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ABSTRACT 

 

MICROBIAL AND BIOGEOCHEMICAL RESPONSES TO CHANGING PRECIPITATION 

PATTERNS IN GRASSLAND ECOSYSTEMS 

 

Global circulation models predict that precipitation patterns in grasslands will both intensify and 

be characterized by more severe drought in the future. In these systems, the availability of water strongly 

controls ecosystem function, so changes in precipitation are likely to significantly alter biological 

communities and biogeochemical dynamics. Since these biogeochemical changes could feed back on 

climate drivers by influencing regional to global scale energy and water balance, predicted changes in 

grassland precipitation call for a better understanding of relationships between water availability and 

grassland biogeochemical dynamics. 

My dissertation aimed to address how changing rainfall patterns affect biogeochemical cycling 

and soil microbial communities in grasslands. I first tested the generality of controls over soil organic 

matter storage in temperate grasslands by studying existing spatial gradients in soil carbon and nitrogen, 

as they relate to the spatial variation in average precipitation and temperature, and soil texture. I found 

that statistical models developed in US grasslands overestimated soil organic carbon and underestimated 

soil organic nitrogen in Chinese grasslands. However, when I incorporated nitrogen deposition and 

historical land use using a simulation model, it resulted in more accurate model estimates for this region. 

This work suggests that nitrogen deposition and historical land use legacies may need to be considered to 

accurately describe biogeochemical dynamics in Chinese grasslands and better predict the vulnerability of 

global carbon stocks to loss. 

Responses of ecosystems to changes through time are often somewhat different than relationships 

gleaned from large-scale spatial gradients.  At the local scale, I found that an 11-year drought can 

significantly alter biogeochemical and ecosystem dynamics in the highly drought-resistant shortgrass 

steppe.  Here, soil inorganic nitrogen availability increased up to 4-fold in plots receiving 25% of summer 

precipitation. This accumulation of nitrogen under drought may explain the higher plant tissue nitrogen 
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and N2O flux observed under recovery. A more “open” nitrogen cycle that I observed following severe 

drought could affect the impact of drought on grassland ecosystems, as well as the timescale of recovery. 

Soil microbial community composition was also altered by this 11-year drought manipulation in 

the shortgrass steppe, and these differences persisted even after communities were subject to the same 

moisture conditions for 36 hours in the lab. In this lab experiment, I also identified specific microbial 

groups that grew under a certain moisture levels, presenting evidence of moisture niche partitioning in 

microbial communities. However, this niche differentiation wasn’t realized in the field; communities that 

grew under dry conditions in the lab were not similar to those that emerged under long-term drought 

plots. Overall, this work suggests that contrary to previous assumptions, microbial communities display 

legacies from long-term field treatments, and that although soil moisture has the potential to drive 

microbial community composition through niche partitioning, this factor may not always be the primary 

driver of long-term community composition.  

Microbial communities were also sensitive to altered precipitation timing in the tallgrass prairie. 

In addition, communities that were subject to intensified precipitation patterns in the field respired less 

than control soils after laboratory rewetting events, but respiration rates of the different field treatments 

converged after 100 days under the same conditions. Surprisingly, species composition of these 

communities was more sensitive to drying and rewetting pulses in the lab than those from the control. 

Together, these results show that microbial communities display legacies to altered precipitation timing, 

in addition to drought, but community composition is not necessarily tightly linked to respiration.  

Overall, my dissertation work suggests that grasslands will be sensitive to extreme shifts in 

precipitation, and that biogeochemical and microbial responses could influence how grasslands are altered 

under future precipitation regimes. However, my work also shows that precipitation is not the only factor 

controlling biogeochemical and microbial community dynamics in grasslands, even under rainfall 

manipulations and across precipitation gradients. Therefore, the response of grasslands to other 

environmental factors – that shift with precipitation changes or are predicted to change independently – 

should not be overlooked. 
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Chapter 1: Introduction 

Water has been identified as the main controller of ecosystem function in semi-arid ecosystems 

(Noy-Meir 1973). These ecosystems cover over a fifth of global land area (Leith 1978), store more than a 

third of the world’s soil carbon (Anderson 1991, Scurlock and Hall 1998, White et al. 2000), and provide 

much of the land used for pastoral and crop farming worldwide (FAO 2005). Climate models predict that 

there will be future changes in both the timing and amount of precipitation in semi-arid grasslands (Karl 

et al. 1995, Easterling 1999, IPCC 2007, Jentsch et al. 2007). As grasslands are sensitive to changes in 

water availability, shifts in rainfall are likely to significantly alter these ecosystems and the services they 

provide. In addition, other global changes, such as shifts in land use (Chuluun and Ojima 2002) and 

increased nitrogen deposition (Galloway et al. 2004), will affect grassland dynamics, and may interact 

with precipitation changes in novel ways (Miller et al. 2004). Overall, impending environmental change 

has given new context to the study of water-ecosystem relationships in semi-arid systems, and call for a 

greater understanding of how precipitation and other predicted changes will affect various components of 

grassland ecosystems.  

Because grassland organisms are frequently water limited, precipitation has proven to be a good 

predictor of many semi-arid processes. Extensive work has shown that plant growth in grasslands is often 

limited by water availability, resulting in a strong positive relationship between annual net primary 

production (ANPP) and annual precipitation (Sala et al. 1988, Lauenroth and Sala 1992). However, 

relationships between precipitation and belowground processes are less clear. Although decomposition 

can be linearly related to precipitation in arid and semi-arid environments (Steinberger and Whitford 

1988, Jacobson and Jacobson 1998, Epstein et al. 2002), previously established relationships between 

precipitation and decomposition may shift under new rainfall regimes (Yahdjian et al. 2006). The 

relationship between net nitrogen mineralization and precipitation is even less clear. Net N mineralization 

is not sensitive to changes in precipitation across regions (Barrett et al. 2002, McCulley et al. 2009), and 

changes in net N mineralization after water exclusions and additions are not consistent (Yahdjian et al. 

2006). Relationships between precipitation and biogeochemical processes may be further complicated by 
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these processes’ sensitivity to not only the amount but also the timing of precipitation events (Sala et al. 

1992, Austin et al. 2004, Collins et al. 2008). A better understanding of interactions between water and 

belowground processes is needed, especially because shifts in biogeochemical dynamics have the 

potential to feed back on atmospheric climate drivers and alter the trajectory of climate and other global 

changes (Finzi et al. 2011).  

Many biogeochemical transformations in the soil are controlled by soil microorganisms. Despite 

the important role that microorganisms play in ecosystems, methodological challenges and immense 

microbial biodiversity has impaired our ability to address fundamental questions in microbial ecology. 

Recent evidence suggests that, contrary to traditional assumptions (Baas-Becking 1934), microorganisms 

can constrain the biogeochemical functions they mediate (Allison and Martiny 2008, Strickland et al. 

2009), display biogeographical patterns (Fierer and Jackson 2006, Green et al. 2008), and adapt to local 

conditions (Waldrop and Firestone 2006, Wallenstein and Hall 2012). These new observations have 

motivated an increased interest in the response of microbial communities to environmental factors, and in 

the role of microorganisms in biogeochemical feedbacks to climate drivers (Bardgett et al. 2008, Singh et 

al. 2010). 

Microorganisms are highly sensitive to changes in soil moisture (Harris 1981, Schimel et al. 

2007), and moisture sensitivity can be highly variable among microbial groups (Van Gestel et al. 1993). 

Thus, predicted changes in precipitation are likely to affect soil microbial community composition and 

function in grasslands in addition to aboveground communities and biogeochemical processes. For 

example, fungi may be more tolerant to drought than bacteria. Shifts in the abundance of these organisms, 

and the stoichiometry of microbial biomass, could affect larger-scale biogeochemical cycling (Bapiri et 

al. 2010, Hawkes et al. 2010, Yuste et al. 2010). In addition, drying and rewetting events that will become 

more frequent with increased precipitation variability can alter the functional potential of microbial 

communities, even up to 6 weeks after moisture pulses end (Fierer et al. 2003). Although these studies 

suggest that microbial communities will be sensitive to shifts in rainfall patterns (Williams and Rice 

2007, Fierer et al. 2009), grassland microbial communities can also be highly resistant to changes in 
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moisture regime (Cruz-Martinez et al. 2009). Further microbial biogeography and enzyme activity are not 

always well-correlated to precipitation (Gonzalez-Polo and Austin 2009, Lauber and Fierer 2009). Thus, 

more research is needed to determine how microorganisms will respond to future precipitation changes 

and how these changes will in turn influence biogeochemical dynamics.  

The objective of my dissertation is to improve our understanding of grassland responses to future 

climate change by describing microbial and biogeochemical dynamics under different rainfall regimes. I 

address the following specific questions: 

1. Are the relationships between soil carbon, soil nitrogen, and environmental factors the same across 

two similar environmental gradients in temperate grasslands of the US Great Plains and Inner 

Mongolia, China?  

2. How are carbon and nitrogen linkages altered by long-term drought in the shortgrass steppe, and 

how does this affect drought recovery? 

3. Does moisture niche partitioning drive shifts in microbial community composition under long-term 

drought in the shortgrass steppe? 

4. Does a history of more extreme rainfall events in the tallgrass prairie alter the response of 

microbial communities to drying and rewetting?  

 

 In the following chapters, I address each of these questions in temperate grasslands using regional 

gradients, long-term field rainfall manipulations, and coupled field-lab studies. In doing so, I describe the 

microbial and biogeochemical responses to precipitation in several grassland types, and investigate the 

mechanisms likely to control these patterns to improve our overall understanding of grassland-

precipitation dynamics. 
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Chapter 2: Controls on soil organic carbon and nitrogen in Inner Mongolia, China: a cross-

continental comparison of temperate grasslands
1
 

 

 Introduction 

A central challenge in global biogeochemical modeling is developing a generalizable structure 

that accurately captures variation among ecosystems. Capturing variation in controls on carbon cycling is 

especially important as it is coupled to and often drives other biogeochemical cycles. Soil organic carbon 

(SOC) storage is determined by the long-term net balance of photosynthesis and total respiration in 

terrestrial ecosystems. Therefore, in all systems, factors that influence these processes such as climate, 

topography, soil texture, and land use management, exert strong control over SOC and soil organic 

nitrogen (SON) dynamics. However, the relative importance of these parameters, and their relationships 

to soil organic matter, may vary depending on many different ecosystem properties. In an attempt 

overcome this variation, most global ecosystem models assume that in climatically similar regions, such 

as grasslands, relationships between SOC and its environmental controls are the same, despite regions 

evolving independently. The extrapolation of these relationships in ecosystem models allows us to predict 

ecosystem dynamics in the future and over large regions for which we have little data, and improve our 

understanding of these systems. However, to do this we must be certain whether controls that have been 

established in one temperate grassland can indeed be generalized to other climatically similar regions.  

Grassland ecosystems play a significant role in the global carbon cycle, covering nearly one fifth 

of global land area (Leith 1978) and storing between 200 and 300 Pg of soil carbon (Anderson 1991, 

Eswaran et al. 1993, Scurlock and Hall 1998). Climate and soil texture are considered major controls of 

total soil carbon and the relative proportions of carbon pools in grasslands (Miller et al. 2004, Wang et al. 

2005, Plante et al. 2006); SOC, SON, and C:N generally increase with increasing precipitation and clay 

content and decreasing temperature (Burke et al. 1989, Paruelo et al. 1998). However, even within 

                                                           
1 © 2011, American Geophysical Union: Evans, S. E., I. C. Burke, and W. K. Lauenroth. 2011. Controls 

on soil organic carbon and nitrogen in Inner Mongolia, China: A cross-continental comparison of 

temperate grasslands. Global Biogeochemical Cycles 25. 
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grasslands, the relative importance of each of these factors may shift under altered climate, plant species 

composition, nutrient input, or land use management (Miller et al. 2004), due to imperfect ecological 

convergence and recent global change. Considering these potential influences, it is important to continue 

to test the generality of grassland models developed in one region for their application for all regions of 

similar climate.  

In this study, I aim to test the generality of the relationships of SOC and SON with environmental 

factors in temperate grasslands by 1) identifying the most important drivers of soil SOC, SON, and 

organic matter fractions across a major environmental gradient in China, and 2) assessing the extent to 

which predictive relationships from North American grasslands are accurate for Inner Mongolia. I do this 

by examining the relationships among SOC and SON data collected in Inner Mongolia with 

environmental controls, and also by testing the ability of other grassland models to accurately predict 

observed values. I use a grassland regression model developed in the Great Plains (Burke et al. 1989) to 

test its applicability to Chinese grasslands, and the more highly parameterized Century model (Parton et 

al. 1987)  to investigate which parameters are most important for simulating predictions comparable to 

Chinese grassland data.  

Much of China’s temperate grassland lies in the northern province of Inner Mongolia. This arid 

and semi-arid region is predicted to see some of the strongest and earliest effects of climate change (OIES 

1991, IPCC 2007). In addition, increasing population in Inner Mongolia has led to increased nitrogen (N) 

deposition (Lu and Tian 2007) and intensification of land use, which, in addition to altering ecosystem 

carbon dynamics, has altered soil fertility and threatened personal livelihoods (Chuluun and Ojima 2002, 

Jiang et al. 2006). Therefore, in addition to possible differences due to spatially-independent evolutionary 

paths, changes unique to this grassland region could alter fundamental relationships developed in 

grassland SOC models. In particular, other studies have found that historical land use may alter the 

relationship between SOC and its environmental controls in this region (Wang et al. 2005, Zhou et al. 

2007). Further, Chuluun and Ojima (2002) suggest that, although both are currently changing, land use 

may be more important than climate parameters in predicting SOC values in the future.  
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I hypothesize that land use management and nitrogen deposition may be more important 

controlling factors of SOC and SON in Inner Mongolia than in other temperate grasslands, and that this 

interaction could alter carbon turnover and fractional pools in the short-term, and in the long-term, 

challenge the predictive relationships previously proposed for SOC in temperate grasslands. Land 

management in Inner Mongolia has a longer history compared to other grassland regions, and has recently 

intensified (Xiong et al. 2008). Carbon balance in this area is also sensitive to additional N inputs (Zeng et 

al. 2010), and has been used to explain observations of higher plant production in this region for a given 

climate (Xiao et al. 1996). Therefore, SOC and SON in Inner Mongolia may be even more affected by N 

deposition (Lu and Tian 2007) occurring as a result of increased population density in this region (Jiang et 

al. 2006). 

 

Methods 

Experimental Approach and Sites 

To assess the generality of controls over SOC and SON in semiarid temperate grasslands in this 

study, I first collected new data from a precipitation gradient in Inner Mongolia, China and analyzed it for 

significant trends and predictor variables. I then compared this data to output from a model developed 

from data in the US Great Plains (Burke et al. 1989) and the Century model (Parton et al. 1987). These 

transects in the Great Plains and Inner Mongolia span mid-latitude, semi-arid temperate grasslands, and 

were identified by the Global Change and Terrestrial Ecology (GCTE) International Geosphere-Biosphere 

Program (IGBP) as key gradients that incorporate trends over large spatial scales with regional and global 

implications (Koch et al. 1995) (Fig. 2.1). I used both a correlative, regional model (Burke et al. 1989) 

and a simulation model that has been widely validated, the Century model (Parton et al. 1987), to test the 

generality of the control variables. In contrast to other modeling approaches that focus on parameter 

optimization and testing of mechanisms, by testing the generality of a simple model and then a highly 

parameterized model, I could better explain discrepancies that arise between predicted values and values 
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that were measured across the Inner Mongolia transect, and improve understanding of how ecosystem 

dynamics may differ between the two regions.  

The Northeast China Transect (NECT) is located between 112 and 130 E and 42 and 46N in 

Inner Mongolia, China. I selected 12 sites on the western 1000 km of the transect. This area spans three 

types of grasslands: meadow steppe, typical steppe, and desert steppe (Table 2.1, Fig. 2.2). Mean annual 

precipitation (MAP) at the sites ranged from 170 to 450 mm, mean annual temperature (MAT) from 0.78 

to 5.6°C, and altitude from 478 to 1550 m (Fig. 2.2). Land use history information was acquired from a 

variety of sources, and although it was collected for every site, uncertainty about land use history varied 

among sites. Most sites were previously established as research sites (Sites 3, 4, 5, 6, 7, 8, 9, 10, 11) and 

therefore I could accurately and confidently describe the number of years these site had been fenced, or 

the current grazing intensity (quantified by percent biomass removed per year), and when possible, the 

land use before the site became a research site. Other sites were private farms (site 2), or had been 

recently abandoned (site 1) and land use was estimated based on information from the land managers. All 

information, when possible, was verified with other studies that have previously used this gradient to 

examine climate and land use effects on environmental factors (Zhang et al. 1997, Ni and Zhang 2000, 

Wang et al. 2005). I also used accounts from land managers and several accounts from the literature to 

obtain information on longer history more general to the region. Much of the land in this region 

experienced drastic land intensification as a result of population increases and settlement of local farmers 

in the 1950’s (Sneath 1998, Jiang et al. 2006, Xiong et al. 2008), and this was confirmed by many site 

managers and farmers. In sum, I collected the best possible information about land use but given the very 

long settlement history of the region, there is substantial uncertainty.  

 

Sampling 

I collected soils in 12 sites across the Northeast China Transect in July of 2008. Within each site, 

I established two (or in site 2, three) 100 m transects in two areas at least 500 m apart. I estimated soil 

texture in the field (and later quantified texture in the lab), aiming to maximize variation in soil texture 
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between these transects within a site. I randomly located and collected three 5 x 20 cm cores along each 

transect, separating soil into a 0-10 cm depth and 10-20 cm depth. Soils were returned to the Chinese 

Academy of Sciences Institute of Botany laboratory in Beijing within one week. They were dried at 60°C 

and sieved to remove the soil fraction > 2 mm. In all regression analyses, I averaged independent 

variables over the three cores along each transect, but did not average between transects within a site as 

soil textures, which were quantified more exactly in the lab, provided additional variation I did not want 

to ignore. Therefore, I had 12 sites total, but 25 points in the regression analysis because all sites had two 

transects and site 2 had three transects (Table 2.1).  

 

Particulate organic matter (POM) fractionations 

I used size and density fractionations to estimate coarse and fine particulate organic matter pools 

(Cambardella and Elliott (1992), modified by (Kelly et al. 1996)). These fractions are also called POM 

500 and POM 53 fractions, respectively, referring to the particle size in μm. I shook 30 g soil samples in 

0.5 mol L
-1

 sodium hexametaphosphate solution for 18 h and separated the coarse and fine fraction using 

0.5 mm and 53 μm sieves, respectively. Carbonates were present in some typical and desert steppe soil 

samples, as I observed effervescence when soils came in contact with 1M HCl. In these samples, 

carbonates were removed using an acid pretreatment method (Nelson and Sommers 1982) after 

fractionation, so removal treatment would not interfere with particle dispersion. I measured C and N on 

dried, ground soils using a LECO CHN-1000 analyzer. I calculated the mineral associated organic matter 

(MAOM, Cambardella and Elliott [1992]) fraction by subtracting the two POM fractions from the total C. 

The presence of a significant fraction of labile carbon in the total C would cause an overestimation of 

MAOM as determined by subtraction, but respiration measurements and previous work in grasslands 

characterizing highly labile SOC pools (e.g. (Kelly et al. 1996, Gill et al. 1999)) show that this pool is 

very small relative to other fractions. Therefore, in this analysis, I felt justified labeling the fraction 

remaining after subtracting coarse and fine POM from total C and N as MAOM.  
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Statistical analysis of the response of C and N fractions to environmental factors 

To describe the major controls over SOC and SON dynamics in Inner Mongolia and their 

relationship to environmental factors, I first determined the linear relationship of total C and N in soil 

organic matter and its fractions to each independent variable using Pearson’s correlation coefficients in 

proc corr, SAS 9.2 (SAS Institute, Cary, NC). Independent variables included mean annual precipitation 

(MAP, in cm), mean annual temperature (MAP, °C), silt (%), clay (%), and land use variables that 

included an estimate of the percent biomass removed per year due to grazing, and the number of years (if 

any) the area had been fenced.  Coarse (500) and fine (53) POM values were better predicted when 

combined into one POM pool, representing a carbon fraction more labile than MAOM. I added an 

additional type of dependent variable by calculating the relative proportion of C or N in the POM or 

MAOM pool as a percentage of total C.  

I used a multiple linear regression approach to identify and evaluate the contributions of the 

strongest predictive variables for all dependent variables. To identify the best predictive models for each 

variable, I used an all possible subsets regression analysis (SAS proc reg) to select the 5 models that best 

fit the data, then a likelihood approach to determine the best predictive model. This approach ranks 

competing models relative to one another, instead of assuming a true model. Specifically, I used the 

corrected Akaike information criterion (AICc) to rank models because it includes a correction term for 

potential bias produced by sample size (Hurvich and Tsai 1989).  AICc judges a model by how closely 

the fitted values tend to be to the “true values,” but also penalizes the model with each added parameter 

(Burnham and Anderson 2002). With the best model, I estimated the parameter for each independent 

variable, tested it for significance (p<0.01), and calculated the standardized coefficient to allow 

comparison among independent variables that have different units by placing them on the same scale. 

When independent variables are correlated in multiple linear regression models, estimations of regression 

coefficients are not accurate. Therefore, I tested all variables for the occurrence of collinearity, and 
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accounted for this by testing collinear variables individually for significance in case the presence of both 

caused both to be insignificant parameters.  

 

Comparison of US and Inner Mongolia using regression and simulation modeling 

i. Statistical comparison of predicted and observed values for all models 

My goal was to assess the generality of the Great Plains model, first by using a simple regression 

model, then by varying parameters in the Century model, and comparing the resulting predictions from 

both to observed values in Inner Mongolia. To statistically evaluate how these values compared, I 

performed linear regressions between observed values (y) and predicted values (x) for each of the models 

(regression and Century models), as suggested by Piniero et al. (2008). I calculated the r-squared of this 

relationship and tested the null hypotheses that the estimated slope (β1)=1 and intercept (β0)=0.  

To evaluate overall goodness-of-fit, I calculated the root mean squared deviation (RMSD) as  

     √
 

   
∑            

  

   
        (1) 

where      represents the predicted values,      the observed values, and n the number of observations. 

This value represents the mean deviation of the predicted values from the observed. Like the sum of 

squares, RMSD evaluates the overall goodness-of-fit of the model to the data, but has the advantage of 

calculating values in the same units as the model variables it describes.  

 To further partition model error I also calculated Theil’s partial inequality coefficients (Theil 

1958, Smith and Rose 1995, Paruelo et al. 1998), which separate error into three parts: Ubias, which 

compares the differences in means of observed and predicted values; Uβ=1, which quantifies the 

proportional difference of the slope of the predicted versus observed regression from a 1:1 line; and Ue, 

which describes the variance that is unexplained after a model is fit to the predicted and observed values. 

This analysis allowed us to evaluate whether the model residuals are systematic in some way that have 

functional significance, or the result of unexplainable variability. I calculated these errors terms as 

follows: 
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]              (2) 

      [      ∑             ]            (3)  

    ∑            
                (4) 

Where obs and pre represent the observed and predicted value (i subscript) or mean (bar), β represents the 

slope of the regression between observed and predicted, esti are the values estimated from a linear model 

developed from the relationship between observed and predicted values, and n is the number of 

observations. SSPE is the squared sum of the predicted error, calculated as: 

      ∑            
 

          (5) 

I calculated these error terms, in addition to the slope and intercept, to describe how the observed data 

compared to each prediction using the models described below.  

 

ii. Predictive ability of Great Plains regression model 

To compare relationships in Inner Mongolia with a previous model developed in the US Great 

Plains (Burke et al. 1989) for both rangeland and cultivated land, I entered climate and texture data 

obtained and collected from Inner Mongolia, used the Great Plains model to predict SOC and SON, and 

regressed the model output against the observed data. Although site information indicated that none of the 

sites were ever cultivated (only grazed), I compared predictions from the model developed in cultivated 

sites to the data I collected as an exploratory exercise to see if simulated carbon losses due to cultivation 

would better predict data values, and to provide insight into a somewhat uncertain historical past of these 

soils.   

 

iii. Incorporating additional parameters and predictive power using the Century model 

 I used the Century model (v4.5) to ask whether additional parameters acting within a dynamic 

model could predict soil C and N values observed in this region better than the simple regression model. 

Because I knew that this region may have undergone significant land use intensification in the 1950’s 
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(Sneath 1998, Xiong et al. 2008), and that recent estimates report N deposition levels higher than that in 

the Great Plains (Lu and Tian 2007), I focused on N deposition and land use as possible influences of 

simulated SOC and SON. Century is a model that simulates biogeochemical fluxes on a monthly time 

step (Parton et al. 1987). It was originally designed in the US Great Plains but has been used extensively 

all over the world (Parton et al. 1993). In the model, soil fluxes are controlled by temperature, water, and 

soil texture, in addition to lignin/N and C/N ratios. Land use history is implemented in Century by 

designating certain land use types in repeating blocks for specific periods of time. Climate input data for 

simulations were obtained from Zhou Guangsheng (pers comm.) from weather stations nearest to the 

experimental sites. Maximum and minimum monthly temperature and precipitation were averaged over 

the 50-year climate record; monthly values were stochastically generated by Century based on these 

means. Soil texture parameters were obtained from texture analyses on soil samples. I tested both 

observed bulk density values and values calculated using soil texture and SOC (Rawls 1983) to see if this 

affected the model output, but differences were negligible.  

 

iv. Sensitivity of SOC, SON, and ANPP to elevated nitrogen deposition  

 I was first interested in how elevated N deposition, simulated by Century, affected SOC, SON 

and aboveground net primary production (ANPP) in Inner Mongolia. I examined the sensitivity of these 

parameters to N deposition 1) at equilibrium (light grazing for 5000 years), and also 2) when including 

probable land use histories of the sites and region, in order to better compare simulated values to observed 

values.  

N deposition has increased in this area in the last 60 years, as population levels have increased 

(Jiang et al. 2006). Current estimates in western Inner Mongolia are within the range of 0.32-1.15 g N m
-2 

yr
-1

 (Lu and Tian 2007). The default values for Century, stemming from estimates in the Great Plains, are 

about 0.3 g N m
-2 

yr
-1

.  I tested three N deposition values at equilibrium: 0.05, 0.9, and 1.5 g N m
-2 

yr
-1

. I 

treated these parameters as fixed (not as a function of precipitation) in order to simplify the sensitivity 

analysis, and did not include any additional land use changes after the time when the model reached 
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equilibrium. By doing this, I was first able to see how SOC, SON, and ANPP responded to changes in N 

deposition in this area at equilibrium.  

However, studies reporting land use changes in the last 60 years in this region suggest the 

assumption that these sites are currently at SOC and SON equilibrium is not valid, and that these values 

would not be comparable to observed data. To simulate SOC and SON values that were more comparable 

to the values I observed in Inner Mongolia, I did a second analysis of N deposition, which included a 60-

year period of intensive grazing (Xiong et al. 2008), and the current known land use type. Under these 

conditions I simulated two N deposition levels: 1) parameter values for N deposition used for Great Plains 

Century simulations and 2) 0.9 g N m
-2

yr
-1

. Century4.5 simulations for the Great Plains model N 

deposition as a function of precipitation, using two parameters, epnfa(1) and epnfa(2) as slope and 

intercept. Parameterization for the Great Plains (epnfa(1)=0.21 and epnfa(2)=0.0028) result in an average 

N deposition of 0.3 g N m
-2 

yr
-1 

over all Inner Mongolia sites (such that N deposition = 0.21+ 

precip*0.0028), as sites have an average mean annual precipitation of about 35 cm.  

 

v. Sensitivity of SOC and SON to inclusion of periods of intensive land use 

Given that this region experienced significant land use intensification in the 1950’s (Sneath 1998, 

Xiong et al. 2008), and that current land use practices on each site varied, I was also interested in whether 

the inclusion of specific periods of changes in land use would result in SOC and SON predictions closer 

to observed values than predictions by the Great Plains regression model. Century simulates land use 

changes over time by separating land use into periods within which specified events repeat. I separated 

the history of these sites into 3 periods: equilibrium, which consisted of light grazing and lasted 5000 

years; 60 years of intensive grazing, as a result of population growth, settlement, and land use 

intensification in the area beginning in the 1950’s (Sneath 1998, Jiang et al. 2006, Xiong et al. 2008); and 

current (20 years or less) land use based on knowledge obtained from each site (described in Table 2.1). 

Although I could not confirm that all sites experienced increases in grazing intensities in the 1950’s, 

studies suggest that this trend occurred in the region as a whole, and I was interested to know whether this 
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was an important factor. Grazing effects were determined based on relationships described in Ojima et al. 

(1990) and Holland et al. (1992), in which the relationship of grazing to biomass production changes as 

grazing intensity increases. This approach has been used to simulate grazing variation in other studies in 

this region (Wang et al. 2007).  

I wanted to investigate how the inclusion of these periods in the model, individually and in 

combination, affected SOC and SON output for sites in Inner Mongolia. Therefore, I tested three different 

“histories”: 1) a 5000 year equilibrium period, and a period of current known land use 2) a 5000 year 

equilibrium period, and 60 year period of more intense grazing and 3) a 5000 year equilibrium period, a 

60 year period of more intense grazing, and a period of current known land use. I used a scaled N 

deposition of 0.9 g N m
-2

 yr
-1

 for each of these runs.  

 

vi. Comparison of model predictions of ANPP to observed ANPP in Inner Mongolia 

Because most ecosystem carbon enters the system through photosynthesis, ANPP represents a 

major control over organic matter storage. In this way, simulated ANPP values can provide additional 

insight into variation in SOC and SON under different modeling scenarios. Adjustments in N deposition 

and land use affect ANPP, and I was interested in whether simulated ANPP fit with observed ANPP in 

Inner Mongolia under the same scenarios that simulated SOC and SON fit with observed SOC and SON 

in Inner Mongolia. Because I did not measure ANPP in Inner Mongolia in 2008, I used ANPP values 

described in the literature across the Northeast China Transect (Yu et al. 2004, Zhou et al. 2006, Hu et al. 

2007). I compared these “observed” values to ANPP simulated by Century under parameters that 

produced the best fit to SOC and SON (elevated N deposition and inclusion of intensive land use). I also 

compared observed values to ANPP predicted for these sites by two regression models relating ANPP to 

mean annual precipitation: one developed in the Great Plains (Sala et al. 1988), and one developed along 

the Northeast China Transect (Zhou et al. 2002).  
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Results  

Response of C and N fractions to environmental factors 

Total C and N increased as precipitation and fine-textured soil increased, and decreased as mean 

annual temperature (MAT) increased (Table 2.2). Total C contained in the intermediate POM fraction 

increased with MAT and decreased with percent silt and clay, whereas percent C in MAOM fraction, 

representing passive C associated with silt and clay particles, had the opposite response to these factors. 

Total C:N significantly correlated with total SOC, but surprisingly, decreased as total SOC increased. 

Both ‘Biomass Removed per Year’ and ‘Time Fenced’ were tested against all response variables in linear 

regressions, but alone did not significantly explain any of the variation (and therefore are not listed in 

Table 2.2).  

 

Multiple regression models for observed independent variables 

Best-fitting models revealed that with climate, texture, and interactions terms alone, I could 

explain 76% of the variability in total SOC and 71% of total SON in this region (Table 2.3). Land use 

terms (‘Biomass Removed per Year’ and ‘Time Fenced’) were not significant explanatory variables for 

total SOC when included in the model, but contributed significantly to the POM-C, POM-N and MAOM-

C models. Longer periods of time that sites were fenced resulted in increased MAOM passive C, but 

decreased POM-C. 

 

Generality of Great Plains regression model 

To determine the generality of the SOC and SON models developed in the US Great Plains 

compared to other temperate grassland regions, I compared the observed carbon values in Inner Mongolia 

to values predicted by a regression model for the US Great Plains (Burke et al. 1989) (Fig. 2.3). The 

model from the Great Plains explained a significant proportion of the variation in the China soils (r
2
=0.58, 

p<0.0001, Table 2.4). However, on average, observed values for China were 30% lower than predicted 

values from the U.S. Great Plains model, and regressions between predicted and observed values included 
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an intercept term significantly different than 1 for both SOC and SON (Table 2.4). Predictions of soil N 

by the U.S. model also explained a large proportion of the variability (r
2
=0.85, p<0.0001), but in contrast, 

underestimated total N values along the Northeast China Transect (intercept significantly greater than 1, 

Table 2.4). When error was partitioned, more error was found in Ubias and Ue terms, and Uβ=1 error was 

low.  

Burke et al. (1989) also developed a model predicting C and N in cultivated sites, and I measured 

how predictions from this model fit the data as a general investigation of how the incorporation of land 

use might affect the goodness of fit (Fig. 2.3). The cultivated model did not produce a higher r
2
 value 

(SOC: r
2
=0.39, SON: r

2
 =0.77), but predicted lower C and higher N than for range soils (closer to 

observed values), a lower bias term, and a lower RMSD.  

 

Century simulations 

i. Sensitivity of SOC, SON and ANPP to elevated nitrogen deposition 

 Century simulations revealed that adjusting N deposition and land use history parameters 

produced simulated SOC and SON closer to observed values. At equilibrium (no land use scenarios 

included), SOC, SON, and ANPP were sensitive to changes in N deposition, but showed a greater 

response to deposition changes from 0.05 to 0.9 g N m
-2 

yr
-1

 than from 0.9 to 1.5 g N m
-2 

yr
-1

 (Fig. 2.4). 

Comparisons among simulations of the three N deposition levels at equilibrium and observed values 

suggested that SOC and SON simulated at an N deposition level of 0.9 g N m
-2 

yr
-1

 produced the best fit 

with observed data (smallest RMSD, Table 2.4). When decomposing model error, Ue and Ubias error terms 

were highest, suggesting that the predicted values have a consistent relationship to observed values at 

different N deposition levels at equilibrium (Uβ=1 was low), but simulations at equilibrium left a large 

amount of variability unexplained (high Ue, Table 2.4).  

I also tested Great Plains and elevated N deposition levels, while including land use conditions 

according to our knowledge for the region and each site (60-year period of intensive grazing and current 

known land use for each site) to better compare model output with observed data. After including these 
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periods, SOC and SON under elevated N deposition (0.9 g N m
-2 

yr
-1

)  was significantly related to the 

observed values (SOC: r
2
=0.53, p<0.0001; SON: r

2
=0.67 p=0.002) and had a lower RMSD than values 

under N deposition parameters used for the Great Plains (SOC: r
2
=0.221 p=0.78; SON: r

2
=0.043 p=0.062) 

(Fig. 2.5, Table 2.4). The lack of fit in the Great Plains model was primarily related to unexplained 

variance (Ue), and bias (Ubias). Although overall error was low, any remaining error in the elevated N 

deposition model was most attributed to unexplained variance (Ue) for SOC, and lack of consistency 

(Uβ=1) for SON. 

 

ii. Sensitivity of SOC and SON to changes in land use history 

 SOC and SON were closest to observed values under land use scenario 3, as determined by the 

lowest RMSD when compared with the data (Table 2.4). This scenario included a 5000 year period of 

equilibrium, a 60-year period of intensive grazing and the current known land use for each site (e.g. 

fenced 7 years, heavily grazed 3 years, etc. depending on the site). The inclusion of only the current land 

use period (scenario 1) produced the worst fit with the observed values, including a slope significantly 

lower than 1 and an intercept significantly higher than 0 (Fig. 2.6, Table 2.4). Inclusion of the 60-year 

period (scenario 2) produced predictions with a statistically significant relationship to observed values. 

The unexplained variance (Ue) made the largest contribution to the lack of fit for the competing models, 

and remained the largest source of error even in the best-fitting model. Thus, the superior fit of the best 

model was the result of reduced error in model consistency (Uβ=1) and bias (Ubias). 

 

iii. Simulated ANPP for Inner Mongolia compared to values observed in the literature 

I examined the ANPP output from Century under the model scenario that produced SOC and 

SON closest to observed values (0.9 g N m
-2 

yr
-1

 N deposition and intensive and current land use periods, 

Table 2.4). Simulated ANPP by this Century model were comparable to those estimated in the literature 

for these sites (r
2
=0.72 p<0.001) (Fig. 2.7, Table 2.4). Values predicted by the Great Plains ANPP 

regression model (Sala et al. 1988) were also significantly related to estimated ANPP from the literature 
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(r
2
=0.54 p<0.01), but values from the regression model were generally lower than observed ANPP 

(intercept= 32.6, p<0.05). Much of the observed lack of fit was associated with mean differences (Ubias) 

and lack of consistency (Uβ=1). A regression model developed in this area by Zhou et al. (2002b) provided 

the best fit to observed values (r
2
=0.76 p<0.001) and the lowest RMSD of the three models.  

 

Discussion 

I found that although SOC and SON in Inner Mongolia are controlled by the same climate and 

texture variables used to predict SOC and SON in the Great Plains, in this region, values of SOC were 

lower, SON higher, and ANPP higher than those predicted by regression models developed in the Great 

Plains. The incorporation of both elevated N deposition and an intensive land use history in Century was 

necessary to obtain simulated values of SOC, SON, and ANPP near the values observed across the 

Northeast China transect.  

 

Response of SOC to land use and texture in Inner Mongolia 

I used two approaches to compare soil organic matter response to climate and land use in 

grasslands across continents: (1) I determined the relationships – and importance of the relationships – of 

climate, texture, and land use to total SOC and SON and fractions, and compared them to relationships 

described for other grasslands in previous studies and (2) I compared the values predicted by previous 

grassland regression and simulation models to those observed in Inner Mongolia. 

My results show that climate and texture variables exert dominant controls on all fractions of soil 

organic matter in Inner Mongolian grasslands. SOC increased with increasing precipitation and decreased 

with increasing temperature. Other studies have found similar trends in temperate semiarid regions (Burke 

et al. 1989, Alvarez and Lavado 1998, Paruelo et al. 1998), and across this transect (Zhou et al. 2002). 

This trend can be explained by production responding more than decomposition to increased precipitation 

across the spatial gradient in water-limited areas, and decomposition rates responding more strongly than 

production to higher temperatures across the gradient (Epstein et al. 2002, Guo et al. 2006). However, the 
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total SOC explanatory power (R
2
=0.76, Table 2.3) with only these variables was surprising; I sampled 

across a land use gradient, and studies quantifying the losses due to degradation in this area suggest that 

land use is a strong determinant of SOC – and perhaps an even stronger control than climate – of SOC in 

this area (Chuluun and Ojima 2002b). For this reason, I originally hypothesized the land use in this area 

would alter the predictive power that climate variables have over SOC and SON values. One possible 

reason for the lack of a significant role of land use parameters in the multiple regression is that variables 

describing land use were only describing present or recent (decadal scale) practices, and could not 

describe longer-term effects that would have a larger impact on current SOC and SON levels. However, 

this as an explanation alone would have resulted in a much lower R
2
 value than I produced with climate 

and texture data. By comparing these results with data and models developed in other continents, I could 

gain more insight into the importance of historical land use on SOC values in this area.  

 

Relationships of SOC to environmental variables 

Overall, other models relating environmental variables to observed SOC and SON found similar 

relationships (positive or negative, see Table 2.2) as I did among variables. For instance, Burke et al. 

(1989) found that similar factors that I included in the model I developed should be included in a 

predictive model in the Great Plains, but found a change in a standardized MAT unit caused the largest 

change in SOC. In this study, MAP was the most important factor, as Guo et al. (2006) found for areas 

receiving less than 1000 mm MAP in the United States. In US forests, Homann et al. (1995) found 

climate and texture variables explained a large proportion of the variation in SOC, but MAT had a 

stronger, and positive, effect on SOC. Percival et al. (2000) sampled sites in New Zealand and found that 

soil chemical characteristics, rather than climate or soil texture, explained much more of the variation in 

SOC in grasslands there.   

In contrast to the most dominant controls over total C, POM-C and MAOM-C fractions were 

most strongly related to temperature, texture, and land use (Table 2.3). Percent MAOM-C decreased with 

MAT, suggesting that the proportion of soil carbon that is recalcitrant decreases with increasing 
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temperature. Previous studies across climatic gradients have suggested that SOC recalcitrance increases 

with increasing temperature (and decreasing total SOC) (Trumbore et al. 1996), but several studies have 

challenged this idea and its implications for possible decomposition feedbacks to predicted temperature 

increases (Giardina and Ryan 2000). Percent POM-C and MAOM-C were not significantly correlated to 

land use variables in simple regressions (Table 2.2), but these variables were significant predictors in 

multiple regressions (Table 2.3). Percent POM-C declined with increased grazing intensity, possibly 

because this fraction is more reduced by decreases in plant inputs than the total C pool (Kelly et al. 1996). 

Current grazing intensity was not a significant predictor of MAOM-C, but MAOM-C was higher in sites 

that were fenced. Studies examining recovery after cessation from cultivation (Burke et al. 1995) and 

grazing (Steffens et al. 2011) have similarly detected changes in C fractions and not total C in decadal 

recovery, but it is surprising that the return of C in this study occurs in the pool with the slowest turnover 

time. Studies examining recovery after cultivation, and a few after grazing, have found that recovery of 

this pool is not detectable on a decadal timescale (Robles and Burke 1998, Burke et al. 1999). However, 

several recent studies on grazing have reported an increase in the passive pool with grazing exclosures, 

with no change in the intermediate (POM) pool (Altesor et al. 2006, Pineiro et al. 2009).  

 

Comparison of model predictions to observed values in Inner Mongolia 

i. Regression model 

Soil C and N in the US Great Plains were also best predicted by precipitation, temperature, and 

soil texture, and had the same relationships (positive or negative) as response variables in the model I 

developed did to each predictor variable (Burke et al. 1989). The model produced a good fit to observed 

values, capturing a large amount of variability in the Inner Mongolia dataset, which was surprising given 

the simplicity of this model and considering what my remaining analyses reveal (i.e. a strong sensitivity 

of soil organic matter to unknown past land use and N deposition).  The main discrepancy was not 

consistency (slope deviating from 1), but that the US Great Plains model overestimated C values and 

underestimated N values observed in Inner Mongolia. Paruelo et al. (1998) used this Great Plains model 



24 

 

to assess the SOC drivers and predictability of another GCTE temperate grassland transect in Argentina, 

and found SOC observations at this site fit well with the Great Plains model (r
2
=0.63), and, unlike data 

collected in Inner Mongolia, fell evenly above and below the model predictions (y-intercept of best-fitting 

line did not differ significantly from 0). These model-data comparisons suggest that the relationship of 

SOC and SON to climate variables predicted by the Great Plains model is consistent (slope near 1), but 

that the Great Plains regression models produce a poorer fit to observations because of bias (differences 

of means, intercept greater or less than 0) and additional variance in the data that could not be explained 

by the model (Fig. 2.3, Table 2.4).                                                                                                                                                                                                                                                                                                                         

In Inner Mongolia, observed carbon values that were closest to predicted values for rangeland 

models were from those sites along the Inner Mongolia transect that had been fenced for 12 and 20 years. 

In addition, the US model developed from cultivated sites in the US produced less bias than the rangeland 

model. Inner Mongolia sites were not cultivated, but the improved model-data fit suggested the gaps 

between observed and predicted values from the rangeland model may be due to reduced carbon storage 

as a result of long-term intensive land use in the Inner Mongolia region that could not be quantified by 

current land use metrics. Although this is impossible to know due to lack of precise knowledge of 

historical land use at these sites, several empirical and modeling studies have demonstrated the extent of 

the effect of historical land use on current SOC observations and processes. Sandor et al. (1986) found 

SOC was still 40% lower in areas that had been intensively cultivated but abandoned 1000 years ago in 

New Mexico. Although grazing may have varying short-term effects on SOC, studies suggest that when it 

does greatly reduce SOC, either due to its high intensity or the absence of evolutionary adaptation to 

grazing, effects can be similar to that of cultivated areas. Pineiro et al. (2006) used coupled grazed and 

fenced sites and found that long-term grazing reduces SOC by 15-30%, with largest reductions occurring 

in the slow and passive pools. Century simulations suggest that 400 years of low intensity grazing would 

produce a 10% reduction in SOC (Alvarez 2001). Few long-term studies testing the effect of long-term 

grazing and subsequent exclosures exist due to the absence of a reliable control, but observed reductions 

in slow and passive carbon pools suggest that recovery would be similar to recovery from these effects 
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due to cultivation (i.e. on the order of centuries), and be longest in areas receiving the least precipitation 

(Paustian et al. 1997).  

 

ii. Century model  

Using the US regression model (Burke et al. 1989), I found observed SOC in Inner Mongolia was 

lower than predicted by the US model, and observed SON was higher than predicted by the model (Fig. 

2.3, Table 2.4). Therefore, I used the Century model to ask what other factors – that I did not measure – 

might explain these results, and what changes were needed to simulate values closer to observed data. 

SOC and SON were both sensitive to changes in N deposition, especially changes from very low (0.05 g 

N m
-2

 yr
-1

) to values of deposition that might be occurring today (0.9  g N m
-2 

yr
-1

) (Fig. 2.4, Table 2.4). 

SOC and SON were not as sensitive to changes in N deposition from 0.9 g N m
-2

 yr
-1

 to 1.5 g N m
-2 

yr
-1

, 

but sites in the meadow steppe (wetter end of the gradient) were more responsive than sites in the drier 

end, suggesting that the diminished response could be related to water limitation.  

SOC and SON were, on average, closest to observed values when deposition was 0.9 g N m
-2 

yr
-1

, 

after incorporating the land use history that is likely for this region (addressed below). This value for N 

deposition is approximately 0.4-0.5 g N m
-2 

yr
-1 

higher than parameterized simulations in the Great Plains. 

When I used the same parameters used in the Great Plains, in addition to all land use scenarios, I found 

carbon was underestimated by an average of 1.45 kg C m
-2 

yr
-1

 and N was underestimated by 0.18 kg N 

m
-2 

yr
-1

 (Fig. 2.5). These results are in line with my findings from the US regression model, which did not 

include N deposition and underestimated N (and arguably underestimated C as well, when no land use 

was included) compared to observed values. I was able to explain this discrepancy by increasing N input, 

and increasing ANPP, using the Century model. This suggests that N deposition, or some N input, is 

important in elevating ANPP in Inner Mongolia and producing SOC and SON values that are higher than 

expected based on Great Plains data. 

SOC and SON were also sensitive to changes in land use history. The inclusion of 60 years of 

intensive grazing before the current land use period had a stronger effect on SOC and SON than the 
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inclusion of the current known period of grazing (1-20 years) (Table 2.4). These current land use periods 

varied depending on site, but included fencing treatments or various grazing intensities for different 

(known) lengths of time. The simulations, however, suggest that the potential degradation and reduction 

in SOC and SON caused by the period of land intensification as a result of settlement and increased 

population was more important in determining SOC levels. However, SOC and SON responses to 

changes in simulated land use history were not consistent among site (Fig. 2.6). This may be because 

differences in site climate and soil type cause sites to respond differently to intensive land use in this area, 

but it is more likely due to inaccuracy of land use history before the current period (i.e. some sites may 

have experienced more or less intensive land use prior to the current land use). This is supported by the 

fact that unexplained error (Ue) still contributed to any remaining lack of fit in the model with the best-

fitting land use scenarios (Table 2.4). 

I did not measure ANPP at Inner Mongolia sites in the summer of 2008, but previous studies 

recorded ANPP at these and other sites along the Northeast China Transect (Yu et al. 2004, Hu et al. 

2007), and Zhou et al. (2002) developed a regression model to predict ANPP in this region using annual 

precipitation. Perhaps not surprisingly, ANPP for the Northeast China Transect sites fit well with those 

predicted by this model developed in Inner Mongolia (Zhou et al. 2002) (Fig. 2.7, Table 2.4). However, 

values reported for the desert steppe, typical steppe, and meadow steppe in Inner Mongolia in the 

literature were slightly higher than values predicted by the widely-used ANPP regression model presented 

by (Sala et al. 1988), developed in the Great Plains. Similarly, ANPP values in Inner Mongolia were also 

higher than ANPP simulated by Century when N deposition parameters from the Great Plains were used 

(data not shown). This follows results from early Century model validations (Parton et al. 1993), which 

reported that peak live biomass was underestimated by Century for Asian sites, in contrast to the other 9 

sites (Gilmanov et al. 1997). Previous studies have suggested that this discrepancy may be due to a higher 

prevalence of C3 plants in this area compared with regions in North American with a similar climate 

(Tieszen et al. 1999). However, a hypothesis that fits with the rest of the data from this study is that this 

higher ANPP is related to higher nitrogen inputs in China. Century simulations did produce ANPP values 
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within the range reported by the literature under elevated N deposition (0.9 g N m
-2 

yr
-1

). This is also the 

Century scenario that, with the inclusion of intensive land use, estimated SOC and SON values nearest to 

those observed (Table 2.2). This suggests that in Inner Mongolia a higher ANPP (C input), enabled by 

increased N deposition, is necessary to produce the greater equilibrium-stage SOC and SON values, 

which fit observed values when losses due to intensive land use are accounted for as well.  

 

Conclusions 

The results of this study challenge the generality of relationships between environmental factors 

and C and N pools in temperate grasslands. SOC and SON data I collected in Inner Mongolia were 

strongly related to texture and climate, as they are in other similar regions of the world, and data had 

consistent relationships with values predicted from Great Plains models across this range of sites. 

However, these models showed strong bias (overestimation of C and underestimation of N) in predicting 

SOC and SON values in Inner Mongolia. We tested two possible factors that may have influenced this. 

Elevated N deposition levels did simulate accurate predictions for biogeochemical pools in Inner 

Mongolia, so it is possible there is unaccounted for nitrogen input in this region, or differences in 

fundamental nitrogen cycling properties, such as nitrogen use efficiency, compared to other grasslands. In 

addition, including historical overgrazing produced simulated values closer to those observed in this area. 

The relationships of environmental controls with SOC and SON in grasslands are perhaps not as 

generalizable as many widely-used models, and modelers, assume. The possible divergence of these 

relationships in Inner Mongolia from those used in models for grassland ecosystems could affect our 

ability to predict regional ecosystem dynamics, and also add uncertainty to global predictions of carbon 

flux.  
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Tables 

 

Table 2.1. Description of Sites Sampled across the Northeast China Transect 
Site Grassland type MAP  

(mm) 

MAT 

(°C) 

% Clay 

range 

% Silt 

Range 

Land use # Sub-

plots 

Mean C   

(kg m
-2

) 

1 Meadow steppe 380 4.77 14-18 31-41 Not grazed 2 0.851 

2 Meadow steppe 350 5.08 2-4 5-9 50% grazed 3 2.010 

3 Typical steppe 331 3.16 12-17 24-27 Fenced 20 years 2 1.595 

4 Typical steppe 331 2.02 10-16 29-37 80% grazed 2 1.899 

5 Typical steppe 331 2.02 11-13 20-32 Fenced 9 years 2 2.009 

6 Typical steppe 300 0.78 9-23 24-31 Fenced 7 years 2 2.582 

7 Typical steppe 300 0.78 8-12 17-24 70% grazed 2 1.853 

8 Typical steppe 277 2.67 15-19 33-40 Fenced 10 years 2 2.336 

9 Typical steppe 277 2.67 12-15 34-39 70% grazed 2 2.936 

10 Desert steppe 178 2.1 8-12 12-29 Fenced 1 year 2 0.611 

11 Desert steppe 171 2.1 8-11 16-21 60% grazed 2 0.771 

12 Desert steppe 160 2.41 9-13 15-21 60% grazed 2 1.167 

 

 

 

 

 

 

 

 

 

Table 2.2. Correlations between Parameters (top) and Dependent Variables Measured in Inner Mongolia
a
  

 MAP MAT %Silt %Clay TotCb 

Total C + - + +  
POM-C + + +   
%POM-C  + - -  
MAOM-C + - + +  
%MAOM-C  - + +  
Total N + - + + + 
POM-N  + + + + 
%POM-N  + + + + 
MAOM-N  - -   
%MAOM-N  - - - - 
C:N     - 
C:N POM  - - - - 
C:N MAOM    +  
 
a
 All relationships reported were significantly related in a Pearson Correlation (p<0.05). “Percent biomass removed 

per year” and “Time Fenced” were not reported because there were no significant relationships (positive or 

negative) with dependent variables.  
b
Total Carbon is listed as an independent variable to show with which dependent variables it correlated. 
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Table 2.3. Best Predictive Models
a
 for SOC, SON and C and N Fractions Measured in Inner Mongolia.  

 
a
Multiple linear regression models were determined using all possible subset selection of 6 independent variables: mean 

annual temperature (MAT in °C), mean annual precipitation (MAP in cm), silt and clay (%), and two metrics of land use: 

number of years fenced, and percent biomass removed per year due to grazing.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable         Coefficient 

Standardized 

Coefficient p-value 

 

Variable         Coefficient 

Standardized 

Coefficient p-value 

Total Carbon: R2=0.75, Adj R2=0.75 
 

Total Nitrogen: R2=0.71 Adj R2=0.68 

MAT2 0.163 0.6825 0.0322  MAT2 0.026 1.147 0.0110 

MAT -1.085 -0.7529 0.0137  MAP*MAT       -0.006 -1.839 0.0004 
MAP2 -0.016 -3.2491 <.0001  MAP           0.007 0.269 0.0531 

MAP 0.858 3.3207 <.0001  MAP*%silt       0.001 0.965 <.0001 

%Clay 0.164 0.3291 0.0005  %Biom Remvd/yr     0.002 0.335 0.0043 
%Silt 0.089 0.4396 <.0001  Years fenced      0.011 0.448 0.0007 

Intercept -9.725  <.0001  Intercept        0.031 0 0.6064 

         
% POM-C: R2=0.37, Adj R2=0.34  % POM-N: R2= 0.851 Adj R2= 0.839 

 MAT 0.092 0.4333 <.0001  MAT2 -0.333 -2.443 <.0001 

 %Silt -0.008 -0.2655 0.0116  MAP2 -0.028 -11.048 <.0001 
%BiomassRemvd/yr -0.003 -0.4510 0.0048  MAP 1.322 9.834 <.0001 

 Years fenced -0.021 -0.5211 0.0012   MAP*MAT 0.077 3.834 <.0001 

Intercept 0.571 0 <.0001  Years fenced -0.051 -0.355 <.0001 

     Intercept -14.977 0 <.0001 

         

% MAOM-C: R2=0.475 Adj R2=0.442  % MAOM-N: R2=0.474 Adj R2=0.453 

MAP*MAT -0.003 -0.5370 <.0001  MAP*MAT 0.846  1.459 <.0001 

%Silt 0.013 0.4248 <.0001  MAT*%silt -0.577         -1.254 <.0001 

%BiomassRemvd/yr 0.003 0.4527 0.0021  Intercept 1.608         0 0.0768 

Years fenced 0.023 0.5209 0.0005      

Intercept 0.234 0 0.0155      
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Table 2.4. Summary of Regression
a
 and Goodness of Fit Statistics for Model Simulations Compared to Observed Data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Model Information 
r2 Slope Intercept RMSDb Ubias

c Uβ=1
d Ue

e 

  
SOC SON SOC SON SOC SON SOC SON SOC SON SOC SON SOC SON 

CENTURY: Sensitivity to elevated N-deposition at equilibrium 

N deposition Land Use 
              

0.05 Equilibrium 0.17 0.077 -1.524 0.447 4.332 0.381 3.428 1.34 0.850 0.068 0.012 1.4E-03 0.998 0.073 

0.9 Equilibrium 0.849 0.472 1.09 2.51 -0.253 -0.791 0.579 1.2 8.2E-03 2.9E-03 0.037 2.8E-03 0.320 0.012 

1.5 Equilibrium 0.78 0.227 0.684 0.738 0.637 -0.087 1.153 1.18 0.465 0.052 0.267 4.3E-04 0.419 0.057 

CENTURY: Sensitivity to inclusion of land use periods 
              

N deposition Land Use 
              

0.9 Current land use only 0.134 0.231 0.211 0.216 2.434 0.297 2.579 1.21 0.388 0.003 0.053 1.1E-03 0.934 0.022 

0.9 60-year intensive grazing 0.456 0.232 0.536 0.482 1.103 0.192 1.873 1.18 0.534 0.010 0.145 0.013 0.774 0.035 

0.9 60-year grazing & current land use 0.531 0.672 0.993 0.725 0.024 0.257 1.43 0.24 4.9E-05 0.074 3.7E-05 0.004 0.036 0.059 

CENTURY: Elevated vs. Great Plains N-deposition with best-fitting land use scenarios 

N deposition Land Use 
              

0.9 60-year grazing & current land use 0.531 0.672 0.993 0.725 0.024 0.257 1.43 0.24 4.9E-05 0.074 3.7E-05 0.004 0.036 0.059 

0.3f 60-year grazing & current land use 0.221 0.043 0.888 0.648 1.788 0.095 2.006 0.19 0.653 0.192 2.0E-03 0.025 1.002 0.535 

Great Plains Regression 
              

Citation Developed in 
              

Burke et al. [1989] US Great Plains rangeland sites 0.577 0.853 1.045 1.094 -2.243 0.064 2.267 0.351 0.795 0.076 0.001 0.001 0.892 0.083 

Burke et al. [1989] US Great Plains cultivated sites 0.389 0.772 1.124 1.087 -2.029 0.054 1.878 0.346 0.568 0.060 0.003 0.001 0.868 0.067 

ANPP predictions from Century and regressions models compared to ANPP in Inner Mongolia 

Citation Developed in ANPPh ANPP ANPP ANPP ANPP 
 

ANPP 
 

ANPP 

Sala et al. [1988] US Great Plains for ANPP 0.538 
 

0.887 
 

32.569 33.646 0.359 
 

0.517 
 

0.340 
 

CENTURYg Best-fitting SOC and SON model 0.717 
 

1.168 
 

-2.937 
 

31.862 0.295 
 

0.288 
 

0.659 
 

Zhou et al. [2002] Inner Mongolia grasslands for ANPP 0.763 
 

0.923 
 

18.346 
 

27.705 0.014 
 

0.208 
 

0.097 
 



 

 

 

3
1

 

a 
Regressions represent observed (y) versus predicted (x). Bold indicates regression model (r-squared) is significant, slope is significantly different than 1 and 

intercept significantly different than 0 (p<0.01).  
b 
Root Mean Squared Deviation, represents overall goodness-of-fit of model (see Equation 1) 

c 
Error term that compares the differences in means of observed and predicted values (see Equation 2) 

d 
Error term which quantifies the proportional difference of the slope of the predicted vs. observed regression from a 1:1 line (see Equation 3) 

e 
Error term that describes the variance unexplained by a model fit to the observed values (see Equation 4) 

f 
Value represents average nitrogen deposition simulated for the Great Plains; nitrogen deposition varied with precipitation.

 

g 
This model was developed in this paper using Century and included an elevated N deposition level (0.9) and a period of 60-year grazing and current land use 

h
 Regression of Century model simulations of ANPP (y) compared to observed ANPP from literature (x)
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Figures 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. International Geosphere-Biosphere Program (IGBP) Global Change and Terrestrial 

Ecosystems (GCTE) global terrestrial transects, modified from Koch et al. (1995). Lines represent 

transects of climatic gradients. Data from Inner Mongolia, China were collected in this study and 

compared with data from other studies to assess generality of environmental controls over soil organic 

matter.  

 

 

 

 

 

 

 

 
 

 US Great Plains Inner Mongolia, China 

Variable Mean Min Max Mean Min Max 

MAP cm 527 220 835 281 161 370 
MAT °C 8.55 4.1 13.0 2.65 0.78 5.08 
% Silt 32.6 20.2 45.0 25.6 4.67 39.8 
% Clay 24.0 10.0 38.0 12.5 3.3 23.1 
SOC kg/m

2
 3.97 1.03 6.90 3.79 0.28 8.16 

SON kg/m
2
 0.33 0.15 0.50 0.42 0.04 0.62 

C/N 10.3 6.86 13.8 8.88 5.97 14.61 
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Figure 2.2. Map of study region in the Inner Mongolia province of China (inset), displaying study sites 

(●) and average mean annual precipitation (+, italic font) for the area. 
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Figure 2.3. Predicted values from the Great Plains regression model [Burke et al., 1989] compared to 

observed values from Inner Mongolia for SOC (a) and SON (b). I simulated values for Inner Mongolia 

using both the model developed for US rangeland (●) and cultivated land (○).  
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Figure 2.4. Average SOC (kg C m

-2
), SON (kg N m

-2
), C:N, and ANPP (g m

-2
 yr

-1
, second y-axis) across 

all sites simulated by Century at 3 different nitrogen deposition levels (g N m
-2

 yr
-1

) for Inner Mongolia 

sites. Output was recorded after 5000 years of equilibrium conditions at each site, with no current land 

use periods.  
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Figure 2.5. SOC (a) and SON (b) predicted by Century using nitrogen deposition as parameterized in the 

Great Plains (●), which varies with precipitation but results in an average of 0.3 g N m
-2 

yr
-1

, and fixed at 

0.9 g N m
-2 

yr
-1

 (○), compared to observed values in Inner Mongolia at all sites. All runs included a 60-

year intensive grazing period followed by a unique current land use period depending on the site. This 

combination proved to be the land use scenario that best predicted observed values (see Table 2.4). 
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Figure 2.6. SOC (a) and SON (b) predicted by Century when I varied the inclusion of certain land use 

periods, compared to observed values in Inner Mongolia at all sites. Current land use refers to the 

information I acquired at sites from the current manager, and is a 1 to 20 year history depending on the 

site. 60-year intensive grazing is a period before the “current” land use that was implemented in all sites 

to represent the increase in grazing intensity as population density increased in Inner Mongolia around the 

1950’s. All runs used nitrogen deposition of 0.9 g N m
-2 

yr
-1

.  
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Figure 2.7. Simulated ANPP (g m
-2 

yr
-1

) from Sala et al., (1988) (ANPP=-34+0.6*MAP), Zhou et al., 

(2002a) (ANPP=-84.8+0.7905*MAP) and as simulated by Century (all land use periods, N-deposition of 

0.9 g N m
-2 

yr
-1

) versus ANPP estimates from the literature across the Northeast China Transect in Inner 

Mongolia grasslands.  
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Chapter 3: Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe: 

implications for increased nutrient loss and prolonged ecosystem recovery
2
 

 

Introduction 

Precipitation is the major control on ecosystem processes in semiarid ecosystems (Noy-Meir 

1973), where it is also highly variable within and among years. Because organisms in these ecosystems 

have adapted to variable rainfall and frequent water limitation, ecosystem processes, including processes 

that couple carbon (C) and nitrogen (N) cycles such as the accumulation of biomass, remain relatively 

stable under historical ranges of precipitation variability. However, future climate regimes in semiarid 

systems are expected to be characterized by more frequent summer droughts, increases in temperature 

(IPCC 2007, CCSP 2008) and possibly, decadal-scale “megadroughts” with no known recent analogues 

(Cook and Seager 2010, Woodhouse et al. 2010). So although semiarid systems are highly resistant to 

drought, processes such as biomass accumulation and decomposition will likely be altered, and perhaps in 

different ways, by these extreme events. Major changes due to disturbance, and different responses 

among ecosystem processes, can cause C and N to “decouple” (Asner et al. 1997). This decoupling causes 

asynchrony in N supply and demand that can increase nutrient loss and create new biogeochemical 

feedbacks. Such changes in fundamental ecosystem properties can intensify the impact of disturbances 

such as drought, and result in legacies that impact ecosystem processes beyond the timescale of the 

disturbance.   

Because N that is linked to C in biomass is less vulnerable to loss (Vitousek and Reiners 1975), C 

and N decoupling as a result of disruptions of biomass accumulation can alter N retention. In semiarid 

systems, the majority of N flux occurs through internal cycling; rates of “open” fluxes, such as leaching 

and gaseous emissions, are low (Burke et al. 2008), or limited to brief precipitation pulses (Austin et al. 
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prolonged ecosystem recovery. Ecosystems. 

 
 



 

45 
 

2004). Although these low loss rates suggest that seasonal supply and demand of N are highly 

synchronized in drier ecosystems (Risser and Parton 1982), N loss rates may increase relative to internal 

fluxes as precipitation decreases (Austin and Sala 2002, McCulley et al. 2009). In addition, N has been 

seen to accumulate in soil as inorganic N during dry periods (Jackson et al. 1988, Whitford et al. 1995, 

Reynolds et al. 1999, Augustine and McNaughton 2004) and under short-term drought manipulations 

(Yahdjian et al. 2006). These studies suggest that water limitation in semiarid systems may cause N 

availability to be asynchronous with plant and microbial N demand just as short-term fluctuations in 

precipitation can lead to periods of greater N loss and limitation (Austin 2004).  

Long-term changes in N-retention as a result of precipitation changes may cause organisms to be 

more frequently N-limited, and alter plant-N-soil interactions. After water, N is most likely to limit 

productivity in semiarid systems (Burke et al. 1997, Hooper and Johnson 1999), and N and water 

availability are highly interdependent (Harpole et al. 2007, Bai et al. 2008). Because of this N-limitation, 

N that has accumulated in dry years can result in higher-than-expected plant productivity in years 

following drought (Briggs and Knapp 1995). In addition, new plant-soil-N feedbacks following drought 

could cause increased variability in production (Haddad et al. 2002). Alternatively, plant, root, and tiller 

mortality, and reduced meristem density that occur as a result of drought can also generate “structural 

vegetative constraints” (Lauenroth and Sala 1992) that reduce the capacity of plants to respond to both 

ambient moisture conditions and any increases in N availability that occurred under drought (Benson et 

al. 2004). In addition, C and N decoupling could occur in the short-term, but changes in plant species 

composition and N use efficiency (NUE) that occur as long-term drought persists could cause a “re-

coupling” of C or N in a way that more closely resembles a drier system. In sum, although previous 

studies have documented possible ecosystem impacts of C and N decoupling under moisture limitation, 

the nature and timescale of this decoupling under long-term drought and recovery is unclear.  

Although there has been much previous work on interactions among rainfall, N, and C cycling in 

grasslands (Austin et al. 2004, Burke et al. 2008, Yahdjian and Sala 2008), most findings are based either 

on the monitoring of natural variability across space and time (Augustine and McNaughton 2004, 
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McCulley et al. 2009), and therefore not ideally suited to investigate responses to novel events, or on 

short-term rainfall manipulations (1-4 years) (Yahdjian et al. 2006), which may not sufficiently test the 

limits of drought-resistance in semiarid systems. The shortgrass steppe, a semiarid ecosystem on the drier 

Western edge of the US Great Plains, is extremely resistant to drought and other disturbances (Milchunas 

et al. 1988, Burke et al. 2008, Peters et al. 2008), but is likely to experience droughts of novel lengths and 

severities in the future (IPCC 2007). A large body of research describing interactions among climate, 

vegetation, and biogeochemistry in the shortgrass steppe ecosystem provides an excellent context for 

interpreting N responses to drought (Sala et al. 1992, Vinton and Burke 1995, Lauenroth et al. 2008a). In 

this study, I use an 11-year rainfall manipulation in the shortgrass steppe to ask how a drought of 

unprecedented duration and severity affects N-conservation, and how this affects ecosystem recovery. To 

address this, I measure C and N dynamics in the 10
th
 and 11

th
 year of a long-term drought experiment 

where plots received 25% and 50% of growing season rainfall, then in the first and second year of 

recovery, when plots received ambient rainfall.  

I hypothesized that drought decreases N conservation in the shortgrass steppe because C-N 

decoupling induced by high moisture limitation results in increased rainfall use efficiency and decreased 

nitrogen use efficiency. I predicted that 1) after 11 years of drought, plant production decreases and 

inorganic N accumulates in the soil, leaving it more vulnerable to loss through gaseous flux; and 2) under 

recovery, structural vegetative constraints result in lags in plant production such that accumulated N is 

assimilated by plants less efficiently. 

 

Methods 

Study site and rainfall manipulations 

I conducted this study in the semiarid shortgrass steppe at the Central Plains Experimental Range 

(CPER) Long Term Ecological Research Site (Lauenroth et al. 2008a), 60 km northeast of Fort Collins, 

Colorado (40° 49’ N latitude, 104° 46’ W longitude). Mean annual temperature is 8.2 °C, and mean 

annual precipitation is 341 mm (65-year average), with 83% of precipitation occurring between April and 
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September (Sala et al. 1992). Soils are frequently dry but experience brief wet periods, and as a result, soil 

water content is highly variable (Lauenroth and Bradford 2006). Precipitation patterns are dominated by 

small events (< 5 mm), but differences in the size of large events (> 30 mm) accounts for most of the 

variability in interannual rainfall (Lauenroth and Sala 1992).  

Dominant vegetation in the shortgrass steppe includes short-stature C4 grasses Bouteloua gracilis 

(blue grama) and Bouteloua dactyloides (buffalograss). Other common shrubs are Opuntia polyacantha  

(plains pricklypear cactus), Artemisia frigida (prairie sagewort), Eriogonum effusum (spreading 

buckwheat), Chrysothamnus nauseosus (rubber rabbitbrush), and Gutierrezia sarothrae (broom 

snakeweed) (Lauenroth 2008). Soil types at this site are Renohill and Ascalon fine sandy loams (Aridic 

Argiustoll and Ustic Haplargid) (Natural Resource Conservation Service 2008).  

In spring of 1998, two blocks with similar vegetation were identified near the headquarters of the 

SGS LTER field site, and divided into four 3.5 m by 1.7 m plots (Fig. 3.1). Blocks were selected to 

represent slightly different topographies (slight slope and toeslope) and soil textures, although differences 

in soil texture between blocks were not significant when measured in 2008. During the growing season 

(average dates 26 April – 7 October), two rainout shelters automatically covered plots with a sliding roof 

when rainfall was detected by an electronic rainfall sensor (AeroChem Metrics, Bushnell, FL). Each 

week, a proportion (100%, 25% or 50%) of ambient rainfall measured by a rain gauge was added back to 

the plots to simulate drought. The 100% treatment was used to test the shelter effect and specifically, the 

effect of changes in rainfall timing caused by the re-additions. The control plot was never covered by 

shelters and received ambient precipitation. To evaluate treatment effectiveness, I monitored soil moisture 

each year of the study. In summer 2008, I measured soil moisture approximately every two weeks using a 

handheld 10 cm TDR Probe (Campbell Scientific, Logan, UT). From 2009-2011, I inserted one 10 cm TE 

probe (Decagon Devices, Pullman, WA) in each plot that measured hourly soil temperature and 

volumetric soil moisture.  

These 11-year drought manipulations gave us the unique opportunity to monitor long-term 

drought of unprecedented severity and length. However, the large investment required to set up and 
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maintain rainfall manipulations often results in smaller plots sizes that make careful sampling essential to 

preserve the long-term integrity of the plots. In an effort to use the most accurate but least destructive 

method for measuring plant and biogeochemical dynamics, methods sometimes differed interannually, 

but properties and processes were always measured consistently across plots within years. 

Overall, to test how drought affected N conservation in these plots, I monitored C and N pools 

that are good indicators of biogeochemical decoupling and that are important for ecosystem function. I 

measured plant production and N content, soil inorganic N dynamics, and soil trace gas flux in the 10
th
 

and 11
th
 year of drought (2008 and 2009), and under recovery (2010 and 2011), when shelters were 

removed. In 2009 I also subjected plots to three moisture pulses by adding an equal amount of water to 

each plot, investigating dynamics while controlling for soil moisture differences and simulating recovery. 

 

Plant production and N content 

I measured parameters that described aboveground and belowground plant production each year 

between the 1
st
 and 15

th
 of August, which is within range of expected peak biomass in the shortgrass 

steppe (Lauenroth et al. 2008b). In 2008, I estimated aboveground net primary productivity (ANPP) using 

a First Growth digital canopy camera (Decagon Devices 2004), establishing a calibration between 

measured ANPP and percent cover as determined by the camera using a greenness index. Because the 

relationship between greenness and ANPP was significant (p < 0.05) but weak (R
2 
= 0.45), and this 

method has since been found to be less accurate than other non-destructive measures of production in the 

shortgrass steppe (Byrne et al. 2011), I estimated 2009-2011 ANPP using a point-intercept method 

(Jonasson 1988, Frank and McNaughton 1990) modified by Byrne et al. (2011). The frequency of 

graminoid, shrub, and forb contact with intercept points on a 62 x 80 cm grid was a good predictor of 

harvested ANPP values in calibrated plots (2009: R
2 
= 0.84, 2010: R

2 
= 0.79, 2011: R

2 
= 0.87, all p-values 

< 0.05).  

To assess root dynamics, I measured belowground net primary production (BNPP) in 2008, and 

standing root biomass in 2010 and 2011. I estimated BNPP using a root in-growth core technique (Vogt 
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and Persson 1991, Lauenroth 2000), quantifying new root production that grew into a 5 x 15 cm core 

lined with 1 mm mesh (McCulley et al. 2009). Under drought recovery (2010 and 2011), I destructively 

sampled eight (2010) and five (2011) 5 x 15 cm randomly sampled cores from each plot to measure 

standing root biomass. In both methods, cores were dried for 1 week at 50 ºC, and roots were separated 

from cores by sieving and hand-picking roots for a standard amount of time, then weighed.  

I measured the C and N content of above and belowground plant biomass sampled in August 

2010 and August 2011. Since I did not harvest ANPP, I collected aboveground biomass for tissue analysis 

by collecting leaves from grasses, shrubs and forbs nearest to the soil core sampled. I dried leaves and 

roots from biomass cores at 50 ºC for 1 week, ground them on a Wiley mill, and analyzed tissues for total 

C and N content on a LECO CHN-1000 analyzer (St. Joseph, MI). Plant tissue N (%) served as an 

indicator of N use efficiency (NUE). I also estimated the N-yield of different plant growth forms by 

multiplying plant tissue N by production, using plant species cover data (described in Evans et al. [2011]) 

to partition total ANPP among growth forms. I calculated rainfall use efficiency (RUE) as the plant 

production per cm rainfall plots received in the previous year (e.g. September 2010 to August 2011 for 

2011 RUE).  

 

Soil N dynamics 

To address the extent of C and N decoupling, and how this affects N-conservation under drought 

and recovery, I measured both net N mineralization and the soil inorganic N that is vulnerable to loss at 

any given time. I used ion-exchange membrane probes or “Plant Root Simulators” (Western Ag 

Innovations, Inc., Saskatoon, Canada) as an index of net N-mineralization and to quantify plant- and 

microbial-available N (Dodd et al. 2000, Hook and Burke 2000). In 2008 (during drought) and 2010 (first 

year of drought recovery), I buried three pairs (an anion and cation probe) of 10 cm membranes for two 2-

month periods. Probes were analyzed for NH4-N and NO3-N on an Alpkem Analyzer (Pulse Instruments 

Ltd., Saskatoon, SK) at Western Ag. I report inorganic N accumulation per day to account for small 
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variation (± 2 days) in the time the probes remained in the soil, and per cm rainfall to control for 

differences in rainfall in the different sampling periods.   

In addition to measuring available N, I quantified N that is potentially available at any one time 

by using 2 M KCl extractions at multiple time points. Although the number of cores sampled per plot 

differed each year (2008, 2 cores, 2009, 3 cores, 2010, 8 cores, 2011, 5 cores), core sampling and lab 

analyses were identical. I extracted ammonium (NH4
+
) and nitrate (NO3

-
) from 15 x 5 cm cores using 2 M 

potassium chloride (KCl) and Whatman (#40) filter paper, and analyzed extracts on a Perstorp Analytical 

Alpkem autoanalyzer (Wilsonville, OR).  

 

Trace gas flux 

I installed three flux chambers in each plot (24 chambers total) in the 2008 and 2009 growing 

season. Trace gas measurements were carried out following Livingston and Hutchinson (1995) with 

modifications similar to von Fischer et al. (2009). In brief, I measured the concentration of gas in the 

headspace of 20-cm PVC base rings every 5 minutes for 20 minutes and analyzed gas subsamples using a 

Shimadzu GC14B gas chromatograph with N2 carrier gas. 

In 2008, I measured CO2 and N2O every 2 weeks throughout the growing season, but N2O flux 

was too small to be detected. In 2009, I also tested for the vulnerability of C and N to gaseous loss under 

equal-moisture conditions (simulating recovery) by subjecting manipulated plots to equal pulses of 

moisture (100% of ambient rainfall from previous week) and measuring CO2 and N2O flux. To ensure 

plots still received the correct overall reductions of growing season rainfall (i.e. 25%, 50%) after these 

three pulses (June 12, June 30, July 14), I adjusted the following week’s water additions to account for 

additional rainfall received during the experimental moisture pulse.    

 

Statistical analysis 

I analyzed differences in these C and N cycling parameters among treatments to evaluate how 

drought affects N conservation. I used a randomized block model to analyze C and N responses under 
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drought and recovery, estimating responses using the restricted maximum likelihood (REML) method. 

For variables that were measured at a single time point (e.g. BNPP), the randomized block mixed model 

included treatment as a fixed factor, and block a as random effect. For variables measured at several time 

points throughout the experiment (e.g. soil cores analyzed for inorganic N, PRS probes, ANPP, etc.), but 

in different locations within a plot, I accounted for correlations among measurements on the same plot 

over time by treating time and its interactions as an additional fixed effects, and adding a block by 

treatment by time interaction as an additional random effect.   

For most sampling times, I collected more than one sample in each plot (e.g. 5 cores or 3 quadrats 

per plot). These “pseudoreplicates” served to capture within-plot variation and strengthen my assessment 

of treatment effects, but did not add as much statistical power as independent replication. However, when 

samples were taken in the same location within plots over time, such as trace gas measurements on bases 

that remained in the same location in the plot throughout the year (2008 and 2009), I tested whether 

including a random effect of sample (e.g. trace gas base 1, 2, 3) nested within the block by treatment 

interaction was needed to account for additional variation produced by the sampling location.   

In all repeated measures models, I also considered whether to include an autoregressive 

correlation between plots over time, but did not include this additional parameter when it resulted in 

higher or nearly equal Akaike Information Criterion constant (AICc) values compared to the model 

without it. When significant treatment by time interactions occurred in any model (p < 0.05), I compared 

treatments within each year or time point.  

 

Results 

Effectiveness of treatments 

Treatment plots receiving 25% and 50% of ambient rainfall resulted in significantly lower soil 

moisture in 2008 and 2009 drought years, according to hourly soil moisture data (averages presented in 

Fig. 3.2). Plots that received 100% of rainfall (the same amount as control plots, but re-added weekly) 

displayed higher variation in soil moisture, and often lower soil moisture than control plots. The three 
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water additions in 2009 increased soil moisture in all treatments, and there were no significant differences 

in soil moisture among treatments (p > 0.05) within each water addition.  

 

Plant production under drought and recovery 

Long-term drought significantly reduced ANPP in 2008 and 2009, the 10
th
 and 11

th
 year of the 

rainfall manipulation (Fig. 3.3a). ANPP decreased with drought severity in both years, but 25% and 50% 

treatments were only significantly different from each other in 2009 (p = 0.03). Decreases in ANPP were 

not proportional to rainfall reductions, as treatments receiving 25% and 50% of rainfall resulted in an 

average drought-year ANPP of 50% and 65% of control ANPP, respectively.  

Root in-growth cores revealed that BNPP in the 25% drought plots was 16% lower than the 

BNPP in control (p = 0.007), but there was no significant difference between BNPP in 50% and control 

plots (Fig. 3.3b). In 2010 and 2011, after drought had ended, root biomass in 25% and 50% plots was 

significantly lower than root biomass in control plots (p < 0.01). Reductions in ANPP also persisted two 

years after drought, but only in 25% drought plots. In rainout shelter treatments that received 100% of 

rainfall, ANPP and root biomass were often lower and sometimes significantly lower than the control 

treatments, following patterns of lower soil moisture in 100% treatments compared to control (Fig. 3.1, 

3.2).  

Under drought, RUE (plant production per cm rainfall) was higher in drought plots than the 

control in 2008 (p < 0.05), but not in 2009 (Fig. 3.4). RUE was lower in drought plots in 2010 and 2011 

(p < 0.05), when all plots received the equal rainfall (Fig. 3.4). 

 

Nitrogen dynamics under drought and recovery 

Nitrogen content (%) of plant tissue varied by vegetation type, and in general, drought plots had 

higher N-content in plants and roots than control and 100% treatments in both recovery years (Fig. 3.5a,b 

inset). Due to differences in production among plots, when I calculated ANPP-N, or the overall 

aboveground N yield (g N / m
2
), there were fewer trends among treatments (Fig. 3.5). However, 25% 
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drought plots did have significantly lower total ANPP-N and root biomass-N than control plots, largely 

mediated by overall greater production in control plots, and shifts in plant species composition (Evans et 

al. 2011) (Fig. 3.5).  

There were no significant differences in plant available N (as measured by resin probes) among 

treatments under drought in 2008 and 2009 (Fig. 3.6). However, when differences in rainfall among 

treatments were accounted for, plant available N was higher in drought plots (per cm rainfall received, 

Fig. 3.6 inset). In 2010, the first year of recovery, drought plots had significantly higher available N than 

control plots in the June-July measurement period, and this trend, although not significant, continued in 

the August-September period. Total soil inorganic N (as measured by KCl extracts) was consistently 

higher under drought, and up to 5 times that of inorganic N in control plots (Fig. 3.7). Soil N continued to 

be higher in both sampling dates in 2010 and in 2011.  

 

Trace gas flux under drought and moisture pulses 

CO2 flux in 25% and 50% drought plots was an average of 39% and 28% lower than control 

treatments across all measurement dates in 2008, respectively (Fig. 3.8). Soil moisture differed among 

treatments at the time of sampling, and variation in soil moisture explained 42% of the variance in CO2 

flux. The three water additions in 2009 resulted in average volumetric soil moistures of 22.0%, 19.6%, 

and 14.5% (data not shown), and were not significantly different among treatments within a sampling 

date. After water additions, N2O flux in the 25% drought treatment was nearly double N2O in 100% plots 

on June 12 (p = 0.006), and remained significantly higher than N2O in 100% plots on June 30 (p = 0.01), 

but there were no significant differences among treatments on July 14 (p = 0.21) (Fig. 3.9b). In contrast to 

N2O, CO2 flux in drought plots was consistently lower than 100% plots after 2009 water additions (Fig. 

3.9a).  

 

Discussion  
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I found that long-term drought causes significant reductions in plant biomass and CO2 flux, and 

an accumulation of inorganic N in the shortgrass steppe. This decoupling of C and N under long-term 

drought increased the openness of the N cycle upon recovery, decreasing both NUE and RUE when 

rainfall returned to normal levels, in accordance with my predictions. The accumulation of N in soil and 

plant tissue and reductions in plant biomass persisted two years after manipulations were removed, 

suggesting that biogeochemical feedbacks associated with these changes could alter fundamental 

ecosystem properties of the shortgrass steppe ecosystem, and increase the recovery-time from future 

decade-long droughts. 

  

Effectiveness of treatments and implications for altered rainfall timing 

Drought treatments effectively reduced rainfall, but I also found variables responded differently 

to control (ambient rainfall) and 100% treatments that received weekly re-additions. Although rarely 

statistically significant, these differences could have been caused by slight chemical differences in the 

water used to irrigate plots (well water vs. rainfall) or the altered timing of water inputs to manipulated 

plots. The timing of precipitation plays a large role in ecosystem dynamics in the shortgrass steppe (Sala 

and Lauenroth 1982), and changes in rainfall event size and timing can significantly alter ecosystem C 

cycling in grasslands (Knapp et al. 2002, Heisler-White et al. 2009). The majority of rainfall events in the 

shortgrass steppe are small (< 5 mm), and water inputs in the form of larger events in manipulated plots 

could have reached deeper soil layers where water is less vulnerable to evaporative loss (Sala et al. 1981). 

Heisler-White et al. (2008) suggest that this mechanism (increases in water availability caused by 

deeper infiltration) may explain increases in production they observed when total rainfall was distributed 

in fewer, larger events in the shortgrass steppe. I was not testing the effect of altered rainfall timing on 

ecosystem dynamics in this study, and data do not suggest there is a statistically significant effect. 

However, in contrast to these previous findings, I found a trend of decreased production in the 100% 

plots, and on average, lower soil moisture (in the top 10 cm) compared to control (Fig. 3.1). I also 

observed a slight increase in N availability and larger extractable N pools in 100% treatments compared 



 

55 
 

to control treatments, and others studies suggest that size of precipitation events affects N availability 

(Yahdjian and Sala 2010). Overall, these observations suggest that 1) more work is needed to examine 

both the ecosystem and biogeochemical consequences of altered rainfall timing and 2) if anything, the 

rainout design exacerbated drought effects, rather than negating them.  

Therefore in the context of this study, the shelter effect does prevent us from making direct 

conclusions (and predictions) about specific amounts of rainfall reductions (i.e. predicted responses to 

future droughts 25% and 50% of ambient rainfall), but I can still be confident that shelters induced long-

term drought conditions. In addition, although results from these long-term manipulations provide 

inference unobtainable from monitoring or short-term studies, low field replication and the resulting 

restriction of sampling to less destructive techniques does limit my scope and ability to make conclusions 

about specific mechanisms. In this study, I targeted important C and N pools and found that drought can 

cause significant C-N decoupling and decreases in N conservation under recovery, confirming my 

hypothesis. These results can direct future research toward describing full ecosystem N budgets under 

drought and recovery, and toward more precise estimations of fluxes and fates of N and H2O throughout 

the ecosystem. 

 

Does long-term drought alter C and N coupling? 

Overall, C fluxes (plant production, CO2 flux) were lower in drought plots, but N fluxes (plant N 

uptake, N2O flux) were higher. The large accumulation of inorganic N under drought provided further 

evidence of C and N decoupling. Although inorganic N pools at any single time point are not useful in 

interpreting rates of processes (Schlesinger 1997), I consistently found higher inorganic N in soil subject 

to drought (Fig. 3.7), as other studies have (Garcia-mendez et al. 1991, Davidson et al. 1993, Whitford et 

al. 1995, Reynolds et al. 1999, Yahdjian et al. 2006).  

This C and N decoupling may be caused by different ecosystem compartments or processes 

having different sensitivities to drought, or by abiotic mechanisms. Belowground and especially 

aboveground production were significantly reduced by long-term drought (Fig. 3.3), but microbial 
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biomass was not significantly different among treatments (data not shown, but see Table 4.3). 

Microorganisms may be capable of decomposing plant litter at moisture levels not high enough to 

stimulate plant production (Sala and Lauenroth 1982, Ogle and Reynolds 2004). This difference in 

moisture sensitivity may affect ecosystem flux in pulse-driven arid ecosystems (Huxman et al. 2004) and 

could explain the accumulation of N under drought in this study (continued microbial mineralization but 

decreased plant uptake). In addition, N-mineralization and decomposition may have different sensitivities 

to moisture (Yahdjian and Sala 2008). I found that net N-mineralization (as indexed by N accumulated on 

exchange membranes) was not significantly different among drought plots, that inorganic N accumulated 

under drought, and  CO2 flux was significantly lower under drought. Although this does not provide a 

direct comparison of the sensitivity of C versus N-mineralization to drought, it does support other studies 

that have suggested that N-mineralization may be less sensitive to moisture than decomposition across 

wet and dry seasons (Hook and Burke 2000), over precipitation gradients (Barrett and Burke 2002), and 

under other rainfall manipulations (Yahdjian et al. 2006).  

Finally, the physical properties of the products of these processes, rather than differences in 

process sensitivity to moisture, may contribute to N accumulation and C-N decoupling under drought 

(Yahdjian et al. 2006). Specifically, nitrate, which dominates inorganic N pools (relative to ammonium) 

in the shortgrass steppe, is highly mobile under high water content. Reduced soil water content may alter 

nitrate mobility, slowing the movement of nitrate to deeper soil layers and limiting diffusion of nitrate to 

plants and microbes. 

 

How does drought affect N conservation in semiarid grasslands? 

Two metrics in this study provided an indicator of openness of the N cycle: percent N in biomass, 

which has been used as a proxy for NUE (Vitousek 1982), and N2O release, which, when controlling for 

moisture differences, I used as an indicator of potential gaseous N loss. I hypothesized that drought would 

increase the openness of the N cycle in the shortgrass steppe, as other studies have found that N may be 

less conserved in drier sites (Austin and Vitousek 1998, McCulley et al. 2009) and after disturbance 
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(Vitousek and Reiners 1975). Overall, I found evidence that this occurs or has the potential to occur, but 

only in the years following the drought, when water availability increases and plants and microbes are 

more active. Although I did observe an accumulation of inorganic N under drought, which could certainly 

be vulnerable to loss, the N exchange probe data suggests that the diffusion limitation induced by drought 

might make N inaccessible to plants and microbes. Because of this, under drought, although I did not 

construct a full N-budget, my results suggest N2O flux was not a significant pathway of N loss, and plant 

NUE might not have been as strongly reduced due to the overriding moisture limitation.  

However, supporting my hypothesis, I found that this C-N decoupling that occurs under drought 

is likely to result in a more open N cycle when moisture returns, and that this increased openness could 

extend for at least 2 years after drought has ended. When adding equal moisture pulses to drought plots 

that simulated recovery, I found greater N2O flux in plots that had been experiencing drought for 11 years 

(Fig. 3.9b). Greater N2O flux under drought was likely mediated by greater inorganic N in these plots 

(Fig. 3.7), and this correlated has been reported in N-addition experiments (Mosier et al. 1996). In 

contrast to N2O, CO2 flux remained lower in drought plots under drought (Fig. 3.8), and when soil 

moisture was constant across plots (Fig. 3.9a). This is likely because reduced production under drought 

resulted in both decreased root respiration and lower availability of labile C to microbes. I did not 

measure N2O flux in the years following drought, but as soil inorganic N continued to be higher under 

drought plots, it is likely that when these plots received equal rainfall, this N was vulnerable to loss, 

which could result in N-limitation when plants recover. 

Greater plant tissue N following drought provides further evidence supporting my hypothesis that 

drought results in decreased conservation of N (though under recovery). This decrease in NUE may also 

have been due to the higher availability of N in the soil, and has implications for changes in plant-soil 

interactions as well as forage quality and land use in the shortgrass steppe. High-N litter produced from 

inefficient plant N use can lead to increased net N mineralization and increased available N that is then 

advantageous for N inefficient plants (Vitousek 1982, Vinton and Burke 1995). This positive feedback 

could be mediated by changes in plant community composition. “Weedy” species have increased relative 



 

58 
 

to grasses under these manipulations (Evans et al. 2011), and under N additions, these changes can persist 

long after N additions have ceased (Lauenroth et al. 1978, Milchunas and Lauenroth 1995). However, 

although foliar plant N increased the year after drought, reduced ANPP and altered species composition in 

drought plots resulted in no significant difference in N-yield (g biomass N / m
2
, Fig. 3.5), suggesting that 

a reduction in forage quantity under drought is not necessarily compensated for by increased forage 

quality. 

 

Ecosystem lags and implications for long-term drought recovery  

My results show that severe drought can induce significant lags in production such as those 

observed after dry years (Lauenroth and Sala 1992), and that these lags may be the result of structural 

vegetative constraints. I also observed lags in soil N dynamics: soil inorganic N remained higher in 

drought plots for the two years I monitored after drought, and higher soil water content may have made 

this N more accessible to plants and microbes. However, it is unclear what the long-term fate of this soil 

inorganic N will be. The greater nutrient supply after drought did not increase production, as it can in 

mesic grasslands (Briggs and Knapp 1995, Haddad et al. 2002). Instead, biomass continued to be 

constrained, and the increased nutrient supply caused an increase in plant tissue N, indicating less 

efficient use of N by plants, in line with my predictions. These changes in plant and soil N could persist in 

the long-term through plant-soil-N feedbacks, and can increase inter-annual variability in production 

(Haddad et al. 2002). On the other hand, the data suggest that greater soil inorganic pools also make N 

more vulnerable to loss, and increases in N loss could leave vegetation N-limited once plants can fully 

respond to rainfall (Yahdjian et al. 2006). 

Although trends 2 years following drought are not enough to determine how plant-N interactions 

will affect long-term recovery, I did see that the weedy plant species that increased under drought, and 

that have increased under N additions (Lauenroth et al. 1978, Evans et al. 2011), accounted for post-

drought increases in ANPP in 50% plots (unpublished data). This may indicate that over time, more soil 

N will be taken up by these N-inefficient plants compared to loss through gaseous flux, which represents 
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a small component of the N budget in semiarid systems. In either case, when C and N dynamics converge 

(“re-couple”) through plant uptake and loss of inorganic N, the system may reach a steady state that is 

characterized by new biogeochemical properties. 

 

Conclusions 

I found that an 11-year rainfall manipulation in the highly drought-resistant shortgrass steppe 

significantly altered C and N dynamics, and affected ecosystem function up to 2 years into recovery. Soil 

N accumulated under drought and reductions in plant biomass persisted after drought, resulting in less 

efficient plant N assimilation and higher gaseous N loss from drought plots when water was available. 

These results suggest that long-term drought decreases N conservation in the shortgrass steppe when 

moisture returns. The de-coupling of C and N, and subsequent increases in N loss and initiation of new 

plant-soil-N feedbacks, are likely to alter the course and timescale of shortgrass steppe recovery from 

future decade-long droughts, and possibly analogous disturbances in other ecosystems, and therefore alter 

our ability to predict responses of semiarid ecosystems to novel precipitation regimes.  

  



 

60 
 

Figures 

 

Figure 3.1. Growing season precipitation in 25% (white), 50% (light grey), and 100% and control (darker 

grey) treatments, and non-growing-season precipitation (black, the same for each treatment) and during 

the 11-year drought experiment and 2-year recovery, when shelteres were removed. Each full bar shows 

annual precipitation. Lines represent long-term (1959–2009) mean  annual precipitation (341 mm, solid 

line) and growing season precipitation (241 mm, dashed line). 
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Figure 3.2. Soil moisture dynamics under rainfall manipulations during 2008 and 2009 growing 

season,and after manipulations were removed after the growing season of 2009 and remained disengaged 

in 2010 and 2011.  Soil moisture was measured every 2 weeks in the summer of 2008, and hourly from 

spring of 2009 through 2011. Error bars are standard errors of means (N=2). The * indicates a significant 

difference among treatments (p < 0.05). Differences between 25% and 50% treatments, and between 

Control and 100% were significant two times, both when shelters were engaged.   
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Figure 3.3. Aboveground primary productivity (a) and root dynamics (b) in drought manipulations 

receiving 20%, 50% and 100% of ambient precipitation on the shortgrass steppe for a period of 10 and 11 

years (2008 and 2009), then released from drought treatments (indicated by dashed line, 2010 and 2011). 

Root dynamics (b) were described by estimating belowground net primary production (BNPP) in 2008 

using an in-growth core, and by harvesting root biomass in 2010 and 2011 (b, second axis). Bars show 

mean and standard error and different letters indicate significant differences between treatments (p < 

0.05).  
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Figure 3.4. Mean rainfall use efficiency (RUE, bars) under drought manipulations in 2008 and 2009, and 

recovery from drought in 2010 and 2011 (after dashed line) in the shortgrass steppe. RUE was as 

calculated by dividing ANPP for each treatment by annual rainfall each treatment received in the previous 

year, shown by open dots.  
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Figure 3.5. Aboveground and belowground N-yield of vegetation in the first (2010, a) and second year 

(2011, b) of recovery after an 11-year drought in the shortgrass steppe. N-yield was determined using the 

percent N in vegetation (inset) and the belowground biomass and aboveground production for each 

growth form. The * indicates significant difference among treatments (p < 0.05).   
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Figure 3.6. Total inorganic N (NO3
-
-N + NH4

+
-N) captured on ion-exchange membrane probes in the 10

th
 

year of a long-term drought manipulation in the shortgrass steppe (2008), when rainfall the plots received 

varied (shown by open dots) and the first year of recovery (2010), when all plots received the same 

amount of rainfall. Bars show ug-N accumulated per 10 cm probe per day in each 2-month period of 

burial, while inset shows ug-N per cm rainfall during 2008, when treatments received unequal rainfall. 

Where significant differences among treatments occurred, significant pairwise differences (p < 0.05) are 

indicated by letters. Ratios of nitrate to ammonium were consistent across treatments within any given 

time point, so are not shown separately. 
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Figure 3.7. NO3
-
-N (a) and NH4

+
-N (b) extracted with 2M KCl in the 10

th
 and 11

th
 year of a drought 

manipulation (2008 and 2009), and after release from the manipulation (indicated by dashed line, 2010 

and 2011). Bars show means (N=2) and standard error and different letters indicate significant differences 

between treatments (p < 0.05).  
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Figure 3.8. Mean soil CO2 flux (bars) in the growing season of 2008, the 10
th
 year of a long-term drought 

manipulation in the shortgrass steppe. Soil moisture is shown for control plots (symbols and line) to 

display the variation in soil moisture at the time of sampling; drought treatments had reduced soil 

moistures. The * indicates a significant difference (p < 0.05) among treatments. 
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Figure 3.9. Mean and standard error of soil CO2 (a) and N2O (b) flux after three experimental water 

pulses in the summer of 2009. Soil moisture was not significantly different among treatments within a 

moisture pulse date. Different letters indicate significant differences among treatments.  
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Chapter 4: Does moisture niche partitioning drive shifts in microbial community composition 

under long-term drought in the shortgrass steppe? 

 

Introduction 

Identifying the most important environmental factors that structure biological communities has 

been a persistent goal in ecology (Clements 1916, Gleason 1926, Tilman 1996, Hooper et al. 2005), and is 

essential for predicting species distributions under future environmental conditions and for preserving 

global biodiversity (Sala 2000). Although efforts to determine controls on species composition have only 

recently targeted microbial communities, an increase of in-depth microbial sequencing studies has already 

increased awareness of previously unrecognized biogeographical patterns in microorganisms (Fierer and 

Jackson 2006, Green et al. 2008). This work has identified several factors that are strongly correlated to 

microbial community structure and diversity, such as pH (Lauber et al. 2009), carbon quality (De Deyn et 

al. 2011) and quantity (Fierer and Jackson 2006), and soil water content (Bossio and Scow 1998, Frey et 

al. 1999, Lauber et al. 2009). These biogeographical patterns provide a strong foundation on which to test 

the relative importance of different drivers of microbial community composition across ecosystems, and 

to compare to factors that drive communities of larger organisms.  

Precipitation is a major driver of global biome distribution, primary productivity (Chapin et al. 

2002) and microbial activity (Parton et al. 1987), and is an especially important driver of ecosystem 

function and vegetation dynamics in grassland ecosystems (Noy-Meir 1973, Sala et al. 1988, Lauenroth 

and Sala 1992). Several studies have shown that microbial communities can also be sensitive to 

precipitation changes in these water-limited systems (Castro 2010, Drenovsky 2004, Williams and Rice 

2007). These shifts in microbial community structure in response to changes in moisture regime suggests 

that variation in moisture sensitivity among microbial groups, which has been observed (Drenovsky 

2004), is driving community composition as soil moisture varies in space and time. However, other 

studies also suggest that grassland microbial communities can be highly resistant to changes in rainfall 
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(Griffiths et al. 2003, Landesman and Dighton 2010), even over many years (Cruz-Martinez et al. 2009), 

making it unclear what factors control microbial community sensitivity to moisture, and whether the 

persistence of certain taxonomic groups under specific moisture conditions (i.e. moisture niche 

partitioning) is actually, and always, driving the changes observed.  

What can resolve this discrepancy and provide insight into when and how moisture drives 

microbial community composition? Precipitation patterns in grasslands are expected to shift in the future 

(IPCC 2007, Jentsch et al. 2007), and identifying the role of moisture in microbial community dynamics 

will be essential for predicting long-term microbial and biogeochemical responses to future climates. One 

way to understand drivers and better predict patterns of species composition is to not only investigate 

microbial groups that are present in a specific environment, but also identify groups that actively respond 

to certain environmental conditions, or in other words, occupy a defined niche. Most studies investigating 

drivers of microbial community composition characterize total microbial DNA, which captures active 

microbial groups as well as a potentially large portion of communities that is inactive or dormant (Cole 

1999). Total microbial community composition reflects which microbial groups have competitively 

prevailed in that environment in the long-term, and provide a measure of community potential, but they 

do not necessarily show which groups are thriving and favored under certain conditions (as well as 

contributing functionally). By describing microbial groups active at certain moisture levels, I could assess 

the extent to which microorganisms vary in their response to different moisture levels, and whether this 

partitioning of moisture niches across groups is an underlying driver of long-term shifts in microbial 

community composition under different precipitation regimes. 

In this study, I asked 1) whether long-term drought alters microbial community composition, 

activity, and respiration in response to moisture and 2) whether variation in moisture sensitivities among 

microbial groups (moisture niche partitioning) could explain the distribution of microbial groups I 

observed under long-term drought. Based on previous studies that identify moisture as a primary driver of 

microbial community structure (Bossio and Scow 1998, Frey et al. 1999, Drenovsky et al. 2004, Lauber et 
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al. 2009, Brodie et al. 2010, Castro et al. 2010), I hypothesized that declines in microbial sensitivity to 

reduced moisture availability under drought would result in long-term shifts in microbial community 

structure in the shortgrass steppe. If this hypothesis were correct, I would expect a) antecedent drought to 

alter microbial function and activity in response to moisture; b) distinct communities to be active under 

different moisture levels (moisture niche partitioning); and c) this moisture niche partitioning to provide a 

good indicator of the shifts in long-term communities under distinct moisture regimes in the field. 

 

Methods 

Study site and field rainfall manipulation 

The study site is located on the semiarid shortgrass steppe at the Central Plains Experimental 

Range (CPER), 60 km north-east of Fort Collins, Colorado (40° 49’ N latitude, 104° 46’ W longitude). 

The CPER is administered by the USDA Agriculture Research Service and is also a National Science 

Foundation Long Term Ecological Research site (Lauenroth et al. 2008a). Mean annual temperature is 8.2 

°C and mean annual precipitation is 341 mm (65-year average), with with 83% of precipitation occurring 

between April and September (Sala et al. 1992). Soils are frequently dry but experience brief wet periods, 

and as a result, soil water content is highly variable (Lauenroth and Bradford 2006). Precipitation patterns 

are dominated by small events (< 5 mm), but differences in the size of large events (> 30 mm) accounts 

for most of the variability in interannual rainfall (Lauenroth and Sala 1992). The site is dominated by 

typical upland vegetation, including the short-stature C4 grasses blue grama (Bouteloua gracilis) and 

buffalograss (Bouteloua dactyloides), and plains pricklypear cactus (Opuntia polyacantha). Soil types at 

this site are Renohill and Ascalon fine sandy loam (Aridic Arguistoll and Ustic Haplargid) (Natural 

Resource Conservation Service 2008).  

Rainfall manipulations are described in Evans et al. (2011). In brief, in 1998, two blocks were 

divided into four 3-m
2
 treatment plots: a control plot receiving ambient rainfall and three manipulated 

plots that were automatically covered by rainout shelters during rain events in the growing season 
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(average dates 26 April – 7 October). Each week, water was re-added to these plots as a proportion of the 

ambient rainfall received that week (25% or 50% treatments) or including all rainfall in one re-watering 

(100% treatment). Thus, I investigated two drought severity levels (25% and 50% of growing season 

rainfall), one treatment that also received weekly re-additions, but at 100% of the week’s ambient rainfall, 

and a untreated control treatment receiving ambient rainfall.   

 

Soil characterization 

Four soil cores from each plot were collected in May of 2009 (11
th
 year of drought). After soils 

were sieved, I measured water holding capacity, initial soil moisture, and several soil properties for later 

correlation with community and functional response. Microbial biomass carbon (MBC) and nitrogen 

(MBN) were determined by chloroform fumigation extractions (Vance et al. 1987). I placed a 6 g soil 

subsample into an acid-washed 50 mL tube and fumigated with chloroform for five days, while another 6 

g subsample that was not fumigated acted as a control. Dissolved C and nitrogen (N) were extracted from 

both subsamples by shaking soil in 10 ml of 0.5 M K2SO4 for two hours then filtering through #40 

Whatman filter papers. Extractions were analyzed on a Shimadzu TOC analyzer. Microbial biomass was 

determined by subtracting C and N in fumigated samples from non-fumigated control, (Vance et al. 1987) 

and no correction factors were applied. Extractable C and N values were obtained from the non-fumigated 

control samples. I measured percent organic carbon in soils by running ground subsamples on a LECO 

CHN-1000 analyzer, and pH using a 1:1 mixture of soil and deionized H2O and a pH meter (Sparks 

1996). The remainder of soil samples were stored at -10°C until initiation of the lab experiment in May of 

2010.  

 

Incubation of soils from drought treatments at a range of soil moistures 

Before incubating soils, I subsampled soil cores described above to characterize microbial 

communities in the non-incubated, long-term field treatments (4 cores x 8 plots = 32 samples). With the 
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remaining soil, I set up lab incubations that subjected soils from each field treatment to 5 moisture levels 

to examine a) function (respiration rate) and b) the species composition (active and total) of microbial 

communities (Fig. 4.1). I selected incubation moisture levels based on the range of soil moistures I 

observed using hourly volumetric soil moisture measurements in the field, with the lower limit set by the 

solubility of bromodeoxyuridine (BrDU) in water, which was used to isolate the active community (see 

below). I converted gravimetric moisture data to water potentials using a calibration developed for this 

soil, and added water that resulted in incubation water potentials of -0.001, -0.01, -0.1, -0.5, and -1.5 MPa 

(Fig. 4.3). In these soils, this range of water potentials corresponded to gravimetric water contents 

between 6% and 25%.  

To monitor the soil respiration of drought treatments under this range of moisture levels, I 

incubated 14-16 g of soil in 1 quart mason jars stored at 25 C. I measured soil respiration rates by 

analyzing the accumulation of CO2 in the headspace of the jars with a LiCor Infrared Gas Analyzer 

(IRGA) every four hours for the first 48 hours of the incubation, then weekly for 6 months. 

To describe how microbial communities, both active and total, responded to contemporary 

moisture conditions, and to test for niche partitioning, I incubated 5-g soil samples in sterile jars with 

BrDU. BrDU is an analogue of thymidine, and therefore can be used to analyze the proliferation of living 

cells (Urbach et al. 1999). I added BrDU to samples by dissolving a consistent amount (300 ng/g soil) in 

water I added to each incubation. I incubated the vials at 25 C for 36 hours, while growing 

microorganisms incorporated BrDU molecule into replicating DNA (Borneman 1999). This amount of 

time (24 - 48 hours) is consistent with other studies using BrDU to isolate actively growing microbial 

communities in soil (Artursson et al. 2005, Allison et al. 2008, Hanson et al. 2008) and allows time for 

replication and BrDU-incorporation to occur, but not enough for significant turnover of the microbial 

biomass. 

I extracted DNA from incubated soils using MoBio PowerSoil Kit (MoBio Laboratories, Solano, 

CA) and performed an antibody immunocapture to separate labeled DNA (containing the BrDU 
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molecule) from inactive DNA (Allison et al. 2008, McMahon et al. 2009, Hirsch et al. 2010). To obtain 

enough BrDU-DNA for pyrosequencing preparation, I pooled separately-incubated and extracted DNA 

from field cores (4 from each plot) for a total of 40 BrdU-DNA samples and 40 total (active + inactive) 

samples (5 water-levels x 2 blocks x 4 treatments, see Fig. 4.1).  

 

Bacterial community pyrosequencing 

I analyzed the community structure of total and active communities (from moisture incubations) 

and field treatment communities (not subject to moisture incubations) using a pyrosequencing-based 

analysis of the 16S rRNA gene as described in Fierer et al. (2008) to maximize both sequencing 

(phylogenetic) depth and the number of communities profiled (sample breadth). I amplified the 27 to 338 

portion of the 16S rRNA gene using error-correcting bar-coded primers (Hamady et al. 2008). The 

forward primer contained a Roche 454 ‘A’ pyrosequencing adapter, connected with a TC linker, and 

reverse primer contained a 12-bp bar-coded sequence, Roche 454 ‘B’ sequencing adapter, and a TC 

linker. Polymerase chain reactions (PCR) were conducted with 0.5 μL (10 μM) of each forward and 

reverse primer, 3 μL template DNA, and 22.5 μL Platinum PCR SuperMix (Invitrogen, Carlsbad, CA), 

similar to Fierer et al. (2008). I amplified samples in triplicate, pooled and cleaned reactions using a PCR 

Cleanup Kit (MoBio Laboratories, Carlsbad, CA), then sequenced them on a Roche FLX 454 

pyrosequencing machine at the Environmental Genomics Core Facility at the University of South 

Carolina.  

I followed previously-described protocols to analyze pyrosequencing data (Fierer et al. 2008, 

Hamady et al. 2008, Lauber et al. 2009) using QIIME (Quantitative Insights Into Microbial Ecology) 

(Caporaso et al. 2010b). I first removed sequences < 200 bp and with a quality score < 25. I identified 

bacterial operational taxonomic units (OTU’s) as those organisms whose 16S rRNA gene sequences were 

97% similar, and used the most abundant sequence per OTU as the representative sequence for that OTU. 

I aligned sequences using PyNAST (Caporaso et al. 2010a) and assigned taxonomies to these 
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representative OTU phylotypes using the RDP Classifier (Wang et al. 2007a). I performed basic filtering 

on all datasets that excluded all OTU’s that were only present in one sample.  

 

Generation of species distributions from moisture response and comparison to communities from long-

term drought treatments 

To assess the extent to which microbial responses to different moisture levels explained shifts in 

community composition under long-term drought treatments, I examined the overlap between 

communities active under certain lab moisture conditions and communities under long-term field 

manipulations. I first did this qualitatively by comparing responses of individual phyla to lab moistures 

and field treatments. If the group abundances shifted similarly from wet to dry lab incubations as from 

control to drought plots in the field, this would suggest that differences in soil moisture among drought 

treatments – and differential soil moisture sensitivity among phyla – was driving changes in phyla 

distribution under drought. However, I also wanted to evaluate the extent to which this overlap occurred if 

I considered how actual field soil moisture conditions varied among drought treatments. To do this, I 

generated moisture frequency distributions for each field treatment (25%, 50%, 100%, control, Table 4.1) 

based on hourly soil moisture data collected in 2008, during drought treatment. I then used the abundance 

of species active at different moisture levels (in control soils) to weight the abundances of certain species, 

generating “niche-extrapolated” communities one might expect to emerge in long-term drought 

treatments if specific moisture conditions favored certain microbial groups (i.e. if moisture response were 

driving changes in species abundance). I compared community composition from the communities I 

generated with those I observed in the field (to examine the extent of overlap), as well as original active 

communities (collapsed over lab moisture levels, but not weighted) using multivariate distance metrics 

described below. Although this analysis can be considered a simplified version of species distribution 

models (although these predict across space, not time) and niche models recently emerging in plant 
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community ecology (Iverson and Prasad 1998, Austin 2002), for simplicity’s sake I simply refer to them 

as niche-extrapolated communities in this paper.  

 

Data analysis 

I aimed to describe how microbial communities respond to both long-term drought treatments and 

lab moisture incubations. Under this design, I therefore treated field drought treatment (4 levels), lab 

moisture (5 levels), and a treatment by moisture interaction as fixed factors both in multivariate analyses 

of differences in whole communities, and univariate analyses of differences in single variables (e.g. 

respiration, single phyla) among treatments and moisture levels. 

I examined variation in community composition among samples (beta-diversity) using the 

Unifrac distance metric (Lozupone and Knight 2005). Unifrac calculates the fraction of branch length 

unique to a sample or environment compared to overall branch length, computing similarity distances by 

using only presence or absence of phylotypes (“unweighted Unifrac”), and also when including 

abundances of phylotypes (“weighted Unifrac”). The use of this distance metric allowed us to consider 

the phylogenetic relationship of groups when determining the similarity of one community to another. 

Using these Unifrac distances, I created ordinations using non-metric multidimensional scaling (NMDS). 

Then, using PerMANOVA analyses (Anderson 2001) in Primer v6, I tested for significant differences 

between communities in different treatments, across moisture levels, and between communities I 

observed in long-term treatments and niche-extrapolated communities. PerMANOVA is a permutation-

based multivariate analysis that can accommodate many sampling designs, and allowed me to include 

“block” as a random effect and examine a moisture by treatment interaction. This test calculates a pseudo 

F-statistic (and p-value) by comparing the total variance explained by sample identities (i.e. treatment, 

moisture) to that explained by random permutations of sample identities.  

I also tested for correlations between long-term field community composition and environmental 

variables (DOC, pH, etc.) using Monte Carlo permutations (9999) and NMS vector fitting (in R), and for 
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relationships between plant community composition and bacterial community composition by correlating 

plant and microbial species distance matrices using a Mantel test (in R).  

To describe the relative influence of treatment and moisture on respiration rate (univariate data), I 

used a mixed model in SAS (proc mixed) that included treatment and moisture as fixed effects, and block 

as a random effect. I calculated partial r
2
, indicating the relative explanatory power contributed by each 

factor by dividing sum of squares of a factor by the total model’s corrected sum of squares. I also 

analyzed the correlation between respiration rate (at 36 hours and 6 months) and each environmental 

variable (transformed when not meeting normality assumptions) using linear regressions (SAS proc reg).   

 

Results 

Community composition under long-term drought treatments 

Field community composition was significantly different across 11-year rainfall reduction 

treatments and control treatments (p=0.02, Fig. 4.2). Differences were not significant either across 

drought treatments (moderate vs. severe), nor across types of “control” (unmodified plots vs. plots 

covered by the shelter but receiving 100% of moisture re-added weekly). Several individual phyla also 

showed significant responses to drought: Actinobacteria were less abundant under drought than control 

(p=0.001), while abundance of Bacteroidetes was significantly higher in the 25% treatment than in all 

other treatments (Fig. 4.3). The environmental variables that most strongly correlated to field community 

composition were DOC, DOC/N, and pH (Table 4.2). 

 

Active and total community composition under moisture incubations 

By isolating BrDU-DNA from total DNA, I examined community composition of both the active 

and the total (active + nonactive) bacterial community from each drought treatment under 5 moisture 

levels (ψ -1.5, -0.5, -0.1, -0.01, -0.001 MPa, see Fig. 4.1). Overall, active communities showed higher 

variation than total community composition (Fig. 4.4a), and were more driven by lab moisture level than 
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field experimental treatment, although both factors were significant over several taxonomic levels (Fig. 

4.5). In addition, differences that emerged among moisture levels were primarily driven by changes in the 

relative abundance of active groups (as opposed to simply the presence or absence), as moisture was a 

weaker driver of betadiversity using unweighted Unifrac (data not shown).  

Total community composition was only marginally affected by moisture conditions, but primarily 

determined by the soil’s field treatment (25%, 50%, etc.) (Fig. 4.4a,b, Fig. 4.5). This effect was also 

consistent across the breadth of taxonomic levels, but for total communities, factors had a stronger effect 

at the phylum level, while active communities were more responsive at the species level. The distribution 

of phyla in total communities subject to moisture incubations (not shown) was very similar to that of the 

distribution of phyla in non-incubated communities from field treatments (Fig. 4.3).  

 

Functional response of different drought treatments to moisture 

I examined the relative influence of field treatment and lab moisture level on respiration rate. In 

both short-term (36 hour) and long-term (6 month) incubations, soil moisture was a stronger determinant 

of respiration rate than field treatment; that is, the current conditions for the incubation were a more 

important control than the 11-year field treatments (Fig. 4.6). In short-term incubations, however, field 

treatment was also a significant driver of respiration rate, explaining 21% (partial r
2
) of the variation out 

of 86% of total explanatory power. Specifically, in the short-term, respiration rates of soils from control 

treatments were higher than 25% rainfall reduction at -0.001 MPa (p = 0.08) and control soils were higher 

than 50% and 25% at -0.1 MPa (p = 0.04). Variation in short-term respiration rates among field 

treatments was also not significantly correlated to variation in environmental factors among field 

treatments (p > 0.1 in regressions with DOC, DON, microbial biomass C and N, SOC, and pH in Table 

4.3, regression results not shown). 

 

Separation of microbial groups across moisture niches 
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By examining active communities from the control field treatment at different moisture levels, I 

could identify the whole communities and individual phyla that characterized different moisture niches, 

ignoring effects of field drought treatment. As described above for all field treatments, moisture strongly 

influenced bacterial community composition, including in the control treatment (Fig. 4.4b). Moisture also 

significantly altered the distribution of several phyla (Proteobacteria, Bacteroidetes, Actinobacteria) in the 

control treatment, providing an indicator of phyla separation across moisture niches (Fig. 4.7).  

 

Overlap between moisture niche separation and community shifts under drought 

I evaluated the overlap between bacterial response to lab moisture and community shifts under 

long-term drought plots by directly comparing change in phyla, and at the species level, by generating 

communities one would expect to see under rainfall manipulations in the field (niche-extrapolated 

communities). In general, response to moisture in the lab (i.e. phyla more abundant under wet conditions, 

etc.) was not a good predictor of changes in abundance under long-term drought treatments. For example, 

Actinobacteria, relative to other groups, were significantly more abundant in dry moisture incubations, 

and although this -1.5 MPa water potential did occur more frequently in the drought plots, Actinobacteria 

were actually lower in drought plots than control plots in the field. Similarly, the abundance of 

Proteobacteria (specifically, alphaproteobacteria) was directly related to increasingly wet water potentials, 

but was not significantly different among drought and control plots in the field (Fig. 4.3, 4.7).  

Niche-extrapolated communities, generated by weighting the relative abundance of species active 

under certain moisture with soil moisture frequency distributions in the field (see Table 4.1), were slightly 

more similar to communities from long-term drought plots than communities that had not been weighted 

(Table 4.4). However, the community composition was still quite distinct from long-term drought plots, 

and much more similar to the composition of original active communities that were not weighted based 

on field moistures. 
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Discussion 

In this study, I asked 1) whether long-term drought alters microbial community composition, 

activity, and respiration in response to moisture and 2) whether variation in moisture sensitivities among 

microbial groups (moisture niche partitioning) could explain the distribution of microbial groups I 

observed under long-term drought. Overall, I observed significant shifts in bacterial community 

composition under 11-year drought treatments in the shortgrass steppe, and differences in the short-term 

respiration rate and active community composition as a result of these changes in the field. I also 

documented bacterial moisture niche partitioning by describing communities that actively grew under a 

range of moisture levels. However, I did not find evidence that these differences in microbial sensitivity 

to moisture (niche partitioning) was directly driving long-term shifts in community composition, as 

abundances of species in field treatments was significantly different from those expected based on 

bacterial moisture response and field moisture conditions.  

 

Does long-term drought alter microbial community growth and function in response to moisture? 

As I had hypothesized, microbial communities were significantly different under drought plots 

compared to control. Other studies have also shown that microbial community composition is affected by 

shifts in moisture regime (Drenovsky et al. 2004, Williams and Rice 2007, Castro et al. 2010), but many 

also show microbial communities are resistant to changes in moisture (Cruz-Martinez et al. 2009, 

Landesman and Dighton 2010), or that precipitation is a weaker driver of microbial communities (Lauber 

et al. 2009) than one might expect based on its importance in driving plant community composition and 

ecosystem function (Fan 1993, Epstein et al. 1997, Epstein et al. 2002). Although drought resulted in 

community changes, the severity of drought (25% vs. 50% of ambient growing season precipitation) did 

not significantly affect composition. This lack of difference could indicate that there is a threshold of 

bacterial sensitivity to moisture, especially since moisture stress may act through different mechanisms as 

moisture levels decrease (Stark and Firestone 1995, Chowdhury et al. 2011). It could also indicate that 
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differences in the extremity of disturbances might not explain discrepancies microbial sensitivity among 

previous experiments (Landesman and Dighton 2010). However, soil moisture regimes in the 25% and 

50% treatments was also more similar than one might expect based on the proportional differences in 

rainfall (see Chapter 3 and Evans and Burke in revision), and it is likely this also influenced the degree 

community composition differed among these treatments.  

Soil moisture patterns also differed slightly among 100% and control plots (Evans and Burke in 

revision), perhaps because weekly re-additions resulted in changes in the timing of rainfall in 100% plots. 

This difference could explain the marginal difference in community composition I observed between 

100% and control treatments. Notably, I also saw a shift in pH under 100% treatments, and lower plant 

cover (Evans and Burke in revision). Overall, although methodological caveats prevent us from 

extrapolating results from this study to larger areas, and from making predictions for specific future 

rainfall shifts (i.e. a 50% reduction in ambient precipitation), my monitoring does show that drought 

treatments effectively reduced soil moisture, and that this significant difference resulted in altered 

microbial community composition in the shortgrass steppe.  

The composition of communities that were active under different moistures was affected by both 

contemporary moisture conditions and by field moisture treatment (Fig. 4.4, 4.5). The fact that 

communities did not completely (and immediately) converge, even when subject to the same moisture 

conditions in the lab, suggests that the change in community composition under drought may have 

affected community potential (i.e. the microbial ‘seed bank’) and influenced which species are active 

under certain conditions, at least in the short-term (Fig. 4.4b). Other studies have also shown that 

historical conditions (or “life history envelope” (Waldrop and Firestone 2006) can affect the response of 

communities to moisture conditions (Fierer et al. 2003, Evans and Wallenstein 2012), and other 

environmental changes (Tobor-Kaplon et al. 2006, Ayres et al. 2009), challenging previous assumptions 

that bacterial communities respond uniformly and immediately to their contemporary environment 

(Schimel and Gulledge 1998, Schimel 2001). These results call for further investigation into how a 
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microbial community’s climate envelope determines its response to contemporary conditions, and how 

potential constraints from antecedent conditions affect biogeochemical cycling (Prosser et al. 2007). 

Total bacterial community composition was more strongly affected by long-term field treatment 

than contemporary moisture level, in contrast to the relative influence of factors structuring active 

communities (Fig. 4.4, 4.5). Williams (2007) also found total community structure was more related to 

long-term irrigation treatments in the tallgrass prairie than it was to contemporary moisture conditions, 

which had a greater influence microbial physiology and activity. In this study, total communities were 

quite distinct from active communities (Fig. 4.4a), both in composition and in the significance of factors 

influencing composition across taxonomic levels (Fig. 4.5). Active communities were more significantly 

affected by moisture and treatment at the species level, while total communities were significantly 

different across moistures and treatments at coarser taxonomic scales. Other studies have reported active 

microbial community composition can differ significantly from that of the total community (Griffiths et 

al. 2003), just as plant seed banks can differ from existing plant communities (Coffin and Lauenroth 

1989). In this study, some species that I observed in the active community were not even detected in the 

total community, showing that species active under certain conditions can be so rare when the inactive (or 

slow-growing) portion of the community is included that these species can appear absent in the total 

community at this depth of sampling. These observations highlight the importance of considering both 

active and total microbial community composition, as even species that are the most responsive to 

environmental conditions – and that may be the highest contributors to function – may not be detected by 

commonly used total DNA profiles. 

Long-term drought treatment altered the functional response of microbial communities to 

moisture in the short-term, but respiration rates were only affected by contemporary moisture level in the 

long-term (Fig. 4.7). Differences in soil respiration due to drought treatment – in the short-term – could be 

due to shifts in microbial community composition (Wallenstein and Hall 2012), or to shifts in other 

environmental factors, like carbon availability. However, although environmental factors did change 
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under drought (see Table 4.3), differences in short-term respiration rate were not significantly correlated 

to variation in this factors (p > 0.1 for all correlations, data not shown). Thus, this change in moisture 

response may have been due to shifts in the functional potential of the microbial community, which I did 

observe in short-term incubations (Fig.  4.3).  

Although respiration data suggest the observed shift in community potential and activity may not 

affect respiration-moisture relationships in the long-term, observed shifts in short-term response may be 

equally important for semiarid carbon budgets. The immediate pulse of CO2 that occurs after frequent 

rewetting events can constitute a large proportion of total carbon flux in semiarid and arid ecosystems 

(Huxman et al. 2004, Munson et al. 2010), and accurately predicting the magnitude of this pulse has been 

challenging (Yuste et al. 2005, Borken and Matzner 2009, Lawrence et al. 2009). My results suggest that 

some of the uncertainty in predictions of this CO2 pulse could be explained by shifts in microbial 

community potential under antecedent conditions. Interestingly, I did not observe a significant interaction 

between moisture and treatment, suggesting that a history of drought may have reduced overall potential 

of the microbial community (i.e. respiration was lower than control at each moisture level), but did not 

necessarily result in communities that can better take advantage of dry conditions.   

 

Can bacterial moisture niche partitioning explain shifts in community composition under long-term 

drought? 

I hypothesized that the shifts in microbial community composition I observed under drought 

would be directly driven by variation in moisture sensitivity among microbial species. To test this 

hypothesis, I first examined whether different microbial groups were active under different moisture 

conditions, and then compared microbial groups active in relatively drier conditions to those abundant 

under long-term drought treatments.  

Although many studies have documented variation in microbial sensitivity to moisture (Harris 

1981a, Avrahami and Bohannan 2007), few have presented a comprehensive assessment of those 
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microbial groups that grow in response to a range of moisture levels, or moisture niche partitioning in soil 

bacteria. My findings are similar to some observation in previous studies, but not all. Actinobacteria and 

Firmicutes have been shown to benefit from dry conditions (Griffin 1969, Drenovsky et al. 2004). 

Actinobacteria were indeed most active at driest and intermediate moisture conditions, but Firmicutes 

were significantly more abundant at an intermediate moisture (-0.1 MPa). Proteobacteria have also been 

shown to have higher abundances under wet conditions (Castro et al. 2010), as I observed, and as a gram-

negative bacteria, may be more sensitive to drought (Harris 1981a, Nesci et al. 2004).  

If moisture were the primary driver of microbial community structure in the field, one would 

expect microbial distribution among moisture niches to serve as a good predictor of changes in total 

community composition under long-term drought. Although adjusting relative species abundance based 

on microbial moisture niche and field moisture conditions did improve my ability to predict community 

composition in the long-term field plots (Table 4.4), these niche-extrapolated and long-term field 

communities were still significantly different. This was likely because a large degree of the dissimilarity 

of community composition among field communities and those active under lab incubations was due to 

the presence or absence of certain microbial species, and not simply changes in abundance, which is the 

only thing I could manipulate with weighting analyses. However, my inability to detect many of the 

species active under dry conditions in total plots provides further evidence that other drivers are causing 

these species to be too rare to be detected. 

Comparisons of community shifts in the lab and field at the phyla level also did not support my 

hypothesis that moisture drives long-term community shifts under drought. Phyla that increased in 

response to drought were not the same phyla that were more active at low moisture levels in the lab (Fig. 

4.3, 4.7). Specifically, Actinobacteria, which were more active at drier moistures, were lower in drought 

treatments than control (Fig. 4.3, 4.7), and Proteobacteria (largely alphaproteobacteria), which were more 

abundant under high moistures, were not significantly different among field treatments. Bacteroidetes was 

one phyla that did increased in abundance under drier (specifically, -0.5 MPa) conditions and groups in 
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this phyla were also more abundant under drought conditions. This distribution of Bacteroidetes across 

moisture conditions is one thing that made niche-extrapolated communities more similar to field 

communities (Table 4.4), but still only had small effects. My inability to generate communities closer to 

those under long-term drought also may have been influenced by differences in the taxonomic level at 

which moisture and treatment effects were expressed in active versus communities under long-term 

treatments (Fig. 4.5).  

Together, these results suggest that there may be other factors that affect microbial community 

composition, even when only rainfall is manipulated, and challenges assumptions that differences in 

microbial sensitivity has driven previously observed shifts under precipitation manipulations. In this 

study, microbial communities in the field were affected by DOC/N, and although less strongly, pH (Table 

4.2). These variables were also correlated to drought treatment (Table 4.3), but can also drive microbial 

community composition independent of moisture (Bossio and Scow 1998, Rousk et al. 2010), or more 

strongly than soil water content (Lauber et al. 2009) and may have altered the direct effect of changes in 

moisture on microbial communities in these long-term treatments. Williams (2007) also suggests that the 

differences in microbial community composition he observed under long-term irrigation plots were due to 

aggregated effects of the rainfall manipulation on the ecosystem, like shifts in rhizodeposition. These 

trends could suggest that the extent other factors shift under drought may determine whether or not 

microbial communities are sensitive to changes in moisture, but other studies have also recorded 

community resistance with changes in environmental factors, and vice versa (Cruz-Martinez et al. 2009, 

Evans and Wallenstein 2012). Overall, my results call for further studies that separate direct and indirect 

drivers of microbial community composition. 

 

Conclusions 

In summary, I observed differences in bacterial communities under drought but did not find 

evidence that these differences were driven by changes in moisture regime in the shortgrass steppe. I 
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documented moisture niche partitioning in bacteria by showing that unique communities are active under 

different moisture conditions. This suggests that long-term shifts in soil moisture regime have the 

potential to drive the relative abundance of bacterial groups, which could affect microbial community 

dynamics under new precipitation regimes. However, I did not find evidence that the shifts in microbial 

community composition I observed under long-term drought were driven by variation in bacterial 

moisture sensitivity. If longer and more severe droughts in the shortgrass steppe are accompanied by 

changes in soil and plant properties, as previous results from this manipulation suggest (Evans et al. 2011, 

Evans and Burke, in revision, Chapter 3), these factors could also be important drivers of microbial 

community composition under future climate scenarios. 

Many recent studies describe the sensitivity or resistance of microbial community composition to 

global changes. Additional observations of shifts in microbial communities with environmental 

fluctuations are certainly needed to make larger generalizations about microbial community dynamics 

(see Allison and Martiny (2008), but coupling these observations with novel approaches could allow these 

results to more effectively contribute to much-needed predictive frameworks and ecological theory in 

microorganisms (Prosser et al. 2007) by determining the factors that actually drive these changes. In this 

study, I used a novel approach in which I examined active microbial communities, comparing them first 

to total communities (to describe how shifts in microbial potential affect contemporary activity and 

function) and then to communities subject to long-term field treatments (to evaluate drivers of community 

composition). I extrapolated community composition based on moisture niche separation and also used 

phylogenetic information to examine controls on community composition. Although largely absent from 

microbial ecology, both complex species distribution models (Iverson and Prasad 1998, Austin 2002), and 

inference based on phylogenetic conservation of responses, traits, or niches (Webb et al. 2002, Ackerly 

2003, Silvertown et al. 2006, Lennon in review) are being used to gain insight into controls on species 

assembly in other organisms. Overall, a myriad of hypothesis-driven approaches will be needed to 
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determine the most important factors structuring microbial communities, and to establish theory that 

facilitates predictions of species distributions under future climates.   
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Tables 

 

Table 4.1. Frequency distribution of soil moisture in each drought treatment over one year (2009) with 

rainout shelters engaged during the growing season. These weights were used to generate a community 

expected under long-term soil moisture conditions of each treatment. 

 

 (MPa) Frequency (weights)   

 
25% 50% 100% Control   

-0.001 0.293 0.202 0.275 0.175   

-0.01 0.078 0.058 0.243 0.197   

-0.1 0.296 0.222 0.071 0.149   

-0.5 0.083 0.201 0.325 0.361   

-1.5 0.006 0.010 0.076 0.064   

 

 

 

 

 

Table 4.2. Nonmetric Multidimensional Scaling correlations (r
2
) between field community composition 

(non-incubated) and environmental variables 

 

Community Distance metric DOC DON DOC:N %OC pH 
Plant sp. 
composition

α
 

Unifrac based on presence-absence 0.57 0.284 0.823** 0.37 0.41* 0.19 

Unifrac based including abundance 0.68* 0.33 0.616* 0.65 0.27 0.18 

 
* indicates p < 0.1 and **indicates p < 0.05

 

α
Mantel test correlation statistic (r) 

 

 

 

 

 

Table 4.3. Mean (and standard error) of environmental variables across precipitation treatments measured 

in the last year of drought and at the time of sampling for soil microbial communities 

 
25% 50% 100% Control 

DOC 123.75 (13.3) 156.77 (31.1) 168.3 (31.6) 77.3   (7.5) 

DON 27.60   (1.1) 34.92   (6.2) 33.9   (0.3) 20.0   (0.9) 

DOCN 4.51   (0.3) 4.55   (0.1) 5.1   (0.8) 4.0   (0.6) 

MBC 137.61   (8.5) 165.59 (29.0) 187.4 (32.9) 148.4   (8.2) 

MBN 21.12   (7.9) 34.77 (12.4) 21.38   (3.6) 26.81   (5.9) 

MBCN 10.42   (4.0) 27.87 (17.0) 19.71 (10.1) 6.92   (1.6) 

SOC 1.42 (0.07) 1.39 (0.04) 1.46 (0.01) 1.37 (0.02) 

pH 7.61 (0.35) 7.70 (0.07) 7.72 (0.48) 6.23 (0.18) 

 

 

  



 

91 
 

 

Table 4.4. PerMANOVA distances between microbial communities simulated based on niche partitioning 

and field moisture conditions, and total communities present in long-term rainfall manipulations 

 
Pairwise comparison between communities Distance* 

Communities from drought treatment  Active communities (post- and pre- extrapolation)  

25%, field treatment - Niche-extrapolated 25% community
α
 0.584 

 - Active 25% community
†
 0.651 

50% field treatment - Niche-extrapolated 25% community 0.512 
 - Active 25% community 0.566 

100% field treatment - Niche-extrapolated 25% community 0.730 
 - Active 25% community 0.745 

Control field treatment - Niche-extrapolated 25% community 0.813 
 - Active 25% community 0.845 

 
*Distance (larger indicates more dissimilar) between communities based on Unifrac distances based on abundance

 

α 
Community composition after weighting species abundance based on species moisture niche partitioning from 

control treatments and field moisture distributions from each rainfall treatment
 

†
 Sum of active community composition across moistures without niche weighting 
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Figures 

 

 
 

Figure 4.1. Experimental design 

 

 

 
 

Figure 4.2. Nonmetric multiple dimension scaling (NMS) ordination of community similarity among 

long-term drought treatments in the field. Error bars represent the standard error of mean coordinates 

(N=8) 
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Figure 4.3. Relative abundance of dominant bacterial Phyla in (non-incubated) Field soils.  
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Figure 4.4. Active and total community composition from different drought treatments (indicated in A) 

subject to different moisture conditions in the lab (indicated in B), as analyzed by Nonmetric 

multidimensional scaling  using weighted unifrac distances. A and B are identical  except for labels and 

100% treatments were excluded for clarity, but not significantly different from Control treatments.  
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Figure 4.5. Significance (as determined by log of p-value) of factors influencing community composition 

across taxonomic level in (non-incubated) drought treatments (a), and Active (b) and Total (c) 

communities from drought treatments subject to moisture incubations 
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Figure 4.6. Respiration rate of soils from rainfall manipulations in the shortgrass steppe incubated at 5 

water potentials in the lab over 36 hours (a) and 6 months (b). 
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Figure 4.7. Relative abundance of dominant Phyla from Control plots active under moisture levels in lab 

incubations 
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Chapter 5: Soil microbial community response to drying and rewetting stress:  does historical 

precipitation regime matter?
3
 

 

Introduction 

While soil moisture is an eminent control on the rates of biogeochemical processes in all 

terrestrial ecosystems, responses to moisture pulses driven by dynamic precipitation patterns are 

especially complex and difficult to predict (Collins et al. 2008). These drying-rewetting events can result 

in large pulses of soil CO2 efflux that can strongly impact net ecosystem carbon (C) balance (Birch 1958, 

Austin et al. 2004, Parton et al. 2012) and in increased nitrogen (N) leaching (Miller et al. 2005, Gordon 

et al. 2008). Earth system climate models predict an impending intensification of the hydrologic cycle that 

will result in longer dry periods and more intense rainfall events (Huntington 2006). Under these 

conditions, the role of moisture pulses in regulating ecosystem function may become increasingly 

important, and changes in rainfall timing may alter the relationships between mean annual precipitation 

and rates of ecosystem processes (Knapp et al. 2002).  

Since soil microorganisms are key drivers of biogeochemical cycling, the way they respond to 

changes in rainfall timing could be an important factor for predicting changes in ecosystem processes. 

Sudden changes in moisture are stressful to microbes, as they must expend energy to regulate osmotic 

pressure to their microenvironment. To achieve osmotic regulation as soils dry, many microbes synthesize 

solutes such as polyols and amino acids (Csonka 1989). As soil water potential increases rapidly after 

precipitation events, microbes must release solutes before osmotic pressure bursts cells (Wood et al. 

2001). Fungi and bacteria have a wide range of tolerances to moisture stress, and have adopted many 

different strategies to cope with this stress (Van Gestel et al. 1993, Schimel et al. 1999). For example, 

fungi may be more drought tolerant than bacteria (with the exception of actinomycetes) because their 

hyphae can transfer moisture from water-filled micropores (Harris 1981b, de Boer et al. 2005), whereas 
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bacteria require water films for motility and  substrate diffusion (Stark and Firestone 1995). These 

physiological adaptations to moisture pulses require a large investment of resources, and are likely to 

reduce population fitness in environments where they are less important to survival (Schimel et al. 2007).  

Therefore, as precipitation regimes intensify, frequent and extreme drying-rewetting events may select for 

microbial taxa that are more tolerant to desiccation stress, and these changes may result in a community 

that responds differently to moisture stress. On the other hand, the frequency of large magnitude drying-

rewetting events may not drive changes in community composition or function: selection for stress 

tolerant taxa may occur with even a single drying-rewetting event and may persist over a period of years.  

 A ubiquitous underlying assumption about microbial communities is that fast turnover and 

widespread dispersion precludes any influence of antecedent conditions on contemporary structure and 

function (Allison and Martiny 2008). However, there is a growing body of evidence suggesting that, like 

plant communities, historical conditions influence responses of microbial communities to their 

environment (Van Gestel et al. 1993, Fierer et al. 2003, Waldrop and Firestone 2006, Stres et al.). 

Although temporal lags in process rates could simply be mediated by the persistent changes of the drivers 

of microbial function, such as substrate quality or quantity, soil texture, or even moisture (through 

ecosystem water storage), these findings suggest that altered biotic potential through persistent changes in 

microbial community composition could be an additional mechanism fostering inertia (Lauenroth and 

Sala 1992). Indeed, microbial communities previously exposed to disturbances such as precipitation stress 

(Fierer et al. 2003), freeze-thaw cycles (Schimel et al. 2007, Stres et al. 2010), or redox fluctuations 

(DeAngelis et al. 2010) have proven more resistant to these stresses than those that have not. In this way, 

whole microbial communities may “adapt” to a particular environment, and resultant shifts in community-

level traits may alter relationships between environmental factors and function. Further, the timescale on 

which these legacies persist could determine their contribution to biogeochemical feedbacks and will 

influence our ability to predict ecosystem responses to novel climate regimes (Allison and Martiny 2008). 

In this study, I isolate the effects of a single environmental change — intensified rainfall patterns 

— and test whether decade-long exposure to these conditions alters microbial responses to drying-
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rewetting events that are more commonly experienced under the intensified precipitation regime. The 

Rainfall Manipulation Plot Study (RaMPS) in the U.S. tallgrass prairie is ideal experiment on which to 

test this. In these manipulations, the timing and quantity of precipitation events was experimentally 

altered for 10 years to simulate a more extreme rainfall regime (fewer, larger rainfall events separated by 

longer dry periods). Harper et al. (2005) reported that the experimentally increased duration of drought 

and intensity of rainfall events at this site led to a reduction in mean annual soil respiration. Soil moisture 

explained less than half of the variation in respiration rates, and although decreased plant C inputs was 

hypothesized to influence reduced respiration (Fay et al. 2002), the authors suggest that changes in whole-

community microbial responses, brought on by the stress of the precipitation manipulation, may also be 

affecting respiration rates. It is unknown how the long-term modifications to the timing and magnitude of 

discrete rainfall events have altered microbial community composition and function in this experiment, 

whether community-level adaptations to climate persist in microbial communities, and whether microbial 

adaptation to precipitation regimes can affect soil respiration. With a coupled field-lab experiment, I 

examine whether precipitation history alters functional response to drying-rewetting through persistent 

changes in environmental drivers or through community-level microbial adaptation either to precipitation 

changes or other environmental variables altered by precipitation.  

I hypothesize that a history of rainfall intensification will cause changes in microbial respiration 

in response to drying-rewetting due to persistent changes in microbial community composition. As 

species sensitive to drying-rewetting would have died or decreased in abundance, and tolerant species 

would remain, I predict that soils from manipulations that altered rainfall timing will change less in 

response to drying-rewetting pulses in the lab, but that functional and compositional differences among 

field treatments will subside after soils are subjected to the same conditions for the duration of the 4-pulse 

incubation (115 days).  

 

Methods 
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 In order to test how different precipitation histories affect the response of soil microbial 

communities to drying-rewetting pulses, I subjected soils from an existing field rainfall manipulation in 

the tallgrass prairie to drying-rewetting lab incubations. By monitoring both the function and composition 

of the community throughout the lab incubation (Fig. 5.1), I could could examine the sensitivity of the 

microbial community to drying-rewetting pulses, and determine whether how this response was 

influenced by antecedent precipitation patterns and other soil factors.  

 

Field site and sampling 

I sampled soils from the Rainfall Manipulation Plot Study (RaMPS) at Konza Prairie Biological 

station in northeast Kansas (Fay et al. 2000). Twelve 7.6 m x 7.6 m plots were established in 1997 on 

annually burned native tallgrass prairie. In six “Delayed” rainfall treatment plots, rainfall timing was 

altered such that the dry periods were 50% longer than ambient conditions. Irrigation systems then re-

applied all ambient rainfall that occurred in that period, creating larger, but less frequent, rainfall events in 

Delayed plots (Fay et al. 2000). Two cores were taken from each RaMPS plot in late December 2007, and 

homogenized to pass a 2 mm sieve. Soils from 0-10 cm depths were sent to Colorado State University and 

stored at -10 °C until lab analysis.  

 

Lab incubation 

In early 2009, I set up a lab incubation that exposed soils from both field treatments to four 

drying and rewetting events that mimicked the conditions experienced for 10 years under the Delayed 

treatment in the field (Fig. 5.1). Pseudoreplicate cores from each plot were combined, and soils were 

thawed and allowed to thermally equilibrate over five days at 25 °C. Initial soil moisture and water 

holding capacity (WHC) were determined on a small subsample of soil from each field plot. Incubations 

were run in duplicate; approximately 5 g soil was placed in sterile 50 mL tubes with septa in the lids to 

facilitate gas measurements. After temperature equilibration, I brought all soils to 45% gravimetric soil 

moisture using sterile distilled H2O, and allowed them to incubate at this moisture with the caps on for 3 
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days. I then placed all tubes subject to drying-rewetting pulses in a fume hood with their lids off to air-dry 

for three days. I chose to wet up soils to 45% soil moisture (by weight) and allow twenty days between 

moisture pulses because these were average values obtained from 1998-2002 field data under the Delayed 

rainfall treatments at Konza Biological Station. Control (“continuously wet”) treatments were not dried 

out and kept at this soil moisture for the duration of the experiment, and served as a comparison to dried 

and rewet samples to account for successional changes in microbial and soil properties over the course of 

the experiment. I subjected dried-rewet soils to a total of four drying-rewetting periods, destructively 

harvesting samples from initial soils (Fresh, field-moist), after the initial wetting up period (field-moist 

soils brought to 45% soil moisture), after the first rewetting pulse (Pulse 1), and after the last rewetting 

pulse (Pulse 4) (Fig. 5.1). With the exception of the Fresh soils, all samples were harvested on the third 

day of incubation after the 45% soil moisture pulse, in order to facilitate comparisons among each time 

point and to the continuously wet control.  

 

Respiration readings 

I measured soil respiration rates by analyzing the accumulation of CO2 in the headspace of the 50 

mL tubes with a LiCor Infrared Gas Analyzer (IRGA). Readings were taken during the three days after a 

moisture pulse, and approximately weekly throughout the experiment on the continuously wet control.   

 

Microbial biomass 

Microbial biomass was determined by chloroform fumigation extractions (Vance et al. 1987). I 

placed a 4 g soil subsample into an acid-washed 50 mL tube and fumigated with chloroform for five days, 

while another 4 g subsample that was not fumigated acted as a control. Dissolved C and N were extracted 

from both subsamples by shaking 4 g soil subsamples in 10 ml of 0.5 M K2SO4 for two hours then 

filtering through #40 Whatman filter papers. Extractions were analyzed on a Shimadzu TOC analyzer. 

Microbial biomass was determined by subtracting C and N in fumigated samples from non-fumigated 
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control, and no correction factors were applied. Extractable C and N values were obtained from the non-

fumigated control samples.  

 

Quantitative PCR 

I extracted soil DNA from each sample using the Power Soil DNA Isolation Kit (MoBio, 

Carlsbad, CA) according to the instructions of the manufacturer. I performed quantitative polymerase 

chain reactions (QPCR) in triplicate using 96-well plates on an iCycler iQ thermal cycler (BioRad). 

Reactions consisted of 12.5 μL of Absolute QPCR SYBR Green mix (ABgene), 2.5 uL of 5 ng/μL bovine 

serum albumin (BSA), 0.25 μL of a 10 μM mixture of each primer (final volume 0.1 μM), 5 μL of 

template DNA, and PCR-grade H2O to a final volume of 25 μL. For 16S rRNA bacterial genes, I used 

EUB338 (Lane 1991) and Eub518  (Muyzer et al. 1993) at an annealing temperature of 55 °C; for fungal 

rRNA genes I used ITS1f (Gardes and Bruns 1993) and 5.8s (Vilgalys and Hester 1990) at an annealing 

temperature of 53 °C. Other conditions included: 95 °C for 2 minutes, followed by 40 cycles of 95 °C for 

15 s, annealing temperature for 30 s, and 72 °C for 30 s. I diluted DNA to 1ng/μl for bacterial assays and 

5 ng/μL for fungal assays, and adjusted to report copies per ng DNA. 

I generated melting curves for each run to verify product specificity by increasing the temperature 

from 55 °C to 95 °C. Standards were run in triplicate in each assay, and standard curves were developed 

using a serial dilution of genomic DNA extracted from pure cultures. For all quantitative PCR assays 

there was a linear relationship between the log of the standard copy number and the calculated threshold 

cycle across the standard concentration range (R
2 
> 0.95 in all cases).  

 

Pyrosequencing of bacterial communities 

I analyzed the bacterial community structure of Fresh, Pulse 1, and Pulse 4 soils (see Fig. 5.1) 

using a pyrosequencing-based analysis of the 16S rRNA gene in total soil DNA as described in Fierer et 

al. (2008). I amplified the 27 to 338 portion of the 16S rRNA gene using error-correcting bar-coded 

primers (Hamady et al. 2008). The forward primer contained a Roche 454 ‘A’ pyrosequencing adapter, 
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connected with a TC linker, and each reverse primer contained a unique 12-bp bar-coded sequence, 

Roche 454 ‘B’ sequencing adapter, and a TC linker. PCR reactions were conducted with 0.5 μL (10 μM) 

of each forward and reverse primer, 3 μL template DNA, and 22.5 μL Platinum PCR SuperMix 

(Invitrogen, Carlsbad, CA), similar to Fierer et al. (2008). I amplified samples in triplicate, and pooled 

and cleaned them using a PCR Cleanup Kit (MoBio Laboratories, Carlsbad, CA), then sequenced them on 

a Roche FLX 454 pyrosequencing machine at the Environmental Genomics Core Facility at the 

University of South Carolina. Of 36 samples intended for pyrosequencing, 5 samples did not successfully 

amplify and therefore were not included in the 31 pooled barcoded samples submitted for sequencing. 

I followed previously-described protocols to analyze pyrosequencing data (Fierer et al. 2008, 

Hamady et al. 2008, Lauber et al. 2009) using QIIME (Caporaso et al. 2010b). I first removed sequences 

< 200bp and with a quality score < 25. I identified OTU’s as 97% similarity and used the most abundant 

sequence per OTU as representative of that OTU. I aligned sequences using PyNAST (Caporaso et al. 

2010a) and assigned taxonomies to sequences representative of each phylotype using the RDP Classifier 

(Wang et al. 2007a).  

 

Data analysis 

 I aimed to test how microbial communities from two different rainfall manipulations responded to 

a series of moisture pulses in the laboratory. The experimental design consisted of 3 factors: field 

treatment (2 levels, Delayed and Ambient, fixed), time point in the lab incubation (4 levels, fixed), and a 

treatment by time point interaction, with 6 field replicates. To analyze univariate data, I first log-

transformed data for certain variables (Microbial biomass C and N, Extractable C and N, fungal:bacterial 

ratio) to adjust for unequal variances. I then used a repeated measures model (SAS, proc mixed) to 

account for the correlation among plots over time throughout the lab incubation, with plots nested within 

treatment. When significant differences occurred in an ANOVA, I compared treatments separately within 

a time point and compared time points within treatments. I also used this model to compare changes in 

individual taxonomic groups in my community analyses.  
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To quantify how field treatments differed in variability in response to moisture pulses in the lab 

(Table 5.1), I calculated the proportional change in response variable (Y) from one moisture pulse to the 

next ([Yt+1 – Yt]/Yt) for each sample. I also calculated the proportional change between pulse 4 and the 

continuously wet control ([YPulse4 – YWet]/YWet), which were measured at the same time point (the 

conclusion of the experiment), to describe the integrated effect of drying-rewetting compared to a 

continuously wet incubation, and the coeffiecient of variation (standard deviation divided by absolute 

value of the mean) to describe the samples’ total variability throughout the lab incubation.  I then 

compared Ambient and Delayed groups within the same univariate model as above.  

To describe beta diversity and still account for differences in the number of sequences per 

sample, I constructed rarefaction curves that describe how the number of unique phylotypes (< 97% 

sequence similarity) increased as sequences in a sample increased. I determined similarity of overall 

community composition among samples using Unifrac (Lozupone and Knight 2005). Unifrac calculates 

the fraction of branch length unique to a sample or environment compared to overall branch length, 

computing similarity distances using only presence or absence of a phylotype (unweighted), and including 

abundance of phylotype (weighted). The use of this distance metric allowed us to consider the 

phylogenetic relationship of groups when determining the similarity of one community to another.  

After removing outliers, I created ordinations with Unifrac distances using Non-metric 

multidimensional scaling (NMDS) with the remaining 27 samples (N=3-6 in each group), and tested for 

significance of differences between communities in different treatments and across time points using 

PerMANOVA (Anderson 2001) in Primer v6. PerMANOVA is a permutation-based multivariate analysis 

that can accommodate more complex and unbalanced sampling designs. This test calculates a pseudo F-

statistic by comparing the total variance explained by sample identities (i.e. Time, Treatment) to that 

explained by random permutations of sample identities. As with univariate data from the same design, I 

tested the effect of Time (fixed), Treatment (fixed), Time*Treatment, and nested plots within treatments 

(random) on community similarity, and examined significance of pairwise comparisons within both Time 

and Treatment compared to 9,999 permutations. To examine more specific species responses, I also 
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performed a Similarity Percentage (SIMPER) analysis (Clarke and Gorley 2006) to identify the relative 

contribution of each species to the differences in groups I observed using PerMANOVA.  

 

Results 

 To determine whether a long term treatment of altered rainfall timing affected microbial 

community response to drying-rewetting, I measured variables that describe both the functional response 

and changes in the composition of microbial communities. I was interested in whether differences caused 

by rainfall manipulation persisted in the lab, whether this persistence could be explained by 

environmental variables or microbial community composition, and if a history of this stress caused 

variables to fluctuate less in response to moisture pulses.  

 

Respiration 

Respiration rates were highest in both Ambient and Delayed soils at the beginning of the lab 

incubation, and respiration pulses were smaller with each subsequent moisture pulse (Fig. 5.2). Soils from 

Ambient field treatments showed significantly higher respiration rates at the initial Wetting up period and 

after the second drying-rewetting pulse. Dry-rewet soils showed higher respiration pulses than 

continuously wet soil at the beginning of the experiment, but both the difference between field treatments 

(Ambient and Delayed) and the difference between pulsed and continuously wet soils was small at the 

end of the 115-day incubation (Pulse 4).  

 

Microbial Biomass 

Long-term  treatment (Ambient or Delayed) also affected microbial biomass, but there were no 

significant differences by the end of the incubation. Microbial biomass C and N were significantly higher 

under Delayed rainfall timing manipulations at the time of sampling compared to soils from Ambient 

plots (Fig. 5.3), and responded differently to drying and rewetting in the lab. Microbial C increased after 

the first pulse in Ambient soils but was reduced by Pulse 4. Microbial N increased in Delayed soils after 
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the first pulse but decreased in Ambient soils and in subsequent moisture pulses. Microbial C in Delayed 

soils was relatively unchanged by moisture pulses, but Microbial N in Delayed was more variable than 

Ambient across time points (Fig. 5.3, Table 5.1).  

 

Extractable organic carbon (EOC) and nitrogen (EN)  

There was a large increase of EOC (but not EN) during the first moisture pulse, especially in 

Ambient soils, and a later (Pulse 4) increase of N in soils from both field manipulations (Fig. 5.4). There 

was not a significant difference between EOC or EN in soils that had undergone drying rewetting pulses 

and those that were continuously wet, or significant differences between field treatments within any one 

time point. However, soils that experienced drying-rewetting in the field did have less variation in EOC in 

response to lab pulses (Fig. 5.4, Table 5.1).  

 

Fungal: bacterial ratio 

Soils that experienced Delayed rainfall timing had higher fungal: bacterial ratios in Fresh soils 

and after Pulse 1 (Fig. 5.5). Fungal: bacterial ratio increased in both field treatments as pulses progressed 

in the lab, and pulsed soils had a higher ratio than soils kept in continuously wet conditions.  Ambient 

soils changed more over the course of the lab incubation (Fig. 5.5, Table 5.1) and there were no 

significant differences in field treatments at the end of the incubation in soils that experienced drying-

rewetting or between field treatments in the continuously wet incubation.  

 

Bacterial community 

Pyrosequencing resulted in 99,048 sequences and 14,207 unique phylotypes (1 phylotype=97% 

similarity). Sequences per sample ranged from 41 to 7,485 with an average of 3,302. Four samples were 

removed from the community similarity and diversity analysis because they were outliers in the NMDS 

analysis, and also had less than 250 sequences per sample. Rarefaction curves continued to increase with 

additional sequences even up to 7000 sequences, and diversity did not significantly differ between 
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Ambient and Delayed soils in Fresh soils or after Pulse 1, but was higher in Ambient after Pulse 4 (Fig. 

5.6). 

Bacteria dominated soil communities compared to Archaea, but this proportion was not affected 

by field or lab manipulations. The most abundant Phyla in all groups were Actinobacteria (23%), 

Proteobacteria (23%), Verrucomicrobia (14%), and Acidobacteria (11%) (Fig. 5.7), and there were trends 

of higher variability across time points in Delayed soils compared to Ambient. According to my SIMPER 

analysis, a species from Verrucomicrobia (in the Xiphinematobacteriaceae family) most strongly 

contributed to differences among groups, which was more abundant in both Delayed soils compared to 

Ambient and in soils at Pulse 4 compared to Fresh (Table 5.2). Other notable groups that contributed to 

differences among treatments were Acidobacteriaceae (increased by Pulse 4), and Alphaproteobacteria 

(Rhizobales more abundant in Delayed but decreased in response to lab drying-rewetting).   

When communities were analyzed for similarity based on Unifrac distances, there was significant 

variation within groups (Fig. 5.8), but lab treatment explained more similarity among samples than field 

treatment (Ambient or Delayed) (Table 5.3). PerMANOVA pairwise comparisons (among time points 

within treatments and between treatments within time points) revealed that no communities were 

significantly different using Unweighted Unifrac differences. When taking relative abundance into 

account (Weighted Unifrac), treatments were significantly different at Pulse 4 (p < 0.05) and in Fresh 

soils (p < 0.1). Soils from Delayed treatments changed from Pulse 1 to Pulse 4, showing greater 

differences as the lab incubation progressed, but Ambient soils did not significantly change over time 

(Table 5.1, 5.3).  

 

Discussion  

Did long-term rainfall manipulations conditions influence microbial response to drying rewetting? 

While there is little doubt that soil microbial activity responds quickly to changes in 

environmental conditions, the role of environmental history in driving contemporary rates of microbially-

mediated processes is largely unknown. Previous studies have documented differences in microbial 
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function induced by historical legacies in climate (Fierer and Schimel 2002, Fierer et al. 2003), litter 

quality (Ayres et al. 2009, Keiser et al. 2010), or disturbance regime (Tobor-Kaplon et al. 2006), but the 

mechanisms driving these legacies is often unclear.   

My study provides evidence that, while soil moisture at any instant is the dominant driver of 

microbial function, the long-term treatment of changed soil moisture regime also affects the response of 

soil microbes to drying and rewetting events.  For example, I observed a lower respiration rate following 

initial soil rewetting in Delayed soils compared to Ambient soils (Fig. 5.2). This could be explained by 

persistent changes in other drivers like microbial biomass or substrate availability, but these pools did not 

explain a reduction in respiration in Delayed soils at the beginning of the experiment (Fig. 5.3, 5.4). The 

different long-term precipitation regime induced by these rainfall timing manipulations may have altered 

the aggregate community-level traits (sensu  Wallenstein and Hall (2011)) that control soil respiration 

including carbon use efficiency, soil moisture sensitivity and stress tolerance. These changes are most 

likely driven by changes in the relative abundance and activity of taxa that differ in physiology 

(Wallenstein and Hall 2012), which could occur at any phylogenetic level, depending on the degree to 

which these traits are conserved across evolutionary history. In my study, differences in community-level 

responses to the initial experimental rewetting could be attributed to the higher fungal:bacterial ratio in 

soils from the Delayed treatment (Fig. 5.5).  In this manner, historical precipitation regimes can act as a 

distal control on contemporary rates of microbial processes (e.g. respiration) by modifying the traits of 

microbial communities that act as transducers between contemporary abiotic drivers (e.g. soil moisture, 

substrate availability) and microbial function (as Wallenstein et al. (2006) proposed for denitrification.    

 

Do long-term treatment effects persist when soils are subject to the same conditions? 

The relative importance of environmental history on contemporary process rates depends, in part, 

on the degree to which historical effects persist following environmental change.  In this study, the 

ecological importance of historical precipitation regime depends on whether the differences in moisture 

pulse response between Delayed and Ambient soils that I observed during the initial pulse persisted when 
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the soils were subjected to the same moisture pulse regime. I predicted that soil microbial communities 

adapted to extreme rainfall patterns (i.e. drying-rewetting events of greater magnitude) would change less 

in response to drying-rewetting pulses than those that experienced ambient rainfall, and that Ambient 

soils would become more similar to Delayed through time as they adapted to moisture pulses. Consistent 

with this hypothesis, I found that respiration, biomass-C and extractable-C changed less in Delayed soils 

than Ambient soils throughout the 115-day laboratory experiment (Table 5.1), and that the effect of 

precipitation history declined throughout the experiment such that initial differences among soils from 

different field treatments were negligible by the end of the lab experiment.  

Other studies suggest that the effects of drying - rewetting events may cause changes in C-

mineralization long after the moisture pulse (Schimel et al. 1999, Fierer and Schimel 2002). Fierer and 

Schimel (2002) showed that differences in function persisted 6 weeks after drying-rewetting, with little 

convergence once subjected to the same conditions. The incubation in this study extended longer than 

this, and although I examined how control (Ambient) and stressed (Delayed) soils responded to a stress 

(instead of how they recover), I did observe similar respiration rates, suggesting that the effects of a 

decade of an altered precipitation regime on respiration may not persist beyond a single growing season in 

this particular prairie ecosystem. The persistence of historical legacies observed by Fierer and Schimel 

(2002) was at least partially explained by differences in substrate availability, which did not differ at the 

end of the experiment. Thus, the persistence of long term treatment effects may depend on the mechanism 

through which these legacies are generated. 

 

Mechanisms antecedent conditions influence contemporary response 

There are two mechanisms by which long-term rainfall manipulation treatments may have 

affected contemporary microbial function in this experiment. First, the experimental intensification of 

precipitation regime induced by RaMPS could have caused changes in plant and soil properties that 

persisted after soils were removed from the field and placed under identical conditions in the laboratory 

(Fig. 5.8a,b, Table 5.3).  In this study, the laboratory experiment isolated the effects of drying-rewetting 
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by subjecting two soils that differed only in historical moisture regime (i.e. no other previous ecosystem 

differences that would result in soil texture or chemical differences) to moisture pulses in a controlled lab 

environment in the absence of plants and other environmental drivers. Therefore, any changes that 

occurred reflect direct responses to shifts in precipitation, or indirect responses such as shifts in plant 

growth or chemistry affecting the quantity and quality of C inputs to soils. Although Fay et al. (2002) 

found decreased aboveground net primary production under Delayed rainfall in the field, I did not observe 

a difference in soluble (labile) C or N in initial soil measurements from each treatment. Therefore, I do 

not believe the persistence of differences in respiration between soils with different histories were 

primarily due to differences in substrate. Increased drying-rewetting can alter other abiotic factors such as 

soil physical structure (Adu and Oades 1978) that may also persist, although it is unlikely these changes 

significantly affected respiration rates because soils were initially identical and many of these variables 

change on much longer timescales (Jenny 1941).  

The second mechanism by which environmental history can affect contemporary microbial 

function is through changes in the composition and aggregate physiology of microbial communities.  

Altered precipitation patterns could induce community-level adaptation to the stress associated with 

drought and intensified rain events. This biotic selection could be driven directly by osmotic stress, or 

indirectly through abiotic factors that shifted under altered precipitation timing. Changes in community 

structure, such as the differences in fungal:bacterial ratio that I observed in this study, are likely to alter 

the aggregrate function of microbial communities (Wallenstein and Hall 2012).  Although I did not 

explicitly test fungal versus bacterial tolerance to drying or rewetting, increases in fungal:bacterial ratios 

do suggest that fungi and bacteria have differing sensitivities to drying-rewetting, as other studies have 

also suggested (Bapiri et al. 2010, Hawkes et al. 2010, Yuste et al. 2010). Ratios converged by Pulse 4, 

and Delayed soils changed less in response to drying-rewetting (Fig. 5.5, Table 5.1), suggesting biotic 

community adaptation to drying-rewetting stress could be captured at this broad level, and possibly 

explaining the persistence of observed differences in respiration rate. 
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Historical legacies in bacterial community composition 

While my data show that the fungal:bacterial ratio increased as a direct result of increased drying-

rewetting, a more detailed investigation of bacterial community composition revealed only subtle 

differences in community structure between field treatments, but increasingly dissimilar communities 

when subjected to identical conditions in the lab (Fig. 5.7, 5.8). Bacterial community data from 

pyrosequencing do not support a biotic mechanism for the historical legacies I observed in function, 

although precipitation history clearly influenced bacterial community composition throughout the 

timescale of the incubation, and this lack of initial dissimilarity does not preclude this mechanism’s 

expression on different timescales and through other microbially-mediated functions.  

I suggest two reasons why a 10-year rainfall timing manipulation may not have resulted in more 

distinct bacterial communities. First, it is possible that most taxa in the tallgrass prairie soils are pre-

adapted to some degree of moisture fluctuation, and the increased magnitude induced by these 

manipulations did not induce further selection. Other studies have observed no significant change in 

bacterial community composition under rainfall manipulations (Cruz-Martinez et al. 2009, Landesman 

and Dighton 2010). The differences I observed, either from field or lab treatments, emerged due to 

changes in relative abundance of particular taxa, rather than the presence or absence of certain taxa (as 

quantified by Unweighted Unifrac distances, Fig. 5.8b, Table 5.3). Delayed soils might have been better 

adapted to drying-rewetting. However, since the magnitude of the pulses that occurred in this 

precipitation regime also occurred in the natural historical climate, although less frequently, Ambient 

soils may have also contained the microbial taxa that allowed the extant community to adapt to laboratory 

moisture pulses quickly.  

Second, the lack of detectable effects of the RaMPS experiment on plant community structure 

and function may have buffered soil microbial communities from direct drying-rewetting selection 

pressures. Plant community properties, which remained relatively unchanged under this rainfall 

manipulation, have been shown to stabilize microbial dynamics; for example, plant diversity has been 

shown to diminish changes in microbial biomass and denitrification rates across seasons (McGill et al. 
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2010). In the absence of plant-mediated environmental buffering, exposure to direct drying-rewetting in 

the lab may have may have induced stronger selection on community composition.  Consistent with this 

hypothesis, subtle differences observed in field soil communities under the RaMPS appeared to drive 

divergent trajectories for community composition in the lab. For example, a greater abundance of a 

Verrucomicrobia species in Delayed soils most strongly contributed to whole-community dissimilarity of 

Delayed and Ambient soils at Pulse 4 (Table 5.2). This increase in abundance with each subsequent lab 

pulse could have emerged from this species’ slightly greater abundance in Delayed plots in the field 

which enabled them to capitalize on preferred conditions once plant-mediated buffers were removed.  

 Individual responses of certain species to drying-rewetting pulses, when examined across time, 

varied significantly (see Sparklines in Table 5.2). It is possible that the divergence in community 

composition I observed, and general variability within samples, may relate to the nature of drying-

rewetting as a disturbance. Unlike the Verrocomicrobia example discussed above, an Acidobacteria 

species that was more abundant under altered rainfall timing in the field changed very little in the lab, 

perhaps reflecting an alternative strategy of shifting resource allocation from growth to structural stability, 

instead of capitalizing on short-lived optimal conditions. A climate shift toward more extreme conditions 

(intensified rainfall) may more strongly induce diverse life strategies compared to a unidirectional shift 

(drought), which may result in more specialization (Wallenstein and Hall 2012). Other studies have 

suggested similar delineation of life strategies as a framework for predicting responses of microbial 

communities to disturbance (Van Gestel et al. 1993, Fierer et al. 2007).  

 Methodological idiosyncrasies could also have influenced measured trends in community 

composition and the absence of a link between community composition and function. First, tolerance to 

drying and rewetting may not have been expressed on the phylogenetic level I chose (97% similarity for 

OTU’s) because it requires complex mechanisms involving multiple genes. Keiser et al. (2010) examined 

the effect of historical substrate exposure on function and community composition on this phylogenetic 

level and also found community composition, which converged under similar conditions, did not follow a 

similar trajectory as function, as decadal supply of litter type from the treatments continued to affect 
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decomposition rate after 100 days. Second, I only sequenced bacterial communities, and fungi could 

display unique and strong responses to moisture stress. Efforts to determine the phylogenetic level at 

which microbial stress tolerance is expressed will be important for the development of predictive 

frameworks. In addition, assessing overall microbial community composition (as opposed to only the 

active members) may mask discreet changes in species assemblage that are better linked to function (or 

stress tolerance) (McMahon et al. 2011). A final methodological concern is whether communities were 

affected by long-term storage at -10 °C. Although physical effects on soils from the same site were likely 

similar, certain microbial communities could be more sensitive to cold-stress than others, and this could 

alter microbial community composition and responses to moisture upon rewetting (Lee et al. 2007, 

Gonzalez-Quinones et al. 2009). However, as I found no significant difference (yet communities were 

also not statistically the same), it is unlikely cold storage either affected soils differently or selected for 

species in a systematic way. 

 

Implications of historical legacies for predicting ecosystem responses to novel climates 

 A current challenge for ecologists is to establish whether existing relationships between abiotic 

factors and community and ecosystem properties can be extrapolated over time to predict ecosystem-

atmosphere feedbacks and the direction and rate of global change. My results suggest, as other studies 

have, that long term treatment conditions do play a role in determining the functional and composition 

response of microbial communities to environmental factors (Gulledge and Schimel 1998, Lundquist et 

al. 1999, Fierer and Schimel 2002, Fierer et al. 2003). In this study, differences in respiration rates – that 

could not be explained by substrate availability or microbial biomass – persisted when soils were 

incubated under the same conditions, but for less than 115 days. The increase in frequency of stressful 

conditions that already occur within an ecosystem’s historical range of variability might cause lags in 

function, perhaps mediated by changes in community composition (in this case fungal:bacterial ratio), but 

these lags will be short. Decadal-scale conditions may more strongly influence contemporary functional 

response when disturbances are further outside an environment’s historical range of variability (Veblen et 
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al. 1999), crossing potential thresholds, or when acting through indirect drivers like changes in plant 

properties. In contrast to short functional lags, effects of historical precipitation continued to cause 

differences in bacterial community composition through the end of the experiment. This suggests that 

biologically-mediated legacies at least have the potential to cause longer functional lags, perhaps in 

functions controlled by narrow phylogenetic groups (McGuire et al. , Schimel 1995). Thus, legacies of 

environmental conditions may affect microbially-mediated processes on different timescales, and vary in 

magnitude for different functions. More detailed descriptions of the temporal dynamics of microbial 

responses could improve predictions for how microbially-mediated processes will respond to global 

changes (Treseder et al. 2012). 

These results call for further work to 1. isolate direct and indirect mechanisms of historical 

conditions on responses of microbial communities through coupled field-lab studies (see Docherty et al. 

2012, Brown et al. 2012) 2. determine the phylogenetic level at which adaptations to stress, and functional 

linkages, are expressed, and 3. identify factors controlling the timescale on which historical legacies 

affect contemporary microbial responses. Under novel climate regimes, historical legacies may impair our 

ability to predict ecosystem responses with current predictive relationships. Some studies have begun to 

investigate whether carbon dynamics under moisture pulses can be better predicted using explicit 

microbial mechanisms (Lawrence et al. 2009, Li et al. 2010). Results from this study suggest that 

microbial adaptation to climate conditions may influence this response as well, and further research is 

needed to quantify how microbial legacies to climate could affect predicted changes in carbon flux at the 

ecosystem scale (Todd-Brown et al. 2012). 
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Tables  

 

Table 5.1. Summary of resistance of microbial communities from different long-term rainfall 

manipulation (Ambient and Delayed rainfall timing) subject to multiple drying-rewetting pulses in the lab  

 

Parameter 

Field rainfall 

manipulation 

Proportional change between two time 

points in lab manipulation     

  

Fresh to 

Pulse 1 

Pulse 1 

to 2 

Pulse 

2 to 3 

Pulse 3 

to 4 

Pulse 1 

to 4
a
 CV

b
 

Pulse 4 - 

Wet 

Control
c
 

Respiration Ambient -0.439
a
 -0.106 -0.516 1.019 6.31 0.702 -0.003 

  Delayed -0.209 -0.405 -0.404 1.254 4.08 0.710 -0.100 

Microbial Ambient 1.071      -0.363 0.410 0.164 

Biomass C Delayed 0.147      -0.222 0.268 0.410 

Microbial Ambient -0.223    -0.561 0.416 0.037 

Biomass N Delayed 0.182    -0.650 0.668 -0.332 

Extractable C Ambient 8.975      -0.564 0.769 0.098 

  Delayed 4.014      -0.663 0.619 -0.071 

Extractable N Ambient -0.029    1.479 0.553 0.148 

 Delayed 0.185    1.358 0.562 0.217 

Fungal: 

Bacterial 

Ambient 2.068      1.101 0.784 -0.342 

Delayed 0.991      0.290 0.428 -0.351 

Community 

Dissimilarity
c
 

Ambient 0.2098    0.2333   

Delayed 0.2181    0.2990   

 

Bold indicates a significant difference (p < 0.1) between the proportional change (or CV) in Ambient and 

that in Delayed 

 
a
 All variables other than respiration were measured only at Fresh, Pulse 1 and Pulse 4 time points, so 

proportional change could not be calculated among each time point. 
 

b 
Coefficient of Variation of all time points measured (excluding wet control) 

c 
YPulse 4 – YWet Control / YWet Control 

d 
Average Weighted Unifrac distance in ordination space between two communities of two groups. I 

could not test for significance of degree of change 

 

 



 

 
 

1
2
2

 

Table 5.2. Summary of response of most abundant unique phylotypes (greater than 0.85% abundance averaged across all groups) to field 

treatments and moisture pulses. Difference between Delayed and Ambient represents averages across all time  points (D-A), as average differences 

between Pulse 4 and Fresh (P4-Fr) are averaged across both treatments. Contribution to community difference was determined by SIMPER 

analysis in Primerv6, which determines the contribution of each species to driving the dissimilarity of communities in a group. Sparklines 

(“Response to Pulses”) represent the relative abundance of that species in Ambient (black line) and Delayed (blue line) treatments in Fresh, Pulse 

1, and Pulse 4 lab treatments. 
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Table 5.3. PerMANOVA results for Main effects and Pairwise comparisons within the Trt*Time 

interaction (field treatments within each time point and time points within each field treatment) 

 

Distance metric Test Factor Pairwise comparison 

Mean 

distance
a
 P-value

b
 

Weighted Main effects Trt   0.278 

Unifrac  Time   0.001 

  Trt*Time   0.085 

 Pairwise within Time Fresh Ambient-Delayed 0.1766 0.0771 

 Pulse 1 Ambient Delayed 0.2294 0.2109 

  Pulse 4 Ambient-Delayed 0.2244 0.0486 

 Pairwise within Trt Ambient Fresh - Pulse 1 0.2098 0.2486 

  Ambient Pulse 1 - Pulse 4 0.2333 0.2121 

  Ambient Fresh – Pulse 4 0.2412 0.1200 

  Delayed Fresh - Pulse 1 0.2181 0.2043 

  Delayed Pulse 1 - Pulse 4 0.2990 0.0464 

  Delayed Fresh- Pulse 4 0.2338 0.0383 

Unweighted  Main effects Trt   0.6606 

Unifrac  Time   0.0440 

  Trt*Time   0.0665 

 Pairwise within Time Fresh Ambient-Delayed 0.6239 0.1639 

  Pulse 1 Ambient Delayed 0.6565 0.4874 

  Pulse 4 Ambient-Delayed 0.6505 0.4428 

 Pairwise within Trt Ambient Fresh - Pulse 1 0.6397 0.3869 

  Ambient Pulse 1 - Pulse 4 0.6510 0.3502 

  Ambient Fresh – Pulse 4 0.6485 0.2068 

  Delayed Fresh - Pulse 1 0.6654 0.2094 

  Delayed Pulse 1 - Pulse 4 0.6720 0.3635 

  Delayed Fresh – Pulse 4 0.6592 0.2491 
a
Pairwise mean distances were derived from different distance metrics (Weighted and Unweighted 

Unifrac) and therefore are only comparable within that distance matrix.  
b
Bold indicates p < 0.1 
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Figures 

 

Figure 5.1. Average soil moisture in lab incubation treatments throughout the experiment and time points 

of sample. Soils from Ambient (a) and Delayed (b) field manipulations were equivalently subject to either 

drying-rewetting pulses (filled circles, solid line) or kept continuously wet (open circles, dashed line). 

Error bars represent standard error of mean soils moisture at that time point, but often smaller than 

symbol 
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Figure 5.2. Average respiration rate for soils from Ambient (filled) and Delayed (open) field plots when 

subject to drying rewetting pulses (bars) and continuously wet incubation (symbols). Rates for drying-

rewetting incubations were calculated for the first 48 h after receiving each moisture pulse. * indicates a 

significant difference (p<0.05) between Ambient and Delayed treatments within that time point. Error 

bars are standard errors for means (N=6). 
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Figure 5.3. Microbial biomass carbon (a), nitrogen (b) and carbon:nitrogen (c) throughout lab treatment 

as determined by chloroform-fumigation extractions of wet soil 3 days after soils from two field 

treatments received a moisture pulse. *indicates a significant difference (p<0.05) between Ambient and 

Delayed treatments within that time point. Error bars are standard error for means (N=6) 
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Figure 5.4. Mean extractable organic carbon (a) and nitrogen (b) throughout lab treatment. Error bars are 

standard error for means (N=6) 
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Fig. 5.5 Fungal to bacterial ratio as determine by quantitative PCR. *indicates a significant difference 

(p<0.05) between Ambient and Delayed treatments within that time point. Error bars are standard error 

for means (N=6) 

 



 

129 
 

Number of sequences

0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r 

o
f 
u

n
iq

u
e

 p
h

y
lo

ty
p

e
s

0

200

400

600

800

1000

1200

1400

1600

N
u

m
b

e
r 

o
f 
u

n
iq

u
e

 p
h

y
lo

ty
p

e
s

0

200

400

600

800

1000

1200

1400

1600

N
u

m
b

e
r 

o
f 
u

n
iq

u
e

 p
h

y
lo

ty
p

e
s

0

200

400

600

800

1000

1200

1400

1600

Ambient

Delayed

a. Fresh

b. Pulse 1

c. Pulse 4

Ambient

Delayed

Ambient

Delayed

 

Figure 5.6. Rarefaction curves showing differences in Ambient and Delayed diversity in Fresh soil (a) 

after Pulse 1 (b) and after Pulse 4 (c) in the drying-rewetting lab incubation. Because many samples per 

group were averaged, the number of sequences per group was limited by the sample with the fewest 

number of sequences in that group 
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Figure 5.7. Relative abundance of the dominant Phyla in soils from Ambient (a) and Delayed (b) rainfall 

timing manipulations at different time points in a drying-rewetting lab incubation. Relative abundance is 

the abundance of a particular sequence relative to the total number of sequences in that sample.  
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Figure 5.8. Bacterial community composition similarity among groups calculated from Weighted (a) and 

Unweighted (b) Unifrac distances by Non-metric multidimensional scaling. Symbol fill indicates field 

treatment (Ambient, filled and Delayed, open) and shapes indicate lab time point (Fresh, Pulse 1, and 

Pulse 4 as triangles, squares, and circles) 
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Chapter 6: Summary and Conclusions 

The primary objective of my dissertation was to improve understanding of how grassland 

ecosystems may respond to future precipitation regimes by examining the responses of biogeochemical 

cycles and microbial communities to shifts in rainfall. My major questions were  

1. Are the relationships between soil carbon, soil nitrogen, and environmental factors the same across 

two similar environmental gradients in temperate grasslands of the US Great Plains and Inner 

Mongolia, China?  

2. How are carbon and nitrogen linkages altered by long-term drought in the shortgrass steppe, and 

how does this affect drought recovery? 

3. Does moisture niche partitioning drive shifts in microbial community composition under long-term 

drought in the shortgrass steppe? 

4. Does a history of more extreme rainfall events in the tallgrass prairie alter the response of 

microbial communities to drying and rewetting?  

 

In response to my first question, I found that a US grassland model overestimated soil carbon and 

underestimated soil nitrogen in Chinese grasslands. My results suggest that relationships among carbon, 

nitrogen, and environmental factors may differ across temperate grasslands. Specifically, these 

relationships were sensitive to changes in nitrogen deposition and historical land use, suggesting these or 

other factors may need to be considered to accurately describe biogeochemical dynamics in Chinese 

grasslands.  

Second, I found that an 11-year drought can significantly alter biogeochemical and ecosystem 

dynamics in the highly drought-resistant shortgrass steppe.  Soil inorganic nitrogen availability increased 

up to 4-fold in plots receiving 25% of summer precipitation. This accumulation of nitrogen under drought 

may explain the higher plant tissue nitrogen and N2O flux observed under recovery. A more “open” 

nitrogen cycle that I observed following severe drought could affect the impact of drought on grassland 

ecosystems, as well as the timescale of recovery. 
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Soil microbial community composition was also altered by this 11-year drought manipulation in 

the shortgrass steppe, and these differences persisted even after communities were subject to the same 

moisture conditions for 36 hours in the lab. In this lab experiment, I also identified specific microbial 

groups that grew under a certain moisture levels, presenting evidence of moisture niche partitioning in 

microbial communities. However, this niche differentiation wasn’t realized in the field; communities that 

grew under dry conditions in the lab were not similar to those that emerged under long-term drought 

plots. Overall, this work suggests that contrary to previous assumptions, microbial communities display 

legacies to long-term field treatments, and that although soil moisture has the potential to drive microbial 

community composition through niche partitioning, this factor may not always be the primary driver of 

long-term community composition.  

In the tallgrass prairie, changes in the timing of precipitation also altered the composition of 

microbial communities, and precipitation history influenced how microbial communities responded to 

drying and rewetting pulses in the lab. Soils that had experienced more varied moisture regimes respired 

less than control soils under rewetting events, but the two soils functionally converged as they were 

subject to similar conditions. In contrast, microbial communities from the more extreme rainfall regime 

changed more with each moisture pulse, suggesting that a history of increased drying-rewetting did not 

make communities more resistant to this stress, and community composition did not provide a strong link 

to respiration.  

Grasslands are strongly controlled by the availability of moisture, yet their fundamental 

properties have been shown to be resistant to drought stress. Despite this high tolerance to moisture stress, 

I have observed significant shifts in nitrogen pools and fluxes and microbial community composition 

under shifts in precipitation that mimic future climate scenarios. My results suggest that overall, changes 

in biogeochemical cycling as a result of shifts in soil moisture will play a large role in how grassland 

ecosystems will respond to precipitation variability, and the response of microorganisms to precipitation 

has the potential to influence these biogeochemical dynamics as well. These findings will be important for 

predicting grassland responses to new precipitation regimes. However, my work also shows that 
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precipitation is not the only factor controlling biogeochemical and microbial community dynamics in 

grasslands; microbial community composition was not primarily driven by precipitation changes under 

rainfall manipulations, and nitrogen deposition and historical land use played a greater role in 

biogeochemical dynamics in Chinese compared to US grasslands. Therefore, my work suggests that the 

impact of precipitation changes on grassland ecosystems will likely be influenced by interactions between 

precipitation and other environmental factors and by ecosystem legacies from previous precipitation 

regimes.  


