupel; and hail). Additionally, aerosols are included but not considered here. 

 Once the LUT in POLARRIS was operational, tests were performed to do an 

overall check on whether or not the LUT output reasonable polarimetric radar variable 

values, as well as, again, to examine how various input affected the polarimetric radar 

data output, and also to help guide which values would be input into POLARRIS later 

on. Different axis ratio and canting angle assumptions were used, including values from 

DR09, GE15, Straka et al. (2000) (hereafter S00), R11 and the “control” assumptions, 

or M17 (See Table 3.2). Note in the case of differing ice crystal habits, the assumed 

axis ratio and set of canting angle assumptions was the same. That is, all ice crystal 

habits had the same assumptions for both of these variables. Additionally, for all runs 

where a singular axis ratio assumption was used, that axis ratio was the same across all 

input sizes of that particular hydrometeor. Tests were also performed where the 

dielectric constant was modified however not much difference was seen when using 

varying values, so this was set to be the default function in POLARRIS (Oblique 

Maxwell-Garnett function that assumes ice inclusion within an air matrix, see Sec. 

2.5.1).  

 Recall in Section 2.5.2 the description of the LUT implemented in the POLARRIS 

framework. In this description, we learn that the LUT is produced for a given 

hydrometeor species, for a given elevation angle, for a given temperature, and a given 

effective radii size (where in 4ICE there are 70 discrete effective radii and then in the 

HUCM SBM there are 43 doubling mass bins). These are all produced based on the 

provided input axis ratio and canting angle assumptions. In the case of 4ICE, the 

species is integrated over the size for the assigned PSD, resulting in a set of 

polarimetric radar values for the assumed hydrometeor species, elevation angle, 
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temperature, and input axis ratio and canting angle assumptions. In SBM, however, 

values are not yet integrated over the mass bins for each assumption. Due to this, the 

values shown in the LUT were for single-particle scattering (as opposed to a single 

hydrometeor) polarimetric radar data. Comparisons then with 4ICE LUT simulations did 

not make sense as the results were not comparable, thus SBM LUT visualizations were 

eliminated. Since 4ICE was size-integrated, although not all sizes are always 

reasonable each elevation angle and the chosen temperature (275 K), the entirety of 

the results was plotted. 

The most straight-forward method for visualizing the LUT results is to plot the 

results of LUT output using box and whisker plots (see Fig. 3.1 for an example). A quick 

overview of box and whisker plots is warranted to understand what the results mean. 

The box represents the interquartile range. The lower end of the interquartile range is 

the 1st quartile, the higher end is the 3rd quartile, and the median of the whole dataset is 

the 2nd quartile. Whiskers are then added to these plots, which are calculated on the 

larger end of numbers by taking the last number that is less than the 3rd quartile + 

1.5*IQR, and on the smaller end of numbers, the whisker extends to the first number 

that is greater than the 1st quartile – 1.5*IQR. Anything past these whiskers is 

considered outlier values.  

In this work, these plots were created for various assumptions of axis ratio and 

canting angle for the above-mentioned sources, and results were split up from 0-30° (l), 

30-60° (m), and 60-90° (h) in elevation. This was necessary because to the radar, the 

same hydrometeor can produce different results at different elevation angles in the 

radar. For example, for a hamburger-shaped raindrop the radar will see an increasingly 

larger amount of the apparent diameter of the particle with increasing elevation, which 

results in the radar seeing a larger backscattering cross section. This would result in an 

increase in reflectivity. Differential reflectivity and specific differential reflectivity would 
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decrease, however, with a particle that looks more and more spherical as the radar is 

tilted upward at higher elevation angles.  

With these results, and the spread of values created for polarimetric radar 

variable for each different input assumption could be seen, and the most appropriate 

values (i.e. the assumptions that had the most all-encompassing spread of values) to 

input to POLARRIS-f were then determined. Assumptions that were varied input to the 

LUT for sensitivity tests are detailed in Table 3.2. Note that a temperature of 275 K was 

used for all simulations as it showed values close to 273.1 K (i.e. the freezing 

temperature, or 0° C). 

3.7! POLARRIS EVALUATION  
 

Inputs to POLARRIS were chosen based on results from both the original T-

Matrix Mueller Matrix sensitivity tests, as well as the tests done with the LUT. Output 

LUT files were then run through POLARRIS-f, and through iPOLARRIS (based on the 

methods described in section 2.5). In order to ensure that only type of hydrometeor was 

considered at a time in iPOLARRIS results (when looking at polarimetric radar variable 

data), mixing ratios of other hydrometeors were set to zero in POLARRIS-f simulations. 

For observations, radar variables were input to the CSU HID and then the radar 

variables corresponding to the hydrometeor of interest were considered. This 

methodology of computing radar observables based on hydrometeor type is a bit 

circular. That is, you get back the computed HID based on values that were pre-defined 

by the user and thus, in a certain sense, you get back what you gave. In order to avoid 

this circularity, in situ data from aircraft, drones, etc. are necessary in order to validate 

the HID retrievals. Without much in the way of in situ data for the chosen ice 

hydrometeors to guide the choice in HID parameters, however, this circularity is 

unavoidable. 
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Special attention was given to the type of desired output from POLARRIS in 

regards to comparisons with observations. There was concern that if one considered 

only one polarimetric radar variable at a time between POLARRIS output and 

observations that, for example, even if Kdp followed the same pattern and intensity in 

both frameworks, that other variables, for example, Zdr, would not also vary in the same 

way between the model and observations. To the end of trying to mitigate that issue, co-

variances between two polarimetric radar variables at a time were analyzed (i.e. Z-Zdr, 

Z-Kdp, and Kdp-Zdr plots were created for comparison between POLARRIS output and 

observations). An example of MC3E 4ICE and observations co-variance of radar 

variable plots is shown in Fig. 3.2. This type of comparison guided the decision on 

which axis ratio and orientation angle assumptions “best” compared with results seen in 

observations. Several additional runs through the entire POLARRIS framework (creating 

a LUT, then running that through POLARRIS-f, and finally iPOLARRIS), where axis 

ratios were modified to reach a closer comparison with observations, were required 

before a final decision was reached on the appropriate inputs for each hydrometeor 

(See Tables 4.1 and 4.2). 

In order to achieve the most comparable results with observations, POLARRIS-f 

needed guidance on what inputs were best to use. The findings herein are also 

applicable to polarimetric radar simulators apart from POLARRIS itself, thus revealing 

one of the utilities of this master’s work. When a decision was reached for the “best” 

inputs for each hydrometeor, for each regime (MC3E vs. TWP-ICE), for each 

microphysics assumption (4ICE vs. HUCM SBM), these assumptions, for each of these 

identifiers, were conglomerated together in a “best” run through the POLARRIS 

framework. Note that throughout this process, rain was also carried through and 

compared with observations to ensure that the model was simulating rain as closely as 

possible to observations. This is important since there is an abundance of literature 

studying the various properties of rainfall (e.g. studies of the size distribution of rain, the 
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general shape of falling rain from both wind tunnel studies and in situ data, comparisons 

of situ data and theoretical/empirical relationships), and thus its simulation should be 

fairly comparable with observations (e.g. Pruppacher and Beard 1970; Pruppacher and 

Pitter 1971; Green, 1975; Goddard et al. 1982; Goddard and Cherry 1984; Beard and 

Chuang 1987; Keenan et al. 2001; Brandes et al. 2002). Otherwise, POLARRIS would 

have some fairly concerning problems to attend to apart from trying to simulate ice 

hydrometeors. In this work, cloud droplets and hail in 4ICE were not considered, and in 

HUCM SBM assumptions, ice columns, ice plates, and ice dendrites were all given the 

same axis ratio/orientation angle assumptions to simplify the task at hand. Additionally, 

no melting particles are considered (in the theoretical scattering simulations), and no 

turbulence is applied to particles in the scattering simulations. 

Recall, the goal of POLARRIS is to simulate, as closely as possible, the same 

results found with the observations and the CSU HID. To this end, the combined set of 

“best” values for each hydrometeor was then run through the POLARRIS framework. 

Co-variances between polarimetric radar variables were analyzed for POLARRIS output 

and observations. More importantly, however, the resulting HID from POLARRIS and 

the HID output from observations were compared to see how well the “best” 

assumptions were handled for each microphysical scheme, and each regime, in the 

fuzzy logic framework. Were results more robust than the co-variance plots? Worse? 

Did the comparisons fair better for a certain regime or a certain microphysical scheme? 

These were all questions asked during the analysis of HID output. Again, the 

overarching concept for this work is that not only does comparing observations and 

model results with HID validate the utility of HID for model and observation 

comparisons, but also that the use of HID is a robust way of evaluating model 

microphysics.  

In order to evaluate HID performance in the model in comparison to 

observations, SFADs were compared. Additionally, precipitation in the model and in 
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observations were separated into convective and stratiform components via the 

methods described in Powell et al. (2016). Then, HID SFADs of convective and 

stratiform precipitation (such as those in Fig. 3.3) were compared between the model 

and observations, to see how well these different types of precipitation were captured 

by the model. 

Using the HID SFADs, and the co-variances of polarimetric radar variables, 

results are compared and contrasted between POLARRIS and observations, to 

evaluate the simulations, and understand whether differences are most attributable to a 

differing regime (e.g. MC3E vs. TWP-ICE), microphysics scheme (e.g. 4ICE vs. SBM), 

or fundamental assumptions (e.g. particle size distribution, axis ratio, density, etc.).  

3.8! POLARRIS: SENSITIVITY TO AXIS RATIO AND ORIENTATION ANGLE 
ASSUMPTIONS 
 

One interesting component of the POLARRIS runs was looking at the sensitivity 

of the resulting polarimetric data for different hydrometeors to changes in axis ratio and 

canting angle assumptions. Multiple axis ratios and orientation angles were run in the 

POLARRIS framework in order to ascertain the combination that produced the most 

comparable results to observations (See Tables 4.1 and 4.2). In order to get an idea of 

the sensitivity of the radar observables for each hydrometeor type to changes in the 

input assumptions, for different sets of axis ratio assumptions, plots such as the one 

shown in Fig 3.4 were created. In these plots, we see each of the simulated most-

frequently occurring polarimetric radar variable values, for a certain hydrometer, plotted 

as a function of height. This was done for each time period in the hour (in 10 minute 

intervals). What is plotted, then, is actually the mean for each kilometer in altitude of the 

most-frequently occurring radar observable values as a function of height for each axis 

ratio and canting angle assumption. Red lines denote the assumption that was chosen 

as the “best” assumption for each hydrometeor (with respect to ensuring the joint PDFs 

results were comparable with observations). Blue lines denote simulations using GE15. 
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Dotted lines indicate the larger of the two values for canting angle (i.e. 30° for 

aggregates and ice crystals, and 20° for graupel), while solid lines indicate the smaller 

of the two canting angle assumptions (15° for aggregates and ice crystals, and 10° for 

graupel). In the case of rain, there are no dotted lines, and solid lines simply indicate the 

different rain relation (i.e. axis ratio – size dependent equations) assumptions. By 

utilizing these sensitivity plots for all simulated axis ratio and canting angle assumptions, 

one can better internalize the effect that changing these input variables has on the 

resultant polarimetric radar variable values and HID categorization for each 

hydrometeor type (in this work, limited to ice crystals, aggregates, graupel, and rain). 

3.9! MODIFICATIONS TO MBFS IN CSU HID 
 

 The MBFs used in the CSU HID (and also in POLARRIS’s HID) were determined 

based on literature values for each radar wavelength (DR09; Dolan et al. 2013). The 

goal of this particular study was to test the sensitivity of the HID retrievals to changing 

MBF input. This also helps illustrate the characterization of the uncertainty in the HID 

retrievals (i.e. these studies give an idea of potential ranges of values observed when 

the MBFs themselves are changed).  

The MBFs were modified for C-Band (5 cm) radar values to fit what was seen 

when both CPOL and CSAPR data were run through the CSU HID analysis, and then 

plotted with the MBFs as they are currently defined in the CSU HID. That is, for each 

campaign, radar data was processed with the CSU HID. Then, for each polarimetric 

radar variable, locations of the different types of hydrometeors in the HID were 

identified. Then, a frequency of occurrence plot was created for each of these 

hydrometeors, for each polarimetric radar variable. These frequency plots display how 

often a particular polarimetric radar variable value was identified for a particular 

hydrometeor. These were created by making histograms for each radar volume of each 

polarimetric radar variable, sub sectioned to the regions of each identified hydrometeor, 
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and then summing that histogram at each height in altitude (every kilometer for CSAPR 

and every half kilometer for C-POL). These frequency plots then were plotted with the 

MBF for whichever polarimetric radar variable and hydrometeor were under 

consideration (see example in Fig. 3.5). For MC3E, C-SAPR data was used from four 

campaign days to create the frequency of occurrence plots: 11-13 Z (inclusive) 01 May 

2011, 06-09 Z (inclusive) 20 May 2011, 20-23 Z (inclusive) 23 May 2011, and 00-21 Z 

(inclusive) 24 May 2011. For TWP – ICE, CPOL data from 7 field campaign days was 

used: 00-23 Z (inclusive) for 19-24 January 2006 (monsoon) and 18 February 2006 

(break).  

Looking at these combined frequency plots and MBF plots, we can see how well, 

or not, the MBF fits data. To modify these MBFs, visual comparisons between the MBF 

range and the range of identified values for each polarimetric radar variable, for each 

hydrometeor, displayed in the frequency plots were done. If it was shown that the MBF 

perfectly fit the range for a certain hydrometeor, then it was not modified. If the MBF’s 

range, however, was too large, too small, or even if the tails of the MBF function were 

too steep or gradual, then the values input to the MBF for that hydrometeor, for that 

radar variable, were changed to make the MBF better fit what was identified in CSPAR 

and CPOL. In the end, correlation coefficient was not modified, as results from CSAPR 

and CPOL were fairly noisy, making analysis difficult.  

The CSU HID was then run again with these new, modified MBFs. The same 

types of HID SFADs as in Figs. 3.3 were created again for observations, as well as for 

simulations. In addition to these plots, to give another perspective on how modifying the 

MBFs resulted in changes in HID in model simulations and observations, HID pie chart 

plots were created (see Fig. 3.6). While looking at the overall convective and stratiform 

HID SFADs are helpful and informative in discerning differences between iPOLARRIS 

output for model simulations and observations, a more quantitative approach was 

desired to hone in on the differences between model output and observations for each 
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bulk hydrometeor category under consideration. These bulk hydrometeor categories 

include “rain”, composed of drizzle, rain, and big drops, “crystals”, composed of ice 

crystals and vertical ice, aggregates, which were composed only of dry aggregates and 

no wet snow, and “graupel”, which was composed of both low- and high-density 

graupel. In these plots, HID for each of these bulk hydrometeor categories is queried, 

and then for every kilometer in altitude, these categories are split into convective and 

stratiform components. Then, for every two kilometers in altitude, the number of 

identified points for each hydrometeor, for either convection or stratiform precipitation is 

counted, and then normalized by dividing by the total number of either convective or 

stratiform points identified for these bulk hydrometeor categories over the two 

kilometers of altitude under consideration. The results of this are then plotted in the form 

of a pie chart for convective and stratiform components, every two kilometers, with 

percentage of each bulk hydrometeor category identified after normalization displayed.  

These results were used to investigate the effect of modifying the MBFs on both 

simulated and observed data. Additionally, these studies helped identify sensitivities in 

the HID retrievals to changing MBF input. These sensitivities helped then characterize 

the uncertainty associated with the HID retrievals themselves. The uncertainty is related 

to the types of microphysical scheme used, the various properties associated with the 

simulated hydrometeors (e.g. the assumed bulk density, the size distribution type, the 

input axis ratio and canting angle assumptions), as well as the values used for the 

MBFs.  
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Table 3.1: Inputs to the sensitivity tests with the original T-Matrix, Mueller Matrix framework for aggregates, low-density 
graupel, and high-density graupel. Inputs include the temperature, radar wavelength, bulk density, diameter and its 

interval, rain rates, canting angle distributions, mean canting angle (θ), and standard deviation of canting angle (σ). 
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Axis%Ratio !%[°] "%[°]

DR09:%0.2,0.9 DR09:%0 DR09:%15,30

S00:%0.2,%0.6,%1.0 S00:%0 S00:%15,30

R11:%0.8 R11:%0 R11:%40

M17:%max(0.2,%1?0.05*D) M17:%0 M17:%10

GE15:%0.65 GE15:14 GE15:%13

DR09:%0.125,%0.35 DR09:%0 DR09:%15,30

S00:%0.5,%1.0,%1.3 S00:%0 S00:%15,30

R11:%2.0 R11:%0 R11:%random

M17:%2.0 M17:%0 M17:%random

DR09:%0.5,%0.9,%1.25 DR09:%0 DR09:%10,%20

S00:%0.5,%0.75,%1.0,%1.2 S00:%0 S00:%10,%20

R11:%max(0.8,%1?D*0.02) R11:%0 R11:%40

M17:%max(0.8,%1?0.02*D) M17:%0 M17:%10

GE15:%0.75 GE15:14 GE15:%16

Aggregates

High?Density%Graupel

Ice%Crystals

Table 3.2: Inputs to the LUT sensitivity tests for aggregates (snow), ice crystals, and high-density graupel. Varied 

inputs include axis ratio, θ and σ. 
  



 
5
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Figure 3.1: An example of the box and whisker plots for TWP-ICE, 4ICE aggregate reflectivity values. Red colors denote assumptions from DR09, blue from 
S00, green from R11, purple from M17, and yellow from GE15. Results for each input assumptions were stratified by “low”, “medium”, and “high” elevation 

angles, as is described in the text. 
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Figure 3.2: Comparison between iPOLARRIS output for model simulations and observations for Z-Zdr 
co-variances. Left is iPOLARRIS output for 4ICE, MC3E, Aggregates, where input was an axis ratio-
size dependent relationship derived from Citation II in situ data collected during the MC3E campaign. 

Right is iPOLARRIS output for MC3E observation aggregates from the CSU HID. 
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Figure 3.3: Example of HID SFAD from TWP-ICE observations. Precipitation identified as 
convective was input to the SFAD on the left, and stratiform-identified precipitation was input to 

the SFAD on the right. 
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Figure 3.4: Example of a plot of the mean of the most frequently identified polarimetric radar value with respect to 
height for various axis ratio and canting angle assumptions for TWP-ICE, 4ICE aggregates. The Citation II data 

input line is red and bolded, as that was considered the “best” input when co-variance plots between iPOLARRIS 
output for the model and observations were compared. GE15 values are highlighted in blue. Other values are 

colored in grey, where dashed lines indicate the larger of the two σ assumptions 
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Figure 3.5: Plots of the CSU HID MBFs overlaid on top of frequency of occurrence data of, 
in this case, C-Band aggregates for differential reflectivity. The plot with the original CSU 

HID MBFs is shown to the left, and that of the modified CSU HID MBFs is shown to the right 
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Figure 3.6: Example of an HID pie chart plot. Shown for 4ICE MC3E simulations. 



 62 

CHAPTER 4: RESULTS 
 
 

In this chapter, results of the various experiments outlined in the methodology will 

be discussed. These will include looking first at the original T-Matrix, then the Mueller 

Matrix framework sensitivity tests, then the LUT sensitivity test results. This will be 

followed by case analyses for MC3E (23 May 2011), and TWP-ICE (23 January 2006), 

sensitivity tests of polarimetric observables to changing input axis ratio and canting 

angle assumptions, followed by a discussion of what is seen with modification of the 

CSU HID MBFs, also applied to the POLARRIS HID MBFs. 

! ORIGINAL T-MATRIX, MUELLER MATRIX FRAMEWORK SENSITIVITY TEST 
RESULTS 
 

In order to ascertain the relative impacts on resultant simulated polarimetric radar 

data of changes in axis ratio and canting angle, the setup described in section 3.5 was 

employed. Values based on those used in DR09 for aggregates, high-density graupel, 

and low-density graupel were input to the T-Matrix, Mueller Matrix framework (See 

Table 3.1). These particular variables were chosen because a direct comparison of 

results from DR09 values could be compared with values reported in GE15. This was 

ideal since GE15 made direct in-situ measurements of the observed axis ratios and 

canting angles of falling ice hydrometeors. This was rather difficult to find in literature 

due to the lack of experiments performed wherein in-situ data was taken of various 

frozen hydrometeors. Tests in this framework were done for both C- and S-Band, 

though only the former is discussed herein, as it relates directly to the radar 

wavelengths utilized in other parts of the results section (C-SAPR and C-POL). 

Fig. 4.1 shows the results of the tests, with inputs as described for aggregates in 

Table 3.1. Red lines denote canting angle assumptions (which includes both θ and σ) 

reported in GE15, and black lines denote those from DR09. Solid lines denote an axis 
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ratio of 0.2, while dotted lines represent an axis ratio of 0.9. Hence, we compare nearly 

spherical particles (axis ratio of 0.9) to very oblate particles (axis ratio of 0.2).  

The first, and most important remark to be made of these results is the stark 

contrast in values seen for each polarimetric radar variable when the axis ratio is 

modified (change from solid to dotted lines), as opposed to the comparatively small 

changes that occur when canting angle assumptions are varied. Notice that in Fig. 4.1 a 

and d, the differences for different canting angle assumptions, implemented for an axis 

ratio of 0.9, are so small for the simulated radar observables that the dashed lines are 

indiscernible. Indeed, the difference for one set of canting angle assumptions, but 

different axis ratios, can result in differences of up to 1 dB for Zdr, 0.8 dBZ for Zh, and 

0.14 ° km-1 for Kdp. Differences in ρhv are also observed, but are much smaller than the 

other variables, and because of this behavior, ρhv will not be discussed with the same 

weight as the other variables.  

For an axis ratio of 0.2 for Zdr (Fig. 4.1c), for example, changes between  the two 

different types of canting angle assumptions result in a difference of about 0.1 dB at 0° 

elevation angle, which decreases to almost zero at larger elevation angles. This 

difference is even smaller for differential reflectivity when considering an axis ratio of 

0.9. The differing results between the two axis ratios makes sense because if a nearly 

spherical particle cants slightly more or less, or falls at a certain average angle that 

deviates from 0°, it is going to be less noticeable to the radar than in the case of a fairly 

oblate particle whose average canting angle is not 0°, or whose tendency to flutter is 

fairly large, since that will greatly affect the radar power returns in the polarized 

horizontal and vertical planes. Overall, it would seem, at least for these specific set of 

inputs, varying the axis ratio has a larger influence on the resulting polarimetric radar 

variable output than varying the θ and σ (especially in the case of differential 

reflectivity).  
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Also interesting to note in these simulations is the fidelity by which Zdr, Kdp, and 

Zh change in value with increasing elevation angle. It is well known that as elevation 

angle increases that Zdr should decrease due to the viewing angle (Bringi and 

Chandrasekar 2001; Ryzhkov et al. 2005a). This is especially evident for the more 

oblate of the two axis ratios. Specific differential phase also would decrease for the 

same reason (due to the fact that Kdp is a function of both concentrations of particles 

and particle shape; Bringi and Chandrasekar 2001). By this same line of thought, as the 

radar beam penetrates higher into the atmosphere, looking at an oblate particle, it would 

see increasingly larger apparent diameters with increasing elevation angles, and it 

would then see the inverse for a more prolate particle (axis ratio greater than one). 

Since Zh is a function of the diameter of the particle to the sixth power, increases in the 

apparent diameter (to the radar) would mean a larger Zh value, and decreases in the 

apparent diameter would mean a smaller Zh value (Bringi and Chandrasekar 2001). 

Hence, this is the reason why one might see a small increase in reflectivity value with 

increasing elevation. 

The importance of whether or not to simulate a prolate hydrometeor was 

investigated, since these do not occur as frequently as compared to oblate, or nearly 

spherical particles. Despite few in situ observations of graupel, prolate graupel has been 

shown to occur in both winter and springtime storms (Evaristo et al. 2013; Kennedy et 

al. 2015). To the end of gathering more data in support (or not) of the need to include 

prolate particles in the simulations of graupel, a frequency map of the occurrences of 

negative Zdr values with data from NPOL during MC3E was analyzed (Fig. 4.2). C-band 

radar can be quite affected by attenuation and resonance effects, leaving biases in the 

polarimetric radar observables (Ryzhkov and Zrnic 2005). This can be seen with the 

HID MBF and frequency of occurrence plots for graupel (Figs. 4.55 c and d and 4.56 c 

and d), where C-SAPR Zdr values exhibit a low bias due to bad differential attenuation 

that was not able to be completely removed. Hence, if C-SAPR data were used to probe 
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the appearance of negative Zdr for graupel in the MC3E dataset, then results might be 

biased as actual graupel Zdr was likely not as low as is shown for C-SAPR. S-band is 

not nearly as affected by this issue as is C-band, and thus data from the NPOL was 

used for this particular test. Dates with NPOL data included in the analysis were cases 

from 24-27 April 2011, and 01, 11, 20 and 23-25 May 2011. The map was created by 

locating all negative Zdr values, binned by reflectivity (0 to 60 dBZ at 1 dBZ increments) 

and temperature (-40 to 20°C at 1 C increments) and then for each of those intersecting 

bins, finding the mean of the negative Zdr values, and plotting this number (with the color 

shown in the color bar corresponding to the negative Zdr value) as a function of 

temperature and reflectivity. Note that temperature was obtained from the sounding 

(either 0 or 12 Z) closest in time to the occurrence of convection for each day of MC3E 

field campaign operations. The black box indicates the region where high-density 

graupel resides in the CSU HID MBFs (DR09; Dolan et al. 2013). This heat map hinted 

that in later spring which this data was collected, negative Zdr do values exist, which 

supports the evidence to include simulations of prolate graupel.  

With the utility of simulating a prolate graupel particle established, low-density 

graupel simulations were run. Similar results are found when considering low-density 

graupel as were seen for aggregates (Fig. 4.3). Indeed, axis ratio plays a much larger 

role than canting angle assumptions for low-density graupel, now shown with an 

example of a prolate particle (axis ratio of 1.25). As discussed earlier, as elevation 

increases, the reflectivity value decreases as the apparent diameter observed by the 

radar decreases. Additionally, as the view angle increases, the particle appears less 

and less prolate and thus the negative Zdr and Kdp values decrease in value towards 

zero.  

Finally, simulations for high-density graupel (where low-density graupel was 

simulated with a particle bulk density of 0.4 g cm-3 and high-density graupel was 

simulated with 0.73 g cm-3) were run, including for prolate particles (as with low-density 



 66 

graupel, an axis ratio of 1.25 was simulated), as well as a fairly oblate particle (axis ratio 

of 0.5). General trends are similar to what was observed in the case of aggregates and 

low-density graupel, although the effect of changing canting angle assumptions (the 

mean canting angle and the standard deviation of canting angle, i.e. the amount to 

which a particle flutters as it falls) were more impactful on the resultant polarimetric 

radar data (as seen in Fig. 4.4). Additionally, overall simulated Zh, Zdr, and Kdp values 

were larger for high-density graupel than low-density graupel. Differences of up to ~0.5 

dBZ, 1 ° km-1, and ~ 1 dB for Zdr were observed due to changes in canting angle 

assumptions (where in high-density graupel, σ was 14°, as was the case for low density 

graupel, but θ was increased from 16° to 20° for high-density graupel). These 

differences for Zdr and Kdp were larger than what was observed for low-density graupel. 

Although, differences between the amount of change in Zh between the different canting 

angle assumptions for high-density graupel and low-density graupel was not as stark. 

Though the differences are still quite small, values of ρhv dipped lower than in the 

previous two simulated hydrometeor types. Perhaps part of the explanation for the 

stronger effects (larger changes in polarimetric radar data due to changing input values 

to the T-Matrix, Mueller Matrix framework) seen with this high-density graupel 

hydrometeor type as opposed to low-density graupel and aggregates results from the 

larger dielectric constant associated with high-density graupel.  

If the canting angle assumptions had been varied over the whole range of 

possible values 0° to 90° (for θ or σ), of course, large changes in the simulated radar 

observables would have been seen. Similarly, if small differences in axis ratios had 

been simulated (e.g. changing the axis ratio from 0.1 to 0.11), the changes compared to 

changing the axis ratio by 0.1, for example, would be small. However, larger relative 

changes are seen when the axis ratios are varied over the potential range of values 
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than when canting angles are varied over their potential range of values, as 

demonstrated by Fig. 4.1, 4.3, 4.4). 

At a certain point, it is apparent that mean canting angle and the variability of the 

canting angle incurred by a falling hydrometeor become important, and have a 

noticeable impact on resultant polarimetric radar data (as seen for this high-density 

graupel situation). Large changes in canting angle will certainly have a noticeable 

impact on the values resulting from polarimetric radar simulations. However, for 

relatively small changes σ and even larger changes in θ (here, σ changed by only 1° 

between DR09 and GE15 while θ varied by 20° between DR09 and GE15 

assumptions), changes in canting angle assumptions are not as impactful on the 

resultant simulated polarimetric radar output as changes in axis ratio. Therefore, a great 

deal of emphasis will be placed from this point going forward on finding the most 

appropriate axis ratio, or range of axis ratios, for the three ice hydrometeors under 

consideration in this work (aggregates, ice crystals, and graupel). 

! LUT SENSITIVITY TEST RESULTS 
 

Prior to running any set of assumptions through the entirety of the POLARRIS 

framework with real simulated Nu-WRF data, visualizations with LUT results were 

performed in order to examine the general output (that is, are simulated values 

reasonable in comparison with previous literature values – e.g. did they compare well 

with S00), as well as to see which inputs seemed to best capture the range of possible 

values. The latter was helpful in paring down the amount of runs that were going to be 

put into the POLARRIS framework. Shown in Figs. 4.5-4.13 are the results for 4ICE 

simulations. Results are stratified as “low”, “medium”, and “high” radar elevation angle 

(i.e. 0°-30°,30°-60°, and 60°-90°). Red values correspond to DR09 assumptions, blue 

values correspond to S00 assumptions, green values correspond to R11 assumptions, 

purple corresponds to a set of control run values (M17), and yellow corresponds to 
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GE15 values. The inputs for each of these assumptions are outlined in Table 3.2. Note 

that now, graupel refers to an overall graupel category.  

Save for the prolate assumptions for ice crystals (Fig. 4.8, for an axis ratio of 

1.25), various input assumptions did not appear to change the values for reflectivity by a 

significant amount from low to high radar elevation angle, and from one set of 

assumptions to another (see Figs. 4.5, 4.8, Fig. 11). In the case of graupel (Fig. 4.11), 

the reflectivity values for the most part seem to fall in a range from ~5 dBZ to just over 

50 dBZ. The lower value is fairly low for graupel in comparison to literature values (e.g. 

S00), however, the skew of the data is toward higher reflectivity values (the bulk of 

which is found between ~25 dBZ and 42 dBZ). Aggregate (Fig. 4.5, termed in these 

plots as “snow”) reflectivity values seem to be in line with literature (generally, less than 

45 dBZ; S00). The bulk of values are found between ~28 dBZ and ~38 dBZ, with data 

overall skewed towards higher values of reflectivity. The higher reflectivity values are 

perhaps a bit large for dry snow aggregates, although they are not unreasonably large 

(Thompson et al. 2014). Ice crystal reflectivity seems to be quite low (Fig. 4.8) 

compared to literature (S00; DR09; Thompson et al. 2014). Certainly, negative values to 

around -30 dBZ have been simulated (S00; DR09), however it is not uncommon to see 

ice crystal reflectivity values reach up to 20 dBZ. However, in the LUT visualization, 

even outlier values never manage to reach 0 dBZ. This is potentially due to the fact that 

the PSD for ice crystals does not simulate particles large enough to actually capture the 

proper reflectivity values. This is a detail which will need to be kept in mind as 

simulations in the overall POLARRIS framework are run. 

Also, recall the discussion in Section 3.6 in how LUT values were generated. Any 

potential temperature/size/elevation angle combination were allowed in the LUT 

visualizations (from the range of assigned values), for the particular axis ratio and 

canting angle assumptions. Thus, there are some combinations of the above variables 

that likely resulted in the values that are either too small or too large, as is indicated 
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above. Hence, the focus is instead of the data held in the actual box part of the box and 

whisker plot, as that houses the majority of the data, and leaves out the simulated radar 

observable outliers, that do not make sense with regards to literature values for each 

hydrometeor. This detail should also be kept in mind as this discussion continues. 

Differential reflectivity values vary a great deal from low to high radar elevation 

angle, and from one set of assumptions to the other (see Figs. 4.7, 4.10, and 4.13). 

Values seen for graupel range anywhere from about -0.4 dB to ~1.3 dB (Fig. 4.13). This 

is well in line with observed literature values (S00; DR09). Additionally, the decrease 

(increase) in Zdr with increasing radar elevation angle for oblate (prolate) particles is 

observed, as was seen with the simulations in the original T-Matrix, Mueller matrix 

simulations (Sec. 4.1). This is seen for all LUT Zdr visualizations. Snow aggregate Zdr 

values have a large range in possible values (Fig. 4.7), ranging anywhere from 0 dB to 

just over 5 dB. Of course, these values are likely associated with the small axis ratio 

chosen, and potentially an unrealistic size/temperature/elevation angle combination as 

well. The bulk of the values, however, tend to range from 0 – 3 dB, which better 

compares with previous literature values (S00; DR09; Thompson et al. 2014). The 

assumptions for which Zdr values much above 1 dB occur are associated with extremely 

oblate hydrometeors (axis ratios of 0.2, which are too large for aggregates), and that 

may be the cause of some of the unphysically large Zdr values. Hence, results there 

show what one would likely expect for too large an axis ratio assumption. Ice crystal Zdr 

values vary the most of any of the three ice hydrometeors input to the LUT visualization 

framework. Values from ~-0.5 dB to 10 dB are seen (Fig. 4.10). The largest Zdr values 

logically occur with the most oblate axis ratio assumptions (herein, for axis ratio 

assumptions of 0.125). These large values could also be the result of known model 

instabilities that occur for axis ratios ~ < 0.1. According to literature (e.g. S00 and 

DR09), ice crystals are generally associated with Zdr values from 0-6, depending on the 

ice crystal habit. So the large Zdr values from the oblate assumptions are likely not 
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realistic representation of ice crystals, and thereby would not be representative if input 

to the POLARRIS framework. Even simply a 0.2 increase in axis ratio resulted in more 

realistic values in comparison with literature (reaching a maximum of just under 2 dB).  

An interesting note to be made about variations in the Zdr values is that there is 

actually at times a large difference in Zdr output values as a function of standard 

deviation of canting angle input to the simulations. For example, for ice crystals with an 

axis ratio assumption of 0.125, at the low radar elevation angle set, changing the 

amount to which a particle tumbles from 15° to 30° results in a maximum Zdr value 

change of ~10 dB to 8 dB, respectively. Certainly, this is not a small change, and 

something to keep in mind when dealing with extremely oblate particles (as this is not 

nearly as large a difference for more spherical, or slightly prolate particles). However, 

when considering the low radar elevation angle set, for assumptions of an axis ratio of 

0.125 and a standard deviation of canting angle of 15°, and then an axis ratio of 0.35 

and a standard deviation of canting angle of 15°, the resulting change in maximum 

simulated Zdr value is ~10 dB to ~2.8 dB. Thus, the axis ratio still has the largest impact 

on the resulting simulated polarimetric radar variable value. This also holds true to all 

LUT simulations of Kdp, as seen in the associated figures (Fig. 4.6, 4.9, and 4.12, for 

snow, ice crystals, and graupel, respectively). 

Similar decreases (increases) in Kdp with increasing radar elevation angle occur 

for oblate (prolate) axis ratios as with Zdr, and as was seen in the original T-Matrix, 

Mueller matrix framework (Sec. 4.1). These results help ensure that the LUT simulations 

are working as they should to simulate Zdr and Kdp for changing radar elevation angles. 

Simulated specific differential phase values for graupel are, as with Zh and Zdr values, 

well in line with literature values (S00; DR09). Values range anywhere from ~-0.4 ° km-1 

to ~ 1.3 ° km-1. Indeed, any one of the set of assumptions shown for graupel would be 

appropriate (based on previous literature) to input into the POLARRIS framework. 
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Ideally, however, some kind of range of values would be simulated together to get 

closer to the full range of polarimetric radar variable values seen in observations. As for 

snow aggregates, Kdp values typically range from 0.0 ° km-1 to about 1 ° km-1 at best 

(Fig. 4.6;  S00; DR09; Thompson et al. 2014). In this LUT visualization, the bulk of the 

values are skewed closer to 0 ° km-1 to 1 ° km-1, with the larger values corresponding to 

more oblate (and probably unrealistic) simulated aggregates. That being said, these are 

outlier values, and do not correspond to the location of the bulk of simulated snow 

aggregate Kdp values. In general, depending on the habit, Kdp values for ice crystals (Fig 

4.9) are shown in literature to range anywhere from -0.6 ° km-1 to about 0.6 °km-1 or 

(S00; DR09; Thompson et al. 2014). For most of the sets of assumptions, this is indeed 

the case. However, with an assumed axis ratio of 0.125, values are wildly large (for 

example, the low radar elevation angle set has the bulk of values ranging from ~2 ° km-1 

to about 15 ° km-1, with outliers reaching as high as ~46 ° km-1). It is only for the high 

radar elevation angle set that the bulk of the values, excluding outliers, come close to 

fitting the range of values shown in literature. These values are incredibly unrealistic. 

This could partially be due to the incredibly oblate nature of the axis ratio, in addition to 

the size/temperature plotted, though the values are likely enlarged to this point due to a 

model instability. Certainly, an assumed axis ratio of 0.125 for ice crystals will not be an 

appropriate assumption for runs through the POLARRIS framework. That is, it would not 

be an appropriate axis ratio assumption to simulate values most closely related to what 

is seen in C-POL/C-SAPR observations. However, it would be good to run this axis ratio 

and canting angle assumptions through the POLARRIS framework as a check on 

whether or not the expected unrealistic values for this set of assumptions occurs when 

looking at iPOLARRIS results. 

Overall, it would appear that the DR09 values capture the largest range of values 

observed in the LUT simulations, though the more oblate values (ice crystals axis ratio 
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of 0.125 and snow aggregate axis ratio of 0.2) do not generally seem to fit with what is 

shown in literature and has been observed. The smallest and largest axis ratios (and 

the two different associated canting angle assumptions) will be input to POLARRIS 

framework, in order to ensure that iPOLARRIS results look unreasonable (as they 

should for the especially extreme oblate axis ratio values). Likely, a range of values 

somewhere between the smallest and largest assumed axis ratios from the DR09 

assumptions will be the most appropriate for reaching model results that are 

comparable with observations. Therefore, leveraging the results of iPOLARRIS with 

these sets of assumptions, more tests were run with varying axis ratios, the exact 

values of which were decided upon based on the iPOLARRIS results from the smallest 

and largest axis ratios from DR09 assumptions simulated for each hydrometeor in the 

LUT simulations (See Tables 4.1 and 4.2). This range (or for the majority of the results 

herein, the assumed axis ratio/canting angle assumptions that yields the most 

comparable results with observations) is important, since the goal is to arrive at a set of 

assumed inputs that will help guide polarimetric radar simulations for graupel, ice 

crystals, and snow aggregates (or simply, aggregates). Since results from SBM were 

not available from LUT simulations, this work assumes the same assumptions as used 

for 4ICE.  

! MC3E CASE ANALYSIS: 23 MAY 2011 
 

To begin with, the smallest and largest axis ratio assumptions (as well as 

whatever various standard deviations of canting angle were considered) used in the 

LUT simulations for DR09, for each hydrometeor, were run through POLARRIS-f, and 

then through iPOLARRIS, where polarimetric radar variable co-variance plots (such as 

those of Fig. 3.2) were used to compare the model results with observations. It was 

quickly determined that a majority of these assumptions were not appropriate for 

narrowing the gap between iPOLARRIS results and observations after running the 
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assumptions through the POLARRIS framework and comparing iPOLARRIS results 

between the model and observations. Therefore, the runs listed in Table 4.1 were run to 

better determine the appropriate axis ratio and canting angle assumptions for each 

hydrometeor (aggregates, graupel, and ice crystals), and for each microphysics 

assumption (4ICE and SBM). The assumptions that were eventually chosen for each 

hydrometeor, and for each microphysical scheme, were the ones producing results 

most comparable with observations (highlighted in blue). 

In order to determine the set of axis ratio and canting angle assumptions that 

produced the most comparable results from POLARRIS-f output with observations, 2D 

density (co-variance) plots of radar variables were used. For each microphysical 

scheme, for each regime, for each hydrometeor, Z-Zdr, Z-Kdp, and Kdp-Zdr plots were 

considered between model output and observations. First, we will consider the case of 

4ICE MC3E. 

4.3.1.! 4ICE MC3E CONSIDERATION OF “BEST” ASSUMPTIONS 

For each hydrometeor in the 4ICE MC3E runs, co-variance plots for the 

integrated 22 Z hour were compared to the integrated 22 Z hour period of MC3E 

observations. The use of one integrated hour of data to create and utilize a 

methodology in this work was done to ensure that any small-scale trends were not 

“washed out”, or averaged out, by integrating data over an entire day or case. This 

could introduce the potential that if model-generated convection lagged in time from 

convection in observations, that not exactly the same hour in the storm cycle is shown 

between observations and convection. Hence, results here in are not taken as ground 

truth, but rather as an indicator of the POLARRIS framework’s capabilities for using HID 

to evaluate model microphysical performance with respect to observations, as well as 

the effect that different microphysical schemes have on the resulting HID. In order to 

indicate whether differing regimes were better simulated, or not, by the POLARRIS 



 74 

framework (and if one microphysical scheme truly performed “better” than the other) 

would likely require a longer integrated time period, and more cases.  

Rain, snow aggregate, ice crystal, and graupel plots are shown in Figs. 4.14 – 

4.17, respectively, for MC3E for both model (4ICE) and observations. These plots 

portray the output from the assumptions for each hydrometeor, in the case of 4ICE 

MC3E simulations, that was the most comparable with similar plots in observations 

(after having been run through the CSU HID; see blue values in Table 1). These same 

types of plots were also considered for every other input assumption displayed in Table 

4.1, though are not shown in the figures. 

In general, rain compares the best with observations when compared to the 

simulated ice hydrometeors (Fig. 4.14). This is not surprising considering the vast 

amount of literature that details the way falling rain behaves, the proper particle size 

distribution of rain, the shape of rain, and empirical rain rate relationships (derived from 

comparisons with polarimetric radar data and disdrometer data). Overall, the shape of 

the co-variance curves among simulated radar variables co-variance plots fits well the 

shape of the observations. However, while the full range of reflectivity is normally able 

to be simulated, for the most part the full Zdr and Kdp ranges seen in observations are 

never reached. To fix this, a distribution of axis ratios is likely needed, or perhaps a 

canting angle distribution driven by turbulence, otherwise results (in 4ICE) results will 

always be too narrow. 

The results are not quite as comparable when ice hydrometeors are under 

consideration. Simulated snow aggregates (Fig 4.17) perform the best of the ice 

hydrometeors, largely because an axis ratio – size dependent relationship from MC3E 

in-situ Citation II data was available as input to POLARRIS-f. In general, for aggregates 

and the other two simulated ice hydrometeors species, Zh is too low. Simulated 

aggregate reflectivities are at least similar to reflectivities seen in observations, however 

the maximum reflectivities in observations are not captured in the simulated output. 
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Again, as was the case for rain, Zdr and Kdp simulated values, while within the range of 

that seen in observations (with the most frequently simulated values of Zdr and Kdp fairly 

well matched with the most frequently simulated values of those variables in 

observations), do not have as broad a range of values as in observations. This is 

extremely evident in the Kdp-Zdr co-variance plot (Fig. 14c), when contrasted with the 

matching observation plot (Fig. 4.14f). These differences between what is seen for 

model output for aggregates and observations are more pronounced for ice crystals (Fig 

4.15) and graupel (Fig 4.16). Reflectivity values simulated for both of these ice 

hydrometeors is significantly too low. Simulated ice crystal reflectivities never reach 0 

dBZ, whereas reflectivity values from observations for ice crystals extends from -10 dBZ 

to almost 30 dBZ. Worse yet are simulated reflectivity values for graupel, which reach 

22 dBZ at best, while in observations values from ~20 dBZ to just over 50 dBZ are 

simulated. Simulated graupel reflectivity values almost never reach the lowest observed 

reflectivity values for graupel from observations. Based on the issues with the proper 

simulation of the range of observed reflectivity values for the three ice hydrometeors 

under consideration, the choice of the set of axis ratio and canting angle assumptions 

for each hydrometeor was based largely on whether or not Zdr and Kdp for each 

assumption did, or did not, fall within the observed range.  

Of course, part of the lack of comparability between simulated ice crystal 

polarimetric variable values and observed ice crystal values could have to do with the 

complex nature of ice crystals in nature that is not fully taken into account in the 4ICE 

runs (nor the SBM runs, since the same axis ratio input and set of canting angle 

assumptions were used for dendrites, plates, and needles). This same issue is apparent 

in the TWP-ICE simulations as well. Ice crystals have a seemingly endless set of 

shapes they can take on, from how they grow (c- versus a-axis growth), density, their 

level of complexity (e.g, dendrites vs. simple plates), axis ratios, all due to the particular 

surrounding region of air’s properties (e.g., temperature or relative humidity). The task 
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of being able to adequately simulate these characteristics is indeed an important one, 

but for the sake of simplicity, and due to a lack of in situ data in the ice regions at the 

times specified for this case (and especially the TWP-ICE case), a singular axis ratio 

and set of canting angle assumptions are employed. Thus, a single shape for ice 

crystals is allowed, no matter the size of the ice crystal (the case for graupel as well). 

Additionally, a singular value of density (0.9 g cm-3) was employed for ice crystals, 

which is not generally what occurs in nature. This was the same case for graupel and 

aggregates, possibly explaining some of the discrepancies there as well. The ability to 

make comparable simulations of the polarimetric radar variables for ice crystals with 

respect to those of observations is limited by these facts.  

PPIs were considered of reflectivity and mixing ratio for simulations where mixing 

ratios of everything but graupel was set to zero. This was done in the attempt to limit the 

consideration of hydrometeor species to only graupel. While there were reasonable 

values for graupel mixing ratio, the reflectivity values were more in line with that of snow 

aggregates (~30-35 dBZ at most). Thus, something had to be causing the decrease in 

reflectivity, despite the high presence of graupel. The reasoning then, for the 

POLARRIS framework’s inability to simulate adequate reflectivity values for graupel 

potentially has to do with the selected graupel density in the model. It was set in the 

model to be 0.3 g cm-3, which is on the low-end of the acceptable ranges of values for 

even low-density graupel (according to DR09), and is also towards the low end of 

overall graupel in S00. This could have resulted in simulated values for graupel being 

low, no matter the amount of occurring graupel in a convective region. Although the 

density of ice crystals was that of pure ice (0.9 g cm-3), the reflectivities (as discussed 

above), were quite low. This may have something to do with the PSD allowing a large 

amount of very small ice to exist, which would never achieve a high reflectivity due to 

their size. Additionally, the reasoning that aggregate reflectivity was more comparable 

with observations may have had to do with the PSD, as the simulated reflectivity was 
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quite low (0.05 g cm-3) (S00; DR09; Thompson et al. 2014). The inclusion of an axis 

ratio – size dependent relationship may have also aided in raising reflectivity values. 

Perhaps despite the low density, there were enough large snow aggregates to drive the 

reflectivity higher.  

4.3.2.! SBM MC3E CONSIDERATION OF “BEST” ASSUMPTIONS 

SBM results were quite different compared to 4ICE for MC3E. 2D radar 

covariance plots for SBM MC3E assumptions are shown in Fig. 4.18 (aggregates), Fig. 

4.19 (ice crystals), Fig. 4.20 (graupel), and Fig. 4.21 (rain). In general, there was more 

broadening of the range of values simulated for each polarimetric radar variable. 

However, certain patterns may have been better simulated under 4ICE microphysical 

assumptions. For example, while the overall ranges of Kdp and Zdr are better 

represented in the SBM runs, the overall shape of the rain curves (Fig 4.21) is much 

less evident for SBM MC3E runs than it was for 4ICE MC3E runs. Additionally, the 4ICE 

rain curves for Z-Zdr, Z-Kdp, and Kdp-Zdr compare better with these same types of 

covariance plots shown in literature (e.g. Figs. 7.23, 7.24, and 7.85a from Bring and 

Chandrasekar 2001). There is a slight curve seen in the Z-Zdr and Z-Kdp plots, however 

the general rain curve seen in the observations and in 4ICE simulations is not very 

evident in SBM simulations. The difference between 4ICE and SBM simulations of 

MC3E rain could be related to the fact that SBM allows a size distribution to develop 

organically, while the PSD of 4ICE is prescribed.  

The ice hydrometeors plots can all be discussed in bulk terms of the general Z-

Zdr, Z-Kdp, and Kdp-Zdr plots. In general, the broadness of Zdr and Kdp values seen in 

observations is grossly simulated with SBM microphysics (or, at least the values come 

much closer to those seen in observations than in the case of 4ICE). Also, reflectivity 

values now manage to capture reflectivities seen in observations. However, reflectivity 

values also extend beyond the observed ranges with SBM. There does not appear to be 
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a distinct range of reflectivities simulated for aggregates vs. ice crystals vs. graupel. 

This could be problematic in terms of HID classification, since reflectivity is the most 

heavily-weighted variable, and has a large hand in driving the HID classification. Thus, 

while certain aspects of the SBM simulations are more comparable with observations 

than was the case with 4ICE simulations, the fact that ranges of reflectivity exist in SBM 

simulations that do not in observations is concerning.  

Here we delve a bit deeper into the differences between MC3E SBM simulations 

and observations. Although the aggregate co-variances plot (4.18) shows the majority of 

the most-frequently identified reflectivities in the range shown for observations, Z-Zdr 

and Z-Kdp plots show those values also extending from -10 – 50 dBZ. Observations 

extend anywhere from about 0 – 40 dBZ at most. Similar trends are seen with ice 

crystals, where the model shows the bulk of values concentrated in a region from 0 – 40 

dBZ (with a tail extending to 50 dBZ, though with less identified points on average), 

while observations show values ranging mostly from 0 – 25 dBZ at most. Interestingly, 

graupel co-variance plots show a large range, with double peaks at ~ - 0.5 dB and 0 dB 

(Fig. 4.20a), with reflectivity values at the first peak concentrated from 0 to 50 dBZ, and 

the values at the second peak reached from -10 to about 30 dBZ. Observations kept 

values in the range of ~ 35 – 50 dBZ. Similar trends were seen for Z-Kdp in the model 

and in observations (Fig 4.20b,e).  

It would seem that the increased degrees of freedom with SBM brought with 

them an increase in uncertainty of boundaries for the polarimetric radar variables 

ranges associated with each hydrometeor. An interesting occurrence with SBM was that 

although the mixing ratios were set to zero for hydrometeor variables other than the 

ones under consideration, in the iPOLARRIS results, nonzero mixing are observed for 

all variables. The reasoning behind this is not well understood, but perhaps has to do 

with the additional degrees of freedom in SBM simulations. Keep in mind, however, that 

there may be a slight disconnect in the hour of this MC3E case’s storm cycle that is 
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seen in observations vs. what is seen in simulations. Differences may also be 

attributable to that fact.  

4.3.3.! RESULTS OF “BEST” RUNS FROM 4ICE AND SBM MC3E SIMULATIONS AS 
COMPARED TO OBSERVATIONS 
 

 After comparing polarimetric radar variable ranges between 4ICE and SBM 

MC3E and CSAPR observations, these “best” sets of axis ratio and canting angle 

assumptions for each hydrometeor were aggregated into an overall “best” assumptions 

run, this time with all hydrometeors allowed (Table 4.1, blue text). The assumptions that 

yield the most comparable results with observations are ideally the same between 

regimes, and between microphysics. However, it was found herein that this was not 

always the case. Generally, using the axis ratio – size dependent relationship found with 

the UND Citation II data resulted in the most comparable result between MC3E 

simulated results and observations. Likely, this was because of the fact that the axis 

ratio – size dependent relationship came closer to achieving a realistic representation of 

axis ratios in nature (since nature does not in general have one accepted oblateness). 

This relationship also improved model simulations in TWP – ICE (Figs. 4.23 and 4.27), 

even though the data that went into the axis ratio relationship for aggregates was taken 

in aggregate and ice crystal regions of the 23 May 2011 supercell MC3E cases. 

Additionally, the use of a rain axis ratio – size dependent relationship (Brandes et al. 

2002) for both 4ICE and SBM, for MC3E and TWP – ICE (Figs. 4.14, 4.21, 4.26, 4.30) 

helped improve those simulations as well.  

Whenever axis ratio – size dependent relationships were not available, however, 

a reliance on the closest as possible simulation to the area where the bulk of the Zdr and 

Kdp values occurred in observations was the goal. For ice crystals, this ended up being 

different from 4ICE to SBM, though inputs to MC3E and TWP – ICE one from the other 

did not change (see Tables 4.1 and 4.2). For 4ICE, a larger (less oblate, more 

spherical) axis ratio was required. Otherwise, values were too large for Zdr and Kdp 
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(while being too low overall for Zh). In SBM, the most comparable result, however, was 

achieved with a smaller (more oblate, less spherical) axis ratio. σ also changed for ice 

crystals from 4ICE to SBM (it decreased from 30°to 15°, see Tables 4.1 and 4.2). The 

need for a larger amount of fluttering/tumbling of ice crystals as they fell in the case of 

4ICE perhaps points to the fact that with the set PSD in 4ICE, larger variations in the 

particle’s simulated movement were required to reach realistic values. The same was 

the case for graupel in both TWP – ICE and MC3E (see Tables 4.1 and 4.2), for 

perhaps the same reason. For graupel, a smaller axis ratio was required for 4ICE than 

for SBM for both TWP – ICE and MC3E. Otherwise, the values were forced towards 

zero for both Zdr and Kdp too much compared to observations.  

Interestingly, the same axis ratio was not used in SBM graupel for MC3E and 

TWP – ICE, which was not the case in 4ICE (both used axis ratios of 0.5 for 4ICE). 

MC3E was best simulated with respect to observations with a slightly prolate axis ratio 

(1.25), while TWP – ICE had a slightly oblate axis ratio (0.9). Truthfully, an axis ratio of 

0.9 would also have worked for MC3E with the goal of simulating values close to the 

bulk of values in observations (i.e. with the attempt to simulate values colored as white 

in the co-variance plots in observations). However, the smaller axis ratio resulted in 

model output that did not also capture the negative Zdr and (slightly negative) Kdp values 

found in observations. Evidently, there were graupel particles that took on a more 

conical shape in MC3E observations that was not seen for those of TWP – ICE. This 

potentially points to a difference in the types of precipitation occurring in this particular 

integrated hour of MC3E vs. TWP – ICE. This fact points out the need for some kind of 

axis ratio – or canting angle – size dependent relationship, since one implemented axis 

ratio fails to capture the ensure breadth of values seen for Zdr and Kdp in this case. 

These differences between 4ICE and SBM also highlight the fact that the handling of 

the microphysics is important, and certainly has an impact on the simulated polarimetric 

data. 
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Ideally, the results of both 4ICE and SBM assumptions will match fairly well what 

is seen in CSAPR observations. The most logical way to validate the iPOLARRIS 

results, and the use of each microphysical scheme, was to look at SFADs of HID, 

partitioned into convective and stratiform regions. In doing this, the use of HID as a 

diagnostic tool for evaluating model performance is also revealed.  

Fig. 4.22 shows the results for 4ICE, SBM, and observation convective-stratiform 

partitioned SFADs of HID. While there are significant differences between each 

microphysics scheme and observations in terms of the polarimetric ranges for each 

hydrometeor species, model results are fairly comparable with observations in terms of 

HID. Interestingly, although the 2D covariance plots between 4ICE and SBM were 

vastly different, the HID SFADs look quite similar. Indeed, it would seem that, at least, in 

the case of this integrated hour for MC3E, despite large differences in simulated radar 

observables, the HID is a robust tool that it can still produce reasonable results.  

Despite the above statements, there are some differences between 4ICE and 

SBM, and between model output and observations that deserve some attention. In the 

convective MC3E HID SFAD, almost no big drops are identified in SBM (Fig. 4.22c), 

while there is a noticeable portion in the lowest 5 km of the 4ICE HID SFAD (Fig. 4.22a, 

which better matches better the appearance of big drops in the lowest 5 km of 

observations). Hail in both 4ICE and SBM convection is over-identified at lower- to mid-

levels (from ~3-10 km altitude). However, SBM does allow hail to reach the ground, 

which is seen in observations, while 4ICE has no hail below 3 km altitude. In general, 

for both 4ICE and SBM convection, low-density graupel is under-identified at upper 

levels (~15-18 km in altitude) compared to observations, while high-density graupel is 

overidentified, at the expense of identifying less aggregates and low-density graupel. 

Overall, aggregates are underidentified in both 4ICE and SBM convection, and allow 

more ice crystals and hail instead in comparison with observations. Both 4ICE and SBM 

convection allow too much rain to form from 0-3 km, whereas this rain in observations is 
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replaced instead by hail and big drops. The largest difference, however, between 

4ICE/SBM and observations is the extreme lack of wet snow from 4-5 km in comparison 

with observations. Wet snow in observations at that level accounts for over 20 % of 

identified hydrometeors at that level, while it accounts for less than 5 % for 4ICE and 

SBM at that level. However, the explicit scattering of melting hydrometeors was not 

allowed (i.e. in the T-Matrix, Mueller Matrix scattering, particles with a frozen center and 

an outer melting shell were not simulated). This perhaps was part of the reason that 

instead of more melting, high-density graupel was identified instead. Of course, all of 

these differences between the model and observations should be viewed knowing that 

the model might not be simulating the exact same moment in the storm cycle as is 

occurring in observations. The same fact should be kept in mind as we continue to the 

stratiform regions. Regardless of that fact however, and the differences seen between 

the model results and observations, both 4ICE and SBM did compare decently to 

observations for the convective areas.  

Stratiform HID SFADs (Fig. 4.22 b, for 4ICE, d, for SBM, and f, for observations) 

highlight this stark contrast between the abundance of wet snow at 4-5 km in 

observations and the lack thereof in the model simulations. Almost the entirety of the 4-

5 km level in the C-SAPR stratiform HID is wet snow, save for a small amount of drizzle 

and rain. In both 4ICE and SBM, wet snow makes up ~ 10 % or less of identified 

hydrometeors at that level. Instead a large amount of drizzle and some rain (more 

drizzle identified in SBM than 4ICE) replaces this wet snow. Though, this may again be 

related to the model’s current incapability to explicitly simulate melting hydrometeors. At 

least, from 0-3 km in 4ICE and SBM, only drizzle and rain are identified (correctly 

identifying then hail and graupel as being convective instead). At mid-levels, model 

output struggles to generate the same amount of aggregates as is seen with C-SAPR 

observations, and in general a bit too much low-density graupel is identified in the 

model output (especially with 4ICE, which also slightly overidentifies high-density 
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graupel as well). However, ice crystals, which should comprise the majority of identified 

hydrometeors above 12 km in observations, is well captured by both 4ICE and SBM. 

Although there may be a slight lag in the storm cycle simulated in the model as 

compared to observations, the 4ICE and SBM simulations actually are fairly comparable 

to observations, save for the lack of wet snow in the stratiform region in particular. Thus, 

if not exactly the same hour in time is being simulated, the model is still producing a 

similar type of convection as is occurring in observations. It would be interesting to see 

if the subsequent hours were as well simulated with the POLARRIS framework.  

Overall, though there were differences between 4ICE and SBM results, the two 

microphysics schemes produced fairly similar results. Both microphysical schemes had 

components that compared with observations better than the other microphysical 

scheme. Despite the large differences seen between these two microphysical schemes’ 

co-variance plots, the resultant HID was quite similar. Saying that one scheme did 

better than the other is a bit difficult to say, considering the fact that a short integration 

time period was used, and considering that there is not 100 % certainty that the model 

hour is simulating the exact same hour of the storm cycle in observations. It is 

encouraging to note that 4ICE performed similarly with SBM, since there are more 

assumptions that go into running a 4ICE simulation than SBM (where more parameters 

are allowed to evolve naturally), and since the assumptions for ice crystals between 

4ICE and SBM were different. Also encouraging is the fact that SBM results looked not 

unreasonable in comparison with observations, despite some difficulties in simulating 

the proper reflectivity ranges seen in each of the individual polarimetric quantities for 

each hydrometeor. Comparing these results with TWP-ICE simulations could provide 

some insight on whether or not changing meteorological regimes has a large impact on 

these findings. 
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! TWP-ICE CASE ANALYSIS: 23 JANUARY 2006 
 

 The methodology for choosing the sets of axis ratio and canting angle 

assumptions was the same as was followed for MC3E. Table 4.2 shows the various 

input sets of assumed axis ratio and canting angle assumptions for both 4ICE and SBM 

TWP-ICE runs. The assumptions chosen as the “best” (i.e. those that yield results most 

comparable with observations) are highlighted in blue. Input assumptions are overall the 

same ones run for MC3E, and the only selected “best” assumptions that differed in the 

end from MC3E input was that of SBM graupel assumptions. For MC3E both axis ratio 

of 0.9 and 1.25 produced fairly similar results for graupel, but an axis ratio of 1.25 

yielded slightly more comparable results with CSAPR observations. In the case of TWP-

ICE SBM assumptions, an axis ratio of 0.9 yielded more comparable results with 

respect to CPOL observations. This was explained in more detail in Section 4.3.3, and 

had to do with the need to simulate the occurrence of negative Zdr and Kdp values seen 

in MC3E co-variance plots, that were not also seen in TWP – ICE co-variance plots.  

4.4.1.! 4ICE TWP-ICE CONSIDERATION OF “BEST” ASSUMPTIONS 

TWP-ICE 4ICE 2D covariance plots (plotted for the 18 Z integrated hour) were 

compared to the integrated 18 Z hour period of TWP-ICE (C-POL) observations. Snow 

aggregates, ice crystals, graupel, and rain plots are shown in Figs. 4.23 – 4.26, 

respectively. These plots portray the output from the assumptions for each 

hydrometeor, in the case of 4ICE TWP-ICE simulations, that was the most comparable 

with similar plots in observations (after having been run through the CSU HID).  

iPOLARRIS results for 4ICE TWP-ICE simulations were quite similar to those 

from 4ICE MC3E simulations. Minute differences are noted between plots for each 

regime, for each hydrometeor. However, these two regime’s 4ICE simulations compare 

well enough that a discussion of each plot type for each hydrometeor, and the 

components that were and were not comparable with CPOL observations is not 
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warranted. The same shortcomings seen in MC3E 4ICE simulations are also observed 

in TWP-ICE 4ICE simulations. Specifically, that overall, simulated reflectivities were too 

low and differential reflectivity and special differential phase values were not broad 

enough. For a recap on the discussions therein, the reader is referred to section 4.3.1. 

4.4.2.! SBM TWP-ICE CONSIDERATION OF “BEST” ASSUMPTIONS 

While 4ICE TWP-ICE simulation results were quite similar to those of MC3E, 

similarities between TWP-ICE and MC3E SBM were less apparent. Co-variance plots 

for snow aggregates, ice crystals, graupel, and rain are found in Figs. 4.27 – 4.30, 

respectively. Generally, TWP-ICE SBM simulations are “cleaner”-looking than for MC3E 

SBM simulations. That is, the large breadth in all of the simulated Zdr and Kdp values 

seen in the co-variance plots for MC3E SBM simulations is not as evident in the TWP-

ICE SBM plots, where ranges are more constricted. Additionally, negative Zdr and 

negative Kdp values seen in most MC3E SBM plots, particularly in the graupel Kdp vs. Zdr 

plots are not evident in TWP-ICE simulations. This, however, isn’t surprising considering 

prolate axis ratios were not simulated in TWP – ICE graupel simulations. The need to 

have simulated prolate graupel in MC3E points to the differing storm microphysics 

between the two regimes. Other hydrometeor species simulated in MC3E SBM also 

showed some negative tendencies in their co-variance plots that was not also seen in 

TWP – ICE co-variance plots. There is also a double maximum in the Z-Zdr covariance 

plots for TWP – ICE SBM that is not seen as much in MC3E, or at least is only hinted at 

with a second tail of higher densities of Zdr values at higher reflectivities (see Figs. 

4.27a, 4.28a, and 4.29a as compared to MC3E Figs. 4.18a, 4.19a, and 4.20a). This 

could potentially be a result of how SBM generates the PSDs for each of the two 

regimes.  

Certainly, one could find many differences to pick apart in the plot shapes/radar 

variable values between TWP-ICE and MC3E SBM simulations. They are indeed 
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simulations of two completely different microphysical regimes (one being for a tropical, 

monsoonal, MCS environment, and the other for a mid-latitude supercell case), and so 

differences are not unexpected. However, there were also similarities that rendered 

these two regime’s SBM simulations quite similar. Although the shapes of the output 

iPOLARRIS results for TWP-ICE and MC3E were different, the fact that neither of the 

regimes accurately captured Z-Zdr, Z-Kdp, and Kdp-Zdr ranges of values seen in C-POL 

and C-SAPR observations still remains. This is more surprising for MC3E, where the 

convection generated by the model seemed fairly comparable to the convection seen in 

C-SAPR. In general, for both aggregates and ice crystals, simulated reflectivities values 

do capture the range seen in observations, however, SBM simulations also simulate 

reflectivity values that are both too low and too high compared to observations. Graupel 

reflectivities seen in observations are also captured by SBM, although too low of 

reflectivity values with respect to observations are also produced by the model. Finally, 

again, the range of rain reflectivities in observations is reproduced in SBM simulations, 

though too low of reflectivity also result. There is also not nearly as evident a curve 

towards higher Zdr/Kdp values with increasing Zh values in SBM simulations as is seen in 

observations. Indeed, in comparison with literature values from Bringi and 

Chandrasekar (2001) for these particular kinds of co-variance of radar variable plots, 

TWP – ICE and MC3E SBM simulations both had difficulties in simulating the correct 

form for these curves (Figs. 4.23, 4.24, and 7.85a from Bringi and Chandrasekar 2001). 

In the end, all of these differences could be the result of several different factors, 

including: the way SBM evolves the PSD; an issue of not capturing the correct density 

of particles in the model; another feature inherent to SBM. It would be interesting to see 

the results of these simulations for a longer integrated period to see if these same 

differences still exist or not. These runs were not completed in this work for the sake of 

time, but could easily be done in future work. 
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4.4.3.! RESULTS OF “BEST” RUNS FROM 4ICE AND SBM TWP-ICE SIMULATIONS 
AS COMPARED TO OBSERVATIONS 
 

 Fig. 4.31 shows SFADs of HID, partitioning data into convective and stratiform 

regions, for 4ICE and SBM TWP-ICE simulations of the “best” assumptions aggregated 

together and run with all mixing ratios allowed, as well as for CPOL observations. First, 

from a cursory glance, it is evident that 4ICE and SBM simulations are quite different, 

which not not as evident in MC3E. Additionally, C-POL convective precipitation looks 

interesting. In C-POL observations (Fig. 31e) there are hardly any big drops at, and just 

above, the surface. Furthermore, there is an interestingly large classification of 

aggregates identified above 6 km in the convective region, and for that matter, the 

stratiform region as well. Aggregates are the major identified hydrometeor at and above 

7 km in both precipitation types. These results seem to point to the fact that this hour of 

the TWP – ICE observations may have been almost completely dominated by stratiform 

precipitation. This would make sense, based on the factors identified above. In order to 

test this hypothesis, reflectivity contoured frequency by altitude diagrams (CFADs) for 

the integrated hour for both convective and stratiform precipitation in CPOL 

observations were considered.  

In Fig. 4.32, we see these diagrams for the convective (a) and the stratiform (b) 

portions of the integrated 18 Z storm hour. Indeed, while the occurrence of 40-50 dBZ 

reflectivities are observed in the convection reflectivity CFAD, the bulk of these values 

are below ~ 5 km, while the bulk of the values above ~ 5-6 km do not reach more than 

40-45 dBZ and drop off from there. Initially, it seems strange that those reflectivity 

values, which are a bit small for convection with respect to other CFADs through 

convective regions of MCSs, are shown. However, the convective-stratiform partitioning 

employed in this work is based on the Powell et al. (2016) methodology, where 

convection is identified at an altitude of 2 km. Then, the classification is extended 

throughout the column. PPIs and RHIs of radar reflectivity throughout the hour (not 
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shown) illustrated the progression of a small convective core on the western edge of the 

domain, that exited as the storm propagated westward before the hour had past.  Since 

the convection was identified at 2 km, and actual convective precipitation was limited to 

low levels, this explains the appearance of low reflectivities at altitude above ~ 5-6 km in 

the convective reflectivity CFAD. The abundance of snow aggregates at upper levels in 

the TWP – ICE observations convective SFAD seem logical then, due to convective 

reflectivities that match more so that of snow than that of graupel, hail, big drops, and 

other more convective-type hydrometeor species (S00; DR09; Thompson et al. 2014). 

This could point to a need to slightly modify the convective-stratiform partitioning 

reflectivity threshold set in iPOLARRIS for convection that is more tropical, MCS like in 

nature. This also could be a feature of just this specific 18 Z hour in TWP – ICE 

observations. In future work, the integrated 23 January 2006 MCS case should be 

tested to see if this finding holds true for the overall storm.  

In the SBM convection regions, the HID SFAD (Fig 4.31c) shows a good amount 

of low-density graupel classified through mid- to upper-levels of the precipitation that is 

not seen in observations convective precipitation (Fig. 4.31e). Additionally, there is also 

an absence of big drops in SBM convection, where in observations, despite the small 

amount of convection that occurred for the 18 Z hour, there were still some big drops at 

lower levels. Again, this difference could be the fact that the model is not simulated at 

exactly the same time in the storm cycle as in observations. This could also be due to 

how the PSDs evolved in SBM. Hail is observed in SBM convection at midlevels while 

none is seen in observations, which points to the likelihood of stronger convection 

simulated in the SBM results than what is actually occurring in observations at that time.  

In the case of TWP-ICE 4ICE simulations, the convective region (Fig. 4.31a) 

does see plenty of big drops from 5 km down in altitude, reaching the ground, as well as 

a small amount of hail at the midlevels (though less than was produced by SBM). The 

4ICE convective HID SFAD does not simulate even half the amount of low-density 
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graupel seen throughout the storm in the SBM convective HID SFAD (Fig. 4.31c). Some 

low-density graupel is present in the 4ICE convection, but there is still a good amount of 

of aggregates at mid-levels and then ice crystals at upper levels.  

Overall, the simulations look a bit more convective in nature than what is seen in 

the observations. RHIs (not shown) through convection in 4ICE showed stronger 

convection than was seen in observations (reaching up to 60-65 dBZ) that was confined 

to below 10 km AGL, but was present throughout the entire 22 Z hour, while SBM 

simulations showed slightly weaker maximum reflectivities, but allowed the 40 dBZ 

contour to reach up to 15 km in height for most of the simulated 22 Z hour. This resulted 

in the differences seen between 4ICE and SBM HID, and also explains why more 

convective-type species were seen in the model convective SFADs, while the observed 

convective SFADs showed more muted convection and a dominance of stratiform-type 

precipitation overall.  

The same type of convection was obviously not simulated between observations 

and the model. Thus, the main interest in this discussion is the differences observed 

between 4ICE and SBM simulations, which differed much more than was the case for 

MC3E convective regions. The stratiform precipitation regions did not differ as greatly 

between 4ICE (Fig. 4.31b) and SBM (Fig. 4.31d) for TWP – ICE. The biggest difference 

was a larger classification of low-density graupel in SBM vs. 4ICE. This is not surprising 

considering SBM (as mentioned earlier) allowed higher reflectivities to be present 

throughout almost the entire vertical extent of simulated precipitation. 

One goal of this work was to examine, at least for this specific set of simulations, 

whether the HID results were driven more by regime (tropical MCS vs. mid-latitude 

supercell), or if HID results were more sensitive to the microphysical scheme employed. 

The answer to this question is a complicated one, as both 4ICE and SBM simulations 

revealed differences in how the convective and stratiform HID SFADs were 

characterized for both MC3E and TWP-ICE, however differences were much more 
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noticeable in TWP-ICE. In the case of MC3E simulations, despite the vastly different 2D 

co-variance plots between SBM and 4ICE simulations, the HID SFADs for both 

convective and stratiform regions were fairly similar, and both were overall comparable 

to observations. In TWP-ICE, it would appear that the differences between 4ICE and 

SBM did have a large impact on HID classification. However, is that to say that differing 

regimes is the largest influence on HID classification? It seems unreasonable to say that 

that means automatically that the regime has a bigger hand in affecting HID 

classification, simply because the differences in TWP-ICE were starker than for MC3E, 

especially considering the fact that the simulated convection seems to not be the same 

as that occurring in observations for TWP – ICE for the 18 Z integrated hour. 

Additionally, to truly answer that question, longer simulated time periods need to be 

considered. For the moment, the answer to the question of which factor has a larger 

impact on HID classification is that both play a role in determining HID classification, 

and choosing one over the other is not possible in this case.  

A concerning problem for the majority of this work was the need to appropriately 

simulate a range of observed axis ratios and canting angles, as in nature each 

hydrometeor type does not embody one shape and each type does not cant in the same 

fashion as they fall. However, without in situ data to drive axis ratio – size dependent 

relationships, or in situ data of canting angles, where the range of canting angles is 

driven by turbulence, this study was limited to one assumed axis ratio, one assumed θ, 

and one assumed σ for graupel and ice crystals. Thus the true breadth of polarimetric 

variables was never achieved for the case of 4ICE simulations. The use of the Citation II 

values improved the resulting output, especially in the case of 4ICE co-variance plots 

for both MC3E and TWP-ICE. Even though the data was taken in the aggregate/ice 

crystal region of an Oklahoma supercell during MC3E, the relationship actually greatly 

improved simulations for TWP – ICE as well. It would be interesting to see the resulting 

HID SFADs if such a size-based relationship were also found and employed for graupel 
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and ice crystals. Thus, this work points towards the need for more in situ data taken in 

these regions, in order to improve not only POLARRIS results, but the results from any 

polarimetric radar simulator. 

While the canting angle and axis ratio assumptions certainly played a role in the 

resulting simulated polarimetric radar data, the differences between the handling of 

microphysics between the single-moment 4ICE scheme and the SBM scheme also hold 

a large role in determining the look of the synthetic polarimetric radar data. For 

example, consider Figure 11 from M17 (Figure 4.63 here) showing various PSD 

assumptions for the 23 May 2011 case from MC3E. As is explained in Matsui et al. 

(2017), the black line shows the PSD taken on 23 May 2011 measured with the Citation 

HVPS-3 (at a height of ~8 km). Solid and dotted blue lines show what the PSD would 

look like with assumptions for aggregates derived from DR09 (for 0.5 mm hr-1 and 10 

mm hr-1 equivalent snowfall rate, respectively). Comparisons between the flight path, 

images of particles within the flight path (taken with the high-resolution cloud particle 

imager), and HID performed on CSAPR data led to the conclusion that the region was 

stratiform, and aggregates dominated the path (Matsui et al. 2017). In the simulations, 

ice crystal maximum diameters are set to be generally < 1000 µm (1 mm), so that 

simulated PSDs included, for the most part, only snow aggregates. Model output is 

given from 23 UTC 23 May 2011 to 0130 UTC 24 May 2011, in 10 minute intervals. The 

green and red lines show the PSDs from 4ICE and SBM, for simulations completed 

close to how the aircraft would have “seen” these PSDs. This is explained further in-

depth in Iguchi et al. 2012b, however, basically the model microphysics PSD is re-

sampled into bulk PSD bin sizes that are arranged as an aircraft would have measured 

them. These are then integrated over the domain in order to obtain a mean PSD. This is 

done from 7-9 km (inclusive) in height, since those were the heights in which the 

Citation II aircraft operated (M17).  
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The resultant curves show some enlightening results. The 4ICE PSD curve 

follows closely that of the DR09 assumptions for an equivalent snowfall rate of 0.5 mm 

hr-1. The SBM PSD curve follows the same pattern until about 3-4 mm diameter, and 

then the slope lessens (compared to the 4ICE curve). The SBM PSD then displays a bi-

modal distribution by showcasing a secondary mode around 8 mm. At that point, the 

steepness of the curve is quite similar to what was seen for 4ICE. Certainly, this shows 

that while similar for smaller size aggregate particles, the 4ICE and SBM PSD 

distributions are not similar for medium-to-larger sized snow aggregates. Indeed, the 

ability to have a second mode in the SBM PSD around 8 mm explains some of the 

ability of SBM to have overall larger Zh values for snow aggregates than what was seen 

in 4ICE. Similarly, the bi-modal distribution, with a secondary mode around 8 mm in 

diameter, in the SBM PSD partially explains the ability of SBM to exhibit wider breath in 

Zdr and Kdp values. Figure 4.63 shows only results for MC3E data, as this type of data 

was not available for the same case for the 23 January 2006 TWP-ICE case. It would 

be interesting to see if there had been similar tests performed for TWP-ICE, if the 

findings would be similar to those found for the 23 May 2011 case in MC3E. However, 

this figure helps to summarize, to an extent, the impact of the choice of PSD itself. The 

axis ratio and canting angle assumptions, important as they may be, are only a part of 

the potential explanations for any differences seen between TWP-ICE and MC3E, or 

between models and observations. 

! SENSITIVITY TESTS ON THE IMPACT OF CHANGING AXIS RATIO AND 
CANTING ANGLE ASSUMPTIONS ON RADAR OBSERVABLES  
 

In addition to considering the impact of different regimes and different 

microphysics schemes on resulting HID classifications, also taken into account was the 

impact of changing axis ratio and canting angle input (and in the case of rain, which axis 

ratio – size dependent rain relation was used) on the most-frequently occurring radar 

observable as a function of height. That is, this section tested the uncertainty/sensitivity 
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in the resulting polarimetric radar data to changes in the assumptions input to the 

POLARRIS framework. The methodology for this is presented in Sec. 3.8. Figs. 4.33-

4.35 show these results for snow aggregates, Figs. 4.36-4.38 show these results for ice 

crystals, Figs. 4.39-4.41 show these results for graupel, and Figs. 4.42-4.44 show these 

results for rain.  

In general, changing axis ratio and canting angle assumptions does not have a 

large impact on the most-frequently identified reflectivity value, save for a couple sets of 

assumptions in MC3E and TWP-ICE SBM simulations and TWP-ICE 4ICE simulations 

for ice crystals (Fig. 4.36). The same can be said of the most-frequently occurring 

specific differential phase values, save for ice crystals which also saw a small bit of 

change depending on the axis ratio and canting angle assumptions (Fig. 4.37). This lack 

of change in Zh and Kdp with respect to differing axis ratio and canting angle inputs (for 

aggregates, graupel, and rain) is robust for 4ICE and SBM for both TWP-ICE and MC3E 

(Figs. 4.33, 4.34, 4.39, 4.40, 4.42, and 4.43). Differential reflectivity values, however, 

are more sensitive to axis ratio and canting angle assumptions (Figs. 4.35, 4.38, 4.41, 

and 4.44 for aggregates, ice crystals, graupel, and rain, respectively). Generally, the 

axis ratio chosen was more important than the standard deviation of canting angle 

chosen (at least, for these small 10°-15° changes in value, where a slightly larger value 

just forced the radar observable value closer to zero). Overall (outside of graupel), 4ICE 

simulations were more sensitive to the change in axis ratio and canting angle 

assumptions. Changes in these assumptions produced a large spread of Zdr values. 

Some variability in SBM simulations was seen for changing axis ratio and canting angle 

input, but not to the same extent as was seen for 4ICE. The result of SBM simulations 

being less sensitive than 4ICE to changes in the assumed axis ratio and canting angle 

assumptions was also observed in the co-variance plots. If not one, but multiple values 

of axis ratio, or standard deviation of canting angle, occur in nature, then this analysis 

highlights the importance of finding the appropriate range of these two parameters. 
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Narrowing simulations down to one axis ratio and one standard deviation of canting 

angle greatly limits the extent to which the appropriate range of Zdr can be simulated.  

! MODIFICATIONS TO CSU HID 
 

 The uncertainty and sensitivity of the HID retrieval itself to changes in the shape 

of the MBFs were the final tests conducted. The methodology for this is described in 

section 3.9. The resulting HID SFADs for convective and stratiform rain for TWP-ICE 

4ICE and SBM simulations, and TWP-ICE C-POL observations are shown in Fig 4.45 

(the original HID SFADs were shown in Fig. 4.31) and the HID SFADs for convective 

and stratiform rain for MC3E 4ICE and SBM simulations, and MC3E C-SAPR 

observations is shown in Fig. 4.46 (the original HID SFADs for MC3E were shown in 

Fig. 4.22). However, in order to better quantify differences in the simulations and 

observations due to the modified MBFs, HID pie chart plots were created (for TWP-ICE 

Figs. 4.47, 4.48 and 4.51, and for MC3E Figs. 4.49, 4.50 and 4.52). These plots help to, 

both visually and numerically, understand the sensitivity of the HID to the change in 

MBFs, with an emphasis placed on the variables simulated herein. In the end, no 

changes were made to the correlation coefficient MBFs, as the values of this radar 

observable for CSU HID – identified hydrometeors for CSAPR and CPOL were too 

noisy to be used for these sensitivity tests.  The original and modified MBFs, where 

frequency of occurrence of radar observables, identified for each hydrometeor via the 

CSU or POLARRIS HID, are overlaid to illustrate the reasoning for the modifications 

made, are shown in Figs 4.53-4.62. 

 From a cursory glance at the HID SFADs for both MC3E (Fig. 4.46) and TWP-

ICE (Fig. 4.45) model simulations (comparing between these SFADs based on the 

newly-modified MBFs and the HID SFADs made with the original MBFs) one detail is 

clear: the presence of aggregates for both regimes (tropical vs mid-latitude), and for 

both microphysical schemes, is small in comparison to graupel, hail, and ice crystal 
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categories in the convective region. Indeed, with the modified MBFSs, TWP – ICE now 

sees the presence of hail in convective regions reaching the ground (Fig 4.45 a, c, and 

e). This seems a bit unrealistic based on studies done in the for other MCSs in the 

Darwin area during their monsoon season (Dolan et al. 2013). Additionally, big drops 

are now identified in convective SBM simulations for both TWP-ICE and MC3E for 

4ICE, SBM, and observations whereas with the original MBFs whereas before both 

MC3E and TWP – ICE SBM convective precipitation saw no, or next to no, big drops.  

To get a better idea of the sensitivity of the bulk ice categories which were 

simulated (aggregates, graupel, ice crystals, along with rain) to the modified MBFs 

affected, HID pie chart plots are considered (see Sec. 3.9 where this as introduced). In 

the TWP-ICE 4ICE convective regions (Fig. 4.47), especially from 6-8 km, the increase 

in identified graupel (both high- and low-density graupel) severely reduces the amount 

of identified aggregates. From 8-12 km the main driver in decreasing aggregate 

classification is more so related to an increase in ice crystal classification. In the 

stratiform HID, at lower levels (4-6 km) an increase in identified rain and graupel leads 

to a decrease in aggregates from almost 50% to only 20%. Above this, the increase 

mainly in identified ice crystals results in a lower number of identified aggregates. In 

TWP-ICE SBM stratiform regions (Fig. 4.48), however, the decrease in identified 

aggregates has more to do with the increase in graupel in general, in tandem with the 

increase in ice crystals. In convective regions, the TWP-ICE SBM simulations identify 

both less aggregates and ice crystals due to the increase in identified graupel from 2 km 

and up in altitude.  

In MC3E 4ICE simulations (Fig. 4.49), the reasoning behind decreases in 

aggregates for convective regions is very similar to that of TWP-ICE, although graupel 

increasing at almost every altitude is a bigger driver than any increases in identified ice 

crystals. In fact, very few aggregates are identified in MC3E convective regions (for 

either 4ICE or SBM). This is not necessarily a negative aspect of the modified HID, as 



 96 

convective regions in mid-latitude supercells do not necessarily see an abundance of 

aggregate classification (e.g. Jensen et al. 2016). Indeed, similar to 4ICE simulations, 

the increase in graupel identification (and some increases in identified ice crystals) led 

to very little identified aggregates in MC3E SBM simulations (Fig. 4.50).  

What is perhaps the most shocking example of the sensitivity of the HID to MBF 

modification, however, is the almost complete disappearance of identified aggregates in 

stratiform rain regions for both SBM and 4ICE MC3E simulations. For both 

microphysical schemes, from ~4-10 km in height, aggregates dominated the HID 

classification with the original MBFs, and with the modified MBFs a mere 7 % (15 %) of 

hydrometeors from 4-6 km for 4ICE (SBM) are classified as aggregates. The biggest 

driver in the lower amount of identified aggregates in both scenarios for stratiform 

precipitation was the increase in identified ice crystals (as was the case for TWP-ICE 

4ICE simulations, and, to an extent, TWP-ICE SBM simulations). This would seem to go 

against logic, as these types of systems usually do see aggregates in the stratiform 

region (e.g. Matthews 2014). However, it is important to note that the aggregates 

category includes random “ice junk” (i.e. ice that is not pristine ice, yet also not rimed 

enough to be classified as graupel) in addition to snow aggregates that grow via the 

aggregation process. The changes made for aggregates and other species (discussed 

below) that resulted in the changes seen in these HID pie charts illustrate the sensitivity 

of the HID retrievals to these MBF changes. These changes obviously produce a large 

amount of uncertainty of potential ranges for identified hydrometeors (especially for 

aggregates), and thus in future work on actual improvement of the HID MBFs, extreme 

care should be taken in considering the MBFs for these species. 

As was discussed above, the classification of aggregates in model simulations 

was heavily influenced by the change in MBFs. In TWP-ICE observations (Fig. 4.51), 

however, there was still a large abundance of aggregates above 4 km identified 

throughout the integrated storm after MBF modification. There were some decreases for 
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convective regions in aggregate classification due to increases in the classification of 

graupel (which decreased classification of aggregates – and rain – classification up 

through ~ 12 km) and ice crystals (which depressed aggregate classification from ~ 8 – 

16 km). In stratiform regions, some increases in ice crystals resulted in reduced 

amounts of classified aggregates. For MC3E observations (Fig. 4.52), in the convective 

regions increases in graupel throughout the simulated storm resulted in decreases in 

rain, aggregate, and ice crystal classification. Increases in ice crystal classification also 

resulted in some decreases in aggregate classification for stratiform precipitation. 

However, the overall abundance of aggregates was not nearly as reduced as in 4ICE or 

SBM simulations for TWP – ICE, and especially for MC3E. Hence, it would seem that 

the model HID simulations, for these specific simulation time periods at least, were 

more sensitive to the change in MBFs than CSAPR or CPOL observations. 

Why did these modifications lead to such a decrease in identified aggregates, 

generally in favor of graupel for convective regions, and ice crystals (and some graupel) 

in stratiform regions? Likely the answer to that question is related to the various 

modifications made to the MBFs, particularly how the shape and breadth of reflectivity 

MBF contours changed (since reflectivity is the most heavily-weighted variable in the 

CSU HID retrieval employed by iPOLARRIS). Indeed, when looking at the modified 

MBFs (Figs. 4.53 - 4.62), the snow aggregate reflectivity MBF (Fig. 4.53) was shifted to 

include reflectivities below -5 dBZ, since C-POL aggregates reach below that value. The 

fact that CPOL aggregate reflectivity does extend beyond the range set by the MBFs 

seems odd since HID results are heavily driven by reflectivity. These reflectivities should 

theoretically not have occurred. Thus, perhaps there are some small ice “junk” particles 

that did not fit the specification for pristine ice crystals that were classified as 

aggregates. This would then produce low reflectivities for aggregates, which resulted in 

the change of the aggregate reflectivity MBF to include those lower values. Along with a 

shift in the aggregate reflectivity MBF, the differential reflectivity MBF was modified to 
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include lower values of Zdr produced by C-SAPR. The actual values that CSAPR 

aggregate Zdr data reached seemed a bit low compared to literature (e.g. DR09; Dolan 

et al. 2013; Thompson et al. 2014). The lower Zdr values seen in the CSAPR 

observations may be the result of differential attenuation that was not able to be 

corrected for in its entirety. However, since the aim of the MBF modifications was to test 

the sensitivity in the HID retrievals to changes in the MBFs, the lower aggregate Zdr 

values (as was the case for Zh values) were allowed in order to observe what would 

occur if that were allowed.  

Some have made the argument (i.e. Wen et al. 2015) that this differential 

attenuation is a characteristic of the radar signal quality, and as such it should be 

included in the hydrometeor classification process. Wen et al. (2015) argue that this 

attenuation, or noise, would likely have an impact on the polarimetric variable PDFs 

derived from the radar that describe individual hydrometeor types. Hence, attenuation 

and noise, by that logic, should actually be included in the hydrometeor identification 

membership beta functions. This is an interesting counterpoint to the typical efforts to 

eliminate, as much as possible, noise, differential attenuation, etc. seen in the radar 

data QC process. 

Clearly, more than just the snow aggregate MBFs were modified. Changes in 

other hydrometeors’ MBFs likely also affected the outcome of aggregate classification. 

In future work, changes to each of the polarimetric radar MBFs for each hydrometeor 

should be tested to see the extent to which HID retrievals are sensitive to each 

individual MBF. CSAPR and CPOL reflectivity values for ice crystals (see Fig 4.54) were 

larger than the original MBFs allowed, and so the higher-end threshold of the ice crystal 

reflectivities was changed from ~20 dBZ to ~30 dBZ. Differential reflectivity signatures 

from observations required a large shift in the MBFs from ranging from 0-6 dB originally, 

to now -2 to 3 dB). Additionally, the low-density graupel MBF (Fig 4.55) was allowed to 

shift to slightly lower reflectivities, allowing now reflectivities to ~20 dBZ instead of ~25 
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dBZ. The high-density graupel MBF (Fig 4.56) did not require any modification to the 

reflectivity MBF, however, as was the case with low-density graupel, the differential 

reflectivity contours were modified to include much lower Zdr values. Although hail (Fig. 

4.61) is not one of the variables shown in the pie chart plots, in the HID SFADs there 

was a noticeable increase in hail amounts in both TWPICE and MC3E convective 

regions. Perhaps in TWP – ICE this was more likely an increase in high-density graupel 

than hail?  

Large amounts of hail in MCSs observed in the Darwin region were not generally 

observed, but rather high-density graupel was seen with a small amount of hail at upper 

levels that turned into big drops at lower levels (Dolan et al. 2013). Though the 

reflectivity MBF was not modified much for hail, it was shifted down to allow reflectivities 

down to ~40 dBZ instead of previously-defined 45 dBZ. The Zdr and Kdp contours were 

more severely modified, with Zdr ranges changing from -1 to 1 dB to ~ -2.5 to 3 dB, 

based on observations (though results past 3 dB were not included simply because of 

the large probability that those signatures were probably noise that was not able to be 

filtered out and not actual hail signatures). Wen et al. (2015), however, might have 

argued against that decision. This, along with other hydrometeors’ reflectivity MBF 

modifications (as well as Zdr and Kdp MBF modification, though these variables are less-

heavily weighted than Zh), was enough to allow more hail classifications, shunting the 

classification of aggregates at that time.  

Note that while reflectivity certainly has a large hand in the resultant HID, Zdr and 

Kdp also affect HID retrievals (even though they are not weighted as heavily as 

reflectivity or temperature). Indeed, some large changes to the MBF structure for Zdr 

occurred, as is stated above for the hydrometeors pertinent to this study. Kdp was also 

affected, though for most of the HID’s simulated species, the MBFs needed only slight 

modification to fit the observations. The species that differed included high-density 

graupel (Fig. 4.56), hail (Fig. 4.61), and rain (Fig. 4.57), which all required a stricter 
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range in Kdp values than what was seen for the original MBFs. Quite often, shifts in the 

MBF location for Zdr had to do with low biases in radar observables seen in C-SAPR 

observations. This is likely a result of the differential attenuation that was not able to be 

completely removed in the QC process. Again, some might argue that that is 

appropriate to leave those noise signals in the data for MBF modification (Wen et al. 

2015). 

These modified MBFs are not meant to replace the original MBF functions, as 

many more datasets would be required to “train” the MBFs. Additionally, more in situ 

data validating the defined MBF ranges for each hydrometeors are required to give 

enough confidence to define a new, novel MBF set based on values seen in nature. 

Currently, the CSU HID results for C-SAPR and C-POL are used to modify the MBFs. 

To use these results to create a new set of MBFs (in this work, for C-Band radar) would 

be a bit circular, and thus no attempt was made to set out to make a completely new 

MBF set. Of course, without in situ data to validate HID results, that circularity is a bit 

difficult to avoid. Rather, the modification of the MBFs and the comparison of results 

from POLARRIS-f and CSAPR and CPOL observations was done to test the sensitivity 

of the HID retrievals to changes in the MBF sets as a means of characterizing the 

uncertainty associated with the HID algorithm. Furthermore, the differences seen in the 

HID retrievals resulting from modifications to the MBFs highlight the fact that the HID 

from observations should not be considered ‘truth’. Although the HID retrievals from 

observations were not as susceptible to changes based on MBF modification as for 

model output, they were affected. Thus, the challenge of closing the gap between model 

simulations and observations is attacked from two sides: 1) defining inputs to a radar 

simulator such that HID results are comparable between model simulations and 

observations and understanding the uncertainties therewith, and 2) defining the 

uncertainty associated with the HID algorithms themselves and the extent to which that 

uncertainty affects HID retrievals and comparability between models and observations. 
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Table 4.1: Inputs to POLARRIS-f for MC3E, 4ICE and SBM, aggregates, ice crystals, graupel and rain. θ 

indicates the mean canting angle at which a hydrometeor falls, and σ indicates the amount to which a particle 
flutters as it falls (i.e. the standard deviation of the mean canting angle). Items highlighted in blue indicate the 
input axis ratio and canting angle assumptions chosen as the most comparable with respect to observations. 
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Table 4.2: Inputs to POLARRIS-f for TWP-ICE, 4ICE and SBM, aggregates, ice crystals, graupel and rain. θ indicates 

the mean canting angle at which a hydrometeor falls, and σ indicates the amount to which a particle flutters as it falls 
(i.e. the standard deviation of the mean canting angle). Items highlighted in blue indicate the input axis ratio and 

canting angle assumptions chosen as the most comparable with respect to observations. 
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Figure 4.1: Results for aggregates using the original T-Matrix, Mueller Matrix framework, where reflectivity 
is shown in (a), specific differential reflectivity in (b), differential reflectivity in (c), and correlation coefficient 

in (d). Red lines denote canting angle and standard deviation of canting angle assumptions from GE15, 
while black lines denote those of DR09. Dotted lines denote axis ratios of 0.9 (nearly spherical), and solid 

lines denote axis ratios of 0.2 (very oblate particles). 
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Figure 4.2: Heat map of mean negative Zdr values as a function of reflectivity and temperature for NPOL data 
from April and May 2011. The black box indicates the temperatures and reflectivities at which the CSU HID 

MBF for low-density graupel resides. 
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Figure 4.3: Results for low-density graupel using the original T-Matrix, Mueller Matrix framework, where 
reflectivity is shown in (a), specific differential reflectivity in (b), differential reflectivity in (c), and correlation 
coefficient in (d). Red lines denote canting angle and standard deviation of canting angle assumptions from 
GE15, while black lines denote those of DR09. Dotted lines denote axis ratios of 1.25 (prolate), and solid 

lines denote axis ratios of 0.65 (somewhat oblate particles). 
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Figure 4.4: Results for high-density graupel (graupel) using the original T-Matrix, Mueller Matrix 
framework, where reflectivity is shown in (a), specific differential reflectivity in (b), differential reflectivity in 

(c), and correlation coefficient in (d). Red lines denote canting angle and standard deviation of canting 
angle assumptions from GE15, while black lines denote those of DR09. Dotted lines denote axis ratios of 

1.25 (prolate), and solid lines denote axis ratios of 0.5 (fairly oblate particles). 
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Figure 4.5: Box and whisker plot LUT visualizations for 4ICE Aggregate reflectivity. The first box and whisker plot denotes the “low” radar elevation angle 

(0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-90°). Red 
colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, and 

yellow with GE15 assumptions. 
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Figure 4.6: Box and whisker plot LUT visualizations for 4ICE Aggregate specific differential phase. The first box and whisker plot denotes the “low” radar 

elevation angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle 

(60°-90°). Red colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” 
assumptions, and yellow with GE15 assumptions. 
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Figure 4.7: Box and whisker plot LUT visualizations for 4ICE Aggregate differential reflectivity. The first box and whisker plot denotes the “low” radar elevation 

angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-90°). Red 
colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, and yellow 

with GE15 assumptions. 
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Figure 4.8: Box and whisker plot LUT visualizations for 4ICE Ice Crystal reflectivity. The first box and whisker plot denotes the “low” radar elevation angle (0°-

30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-90°). Red colors are 
associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, and yellow with GE15 

assumptions. 
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Figure 4.9: Box and whisker plot LUT visualizations for 4ICE Ice Crystal specific differential phase. The first box and whisker plot denotes the “low” radar 

elevation angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-

90°). Red colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, 
and yellow with GE15 assumptions. 
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Figure 4.10: Box and whisker plot LUT visualizations for 4ICE Ice Crystal differential reflectivity. The first box and whisker plot denotes the “low” radar elevation 

angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-90°). Red 
colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, and yellow 

with GE15 assumptions. 
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Figure 4.11: Box and whisker plot LUT visualizations for 4ICE Graupel reflectivity. The first box and whisker plot denotes the “low” radar elevation angle 

(0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-90°). 
Red colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, 

and yellow with GE15 assumptions. 
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Figure 4.12: Box and whisker plot LUT visualizations for 4ICE Graupel specific differential phase. The first box and whisker plot denotes the “low” radar 

elevation angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation angle (60°-

90°). Red colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with “control” assumptions, 
and yellow with GE15 assumptions. 
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Figure 4.13: Box and whisker plot LUT visualizations for 4ICE Graupel differential reflectivity. The first box and whisker plot denotes the “low” radar 

elevation angle (0°-30°), the middle box denotes the “medium” radar elevation angle (30°-60°), and the third box denotes the “high” radar elevation 

angle (60°-90°). Red colors are associated with DR09 assumptions blue colors with S00 assumptions, green with R11 assumptions, purple with 
“control” assumptions, and yellow with GE15 assumptions. 
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Figure 4.14: Rain co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E 4ICE and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.15: Ice Crystal co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E 4ICE and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 

a 

b 

c 

d 

e 

f 



 118 

 

  

Figure 4.16: Graupel co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E 4ICE and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.17: Aggregate co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E 4ICE and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.18: Aggregate co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E SBM and (d-f) MC3E 
observations. Model results are shown to the let and observations to the right. 
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Figure 4.19: Ice Crystal co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E SBM and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.20: Graupel co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E SBM and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.21: Rain co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) MC3E SBM and (d-f) MC3E 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.22: HID CFAD plots from the “best” assumptions for (a,b) convective and stratiform MC3E 
4ICE, the “best” assumptions for (c,d) convective and stratiform MC3E SBM, and then for (e,f) 

convective and stratiform MC3E observations. 
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Figure 4.23: Aggregate co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE 4ICE and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.24: Ice Crystal co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE 4ICE and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.25: Graupel co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE 4ICE and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.26: Rain co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE 4ICE and (d-f) TWP-ice 
observations. Model results are shown to the left and observations to the right. 
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Figure 4.27: Aggregate co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE SBM and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.28: Ice Crystal co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE SBM and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.29: Graupel co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE SBM and (d-f) TWP-
ICE observations. Model results are shown to the left and observations to the right. 
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Figure 4.30: Rain co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE SBM and (d-f) TWP-ice 
observations. Rain co-variance plots of Z-Zdr, Z-Kdp, and Kdp-Zdr for (a-c) TWP-ICE SBM and (d-f) TWP-ice 

observations. Model results are shown to the left and observations to the right. 
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Figure 4.31: HID CFAD plots from the “best” assumptions for (a,b) convective and stratiform TWP-ICE 
4ICE, the “best” assumptions for (c,d) convective and stratiform TWP-ICE SBM, and then for (e,f) 

convective and stratiform TWP-ICE observations. 
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Figure 4.32: Reflectivity contours for TWP – ICE CPOL observations during the 22 Z hour for a) 
convective precipitation and b) stratiform precipitation. 
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Figure 4.33: Mean of the most frequently occurring reflectivity as a function of altitude for assumed sets of 
aggregate axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE TWPICE, 

and d) SBM TWPICE. 
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Figure 4.34: Mean of the most frequently occurring specific differential phase as a function of altitude for 
assumed sets of aggregate axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 

4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.35: Mean of the most frequently occurring differential reflectivity as a function of altitude for 
assumed sets of aggregate axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 

4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.36: Mean of the most frequently occurring reflectivity as a function of altitude for assumed sets of 
ice crystal axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE TWPICE, 

and d) SBM TWPICE. 
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Figure 4.37: Mean of the most frequently occurring specific differential phase as a function of altitude 
for assumed sets of ice crystal axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM 

MC3E, c) 4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.38: Mean of the most frequently occurring differential reflectivity as a function of altitude for 
assumed sets of ice crystal axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, 

c) 4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.39: Mean of the most frequently occurring reflectivity as a function of altitude for assumed sets of 
graupel axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE TWPICE, 

and d) SBM TWPICE. 
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Figure 4.40: Mean of the most frequently occurring specific differential reflectivity as a function of altitude 
for assumed sets of graupel axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, 

c) 4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.41: Mean of the most frequently occurring differential reflectivity as a function of altitude for 
assumed sets of graupel axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, 

c) 4ICE TWPICE, and d) SBM TWPICE. 
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Figure 4.42: Mean of the most frequently occurring reflectivity as a function of altitude for assumed sets 
of rain axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE TWPICE, and 

d) SBM TWPICE. 
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Figure 4.43: Mean of the most frequently occurring specific differential phase as a function of altitude for 
assumed sets of rain axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE 

TWPICE, and d) SBM TWPICE. 
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Figure 4.44: Mean of the most frequently occurring differential reflectivity as a function of altitude for assumed sets 
of rain axis ratio and canting angle assumptions for a) 4ICE MC3E, b) SBM MC3E, c) 4ICE TWPICE, and d) SBM 

TWPICE. 
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Figure 4.45: HID CFAD plots, with modified MBFs, from the “best” assumptions for (a,b) convective and 
stratiform TWP-ICE 4ICE, the “best” assumptions for (c,d) convective and stratiform TWP-ICE SBM, and 

then for (e,f) convective and stratiform TWP-ICE observations. 
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Figure 4.46: HID CFAD plots, with modified MBFs, from the “best” assumptions for (a,b) convective and 
stratiform MC3E 4ICE, the “best” assumptions for (c,d) convective and stratiform MC3E SBM, and then 

for (e,f) convective and stratiform MC3E observations. 
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Figure 4.47: HID pie chart plots for 4ICE TWP-ICE HID, showing convective HID in the left two plots, for 
modified and original MBFs, and stratiform HID in the right two plots, for modified and original MBFs. As 

is indicated in the legend, blue represents rain, light blue represents graupel, red represents 
aggregates, and green represents ice crystals. 
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Figure 4.48: HID pie chart plots for SBM TWP-ICE HID, showing convective HID in the left two plots, 
for modified and original MBFs, and stratiform HID in the right two plots, for modified and original 

MBFs. As is indicated in the legend, blue represents rain, light blue represents graupel, red represents 
aggregates, and green represents ice crystals. 
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Figure 4.49: HID pie chart plots for 4ICE MC3E HID, showing convective HID in the left two plots, for 
modified and original MBFs, and stratiform HID in the right two plots, for modified and original MBFs. As 
is indicated in the legend, blue represents rain, light blue represents graupel, red represents aggregates, 

and green represents ice crystals. 
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Figure 4.50: HID pie chart plots for SBM MC3E HID, showing convective HID in the left two plots, for modified 
and original MBFs, and stratiform HID in the right two plots, for modified and original MBFs. As is indicated in the 
legend, blue represents rain, light blue represents graupel, red represents aggregates, and green represents ice 

crystals. 
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Figure 4.51: HID pie chart plots for TWP-ICE observations HID, showing convective HID in the left two 
plots, for modified and original MBFs, and stratiform HID in the right two plots, for modified and original 
MBFs. As is indicated in the legend, blue represents rain, light blue represents graupel, red represents 

aggregates, and green represents ice crystals. 
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Figure 4.52: HID pie chart plots for MC3E observations HID, showing convective HID in the left two plots, 
for modified and original MBFs, and stratiform HID in the right two plots, for modified and original MBFs. 

As is indicated in the legend, blue represents rain, light blue represents graupel, red represents 
aggregates, and green represents ice crystals. 
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Figure 4.53: Plots of aggregate MBFs (black) for the original (left) framework and the modified (right), with 
frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified aggregates for (a,b) reflectivity, 

(c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.54: Plots of ice crystal MBFs (black) for the original (left) framework and the modified (right), 
with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified ice crystals for (a,b) 

reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.55: Plots of low-density graupel MBFs (black) for the original (left) framework and the modified 
(right), with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified low-dentisty 

graupel for (a,b) reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.56: Plots of high-density graupel MBFs (black) for the original (left) framework and the modified 
(right), with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified high-density 

graupel for (a,b) reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.57: Plots of rain MBFs (black) for the original (left) framework and the modified (right), with 
frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified rain for (a,b) reflectivity, (c,d) 

differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.58: Plots of vertical ice MBFs (black) for the original (left) framework and the modified (right), 
with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified vertical ice for (a,b) 

reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.59: Plots of wet snow MBFs (black) for the original (left) framework and the modified (right), 
with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified wet snow for (a,b) 

reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.60: Plots of big drops MBFs (black) for the original (left) framework and the modified (right), 
with frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified big drops for (a,b) 

reflectivity, (c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.61: Plots of hail MBFs (black) for the original (left) framework and the modified (right), with 
frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified hail for (a,b) reflectivity, 

(c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.62: Plots of drizzle MBFs (black) for the original (left) framework and the modified (right), with 
frequency of occurrence for CPOL (red) and CSAPR (blue) HID-identified drizzle for (a,b) reflectivity, 

(c,d) differential reflectivity, and (e,f) specific differential phase. 
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Figure 4.63: Figure 11 from M17. PSD curve for the Citation HVPS-3 snow aggregate data taken from 
0021-0028 UTC on 23 May 2011 MC3E case (black line), and then equivalently-modelled curves for 

assumptions from DR09, with an assumed equivalent snowfall rate of 0.5 mm hr
-1

 and 10 mm hr
-1

 (for the 
solid and dotted blue lines, respectively), as well as the 4ICE modelled data (green line), and the SBM 
modelled data (red line). Modelled data was output at 10 minute intervals from 23 UTC 23 May 2011 to 

0130 UTC 24 May 2011. 
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CHAPTER 5: CONCLUSIONS 
 
 

A methodology for evaluating cloud resolving model performance by simulating 

radar observables and comparing to radar-based observations has been investigated. 

Evaluations were performed via HID. Thus, the sensitivity of the HID to the two regimes 

types employed (tropical MCS vs. mid-latitude supercell), and the two microphysical 

schemes utilized (Goddard 4ICE and HUCM SBM) were tested. Tests on the HID 

retrieval’s uncertainty were performed via changing the input MBFs. Finally, 

characterizations of the uncertainty associated with the mean of the most frequently 

identified polarimetric radar variables changed with respect to height were made by 

changing axis ratio and canting angle assumptions input to the POLARRIS framework. 

These extensive tests, performed to evaluate both the HID retrieval and simulations of 

polarimetric data, were completed via the newly developed POLARRIS framework. This 

framework includes a forward model component, POLARRIS-f, where radar 

observables are simulated from CRM output combined with certain user assumptions 

(e.g. axis ratio, θ, and σ) which are used in a T-Matrix, Mueller matrix framework. An 

inverse component, iPOLARRIS, was also developed where the same retrievals can be 

applied to both observations and synthetic data generated by POLARRIS-f output. 

Though this work focuses on utilizing POLARRIS framework, the results could certainly 

apply to other attempts to simulate polarimetric radar variables based on models, 

including the addition of other radar wavelengths, and well as to investigate 

assumptions inherent in HID retrievals.  

In summary, this work has resulted in the following important findings: 

 

1.! Axis ratio has a larger impact than canting angle assumptions on simulating 

radar polarimetric signatures. That is, when run through the range of potential 
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axis ratios, or θ and σ assumptions, changes in axis ratio result in larger changes 

to the resultant radar polarimetric signatures.    

 

 In both the sensitivity tests performed in the original T-Matrix, Mueller matrix 

framework, as well as the LUT sensitivity tests (where similar questions as to how radar 

observable values changed with respect to the values of the inputs, as well as a general 

check on the realism of the generated values were tested), it was found that axis ratio 

had a larger impact on the resulting polarimetric radar variables than did changes to the 

canting angle. Knowing this, several different axis ratios were run through POLARRIS-f 

and iPOLARRIS in the attempt to determine the value that would yield the closest 

comparison with observations, while generally only 1-2 different σ values were tested 

for each hydrometeor type. When examining the sensitivity tests of the most-frequently 

identified polarimetric radar variable value with respect to height, for each hydrometeor 

type, and for each regime, it seemed that Zdr was the most impacted by the changes in 

θ, and σ. This was particularly the case for 4ICE, in both MC3E and TWP-ICE. The fact 

that SBM was not as affected likely points to the differences in the handling of PSDs in 

the model. If multiple axis ratio and canting angle assumptions are valid for each 

hydrometeor type (which seems likely as nature does not tend to follow a certain set of 

“rules”) then especially if one wants to catch the range of potential Zdr values for a given 

hydrometeor type, an axis ratio – size dependent relationship (and perhaps one for 

canting angle assumptions) need to be established (See Tables 4.1 and 4.2 for values 

input to the model here in for 4ICE and SBM, i.e. the values highlighted in blue). 

 

2.! Although 4ICE MC3E results were the most comparable with observations, 

results could have been improved. Defined axis ratio – size dependent 

relationships for aggregates and rain helped improve the comparability between 
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the model and observations. However, graupel and ice crystals utilized one set of 

axis ratio and canting angle assumptions simulated too small of reflectivity 

values, and often converged to a single Zdr and Kdp value. It is clear that a single 

axis ratio applied to all data within a grid point will not reproduce the breadth of 

polarimetric data observed in nature, and axis ratio – size dependent 

relationships and/or canting angle assumptions driven by turbulence are needed 

to more appropriately simulate polarimetric variables. 

 

Co-variance of radar observables with respect to one other revealed, especially for 

4ICE (for both TWP-ICE and MC3E), illustrate the need to implement an axis ratio – 

size dependent relationship in order to better simulate the range of values seen in radar 

observations. Tests where relationships such as these were implemented (i.e. the 

Citation II axis ratio – size dependent relationships for snow aggregates and the 

Brandes et al. 2002 rain axis ratio – size dependent relationship), resulted in values that 

seemed to better match what was shown in observations. However, tests where only 

one axis ratio and one set of canting angle assumptions were used yielded much 

smaller ranges in general of all radar observables. That is, mostly in the case of 4ICE, 

tests with one axis ratio, one θ value, and one σ value, resulted in results converging in 

on one value of Zdr and Kdp. Additionally, for 4ICE, reflectivity values were much too 

small. To an extent, the lack of turbulence applied to the simulated hydrometeors in the 

scattering simulations, and the chosen PSD probably influenced the lack of variability in 

the simulated polarimetric radar variable values. That is, the lack of ranges in Zdr and 

Kdp values and too small of values in Zh were potentially a result of the parameterized 

PSD (while the broader ranges in Zh, Zdr, and Kdp in SBM were a result of how the PSD 

developed), the lack of turbulence applied in the scattering simulations, or even the 

assumed density. The exact answer to these issues needs to be explored further, with 
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more tests done in the model and in the POLARRIS framework to help improve the 

simulations.   

 

3.! There are important differences in the results from SBM and 4ICE. Likely, these 

are due to the physical assumptions inherent in 4ICE (particle densities, 

prescribed PSDs) and the extra degrees of freedom in SBM (an evolving rime 

fraction and PSDs which are allowed to evolve organically). 

 

SBM results were less clear in general than 4ICE (for both TWP-ICE and MC3E), 

where the stricter ranges of radar variables for each hydrometeor seen in observations 

was not as evident in SBM. The general reasoning for this may have to do with the 

inherent nature of more degrees of freedom present in the way SBM’s PSD and rime 

fraction evolves. SBM results for TWP-ICE and MC3E were not nearly as comparable 

as was the case for 4ICE and observations, but both shared the issue of ill-defined 

polarimetric radar variable ranges for the four different hydrometeors simulated 

(aggregates, ice crystals, graupel, and rain).  

 

4.! Despite the inability to truly capture the range of values for polarimetric data seen 

in observations, the HID was fairly robust and revealed important model 

shortcomings such as the general overproduction of graupel and hail with respect 

to observations. 

 

In the case of MC3E, 4ICE and SBM results were not night and day in terms of 

differences in one from the other for HID SFADs. Both compared relatively well with C-

band radar observations, though some differences, such as the large production of hail 

and graupel compared to observations were noted. The largest difference between 

observations and MC3E model simulations was the almost complete void of any wet 



 170 

snow in the transition region across the melting level that is clearly seen in the 

observations (in stratiform precipitation, though the convective precipitation also 

identified wet snow as well). This result is due to the fact that melting was not allowed in 

POLARRIS-f. Regardless of this fact, there is also the knowledge that the hour 

simulated by the model was not necessarily the same hour seen in the storm cycle in 

observations. Thus, the more important result from this thesis is rather the sensitivity of 

the resultant HID to a different handling of microphysics. 4ICE and SBM results were 

not identical, although they were more similar in for MC3E than for TWP – ICE. Thus 

the differences between the microphysics schemes also had a hand in overall 

hydrometeor identifications.  

TWP-ICE HID SFADs were not nearly as comparable with observations (including 

the lack of wet snow, which makes sense given the above discussion), although after 

considerations of reflectivity RHIs for convective and stratiform regions for CPOL 

observations and for 4ICE and SBM, it was revealed that the 18 Z hour in the model 

contained more convection than the simulated hour in CPOL. This mismatch between 

model and observations HID SFADs would potentially diminish with a longer integration 

time that fully captured the storm lifecycle in both observations and model simulations. 

 

5.! The resulting HID can be quite sensitive to changes in the MBFs, where 

modifications can cause certain hydrometeor species to be identified much more 

frequently than others, such as favoring graupel and ice crystals over aggregate 

classifications. This was especially true for the simulated data, while 

observations were less sensitive to these changes. 

 

Modifications to the MBFs produced interesting results in both the model and 

observationally-based HIDs. In general, for both regimes, for both microphysical 

schemes (bulk and bin), model simulations where the HID MBFs were modified resulted 
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in less identification of aggregates, in favor of the inclusion of more of the other ice 

hydrometeor types. A discussion of these differences can be found in Sec. 4.5, where 

the accompanying figures are Figs. 4.31 and 4.45 for the original- and modified-MBF 

cases for TWP – ICE, and 4.22 and 4.46 for the original- and modified-MBF cases for 

MC3E. However, it generally appeared as though increases in hail, low- and high-

density graupel, and ice crystals (at mid- to upper-levels) were the reason behind 

decreases in aggregate production overall. The MC3E 4ICE simulation in particular was 

sharply impacted by the change in MBFs. Observations were less so affected by this 

change. Thus, the decision for values related to MBFs can have a large effect on the 

resulting HID classifications. Special care should be given to the values input to MBFs, 

and more simulations for other regions should be performed as well, to further test the 

sensitivity of the HID to MBF modification. It would be interesting to train the MBFs with 

not only more cases from each field campaign, but for more field campaigns in different 

locations (here, only a tropical MCS and a mid-latitude supercell are tested). This would 

also be a good methodology to apply to multiple radar wavelengths (i.e. include this 

study for S- and X-band as well). 

In general, MC3E seemed to compare better between model output and 

observations than did TWP-ICE. One could impulsively then state that the regime 

chosen has a larger impact on the resultant HID simulated than the chosen 

microphysics scheme. However, it is difficult to say this with certainty since a short 

period of time (22 Z integrated hour for MC3E on 23 May 2011 and the 18 Z integrated 

hour for TWP-ICE on 23 January 2006) was chosen to simulate for each region. 

Additionally, especially for TWP – ICE, it would appear that the simulated convection in 

the model does not necessarily correspond to the same hour of convection in the storm 

cycle in observations (based on Figs. 4.31 and 4.32, as well as several simulated 

convective and stratiform RHI reflectivity scan for 4ICE and SBM – not shown). MC3E’s 

simulated convection in both 4ICE and SBM were not far off from the convection 
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simulated in CSAPR observations, however, that does not mean that the exact same 

hour in time in the observations corresponded to the hour simulated (Fig. 4.22, as well 

as several simulated convective and stratiform RHI reflectivity scan for 4ICE and SBM – 

not shown). Although comparisons between model results and observation results were 

not always entirely comparable, details about the resulting simulations between 4ICE 

and SBM are still useful. Since changes were observed between 4ICE and SBM HID 

simulations (as well as simulations of the mean of the most frequently identified radar 

observable with respect to height), the type of microphysics scheme chosen does seem 

to have at least a measurable impact on the resulting HID (see Figs. 4.22, 4.31, 4.33-

4.46).  

5.1! FUTURE WORK 
 

Much work has already been done to simulate radar observables. However, the 

“best” inputs for axis ratio, θ (mean canting angle), and σ (the amount to which a particle 

tumbles) are still uncertain. For graupel and ice crystals, only one set of axis ratio and 

canting angle assumptions are implemented, which resulted in unrealistically small Zh, 

Zdr, and Kdp values in the co-variance plots for 4ICE (and to an extent, SBM). This work 

has shown that these assumed inputs do indeed cause changes in the simulated 

polarimetric radar variable values, particularly in the case of 4ICE Zdr values. Axis ratios 

overall seem to have a larger impact on the resultant simulated radar observables than 

does canting angle assumption changes. However, canting angle changes greater than 

15° from one assumption to the next were not tested and should be investigated to find 

the extent to which axis ratio inputs have more influence than canting angle 

assumptions). More in situ data which identify axis ratio and canting angle relationships 

as related to particle size for ice hydrometeors would be helpful in making model results 

more comparable with observations. The methodology herein outlines how to utilize the 

POLARRIS framework for evaluating various axis ratio and canting angle assumptions, 
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thus the inclusion of more of the kinds of requested relationships would be easy to 

implement and test with observations.  

HID has been shown to be a robust method for evaluating model output with 

respect to observations. Differences between HID SFADs for 4ICE and SBM for the two 

different regimes chosen show that the handling of the microphysics scheme can make 

a significant difference in HID classification. The regime itself also impacts resulting HID 

retrievals (that is, the specific microphysical processes characterizing those regimes 

influence HID retrievals). However, in order to further investigate which has a larger role 

in determining HID classification, longer time periods for multiple days for TWP-ICE and 

MC3E would need to be run. Additionally, it would be helpful to include more locations 

as well. No matter the location or microphysics simulated, however, model output in 

struggles to capture the occurrence of wet snow. This is due to the fact that melting 

hydrometeors were not simulated in the POLARRIS framework. Thus, tests that include 

melting hydrometeors should be pursued to help improve the simulation of the melting 

layer.  

The MBFs also play a role in the HID classification. The HID classifications are 

fairly sensitive to modifications in the MBFs, particularly in the extent to which snow 

aggregates are or are not classified with respect to other ice hydrometeors. Thus, it was 

shown that there is a decent amount of uncertainty associated with the HID retrievals 

themselves to changing MBF inputs. The handling of these MBFs should be exercised 

with extreme caution, as changes can yield wildly different results. Herein, efforts were 

directed solely at testing the variability of the HID to changes in the MBFs. At the 

moment, with the simulated time periods and locations, the sample size is too small to 

call these modified MBFs a “new” set of MBFs to use as ground truth. In order to attack 

that challenge, longer time periods need to be considered from TWP-ICE and MC3E, as 

well as other locations. 
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