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Abstract—
Performing computing and communication tasks

on parallel and distributed systems may involve the
coordinated use of different types of machines, net-
works, interfaces, and other resources. All of these
resources should be allocated in a way that max-
imizes some system performance measure. How-
ever, allocation decisions and performance predic-
tion are often based on “nominal” values of appli-
cation and system parameters. The actual values
of these parameters may differ from the nominal
ones, e.g., because of inaccuracies in the initial es-
timation or because of changes over time caused by
an unpredictable system environment.

An important question then arises: given a sys-
tem design, what extent of departure from the as-
sumed circumstances will cause the performance to
be unacceptably degraded? That is, how robust is
the system? To address this issue, one needs to de-
rive a design methodology for deriving the degree
of robustness of a resource allocation – the maxi-
mum amount of collective uncertainty in applica-
tion and system parameters within which a user-
specified level of performance can be guaranteed.
Our procedure for this is presented in this paper.

The main contributions of this research are (1)
a mathematical description of a metric for the ro-
bustness of a resource allocation with respect to
desired system performance features against multi-
ple perturbations in multiple system and environ-
mental conditions, (2) a procedure for deriving a

This paper is based on the robustness research presented
by the authors in [Ali03,AlM03].

robustness metric for an arbitrary system, and (3)
example applications of this procedure to several
different systems.

I. Introduction

The robust design of computing and communi-

cation systems is becoming an increasingly impor-

tant issue [AlC01], [BoM02], [CaD02], [DaG01],

[DeK02], [Dev01], [HaR98], [HaW02], [Iri01],

[Jen01c], [LeD94], [RoL02], [SeS02], [YeZ03].

There is a need for research that addresses the

issues of developing a generalized robustness met-

ric and deriving robust resource allocations in a

parallel and distributed system. Our formulation

of a standard generalized robustness metric for re-

source allocation is an important step towards on-

going efforts to create robust designs.

The motivation for this research was provided

by research supported by the DARPA’s ITO Quo-

rum program, under the project called “Manage-

ment System for Heterogeneous Networks.” The

research involved the design and analysis of heuris-

tics for robust resource allocation in different types

of heterogeneous computing environments includ-

ing the HiPer-D (High Performance Distributed
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Computing Program). A typical HiPer-D com-

puting system consists of a set of dedicated ma-

chines interconnected by high-speed communica-

tion links. A set of sensors (radars, sonars, etc.)

sends streams of data sets to a set of communicat-

ing, continuously running applications that pro-

cess these data sets and send their outputs to other

applications or actuators.

A HiPer-D system is required to satisfy a set

of throughput and latency constraints. Any allo-

cation of the resources must enforce these quality

of service (QoS) constraints by ensuring that the

computation and communication times are within

certain limits. When the system is first configured,

it is assumed to operate under certain estimated

values of the initial sensor loads (i.e., outputs from

sensors). Such an initial resource allocation en-

sures that all throughput and latency constraints

are met when the ship is first deployed. However,

the system is expected to operate in a dynamic

environment, where the sensor loads are expected

to change unpredictably. Increases in sensor loads

cause increases in the computation and communi-

cation times, which in turn may cause throughput

and latency violations. Therefore, the initial re-

source allocation might be rendered invalid soon

after the operation begins.

One way of handling the unpredictable load in-

creases is to design a resource allocation that will

tolerate as much sensor load increase as possible

before a QoS violation occurs. Two questions need

to be answered:

• Given a set of resource allocations, how does one

determine which resource allocation tolerates the

largest load increase? This task necessitates the

formulation of an appropriate metric.

• How does one develop methods that can derive

such a resource allocation?

For the first item, one needs a general approach

because the sensor loads might not be the only

uncertainties in a HiPer-D system. Two other ex-

amples are: (a) inaccurate models for computa-

tion/communication times, and (b) sudden ma-

chine or link failures.

A general approach is necessary also because

for systems other than HiPer-D, there might be

other uncertainties. Typically, the resource allo-

cation decisions and the performance prediction

are based on estimated/initial values of applica-

tion and system parameters. However, complex

computing and communication systems typically

operate in an unpredictable environment where

the actual values of these parameters may differ

from the estimates due to a variety of reasons. As

a result, the “real” system performance may de-

grade. An important question then arises. Given

a resource allocation, what is the maximum depar-

ture from the expected conditions that the system

can tolerate and still deliver the promised perfor-

mance? That is, how robust is the system?

Before answering this question one needs to

clearly define robustness. Robustness has been

defined in different ways by different researchers.

According to [Jen01c], robustness is the degree

to which a system can function correctly in the

presence of inputs different from those assumed.

In a more general sense, [Gri01] states that a ro-

bust system continues to operate correctly across

a wide range of operational conditions. Robust-

ness, according to [Jen01a], guarantees the main-

tenance of certain desired system characteristics

despite fluctuations in the behavior of its compo-

nent parts or its environment. The concept of ro-

bustness, as used in this research, is similar to that

in [Jen01a]. Like [Jen01a], this work emphasizes

that robustness should be defined for a given set of

system features, with a given set of perturbations

applied to the system.

A resource allocation is defined to be robust

with respect to specified system performance fea-

tures against perturbations in specified system pa-

rameters if degradation in these features is limited

when the perturbations occur. For example, if a

resource allocation has been declared to be robust

with respect to satisfying a throughput require-

ment against perturbations in the system load,

then the system, configured under that allocation,

should continue to operate without a throughput

violation when the system load increases. The

immediate question is: what is the degree of ro-
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bustness? That is, for the example given above,

how much can the system load increase before a

throughput violation occurs? This research ad-

dresses this question, and others related to it,

by formulating the mathematical description of

a metric that evaluates the robustness of a re-

source allocation with respect to certain system

performance features against multiple perturba-

tions in multiple system components and environ-

mental conditions. In addition, this work outlines

a procedure called FePIA (named after the four

steps that constitute the procedure) for deriving

a robustness metric for an arbitrary system. For

illustration, the procedure is employed to derive

robustness metrics for three example distributed

systems. The robustness metric and the FePIA

procedure for its derivation are the main contri-

butions of this paper.

The following are the specific contributions of

our research (presented in [AlM03]). For the allo-

cation of computing and communication resources

in parallel and distributed systems, this research

• gives a mathematical description of a metric for

robustness,

• describes a four-step procedure, called FePIA,

for deriving a robustness metric for an arbitrary

system, and

• outlines example applications of this procedure

to several different systems.

The rest of the paper is organized as follows.

Section II describes the FePIA procedure men-

tioned above. It also defines a generalized robust-

ness metric. Section III outlines some challenges

in this research and possible future work. some

experiments that highlight the usefulness of the

robustness metric. Section IV concludes the pa-

per.

II. Generalized Robustness Metric

This section summarizes from [AlM03] the pro-

cedure, called FePIA, for deriving a general ro-

bustness metric for any desired computing en-

vironment. The name for the above procedure

stands for identifying the performance features,

the perturbation parameters, the impact of pertur-

bation parameters on performance features, and

the analysis to determine the robustness. Each

step of the FePIA procedure is now described.

1) Describe quantitatively the requirement that

makes the system robust. Based on this robustness

requirement, determine the QoS performance fea-

tures that should be limited in variation to ensure

that the robustness requirement is met. Identify

the acceptable variation for these feature values

as a result of uncertainties in system parameters.

Consider an example where (a) the QoS perfor-

mance feature is makespan (the total time it takes

to complete the execution of a set of applications)

for a given resource allocation, (b) the acceptable

variation is up to 30% of the makespan that was

calculated for the given resource allocation using

estimated execution times of applications on the

machines they are assigned, and (c) the uncertain-

ties in system parameters are inaccuracies in the

estimates of these execution times.

Mathematically, let Φ be the set of system

performance features that should be limited in

variation. For each element φi ∈ Φ, quantita-

tively describe the tolerable variation in φi. Let〈
βmin

i , βmax
i

〉
be a tuple that gives the bounds

of the tolerable variation in the system feature

φi. For the makespan example, φi is the time

the i-th machine finishes its assigned applica-

tions, and its corresponding
〈
βmin

i , βmax
i

〉
could be

〈0, 1.3 × (estimated makespan value)〉.
2) Identify all of the system and environment pa-

rameters whose values may impact the QoS per-

formance features selected in step 1. These are

called the perturbation parameters (these are sim-

ilar to hazards in [BoM02]), and the performance

features are required to be robust with respect to

these perturbation parameters. For the makespan

example above, the resource allocation (and its as-

sociated predicted makespan) was based on the es-

timated application execution times. It is desired

that the makespan be robust (stay within 130% of

its estimated value) with respect to uncertainties

in these estimated execution times.

Mathematically, let Π be the set of perturba-

tion parameters. It is assumed that the elements
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of Π are vectors. Let πj be the j-th element of Π.

For the makespan example, πj could be the vec-

tor composed of the actual application execution

times, i.e., the i-th element of πj is the actual exe-

cution time of the i-th application on the machine

it was assigned. In general, representation of the

perturbation parameters as separate elements of

Π would be based on their nature or kind (e.g.,

message length variables in π1 and computation

time variables in π2).

3) Identify the impact of the perturbation param-

eters in step 2 on the system performance features

in step 1. For the makespan example, the sum of

the actual execution times for all of the applica-

tions assigned a given machine is the time when

that machine completes its applications. Note

that 1(b) implies that the actual time each ma-

chine finishes its applications must be within the

acceptable variation.

Mathematically, for every φi ∈ Φ, determine the

relationship φi = fij(πj), if any, that relates φi to

πj. In this expression, fij is a function that maps

πj to φi. For the makespan example, φi is the fin-

ishing time for machine mi, and fij would be the

sum of execution times for applications assigned to

machine mi. The rest of this discussion will be de-

veloped assuming only one element in Π. The case

where multiple perturbation parameters can affect

a given φi simultaneously is discussed in [AlM03].

4) The last step is to determine the smallest col-

lective variation in the values of perturbation pa-

rameters identified in step 2 that will cause any

of the performance features identified in step 1 to

violate its acceptable variation. This will be the

degree of robustness of the given resource alloca-

tion. For the makespan example, this will be some

quantification of the total amount of inaccuracy

in the execution times estimates allowable before

the actual makespan exceeds 130% of its estimated

value.

Mathematically, for every φi ∈ Φ, determine

the boundary values of πj, i.e., the values satisfy-

ing the boundary relationships fij(πj) = βmin
i and

fij(πj) = βmax
i . (If πj is a discrete variable then

the boundary values correspond to the closest val-

ues that bracket each boundary relationship. See

[AlM03] for an example.) These relationships sep-

arate the region of robust operation from that of

non-robust operation. Find the smallest pertur-

bation in πj that causes any φi ∈ Φ to exceed the

bounds
〈
βmin

i , βmax
i

〉
imposed on it by the robust-

ness requirement.

Specifically, let πorig
j be the value of πj at which

the system is originally assumed to operate. How-

ever, due to inaccuracies in the estimated param-

eters or changes in the environment, the value

of the variable πj might differ from its assumed

value. This change in πj can occur in different

“directions” depending on the relative differences

in its individual components. Assuming that no

information is available about the relative differ-

ences, all values of πj are possible. Figure 1 il-

lustrates this concept for a single feature, φi, and

a two-element perturbation vector πj ∈ R2. The

curve shown in Figure 1 plots the set of boundary

points {πj|| fij(πj) = βmax
i } for a resource alloca-

tion µ. For this figure, the set of boundary points{
πj|| fij(πj) = βmin

i

}
is given by the points on the

πj1-axis and πj2-axis.
The region enclosed by the axes and the curve

gives the values of πj for which the system is
robust with respect to φi. For a vector x =
[x1 x2 · · · xn]T, let ‖x‖2 be the `2-norm (Euclidean

norm) of the vector, defined by

√
n∑

r=1

x2
r. The

point on the curve marked as π?
j (φi) has the prop-

erty that the Euclidean distance from πorig
j to

π?
j (φi), ‖π?

j (φi) − πorig
j ‖2, is the smallest over all

such distances from πorig
j to a point on the curve.

An important interpretation of π?
j (φi) is that the

value ‖π?
j (φi)−πorig

j ‖2 gives the largest Euclidean
distance that the variable πj can change in any

direction from the assumed value of πorig
j without

the performance feature φi exceeding the tolera-
ble variation. Let the distance ‖π?

j (φi) − πorig
j ‖2

be called the robustness radius, rµ(φi, πj), of φi

against πj. Mathematically,

rµ(φi, πj) = min
πj : (fij(πj)=βmax

i )∨(fij(πj)=βmin
i )

‖πj − πorig
j ‖2.

(1)

This work defines rµ(φi, πj) to be the robust-
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ness of resource allocation µ with respect to perfor-

mance feature φi against the perturbation parame-

ter πj.

λ
init

orig

ππ

ππ

(φi)

j

j rµ(φi,   j)ππ

j| fij(  j) =ππ{ππ βmax}i

*

2

πj1

πj2

Fig. 1

Some possible directions of increase of the

perturbation parameter πj, and the direction of

the smallest increase. The curve plots the set

of points, {πj|| fij(πj) = βmax
i }. The set of

boundary points,
{
πj|| fij(πj) = βmin

i

}
is given by

the points on the πj1-axis and πj2-axis.

The robustness definition can be extended easily

for all φi ∈ Φ. It is simply the minimum of all

robustness radii. Mathematically, let

ρµ(Φ, πj) = min
φi∈ Φ

(rµ(φi, πj)) . (2)

Then, ρµ(Φ, πj) is the robustness metric of re-

source allocation µ with respect to the performance

feature set Φ against the perturbation parameter

πj.

Even though the `2-norm has been used for the

robustness radius in this general formulation, in

practice, the choice of a norm should depend on

the particular environment for which a robustness

measure is being sought. [AlM03] gives an exam-

ple situation where the `1-norm is preferred over

the `2-norm.

III. Future Work

We are interested in extending this research in

the following ways:

1. Develop tractable methods for computing the

robustness radius, in general. To calculate the ro-

bustness radius, one needs to solve the optimiza-

tion problem posed in Equation 1. Such a com-

putation could potentially be very expensive. One

can exploit structure of this problem, along with

some assumptions, to make this problem some-

what easier to solve. An optimization problem

of the form minl(x)=0 f(x) or minc(x)≥0 f(x) could

be solved very efficiently to find the global mini-

mum if f(x), l(x), and c(x) are convex, linear, and

concave functions respectively. Some solution ap-

proaches, including the well-known interior-point

methods, for such convex optimization problems

are presented in [BoV03]. However, one needs to

develop tractable methods for computing the ro-

bustness radius, for a general case.

2. Extend the application of the robustness met-

ric and the procedure to derive it to other com-

plex systems like computer networks, Internet en-

vironments, large-scale component-based software

systems, and mobile and wireless computing sys-

tems. For example, we would like to explore the

robustness of a network design/configuration with

respect to some system properties against uncer-

tainty in the networks operational environment.

3. Extend the robustness metric formulation to

include combinations of perturbation parameters

that (a) are measured in different units, or (b) are

a mixture of continuous and discrete parameters.

The research in [AlM03] does address the above

issue, but more work needs to be done.

4. Extend the robustness metric formulation to

consider errors in the models used for computa-

tion and communication.

5. Extend the robustness metric formulation to in-

clude probabilistic πj. In some situations, changes

in some elements of πj may be more probable than

changes in other elements. In such cases, one may

be able to modify the distance calculation so that

the contribution from an element with a larger

probability to change has a proportionally larger

weight.

6. Design robust resource allocation algorithms for

heterogeneous distributed computing systems, in-
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cluding real-time systems and grid systems.

IV. Conclusions

The formulation of a completely general robust-

ness metric that could be applied to a variety of

(possibly heterogenous) parallel and distributed

systems is an important contribution of our re-

search. Such systems, consisting of a set of ma-

chines and networks, frequently operate in uncer-

tain or dynamic environments where the quality

of service that is delivered degrades due to unpre-

dictable circumstances, such as sudden machine

failures, higher than expected system load, or in-

accuracies in the estimation of system parameters.

The robustness metric, determines, for a given sys-

tem design, what extent of departure from the

assumed circumstances will cause the quality of

service to be unacceptably degraded. This pa-

per has summarized a mathematical description

of a metric for the robustness of a resource allo-

cation with respect to desired system performance

features against multiple perturbations in various

system and environmental conditions. In addition,

the research describes a procedure, called FePIA,

to methodically derive the robustness metric for a

variety of parallel and distributed resource alloca-

tion systems. Such a metric can help researchers

evaluate a given resource allocation for robustness

against uncertainties in specified perturbation pa-

rameters.
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