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ABSTRACT 
 
 
 

HOW STRESS AFFECTS RICE: A CHARACTERIZATION OF THE RICE TRANSCRIPTOME 
 

DURING SINGLE AND SIMULTANEOUS ABIOTIC AND BIOTIC STRESSES 
 
 
 

Environmental stresses, both abiotic and biotic, are large contributors to pre-harvest 

crop loss. Abiotic stresses, such as drought, salinity, non-optimal temperature and others, are 

non-living factors in the environment that have a negative effect on plants. Biotic stresses are 

biological factors that can harm plants, including pathogens, pests and competition from other 

plants. With climate change increasing the incidence of abiotic stresses and the constant 

pressures of pests and pathogens, it is critical to world agriculture that varieties of plants broadly 

tolerant to stresses are developed. For this, it is necessary to understand how plants respond to 

multiple simultaneous stresses. The goal of this work is to characterize the stress response of 

the global staple food plant rice. 

Here, I present the results of two comprehensive transcriptome studies. In the first, I 

characterize how the rice transcriptome changes in response to simultaneous heat stress and 

infection by the bacterial pathogen Xanthomonas oryzae (Xo). Xo includes the causal agent for 

the economically important bacterial blight disease of rice, Xo pathovar oryzae (Xoo). Bacterial 

blight is more severe during abiotic stresses such as high temperature and drought. Most rice 

resistance (R) genes that target Xoo lose function at high temperature; however, function of the 

R-gene Xa7 is enhanced when the host is subjected to abiotic stresses. Understanding why Xa7 

is more effective during heat stress gives insight into host processes that are important during 

combined abiotic and biotic stresses. The major finding of this study was that the abscisic acid 

(ABA) pathway is a node of cross-talk in the interactions between heat stress and pathogen 

attack, during both susceptible and resistant interactions. 
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In the second comprehensive study, I characterize how the rice transcriptome is 

universally regulated by all stresses. Understanding universalities in rice stress response 

transcriptomes provides insight into how plants endure a wide variety of stresses in the field. To 

explore the universal rice transcriptome response, I developed a custom workflow to analyze 

publicly available RNA-Seq data from rice stress response studies, including the abiotic 

stresses drought, salinity, heat and cold, and the biotic stresses bacterial leaf streak, bacterial 

blight, rice blast, and two viral diseases. From this study, I concluded that the rice stress 

response is a robust system with many overlapping features. This core response includes 

down-regulation of photosynthetic processes and up-regulation of downstream signaling of the 

hormones ABA, salicylic acid and jasmonic acid. 

Within this dissertation, I present networks of gene regulation in four major rice 

responses: (1) response to a susceptible interaction with Xo during high temperature, (2) 

response to a resistant interaction with Xo during high temperature, (3) core response to abiotic 

stresses and (4) core response to biotic stresses. Common among all of these pathways are the 

pathways upstream and downstream of the plant hormone ABA. ABA-related processes are 

universally up-regulated by abiotic and biotic stresses, and are only repressed during the 

enhanced Xa7 response at high temperature. Because ABA signaling is critical for stress 

response, we need a thorough understanding of how genes in the ABA response network 

interact to most efficiently improve rice to be tolerant to multiple and simultaneous stresses. The 

gene networks I have characterized can be integrated with genome and transcriptome data from 

stress-tolerant rice varieties. By having a complete understanding of the rice stress response, 

we can develop an informed approach for developing new varieties of rice that are resistant to 

stress. 
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CHAPTER 1. Introduction1 

 
 
 

1.1 The effects of abiotic and biotic stresses on crop plants 

Stress is a large contributor to pre-harvest crop loss. The variety of stresses affecting crop 

plants can be broken into two broad categories: abiotic and biotic (Fig 1.1). Abiotic stresses are 

non-living factors in the environment that have a negative effect on plants. Some examples of 

abiotic stresses are drought, salinity, non-optimal temperature and limited nutrients. Biotic 

stresses are biological factors in the environment, such as pathogens, pests and competition, 

that can harm plants. With climate change increasing the incidence of abiotic stresses and the 

constant pressures of pests and pathogens, it is critical to world agriculture that broadly stress-

tolerant crop varieties are developed. For this, it is necessary to understand how plants respond 

to stresses alone and in combination. 

Abiotic stresses cause many similar effects on plants, independent of stress type. Yield 

reduction is a particularly severe effect of abiotic stress (Boyer 1982). Both cultivated wheat and 

its wild relatives experience major penalties to yield in response to drought and heat stress, with 

yield reduced roughly by half (Kilic and Yagbasanlar 2010;  Pour-Aboughadareh et al. 2017;  

Vignjevic et al. 2015). Two other major staple cereal crops, rice and maize, also experience 

major yield penalties due to abiotic stresses, including salinity and heat stress (Joshi et al. 2018;  

Ordóñez et al. 2015;  Thitisaksakul et al. 2015). In field experiments, each 1 °C of increased 

nighttime temperature reduces rice grain yield by 10% (Peng et al. 2004). These yield losses 

                                                            

1Parts of this chapter are adapted from the book chapter submitted for review as: Huerta, A. I., 
Cohen, S. P., Verdier, V., and Leach, J. E. Submitted: 2018. Molecular genetics of bacterial 
blight and bacterial leaf streak and their impact on future control strategies.  in: E-book: Rice 
diseases: Biology and selected management practices. T. W. Mew, H. Hibino, S. Savary, C. M. 
Vera Cruz, R. Opulencia and G. P. Hettel, eds. International Rice Research Institute, Los 
Baños, Philippines. 
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due to moderate nighttime temperature increase, which are predicted to increase over the 

coming decades (Welch et al. 2010), will increase greenhouse-gases by 11.8% per 1 °C (Van 

Groenigen et al. 2013). 

Abiotic stress-related yield loss is not specific to cereal crops; soybean, canola, cotton, the 

bioenergy grass Miscanthus × giganteus, and others also lose yield and biomass in response to 

abiotic stresses (Din et al. 2011;  Dong et al. 2012;  Hamayun et al. 2010;  Stavridou et al. 

2017). While climate change may bring positive effects on plant yield due to the increase in 

atmospheric CO2 (AbdElgawad et al. 2016), the net effect on yield is projected to be negative in 

multiple crop systems due to high temperature and water deficits (Deryng et al. 2014;  Hatfield 

and Prueger 2015). The projected crop losses due to a global mean temperature increase 

above 2 °C is predicted to impact 1.8 billion people, with the world’s poorest people 

disproportionately impacted (Hoegh-Guldberg et al. 2018). 

These yield losses are likely due to physiological changes in the plants during stress. For 

example, leaf senescence, which reduces the amount of productive plant tissue, is often caused 

by drought, salinity, and heat stress (Ghanem et al. 2008;  Lobell et al. 2012;  Lutts et al. 1996;  

Wehner et al. 2016). Abiotic stresses also have a negative effect on seed fertility, reducing grain 

filling and weight (Mohammed and Tarpley 2009;  Rang et al. 2011;  Thitisaksakul et al. 2015). 

Abiotic stresses can cause water loss, with an associated accumulation of osmoprotectants 

such as aquaporins and the amino acid proline in the plant (Afzal et al. 2016;  Din et al. 2011;  

Harb et al. 2010;  Kaur and Asthir 2015;  Stavridou et al. 2017). Reduced chlorophyll and 

photosynthetic efficiency is also common in numerous plant species in response to multiple 

abiotic stresses (Din et al. 2011;  Ghanem et al. 2008;  Hamayun et al. 2010;  Lutts et al. 1996;  

Utsumi et al. 2012). Because chlorophyll is reduced in abiotic stress-susceptible plants, green 

leaf area can serve as a screening parameter for selecting stress-tolerant plants in the field 

(Kalaji et al. 2016). Stress-tolerant plants are often more photosynthetically efficient than stress-

susceptible plants, suggesting that maintaining green tissue during stress is a necessary 
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component of plant defense against abiotic stress (Arjenaki et al. 2012;  Joshi et al. 2018;  

Vignjevic et al. 2015). 

Plants mediate regulation of abiotic stress responses via phytohormones (Verma et al. 

2016). Chief among plant hormones involved in abiotic stress response is abscisic acid (ABA), a 

hormone that accumulates in vegetative tissue in response to most abiotic stresses (Finkelstein 

2013;  Hamayun et al. 2010;  Harb et al. 2010;  Utsumi et al. 2012). ABA mediates abiotic stress 

response by causing both short- and long-term responses, such as stomatal closure and 

induction of dehydration response, respectively (Abe et al. 2003;  McAinsh et al. 1990). Salicylic 

acid (SA) is another major player in abiotic stress response. SA accumulates in plant tissue in 

response to abiotic stresses and plays a role in preventing oxidative damage to cell membranes 

(Horváth et al. 2007;  Larkindale and Knight 2002). Exogenous SA treatment prevents yield 

reduction and reduced spikelet fertility in high temperature-treated rice (Mohammed and Tarpley 

2009). Concentrations of other hormones, such as jasmonic acid (JA), gibberellic acid (GA), 

auxins, and cytokinins, are also altered during abiotic stress (Ding et al. 2016;  Ghanem et al. 

2008;  Hamayun et al. 2010;  Joshi et al. 2018). There is no single hormonal regulator of abiotic 

stress response and there is likely cross-talk among these hormone responses during abiotic 

stress. 

Biotic stresses such as weeds, animal pests and pathogens have a range of effects on 

plants. The amount of crop lost to biotic stresses varies widely among plants, regions and crop 

protections deployed (Oerke 2006). Average global pathogen- and pest-caused losses of the 

staples wheat, rice, maize, potato and soybean are between 17% and 30%, with maximum 

losses in food security hotspots ranging between 21% and 41% (Savary et al. 2019). For weeds 

and, to some extent, insects, effective and sustainable control strategies are generally well-

established (Juraimi et al. 2013;  Raybould and Quemada 2010;  Savary et al. 2012). However, 

chemical control of plant pathogens is either costly and not sustainable, as with fungicide control 

of fungal pathogens, or not effective or widely deployed, as with chemical control of bacterial 
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and viral pathogens (Khoury and Makkouk 2010;  Stuthman et al. 2007;  Vidaver 2002). For 

many plant pathogens, breeding crops for durable resistance is the most sustainable control 

practice (Brown 2015;  Mundt 2014;  Stuthman et al. 2007). In this work, the term ‘biotic stress’ 

will hereafter refer to plant pathogens, unless otherwise specified. 

Like with abiotic stresses, biotic stresses cause a reduction in photosynthetic activity in 

plants. Reduction in photosynthesis is part of a rapid host metabolic change in response to 

biotic stresses that also includes increases in respiration, photorespiration and sugar breakdown 

(Berger et al. 2007). This localized host change occurs in response to pathogens with different 

infection strategies, such as biotrophic bacteria, biotrophic fungi, necrotrophic fungi and viruses 

(Berger et al. 2004;  Bilgin et al. 2010;  Stare et al. 2015). The cause of this metabolic shift is 

unclear, though it may be a component of the plant’s defense response. For example, during 

resistance, to quickly power reactions needed for defense, plants may switch from assimilating 

to catabolizing carbon (Scharte et al. 2005). Furthermore, because some pathogens hijack host 

sugars and sugar transporters, disabling photosynthesis may be a host strategy for depriving 

pathogens of nutrition to slow down infection (Chen et al. 2010). 

Plant hormones play important roles during plant-pathogen interactions, and just as with 

abiotic stress response, there is no single hormone regulator of biotic stress response (Bari and 

Jones 2009;  Shigenaga and Argueso 2016). SA is widely studied for its role in resistance 

against pathogens, especially biotrophs and hemi-biotrophs (Loake and Grant 2007). Host SA 

accumulation is necessary for both localized and systemic resistance to some pathogens 

(Delaney et al. 1994). JA is also important for localized and systemic defense, primarily against 

necrotrophic pathogens (Antico et al. 2012;  Cohen et al. 1993). In dicots, SA and JA pathways 

are mutually antagonistic, with SA-induced pathways down-regulated by JA and vice versa 

(Caarls et al. 2015). In the monocot rice, JA and SA act synergistically and activate many of the 

same genes (De Vleesschauwer et al. 2016;  Tamaoki et al. 2013). Ethylene, which acts 
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synergistically with JA (Huang et al. 2015), activates plant defense against necrotrophs (Zhu et 

al. 2014). 

The role of ABA during plant-pathogen interactions is complex, with both negative and 

positive effects on plant defense (Lievens et al. 2017). ABA interacts antagonistically with SA 

signaling in rice and Arabidopsis (Jiang et al. 2010;  Xu et al. 2013a;  Yasuda et al. 2008). 

Pseudomonas syringae pv. tomato (Pst) uses effectors to target and induce plant ABA 

biosynthesis, which increases host susceptibility (de Torres‐Zabala et al. 2007). Contrary to the 

findings of de Torres‐Zabala et al. (2007), Seo and Park (2010) found that ABA signaling 

induced salicylic acid and, thus, host resistance to Pst. Stomatal pores on leaf surfaces, which 

are entry points for some pathogens, are closed by both ABA and SA (Khokon et al. 2011;  

Montillet et al. 2013). ABA also interacts antagonistically with JA and ethylene (Anderson et al. 

2004), with ABA-induced resistance to the brown spot pathogen in rice mediated via ethylene 

repression (De Vleesschauwer et al. 2010). There are more plant genes responsive to ABA than 

to any other hormone (Garg et al. 2012;  Nemhauser et al. 2006). Perhaps this magnitude of 

transcriptional reprogramming explains some of the complexity in ABA effects on biotic 

response.  

1.2 Combinations of stress have unpredictable results 

Crop improvement programs and research laboratories tend to focus on making their crop 

of choice more tolerant to a single stress (Mickelbart et al. 2015). This approach, while 

successful at increasing tolerance to one stress, neglects the biological reality that plants often 

experience multiple stresses in the field. This can inadvertently lead to varieties that can 

withstand one stress at the expense of susceptibility to another (Atkinson and Urwin 2012). 

Because plants perceive and respond to simultaneous stresses as a new stress, independent of 

either single stress, the effects of multiple simultaneous stresses on a plant are unpredictable 

(Gupta and Senthil-Kumar 2017). This unpredictable nature of response to simultaneous 
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stresses may be due to cross-talk among components of the individual pathways (Fujita et al. 

2006). 

Stress response components such as transcription factors (TFs), kinases, phytohormones 

and reactive oxygen species may act as nodes of antagonistic cross-talk, favoring one stress 

response at the expense of another. For example, overexpression of the Arabidopsis gene 

NPR1 induces resistance to fungal and bacterial pathogens, but increases plant sensitivity to 

salt and drought stress (Quilis et al. 2008). Similarly, overexpression of OsWRKY76, a rice gene 

encoding a transcriptional repressor, increases tolerance to cold stress at the cost of greatly 

increased susceptibility to the rice blast fungus (Yokotani et al. 2013). The N gene, a tobacco 

resistance gene to tobacco mosaic virus, loses function at elevated temperatures (Zhu et al. 

2010). Alternatively, some resistance genes gain function during abiotic stress, such as the 

wheat gene Yr36 and the rice gene Xa7, which provide enhanced resistance at moderately high 

temperatures against stripe rust and bacterial blight, respectively (Fu et al. 2009;  Webb et al. 

2010). With this potential cross-talk among stress response pathways, the best strategy for 

developing broadly stress-resilient plants is unclear. 

1.3 Bacterial blight of rice is more severe during abiotic stress 

 Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating 

bacterial disease of rice (Mew 1993). Early symptoms of BB are water-soaked streaks that first 

appear on the margins and tips of rice blades. As infection progresses, the streaks elongate and 

expand along the veins culminating in tannish-gray to white lesions. When BB occurs, typical 

rice yield reductions range between 20-50%, but under heavy disease pressure, conducive 

environmental conditions, and lack of disease resistance in deployed varieties, yield losses may 

reach 70% (Mew and Misra 1994;  Ou 1985;  Reddy et al. 1979). To effectively and sustainably 

manage this bacterial disease, farmers practice culture- and region-specific disease 

management tactics. These tactics include good water drainage, optimal plant spacing, timely 
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fertilizer application, routine field sanitation practices and rational deployment of resistant 

varieties (Leung et al. 2003;  Mew et al. 2004). Chemical control tactics for BB are limited, 

expensive and unreliable, especially in the tropics where heavy rainfall, temperatures and high 

humidity limit efficacy (Chaudhary et al. 2012;  Devadath 1989;  Gnanamanickam et al. 1999). 

 During simultaneous abiotic and biotic stress, development of BB is more severe. In a 

comprehensive panel of rice varieties, researchers found that in almost all interactions tested, 

lesions were longer at high temperature, 35 °C, than normal temperature, 29 °C (Horino et al. 

1982). In this study, both pathogen resistant and susceptible rice varieties developed more 

disease. In another study, several rice BB resistance genes lost function at 35 °C (Webb et al. 

2010), and yet another study demonstrated that the rice BB resistance gene Xa21, which is fully 

active at 27 °C, lost all function when rice was grown at 31 °C (Chen et al. 2018). There is 

similar evidence that rice is more susceptible to BB during periods of drought, with even drought 

tolerance seemingly contributing to breakdown of BB resistance (Dossa et al. 2016b). 

Interestingly, two BB resistance genes, Xa7 and an unknown gene from African rice, retain 

function during abiotic stresses (Dossa et al. 2016a;  Dossa et al. 2017;  Webb et al. 2010). 

These results show the need for understanding how abiotic stresses affect BB development, 

both phenotypically and mechanistically, in a range of stress tolerant and sensitive rice varieties. 

This information will support the development of rice varieties that can withstand BB, regardless 

of environmental conditions. 

 Some of the molecular mechanisms underlying interactions between rice response to 

abiotic stress and Xoo infection have been characterized. Transcriptomics and proteomics have 

identified genes induced by both abiotic and biotic stress, indicating that rice stress response is 

highly similar, regardless of stress (Kumar et al. 2015;  Narsai et al. 2013). Functional studies 

have pointed to the importance of signaling and regulatory molecules in response to abiotic and 

biotic stresses; for example, WRKY45 is a well-characterized defense-response TF that is 

induced by both abiotic and biotic stresses, including Xoo, in rice (Qiu and Yu 2009). While 
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over-expression of this gene in Arabidopsis enhances both abiotic stress tolerance and disease 

resistance, overexpression in rice negatively regulates response to abiotic stress (Tao et al. 

2011). OsNAC6 is a TF in the SNAC-A TF family that positively regulates resistance to abiotic 

and biotic stresses (Nakashima et al. 2012;  Nakashima et al. 2007). Rice stress-activated 

protein kinases and valine-glutamine motif-containing proteins also act positively in both abiotic 

stress tolerance and Xoo resistance (Kim et al. 2013;  Xu et al. 2013b). GF14 family 14-3-3 

genes, which are induced by abiotic stress and effector-triggered resistance to Xoo and the 

blast fungus Magnaporthe grisea, negatively regulate Xoo resistance-associated cell death 

(Chen et al. 2006;  Manosalva et al. 2011). Many of these genes contain similar cis-regulatory 

elements in their promoters, such as the biotic-responsive W and GCC boxes and the abiotic-

responsive ABRE, MYB and MYC boxes, indicating that there are shared regulatory 

mechanisms underlying their expression. Ultimately, the mechanisms underlying rice responses 

to abiotic stresses and Xoo infection are complex and overlapping, necessitating the need for 

new technologies to understand these responses at a systems level. 

1.4 The “RNA-Seq revolution” in plant research 

RNA-Seq is the use of high-throughput DNA sequencing technology for transcriptome 

profiling (Wang et al. 2009). When RNA-Seq was introduced, the prevailing transcriptome 

profiling technique was DNA hybridization-based microarrays. Microarrays, which are still widely 

used for transcriptome profiling, use probes of known transcript sequences to detect 

complementary DNA generated from a population of RNA (Malone and Oliver 2011). While 

more expensive than microarrays, RNA-Seq overcomes some of their limitations. For example, 

with RNA-Seq, it is possible to detect splice variants and novel sequences (Mantione et al. 

2014). RNA-Seq is thus a powerful tool for generating hypotheses about and investigating 

transcriptomes. 
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Since its introduction, RNA-Seq has become an invaluable and ubiquitous tool for 

research in plant sciences. The NCBI Sequence Read Archive (SRA) is a public repository for 

high-throughput sequencing data (Leinonen et al. 2010). SRA allows users to submit sequence 

reads generated in RNA-Seq experiments, a common requirement for publishing RNA-Seq 

results. Over 60,000 samples have been submitted to SRA from plant-related RNA-Seq 

experiments (Fig 1.2a, Table 1.1). Together, these studies contain over 200 petabases. 

Furthermore, the average amount of bases sequenced per experiment is generally increasing, 

from a mean of 743 megabases per sample (median 349) in 2010 to 3,297 (median 2,118) in 

2017 (Fig 1.2b, Table 1.1), likely because of improvements and cost savings in high-throughput 

sequencing technologies. Some of the uses of RNA-Seq in plant sciences, detailed below, 

include (1) detailed elucidation of plant transcriptomes, (2) improvement of existing genome 

annotations, (3) generation of genomes for non-model plants and (4) characterization of gene 

regulation networks (Martin et al. 2013). 

One of the most common uses of RNA-Seq in plant research is for elucidating plant 

transcriptomes in different tissues or under different stimuli. The standard units of transcriptome 

change are differentially expressed genes (DEGs). With RNA-Seq, a gene is considered a DEG 

if the treatment of interest changes the number of transcript reads, either positively or 

negatively, in a statistically significant manner (Anjum et al. 2016). An early RNA-Seq study in 

2011 provided the rice research community with a comprehensive rice expression atlas (Shen 

et al. 2011). Rice DEGs in ten rice tissues, and response to six and thirteen abiotic and biotic 

stresses, respectively, were characterized in this study. While this study was large, it was not 

exhaustive, and sequencing technologies have improved in the years since. Therefore, many 

additional studies have been conducted to quantify the rice response to various abiotic and 

biotic stresses. For a more detailed exploration of the rice transcriptome response to stresses, 

see chapter 3 of this text. 
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RNA-Seq is a powerful technique for improving existing genome annotations. The rice 

Nipponbare reference genome was established by the International Rice Genome Sequencing 

Project in 2005 and has been incrementally improved over the years (Kawahara et al. 2013). 

Several RNA-Seq-based approaches have been important in this improvement. Long read 

RNA-Seq was used to identify over 5,000 novel splice variants not present in the reference 

genome, including several hundred multi-exon long non-coding RNAs (Zhang et al. 2018a). In a 

similar work, publicly available RNA-Seq data was paired with proteomic data to identify over 

1,584 novel rice peptides, clustered into 692 genomic loci (Ren et al. 2018). Another work used 

RNA-Seq of rice plants experiencing mineral nutrient stress to identify 14 times more alternative 

splicing events than were previously known (Dong et al. 2018). RNA-Seq technologies have 

allowed researchers to identify several thousand novel stress-responsive long non-coding RNAs 

in rice (Li et al. 2018b;  Shin et al. 2018;  Yuan et al. 2018). 

Annotation of other plant genomes has also been improved with RNA-Seq technologies. 

A proprietary 3’-end RNA-Seq approach was recently used to better annotate more than 45% of 

existing gene models in tomato (Tzfadia et al. 2018). RNA-Seq has allowed researchers to 

better annotate small and long non-coding RNAs in Arabidopsis, Brassica napus, and wild 

banana (Liu et al. 2018a;  Polydore and Axtell 2018;  Shen et al. 2018). Innovative applications 

of high-throughput sequencing technologies like these are allowing researchers to develop a 

more complete understanding of current plant genomes. 

These technologies also allow researchers working on non-model species, when 

reference genomes are often lacking, to generate high quality genomic resources in the form of 

de novo transcriptomes. Beyond simply developing genomic resources, this approach allows 

researchers to identify genes in processes of interest. For example, de novo transcriptomics has 

been used to identify genes involved in catechin metabolism, fluoride accumulation and wound 

response in the non-model tea plant Camellia sinensis (Li et al. 2018a;  Li et al. 2018c;  Zhang 

et al. 2018c). De novo transcriptomes have been developed for many other non-model plants, 
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including the medicinal plant Pfaffia glomerata, the water chickweed Myosoton aquaticum, the 

broadleaf plaintain Plantago major, the tuberose Polianthes tuberosa and the zucchini Cucurbita 

pepo (Batista et al. 2018;  Huang et al. 2018;  Liu et al. 2018b;  Madhavan et al. 2018;  Vitiello 

et al. 2018). These studies, among the countless others not cited here, show that using 

RNA-Seq to generate de novo transcriptomes is a valid and powerful approach to studying plant 

species with few genomic resources. 

Co-expression analysis of transcriptome data is a powerful inductive approach to 

identifying networks of gene interactions (Le Novere 2015;  Ruprecht et al. 2017). Using RNA-

Seq data from rice varieties resistant and susceptible to the fungal pathogens Rhizoctonia 

solani and Tilletia horrida, two groups built rice gene co-expression networks, allowing the 

authors to identify key gene interactions during resistance (Wang et al. 2018;  Zhang et al. 

2018b). Studies like these offer insights into differences in regulatory mechanisms among stress 

tolerant and sensitive plant varieties, which allow researchers to identify putative regulatory 

hubs that can be improved through targeted breeding. For example, the transcription factor 

HIGHER YIELD RICE, identified through gene co-expression analysis, is a master regulator of 

photosynthesis that increases rice yield stability under abiotic stresses (Ambavaram et al. 

2014). 

Other uses of RNA-Seq in plant research include transcriptomics applications to in 

planta microbe, single cell, and chloroplast gene expression. Analysis of the in planta microbe 

transcriptome gives insight into both how the host genotype affects gene expression of 

pathogens and the strategies employed by virulent pathogens (Chatnaparat et al. 2016;  

Khokhani et al. 2017;  Ma et al. 2018;  Nobori et al. 2018). Single cell and chloroplast 

transcriptome profiling gives spatial information on gene expression within plant tissue and 

organelles, respectively (Han et al. 2017;  Michel et al. 2018;  Sakai et al. 2018). These 

approaches demonstrate the power of RNA-Seq in giving researchers a holistic view of how 

plants and their environment interact. 
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In all these examples, the use of RNA-Seq provides a more comprehensive 

understanding of gene expression. With a greater understanding of how plant transcriptomes 

change in response to stresses, researchers can generate systems level hypotheses about how 

to improve crop varieties in light of those stresses. Two chapters within this dissertation 

(chapters 2 and 3) utilize RNA-Seq to generate hypotheses for how the rice transcriptome 

responds to abiotic and biotic stresses. 

1.5 About this dissertation 

Because environmental stresses are large contributors to yield loss in food crops, it is 

critical to understand how plants respond to stress. The purpose of this dissertation is to explore 

how the rice transcriptome changes in response to (1) simultaneous abiotic and biotic stress, (2) 

all abiotic stresses, (3) all biotic stresses and (4) all abiotic and biotic stresses. Rice is an ideal 

system for this study because it is an important global food staple and there are robust genomic 

resources available. 

In chapter 2, I present the results of an RNA-Seq study of rice experiencing 

simultaneous heat stress and Xanthomonas oryzae (Xo) infection. As mentioned previously, Xo 

infections are more severe and many rice resistance genes that target Xo fail at high 

temperature. However, the resistance gene Xa7 functions better at high temperature. To better 

understand the rice responses underlying both increased susceptibility and enhanced Xa7-

mediated resistance at high temperature, we conducted a transcriptomics experiment. We 

conducted disease assays with rice cultivar IRBB61, containing Xa7, and two strains of Xo, one 

containing a plasmid with the gene for the elicitor of Xa7 and the other with an empty vector. 

In chapter 3, I explore the rice broad response to abiotic and biotic stresses via meta-

analysis of publicly available rice transcriptome data. Crop improvement programs often focus 

on developing varieties tolerant to a single stress. While these varieties are tolerant to the 

chosen stress, whether they will be tolerant or susceptible to other stresses is unpredictable. 
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For the informed development of broadly stress-tolerant varieties of crops, it is necessary to 

identify genes and pathways that are universally regulated by multiple stresses. To identify 

universally regulated genes and pathways in rice, RNA-Seq data was analyzed from publicly 

available studies on drought, salinity, high temperature, cold, Xanthomonas oryzae pvs. oryzae 

and oryzicola, Magneporthe oryzae, rice stripe virus and rice dwarf virus.  

In chapter 4, I present a discussion and conclusions on the work conducted. This 

chapter includes a summary of the novel findings in this dissertation, preliminary data on 

temperature-Xa7-ABA interactions and a commentary on the research I envision as necessary 

follow-up to these studies. Finally, in the appendix, I include tables, figures and methods that 

are supplementary to chapters 2 – 4. 
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1.6 Tables and Figures 

Table 1.1: Summary of plant-related RNA-Seq experiments available on the NCBI 
Sequence Read Archive. 

Year 
Number of 
Samples 

Total Bases*ǂ 
Mean Bases 
per Sampleǂ 

Median Bases 
per Sampleǂ 

2010 19 14,126 743 359 
2011 97 160,324 1,653 593 
2012 288 608,503 2,113 1,437 
2013 1,060 3,965,183 3,741 2,870 
2014 4,261 11,713,484 2,749 1,394 
2015 11,442 34,026,129 2,974 1,986 
2016 16,824 61,192,575 3,637 2,771 
2017 26,850 88,533,736 3,297 2,118 

Total 60,841 200,214,060 - - 

Meta-data for Table 1.1 was downloaded from NCBI SRA on 2018-09-24. *Yearly totals are 
non-cumulative; ǂbases are in megabases 
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Fig 1.1: The most common environmental factors that cause plant stress. Abiotic (blue) 
and biotic (red) stresses are shown from general (left) to specific (right).   
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Fig 1.2: The amount of plant-related RNA-Seq experiments being conducted is 
increasing. (a) Number of plant-related RNA-Seq samples available on the NCBI SRA by year. 
(b) Mean (black) and median (red) number of bases per NCBI SRA RNA-Seq sample by year in 
millions of bases. Meta-data for Fig 1.2 was downloaded from NCBI SRA on 2018-09-24. Yearly 
data is non-cumulative. 
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CHAPTER 2. RNA-Seq analysis reveals insight into enhanced rice 

Xa7-mediated bacterial blight resistance at high temperature2 

 
 
 

2.1 Introduction 

Plant diseases are a major detriment to global food production, accounting for an 

estimated 10% or more of crop yield loss each year (Oerke 2006). The disease phenotype is 

mediated by pathogen and host genotypes as well as environmental conditions, and these 

factors ultimately determine whether a plant succumbs to disease (Madgwick et al. 2011;  

Scholthof 2007). Environmental stresses can negatively impact a plant’s ability to respond to 

pathogen attack, increasing disease severity (Mohr and Cahill 2003;  O'Hara et al. 2016). This is 

due in part to cross-talk among the highly complex and intertwined plant stress signaling 

pathways (Prasch and Sonnewald 2013;  Yasuda et al. 2008). Heat stress can reduce the 

effectiveness of plant disease resistance, rendering agriculturally important plants susceptible to 

attack (de Jong et al. 2002;  Li et al. 2016;  Whitham et al. 1996;  Zhao et al. 2016;  Zhu et al. 

2010). While this phenomenon could pose a serious risk to food security in light of climate 

variability and global warming trends, current insight into specific underlying mechanisms of 

increased disease and/or loss of disease resistance at high temperature is lacking. Elucidation 

of these mechanisms would inform novel crop breeding strategies and reduce global food 

losses due to temperature-induced disease. 

Bacteria in the Xanthomonas oryzae (Xo) group are pathogenic to rice and cause 

considerable yield loss every year (Reddy et al. 1979). Xo is most effectively controlled through 

the development of resistant rice varieties, particularly through deployment of single gene 
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into enhanced rice Xa7-mediated bacterial blight resistance at high temperature. PLOS One 
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resistance (Suh et al. 2013). However, many rice resistance (R) genes lose function at higher 

temperatures, leading to increased bacterial blight disease caused by the Xo pathovar oryzae 

(Webb et al. 2010). Resistance genes in other plants similarly lose function, such as the 

Arabidopsis R-like gene SNC1 and the tobacco N gene, an R-gene to tobacco mosaic virus 

(Zhu et al. 2010). One rice bacterial blight R-gene (Xa7)  retains function at high temperature 

(Webb et al. 2010). Unusually, Xa7 not only retains function, but also functions better at high 

temperature, both in long-lasting field trials, and at least up to 14 days post-inoculation in 

laboratory experiments. When triggered by the cognate pathogen effector protein AvrXa7, Xa7 

induces the hypersensitive response, a rapid, localized host cell death that reduces pathogen 

spread in the host plant (Hopkins et al. 1992). In addition to functioning better at high 

temperature, Xa7 also retains function during drought stress, a condition in which other rice R-

genes fail to function (Dossa et al. 2016;  Dossa et al. 2017), suggesting that the underlying 

mechanism of Xa7 can overcome general abiotic stresses. Because Xa7 is a durable, long-

lasting resistance gene that is effective in growth chamber, greenhouse, and field studies (Cruz 

et al. 2000;  Webb et al. 2010), understanding the mechanism underlying enhanced resistance 

at high temperature will be an asset to agricultural researchers and crop breeders. 

Plants are sessile, so they must be versatile in their ability to adapt to a wide range of 

abiotic and biotic stresses (Verma et al. 2016). Phytohormones are important regulators of 

plants’ abilities to detect and respond to stresses (Nguyen et al. 2016;  Shigenaga and Argueso 

2016;  Verma et al. 2016). One critical phytohormone involved in plant adaptation to abiotic 

stresses is abscisic acid (ABA), which acts as a generic regulator for abiotic stress response 

(Tuteja 2007). During abiotic stress, ABA primarily regulates plant osmotic stress tolerance, 

through mechanisms such as closure of stomata or expression of dehydration tolerance genes. 

During the rice-Xo interaction, exogenous treatment of ABA promotes rice susceptibility to Xo 

and acts as a cross-kingdom signal to promote bacterial swimming (Xu et al. 2013;  Xu et al. 

2015). The hormone salicylic acid (SA) plays an important role in rice defense against Xo, and 



28 

exogenous application of SA promotes both basal defense and the hypersensitive response 

during the rice-Xo interaction (Le Thanh et al. 2017). Intriguingly, ABA and SA play antagonistic 

roles in rice (Jiang et al. 2010;  Xiong and Yang 2003), suggesting a possible regulatory conflict 

during simultaneous abiotic and biotic stresses. Here we report the results of a transcriptomics 

study designed to determine early host changes during Xa7-mediated resistance in an effort to 

elucidate the mechanisms underlying enhanced resistance at moderately high temperatures. 

2.2 Results 

Prior exposure to high temperature stress increases the effectiveness of Xa7-mediated 

resistance 

 Plants of rice line IRBB61, which carries the bacterial blight resistance gene Xa7, were 

grown for 4 weeks after germination in a greenhouse under normal conditions (approximately 

28°/24°C day/night, 75-85% relative humidity). These plants were evenly transferred to growth 

chambers set to normal (29/23°C day/night) and high (35/29°C day/night) temperature regimes 

for one week. These plants were inoculated with Xanthomonas oryzae (Xo) strain X11-5A, a 

generally low virulence strain of Xo (Triplett et al. 2011), carrying either an empty plasmid vector 

or a vector encoding AvrXa7, the Xa7-mediated resistance inducing protein (Table 2.1). Plants 

in the susceptible interaction showed chlorosis, with a stronger yellowing in the high 

temperature plants (Fig 2.1a). During the resistant interactions, plants showed a browning 

indicative of the hypersensitive response associated with resistance to Xo harboring avrXa7, 

with a stronger response at high temperature. Plants at high temperature in the resistant 

interaction also showed reduced bacterial numbers due to Xa7-mediated defense as early as 12 

h post-inoculation (hpi), while plants at normal temperature showed reduced bacterial numbers 

by 24 hpi (Fig 2.1b). By 48 hpi, during the resistant interaction, the plants at high temperature 

showed greatly reduced bacterial numbers when compared to the plants at normal temperature. 

During the susceptible interaction, bacterial numbers showed no differences due to high 
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temperature. These observations confirmed that the Xa7-mediated resistance was stronger and 

faster at high temperature than at low temperature. 

Prior exposure to high temperature alters the rice transcriptome 

To address the impact of prior exposure to high temperature on the rice transcriptome, 

we conducted an RNA-seq experiment using leaves from mock-inoculated plants grown in 

normal and high temperature conditions as described above (see Supplemental Table A1.1 for 

next generation summary statistics). Differential gene expression analysis was conducted, with 

genes having FDR-corrected p-values of <= 0.01 considered differentially expressed; this 

analysis revealed 1,511 differentially expressed genes (DEGs), with the majority of DEGs being 

up-regulated by high temperature (Fig 2.2a). Exposure of mock-treated plants to high 

temperature led to the upregulation of genes involved in many annotated biological processes 

(Fig 2.3, Supplemental Table A1.2). Stress-responsive gene ontology (GO) terms were enriched 

and over-represented in genes up-regulated by high temperature, including the following terms: 

‘response to stress’, ‘response to abiotic stimulus’, ‘response to biotic stimulus’, and ‘response 

to endogenous stimulus’. The GO terms ‘response to stress’ and ‘response to biotic stimulus’ 

were also over-represented in genes down-regulated by high temperature, but the median log2 

fold change for genes annotated with these terms was positive, indicating that there were more 

genes with these annotations being up-regulated than down-regulated. GO terms associated 

with metabolic processes were enriched in genes up-regulated by high temperatures, including 

biosynthetic, carbohydrate metabolic, catabolic, lipid metabolic, and secondary metabolic 

processes. The DEGs associated with these metabolic terms had positive median log2 fold 

change, indicating that metabolic processes were generally up-regulated in mock-treated plants 

at high temperature. DEGs associated with energy metabolism terms, including generation of 

precursor metabolites and energy and photosynthesis, were enriched in genes down-regulated 

by high temperature and had negative log2 fold changes, indicating that energy metabolism was 

generally down-regulated at high temperature. Enriched GO terms for cellular processes 
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included ‘signal transduction’, ‘transport’, ‘cell differentiation’, ‘cell death’, and ‘cell growth’. 

DEGs for all of these processes were generally more up-regulated in mock-treated plants at 

high temperature. The GO term ‘translation’ was under-represented in genes up-regulated by 

high temperature with a negative median log2 fold change, indicating that gene translation was 

down-regulated by high temperature. To confirm that this transcriptomic response was due to 

temperature and not caused by a temperature-dependent wound response from the inoculation 

method, expression of VSP2, a gene responsive to a mediator of wound responses (jasmonic 

acid), was measured via qRT-PCR. Expression of VSP2 was not significantly changed by high 

temperature at 3, 6, and 12 h post-mock inoculation (Supplemental Fig A1.1). In addition, from a 

panel of 100 rice wound response genes in our RNA-Seq data, 96 were not differentially 

expressed at high temperature (Dataset 1.1). Thus, plants subjected to high temperature stress 

have dramatically altered transcriptomic profiles when compared to plants at normal 

temperature, and wound response from inoculation is not exacerbated at high temperature. 

Plants respond uniquely to temperature in the resistant and susceptible interactions 

 To assess the plant transcriptomic response to high temperature during the susceptible 

and resistant interactions, gene expression profiles were determined from plants inoculated with 

the same strains as previously described at 3, 12, and 24 hpi (Table 2.1, Supplemental Table 

A1.1). The transcriptome of all pathogen-treated plants was altered at high temperature relative 

to normal temperature, but plant transcriptomes in the resistant interaction showed more 

differentially expressed genes (Fig 2.2a). A total of 8,499 DEGs were differentially regulated by 

high temperature in all biotic treatment conditions. While there was some overlap in DEGs per 

time point, the majority of these DEGs were unique to a single time point (Fig 2.2b), indicating 

that time was the strongest factor influencing transcriptome response. Within each time point, 

there were shared and unique transcriptomic responses in both the resistant and susceptible 

interactions (Fig 2.2c-e). Most shared DEGs were similarly regulated between both interactions, 

with only a few genes oppositely regulated based on pathogen treatment. At all time points, the 



31 

number of DEGs unique to the resistant interaction was roughly one order of magnitude greater 

than the number of DEGs unique to the susceptible interaction. This indicated that while 

exposure to high temperature caused similar transcriptome responses in both the susceptible 

and resistant interactions, more changes were observed in the resistant interaction, and most of 

these were unique to that response.  

In general, biological processes were up-regulated in the susceptible interaction and 

down-regulated in the resistant interaction (Fig 2.3, Supplemental Table A1.2). Genes 

annotated with the GO term ‘response to abiotic stimulus’ showed opposite trends in the 

susceptible interaction; while genes annotated with this term were generally up-regulated in the 

susceptible interaction, they were generally down-regulated in the resistant interaction. 

Surprisingly, genes annotated with ‘response to biotic stimulus’ were generally down-regulated 

by high temperature in both the susceptible and resistant interactions. Genes annotated with 

‘response to stress’ were up-regulated in the susceptible interaction at 3 and 24 hpi, and down-

regulated in the resistant interaction at 3 and 12 hpi. Genes annotated with the GO terms 

‘biosynthetic process’, ‘carbohydrate metabolic process’, and ‘cellular process’ showed similar 

trends, being generally up-regulated by high temperature in the susceptible interaction and 

down-regulated by high temperature in the resistant interaction, while genes annotated with the 

GO terms ‘metabolic process’ and ‘lipid metabolic process’ showed the opposite trend. 

Regulation of genes associated with GO terms in plants in the susceptible interaction responded 

to high temperature in a way similar to the mock-treated plants, while these processes were 

generally oppositely regulated in plants in the resistant interaction. This suggested that the 

plants undergoing Xa7-mediated resistance at high temperature were responding to high 

temperature by regulating many biological processes in a way opposite to both uninoculated 

plants and the plants in the susceptible interaction. 
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Rice plants experiencing heat stress alter hormone synthesis and downstream signaling 

Hormones are key regulators of plant responses to both biotic and abiotic stresses 

(Nguyen et al. 2016;  Shigenaga and Argueso 2016). Many transcripts encoding genes directing 

phytohormone biosynthesis were in the set of all DEGs. All hormone biosynthesis gene families 

were differentially expressed in response to high temperature, in all mock and pathogen 

treatments, suggesting that plants experiencing high temperature stress fundamentally alter 

endogenous hormone balance. There was also considerable overlap in hormone biosynthesis 

DEGs in the susceptible and resistant interaction, counter to the noted earlier trend of mostly 

unique transcriptomic responses (Fig 2.4a, Dataset 1.2). The expression patterns of hormone 

biosynthesis genes in the mock-treated plants most closely resembled that of plants in the 

susceptible interaction at all time points, especially in the ABA, auxin, and cytokinin biosynthesis 

pathways (Fig 2.4a). Genes involved in ABA biosynthesis were strongly up-regulated at high 

temperature in both mock-treated plants and plants during the susceptible interaction at 3 hpi, 

and strongly down-regulated in plants undergoing resistance responses at all time points. 

Genes predicted to contribute to biosynthesis of salicylic acid (SA), a pathogen-responsive 

hormone important in defense responses, were regulated independent of biotic treatment – 

being up-regulated by high temperature in the mock treatment, down-regulated by high 

temperature in both biotic interactions at 3 and 12 hpi, and up-regulated by high temperature in 

both biotic interactions at 24 hpi. This trend suggests that during resistant interactions at high 

temperature, plants enact transcriptional control of hormone metabolism that is unique from 

uninoculated plants in response to high temperature, while plants progressing towards a 

diseased state closely resemble uninoculated plants. 

To further address the role of plant hormones in this response, analysis was conducted 

to examine how known hormone-responsive genes behave during simultaneous pathogen and 

temperature stresses. Many hormone-responsive DEGs were perturbed at high temperature in 

all mock- and pathogen-treated plants (Fig 2.4b, Supplemental Table A1.3). ABA-responsive 
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genes made up the largest proportion of hormone-responsive DEGs in all treatments. At each 

time point, a larger number of DEGs, but a smaller proportion of total DEGs, in the resistant 

interaction were hormone-responsive relative to the susceptible interaction at the same time 

point. Regardless of pathogen treatment, rice plants greatly altered hormone-regulated genes 

and downstream signaling in response to high temperature. 

Rice plants expressing Xa7-mediated resistance suppress expression of ABA-responsive 

genes at high temperature 

 The fold changes of known ABA-up-regulated genes, identified as being induced 2-fold 

or greater following ABA treatment by a previous microarray study (Garg et al. 2012), were 

inspected to give insight into the associated regulatory trends. ABA-up-regulated genes were 

mostly up-regulated at high temperatures in the mock-treated plants (Fig 2.5a, Dataset 1.3). The 

transcriptome of plants in the susceptible interaction showed the same trend at 3 and 24 hpi, 

with the opposite trend at 12 hpi (Fig 2.5b, Dataset 1.3). In the resistant interaction, ABA-up-

regulated genes were down-regulated at all time points, suggesting that during resistance, 

plants suppressed ABA downstream responses. Expression of the ABA-responsive master 

regulators bZIP23 and bZIP72 was tested using quantitative reverse transcriptase PCR. In 

susceptible plants at high temperature, expression of bZIP23 was increased approximately two-

fold compared to the low temperature, mock-inoculated control at 3 and 6 hpi, while expression 

was reduced two-fold in resistant plants at 6 hpi (Fig 2.6a). Interestingly, while bZIP72 was 

suppressed by high temperature in the resistant interaction, it was also suppressed during the 

susceptible interaction (Fig 2.6b). In agreement with the findings for SA biosynthetic genes, 

genes responsive to SA were up-regulated by high temperature in the mock-inoculated plants 

(Supplemental Fig A1.2a, Dataset 1.4). Conversely, SA-responsive genes were down-regulated 

by high temperature at 3 and 12 hpi in the susceptible interaction, and at all time points in the 

resistant interaction (Supplemental Fig A1.2b, Dataset 1.4). These trends indicate that during 

high temperature stress, rice plants undergo significant changes in not just ABA-responsive 
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gene expression but in the regulatory networks that drive ABA-responsive gene expression, and 

that enhanced Xa7-mediated resistance at high temperature is likely independent of SA. 

An ABA responsive element-like motif was enriched in the promoters of DEGs 

Motif analysis was conducted on the upstream promoter sequences of DEGs for 

discovery of cis-regulatory elements that might give insight into the observed gene expression 

patterns. A motif was identified that resembled the ABA responsive element (ABRE), a G-box 

family motif recognized by bZIP family transcription factors that is found in the promoters of 

many ABA responsive genes (Gómez-Porras et al. 2007). This ABRE-like element was enriched 

in the promoters of genes up-regulated in the susceptible interaction at high temperature at 3 

hpi, genes down-regulated in the susceptible interaction at 24 hpi, and genes down-regulated in 

the resistant interaction at all time points (Fig 2.7, Supplemental Table A1.4). Several other 

motifs identified from the Plant cis-acting Regulatory DNA Elements database (Higo et al. 1999) 

were also enriched in the DEGs, including motifs resembling the TATA box, the light-responsive 

IBOXCORENT, the anaerobic-responsive GCBP2ZMGAPC4, the root growth-related 

TELOBOXATEEF1AA1, and the axillary growth-related UP2ATMSD (Fig 2.7, Supplemental 

Table A1.4). The enrichment trends of these motifs may give insight into the rice processes 

perturbed by high temperature stress over the course of a 24 h day. Most importantly, the trends 

observed in the enrichment of ABRE-like motifs are evidence that plants activated the ABA 

response at high temperature early during the susceptible interaction, and suppressed the ABA 

response at high temperature during the resistant interaction. 

2.3 Discussion 

During periods of high temperature stress, Xa7-mediated rice resistance to Xo is 

enhanced, while resistance regulated by other R genes is generally repressed (Webb et al. 

2010), but the underlying cause of this phenomenon is heretofore not understood. To provide 

insights into how Xa7-mediated resistance is enhanced at high temperature, we conducted a 
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transcriptomics experiment with RNA-Seq technology to identify the transcriptomic changes in 

rice during Xa7-mediated resistance at high temperature. A set of 8,499 DEGs was identified as 

temperature responsive in one rice cultivar, IRBB61, experiencing both a susceptible interaction 

with Xo strain X11-5A and a resistant interaction with Xo strain X11-5A carrying a plasmid 

encoding the Xa7-inducing effector protein AvrXa7 across three time points. 

Under all treatments, expression of genes involved in metabolic processes was altered 

by high temperature. Genes annotated with GO terms related to metabolism were generally up-

regulated by high temperature in plants treated with mock inoculation and in the susceptible 

interaction, while these genes were generally down-regulated in the resistant interaction. 

However, genes annotated with the GO term ‘photosynthesis’ showed the opposite trend. 

Photosynthesis is generally inhibited during high temperature stress, and reduced primary 

metabolism is associated with thermotolerance in plants (Barnabás et al. 2008;  Zhang et al. 

2005). Reduced photosynthesis is also associated with pathogen attack in both susceptible and 

resistant interactions (Berger et al. 2007). It is therefore surprising that enhanced Xa7-mediated 

resistance at high temperature is associated with the upregulation of photosynthesis-related 

genes. Additional experimentation is needed to explore the dynamics of primary metabolism at 

high temperature during Xa7-mediated resistance. 

 Genes in the ABA pathway were notably perturbed by high temperature during biotic 

stresses. ABA biosynthesis and ABA-responsive genes were induced by high temperature in 

both mock-treated plants and plants in the susceptible interaction at 3 and 24 hpi, and 

suppressed by high temperature in plants in the resistant interaction at all time points. ABA-

responsive genes were down-regulated in the susceptible interaction at 12 hpi, possibly due to 

diurnal effects. SA-responsive genes were also induced by high temperature in mock-treated 

plants, but generally repressed by high temperature in all biotic interactions. This trend suggests 

that regulatory differences in ABA responsiveness are important to the rice resistance 

phenotype during a plant’s response to simultaneous heat stress and Xo attack, and raises the 
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interesting hypothesis that enhanced Xa7-mediated resistance at high temperature is 

independent of SA. 

ABA is a developmental plant hormone that is active in triggering plant physiological 

changes for acclimation to abiotic stresses such as drought, cold, heat, and salt stresses (Baron 

et al. 2012;  Hu et al. 2008;  Suzuki et al. 2016;  Zandalinas et al. 2016). ABA also plays a 

complex role during plant response to biotic stresses. For example, ABA signaling can lead to 

closure of stomata, a common entry point for plant pathogens (Lim et al. 2015). However, ABA 

generally plays a negative role in plant defense responses to biotic stresses through 

antagonistic interactions with defense response pathways. In Arabidopsis, ABA treatment 

suppresses the induction of both systemic acquired resistance, a plant immune response 

effective against a broad range of pathogens, and the hypersensitive response (Mang et al. 

2012;  Yasuda et al. 2008). In light of these previous studies, our results suggest that 

suppression of ABA response is vital for the hypersensitive response associated with Xa7-

mediated resistance. 

In rice, ABA interacts antagonistically with the defense response hormone SA, leading to 

reduced resistance to blast disease and increased bacterial blight disease severity (Jiang et al. 

2010;  Xiong and Yang 2003). However, our results suggest that ABA and SA were regulated 

independently instead of antagonistically. While another study also showed that ABA enhanced 

rice susceptibility to Xo by antagonizing SA, when plants were treated with the ABA 

biosynthesis inhibitor fluridone, the resulting resistance to the pathogen was independent of SA 

(Xu et al. 2013). This suggests that there is some SA-independent mechanism of resistance to 

Xo upon depletion of ABA, which might explain why genes annotated with the GO term 

‘response to biotic stress’ were down-regulated in the resistant interaction in this study. In 

agreement with our findings, ABRE motifs have previously been identified in the promoters of 

Xo-responsive genes in rice (Narsai et al. 2013). Interestingly, exogenous ABA has been linked 

to enhanced swimming ability in Xo (Xu et al. 2015), suggesting that the Xo-rice interaction has 
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been evolutionarily shaped by ABA. The results presented in our study further indicate that ABA 

response and plant defense are inversely regulated. 

In addition to functioning better at high temperature, Xa7 is also more effective during 

drought stress (Dossa et al. 2017). The plant transcriptional responses to drought and heat 

stress are drastically different, with many distinct genes triggered by each stress (Mittler 2006;  

Rizhsky et al. 2004), but a regulatory mechanism shared by both stresses is the accumulation of 

ABA. It is therefore tempting to speculate that Xa7 activity directly represses ABA biosynthesis, 

signaling, or both. In fact, the ABRE-like motif identified in this study might serve as a binding 

element for a transcriptional repressor during defense. If this turns out to be the case, this could 

inform rice breeders on selection strategies for enhancing disease resistance at high 

temperature; for example, promoter regions for susceptibility and resistance genes could be 

screened for this motif across multiple varieties. However, further experimentation is needed to 

conclusively show whether the repression of ABA response is actively triggered during Xa7-

mediated resistance or if it is a side effect of resistance to Xo. Additional work is needed to 

explore whether downregulation of abiotic response by Xa7-mediated resistance impacts heat 

tolerance. In a natural interaction between rice and Xo pathovar oryzae, the bacterial blight 

pathogen, the pathogen proliferates within the rice xylem, limiting water availability to rice leaf 

cells. The reduction of ABA signaling in resistant plants at high temperature may therefore be 

due in part to the reduced water stress associated with the limitation on bacterial proliferation 

induced by Xa7. Further studies are necessary to tease apart the role of the ABA signaling 

pathway to Xa7-mediated resistance. 

 In conclusion, this study presents novel results of a transcriptomic analysis of rice during 

simultaneous heat stress and Xo infection, with plant responses during both susceptible and 

resistant interactions. The results revealed that the ABA pathway was activated during both high 

temperature stress and the susceptible interaction at high temperature, and was repressed 

during Xa7-mediated defense at high temperature. The SA pathway was also down-regulated at 
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high temperature in both the susceptible and resistant interactions, suggesting that enhanced 

Xa7-mediated resistance is likely independent of SA signaling. A novel sequence motif that was 

similar to the ABRE was identified in the promoters of genes up-regulated by high temperature 

during the susceptible interaction and down-regulated by high temperature during the resistant 

interaction. These results suggest that ABA is an important node for cross-talk between plant 

transcriptional response pathways to high temperature stress and pathogen attack. This 

pathway represents an important area of study for future research in understanding how plants 

deal with combined abiotic and biotic stresses. 

2.4 Materials and Methods 

Plant materials and growth conditions 

 Seeds of rice NIL IRBB61 (Vera Cruz CM et al. unpublished) were germinated on wet 

filter paper under constant light at 28°C. After emergence, the seedlings were transplanted in 

soil in a greenhouse (approximately 28°/24°C day/night, 75-85% relative humidity) and grown 

for three weeks. The plants were evenly distributed to two growth chambers set to normal 

(29°/23°C day/night) and high (35°/29°C day/night) temperature regimes, 85% relative humidity 

and 14/10 h day/night light regimes. Plants were transferred to growth chambers one week 

before inoculations. 

Bacterial strains, inoculations, and bacterial quantification 

 Cultures of Xo strain X11-5A carrying pKEB31 plasmids containing ORFs for avrXa7 and 

talΔCRR (a non-functional TAL effector lacking the DNA binding region), described in Verdier et 

al. (2012) and Triplett et al. (2016) respectively, were grown at 28°C on peptone sucrose agar 

(PSA) (Karganilla et al. 1973) with 2 ug/mL tetracycline overnight and diluted in sterile distilled 

water to 108 cfu/mL. The first fully expanded leaves were inoculated with dilutions of both strains 

and water (for mock inoculations) using a needleless syringe (Reimers and Leach 1991). 

Leaves designated for RNA extractions and bacterial quantification were inoculated along a 4 
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cm section with six infiltration sites, while leaves designated for symptom observation were 

inoculated along an approximately 10 cm section with four infiltration sites. Inoculations were 

conducted approximately 3 h after growth chamber lights reached full intensity in the morning. 

Inoculated tissue was collected at full light (3 h, 24 h pathogen-inoculated, 6 h mock-inoculated) 

and full dark (12 h pathogen-inoculated) light stages. For bacterial quantification, inoculated leaf 

tissue was surface sterilized with 10% bleach and rinsed three times with sterile water, then 

ground in 1mL of sterile water in a tissue macerator (Qiagen TissueLyser II). The extract was 

plated in a dilution series on PSA with 2 ug/mL tetracycline and incubated overnight at 28°C. 

Pairwise analysis of bacterial numbers was performed in R (R Core Team 2016). 

RNA extraction, sequencing, and qRT-PCR 

 Total RNA was extracted from plant tissue at the site of inoculation using a Sigma 

Aldrich Spectrum Plant Total RNA Kit as per kit instructions. RNA was collected for two 

biological replicates for each condition. RNA from mock-treated leaves was submitted to the 

University of North Carolina High-Throughput Sequencing Facility for cDNA generation via 

TruSeq RNA library construction kits with multiplex adapter primers and single-end 50 bp 

sequencing via Illumina HiSeq 2500. RNA from pathogen-treated leaves was submitted to 

Michigan State University Genomics Core for TruSeq mRNA library preparation with multiplex 

barcodes and sequencing via Illumina HiSeq 50 bp single read sequencing. For qRT-PCR, 

cDNA was generated from the previously collected RNA using Quantabio qScript cDNA 

SuperMix kit. Primers and thermal cycler conditions for qRT-PCR follow Lu et al. (2009) for 

bZIP23, bZIP72 and Lee et al. (2015) for VSP2. Data was analyzed using the ΔΔCT method 

(Livak and Schmittgen 2001). 

Gene expression analyses 

 Sequence reads were processed with FASTX Toolkit 0.0.13 (Gordon and Hannon 2010) 

to remove low quality reads. The high-quality reads were aligned to the MSU RGAP 7.0 rice 

reference genome (Kawahara et al. 2013) using TopHat 2.1.1 (Kim et al. 2013) and counted 
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using HTSeq 0.6.1 (Anders et al. 2015). Sequence reads and gene counts are available in the 

Gene Expression Omnibus repository under accession number GSE95668. Differential gene 

expression analyses were conducted using the Bioconductor package edgeR (McCarthy et al. 

2012;  Robinson et al. 2010). Genes were considered differentially expressed in a condition if 

FDR-corrected p-value was less than or equal to 0.01. Rice wound response genes were 

identified from publicly available microarray data (NCBI Gene Expression Omnibus Accession 

GSE77097). The top 100 genes were chosen from this data by fold change. Fisher’s exact test 

was used for GO term enrichment analysis. A GO term was considered statistically significant if 

FDR-corrected p-value was <= 0.05. Heatmaps were prepared using the heatmap.2 function 

from the R package gplots (Gregory R. Warnes 2016). Hierarchical clustering of hormone 

biosynthesis genes was performed with the hclust R function using the WPGMA method 

(R Core Team 2016). Hormone-responsive genes used in analysis were identified from a 

microarray study (Garg et al. 2012). Kernel density estimates were prepared with the density 

function from the R core package (R Core Team 2016). DREME (Bailey 2011) was used for 

motif discovery with the 1000 bp sequences upstream of putative transcription start sites from 

the reference genome. STAMP (Mahony and Benos 2007) was used for DNA motif matching. 
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2.5 Tables and Figures 

Table 2.1: Experimental design for transcriptomics experiment involving rice undergoing 
heat/Xo stresses. 

Host Plant Temperature Regime Pathogen Plant Response 
IRBB61 rice Normal Xo X11-5A empty vector Susceptible 
IRBB61 rice High Xo X11-5A empty vector Susceptible 
IRBB61 rice Normal Xo X11-5A avrXa7 Resistant 
IRBB61 rice High Xo X11-5A avrXa7 More resistant 
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Fig 2.1: Rice displaying Xa7-mediated resistance is more resistant at high temperature. 
(a) Rice leaves displaying response to Xo strain X11-5A carrying either an empty vector 
(talΔCRR) or a vector with the gene encoding the Xa7-inducing effector (avrXa7) at normal and 
high-temperature at 72 hpi. Scale is indicated by the black bar. (b) Box plots of log10 
transformed bacterial quantity of rice leaves inoculated with Xo X11-5A talΔCRR and Xo X11-
5A avrXa7 at normal and high temperature. One-way ANOVA revealed differences among 
treatments within all time points except 0 hpi (p < 0.0005). Within time points, letters indicate 
differences as determine by two-tailed pairwise t-test (FDR-adjusted p-value < 0.05). 
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Fig 2.2: Differential gene expression analysis. (a) Genes differentially up and down-regulated 
at high relative to normal temperature in mock-inoculated plants, and during susceptible and 
resistant interactions. (b) Number of DEGs per time point, with DEGs from the susceptible and 
resistant interactions combined per each time point. (c – e) Number of DEGs up or down-
regulated by high temperature in plants in the susceptible (S) plants or resistant (R) interaction 
at (c) 3 h, (d) 12 h, and (e) 24 hpi. The red-squared number represents DEGs which were 
oppositely regulated by susceptibility/resistance.  
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Fig 2.3: GO term analysis. (left) log2 odds ratio of GO annotated genes regulated by high 
temperature to genes not regulated by high temperature. Positive value (cyan) indicates the GO 
term is over-represented in regulated genes, while negative value (magenta) indicates the term 
is under-represented in regulated genes (Fisher’s exact test, FDR-corrected p-value < 0.05; 
white = not enriched). The arrows indicate the genes were either up-regulated or down-
regulated by high temperature within treatments. (right) median log2 fold change per GO term. 
Positive value (blue) indicates more genes annotated with the term are up-regulated, while 
negative value (yellow) indicates more genes annotated with the term are down-regulated. 
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Fig 2.4: Differential expression of upstream and downstream hormone genes at high 
temperature. (a) Fold change for hormone biosynthesis genes at high temperature relative to 
normal temperature is represented for mock-inoculated plants, and plants during susceptible 
and resistant interactions. Hormone biosynthesis genes were selected for display only if they 
were differentially expressed in at least one column. (b) Downstream hormone-responsive 
genes represented as proportions of total DEGs for mock-inoculated plants, and plants during 
susceptible and resistant interactions. 
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Fig 2.5: Differential expression of ABA up-regulated genes at high temperature. (a) Kernel 
density estimate of log2 fold change for ABA up-regulated genes differentially regulated in mock-
inoculated plants. (b) Kernel density estimates of log2 fold change for ABA up-regulated genes 
differentially regulated in plants during susceptible and resistant interactions at 3, 12, and 24 
hpi. 
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Fig 2.6: Analysis of ABA marker gene expression. Bars represent mean log2 fold changes of 
ABA marker genes (a) bZIP23 and (b) bZIP72 in plants during susceptible and resistant 
interactions at high temperature relative to the normal temperature mock-inoculated control at 
each time point as measured by qRT-PCR. Error bars represent standard error of the mean, 
with n = 8 and 4 for (a) and (b) respectively, and letters indicate pairwise groupings (pairwise t 
test, p < 0.05). 
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Fig 2.7: Analysis of cis-regulatory element enrichment in DEGs. Up arrows indicate the 
motifs are enriched in up-regulated DEGs in the given time point, down arrows indicate 
enrichment in down-regulated DEG, and n.e. indicates no significant enrichment as determined 
by Fisher’s exact test (p < 0.05). Similarity to motifs in PLACE database (Higo et al. 1999) is 
indicated.  
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CHAPTER 3. Abiotic and biotic stresses induce a core transcriptome 

response in rice3 

 
 
 

3.1 Introduction 

Because plants are immobile, they must respond to and endure a wide variety of 

environmental and biotic stresses in the field. Both abiotic and biotic stresses cause major yield 

losses to crops (Atkinson and Urwin 2012;  Lobell et al. 2011;  Mafakheri et al. 2010;  Semenov 

and Shewry 2011). It is therefore not surprising that many crop improvement programs focus on 

developing stress tolerant plant varieties (Ashraf and Akram 2009;  Fukuoka et al. 2015;  

Jongdee et al. 2006).  Breeding tolerance for a single stress (e.g. drought, salinity, pathogen, 

etc.) or a single stress type (e.g. abiotic or biotic) may be risky because plants respond uniquely 

to different or simultaneous stresses, and increasing tolerance to one stress may be at the 

expense of tolerance to another (Atkinson and Urwin 2012;  Mittler 2006). With climate change, 

more extreme weather events are occurring, increasing the likelihood that plants experience 

multiple stresses in the field, including additional pressure from plant diseases (Garrett et al. 

2006). There is, therefore, a need to understand the similarities and differences among stress 

response pathways to best optimize targeted crop improvement. 

 Plants respond to stress in a variety of ways. Common plant responses to avoid or 

tolerate abiotic stresses include stomatal closure, reduced photosynthesis, increased reactive 

oxygen scavenging activity, reduced leaf growth and increased root length (Maiti and Satya 

2014). Biotic stresses such as pathogens also cause plants to close stomata and reduce 

photosynthesis (Bilgin et al. 2010;  Melotto et al. 2006). Other plant responses to pathogens 

                                                            

3Submitted for review as: Cohen S.P., Leach J.E. Submitted: 2018. Abiotic and biotic stress 
induce a core transcriptome response in rice. 
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include production of toxic compounds, including phytoalexins and reactive oxygen species, and 

induction of localized cell death (Wojtaszek 1997). Many of these responses are coordinated by 

phytohormones (Nguyen et al. 2016;  Shigenaga and Argueso 2016). The hormones abscisic 

acid (ABA) and jasmonic acid (JA) are critical regulators of tolerance to abiotic stresses. For 

immunity to pathogens, plants primarily rely on salicylic acid (SA), JA and ethylene signaling. 

The abiotic stress response is generally regulated by ABA-induced basic leucine zipper (bZIP) 

transcription factors (TFs) (Banerjee and Roychoudhury 2017;  Yoshida et al. 2015). These TFs 

induce stomatal closure, expression of dehydration tolerance genes, and other adaptive 

physiological responses (Ghosh et al. 2016;  Huang et al. 2018;  Kim et al. 2010;  Silva et al. 

2018;  Wang et al. 2018). However, ABA often increases plant susceptibility in biotic interactions 

(Lievens et al. 2017;  Peskan‐Berghöfer et al. 2015;  Xiong and Yang 2003;  Xu et al. 2013;  

Yasuda et al. 2008) and frequently acts antagonistically with SA (de Torres Zabala et al. 2009;  

Ding et al. 2016;  Jiang et al. 2010). 

With this study, we explore the rice transcriptome for a more thorough understanding of 

how rice regulates responses to multiple abiotic and biotic stresses. Previous studies have 

explored broad plant stress response by analyzing microarray data (Hahn et al. 2013;  Narsai et 

al. 2013). We expand on these studies with robust meta-analysis of publicly available rice RNA-

Seq data sets. Our results reveal universally stress-regulated pathways, which we call the rice 

core stress response. The network of core stress-responsive genes presented here can be 

further explored for rice improvement in light of the need for tolerance to multiple environmental 

stresses. In addition to the valuable predictive transcriptome analysis for an important crop 

system, our approach can be easily expanded to other plant and crop systems. 
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3.2 Results 

Meta-analysis of publicly available RNA-Seq data reveals the rice core stress response 

To investigate the rice response to stress, we downloaded and analyzed publicly 

available RNA-Seq data sets representing rice transcriptome response to diverse abiotic and 

biotic stresses. These stresses include drought (Galbiati et al. 2016), salt (Wang et al. 2017), 

high and low temperature (Cohen et al. 2017;  Shen et al. 2011), and infection with diverse 

pathogens, including Xanthomonas oryzae pathovars oryzicola (Xoc) and oryzae (Xoo) (Wilkins 

et al. 2015;  Zhang et al. 2015), Magnaporthe oryzae (Huang et al. 2017), and Rice Stripe 

(RSV) and Rice Dwarf (RDV) viruses (Yang et al. 2016;  Zhao et al. 2017) (Table 3.1). All 

selected studies used stress-sensitive rice varieties. Four technical considerations were applied 

to choose RNA-Seq data sets:  (1) there must be at least two replicates per treatment, (2) there 

must be untreated controls for each treatment, (3) tissue type was primarily above-ground, and 

(4) varieties were non-transgenic and non-mutant. 

A standard pipeline for consistently processing all raw sequencing data files was used 

(Fig 3.1a). Included in this pipeline were steps for removing low quality reads, aligning to the 

reference genome, and counting reads. The proportions of reads mapped to the reference 

genome were generally high, with a mean of 77.4% total reads mapped to loci across all 

samples (Supplemental Table A2.1). We conducted differential gene expression analysis 

separately on each experiment (Fig 3.1a). The number of differentially expressed genes (DEGs) 

varied widely depending on stress treatment, and ranged from 1,220 to 11,644 DEGs (Fig 

3.1b-c, Supplemental Table A2.2). 

To explore the rice core response to abiotic stress, we used a meta-analysis to combine 

the results from all abiotic stress experiments (Fig 3.1a). We found 5,863 meta-analysis-

identified DEGs (metaDEGs) that were generally responsive to all abiotic stresses (Fig 3.1d, 

Dataset 2.1). We repeated this process to explore the core response to biotic stress, and found 
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2,154 metaDEGs generally responsive to all biotic stresses (Fig 3.1d, Dataset 2.1). Of the 

DEGs identified in the individual analyses, 10 to 43% were retained as metaDEGs 

(Supplemental Table A2.2). The expression trends of the metaDEGs within individual studies 

followed the trends identified in the meta-analysis; that is, up- and down-regulated metaDEGs 

were mostly up- and down-regulated, respectively, within individual studies (Supplemental Fig 

A2.1). Therefore, this approach was valid for investigating rice core responses to abiotic and 

biotic stress. 

To identify the rice response to all stresses, we investigated the overlap in expression 

patterns of the two sets of metaDEGs (Fig 3.1e). We found all possible patterns of gene 

expression between abiotic and biotic stresses, including metaDEGs that were uniquely 

regulated by one stress type (abiotic or biotic), similarly regulated by both stress types, and 

oppositely regulated by both stress types (Fig 3.1e, Supplemental Table A2.3). Most metaDEGs 

were uniquely regulated by either abiotic or biotic stress. Interestingly, there were many more 

metaDEGs regulated similarly by both stress types (913 metaDEGs) than oppositely (88 

metaDEGs). Taken together, these results indicate there are: (1) genes responsive to a single 

stress type (abiotic or biotic), and (2) genes responsive to all stresses. 

Stress altered regulation of photosynthesis-related genes in rice 

To investigate the rice biological processes (BP) altered during stress, we evaluated the 

enrichment patterns of the 45 BP gene ontology (GO) terms in abiotic and biotic up- and down-

regulated metaDEGs (Supplemental Table A2.4). The GO terms ‘catabolic process’, ‘cell 

communication’, ‘embryo development’, ‘reproduction’, and ‘response to extracellular stimulus’ 

were all enriched within metaDEGs (relative to background genes) up-regulated by both abiotic 

and biotic stress (Fisher’s exact test FDR-corrected p ≤ 0.01, Table 3.2). The GO terms 

‘photosynthesis’, ‘protein modification process’, and ‘response to external stimulus’ were all 

enriched within metaDEGs down-regulated by both stresses. Several GO terms were enriched 
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exclusively in abiotic or biotic metaDEGs, but no GO terms were enriched in genes oppositely 

regulated by stress type. 

There were 85 metaDEGs annotated with the GO term ‘photosynthesis’. These 

metaDEGs were generally down-regulated in individual transcriptome studies (Supplemental Fig 

A2.2). Rice down-regulated photosynthesis-annotated metaDEGs in response to drought, heat, 

cold, Xoc, M. oryzae, and RDV. Conversely, salt and RSV did not regulate these metaDEGs, 

and, in the study used, Xoo up-regulated them. These results indicate that altered regulation of 

photosynthetic pathways is a common rice response to stress. 

Stress up-regulated rice phytohormone-induced genes 

Because phytohormones are regulators of plant responses, we investigated how stress 

responses influenced phytohormone-induced genes. Abiotic metaDEGs responsive to ABA, 

auxin, JA and SA were more up-regulated than expected by random chance as determined by 

the χ2 goodness of fit test (p ≤ 0.05, Fig 3.2, Supplemental Table A2.5). Biotic metaDEGs in all 

hormone-responsive pathways were more up-regulated than expected. Response to ABA was 

the most significantly up-regulated hormone pathway in both abiotic and biotic metaDEGs, 

indicating that ABA signaling is likely important to the core stress response. 

There were 408 and 228 genes responsive to JA and/or SA in abiotic and biotic 

metaDEGs, respectively (Fig 3.3, Dataset 2.2). The expression of these genes indicate that 

during either stress type, JA and SA signaling are increased (Fig 3.3). Only three small clusters 

identified within abiotic metaDEGs (Fig 3.3a, labeled C1-C3) and two small clusters within biotic 

metaDEGs (Fig 3.3b, labeled C4-C5) did not follow this trend; genes in these clusters were 

regulated oppositely by stress and hormones (JA and/or SA). Interestingly, in the Xoo study 

used for this validation, the expression of JA- and SA-responsive genes was generally opposite 

of all other biotic stress responses. JA and SA response were a larger component of the biotic 

stress response (10.6% of biotic metaDEGs) than of the abiotic stress response (7.0% of abiotic 

metaDEGs). Many of the JA- and/or SA-responsive genes were also responsive to ABA (Fig 
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3.3). Genes responsive to JA and/or SA, but not responsive to ABA, were still up-regulated 

more than expected by random chance (Supplemental Table A2.5). However, this was a much 

smaller proportion of metaDEGs (1.4 and 3.5% of abiotic and biotic metaDEGs, respectively). 

Taken together, these results indicate that in response to any stress, rice orchestrates 

responses via phytohormones.   

Discovery of promoter motifs important to the stress response 

We performed de novo promoter motif enrichment analysis to identify potential stress-

responsive regulatory elements. There were 22 and 17 motifs discovered in the abiotic and 

biotic metaDEGs, respectively (Supplemental Table A2.6). GO term analysis revealed six motifs 

that are likely to be involved in stress-responsive pathways (Fig 3.4). Many of these motifs 

contained a sequence similar to the ACGT core sequence of the ABA responsive element 

(ABRE), an upstream bZIP TF binding sequence (Gomez-Porras et al. 2007), indicating a 

possible role for bZIP TFs in the core stress response. Of the 21 bZIP TFs we identified as 

metaDEGs, 17 were up-regulated in response to abiotic stress (Dataset 2.1), including bZIP23 

(MSU: LOC_Os02g52780) and bZIP46 (MSU: LOC_Os06g10880), which are key players in 

ABA response (Lu et al. 2009;  Xiang et al. 2008). Biotic stress only up-regulated three bZIP 

TFs. The enrichment of ABRE-like motifs in the promoters of biotic stress-induced metaDEGs 

suggests that even though there are fewer bZIP TFs responsive to biotic stresses than abiotic 

stresses, bZIP TFs may still act as critical regulators of response to biotic stress. One bZIP TF 

(MSU: LOC_Os08g38020) was a potential node of antagonistic cross-talk, up-regulated by 

abiotic stress and down-regulated by biotic stress. Taken together, these results indicate that 

rice utilizes ACGT-bZIP TF to regulate response to both abiotic and biotic stress, and identify 

bZIP elements as key nodes for further studies. 

Pre-processed publicly available gene expression data validates meta-analysis results 

 To validate the results of the meta-analysis, nine publicly available pre-processed gene 

expression studies were examined for the trends expected from our previous analysis (Table 
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3.3) (Bidzinski et al. 2016;  Fu et al. 2017;  Garg et al. 2015;  Huang et al. 2014;  Jung et al. 

2016;  Tran et al. 2018;  Wang et al. 2016;  Wilkins et al. 2015;  Zong et al. 2016). With one 

exception, all studies fit the expected trends; i.e., up- and down-regulated metaDEGs were 

more up- and down-regulated than expected by random chance, respectively, as determined by 

the χ2 goodness of fit test (p ≤ 0.05, Fig 3.5a-b, Supplemental Table A2.7). The study that did 

not fit the expected trend (GSE57950 drought) had two time-points, with the earlier time-point (1 

d after stress) not fitting the expected trend in down-regulated metaDEGs. As in the meta-

analysis, photosynthesis genes were mostly down-regulated (Fig 3.5c, Supplemental Table 

A2.8). Three studies did not significantly alter photosynthesis gene expression (GSE42096 heat, 

GSE74465 drought 1 h, GSE107425 drought), and one study up-regulated this pathway 

(GSE57950 drought 1 d). In the later time-point of the latter study (GSE57950 drought 3d), 

plants down-regulated photosynthesis-annotated genes, suggesting there may be some 

temporal effects of drought on altered regulation of photosynthesis, particularly as leaves 

dehydrate after continued drought. In study GSE108504, rice strongly down-regulated 

photosynthesis-annotated genes in response to Xoo (Fig 3.5c), opposite to the set used in the 

training data, where these genes were up-regulated by Xoo (Supplemental Fig A2.2). These 

results validate our meta-analysis approach to finding the rice core stress response. 

3.3 Discussion 

A variety of environmental stresses affect plants in the field and can limit crop yield. To 

endure these stresses, plants respond with coordinated changes to their transcriptome. While 

these changes are dependent on the specific stress experienced, our results indicate that there 

is a rice core response to all stresses. With our meta-analysis of publicly available RNA-Seq 

data of rice experiencing various abiotic and biotic stresses, we identified 5,863 and 2,154 

genes that are differentially regulated by abiotic stress and biotic stress, respectively (Fig 3.1, 

Dataset 2.1). Of these, 913 genes were similarly regulated by both abiotic and biotic stress, 
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while 88 were regulated oppositely (Supplemental Table A2.3). A different study utilized 

differential expression analysis of rice microarray data to identify genes commonly regulated by 

abiotic and biotic stresses, and found 240 rice genes that were responsive to both abiotic and 

biotic stresses (Narsai et al. 2013). Our meta-analysis of RNA-Seq data identified more of the 

rice core stress response than this previous comparative microarray analysis. We also validated 

our meta-analysis approach using additional publicly available studies not used in the training 

sets; through this validation, we  identified sets of stress-responsive genes similar to those 

found in the meta-analysis (Fig 3.5, Supplemental Tables A2.7 and A2.8). 

Although the reference genome is annotated with only 45 BP GO terms, we identified 

several BPs that were altered by stress, including ‘catabolic process’, ‘cell communication’, 

‘embryo development’, ‘reproduction’, and ‘response to extracellular stimulus’, which were all 

up-regulated by stress, and ‘photosynthesis’, ‘protein modification process’, and ‘response to 

external stimulus’, which were all down-regulated by stress. Photosynthesis is known to be 

down-regulated by abiotic stresses such as drought, cold, and heat stress (Brestic et al. 2016;  

Maruyama et al. 2014;  Pandey et al. 2013;  Todaka et al. 2017). This is likely a protective 

mechanism against plant photooxidative damage during stress (Brestic et al. 2016;  Yan et al. 

2013). In stress tolerant varieties of rice, photosynthetic efficiency is restored, and up-regulation 

of photosynthesis is physiologically important for yield stability (Li et al. 2017;  Zhang et al. 

2016). Consistent with these findings, overexpression of a master regulator of photosynthesis 

enhanced rice tolerance to drought (Ambavaram et al. 2014). A range of biotic stresses, 

including bacterial, viral, and fungal pathogens, also inhibit photosynthesis in plants (Akimoto‐
Tomiyama et al. 2018;  Cheng et al. 2016;  Ghosh et al. 2017;  Girija et al. 2017;  Pérez‐
Clemente et al. 2015). It is hypothesized that the photosynthesis pathway is a hub of cross-talk 

in growth and defense trade-offs during plant-pathogen interactions (Kangasjärvi et al. 2014). 

Studying the roles of the photosynthesis-regulated metaDEGs identified in this study may 

facilitate the development of stress tolerant varieties of rice. 
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Various stresses positively induced phytohormone pathways (Fig 3.2). Abiotic stress up-

regulated genes responsive to ABA, auxin, JA, and SA, while biotic stress up-regulated genes 

responsive to the same hormones plus cytokinin and ethylene. The ABA, JA, and SA pathways 

were the most significantly up-regulated hormone pathways in both abiotic and biotic stress. 

ABA, JA and SA signaling regulate response to abiotic stresses (Hahn et al. 2013;  Maruyama 

et al. 2014;  Sah et al. 2016;  Todaka et al. 2017). While JA and SA are positive regulators, ABA 

tends to be a negative regulator of resistance to pathogens (Creelman and Mullet 1995;  Klessig 

et al. 2018;  Klessig and Malamy 1994;  Lievens et al. 2017). ABA is also important to inter-

kingdom signaling among pathogens and plants. For example, synthesis of ABA by the fungal 

pathogen M. oryzae during interactions with rice is necessary for pathogen virulence (Spence et 

al. 2015). Plant-synthesized ABA promotes rice susceptibility to the bacterial pathogen X. 

oryzae pv. oryzae (Xoo) and even induces swimming in the bacteria (Xu et al. 2013;  Xu et al. 

2015). While our results show that both ABA and SA are induced during response to biotic 

stress, ABA-induced susceptibility to Xoo is due to ABA suppressing SA-mediated defense (Xu 

et al. 2013). We previously hypothesized that ABA is a node of cross-talk in the rice response to 

simultaneous high temperature stress and X. oryzae infection (Cohen et al. 2017). The results 

from our current study show that cross-talk among ABA, JA and SA response pathways makes 

the contribution of each hormone to the rice transcriptome unclear (Fig 3.3). Notably, ABA-

regulated genes appear to dominate the hormone response during stress. That is, of the 

metaDEGs responsive to JA and SA, most were also responsive to ABA (Fig 3.3, Supplemental 

Table A2.5). These intertwined pathways are critical to plant stress responses, which frequently 

occur simultaneously, emphasizing that additional study of hormonal cross-talk is needed to 

provide insights into how to improve plant health.  

Our results open the path to future avenues of research, including both in silico and in planta 

studies. We immediately provide candidate genes for studying multiple stress responses in rice. 

For example, the prevalence of enriched ABRE-like promoter motifs suggest that the bZIP TFs 
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identified here are good candidate regulators of stress responses (Fig 3.4, Dataset 2.1). Our 

analysis only used studies with rice plants that were sensitive (susceptible) to the different 

stresses. Future researchers can expand on this work by analyzing the regulation of metaDEGs 

in studies with stress-tolerant rice varieties. We only found 88 oppositely regulated metaDEGs 

between abiotic and biotic stresses, but it is likely that stress tolerance and sensitivity oppositely 

regulate many more genes. The resources and approach provided with this work will allow for a 

deeper understanding of rice strategies for overcoming stresses. 

We present this work as a proof of concept: meta-analysis of diverse transcriptomic data 

sets is a valid and robust approach to develop hypotheses for how plants respond to stress in 

general. It is also possible to expand our approach into other systems. For example, with the 

wealth of publicly available Arabidopsis transcriptome data, researchers can repeat this analysis 

to identify candidate regulators of Arabidopsis stress response. In systems with few or no 

publicly available transcriptome studies, the analysis we describe enables researchers to design 

transcriptome studies from the ground up to study stress response in their systems. Even while 

limited by the available rice stress-responsive transcriptome data, with multiple tissue types, 

host cultivars, and few replicates per treatment (Table 3.2), real trends were identified, 

indicating it is possible to design experiments in less well-studied plant systems to use with our 

approach. 

To summarize, publicly available rice transcriptome data were used to identify genes and 

pathways regulated by abiotic stress, biotic stress, and both stress types. We confirmed that 

photosynthesis is a generally down-regulated pathway in response to all stress types. We also 

identified stress-induced plant hormone-responsive genes, particularly genes downstream of 

ABA, JA and SA. With this work, we provide a list of candidate genes to study for improving rice 

stress tolerance, and thus yield, in light of environmental stresses. This study provides a valid 

approach to ask additional questions with respect to how plants respond to stress, including but 
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not limited to (1) how tolerant rice varieties respond to stress and (2) how other plants respond 

to stress. 

3.4 Materials and Methods 

RNA-Seq Data Acquisition and Processing 

Raw sequence data for all accessions were downloaded from NCBI Sequence Read 

Archive using the SRA Toolkit (https://github.com/ncbi/sra-tools). Adapter sequences and low 

quality reads were removed with Trimmomatic v0.36 (Bolger et al. 2014). Reads were mapped 

to the MSU RGAP 7.0 rice reference genome (Kawahara et al. 2013) with STAR v2.5 (Dobin et 

al. 2013) and counted using HTSeq v0.9.1 (Anders et al. 2015).  

Differential Gene Expression and Meta-Analyses 

Differential gene expression analyses were conducted using the Bioconductor package 

edgeR (McCarthy et al. 2012;  Robinson et al. 2010). For single analyses, genes were 

considered differentially expressed if the FDR-adjusted p-values were ≤ 0.01. For meta-

analyses, Fisher’s sum of logs method, as discussed by Rau et al. (2014) and implemented in 

the R package metap v0.8 (https://cran.r-project.org/web/packages/metap/index.html), was 

used to combine unadjusted p-values. The p.adjust function in R  was used to adjust the 

combined p-values for multiple testing with the ’fdr’ method (R Core Team 2016). Genes were 

considered differentially expressed in meta-analyses if the adjusted p-values were ≤ 0.01 and 

the absolute value of the median log2 fold change for all studies within the analysis was ≥ 1. GO 

terms were considered enriched within a metaDEG set if the odds ratio estimates relative to 

background genes was > 1 and the FDR-corrected p-values from Fisher’s exact test were ≤ 

0.01. 

Phytohormone-responsive Gene Analysis 

 Known hormone-responsive genes were from Garg et al. (2012). The chisq.test function 

in R was used for χ2 goodness of fit test, with a p-value threshold of 0.05, to determine if 
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number of hormone-responsive up- and down-regulated genes were as expected due to 

random chance. For the χ2 tests, the expected number of up- and down-regulated genes was 

proportional to the total number of up- and down-regulated genes in the background set. 

De novo Promoter Motif Discovery 

Promoter motifs and associated GO terms were discovered with DREME and GOMo 

respectively using 500 bp regions upstream of putative transcription start sites (Bailey 2011;  

Buske et al. 2010). Fisher’s exact test with a p-value threshold of 0.01 was used to determine 

whether motifs were enriched in metaDEG sets. 

Validation with Pre-processed Gene Expression Studies 

 Pre-processed gene expression studies were acquired from NCBI Gene Expression 

Omnibus. Because many of these studies lacked replicates, regulatory patterns of genes were 

estimated by finding the ratio of normalized expression value of treatment to control, 

disregarding log2 fold changes with absolute value < 1. Studies GSE67588 and GSE108504 

were normalized by calculating number of gene reads per millions of total reads. The χ2 

goodness of fit test with a p-value threshold of 0.05 was used to determine whether the counts 

of up- and down-regulated were as expected by random chance. For the χ2 tests, the expected 

number of up- and down-regulated genes was proportional to the total number of up- and down-

regulated genes in the background set. 

  



65 

3.5 Tables and Figures 

Table 3.1: Overview of NCBI SRA RNA-Seq accessions analyzed in this study. 

Accession Stress Cultivar Tissue 
Time after 
stress 

Replicates 
per Sample 

Study Location 

SRP071248 
Drought long day 
Drought short day 

Nipponbare Leaf 13 d 3 Growth chamber 

SRP052306 Drought Nipponbare Leaf 10 d 2 Greenhouse 
SRP113286 Salt 9311 Seedling 1 h 3 Greenhouse 
SRP101342 High Temperature IRBB61 Leaf 6 h 2 Growth chamber 
SRP004651 Cold Nipponbare Leaf 14 d 2 Growth chamber 

SRP056884 
Xoc BLS256 
Xoc RS105 
Xoc CFBP7331 

Nipponbare Leaf 2 d 3 Growth chamber 

SRP049040 
Xoo PXO349 1 dpi 
Xoo PXO349 2 dpi 

Huanghuazhan Leaf 
1 d 
2 d 

3 Screenhouse 

SRP076382 M. oryzae Guy11 Kasalath Shoot 2 d 3 Unspecified 
SRP049444 M. oryzae ZB13 Pid3 Leaf 1 d 2 Greenhouse 
SRP065503 Rice Stripe Virus Wuyujing 3 Leaf 7 d 3 Growth room 
SRP115030 Rice Dwarf Virus Zhonghua 11 Seedling 28 d 3 Greenhouse 

Xoc indicates X. oryzae pv. oryzicola; Xoo indicates X. oryzae pv. oryzae 
  



66 

Table 3.2: Biological process GO terms exclusively enriched in up- or down-regulated 
metaDEGs. 

GO Term Abiotic Biotic 

catabolic process Up Up 

cell communication Up Up 

embryo development Up Up 

reproduction Up Up 

response to extracellular stimulus Up Up 

photosynthesis Down Down 

protein modification process Down Down 

response to external stimulus Down Down 

flower development Up n.e. 

cell death Down Both 

anatomical structure morphogenesis Down n.e. 

cell differentiation Down n.e. 

cell growth Down n.e. 

cellular component organization Down n.e. 

growth Down n.e. 

ripening Down n.e. 

tropism Down n.e. 

multicellular organismal development Both Up 

nucleic acid metabolic process Both Up 

pollen-pistil interaction Both Up 

post-embryonic development Both Up 

response to endogenous stimulus Both Up 

carbohydrate metabolic process Both Down 
Terms indicated in bold are similarly enriched in both abiotic and biotic metaDEGs; Up, Down, 
and Both indicate terms are enriched in up-regulated, down-regulated, or both up- and down-
regulated metaDEGs respectively; n.e. = not enriched 
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Table 3.3: NCBI GEO accessions analyzed to validate meta-analysis. 

Accession Stress Cultivar Tissue Time after stress 

GSE42096 High temperature Zhongxian 3037 Leaf 18 d 

GSE57950 Drought Huanghuazhan Leaf 1 d 
3 d 

GSE60287 
Desiccation 

Salinity 
IR64 Seedling Unspecified 

GSE74465 Drought Nipponbare Whole plant 1 h 
6 h 

GSE81462 Drought Zhonghua 11 Above-ground Unspecified 

GSE107425 Drought Zhonghua 11 Shoot 4 d 

GSE67588 
Xoc BLS279 

Xoc CFBP7342 
Nipponbare Leaf 2 d 

GSE84800 M. oryzae Fr13 Nipponbare Shoot 4 d 

GSE108504 Xoo MAI1 Nipponbare Leaf 1 d 

Xoc indicates X. oryzae pv. oryzicola; Xoo indicates X. oryzae pv. oryzae 
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Fig 3.1: Analyses reveal rice core stress responses to abiotic and biotic stresses. (a) 
Analysis pipeline used to conduct differential gene expression analysis and meta-analysis on 
publicly available data sets. Number of DEGs identified in all (b) abiotic and (c) biotic stress 
experiments. (d) MetaDEGs identified from meta-analyses. (e) Number of metaDEGs unique 
and common in abiotic and biotic meta-analyses up- (up arrow) and down-regulated (down 
arrow). 
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Fig 3.2: Rice hormone-responsive genes were generally up-regulated by stress. Observed 
number of up-regulated hormone-responsive metaDEGs is shown vs. the number expected to 
be up-regulated by random chance. Asterisks denote numbers observed differed significantly 
from numbers expected as determined by the χ2 goodness of fit test (*** p < 10-14, ** p < 10-6, * p 
< 0.005, see Table S5 for all p-values). 
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Fig 3.3: Signaling downstream of JA and SA is increased during stress. Gene expression 
(log2 fold changes) of JA- and SA-responsive metaDEGs for (a) abiotic stress and (b) biotic 
stresses relative to controls (columns) are shown on the right in yellow (down-regulated), black 
(not regulated) and cyan (up-regulated). Hormone regulatory patterns of JA- and SA-responsive 
metaDEGs are shown on the left in magenta (down-regulated), black (not regulated; n.r.) and 
white (up-regulated). Clusters of genes regulated oppositely of hormone pathways are indicated 
by the orange squares (C1 through C5). 
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Fig 3.4: De novo discovered promoter motifs. Sequence logos for motifs discovered via 
DREME, associated GO term annotations discovered via GOMo, and enrichment within 
metaDEG sets as determined by Fisher’s exact test (p ≤ 0.05).  
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Fig 3.5: Publicly available gene expression studies validated meta-analysis results. (a) 
Up- and (b) Down-regulated metaDEGs and (c) photosynthesis-annotated genes generally 
followed expected trends in pre-processed publicly available gene expression datasets. n.s. 
indicates the counts observed did not differ significantly from counts expected as determined by 
the χ2 goodness of fit test (p > 0.05, see Tables S7 and S8 for all p-values). 
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CHAPTER 4. Discussion 

 
 
 

4.1 During enhanced Xa7 resistance at high temperature, rice 

suppresses the abscisic acid (ABA) response pathway 

Plant disease, a major challenge to agriculture worldwide, is often exacerbated by 

abiotic environmental factors. During some plant-pathogen interactions, such as the rice 

interaction with Xanthomonas oryzae (Xo), heat stress allows pathogens to overcome host 

resistance. This phenomenon may severely reduce crop productivity over the coming decades 

in light of the global warming trends associated with climate change. In chapter 2, I presented 

the results of an RNA-Seq study conducted to understand rice transcriptome responses during 

simultaneous heat and susceptible or resistant rice-Xo interactions. The major finding of this 

work was that the ABA pathway was up-regulated during both high temperature stress and the 

susceptible interaction at high temperature, and was repressed during Xa7-mediated resistance 

at high temperature. These trends were confirmed by both the expression patterns of known 

ABA-responsive genes (Fig 2.4–2.6) and the identification of a novel ABA responsive element-

like motif in the promoters of differentially regulated genes (Fig 2.7). These results suggest that 

there is interplay between Xa7 and ABA signaling in rice during high temperature-enhanced 

resistance. 

This study was the first of its kind to explore simultaneous high temperature stress and 

Xo infection in rice. It had a robust design, with two replicates per treatment over three time 

points each in susceptible and resistant interactions. The sequence read files generated, 28 in 

total, and the unprocessed read counts were submitted to the scientific community via the NCBI 

Sequence Read Archive and Gene Expression Omnibus. The high temperature data generated 

in this study were also used in the chapter 3 study. 
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 This study is an example of what I described in chapter 1 as the most common use of 

RNA-Seq – the elucidation of plant transcriptome changes under different stimuli. Visualization 

of big data is difficult and for this, I used some uncommon visualization approaches. For 

example, to my knowledge, no other RNA-Seq study has presented gene ontology term results 

with both log2 odds ratio and median log2 fold change per term as I did with Fig 2.3. This figure 

allows a reader to identify regulatory trends of biological processes; for example, one can 

conclude that photosynthesis is down-regulated by high temperature because the log2 odds 

ratio in mock-down-regulated genes for the term ‘photosynthesis’ is positive and the median log2 

fold change for ‘photosynthesis’-annotated genes in mock-treated plants is negative (Fig 2.3).  

Another uncommon visualization I used was kernel density estimation (KDE) to show 

log2 fold change of ABA- and salicylic acid-responsive genes (Fig 2.5, Supplemental Fig A1.2). 

KDE is a method to estimate the probability function of a variable – in this case, log2 fold change 

of genes. The output is similar to a proportional histogram displayed as a smooth curve. With 

KDE plots, multiple treatments can be overlaid on the same plot with different line colors. This 

allows for quick comparison of regulatory trends, i.e. up-regulation, down-regulation or no 

regulation, and of the extremity of the fold change in the displayed pathway. 

The primary advantage of both of these uncommon visualization techniques was that 

they allowed discovery of the trends in the data in the early stages of the analysis. Conducting a 

transcriptome study is relatively easy; it requires good study design and laboratory technique. 

Available transcriptomics software suites allow rapid and straightforward mapping of sequence 

reads and differential gene expression analysis. However, this process generates a large list of 

genes, their fold changes and the associated p-values. By using the visualization techniques I 

discussed, I could rapidly generate dozens of visualizations to identify potentially interesting 

trends, breaking down the data to find meaningful information. The processes and tools used in 

this work were further refined for the next work. 
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4.2 Rice responds to abiotic and biotic stresses via universal 

transcriptome changes 

 Plants experience a range of abiotic and biotic stresses in the field. These stresses are 

unavoidable and greatly limit crop yield worldwide. Plants must overcome these stresses and 

one approach to do so is via physiological changes allowed by transcriptome versatility. 

Understanding commonalities among transcriptome responses to different stresses will provide 

fundamental information that informs strategies to develop broadly stress-tolerant plant lines. In 

chapter 3, I presented the results of a meta-analysis of publicly available rice stress response 

transcriptomes. The data analyzed included many abiotic and biotic stresses. The major finding 

of this work was that there are universal regulatory trends among all abiotic stresses, among all 

biotic stresses and among all stresses. The core response to abiotic and biotic stresses 

includes the down-regulation of photosynthesis and up-regulation of hormone-responsive 

genes. 

 This study provides a list of candidate genes for future study to improve rice stress 

tolerance. The full list of genes is fairly broad with 5,863 abiotic stress-responsive, 2,154 biotic 

stress-responsive genes and 913 genes responsive to both stress types. To narrow the list 

down to a more manageable number of genes, one could examine the expression of these 

genes in stress tolerance and disease resistance studies. I hypothesize that in tolerance 

studies, the meta-analysis-identified genes will show all of the following expression patterns: (1) 

similar expression in both meta-analysis and tolerance studies, (2) opposite expression in meta-

analysis and tolerance studies, (3) meta-analysis genes which are not differentially expressed in 

tolerance studies and (4) genes differentially expressed in tolerance studies which were not 

identified in meta-analysis. After narrowing down the list of rice genes to study by comparing to 

tolerance studies, future researchers could design functional studies using genome editing or 

similar approaches. 
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 This study also serves as an important proof of concept that meta-analysis of diverse 

transcriptome data is a valid approach to develop hypotheses for how plants respond to stress. 

Using this work as a guide, future researchers can design new meta-analysis studies based on 

either pre-existing data, where available, or newly-generated data in lesser studied or non-

model systems. The data used in this study had a wide range of quality, from poor to robust. 

The number of high quality reads ranged from two million to 86 million reads (Supplemental 

Table A2.1). This diversity of quality demonstrates that robustness of transcriptome data is not a 

major limiting factor when conducting this style of meta-analysis. Importantly, this work also 

gave new life to abandoned studies; the data generators had previously abandoned many of the 

studies used here after mining it for a single publication or hypothesis. Many such abandoned 

transcriptome studies exist in public data repositories, giving future researchers an avenue to 

conduct new meta-analyses with no new sequencing costs. 

4.3 Preliminary results suggest host ABA response enhances Xa7 

function 

 ABA is an important hormonal regulator of rice response to abiotic and biotic stresses. In 

susceptible rice-Xo interactions, ABA-responsive genes are generally up-regulated, suggesting 

that disease development favors ABA signaling. Abiotic stresses trigger biosynthesis and 

downstream signaling of ABA. Because development of Xo-caused disease favor abiotic 

stresses, ABA may play a central role in reducing rice resistance to Xo-caused disease during 

high temperature. However, Xa7, which is more effective at high temperature, suppresses ABA 

biosynthesis and signaling in rice. I conducted preliminary experiments to better understand the 

dynamics of how ABA signaling influences Xa7 in rice (Supplemental Methods A3.1–A3.3). 

To determine if ABA influences the outcome of rice responses to Xo during Xa7-

mediated resistance, rice plants of variety IRBB61 (Xa7) were inoculated with Xo strains X11-5A 

avrXa7, carrying a plasmid with the gene for the Xa7 elicitor AvrXa7, and X11-5A ΔCRR, 
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carrying a non-functional mutant of avrXa7, via leaf infiltration with a needleless syringe. 

Inoculations were co-infiltrated with 100 uM ABA in 0.095% ethanol or 0.095% ethanol alone. 

One week after inoculation, bacterial numbers in the entire inoculated leaf were quantified. At 

this time point, there was not yet a significant difference between the bacterial numbers in the 

susceptible and resistant interactions (Supplemental Fig A3.1). However, bacterial number was 

lower with co-infiltration of bacteria and ABA in the resistant interaction. This outcome suggests 

that co-infiltration with Xo and ABA enhanced Xa7 activity. 

 To asses whether ABA influences the outcome of rice responses to Xo during high 

temperature stress and Xa7-mediated resistance, rice plants of near-isogenic varieties IR24 (no 

resistance) and IRBB7 (Xa7) were grown for 4 weeks after germination in a growth chamber 

under normal conditions. After three weeks, the plants were evenly split into normal temperature 

and high temperature chambers. Four days after temperature exposure, plants were sprayed 

with either 100 uM ABA (in 0.02% Tween 20) or 0.02% Tween 20 alone (no treatment). Three 

days after chemical treatment, plants were inoculated with Xo strain X11-5A avrXa7 via scissor 

clip inoculation. Bacterial number in the 5 cm tip of inoculated leaves was quantified one week 

after inoculation. In the non-resistant plants, there were no differences among all treatments 

(Supplemental Fig A3.2a). In resistant plants, bacterial populations were reduced by high 

temperature, ABA and combined high temperature and ABA (Supplemental Fig A3.2b). These 

results suggest that foliar treatment of ABA enhances Xa7 function to a similar level as high 

temperature. 

 To assess whether ABA had a direct effect on the growth of Xo strain X11-5A, in vitro 

growth curves were conducted in a plate reader (Supplemental Fig A3.3). There were no 

differences between untreated and 100 uM ABA-treated bacteria in 73 time points over 72 h (p 

> 0.05, student’s t-test). Because ABA had no direct effect on the growth of Xo, it is likely that 

the differences seen in the in planta experiments were due to host responses. 
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 Together, these preliminary experiments show an unexpected result: exogenous 

treatment with ABA may enhance Xa7 (Supplemental Fig A3.4). This is unexpected because, as 

discussed in chapter 2, enhanced Xa7 at high temperature suppresses ABA biosynthesis and 

downstream signaling. If depletion of ABA is core to the Xa7 mechanism, exogenous treatment 

with ABA would be expected to reduce Xa7 function rather than enhance it. However, ABA 

enhancement of Xa7 is intuitive, because ABA signaling is a common denominator in rice 

response to heat and drought, both of which enhance Xa7. 

 To tease apart the interactions between Xa7 and ABA signaling in rice, additional work is 

needed. To conduct this work, I will use a passive hydroponics system for growing and assaying 

rice (Supplemental Methods A3.4). Using this soil-free system allows for two improvements over 

a standard soil-based plant growth system: (1) the application of exogenous chemicals with 

accurate concentrations and (2) the execution of fast disease assays with a large replication 

number in a limited space. In addition to confirming that ABA enhances Xa7 function, I will test 

other rice resistance genes that target Xo, including xa5 and Xa10, which lose function at high 

temperature. To test the effects of ABA depletion on these interactions, I will treat plants with 

the ABA biosynthesis inhibitor fluridone. 

4.4 Conclusion 

 Environmental stresses, both abiotic and biotic, are large contributors to yield loss in 

food crops. With climate change increasing the incidence of abiotic stresses and the constant 

pressures of pests and pathogens, the development of broadly stress-tolerant plant varieties is 

critical to food security. A thorough understanding of how plants respond to stresses is 

necessary for the development of these varieties. This work characterized how the 

transcriptome of the global staple food plant rice changes in response to abiotic stresses, biotic 

stresses and simultaneous abiotic and biotic stress. 
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The rice genome, with over 55,000 total loci, is an enormously complex system. The 

challenge of understanding how these genes are regulated during stress response is impossible 

with a single transcriptome study. In chapters 2 and 3, I characterized networks of gene 

regulation in four major rice responses: (1) response to a susceptible interaction with Xo during 

high temperature, (2) response to a resistant interaction with Xo during high temperature, (3) 

core response to abiotic stresses and (4) core response to biotic stresses. These data provide 

much of the necessary groundwork for beginning to understand the complex regulatory trends 

that underlie the rice response to single or multiple stresses. Our contributions to the 

understanding of stress-response networks have enabled the development of hypotheses to 

test the roles of candidate genes and pathways in plant stress defense.  The long-term goal will 

be to inform approaches to selection of target genes and pathways for crop improvement 

research. 
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APPENDIX 

 
 
 

A.1 CHAPTER 2 Supplemental Information 

Supplemental Table A1.1: Sequencing reads and mapping summary statistics. 

Samples Repeat 
Raw Reads Mapped Reads Mapped to Genes 

Total High-quality % Total % Total % 
Mock 

NT 6 hpi 
1 28856641 28797259 99.79 27803387 96.35 25304614 87.69 
2 30695442 30638812 99.82 29600586 96.43 26848926 87.47 

Mock 
HT 6 hpi 

1 41141433 41070267 99.83 39789983 96.72 36328352 88.30 
2 30123157 30054334 99.77 28809619 95.64 26283199 87.25 

Susceptible 
NT 3 hpi 

1 18821068 18655171 99.12 18152259  96.45 16166375  85.90 
2 13444900 13408422 99.73 13058055 97.12 11616326 86.40 

Susceptible 
NT 12 hpi 

1 22988953 22926231 99.73 22301041  97.01 20033428 87.14 
2 18575425 18526120 99.73 18001933 96.91 16199997 87.21 

Susceptible 
NT 24 hpi 

1 23032633 22976160 99.75 22291085 96.78 19999269 86.83 
2 12956182 12924337 99.75 12517108  96.61 11153937  86.09 

Susceptible 
HT 3 hpi 

1 23971411 23908160 99.74 23267192 97.06 20852465 86.99 
2 21613616 21555636 99.73 20975915 97.05 18787524 86.92 

Susceptible 
HT 12 hpi 

1 27982082 27894994 99.69 27068780 96.74 24365034 87.07 
2 23750702 23678271 99.70 22952651 96.64 20657166 86.97 

Susceptible 
HT 24 hpi 

1 12757097 12721172 99.72 12310495 96.50 10965566 85.96 
2 18194844 18140633 99.70 17532615 96.36 15647360 86.00 

Resistant 
NT 3 hpi 

1 23216413 23154090 99.73 22531147 97.05 20277909 87.34 
2 17686011 17640774 99.74 17163755 97.05 15428030 87.23 

Resistant 
NT 12 hpi 

1 13651450 13615929 99.74 13229846 96.91 11903526 87.20 
2 22218398 22157390 99.73 21529837 96.90 19382683 87.24 

Resistant 
NT 24 hpi 

1 22393658 22329613 99.71 21673815 96.79 19035385 85.00 
2 14395418 14360572 99.76 13919943 96.70 12372688 85.95 

Resistant 
HT 3 hpi 

1 22577109 22517295 99.74 21889456 96.95 19612136 86.87 
2 25936686 25856236 99.69 25140318 96.93 22637373 87.28 

Resistant 
HT 12 hpi 

1 17682014 17631071 99.71 17117963 96.81 15248118 86.24 
2 24896378 24828591 99.73 24115576 96.86 21627216 86.87 

Resistant 
HT 24 hpi 

1 26980561 26721295 99.04 25723891 95.34 22705900 84.16 
2 20501057 20440854 99.71 19770695 96.44 17521343 85.47 

NT = normal temperature; HT = high temperature; hpi = hours post-inoculation; percentages are 
per total raw reads per row 
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Supplemental Table A1.2: GO term enrichment analysis for genes differentially 
expressed by high temperature. 

Mock Up-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

biosynthetic process 205 / 917 
3491 / 
26832 

0.945671 9.80E-13 

response to endogenous stimulus 87 1024 1.402012 3.13E-12 

cellular process 291 5655 0.80055 4.56E-12 

metabolic process 285 5503 0.806354 4.68E-12 

response to stress 162 2576 1.015332 4.88E-12 

carbohydrate metabolic process 65 724 1.460453 3.61E-10 

response to abiotic stimulus 104 1588 1.024647 1.62E-08 

response to biotic stimulus 63 785 1.291966 5.36E-08 

secondary metabolic process 29 300 1.530591 1.94E-05 

translation 2 550 -3.24492 2.89E-05 

multicellular organismal 
development 

66 1094 0.868266 0.000197 

signal transduction 66 1113 0.84242 0.00031 

transport 94 1876 0.604408 0.002109 

lipid metabolic process 44 736 0.838311 0.004324 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
125 2772 0.455095 0.010172 

cell growth 22 309 1.077804 0.012999 

cell differentiation 23 378 0.849111 0.040416 

Mock Down-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

photosynthesis 33 / 594 140 / 27155 3.50486 5.14E-20 

generation of precursor 
metabolites and energy 

28 233 2.51504 6.54E-11 

metabolic process 165 5623 0.559515 0.000396 

response to stress 86 2652 0.646269 0.001977 

response to biotic stimulus 33 815 0.927582 0.005596 

protein modification process 33 2326 -0.66904 0.030064 

Susceptible 3 h Up-regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

response to endogenous stimulus 18 / 153 
1093 / 
27596 

1.693224 0.000341 

response to stress 32 2706 1.283078 0.000396 

cellular homeostasis 7 184 2.836594 0.000706 

response to abiotic stimulus 20 1672 1.221842 0.005964 

biosynthetic process 35 3661 0.956224 0.006095 

lipid metabolic process 12 768 1.572274 0.006948 
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cellular process 50 5896 0.838013 0.007315 

metabolic process 47 5741 0.756078 0.017197 

transport 21 1949 1.066544 0.017207 

catabolic process 14 1205 1.14204 0.034787 

Susceptible 3 h Down-regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

photosynthesis 9 / 135 164 / 27614 3.579208 2.37E-06 

metabolic process 50 5738 1.165798 0.000143 

generation of precursor 
metabolites and energy 

7 254 2.558439 0.002049 

response to stress 26 2712 1.131691 0.004598 

response to biotic stimulus 12 836 1.644191 0.005297 

transport 18 1952 1.016838 0.039546 

Susceptible 12 h Up-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

photosynthesis 40 / 1192 133 / 26557 2.786277 7.84E-17 

metabolic process 374 5414 0.83711 1.80E-16 

generation of precursor 
metabolites and energy 

37 224 1.913428 3.45E-09 

translation 57 495 1.403305 2.67E-08 

cellular process 329 5617 0.508111 2.86E-06 

response to abiotic stimulus 116 1576 0.773817 7.17E-06 

secondary metabolic process 32 297 1.286863 0.000203 

protein modification process 65 2294 -0.7107 0.000396 

cellular component organization 79 1120 0.689756 0.001344 

DNA metabolic process 4 379 -2.09807 0.003226 

lipid metabolic process 54 726 0.756408 0.003857 

anatomical structure 
morphogenesis 

14 633 -1.03589 0.01928 

signal transduction 34 1145 -0.61569 0.046676 

Susceptible 12 h Down-
regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

metabolic process 288 / 820 
5500 / 
26929 

1.077367 6.45E-20 

response to stress 156 2582 1.148121 2.61E-14 

cellular process 271 5675 0.887225 2.11E-13 

response to biotic stimulus 70 778 1.649835 3.49E-13 

response to abiotic stimulus 93 1599 1.019617 1.12E-07 

biosynthetic process 167 3529 0.762756 2.05E-07 

catabolic process 69 1150 1.042995 2.93E-06 

transport 97 1873 0.84455 8.41E-06 

response to endogenous stimulus 60 1051 0.959631 7.09E-05 
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signal transduction 62 1117 0.919233 0.000122 

photosynthesis 15 158 1.65898 0.00144 

translation 4 548 -2.0771 0.003257 

generation of precursor 
metabolites and energy 

18 243 1.301911 0.006334 

secondary metabolic process 21 308 1.184424 0.007211 

ripening 2 2 4 0.021854 

protein modification process 92 2267 0.460225 0.026131 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
109 2788 0.409728 0.035725 

lipid metabolic process 36 744 0.69336 0.037443 

carbohydrate metabolic process 36 753 0.675527 0.039403 

Susceptible 24 h Up-regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

metabolic process 119 / 355 
5669 / 
27394 

0.950988 3.45E-07 

secondary metabolic process 14 315 1.819591 0.00072 

cell communication 9 160 2.146664 0.002287 

response to extracellular stimulus 9 172 2.041607 0.003613 

response to stress 55 2683 0.756591 0.004922 

cellular process 102 5844 0.573038 0.005964 

response to abiotic stimulus 36 1656 0.81142 0.015777 

translation 1 551 -2.85057 0.044306 

cellular homeostasis 7 184 1.57306 0.044482 

Susceptible 24 h Down-
regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

translation 94 / 440 458 / 27309 3.993133 1.29E-66 

cellular process 132 5814 0.664888 0.000197 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
69 2828 0.687915 0.004183 

response to abiotic stimulus 41 1651 0.676164 0.027297 

Resistant 3 h Up-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

response to stress 112 / 694 
2626 / 
27055 

0.840902 2.49E-06 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
112 2785 0.746727 2.89E-05 

metabolic process 195 5593 0.585462 4.01E-05 

biosynthetic process 133 3563 0.645321 0.000114 

DNA metabolic process 21 362 1.202742 0.004627 
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cellular homeostasis 13 178 1.527673 0.005964 

cell communication 12 157 1.592287 0.006194 

carbohydrate metabolic process 34 755 0.844304 0.011597 

response to abiotic stimulus 62 1630 0.614618 0.01347 

cellular process 181 5765 0.382906 0.014815 

response to extracellular stimulus 11 170 1.349301 0.025769 

protein modification process 40 2319 -0.61395 0.02932 

biological_process 195 6437 0.325023 0.039403 

cellular component organization 44 1155 0.603026 0.049575 

Resistant 3 h Down-regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

biosynthetic process 186 / 769 
3510 / 
26980 

1.093712 8.14E-15 

cellular process 260 5686 0.93644 3.32E-14 

metabolic process 246 5542 0.86427 6.81E-12 

signal transduction 74 1105 1.31851 1.34E-09 

response to biotic stimulus 56 792 1.377337 4.81E-08 

response to stress 123 2615 0.827826 1.02E-06 

response to endogenous stimulus 61 1050 1.089909 5.80E-06 

protein modification process 106 2253 0.812007 8.05E-06 

transport 92 1878 0.8618 1.10E-05 

lipid metabolic process 46 734 1.186359 2.06E-05 

translation 2 550 -2.98527 0.000305 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
116 2781 0.629213 0.000354 

response to abiotic stimulus 74 1618 0.739794 0.000866 

carbohydrate metabolic process 40 749 0.943031 0.001753 

DNA metabolic process 1 382 -3.44727 0.002853 

ripening 2 2 4 0.019673 

Resistant 12 h Up-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

photosynthesis 117 / 3107 56 / 24642 4 5.52E-67 

generation of precursor 
metabolites and energy 

106 155 2.4804 1.55E-32 

metabolic process 873 4915 0.650226 2.01E-22 

cellular process 820 5126 0.45003 6.01E-11 

lipid metabolic process 126 654 0.633475 0.000203 

response to abiotic stimulus 233 1459 0.366461 0.004325 

cellular homeostasis 37 154 0.939214 0.004616 

biosynthetic process 474 3222 0.260376 0.005389 

anatomical structure 
morphogenesis 

47 600 -0.69791 0.005596 
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multicellular organismal 
development 

96 1064 -0.49914 0.005596 

carbohydrate metabolic process 117 672 0.482069 0.008022 

cell cycle 18 277 -0.96138 0.017389 

DNA metabolic process 26 357 -0.79821 0.019005 

secondary metabolic process 54 275 0.649111 0.020539 

protein modification process 224 2135 -0.28616 0.024521 

cell growth 22 309 -0.82987 0.026929 

regulation of gene expression, 
epigenetic 

4 110 -1.79338 0.027297 

translation 82 470 0.480375 0.031394 

Resistant 12 h Down-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

translation 192 / 2878 360 / 24871 2.283178 1.23E-52 

cellular process 809 5137 0.5879 2.22E-17 

response to stress 415 2323 0.710554 8.83E-15 

response to abiotic stimulus 280 1412 0.841171 3.32E-14 

transport 305 1665 0.725172 7.58E-12 

response to endogenous stimulus 190 921 0.87891 6.18E-11 

response to biotic stimulus 148 700 0.905197 3.86E-09 

metabolic process 731 5057 0.416852 1.04E-08 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
395 2502 0.509178 6.43E-08 

biosynthetic process 479 3217 0.427565 9.31E-07 

multicellular organismal 
development 

156 1004 0.447174 0.004183 

secondary metabolic process 53 276 0.742262 0.006948 

signal transduction 155 1024 0.407732 0.010172 

catabolic process 158 1061 0.38355 0.015688 

biological_process 745 5887 0.172863 0.035975 

post-embryonic development 119 798 0.380862 0.0426 

Resistant 24 h Up-regulated  
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

metabolic process 343 / 1022 
5445 / 
26727 

0.982175 5.14E-20 

protein modification process 162 2197 1.073233 1.98E-13 

cellular process 311 5635 0.712123 1.33E-10 

response to stress 163 2575 0.832484 1.04E-08 

secondary metabolic process 32 297 1.524688 7.51E-06 

signal transduction 77 1102 0.922715 1.21E-05 

response to endogenous stimulus 72 1039 0.906732 4.01E-05 

response to biotic stimulus 57 791 0.954347 0.000143 
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response to abiotic stimulus 96 1596 0.707874 0.000206 

lipid metabolic process 49 731 0.841423 0.002126 

cell death 22 275 1.082071 0.012924 

pollen-pistil interaction 9 75 1.658983 0.017207 

cell communication 14 155 1.252102 0.024684 

response to extracellular stimulus 14 167 1.143942 0.034011 

Resistant 24 h Down-regulated 
GO Terms 

# 
Regulated 

# Not 
Regulated 

log odds 
ratio 

FDR-
corrected p-

value 

translation 220 / 1598 332 / 26151 3.633829 8.05E-125 

protein modification process 82 2277 -0.8157 2.09E-06 

response to abiotic stimulus 149 1543 0.714487 2.49E-06 

response to stress 207 2531 0.474825 0.000313 

cellular process 396 5550 0.291467 0.005497 

regulation of gene expression, 
epigenetic 

0 114 -4 0.009868 

nucleobase, nucleoside, 
nucleotide and nucleic acid 

metabolic process 
201 2696 0.32507 0.02071 

carbohydrate metabolic process 62 727 0.498315 0.048263 

response to biotic stimulus 66 782 0.483949 0.04917 

The columns indicate GO term, number of annotated genes upregulated by high temperature, 
number of annotated genes not upregulated, log2 odds ratio, and FDR-corrected p-value. The 
first row includes the total number of genes upregulated and not upregulated. 
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Supplemental Table A1.3: Hormone response genes differentially expressed at high temperature. 

 
6 h 3 h 12 h 24 h 

Mock Susceptible Resistant Susceptible Resistant Susceptible Resistant 
 

Total DEGs 
 

1511 288 1463 2012 5985 795 2620 

 
Auxin genes 

 

21 
1.4% 

6 
2.1% 

15 
1.0% 

21 
1.0% 

44 
0.7% 

11 
1.4% 

24 
0.9% 

 
Cytokinin genes 

 

14 
0.9% 

2 
0.7% 

11 
0.8% 

11 
0.6% 

31 
0.5% 

5 
0.6% 

16 
0.6% 

 
ABA genes 

 

232 
15.4% 

66 
22.9% 

244 
16.7% 

279 
13.9% 

715 
12.0% 

132 
16.6% 

415 
15.8% 

 
Ethylene genes 

 

4 
0.3% 

3 
1.0% 

6 
0.4% 

11 
0.6% 

19 
0.3% 

4 
0.5% 

13 
0.5% 

 
SA genes 

 

23 
1.5% 

9 
3.1% 

29 
2.0% 

46 
2.3% 

106 
1.8% 

21 
2.6% 

66 
2.5% 

 
JA genes 

 

33 
2.2% 

7 
2.4% 

32 
2.2% 

35 
1.7% 

71 
1.2% 

8 
1.0% 

39 
1.5% 

The whole numbers indicate the number of DEGs that are downstream of hormone response in each treatment, and the percentages 
indicate the percentage of total DEGs. Genes which were responsive to more than one hormone were equally divided among the 
hormones they were responsive to, with the total number of genes being rounded the nearest whole number. 
  



93 

Supplemental Table A1.4: Odds ratios of promoter motifs in the promoters of different gene 
sets. 

 ABRE TATA IBOX GCBP2 TELO 
3 hpi Sus up 1.47 1.64 n.e. n.e. n.e. 

Sus dn 0.61 n.e. 2.03 n.e. n.e. 
Res up n.e. n.e. n.e. n.e. 0.72 
Res dn 1.39 1.31 n.e. n.e. 0.68 

12 hpi Sus up n.e. n.e. n.e. n.e. 0.76 
Sus dn n.e. 1.23 n.e. 1.18 0.70 
Res up n.e. 0.86 1.22 n.e. 0.68 
Res dn 1.14 1.23 0.83 1.12 n.e. 

24 hpi Sus up n.e. n.e. n.e. n.e. 0.38 
Sus dn 1.27 1.40 n.e. 1.25 1.87 
Res up n.e. 1.18 n.e. 0.87 0.50 
Res dn 1.21 1.19 n.e. 1.26 1.32 

An odds ratio >1 indicates that the motif was significantly enriched in the upstream promoters of 
the genes in the given set (Sus = susceptible, Res = resistant, up = upregulated genes, dn = 
downregulated genes) when compared to a random set of 10,000 rice genes, while an odds 
ratio <1 indicates that’s the motif was significantly underrepresented in the promoters of the 
genes in the given set when compared to the random set of 10,000 rice genes. n.e. = not 
statistically enriched relative to the random set of genes. Statistical enrichment was determined 
by Fisher’s exact test (p < 0.05). 
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Supplemental Fig A1.1: Mean log2 fold change of VSP2 in mock treated plants at high 
temperature as measured by qRT-PCR. There were no significant differences in expression of 
the wound-responsive jasmonic acid marker VSP2 at 3, 6, and 12 h post-mock inoculation at 
high temperature relative to low temperature (Student’s t-test, p > 0.05). Error bars represent 
SEM (n = 6). 
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Supplemental Fig A1.2: Differential expression of SA up-regulated genes at high 
temperature. (a) Kernel density estimate of log2 fold change for SA up-regulated genes 
differentially regulated by high temperature in mock inoculated plants. (b) Kernel density 
estimates of log2 fold change for SA up-regulated genes differentially regulated by high 
temperature in plants during susceptible and resistant interactions at 3, 12, and 24 hpi. 
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A.2 CHAPTER 3 Supplemental Information 

Supplemental Table A2.1: Sequence reads and mapping summary statistics for studies used in this analysis. 

SRA Accession SRA File Raw Reads Mapped Reads Mapped to Genes 

Total High-quality % Total % Total % 

SRP004651 SRR074138 2846609 2081083 73.1 1639951 57.6 647117 22.7 

SRR074139 4275874 4098121 95.8 3123652 73.1 1260614 29.5 

SRR074152 2813770 2102466 74.7 1545280 54.9 589689 21.0 

SRR074153 4100071 3965068 96.7 2800270 68.3 1112812 27.1 

SRP049040 SRR1615264 17789340 15830450 89.0 15063183 84.7 13399817 75.3 

SRR1615265 18653720 16503925 88.5 15939728 85.5 14567482 78.1 

SRR1615270 20593774 18494227 89.8 17957374 87.2 16293467 79.1 

SRR1615271 22838476 19933545 87.3 19358889 84.8 18026902 78.9 

SRR1615276 22912622 19997866 87.3 19337019 84.4 17859494 77.9 

SRR1615277 22824036 19912550 87.2 19178057 84.0 17560005 76.9 

SRP049444 SRR1636849 19092472 17838233 93.4 17531136 91.8 15874146 83.1 

SRR1636850 19230528 18060948 93.9 17732822 92.2 16024851 83.3 

SRR1636851 19145050 17972749 93.9 17568563 91.8 15800857 82.5 

SRR1636852 19204242 18077313 94.1 17655624 91.9 15947097 83.0 

SRP052306 SRR1761528 14664192 14336202 97.8 14126322 96.3 12561495 85.7 

SRR1761529 16490701 16079832 97.5 15930835 96.6 14136931 85.7 

SRR1761530 14302686 13957683 97.6 13854692 96.9 12341694 86.3 

SRR1761531 14857078 14499467 97.6 14378412 96.8 12714596 85.6 

SRP056884 SRR1952778 24830499 23223823 93.5 22989791 92.6 20741839 83.5 

SRR1952779 4883837 4628841 94.8 4569527 93.6 4173349 85.5 

SRR1952780 20256732 18175744 89.7 18025351 89.0 16268893 80.3 

SRR1952793 42745641 39611721 92.7 39235112 91.8 35101114 82.1 

SRR1952794 21223770 20138835 94.9 19936854 93.9 18145834 85.5 

SRR1952795 23224262 21169649 91.2 20983836 90.4 18960452 81.6 

SRR1952799 11473000 10789043 94.0 10307039 89.8 9175002 80.0 

SRR1952800 7052129 5782355 82.0 5735075 81.3 5189344 73.6 

SRR1952801 94865601 86940356 91.7 85208991 89.8 76480884 80.6 
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SRR1952808 26656102 24944374 93.6 24623033 92.4 22051552 82.7 

SRR1952809 11353463 9116423 80.3 9042009 79.6 8204216 72.3 

SRR1952810 21537709 19914067 92.5 19762897 91.8 17545990 81.5 

SRP065503 SRR2862232 10881310 10666806 98.0 10476630 96.3 8796680 80.8 

SRR2862233 11549952 11335079 98.1 11184408 96.8 9652944 83.6 

SRR2862234 14669472 14400690 98.2 14196515 96.8 12212313 83.2 

SRR2862235 14835261 13831522 93.2 12759480 86.0 9019246 60.8 

SRR2862236 14492224 13457128 92.9 12427566 85.8 8693814 60.0 

SRR2862237 14732837 13866180 94.1 13034861 88.5 9616513 65.3 

SRP071248 SRR3209769 33012246 32544030 98.6 32183678 97.5 28458579 86.2 

SRR3209770 28693929 28272609 98.5 27919697 97.3 24568753 85.6 

SRR3209771 33738285 32592932 96.6 32322917 95.8 28552310 84.6 

SRR3209772 31951497 31491434 98.6 31136484 97.4 27552347 86.2 

SRR3209773 34717753 34209223 98.5 33932453 97.7 29807973 85.9 

SRR3209774 28803587 28402703 98.6 28138752 97.7 24721147 85.8 

SRR3209775 32798250 32317710 98.5 31714289 96.7 27963729 85.3 

SRR3209776 33838322 33335561 98.5 32500089 96.0 28722587 84.9 

SRR3209777 32797025 32257404 98.4 32045115 97.7 28278419 86.2 

SRR3209778 35848188 35304074 98.5 34446373 96.1 30406765 84.8 

SRR3209779 37177413 36585163 98.4 36146494 97.2 31734877 85.4 

SRR3209780 24165701 23716826 98.1 23503601 97.3 20649808 85.5 

SRP076382 SRR3657371 22197650 20998530 94.6 20639867 93.0 18214810 82.1 

SRR3657372 22268264 21738274 97.6 21537816 96.7 18805709 84.5 

SRR3657373 22266057 21732275 97.6 21385244 96.0 18725054 84.1 

SRR3657374 64675050 63208865 97.7 61855799 95.6 53979022 83.5 

SRR3657375 64439195 62839529 97.5 61104240 94.8 51675412 80.2 

SRR3657376 64563225 63079703 97.7 61465550 95.2 52331655 81.1 

SRP101342 SRR5311338 28856641 28556116 99.0 28045305 97.2 25119042 87.0 

SRR5311339 30695442 30362383 98.9 29840798 97.2 26626693 86.7 

SRR5311340 41141433 40804827 99.2 40082712 97.4 36075724 87.7 

SRR5311341 30123157 29815532 99.0 29102390 96.6 26153865 86.8 

SRR5856927 45759126 42925774 93.8 36858231 80.5 33434870 73.1 
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SRP113286 SRR5856928 42646908 39885840 93.5 34578376 81.1 31388151 73.6 

SRR5856929 62531390 58566201 93.7 49797889 79.6 45432151 72.7 

SRR5856930 48560300 45410331 93.5 40126712 82.6 36866849 75.9 

SRR5856931 53548032 50082357 93.5 45393291 84.8 41719887 77.9 

SRR5856932 42810176 40099526 93.7 35954083 84.0 32689730 76.4 

SRP115030 SRR5909330 30885880 29633997 95.9 28103798 91.0 23947753 77.5 

SRR5909331 43120834 41191189 95.5 38723981 89.8 31260292 72.5 

SRR5909332 34017864 32708190 96.2 30951045 91.0 25933263 76.2 

SRR5909333 25897684 24806086 95.8 22676004 87.6 16798889 64.9 

SRR5909334 31044302 29575566 95.3 28524764 91.9 24513853 79.0 

SRR5909335 32654458 31285854 95.8 30187414 92.4 26092712 79.9 

All percentages are per total raw reads per row. 

  



99 

Supplemental Table A2.2: Total number of DEGs identified in each study and the amount 
of DEGs per study retained after meta-analysis. 

Stress # DEGs # Retained % Retained 

Drought long day 11644 4531 39 

Drought short day 11292 4393 39 

Drought 9710 3925 40 

Salt 7950 2438 31 

High Temperature 1220 505 41 

Cold 1545 663 43 

Xoc BLS256 7625 1194 16 

Xoc RS105 3163 807 26 

Xoc CFBP7331 2684 754 28 

Xoo PXO349 1 dpi 5164 559 11 

Xoo PXO349 2 dpi 6477 673 10 

M. oryzae ZB13 1465 436 30 

M. oryzae Guy11 4756 488 10 

Rice Stripe Virus 7620 881 12 

Rice Dwarf Virus 8320 1108 13 

Xoc indicates X. oryzae pv. oryzicola; Xoo indicates X. oryzae pv. oryzae 
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Supplemental Table A2.3: Number and percentage of metaDEGs identified with all 
possible expression patterns. 

Expression 
Pattern 

metaDEGs 
Abiotic 

metaDEGs (%) 
Biotic 

metaDEGs (%) 
All 

metaDEGs (%) 
Abiotic Up 1929 32.9 0 27.5 
Abiotic Up 
Biotic Up 

615 10.5 28.6 8.8 

Abiotic Up 
Biotic Down 

18 0.3 0.8 0.3 

Abiotic Down 2933 50.0 0 41.8 
Abiotic Down 

Biotic Up 
70 1.2 3.2 1.0 

Abiotic Down 
Biotic Down 

298 5.1 13.8 4.2 

Biotic Up 753 0 35.0 10.7 
Biotic Down 400 0 18.6 5.7 
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Supplemental Table A2.4: Biological process GO terms significantly enriched within metaDEG sets. 
Abiotic Up-regulated 
GO Term # in pattern # in background p-value 

biological process 797 10051 7.60E-29 

biosynthetic process 557 5922 3.01E-35 

carbohydrate metabolic process 152 1287 2.46E-16 

catabolic process 196 1812 3.59E-17 

cell communication 34 326 0.001511 

cellular homeostasis 35 308 0.000287 

cellular process 761 9396 8.09E-30 

embryo development 70 740 7.43E-05 

lipid metabolic process 140 1236 7.11E-14 

metabolic process 863 9239 2.41E-58 

multicellular organismal development 177 1861 3.66E-11 

nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 377 4604 3.29E-14 

pollen-pistil interaction 14 104 0.006178 

post-embryonic development 117 1456 0.000158 

reproduction 106 1092 2.00E-07 

response to abiotic stimulus 322 2703 3.01E-35 

response to biotic stimulus 133 1272 5.04E-11 

response to endogenous stimulus 198 1818 1.20E-17 

response to extracellular stimulus 37 356 0.001101 

response to stress 466 4198 7.52E-45 

secondary metabolic process 52 531 0.000335 

signal transduction 143 1810 6.36E-05 

transport 283 2997 2.88E-17 

Abiotic Down-regulated 
GO Term # in pattern # in background p-value 

anatomical structure morphogenesis 145 996 1.75E-13 

biological process 906 9942 3.07E-15 

biosynthetic process 629 5850 7.77E-24 
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carbohydrate metabolic process 149 1290 1.47E-07 

cell differentiation 77 634 4.64E-05 

cell growth 85 482 5.00E-12 

cellular component organization 197 1739 3.81E-09 

cellular homeostasis 48 295 2.13E-06 

cellular process 1076 9081 1.11E-64 

generation of precursor metabolites and energy 115 365 2.63E-33 

lipid metabolic process 173 1203 1.57E-15 

metabolic process 1275 8827 8.80E-139 

multicellular organismal development 187 1851 1.06E-05 

nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 405 4576 1.71E-05 

photosynthesis 120 204 1.76E-56 

pollen-pistil interaction 19 99 0.000463 

post-embryonic development 142 1431 0.000285 

protein modification process 456 3522 1.93E-31 

response to abiotic stimulus 377 2648 7.78E-33 

response to biotic stimulus 174 1231 4.58E-15 

response to endogenous stimulus 226 1790 2.16E-14 

response to external stimulus 33 147 2.08E-07 

response to stress 455 4209 3.30E-17 

ripening 3 3 0.007739 

secondary metabolic process 79 504 3.76E-09 

signal transduction 245 1708 1.47E-21 

transport 353 2927 1.87E-19 

tropism 28 103 6.94E-08 

Biotic Up-regulated 
GO Term # in pattern # in background p-value 

biological process 391 10457 3.33E-06 

biosynthetic process 299 6180 6.03E-16 

catabolic process 83 1925 0.00306 

cell death 27 451 0.00351 



103 

cellular process 374 9783 8.00E-07 

generation of precursor metabolites and energy 27 453 0.00351 

lipid metabolic process 85 1291 6.46E-10 

metabolic process 500 9602 3.54E-37 

multicellular organismal development 92 1946 9.60E-05 

nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 219 4762 1.94E-09 

pollen-pistil interaction 10 108 0.005523 

post-embryonic development 74 1499 0.000162 

reproduction 54 1144 0.003885 

response to abiotic stimulus 181 2844 1.49E-19 

response to biotic stimulus 119 1286 2.86E-24 

response to endogenous stimulus 146 1870 4.65E-23 

response to extracellular stimulus 25 368 0.001114 

response to stress 310 4354 1.70E-43 

secondary metabolic process 46 537 8.11E-09 

signal transduction 90 1863 6.89E-05 

Biotic Down-regulated 
GO Term # in pattern # in background p-value 

biological process 193 10655 0.00389 

biosynthetic process 124 6355 0.003655 

carbohydrate metabolic process 48 1391 1.19E-06 

cellular process 198 9959 2.09E-05 

generation of precursor metabolites and energy 21 459 6.43E-05 

metabolic process 221 9881 3.51E-10 

photosynthesis 29 295 3.55E-13 

response to biotic stimulus 41 1364 0.00018 

response to external stimulus 10 170 0.001686 

response to stress 94 4570 0.003655 
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Supplemental Table A2.5: Number of observed and expected phytohormone-induced 
metaDEGs. 

Abiotic metaDEGs 

Pathway Up-regulated 
Expected Up-

regulated 
Down-regulated 

Expected Down-
regulated  

p-value* 

ABA 765 351 38 452 1.1E-190 
auxin 52 35 28 45 1.3E-04 

cytokinin 39 33 36 42 1.6E-01 
ethylene 21 16 15 20 9.4E-02 

JA 85 56 44 73 2.6E-07 
SA 184 90 23 117 1.2E-39 
JAǂ 21 11 5 15 7.2E-05 
SAǂ 34 16 2 20 1.6E-09 

      

Biotic metaDEGs 

Pathway Up-regulated 
Expected Up-

regulated 
Down-regulated 

Expected Down-
regulated  

p-value* 

ABA 239 165 8 82 1.5E-23 
auxin 53 38 4 19 2.5E-05 

cytokinin 32 23 3 12 1.4E-03 
ethylene 26 19 2 9 4.6E-03 

JA 93 64 3 32 3.4E-10 
SA 139 95 3 47 4.3E-15 
JAǂ 40 29 4 15 4.7E-04 
SAǂ 45 31 2 16 1.6E-05 

      

*p-values are calculated with χ2 goodness of fit test; ǂ indicates genes not responsive to ABA 
  



105 

Supplemental Table A2.6: All de novo discovered promoter motifs. 

 
Motif 

 
Discovered In 

Enriched In* 

Abiotic Up Abiotic Down Biotic Up Biotic Down 

ACGYGTM Abiotic Up Yes No Yes No 

TRCGTR Abiotic Up Yes Yes Yes No 

CTATAWA Abiotic Up Yes Yes Yes Yes 

CRCGTGGM Abiotic Up Yes No No No 

AAAAADA Abiotic Up Yes Yes Yes Yes 

AGTASTA Abiotic Up Yes Yes Yes Yes 

AAACG Abiotic Up Yes Yes Yes No 

CACGNCAC Abiotic Up Yes No Yes No 

DAAAAAAH Abiotic Down Yes Yes Yes Yes 

TAGCTR Abiotic Down Yes Yes Yes Yes 

AMTRTA Abiotic Down Yes Yes No Yes 

AATTW Abiotic Down Yes Yes Yes Yes 

MTGMAA Abiotic Down Yes Yes Yes Yes 

STAGTA Abiotic Down Yes Yes Yes No 

TKCAGW Abiotic Down Yes Yes Yes Yes 

DCCACACA Abiotic Down No Yes Yes No 

TAYATR Abiotic Down Yes Yes Yes Yes 

ATGTKW Abiotic Down No Yes No Yes 

ACKTACG Abiotic Down Yes Yes Yes Yes 

AYGMATG Abiotic Down Yes Yes Yes Yes 

AAAT Abiotic Down Yes Yes Yes Yes 

CAGYA Abiotic Down Yes Yes Yes Yes 

ACGTRC Biotic Up Yes Yes Yes No 

ACRCGY Biotic Up Yes No Yes No 

GCRYGCR Biotic Up Yes Yes Yes No 

SCTATAWA Biotic Up Yes Yes Yes Yes 

CGATCRW Biotic Up Yes No Yes No 

YAGCTR Biotic Up Yes Yes Yes Yes 

GTTTGAM Biotic Up Yes No Yes No 

AGTASTAB Biotic Up Yes Yes Yes No 

TGCABA Biotic Down No Yes No Yes 

AGCTASY Biotic Down Yes Yes Yes Yes 
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ADAAAAA Biotic Down Yes Yes Yes Yes 

ATAWATA Biotic Down Yes Yes Yes Yes 

TGCAW Biotic Down Yes Yes No Yes 

CWCACW Biotic Down Yes Yes Yes Yes 

CAGTD Biotic Down No Yes No Yes 

ATWTA Biotic Down Yes Yes Yes Yes 

CATYTTGC Biotic Down No No No Yes 

*Enrichment determined by Fisher’s exact test (p ≤ 0.05) 
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Supplemental Table A2.7: Number of metaDEGs up- and down-regulated within pre-
processed gene expression studies. 

Abiotic Stress Up-regulated metaDEGs 

Study 
Up-

regulated 
metaDEGs 

Expected Up-
regulated 

Down-
regulated 
metaDEGs 

Expected 
Down-

regulated  
p-value* 

GSE42096 632 501 380 511 1.8E-16 
GSE57950 1 d 914 643 453 724 8.0E-49 
GSE57950 3 d 1062 620 349 791 3.0E-124 

GSE60287 dess. 1557 929 139 767 3.8E-206 
GSE60287 salinity 1095 697 77 475 5.8E-124 

GSE74465 1 h 567 404 331 494 7.8E-28 
GSE74465 6 h 1417 504 217 1130 0 

GSE81462 945 405 98 638 5.9E-258 
GSE107425 973 431 157 699 1.3E-241 

Abiotic Stress Down-regulated metaDEGs 

Study 
Up-

regulated 
metaDEGs 

Expected Up-
regulated 

Down-
regulated 
metaDEGs 

Expected 
Down-

regulated  
p-value* 

GSE42096 342 530 728 540 1.4E-30 
GSE57950 1 d 729 743 850 836 0.48 
GSE57950 3 d 374 705 1230 899 2.9E-62 

GSE60287 dess. 328 937 1381 772 1.4E-192 
GSE60287 salinity 257 463 522 316 4.6E-51 

GSE74465 1 h 319 369 500 450 4.5E-4 
GSE74465 6 h 136 722 2206 1620 1.5E-151 

GSE81462 97 523 1250 824 2.3E-125 
GSE107425 97 405 965 657 2.5E-84 

Biotic Stress Up-regulated metaDEGs 

Study 
Up-

regulated 
metaDEGs 

Expected Up-
regulated 

Down-
regulated 
metaDEGs 

Expected 
Down-

regulated  
p-value* 

GSE67588 BLS279 1267 804 20 483 1.6E-156 
GSE67588 CFBP7342 1300 874 10 436 1.1E-137 

GSE84800 632 465 40 207 3.0E-44 
GSE108504 918 576 90 432 4.7E-105 

Biotic Stress Down-regulated metaDEGs 

Study 
Up-

regulated 
metaDEGs 

Expected Up-
regulated 

Down-
regulated 
metaDEGs 

Expected 
Down-

regulated  
p-value* 

GSE67588 BLS279 25 367 562 220 6.1E-187 
GSE67588 CFBP7342 25 335 478 168 5.7E-190 

GSE84800 81 188 190 83 3.7E-45 
GSE108504 90 232 316 174 5.1E-46 

*p-values are calculated with χ2 goodness of fit test; dess. = dessication 
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Supplemental Table A2.8: Number of photosynthesis-annotated genes differentially 
regulated in pre-processed gene expression studies. 

Study 
Up-

regulated 

Expected 
Up-

regulated 

Down-
regulated 

Expected 
Down-

regulated 
p-value* 

GSE42096 15 16 18 17 0.73 
GSE57950 1 d 57 35 17 39 3.0E-7 
GSE57950 3 d 19 28 45 36 0.023 

GSE60287 dess. 39 65 80 54 1.7E-6 
GSE60287 salinity 10 15 15 10 0.041 

GSE74465 1 h 5 5 5 5 1 
GSE74465 6 h 13 35 102 80 8.3E-6 

GSE81462 12 36 80 56 2.9E-7 
GSE107425 11 7 7 11 0.053 

GSE67588 BLS279 16 60 80 36 1.8E-20 
GSE67588 CFBP7342 13 61 79 31 3.4E-26 

GSE84800 11 35 40 16 4.4E-13 
GSE108504 8 56 90 42 1.1E-22 

*p-values are calculated with χ2 goodness of fit test; dess. = dessication 
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Supplemental Fig A2.1: DEGs per study retained in meta-analysis followed the expected 
regulatory trends. The DEGs retained as up-regulated (top) and down-regulated (bottom) 
metaDEGs were mostly up- and down-regulated, respectively, within each individual study. 
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Supplemental Fig A2.2: Stress down-regulated photosynthesis in rice. Gene expression 

(log2 fold changes) for stresses relative to controls (columns) are shown for photosynthesis-

annotated metaDEGs (rows).  
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A.3 CHAPTER 4 Supplemental Information 

 

Supplemental Fig A3.1: Co-infiltration with Xo strain X11-5A avrXa7 and ABA enhances 

Xa7 resistance in rice. Plants were inoculated with Xo strains X11-5A ΔCRR (empty vector) or 

X11-5A avrXa7 (a plasmid carrying the gene for the elicitor of Xa7). Bacterial populations were 

quantified at 7 d post-inoculation. Contrary to the resistant interaction alone, co-infiltration with 

the resistance-inducing bacteria and ABA was detectable. ANOVA was used to determine if 

there were differences among means (p < 0.05) and a post-hoc Tukey test was used to 

determine groups (alpha = 0.05). 
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Supplemental Fig A3.2: Foliar treatment with ABA enhances Xa7 resistance to a similar 

level as high temperature. Plants were treated with nothing (Ctrl), high temperature (HT), ABA 

or HT and ABA and inoculated with Xo strain X11-5A avrXa7. In non-resistant IR24 plants (a), 

bacterial numbers were the same in all treatments. In resistant IRBB7 plants, (b) bacterial 

numbers were reduced by all treatments relative to the Ctrl. ANOVA was used to determine if 

there were differences among means (p < 0.05) and a post-hoc Tukey test was used to 

determine groups (alpha = 0.05). 
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Supplemental Fig A3.3: ABA has no effect on the growth of Xo strain X11-5A. There were 
no differences between untreated and ABA-treated Xo strain X11-5A in 72 time points within 72 
h (p > 0.05, student’s t-test). Lines shown are the means of three biological replicates per time 
point (n = 12 technical replicates each). 
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Supplemental Fig A3.4: Putative model for Xa7/ABA interactions. Xo infection and high 
temperature treatment induce ABA biosynthesis and signaling in rice. Xa7, which induces host 
resistance, suppresses ABA biosynthesis and signaling. ABA enhances Xa7 activity; arrows = 
activation, blunt arrow = suppression, dotted line arrow = putative activation. 
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Supplemental Methods A3.1: Bacterial culturing and growth 

 For all bacteria experiments, bacteria were revived from glycerol stock on peptone 

sucrose agar (PSA) and grown in an incubator at 28°C. After approximately three days, bacteria 

were restreaked on fresh PSA and grown overnight. Overnight cultures were used as starter 

cultures in in vitro experiments and as inoculum in all in planta experiments. For the in vitro 

growth curves, the starter cultures were diluted to approximately 2×105 CFU/mL in 200 uL of 

nutrient broth (NB; Difco™) in a 96-well culture plate. NB was supplemented with either 0.095% 

ethanol or 100 uM ABA (Sigma-Aldrich®, CAS Number: 14375-45-2) in 0.095% ethanol. Plates 

were shaken at 225 RPM at 28°C with readings taken every hour in a plate reader (BioTek® 

PowerWave HT). Student’s t-test was used to detect differences at each time point with a 

threshold of p = 0.05. 

Supplemental Methods A3.2: Plant growth and inoculations 

For the co-infiltration assay, rice seeds of IRBB61 (Xa7) were placed directly into a 

custom soil-free growing system in the greenhouse (approximately 24–30°C, 14 h days, >80% 

relative humidity). This system is a passive hydroponics system using 10 L opaque black plastic 

bins with holes drilled in the lid to accommodate 15 mL conical tubes. The bottoms of the 

conical tubes were cut open and plugged with cheesecloth. The bins were filled with 

greenhouse tap water to the level where the tube bottoms were barely submerged (about 5 L). 

The ungerminated seeds were placed directly onto the cheesecloth. After seedling emergence 

and 5 cm of growth (approximately one week), the greenhouse water was replaced with Peters 

Excel® 13-2-13 fertilizer, final concentration 300 ppm N, supplemented with iron chelate 

solution, final concentrations 27.8 mg/L ferrous sulfate heptahydrate and 37.3 mg/L of EDTA 

disodium salt, as in standard MS media. Three weeks after germination, plants were inoculated 

with Xo strains X11-5A avrXa7-pKEB31 and X11-5A ΔCRR-pKEB31 resuspended in sterile 

water to a concentration of 2×108 CFU/mL via infiltration with a needleless syringe. For bacterial 

quantification, inoculated leaves were collected one week after inoculation, flash frozen with 
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liquid nitrogen and ground with a tissue macerator (Qiagen TissueLyser II). The extract was 

resuspended in 1 mL of sterile water, 10-fold serially diluted and plated on PSA + 100 mg/L 

cycloheximide. 

For the foliar treatment assay, rice seeds of near-isogenic varieties IR24 (no resistance) 

and IRBB7 (Xa7) were germinated on wet filter paper (Whatman No.1) under constant light at 

28°C. After seedling emergence, plants were transplanted in a custom soil mixture (50% potting 

soil, 50% Greens Grate™) in a growth chamber and grown for 4 weeks after germination under 

a standard growing regime (28°C/24°C day/night, 12 h days, >70% relative humidity). After 

three weeks, half of the plants of both varieties were transferred to a high temperature growing 

regime (35°C/29°C day/night, 12 h days, >70% relative humidity). Four days after transfer, 

leaves were treated with 100 uM ABA in 0.02% Tween 20 or 0.02% Tween 20 alone via 

spraying. Three days after chemical treatment, the largest fully expanded leaves were 

inoculated with Xo strain X11-5A avrXa7-pKEB31 resuspended in sterile water to a 

concentration of 2×108 CFU/mL via scissor clip inoculation. Inoculated leaf tips (5 cm) were 

collected one week after inoculation and bacterial numbers were quantified as above. 

Supplemental Methods A3.3: Statistical analyses and figure generation 

 ANOVA was used to detect differences among means within in planta bacterial number 

experiments (threshold, p < 0.05), via the anova function in R (https://www.r-project.org). If 

differences were detected, the post-hoc Tukey HSD test was used to determine with 

significance groups, via the HSD.test function from the R library agricolae (https://cran.r-

project.org/package=agricolae). For the in vitro growth curve, 12 technical replicates were 

averaged per biological replicate at each time point, with 3 biological replicates. The Student’s t-

test was used to detect differences in the means between treatments at each time-point. 

Despite the high number of t-tests, no p-value correction was applied because no p-values were 

significant. Boxplots and line charts were generated via the boxplot and plot functions, 

respectively, in R. 
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Supplemental Methods A3.4: Protocol: a rapid assay for rice disease assays using a 

passive hydroponics system 

 Non-skirted 96-well PCR plates are prepared by cutting an approximately 2 mm hole in 

the bottom of all tubes with sharp scissors. Rice seeds are sterilized in 20% Clorox® Regular 

Bleach for 30 minutes on a rocker then washed five times with sterile, deionized water for 10 

seconds per wash. Seeds are then placed into the PCR plates, one seed per tube, germ-side 

up. The PCR plate is placed in a sterile inverted pipette tip box lid filled with roughly 3 mm of 

deionized water. The PCR plate and box lid are placed in a sterile, sealed plastic bag, and then 

transferred to a germinating growth chamber (28 °C, 24 h light) for four days. The deionized 

water is replaced with iron-supplemented Peters Excel® 13-2-13 fertilizer as described in 

Supplemental Methods A3.2. PCR plate and box lid are placed 30 cm from the light in a growth 

chamber set for standard rice growth (28 / 24 °C, >70% humidity, 14 / 10 h day / night) for 

approximately seven days. When seedlings are 10 to 15 cm tall, they are transferred to a high 

temperature growth chamber (35 / 29 °C) for seven days. One week after temperature 

treatment, they are inoculated with Xo via clip inoculation. Tissue for RNA extraction is collected 

as needed. Lesions and bacterial number are quantified 11 days after inoculation. Plants must 

be watered with the fertilizer solution daily. 

 


