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Fast Eigenspace Decomposition of Correlated Images

Chu-Yin Chang, Anthony A. Maciejewsk&enior Member, IEEEand Venkataramanan Balakrishndember, IEEE

Abstract—We present a computationally efficient algorithm ~ Another class of techniques relies on updating a small set of
for the eigenspace decomposition of correlated images. Our eigenimages by recursively adding one image at a time. In [14],
approach is motivated by the fact that for a planar rotation of the number of eigenimages is fixed, while in [15], this number

a two-dimensional (2-D) image, analytical expressions can be. ) .
given for the eigendecomposition, based on the theory of circulant is adjusted based on the content of the added image. Another

matrices. These analytical expressions turn out to be good first approach is based on structuring the computations in order
approximations of the eigendecomposition, even for three-di- to efficiently perform the matrix calculations involved [16].
mensional (3-D) objects rotated about a single axis. In addition, The computational complexity of this approach is essentially
the theory of circulant matrices yields good approximations to independent of the number of desired eigenimages.

the eigendecomposition for images that result when objects are o k add th tati I f fi
translated and scaled. We use these observations to automatically ~~Uf WOrk addresses the computational expense of computing

determine the dimension of the subspace required to represent the desired eigenimages in a fundamentally different manner,
an image with a guaranteed user-specified accuracy, as well as toresulting in considerable computational savings as compared to

quickly compute a basis for the subspace. Examples show that the previous approaches. We present a brief overview of subspace
algorithm performs very well on a number of test cases ranging athods in the next section, followed by the problem statement.
from images of 3-D objects rotated about a single axis to arbitrary . . . .
video sequences. In Sectloq 111, we use .the theory qf circulant matr.lc':es to Qerlve
an analytical expression for the eigendecomposition of images
resulting from planar rotations. We also show how this theory
can be used to derive good approximations for the eigendecom-
NE OF the fundamental problems in computer visioposition when images result from planar translation, and briefly
is the recognition and localization of three-dimension@onsider scaling. In Section IV, we illustrate through a simple
(3-D) objects. Subspace methods represent one computatigxample that these analytical expressions represent a good ap-
ally efficient approach for dealing with this class of problemsroximation for the eigendecomposition of 3-D transformations
Variously referred to as eigenspace methods, principal compg- well. We use this observation as the core of an algorithm,
nent analysis methods, and Karhunen—-Loeve transformatigutlined in Section V, to quickly compute the desired portion
methods [1], these have been used extensively in a varietyodfthe eigendecomposition based on a user-specified measure
applications such as face characterization [2] and recognitiohaccuracy. In Section VI, we evaluate the performance of our
[3], lip-reading [4], [5], object recognition, pose detectionalgorithm, first on images resulting from a 3-D rotation of test
visual tracking, and inspection [6]-[9]. All of these applicationsbjects, and then on a set of twenty arbitrary video sequences.
are based on taking advantage of the fact that a set of higityall cases, the algorithm is seen to perform well both in terms
correlated images can be approximately represented by a smeailiccuracy and computational efficacy.
set of eigenimages. Once the set of principal eigenimages is
determined, online computation using these eigenimages can Il. PRELIMINARIES

be performed very efficiently. However, the offline calcula- ) ) ) o )
£An image is anh x v array of square pixels with intensity

tion required to determine both the appropriate number o g g ;
eigenimages as well as the eigenimages themselves can be (€S normalized between 0 and 1. Thus, an image will be rep-

hibitively expensive. This issue has been previously addressggented by a matrix’ € [0, 1]***. Since we will be consid-

by three different approaches. One class of techniques fiia"9 sets qf related images, it will be.conve.mentto representan
the eigenimages iteratively. For example, the power methB29€ equivalently as a vector, obtained simply by “row-scan-
[10] and the conjugate gradient algorithm [11], [12] calculat@iNg.” i-€., concatenating the rows to obtain ifreage vectomx

one eigenimage at a time, while the block power method aRleéngthm = hv
Lanczos iteration [13] calculate a set of eigenimages together.

. INTRODUCTION

x = vec(xT).
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Theaverage imageectoris denotedk and defined as by the observation that the SVD of can be determined in a
closed form when the images are derived by a planar rotation
X=(x; + - +x,)/n. of a single image about the surface normal, thus resulting in

XT X being circulant. We describe this in the next section.

The correspondingverage imagelata matrix,denotedX, is
[ll. PLANAR TRANSFORMATIONS

X=X A. Planar Rotation

o . Consider an image data matrix where eagh; is obtained
The matrixX — X, which we denoteX, has the interpretation fromx; by a planar rotatiohof # = 2r /n. Equivalentlyx; and
of an “unbiased” image data matrix. X x, are related by a planar rotation |¢f— j|6. Consider
The singular value decomposition (SVD) &fis given by

T T T
X]X] XiXo - X]Xp
o ST
X=UxV xfx: xIxy - xix,
- 2 2 2
XX = ) ) ) . Q)

wherel7 € R™*™ andV € R™ " are orthogonal, and € : : . :
R™>" with S = [£, 0], wherel; = diag(6+, - - -, 6,,), with Tx; xTxy --- xTx
61> 69> -+ > 6, >0, and0 is ann by m — n zero matrix. " " men

(When the singular valugs are not ordered, we will refer to the 1t ithin an accuracy imposed by the resoluti x; is a
decomposition as an “unordered” SVD.) The SVD.Xfplays  ,nction of[i — j|. Also, xTx; = xTx, 12, for 2 < j<n.

a central role in several important imaging applications such PRius, rowi + 1 of X7 X can be obtained by a right-arcular
image compression, pattern recognition and pose detection. Th; of row 4 (the first row is a right-circular shift of the last

columns oft/, denotedi;, ¢ = 1, -+, m, are referred to as the o) |y other wordsX? X is a circulant matrix [18]. Much
eigenimages off’; these can be interpreted as estimates of thenown about the properties of such matrices; in particular,
eigenvectors of the covariance matrix of the image vector. Thgyseq-form expressions can be given for their eigenvalues and
eigenimages provide an orthonormal basis for the COIUmnSé?E)envectors: The eigenvalues®f X are simply given by the

X, ordered in terms of importance; the corresponding singuigcrete Fourier transform (DFT) of its first row, and the eigen-
values measure how “aligned” the columnsofare, with the

> ) _ .~ vectors given by the Fourier matriX. That is
associated eigenimage. The components ofttheolumn ofV’
measure how much each individual image contributes tétthe
eigenimage.

In practice, the singular vectofs; are not known or com-
puted exactly, and instead estima¢gs - - -, qx which form a
k-dimensional basis are used. The accuracy of a practical imple-
mentation of subspace methods then depends on three factors: A =diag P(w"), P(w'), -+, P(w" ™)) 3)
the properties o, the dimensiork, and the quality of the esti-
matesy,;. The measure we will use for quantifying this accuracgnd
is the “energy recovery ratio,” denotegand defined as

XTX = FAF* 2)

where, withw = ¢=2%/™ and P(z) = 31+ xTxi 417"

F=[fof - f._1]

b X (11 1 1 1
>l X1 2 -1
N = 1 w w w
p(X, qi1, 7qk)_w :L 1 w2 w4 w?(nfl) (4)
NZD
where | - ||r denotes the Frobenius norm. Note that if
the q; are orthonormal,y < 1, and for any givenk 1wt WD D)
achieves a maximum value ¢5°F_ 62)/(31, 62) when
sparqy, ---, qx) = spariy, -- -, Gg). It is easy to verify from (3) that the eigenvalues &f' X
The principal calculation required with subspace methodstisfy P(w’) = P(w"%) fori =1,2, .-+, |(n — 1)/2], and
is the precomputation of estimates of the singular vectae corresponding eigenvectors (i.e., columngpare complex
@, ---, Oy of them x n matrix X. This is a very compu- conjugates of each other. Thereforegal eigendecomposition

tationally expensive operation when andn are very large. of X7 X is given by

Reducing this computational expense by exploiting any cor-

relation between image vectors has been the subject of much X'X =HDH" (5)
previous work [1-0]_[16]' Our solution to— this prpblem uses alThis observation can be found in [17], which was published while this man-
fundamentally different appro_ach that is considerably fastg, cript was under preparation. ‘

than these methods when the image vectors are “correlated,” agqre precisely, the imaget- 1 is obtained by rotating the infinite-resolution
in many pose-detection problems. Our technique is motivat@thge represented by thith image, and then sampling it.
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whereD equals ther x n matrix We begin by embedding the x n Toeplitz matrix7" in a
2n x 2n circulant matrixC as follows:
diadp(wo)v P(wl)v P(wl)v P(w2)7 o ) (6)
T R
C= [R T} ©)

and H consists of the first. columns of
where R is a symmetric matrix whose upper triangular part is

[hl hohshyh; -- ] Specified by
1 . .
=2 {_ o RE, ST RE Sy - - - arbitrary ifi = 7,
S e 10
\{51 i ", 9) {t(l,n-l—l—j-l—i) ifi <y (10)
— Co —So0 Co —S0
V2 where ther(; ;) andt; ;, denote the, j) elements of and
1 T, respectively.
_ /2| ¢ —51 2 s SinceC is a symmetric circulant matrix, following the devel-
TV opment in Section IlI-A, we can write down an eigendecompo-
: sition of C as
1
ﬁ Cn—1 —Sp-1 cQ(n—l) _SQ(n—l) T Cc= FcAcF: (11)
() where, withw = ¢—27/(2n) andQ@Q(z) = 22:01 o1, it1)?
wherecy, = cos(kf) ands;, = sin(k6). The above development A. = diag Q(w?), Qwh), -+, QW)  (12)

means that: and V' corresponding to an unordered SVD of
X can be computed in a closed form. In particular, the squagd
roots of the diagonal entries @ are the singular values d¢,

andV = H. To computel/, observe that/> = X H, which Fo=[fof - fon]

can be computed efficiently using Fast Fourier Transform (FFT) 11 1 e 1 1
techniques. In particular, ¥ is a matrix whoséth row is the 1 w w2 w1
FFT of theith row of X, thenY = \/n X F. The matrixX H 1 1 w2 W o w2(2n—1)
can be formed from the first columns ofY” as - E
w2 vy @ 1wt Qeneh b |
n vz (13)

The above development has focused on obtaining an SVD Osting the properties of the matri, we may rewrite an SVD
X. Note that the (unordered) SVD df can be immediately ¢ v 59

obtained from the (unordered) SVD &f as follows:

T R
. — C=
X=x-X [R T}
=X - ouyv¥ e U@ rse o Ve (LORE
n . o [U(e) _U(O)} { 0 5(0)} [V(e) _V(O)}
= Zaiuivi . (14)
=2
In other words, for =1, ---, n — 1, we haves; = #,41 (and where
similarly for @; and¥;), with 6,, = 0, @1,,, = uy, and¥,, = v;. U
= [fo fo, --- f2n—2]
U(F) ) ) ) )
B. Planar Translation 50
Consider a sequence of images of an object moving at a [—U@)} =[f1, f5, -+, f2n1]
constant velocity. It is easy to verify that to within an accuracy = _ o ) -
imposed by the resolutiox} x; is a function of|i — j|. Thus, 5t =diag(|Q(w)], |Q)], -+, [Q™ )],
XTX is a symmetricToeplitzmatrix. While no closed-form 5@ =diag(|Q(wh)], |QW)], - -, Q1))

expressions exist for the eigendecomposition of symmetric .
Toeplitz matrices, we now show how the theory of circulargndU (), U(), v(), andV_(") aren x n matrices.
matrices can be used to derive good approximations for theWe then note the following.
eigendecomposition under certain conditions. o U U v andV (@ are orthogonal matrices.
_ - _ « The diagonal entries of(¢) and S{*) are the singular

3We assume that the velocity vector lies in the plane perpendicular to the | C di « » and “odd” h .
camera view vector, and the object stays in the field of view. We also assume values O corresponding to “even”and "o armonics
that the perspective, background and lighting effects are negligible. respectlvely.
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We then have , , '
axis of rotation
T — U©§EyE" | o) gy (15) ! (

~ " Camera

<

In the special case where eithgt®) or S() is identically
zero, equation (15) provides an unordered SVDIof(See
Appendix A for one such case.) When the motion of the obje«
between frames is not too fast, which is typically the case¢ ~
only the first few diagonal entries of botfi®) and $() will
be significant. Then, withi!”, u{”, v{*, andv!”, denoting
thesth columns oft7(®), 17}, V() andV () respectively, and
with s ands{” denoting theith diagonal entry o5(*) and
5() respectively, we have

ny na
P 3 SO SO
=1 =1

where ny, ns € n. Moreover, it is easy to show that
(o). T Fig. 1. Framework for obtaining images of a 3-D object, rotated about a single
for each %, the outer pI’OdUCtuk Vi can be well ap- axis through the object. The camera view vector makes an angtewith

proximated by a linear combination of the outer productse axis of rotation, with the entire object always lying completely within the
uge)vge)7 uge)V§€'), . u;:)_évl(;)_é, wheres is small. Conse- camera’s field of view.

quently

ward technique for using the analytical expressions as a basis
for a computationally efficient algorithm for computing the true
eigendecomposition.

Returning to our example, suppose that the axis of rotation
In summary, we have an analytical approximation to the singukand the camera view vector are aligned (e= 0). Then, all of
vectors of? for the planar translation case. the results of Section IlI-A apply directhylf « is nonzero, then

in general, the results of Section IlI-A do not apply. However,

IV. EXTENSION TO THREE-DIMENSIONAL TRANSFORMATIONS ~ consider glanar object whose surface normal is aligned with
the axis of rotation. Then, the results of Section IlI-A apply

In the previous section, we showed that for pure planar traqﬁaependent ofi. To see this, lek;(«) denote the image vector

formations, it is possible to derive analytical expressions (8¥ the object with camera view angle and note that we have
good approximations) for the eigendecomposition. In this sec-

tion, we consider how well these analytical expressions serve as
approximations to the eigendecomposition for the more general

case of 3-D transformations. Or_le approa<_:h toward this endV\;ﬁerec(a) represents the contribution due to the background of
to apply results from a perturbation analysis of eigendecom

sitions [19], [20] to quantify the changes in the eigendecom|cl)3[ﬂ-e |mag(;[21]. Erom the argu_ments' n Sectlon II-A, it follows
" . tx;(0)" x,(0) is only a function ofi¢ — 5|, and consequently,
sition when the 3-D transformation is regarded as a perturbed. T
. : ; SO isx; (a)'x, ().
version of the ideal case. However, the bounds obtained fro .

0 explore the consequence of 3-D effects that arise when

such an analysis tum out to be crude, and not very eﬂ‘ectlyyeis nonzero, we select as the object a cylinder that is half-

in drawing conclusions that are useful in practice. Theref0r§|, ck and half-white, split along the longitudinal axis. In the

we use an alternate approach, where we examine a simple 3- . ; L L .
IrSt scenario, the cylinder is viewed along the longitudinal axis,

problem where the effects of the nonplanar nature of the trans- : . ,
0 thatitappears as a circle. Images are taken at incremetits of

formation can be parametrized by a single variable. Specifical\f};h”e the cylinder is rotated along the longitudinal axis. Fig. 2
we consider the case where thémages in the image data ma- N

trix are obtained from 3-D objects rotated about a single aXSIQOWS nine of the, = 90 images that make up the image data

. . : ; matrix X, as well as the singular vectors &f. The results of
at increments ofx /n, with the camera view vector making an . L : ;
. . . Section 1lI-A apply here, and it is seen that the right singular
angle ofa with the axis of rotation. We assume that the en- . ; . .
vectors are pure sinusoids of frequencies that are multiples of

tire object is always within the field of view (see Fig. 1). Wi L )
. . . , 2o 97 [ rad. Moreover, an examination of the (ordered) singular
will see shortly that this study yields considerable insight intQ . : i
) ; . vectors reveals that they correspond to harmonics of increasing
when and why the analytical expressions for the eigendeco

- o ; fpe_quency. Note that this ordering is an artifact of this particular
position serve as good approximations to the true eigendeconi- . )
. . example, and is not true in general.
position for more general 3-D transformations. Perhaps more
importantly, the conclusions from this study yield a straightfor- 5This assumes that all the light sources rotate with the object, or equivalently
the camera rotates and everything else is stationary. We will also assume that

4Some of the development for the planar translation case applies to scalingreescamera is far enough away that perspective effects can be neglected, that the

well, although not as gracefully. We explore this further in Appendix B. background is uniform, and that resolution effects are negligible.

max(ni,n2)+6
T~ Z aiuge)vge)T,

=1

x; ()T x; (o) = %;(0)Tx;(0) cos o + () (16)
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Fig. 2. Eigendecomposition of the image matkixobtained from rotating a half black, half white cylinder, with a view angle ef 0. The first row shows nine

of the 90 images of the image data mathix The second row shows the first seven eigenimages (left singular vectdrsusing the same gray scale encoding,
with white denoting the maximum positive pixel value and black denoting the maximum negative value. The third row shows the first seven righesiogsilar

of X. The fact that these are pure sinusoids is illustrated in the fourth row, where the FFT magnitude-squared, i.e., the “power spectra” of theggaright sin
vectors are shown. The plot on the left in the last row row shows the singular valuésNte that the singular values from indices 45 onwards are identically
zero, due to the symmetry of the object. The plot on the right shows the frequency at which the power spectra of the corresponding right singatdrieeesors

a maximum (i.e., the “dominant” frequencies). It can be seen that the dominant frequencies of the power spectra of the right singular vectodirgptrespo
nonzero singular values increase linearly with their harmonic index.

In the second scenario, the camera is placed at a view angléh@h the frequencies of the dominant harmonics can be quickly
« = 60°. Once again, images are taken at increments$ efith  identified by simply searching from low to high frequencies.
the cylinder rotated along the longitudinal axis. Fig. 3 showSonsequently, by projecting the row spaceXfto a smaller
nine of then = 90 images that make up the image data matrigubspace spanned by a few of the harmonics, the computational
X, as well as the singular vectors &f. Though the results of expense associated with the SVD computation can be signifi-
Section 1lI-A do not apply here, two properties are again ineantly reduced. Note that this approach can be used to generate
mediately apparent. 1) The right singular vectors are well-aghite SVD to within any prespecified accuracy; the deviation of
proximated by sinusoids of frequencies that are multiples tife actual singular vectors from pure harmonics only affects the
2r /n radians, and the magnitude-squared of the spectra, i.e., toenputational savings that this approach offers. [It is also im-
“power spectra” of the right singular vectors consist of a narroportant to note that circulancy, by itself, only guaranteed prop-
band around the corresponding dominant harmonics. 2) Téry (1); thus circulancy is not sufficient for this approach to
dominant frequencies of the power spectra of the (ordered) simerk well. However, the discussion on circulant matrices pro-
gular vectors increase approximately linearly with their indexides a sound theoretical basis for our approach.] Empirical ev-
These properties (assuming they hold) suggest an approachidence (see Section VI) suggests that the two properties dis-
reducing the expense in computing the eigendecompositionctesssed above hold true for sequences of images whose content
within a prespecified accuracy. In particular, the first propertyaries slowly, independent of the underlying transformation (ro-
means that the singular vectors are approximately spanned lgtéon, translation, scaling, etc.). We describe the details of the
handful of harmonics. In addition, if the second property holdfgst eigenimage computation technique in the next section.
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Fig. 3. Eigendecomposition of the image matkixobtained from rotating a half black, half white cylinder, with a view angle et 60°, with the data presented
exactly as in Fig. 2. From the fourth row, it is apparent that though the right singular vectirai not pure sinusoids, their power spectra are concentrated in a
narrow band around frequencies that are harmoni@srdf. It can also be seen that as with the= 0 case, the dominant frequencies of the power spectra of the
right singular vectors corresponding to nonzero singular values increase approximately linearly with their index.

V. FAST EIGENDECOMPOSITIONALGORITHM

Our objective is to determine the firktleft singular vectors "

of X. Letp be such that the power spectra of the firsingular  oss
vectors are essentially restricted to the bfln@np/n]. Owing

to the properties of the singular vectors discussed in the previot **[
section,p is typically not much larger thah. Let H, denote
the matrix comprising the firgt columns ofH [i.e., the first
p columns of the matrix given in (7)]. Then the firstsingular 09
valueséy, ---, g3 and the corresponding left singular vectors
ug, -+, ux of XH, serve as excellent estimates to those of
X. (Note thatX H,, typically has far fewer columns thal, so 086
that its SVD can be computed much more quickly.) Moreover
the accuracy of the approximated singular vectors with powe o2
spectra concentrated around “lower” frequencies will tend tc e
be better, i.e., the smalléris, the better estimat&; is of u;. R 2 3 4 5 6 7 8 9 10

This is illustrated in Fig. 4 for a typical image (Object 1 frorT]:ig. 4. Typical relationship between several energy recovery ratios as a

Fig. 5), where we have usedto measure the quality of the function ofk, 1 < k < p, for several fixed values gf. (The plots shown here
estimates of tha,. The solid line ShOW$(X, ug, -, up) as correspond to Object 1 from Fig. 5.) For fixedp(X, @, ---, ) behaves

: : : s = as a very good lower bound (X, uy, ---, u) for smallk, and is very
a function ofp, while the dashed lines S_hqv@’ i ’ uk) well approximated from below by(X ™, hy, ---, hy) for largek.
fork=1,2,---, pandp = 2, 4, 6, 8. Itis evident that for any
p, the errorp(X, uy, ---, u) — p(X, 1y, ---, Wg) increases  Our ultimate goal is to guarantee, upon termination, that
ask increases from 1 tp. p(X, iy, - -+, W) exceeds a user-specified thresheldVhile

0.92-

0.88 -




CHANG et al: FAST EIGENSPACE DECOMPOSITION OF CORRELATED IMAGES 1943

e
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— —

e

Fig. 5. Objects used to evaluate the proposed algorithm (provided by [22]). The objects are rotated throughand 3@images were taken for each of them.
Each image is of size 128 128 and is scale normalized such that the object touches a boundary.

p(X, Wy, ---, ;) depends critically ok and ny, - - -, 1, TABLE |

neither Of WhICh are available a priori we ShOW belOW that ALGORITHM PERFORMANCE ONROTATIONALLY CORRELATED IMAGES THE
! PERFORMANCE OF OUR ALGORITHM ISCOMPARED AGAINST THAT OF THE

DIREQT SVD FOR THEOBJECTS INFIG. 5. IN ALL CASES THE EIGENIMAGES

p(X, ug, -, ﬁp) > p(XT7 hy,---, hp) (17) OF X WERE COMPUTED WITH A DESIRED ENERGY RECOVERY RATIO OF
0.90. ALL COMPUTATIONS WEREPERFORMED USINGMATLAB ON A
where h; denotes theith column of H. The right-hand HP9000/C110 VBRKSTATION
side of (17) is readily computed; and ensuring that Dirnension Time (sec)
p(X*, hy, -+, hy) 2 pin turn guarantees that Object no. | & p | Our algorithm | Direct SVD
p(X, Ay, -, @) > . 1 9 [ 11 6.72 40.53
We now prove (17). Let the SVD ot H), be 2 12 15 8.46 40.53
3 25 | 29 16.53 41.12
XH, = ffpipr. 4 16 19 10.21 40.33
5 31 33 19.57 41.95
Note thatl/, = [1y, ---, 0,). Then (73 ?; ?(‘; 12:53 ig:gi
- - ~ 8 15 19 9.94 40.67
p(X, iy, -+, up) = ||U§X||%/||X||% 9 36 39 24.59 41.30
:||l7pTXH||%/||X||% 10 18 19 10.76 40.19
I ) ) 11 15 19 10.14 40.96
> || U, XHp||p/I1 X |Ie 12 21 | 45 97.47 39.13
I UTHZ /Y12 13 22 | 25 13.80 40.32
HE”‘T/P /11X 14 18 | 25 13.41 41.15
=p(X", hy, -+, hy). 15 15 | 21 11.10 390.86
16 14 | 31 16.32 39.42
From Fig. 4, it can be seen tha{X?*, hy, ---, h,) is a 17 18 | 39 22.83 40.39
very conservative lower bound fp( X, uy, -- -, u,), with the 138 22 29 16.09 40.53
quality of the bound improving uniformly with increasipgFor 19 20 | 23 12.59 41.66
20 31 37 22.19 40.57

fixedp, p(X, uy, ---, 1) behaves as a very good lower bound
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LS ] wa hd A o L ] (1] i
Fig. 6. Foreach of the objects in Fig. 5, the color-coded magnitude of the power spectra of the ordered right singular vectors are shown as afeinatidexof t

(along ther axis) and frequency (along theaxis). It can be seen that for most of the objects, the power spectrum of each right singular vector is approximately
band-limited, and that the dominant frequency of each right singular vector increases roughly linearly with increasing index.

200

to p(X, uy, - - -, u) for smallk, and is very well approximated . Pmpos‘ed ' ' o
from below byp(X T, hy, ---, hy) for largek. 180} 2 Block-Power 1
In summary, whenp is chosen so as to satisfy | Y Lanczos 3 |
p(XT hy, -+, h,) > p, the quantityp(X, g, ---, tx) > Update
turns out to exceeg for somek < p, with g, - - -, i, being o} Direct o -
very good estimates fony, ---, ug, and &4, ---, &% being ok »o |
very good estimates fovq, ---, 0. The energy recovery g o 8
ratio p(X, uy, ---, ug) can be efficiently approximated by 7§1°°- g B
ko -2 2 = > a
21:1 0i/||X||F' 80~ 80 > g I |
The entire algorithm for the fast computation of a partial SVD S ab n
of X can be summarized as follows. or Z >” LA 4 E ) 1
1) Form the matrixt’, whoseith row is the FFT of théth ao 5 L 8t _ 98 z v 1
row of X. A Lon 2w ¥ _—
2) Determine the smallest numbep such that v ¥ ooyy i T o
p(X%, hy, ---, h,) > u, wherep is the user-specified o 5 0 P » p p= P 0
reconstruction ratio. The key observation here is that th_ k

matrix X H,, can be constructed as the figstcolumns _ e I . .

. o o~ Fig. 7. _ Thl$ figure shows the computation time versus the subspace dimension
of the matrix V 2/”[1/\/5 yoRy1 Sy1 Ry2Sy2 - ']v k. For iterative algorithms, the stopping criterion was set to be such that the
wherey; denotes théth column ofY". energy recovery ratio is comparable to or lower than that of the proposed

3) With Z denoting the firstp columns of the matrix method; in other words, the comparison with the iterative methods was
r D by design conservative. In order to keep the comparison fair, the updating

[1/V2y0Ry1 Sy2Ry1 Sy2--], compute the SVD algorithm [14] was used to compute only the fikssingular vectors. Note that
Zp = Z];:l &iﬁi{sz_ all of these algorithms were implemented in MATLAB.
4) Returnuy, ---, u, such thap(X, 0y, ---, ux) > p.
The above algorithm computes the partial SVDXfIf in-  suchthad~?_, || Xh,||* > u(||X||7 — || Xh,[]?). In Step 3, the
stead the partial SVD ok is sought, the algorithm is modified SVD of the matrix comprising the second throygbolumns of

as follows. In Step 2p is estimated as the smallest numbper 7 is computed.
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Fig. 8. The first, middle, and last frames of the 20 video sequences used to test our algorithm.

We briefly analyze the computational expense of our algoemputational savings offered by our algorithm are significant
rithm. The cost incurred in Step 1, i.e., performing the FFT dff the condition
each row ofX, requiresO(mn log, n) flops. Step 2, that of

estimatingp, requiresO(myp) flops. In Step 3, the cost of com- P

puting the SVD of the matrix comprising the figgcolumns of > 1 Xk

«/. n/2 XH is oforderO(me). Step 4, determining the needed p(XT by, -+, hy) ==t <72 >
dimensionk, requiresO(mnk) flops. If p < =, then the total X1

computation required is approximately(mn log, n). This

compares very favorably with the direct SVD approach whidiolds forp < n. As the vectord; are harmonics consisting of
requiresO(mn?) flops, and in most cases with the updatingncreasing frequencies, this condition simply means that the in-
SVD method [14] as well, which requiré(mnk?) flops. The dividual pixel values do not change rapidly across the sequence
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of images. This is typically the case, as evidenced by the exam- TABLE I
. : ALGORITHM PERFORMANCE ONVIDEO SEQUENCES THEPERFORMANCE
ples presented in the next section. OF OUR ALGORITHM 1S COMPARED AGAINST THAT OF THE DIRECT SVD
ALGORITHMS, FOR THE20 TS OFVIDEO SEQUENCESSHOWN IN FIG. 8. IN
ALL CASES THE EIGENIMAGES OF X WERE COMPUTED WITH A DESIRED
ENERGY RECOVERY RATIO OF 0.95. ALL COMPUTATIONS WEREPERFORMED

USING MATLAB ON A HP9000/C110 VBRKSTATION
VI. EXAMPLES

Dimension Time (sec)
i Sequence no. | k& p | Our algorithm | Direct SVD

A. Rotationally Correlated Images T - 5 oS 50519

We first illustrate our approach on a database of images pro- § 12 1; };'gz ggz'gg
vided by [22]. There are 20 different objects available, with each 1 91 93 22.68 208:41
image d?.ta r_natrix bei_ng c_)f SiZ8? x 72. A single image of 5 15 | 15 16:14 192.95
each object is shown in Fig. 5. 6 3 7 10.51 195.91

The algorithm outlined in Section V was used to compute the 7 66 | 69 83.56 201.14
eigendecomposition ok corresponding to each of the image 8 L3 1322 fgég}
data matrices, with an energy recovery ratio threshold of 0.90. 13 g ; 10.93 181.36
Table | summarizefs the_ performangg of the algorithm, showing 1 41 49 50:04 194.44
k, p, and computation times. In addition, Table | also shows the 12 11 17 16.43 172.89
data when the direct SVD of MATLAB is used to compute the 13 1 3 9.16 202.84
first n singular values and vectors. 14 4 5 10.33 185.86

The difference  between p(X, 0, ---, ) and 15 1113 14.50 193.02

SN P f h obi is | h 0 16 5 17 15.12 197.98
p(_X, ay, -+, 1) for eac ol ject is ess:t an 2:.22 %, 17 63 | 65 76.32 108.70
with an average of 0.85%, which reveals tHat;, - --, Gz} 18 5 7 10.96 190.87
provides a very good approximate basis for the span of the 19 16 | 19 18.33 198.71
first k eigenimagegi, -- -, Uz }. As discussed in Section 1V, 20 6 7 11.24 191.93

this is a consequence of the following empirical facts: 1) The
power spectra of the right singular vector is approximately
band-limited. 2) The frequency at which the power spectrufy Video Sequences

of ¥; achieves a maximum roughly increases with increasingWe next consider the performance of our algorithm on images
i. (See Fig. 6.) Thus, the span ¢h,, ---, h,} effectively with more general correlation properties, in particular, when im-
“covers” the span of v, ---, Vi }. ages are derived from a combination of 3-D rotation, translation
Fig. 7 shows a comparison of the computation times for diénd scaling. To this end, we consider the problem of eigende-
ferent SVD algorithms, as a function of the subspace dimensicomposition of images representing successive frames of arbi-
k. In almost all cases, our algorithm exceeded by far the perary video sequences. Specifically, we consider six video se-
formance of all of the algorithms that it was tested against. FQuences that have been used to evaluate MPEG standards [23],
instance, compared to the direct SVD which took about 40asd an additional 14 video clips obtained from [24]. Each video
for each object, the median speedup factor with our algoritheequence consists of 150 images, each of sizex18Q0. The
was approximately three. Similar computational savings accriest, middle and last frames from each set are shown in Fig. 8.
when compared with other algorithms as well. Remarkably, it Our algorithm was used to calculate the partial SVDXof
can also be seen that the rate of growth in computational efffot each set, with an energy recovery ratio threshold of 0.95.
with increasing subspace dimensibois the smallest for our al- Table Il summarizes the performance of the algorithm, showing
gorithm. k, p, and the computation times. Compared to the direct SVD,
We next turn to image-specific conclusions that can be ithe speedup factors with our algorithm are in the range of
ferred from Fig. 5 and Table I. While Object 1 requires a valu24-23.8, depending on the valuepofThe difference between
of £ = 9 to achieve an energy recovery ratio of 0.90, the valyg X, u;, ---, ux) and p(X, @y, ---, a,) for each set was
of %k for Object 9 is four times as large. This illustrates thdess than 0.32%, with an average of 0.12%, which again reveals
determininga priori the dimension of the subspace requirethat{u;, - --, u} provides a very good approximate basis for
to achieve a prespecified quality of reconstruction is difficulthe span of the first eigenimagegus, - - -, ux}. Fig. 9 shows
Thus, other algorithms such as the updating SVD which do uset the power spectra of the right singular vectors for each
a fixed value oft cannot be expected to perform uniformly wellvideo sequence are approximately band-limited, and that the
over allimages. In contrast, our online estimaté ¢diven byp) dominant frequencies increase approximately linearly. These
can be seen to perform extremely well for most objects. Sinaee precisely the properties that our algorithm is designed to
the computational expense of our algorithm is directly relatedke advantage of. The extent to which these properties hold
to p, this means that for most cases there is no “wasted” coffand consequently how well our algorithm works) is directly
putation with our algorithm. In cases when the estimaté k. related to the rate of variation of the content across successive
is poor, it can be seen that the corresponding object is rotatiamages.
ally symmetric; thus the associated pose-detection problem is3Ne now illustrate the above general comments by discussing
ill-conditioned (see Object 17, and also 12 and 16). some specific cases. Note that in Tableglis only slightly
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Fig. 9. For each of the video sequences in Fig. 8, the color-coded magnitude of the power spectra of the ordered right singular vectors are shéion as a func
of their index (along the: axis) and frequency (along theaxis). It can be seen that the power spectrum of each right singular vector stays within a narrow band,
and that the dominant frequencies increase roughly linearly.

greater thark for most cases, implying that for a vast majority ofThis is seen with Sequence 16 (and to a lesser extent Sequence
cases, the low frequency harmonics indeed provide a good &@). Sequence 16 presents rapid “morphing” between human
proximation to the actual dominant right singular vectors. Réaces. Therefore, even though the dimension of the eigenspace is
calling that the computational expense of our algorithm is déffectively only 5, the first 17 harmonics are needed to span the
rectly related tq, we note once again that the amount of contorresponding eigen-subspace. This is confirmed by the power
putation is adapted to the difficulty of the problem. Moreovegpectral plot of the actual right singular vectors corresponding
it can be seen that for most problemss much smaller than, to Sequence 16, in Fig. 9.

the number of images; therefore, the computational savings that

accrue with our algorithm are significant. Wheiis large, two

scenarios are possible. The first scenario is the&n be large VII. CONCLUSIONS

as well, indicating that the underlying eigenspace indeed has a

high dimension. Thisisillustrated by Sequences 7 and 17, wher&\Ve have illustrated a computationally efficient algorithm for
the image content changes considerably between frames duedmputing the eigenspace decomposition of correlated images.
significant scaling effects. Thus, these two sequences repredaraddition to its speed, the algorithm enjoys the advantage that
high content, i.e., less correlation between images, and it ishe dimension of the subspace required to achieve a desired fi-
strength of our algorithm that it can adapt the amount of cordelity of representation is determined automatically; thus the
putation to suit the difficulty underlying the eigendecompositioamount of computation is “adapted” to meet accuracy require-
problem. In the second scenarjpis much larger thaik, indi- ments. Examples show that the algorithm performs very well on
cating that while the underlying eigenspace indeed has a snaathnge of test images composed of 3-D objects rotated about a
dimension, a large number of harmonics are required to sparsihgle axis, and even arbitrary video sequences.
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1 (¢ — 1)th image and théth image, it is easy to verify that the
corresponding correlation matrix can be written as
B 1 1 e 1
1 14+m 1+
XTx=|: :
n—1
= 1 14 oy 1+ Zai
+5 L i=1
(1 0 0 1 0 0
I B TR B I RCP R :
O I
11 -1 0 --- 0 an
ol 1 1 -+ 1
1 ow index 1 n 0o 1 --- 1
TOW 1n 7 S (19)
Fig. 10. Plot of the first row ofl" as a function of the column inde{. = 0 B '. 0' 1

XTX is a symmetric Toeplitz matrix, whet is the image data matrix that
results when a constant-intensity planar object translates back and forth at a
constant speed.

In the special case when, = ay =

- = a,,—1 = 1, the sin-

gular vectors ofX 7 X are singular vectors of a Toeplitz matrix.

APPENDIX A
PLANAR TRANSLATION: A SPECIAL CASE

We now present a special case where one of the terms in equa-
tion (15) is zero, with the other term therefore providing an un-
ordered SVD off’ = X7 X. Letn be even. Witht,; ;, denoting
the (¢, j) element off’, let the first row ofI” be given by

(1]

(2

(3]
[4]

2j — 2

?

1 —
n

2j — 2
n

ta,) =

L J=
(5]

Fig. 10 shows a plot of the first row &f as a function of the  [©
column index. This situation arises when an object translates
back and forth at a constant speed. 7
It is easy to verify that in this case, when tfie:) entries of i8]
R [recall (10)] are chosen to be one, the quanity’ in (15) is
identically zero, i.e., the singular values@fcorresponding to  [9]
the odd harmonics are identically zero. Thus, (15) reduces to [10]

T — @ gEyE” (18) 1

i.e., we have an analytical expression for the eigendecompodit?]
tion of 7.

[13]
APPENDIX B

PLANAR SCALING [14]

In this subsection, we briefly consider the case of “scaling,”
oo . [15]
when an object in the image expands or contracts. We focus otif
attention on a special case where the image intensity is con-
stant across the object, and when the image of the expanded 05’6
ject “covers” its nonexpanded image. Under these assumption%, )
with «; denoting the difference in area of the object between the

Conclusions similar to the one in Section IlI-B can be inferred
here as well.
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