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Fast Eigenspace Decomposition of Correlated Images
Chu-Yin Chang, Anthony A. Maciejewski, Senior Member, IEEE, and Venkataramanan Balakrishnan, Member, IEEE

Abstract—We present a computationally efficient algorithm
for the eigenspace decomposition of correlated images. Our
approach is motivated by the fact that for a planar rotation of
a two-dimensional (2-D) image, analytical expressions can be
given for the eigendecomposition, based on the theory of circulant
matrices. These analytical expressions turn out to be good first
approximations of the eigendecomposition, even for three-di-
mensional (3-D) objects rotated about a single axis. In addition,
the theory of circulant matrices yields good approximations to
the eigendecomposition for images that result when objects are
translated and scaled. We use these observations to automatically
determine the dimension of the subspace required to represent
an image with a guaranteed user-specified accuracy, as well as to
quickly compute a basis for the subspace. Examples show that the
algorithm performs very well on a number of test cases ranging
from images of 3-D objects rotated about a single axis to arbitrary
video sequences.

I. INTRODUCTION

ONE OF the fundamental problems in computer vision
is the recognition and localization of three-dimensional

(3-D) objects. Subspace methods represent one computation-
ally efficient approach for dealing with this class of problems.
Variously referred to as eigenspace methods, principal compo-
nent analysis methods, and Karhunen–Loeve transformation
methods [1], these have been used extensively in a variety of
applications such as face characterization [2] and recognition
[3], lip-reading [4], [5], object recognition, pose detection,
visual tracking, and inspection [6]–[9]. All of these applications
are based on taking advantage of the fact that a set of highly
correlated images can be approximately represented by a small
set of eigenimages. Once the set of principal eigenimages is
determined, online computation using these eigenimages can
be performed very efficiently. However, the offline calcula-
tion required to determine both the appropriate number of
eigenimages as well as the eigenimages themselves can be pro-
hibitively expensive. This issue has been previously addressed
by three different approaches. One class of techniques find
the eigenimages iteratively. For example, the power method
[10] and the conjugate gradient algorithm [11], [12] calculate
one eigenimage at a time, while the block power method and
Lanczos iteration [13] calculate a set of eigenimages together.
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Another class of techniques relies on updating a small set of
eigenimages by recursively adding one image at a time. In [14],
the number of eigenimages is fixed, while in [15], this number
is adjusted based on the content of the added image. Another
approach is based on structuring the computations in order
to efficiently perform the matrix calculations involved [16].
The computational complexity of this approach is essentially
independent of the number of desired eigenimages.

Our work addresses the computational expense of computing
the desired eigenimages in a fundamentally different manner,
resulting in considerable computational savings as compared to
previous approaches. We present a brief overview of subspace
methods in the next section, followed by the problem statement.
In Section III, we use the theory of circulant matrices to derive
an analytical expression for the eigendecomposition of images
resulting from planar rotations. We also show how this theory
can be used to derive good approximations for the eigendecom-
position when images result from planar translation, and briefly
consider scaling. In Section IV, we illustrate through a simple
example that these analytical expressions represent a good ap-
proximation for the eigendecomposition of 3-D transformations
as well. We use this observation as the core of an algorithm,
outlined in Section V, to quickly compute the desired portion
of the eigendecomposition based on a user-specified measure
of accuracy. In Section VI, we evaluate the performance of our
algorithm, first on images resulting from a 3-D rotation of test
objects, and then on a set of twenty arbitrary video sequences.
In all cases, the algorithm is seen to perform well both in terms
of accuracy and computational efficacy.

II. PRELIMINARIES

An image is an array of square pixels with intensity
values normalized between 0 and 1. Thus, an image will be rep-
resented by a matrix . Since we will be consid-
ering sets of related images, it will be convenient to represent an
image equivalently as a vector, obtained simply by “row-scan-
ning,” i.e., concatenating the rows to obtain theimage vector
of length

The image data matrixof a set of images is an
matrix, denoted , and defined as

with typically . We consider only the case whereis
fixed, as opposed to cases whereis constantly updated with
new images.
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Theaverage imagevectoris denoted and defined as

The correspondingaverage imagedata matrix,denoted , is

The matrix , which we denote , has the interpretation
of an “unbiased” image data matrix.

The singular value decomposition (SVD) of is given by

where and are orthogonal, and
, with , where diag , with

, and is an by zero matrix.
(When the singular values are not ordered, we will refer to the
decomposition as an “unordered” SVD.) The SVD ofplays
a central role in several important imaging applications such as
image compression, pattern recognition and pose detection. The
columns of , denoted , , are referred to as the
eigenimages of ; these can be interpreted as estimates of the
eigenvectors of the covariance matrix of the image vector. The
eigenimages provide an orthonormal basis for the columns of

, ordered in terms of importance; the corresponding singular
values measure how “aligned” the columns ofare, with the
associated eigenimage. The components of theth column of
measure how much each individual image contributes to theth
eigenimage.

In practice, the singular vectors are not known or com-
puted exactly, and instead estimates which form a

-dimensional basis are used. The accuracy of a practical imple-
mentation of subspace methods then depends on three factors:
the properties of , the dimension , and the quality of the esti-
mates . The measure we will use for quantifying this accuracy
is the “energy recovery ratio,” denoted, and defined as

where denotes the Frobenius norm. Note that if
the are orthonormal, , and for any given
achieves a maximum value of when
span span .

The principal calculation required with subspace methods
is the precomputation of estimates of the singular vectors

of the matrix . This is a very compu-
tationally expensive operation when and are very large.
Reducing this computational expense by exploiting any cor-
relation between image vectors has been the subject of much
previous work [10]–[16]. Our solution to this problem uses a
fundamentally different approach that is considerably faster
than these methods when the image vectors are “correlated,” as
in many pose-detection problems. Our technique is motivated

by the observation that the SVD of can be determined in a
closed form when the images are derived by a planar rotation
of a single image about the surface normal, thus resulting in

being circulant.1 We describe this in the next section.

III. PLANAR TRANSFORMATIONS

A. Planar Rotation

Consider an image data matrix where each is obtained
from by a planar rotation2 of . Equivalently, and

are related by a planar rotation of . Consider

...
...

. . .
...

(1)

To within an accuracy imposed by the resolution, is a
function of . Also, , for .
Thus, row of can be obtained by a right-circular
shift of row (the first row is a right-circular shift of the last
one). In other words, is a circulant matrix [18]. Much
is known about the properties of such matrices; in particular,
closed-form expressions can be given for their eigenvalues and
eigenvectors: The eigenvalues of are simply given by the
discrete Fourier transform (DFT) of its first row, and the eigen-
vectors given by the Fourier matrix. That is

(2)

where, with and

diag (3)

and

...
...

...
. . .

...

(4)

It is easy to verify from (3) that the eigenvalues of
satisfy for , and
the corresponding eigenvectors (i.e., columns of) are complex
conjugates of each other. Therefore, areal eigendecomposition
of is given by

(5)

1This observation can be found in [17], which was published while this man-
uscript was under preparation.

2More precisely, the imagei+1 is obtained by rotating the infinite-resolution
image represented by theith image, and then sampling it.



CHANG et al.: FAST EIGENSPACE DECOMPOSITION OF CORRELATED IMAGES 1939

where equals the matrix

diag (6)

and consists of the first columns of

...
...

...
...

(7)

where and . The above development
means that and corresponding to an unordered SVD of

can be computed in a closed form. In particular, the square
roots of the diagonal entries of are the singular values of ,
and . To compute , observe that , which
can be computed efficiently using Fast Fourier Transform (FFT)
techniques. In particular, if is a matrix whoseth row is the
FFT of the th row of , then . The matrix
can be formed from the first columns of as

(8)

The above development has focused on obtaining an SVD of
. Note that the (unordered) SVD of can be immediately

obtained from the (unordered) SVD of as follows:

In other words, for , we have (and
similarly for and ), with , , and .

B. Planar Translation

Consider a sequence of images of an object moving at a
constant velocity.3 It is easy to verify that to within an accuracy
imposed by the resolution, is a function of . Thus,

is a symmetricToeplitzmatrix. While no closed-form
expressions exist for the eigendecomposition of symmetric
Toeplitz matrices, we now show how the theory of circulant
matrices can be used to derive good approximations for the
eigendecomposition under certain conditions.

3We assume that the velocity vector lies in the plane perpendicular to the
camera view vector, and the object stays in the field of view. We also assume
that the perspective, background and lighting effects are negligible.

We begin by embedding the Toeplitz matrix in a
circulant matrix as follows:

(9)

where is a symmetric matrix whose upper triangular part is
specified by

arbitrary if ,
if (10)

where the and denote the elements of and
, respectively.
Since is a symmetric circulant matrix, following the devel-

opment in Section III-A, we can write down an eigendecompo-
sition of as

(11)

where, with and

diag (12)

and

...
...

...
. . .

...

(13)

Using the properties of the matrix , we may rewrite an SVD
of as

(14)

where

diag

diag

and , , , and are matrices.
We then note the following.

• , , , and are orthogonal matrices.
• The diagonal entries of and are the singular

values of corresponding to “even” and “odd” harmonics
respectively.
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We then have

(15)

In the special case where either or is identically
zero, equation (15) provides an unordered SVD of. (See
Appendix A for one such case.) When the motion of the object
between frames is not too fast, which is typically the case,
only the first few diagonal entries of both and will
be significant. Then, with , , , and , denoting
the th columns of , , , and respectively, and
with and denoting the th diagonal entry of and

respectively, we have

where . Moreover, it is easy to show that

for each , the outer product can be well ap-
proximated by a linear combination of the outer products

, where is small. Conse-
quently

In summary, we have an analytical approximation to the singular
vectors of for the planar translation case.4

IV. EXTENSION TOTHREE-DIMENSIONAL TRANSFORMATIONS

In the previous section, we showed that for pure planar trans-
formations, it is possible to derive analytical expressions (or
good approximations) for the eigendecomposition. In this sec-
tion, we consider how well these analytical expressions serve as
approximations to the eigendecomposition for the more general
case of 3-D transformations. One approach toward this end is
to apply results from a perturbation analysis of eigendecompo-
sitions [19], [20] to quantify the changes in the eigendecompo-
sition when the 3-D transformation is regarded as a perturbed
version of the ideal case. However, the bounds obtained from
such an analysis turn out to be crude, and not very effective
in drawing conclusions that are useful in practice. Therefore,
we use an alternate approach, where we examine a simple 3-D
problem where the effects of the nonplanar nature of the trans-
formation can be parametrized by a single variable. Specifically,
we consider the case where theimages in the image data ma-
trix are obtained from 3-D objects rotated about a single axis
at increments of , with the camera view vector making an
angle of with the axis of rotation. We assume that the en-
tire object is always within the field of view (see Fig. 1). We
will see shortly that this study yields considerable insight into
when and why the analytical expressions for the eigendecom-
position serve as good approximations to the true eigendecom-
position for more general 3-D transformations. Perhaps more
importantly, the conclusions from this study yield a straightfor-

4Some of the development for the planar translation case applies to scaling as
well, although not as gracefully. We explore this further in Appendix B.

Fig. 1. Framework for obtaining images of a 3-D object, rotated about a single
axis through the object. The camera view vector makes an angle of� with
the axis of rotation, with the entire object always lying completely within the
camera’s field of view.

ward technique for using the analytical expressions as a basis
for a computationally efficient algorithm for computing the true
eigendecomposition.

Returning to our example, suppose that the axis of rotation
and the camera view vector are aligned (i.e., ). Then, all of
the results of Section III-A apply directly.5 If is nonzero, then
in general, the results of Section III-A do not apply. However,
consider aplanar object whose surface normal is aligned with
the axis of rotation. Then, the results of Section III-A apply
independent of . To see this, let denote the image vector
of the object with camera view angle, and note that we have

(16)

where represents the contribution due to the background of
the image [21]. From the arguments in Section III-A, it follows
that is only a function of , and consequently,
so is .

To explore the consequence of 3-D effects that arise when
is nonzero, we select as the object a cylinder that is half-

black and half-white, split along the longitudinal axis. In the
first scenario, the cylinder is viewed along the longitudinal axis,
so that it appears as a circle. Images are taken at increments of
while the cylinder is rotated along the longitudinal axis. Fig. 2
shows nine of the images that make up the image data
matrix , as well as the singular vectors of. The results of
Section III-A apply here, and it is seen that the right singular
vectors are pure sinusoids of frequencies that are multiples of

rad. Moreover, an examination of the (ordered) singular
vectors reveals that they correspond to harmonics of increasing
frequency. Note that this ordering is an artifact of this particular
example, and is not true in general.

5This assumes that all the light sources rotate with the object, or equivalently
the camera rotates and everything else is stationary. We will also assume that
the camera is far enough away that perspective effects can be neglected, that the
background is uniform, and that resolution effects are negligible.
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Fig. 2. Eigendecomposition of the image matrixX obtained from rotating a half black, half white cylinder, with a view angle of� = 0. The first row shows nine
of the 90 images of the image data matrixX . The second row shows the first seven eigenimages (left singular vectors ofX) using the same gray scale encoding,
with white denoting the maximum positive pixel value and black denoting the maximum negative value. The third row shows the first seven right singularvectors
of X . The fact that these are pure sinusoids is illustrated in the fourth row, where the FFT magnitude-squared, i.e., the “power spectra” of these right singular
vectors are shown. The plot on the left in the last row row shows the singular values ofX . Note that the singular values from indices 45 onwards are identically
zero, due to the symmetry of the object. The plot on the right shows the frequency at which the power spectra of the corresponding right singular vectorsachieves
a maximum (i.e., the “dominant” frequencies). It can be seen that the dominant frequencies of the power spectra of the right singular vectors corresponding to
nonzero singular values increase linearly with their harmonic index.

In the second scenario, the camera is placed at a view angle of
. Once again, images are taken at increments of 4with

the cylinder rotated along the longitudinal axis. Fig. 3 shows
nine of the images that make up the image data matrix

, as well as the singular vectors of. Though the results of
Section III-A do not apply here, two properties are again im-
mediately apparent. 1) The right singular vectors are well-ap-
proximated by sinusoids of frequencies that are multiples of

radians, and the magnitude-squared of the spectra, i.e., the
“power spectra” of the right singular vectors consist of a narrow
band around the corresponding dominant harmonics. 2) The
dominant frequencies of the power spectra of the (ordered) sin-
gular vectors increase approximately linearly with their index.
These properties (assuming they hold) suggest an approach for
reducing the expense in computing the eigendecomposition to
within a prespecified accuracy. In particular, the first property
means that the singular vectors are approximately spanned by a
handful of harmonics. In addition, if the second property holds,

then the frequencies of the dominant harmonics can be quickly
identified by simply searching from low to high frequencies.
Consequently, by projecting the row space ofto a smaller
subspace spanned by a few of the harmonics, the computational
expense associated with the SVD computation can be signifi-
cantly reduced. Note that this approach can be used to generate
the SVD to within any prespecified accuracy; the deviation of
the actual singular vectors from pure harmonics only affects the
computational savings that this approach offers. [It is also im-
portant to note that circulancy, by itself, only guaranteed prop-
erty (1); thus circulancy is not sufficient for this approach to
work well. However, the discussion on circulant matrices pro-
vides a sound theoretical basis for our approach.] Empirical ev-
idence (see Section VI) suggests that the two properties dis-
cussed above hold true for sequences of images whose content
varies slowly, independent of the underlying transformation (ro-
tation, translation, scaling, etc.). We describe the details of the
fast eigenimage computation technique in the next section.
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Fig. 3. Eigendecomposition of the image matrixX obtained from rotating a half black, half white cylinder, with a view angle of� = 60 , with the data presented
exactly as in Fig. 2. From the fourth row, it is apparent that though the right singular vectors ofX are not pure sinusoids, their power spectra are concentrated in a
narrow band around frequencies that are harmonics of2�=n. It can also be seen that as with the� = 0 case, the dominant frequencies of the power spectra of the
right singular vectors corresponding to nonzero singular values increase approximately linearly with their index.

V. FAST EIGENDECOMPOSITIONALGORITHM

Our objective is to determine the firstleft singular vectors
of . Let be such that the power spectra of the firstsingular
vectors are essentially restricted to the band . Owing
to the properties of the singular vectors discussed in the previous
section, is typically not much larger than. Let denote
the matrix comprising the first columns of [i.e., the first

columns of the matrix given in (7)]. Then the firstsingular
values and the corresponding left singular vectors

of serve as excellent estimates to those of
. (Note that typically has far fewer columns than, so

that its SVD can be computed much more quickly.) Moreover,
the accuracy of the approximated singular vectors with power
spectra concentrated around “lower” frequencies will tend to
be better, i.e., the smalleris, the better estimate is of .
This is illustrated in Fig. 4 for a typical image (Object 1 from
Fig. 5), where we have usedto measure the quality of the
estimates of the . The solid line shows as
a function of , while the dashed lines show
for and . It is evident that for any
, the error increases

as increases from 1 to.

Fig. 4. Typical relationship between several energy recovery ratios as a
function ofk, 1 � k � p, for several fixed values ofp. (The plots shown here
correspond to Object 1 from Fig. 5.) For fixedp, �(X; ~u ; � � � ; ~u ) behaves
as a very good lower bound to�(X; u ; � � � ; u ) for small k, and is very
well approximated from below by�(X ; h ; � � � ; h ) for largek.

Our ultimate goal is to guarantee, upon termination, that
exceeds a user-specified threshold. While
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Fig. 5. Objects used to evaluate the proposed algorithm (provided by [22]). The objects are rotated throughout 360and 72 images were taken for each of them.
Each image is of size 128� 128 and is scale normalized such that the object touches a boundary.

depends critically on and ,
neither of which are available a priori, we show below that

(17)

where denotes the th column of . The right-hand
side of (17) is readily computed; and ensuring that

in turn guarantees that
.

We now prove (17). Let the SVD of be

Note that . Then

From Fig. 4, it can be seen that is a
very conservative lower bound for , with the
quality of the bound improving uniformly with increasing. For
fixed , behaves as a very good lower bound

TABLE I
ALGORITHM PERFORMANCE ONROTATIONALLY CORRELATED IMAGES THE

PERFORMANCE OF OUR ALGORITHM ISCOMPARED AGAINST THAT OF THE

DIRECT SVD FOR THEOBJECTS INFIG. 5. IN ALL CASES, THE EIGENIMAGES

OF ^X WERE COMPUTED WITH A DESIREDENERGY RECOVERY RATIO OF

0.90. ALL COMPUTATIONS WEREPERFORMED USINGMATLAB ON A

HP9000/C110 WORKSTATION
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Fig. 6. For each of the objects in Fig. 5, the color-coded magnitude of the power spectra of the ordered right singular vectors are shown as a function of their index
(along thex axis) and frequency (along they axis). It can be seen that for most of the objects, the power spectrum of each right singular vector is approximately
band-limited, and that the dominant frequency of each right singular vector increases roughly linearly with increasing index.

to for small , and is very well approximated
from below by for large .

In summary, when is chosen so as to satisfy
, the quantity

turns out to exceed for some , with being
very good estimates for , and being
very good estimates for . The energy recovery
ratio can be efficiently approximated by

.
The entire algorithm for the fast computation of a partial SVD

of can be summarized as follows.

1) Form the matrix , whose th row is the FFT of theth
row of .

2) Determine the smallest number such that
, where is the user-specified

reconstruction ratio. The key observation here is that the
matrix can be constructed as the firstcolumns
of the matrix ,
where denotes theth column of .

3) With denoting the first columns of the matrix
, compute the SVD

.
4) Return such that .
The above algorithm computes the partial SVD of. If in-

stead the partial SVD of is sought, the algorithm is modified
as follows. In Step 2, is estimated as the smallest number

Fig. 7. This figure shows the computation time versus the subspace dimension
k. For iterative algorithms, the stopping criterion was set to be such that the
energy recovery ratio is comparable to or lower than that of the proposed
method; in other words, the comparison with the iterative methods was
by design conservative. In order to keep the comparison fair, the updating
algorithm [14] was used to compute only the firstk singular vectors. Note that
all of these algorithms were implemented in MATLAB.

such that . In Step 3, the
SVD of the matrix comprising the second throughcolumns of

is computed.
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Fig. 8. The first, middle, and last frames of the 20 video sequences used to test our algorithm.

We briefly analyze the computational expense of our algo-
rithm. The cost incurred in Step 1, i.e., performing the FFT of
each row of , requires flops. Step 2, that of
estimating , requires flops. In Step 3, the cost of com-
puting the SVD of the matrix comprising the firstcolumns of

is of order . Step 4, determining the needed
dimension , requires flops. If , then the total
computation required is approximately . This
compares very favorably with the direct SVD approach which
requires flops, and in most cases with the updating
SVD method [14] as well, which requires flops. The

computational savings offered by our algorithm are significant
if the condition

holds for . As the vectors are harmonics consisting of
increasing frequencies, this condition simply means that the in-
dividual pixel values do not change rapidly across the sequence
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of images. This is typically the case, as evidenced by the exam-
ples presented in the next section.

VI. EXAMPLES

A. Rotationally Correlated Images

We first illustrate our approach on a database of images pro-
vided by [22]. There are 20 different objects available, with each
image data matrix being of size . A single image of
each object is shown in Fig. 5.

The algorithm outlined in Section V was used to compute the
eigendecomposition of corresponding to each of the image
data matrices, with an energy recovery ratio threshold of 0.90.
Table I summarizes the performance of the algorithm, showing

, , and computation times. In addition, Table I also shows the
data when the direct SVD of MATLAB is used to compute the
first singular values and vectors.

The difference between and
for each object is less than 2.22%,

with an average of 0.85%, which reveals that
provides a very good approximate basis for the span of the
first eigenimages . As discussed in Section IV,
this is a consequence of the following empirical facts: 1) The
power spectra of the right singular vector is approximately
band-limited. 2) The frequency at which the power spectrum
of achieves a maximum roughly increases with increasing
. (See Fig. 6.) Thus, the span of effectively

“covers” the span of .
Fig. 7 shows a comparison of the computation times for dif-

ferent SVD algorithms, as a function of the subspace dimension
. In almost all cases, our algorithm exceeded by far the per-

formance of all of the algorithms that it was tested against. For
instance, compared to the direct SVD which took about 40 s
for each object, the median speedup factor with our algorithm
was approximately three. Similar computational savings accrue
when compared with other algorithms as well. Remarkably, it
can also be seen that the rate of growth in computational effort
with increasing subspace dimensionis the smallest for our al-
gorithm.

We next turn to image-specific conclusions that can be in-
ferred from Fig. 5 and Table I. While Object 1 requires a value
of to achieve an energy recovery ratio of 0.90, the value
of for Object 9 is four times as large. This illustrates that
determininga priori the dimension of the subspace required
to achieve a prespecified quality of reconstruction is difficult.
Thus, other algorithms such as the updating SVD which do use
a fixed value of cannot be expected to perform uniformly well
over all images. In contrast, our online estimate of(given by )
can be seen to perform extremely well for most objects. Since
the computational expense of our algorithm is directly related
to , this means that for most cases there is no “wasted” com-
putation with our algorithm. In cases when the estimateof
is poor, it can be seen that the corresponding object is rotation-
ally symmetric; thus the associated pose-detection problem is
ill-conditioned (see Object 17, and also 12 and 16).

TABLE II
ALGORITHM PERFORMANCE ONVIDEO SEQUENCES THEPERFORMANCE

OF OUR ALGORITHM ISCOMPARED AGAINST THAT OF THE DIRECT SVD
ALGORITHMS, FOR THE20 SETS OFVIDEO SEQUENCESSHOWN IN FIG. 8. IN

ALL CASES, THE EIGENIMAGES OFX WERE COMPUTED WITH A DESIRED

ENERGY RECOVERY RATIO OF 0.95. ALL COMPUTATIONS WEREPERFORMED

USING MATLAB ON A HP9000/C110 WORKSTATION

B. Video Sequences

We next consider the performance of our algorithm on images
with more general correlation properties, in particular, when im-
ages are derived from a combination of 3-D rotation, translation
and scaling. To this end, we consider the problem of eigende-
composition of images representing successive frames of arbi-
trary video sequences. Specifically, we consider six video se-
quences that have been used to evaluate MPEG standards [23],
and an additional 14 video clips obtained from [24]. Each video
sequence consists of 150 images, each of size 160120. The
first, middle and last frames from each set are shown in Fig. 8.

Our algorithm was used to calculate the partial SVD of
for each set, with an energy recovery ratio threshold of 0.95.
Table II summarizes the performance of the algorithm, showing

, , and the computation times. Compared to the direct SVD,
the speedup factors with our algorithm are in the range of
2.4–23.8, depending on the value of. The difference between

and for each set was
less than 0.32%, with an average of 0.12%, which again reveals
that provides a very good approximate basis for
the span of the first eigenimages . Fig. 9 shows
that the power spectra of the right singular vectors for each
video sequence are approximately band-limited, and that the
dominant frequencies increase approximately linearly. These
are precisely the properties that our algorithm is designed to
take advantage of. The extent to which these properties hold
(and consequently how well our algorithm works) is directly
related to the rate of variation of the content across successive
images.

We now illustrate the above general comments by discussing
some specific cases. Note that in Table II,is only slightly
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Fig. 9. For each of the video sequences in Fig. 8, the color-coded magnitude of the power spectra of the ordered right singular vectors are shown as a function
of their index (along thex axis) and frequency (along they axis). It can be seen that the power spectrum of each right singular vector stays within a narrow band,
and that the dominant frequencies increase roughly linearly.

greater than for most cases, implying that for a vast majority of
cases, the low frequency harmonics indeed provide a good ap-
proximation to the actual dominant right singular vectors. Re-
calling that the computational expense of our algorithm is di-
rectly related to , we note once again that the amount of com-
putation is adapted to the difficulty of the problem. Moreover,
it can be seen that for most problems,is much smaller than,
the number of images; therefore, the computational savings that
accrue with our algorithm are significant. Whenis large, two
scenarios are possible. The first scenario is thatcan be large
as well, indicating that the underlying eigenspace indeed has a
high dimension. This is illustrated by Sequences 7 and 17, where
the image content changes considerably between frames due to
significant scaling effects. Thus, these two sequences represent
high content, i.e., less correlation between images, and it is a
strength of our algorithm that it can adapt the amount of com-
putation to suit the difficulty underlying the eigendecomposition
problem. In the second scenario,is much larger than, indi-
cating that while the underlying eigenspace indeed has a small
dimension, a large number of harmonics are required to span it.

This is seen with Sequence 16 (and to a lesser extent Sequence
12). Sequence 16 presents rapid “morphing” between human
faces. Therefore, even though the dimension of the eigenspace is
effectively only 5, the first 17 harmonics are needed to span the
corresponding eigen-subspace. This is confirmed by the power
spectral plot of the actual right singular vectors corresponding
to Sequence 16, in Fig. 9.

VII. CONCLUSIONS

We have illustrated a computationally efficient algorithm for
computing the eigenspace decomposition of correlated images.
In addition to its speed, the algorithm enjoys the advantage that
the dimension of the subspace required to achieve a desired fi-
delity of representation is determined automatically; thus the
amount of computation is “adapted” to meet accuracy require-
ments. Examples show that the algorithm performs very well on
a range of test images composed of 3-D objects rotated about a
single axis, and even arbitrary video sequences.
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Fig. 10. Plot of the first row ofT as a function of the column index.T =

X X is a symmetric Toeplitz matrix, whereX is the image data matrix that
results when a constant-intensity planar object translates back and forth at a
constant speed.

APPENDIX A
PLANAR TRANSLATION: A SPECIAL CASE

We now present a special case where one of the terms in equa-
tion (15) is zero, with the other term therefore providing an un-
ordered SVD of . Let be even. With denoting
the element of , let the first row of be given by

Fig. 10 shows a plot of the first row of as a function of the
column index. This situation arises when an object translates
back and forth at a constant speed.

It is easy to verify that in this case, when the entries of
[recall (10)] are chosen to be one, the quantity in (15) is

identically zero, i.e., the singular values ofcorresponding to
the odd harmonics are identically zero. Thus, (15) reduces to

(18)

i.e., we have an analytical expression for the eigendecomposi-
tion of .

APPENDIX B
PLANAR SCALING

In this subsection, we briefly consider the case of “scaling,”
when an object in the image expands or contracts. We focus our
attention on a special case where the image intensity is con-
stant across the object, and when the image of the expanded ob-
ject “covers” its nonexpanded image. Under these assumptions,
with denoting the difference in area of the object between the

th image and theth image, it is easy to verify that the
corresponding correlation matrix can be written as

...
...

...
...

. . .
...

...
...

. . .

. . .
...

...
. . .

. . .

...
. . .

. . .
...

(19)

In the special case when , the sin-
gular vectors of are singular vectors of a Toeplitz matrix.
Conclusions similar to the one in Section III-B can be inferred
here as well.
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