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ABSTRACT 

Distributions of annual precipitation and annual river 
flow are studied on 2506 selected precipitation and river gag ­
ing stations in the Western United States and Southwestern 
Canada. 

Five probability functions - Normal, Log- normal with 
2, Log - norm al with 3, Gamma with 2 and Gamma with 3 para ­
met e rs - are fitted to each individual observed distribution. 
T he maximum likelihood method is used for estimating the 
functions ' pa r ameters from observed data . T he probability 
of chi - square is used as a measure of goodness of fit of each 
function t o every observed sample distribution. These five 
functions a re the n test ed on a ll station samples grouped into 
four lar ge ensembles: homogeneous precipitation, non-homo ­
geneous prec ipitation, river flow, and river flow corrected for 
the change in carryove r . 

As r esults of this study, it has been found that all five 
probability functions inveStigated are applicable . No one func ­
tion is more suitable than the other in fitting an observed in ­
dividual station sample precipitation or river flow distribution. 
However, distributions of annual precipitation in homogeneous 
ensemble ( 11 41 samples) and nonhomogeneous ensemble (4 7 3 
samples) arc best fitted by the Log - normal 2 parameter function . 
Distributions of annual runoff in river now ensemble (446 sam ­
ples) and river flow ensemble corrected for the change in carry ­
over (446 samples) are best fitted by the Gamma 2 parameter 
function. The difference in goodness of fit in ensemble analysis 
between these two functions 1s nealigible for all practical pur­
poses, and both could be used interchangeably l or all four en ­
sembles . 

v 



PROBABILITY FUNCTIONS OF BEST FIT TO DISTRIBUTIONS OF 

ANNUAL PRECIPITATION AND RUNOFF 

By : Radmilo D. Markovic 

CHAPTER I 

INTRODUCTION 

1. General. The variability of precipitation 
and r iver flows has long been rE:Cognized as an im ­
portant factor r e lated to water resources use and de­
velopment. In the past, this variableness has led to 
an extensivt:: study of precipitation and river flows, 
especially with resp~ct to th eir dependence on a large 
number of climatic and phys iographic factors . 

Precipitation and river flow are gove rned 
by chance phenomena, that is, the r e are so many 
causes at work that the influence of each cannot be 
readily identified. Therefor e , statistical and proba­
bility methods must be applied to adequately describe 
these hydrologic phenomena. 

2. Subj e ct. The purpose of this study is to 
find th eoretical probability functions of best fit to 
distributions of annual precipitation and annual river 
flow as exemplified by fitting theoretical curves to 

observed data. 

In addition to the main purpose of this 
study, answers have been sought t o the followina 
questions : 

(I) Are there significant regional char ­
acteristics of annual precipitation and annual runoff 
which would indicate a better f1\ to observed data 
using a partiCular theoretical function? 

(2) Is a particular theoretical distribution 
function as compared to another distribution function 
specifically advantageous in fitting the observed data? 

(3) Are theoretical functions described 
by three parameters more sui table in fitting t he ob­
served data than thos e defined by two parameters? 

(4) Does the nonhomogeneity of data sig­
nificantly affect the fitting of annual precipitation 
values and i f so, what is the resulting effect? 

(5) Is there any significant difference in 
fitting distributions of annual flow in compari son wit h 
annual flow corrected for carryover? 

3, Significant aspect s of this study. To 
achieve the objective of this study and to answer the 
aforementioned questions, thi s study will investlgate 
or make use of the fo llowing: 

( I) Research data from a very large area, 
involvi ng different climatic and physiographic condi ­
tions; 

(l) A lar ge number of precipitation and 
river gaging stations. 250G station samples. 

(3) A minimum of 30 years of observa­
tion of all hydrologic data; and, 

(4) Three theoretical distribution func­
tions are investigated simultaneously: no rmal, log­
normal and gamma; as these latter two functions have 
each two cases, with two and with three parameters, 
practically five different functions are studied . 



CHAPTER 11 

SELECTION OF RESEA RCH DATA 

1. Area unde r consideration. F or the pur­
pose ot this s tudy. the data from the western part of 
the United States and the southwestern part of Canada 
only is used. This large area was selected so that it 
would include many river basins of different sizes. a 
range of cli matic areas fro m arid to hum id regions of 
varied phys iographic conditions ranging from plains 
to mountains. Th is large variety of natural conditions 
provides the basis for a gene ralization of the theoreti­
cal pr obability distributions for both annual precipita ­
t ion a nd annual runoff. The selected area includes 21 
states in the United States. as s hown in fig . 1. 

2. Basic research mate r ial. The basic 
material used in this investigation is cons ti tuted from 
two broad categories of data; annual precipitations 
from a large numb e r of preci pitation gaging stations; 
and annual river flows from numerous river gaging 
stations. 

From these two categories of data, four 
large e nsembles are formed with the following .varia ­
bles and notations: 

(1) The homogeneous annual precipitation, 
PI - ensemble ; 

(2) T he nonhomogeneous annual precipita ­
tion. P 2 - ensemble; 

and. 
(3) The annual river flo w, Q1 - ensemble; 

(4) The annual river flow co rrected for 
carryover .... Q2 - ense mble . 

P I - ensemble consists of station samples of annual 

precipitation hav ing ho mogeneous data. P 2 - ensem ­

ble in c ludes s tation samples of annual precipitation 
having nonhomogeneous data. with the nonhomogene ity 
being proven or with the obviOUS evi de nc e of nonhomo­
geneity. Q I - ensemble includes station samples of 

annual r iver fl ows. Q 2 - ensemble consists of the 

sam e station samples as Q 1 - ensembl e . with t he 

significant diffe rence being that flows are corrected 
for th e change in carryover . 

Each station sample o f annual observa­
tions for each of four e nse mbles has a Size equal to 
the tota l length of observation. but not less than 30 
years. The m inimum 30- year period of observation 
is from 1931 to 1960. being chosen because it COin ­
cides with the standard climatologica l reference 
period. This period was adopted by the World Meteo­
rological Organization as a standard reference period 
for all countries . 

* The synonymous expression used in Colorado State 
University Hydrology Papers Nos. \ , 4. and 7. is 
"Annual etrecti ve precipitation." 
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3. Criteria for selection of stations. P re­
cipitation gaging stations were selected accor ding to 
the following criteria: 

(t) Minimum length of continuous period 
or observation of precipitation data is 30 ye ar s; 

(2) Change of station location during the 
period of observation is less than one mile in ho r i ­
zontal dire ction and less than 100 feet in e levation for 
PI - e nsemble; and the change is more than one m ile 

in horizontal direct ion and more than 100 feet in ele­
vation. and likewise not m ore than 5 miles and 500 
feet . r espectively. for P 2 - ensemble. 

(3) No m ore than one year of missing 
data is estimated by r egression analysis with neigh­
bori ng stations and during the standard period o f ob­
se r vations , 

River gaging sta tions we re selected 
according to the following criteria: 

(1) Minimum length of continuous period 
of flow data obse r vations is 30 years; 

(2) No change in station location. or the 
cha nge is negligible. o r the flo ws a r e corrected for 
the change; 

(3) No unac counted trans mountain d iver ­
slons Into the river basin or out of it. or diversions 
fo r Irrigation do not exceed 2- 3 percent of annual 
runotr; in c ase o f lar ge dive r sions . corrections are 
made in the r iver flows; 

(4) No la r ge s t orage reservoirs in r ive r 
basin (in whic h thei r net capac ity providing signifi ­
cant regulation s ); 

(5) F or large storage reservoirs the 
r iver flo ws a re corr ecte d for the differences in 
storage at th e begi nning and the end of wate r years; 

(6) No more than one year of missing 
data during standard period of observation is esti ­
mated by regress ion analysis with neighboring sta­
tions ; and 

(7) Stations are independent among 
themselves ; If m o re than one station is selected 
from the same r iver basin, the annual runotr a t the 
downstream station(s) is (are) r educed for annual 
runoff at the u pstr eam 8tatlon( s). 

4. Selected stations and their characteris­
tics. On the basis of the aIorementioned criteria, 
merollowing precipitation s tations were selected : 
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State or 
Province 

Number of Stations 
P I ensemble P 2 ensemble 

United States 
I) Washington 
Z) Oregon 
31 California 
4 Nevada 
5) Idaho 
6) Utah 
7) Arizona 
8) New Mexico 'I Colorado 

10 Wyoming 
11) Montana 
1 Z) North Dakota 
I 3) South Dakota 
14) Nebraska 
15) Kansas 
16) Oklahoma 
17) T exas 
18) Louisiana 
19) Arkansas 
20) M issouri 
21) I owa 

Canada 

47 
39 

153 
14 
40 
43 
50 
46 
41 
26 
60 
48 
44 
83 
6Z 
42 
85 
22 
34 
46 
34 

22) British Columbia 48 
Z3) Alberta 17 
Z4) Saskatchewan 17 

TOTAL 1141 

36 
14 
28 

7 
20 
15 

9 
24 
23 
21 
17 
14 
17 
24 
4 7 
lG 
41 

7 
17 
28 
38 

4 i 3 

The locations of selected precipita tion stations are 
shown in fig. 1. 

The lengths of the period of observation 
range from 30 y ears (majority of P,- and P2-ensem -

ble stations) to 114 years (New Orleans WB City, 
LouiSiana, USA) for P I- ensemble. and 125 years 

(Leavenworth, Kansas, USA) for P 2-cnsemble. The 

average station period of observation for all is 53. 8 
years for PI-ensemble and 57.4 years for P 2-en-

semble . 

In accordance with the es t ablished crite­
r ia a total of 446 river gaging stations were selected 
from the considered area with the number of stations 
for both the Q,- and Q2-ensembles as follows: 

Location Number 

(I) Part 14. Pacific slope basi n in Oregon 
and the lower Columbia River basin 60 

(2) Part 13. the Snake R iver basin 32 

(3) Part 12, Pacific slope basins in Washing-
t on and the upper Columbia River basin 55 

(4) Part II , Pacific slope baSins in Califor-
nia 

(.) Outside Central Valley 22 
(b) Central Valley 40 

(5) Part 10. T he Great BaSin 21 

(6) Part 9, The Colorado River Basin 40 

(7) Part 8 , Western Gu lf of Mexico basin 41 

(8) P art 7, the Lower Mississippi R iver 
4' basin 

5 

(9) Part 6. The Missouri R iver basin 
(a) Above Sioux City. Iowa 
(b) Belo ..... Sioux City. Iowa 

26 
45 

(10) Pacific Drainage baSin. Canada 9 

(II) Central Drainage basin, Canada Ii 

TOTAL 44 6 

The locations of these selected river gaging stations 
arc shown in fig. 2. 

Drainage areas controlled by selected 
stations range from 1. 90 square miles (Tht.' Little 
Santa Anita Creek near Sierra Madre. California. 
USA) to 34,000 square miles (the Columbia R iver 
at Birchank, British Columbia, Canada). The lengths 
of the period of observation range from 30 yea r s 
(majOrity of stations) to 72 years for the Verde River 
below Bartlett Dam, Arizona. USA. The Ari't ona 
station also represents the longest uninterrupted 
period of flow observation, from 1889 to 1960. The 
average station period of observation is 37 years . 

5. Com ilation of annual river flows cor­
rected fo r carryover 2 -ensemble. W i e the tree 

ensembles PI' P Z and Q1 are observed data, Q2-

ensemble is derived. Basically, it is the QI-ensem~ 

ble in which each annual river flo ..... is corrected tor 
the change in water carryover from year to year . 
The correction is done by applying the following 
equati on: 

Q2. i • QI. i +(w 1, i - W 1, i -1) + ( I ) 

In which. 

i. i- 1 

Annual observed river flow; 

Annual river flow corrected for th(' change 
in carryover In time T; 

Indices referring to the i - th and (i-l)th 
member of samples; and 

Total Stored volume in the river 
basin at the end of the i - th and 
(i-l)-th water yea r. respectively. 

Details of this correction are explained in reference 
[IZ) . With this correction the Q2 - ensemble is ob -

tained from the QI-ensemble. 

6. PropertieS of observed data . The most 
important properties of observed data in fitt ing the 
probability functions to observed distributions are 
the sample size, range , frequency property and com ­
parability of data. 

As it has been shown, the station s ample 
sizes vary from 30 years of observation up to 114 
for PI' 125 for P z and 72 for Q 1 and QZ ensem­

bles. Statistically speakini, all observed samples 
can be treated as samples of small siz.es. 

ConSidering the range of independent 
var iables, it has been found that the average p r ecipi ­
tation - the station sample mean - r anges {rom I. 66 
inches per year (Greenland Ranch, California) t o 



173. ZI inches per year (Ocean Falla, British Colum ­
bia, Canada) . The annual precipitation as the sample 
member s for the same s tations vary from 0.0 1 to 
4. 6Z and from 109.69 to Z35. 94 inches per year re­
spectively . On the other hand, the average a nnual 
flow range between O. 7Z3 cubic feet per second (A liso 
Creek at El Toro, California) a nd 70, 697 cubic feet 
per second (Columbia River at Birchank. British 
Columbia, Canada). The mean annual flows or sam­
ple members, range from 0. 00 1 to 3, 5Z0 and from 
52, 300 to 88 , 700 cubic feet per second re spectively. 
As it can be seen, the ranges of annual pr ecipitation 
and annual r iver flow are very considerable , indica­
ting the large variety of the climatic and physiographic 
conditio ns of the area under consideration. The in­
dependent variables range practically from very small 
values close to zero up to very high values which 
are not defined . They can go phySically from zero as 
lower limit (dry) to very high values (flood) , which 
can be theoretically considered as unlim ited, 1. e . , 
infinity a s upper limit. Thus, the theor etical range 
of the annual precipitation and annual r iver flow is 
from zero to plus infinity. 

The frequency distributions that are 
generally found have the characteristic typical form. 
They usually staM with the zero fr equency, then rise 
to a maximum value . and again decrease finally to 
zero. They are generally tangent to the base at both 
lower and upper ends . 'l11e basic shape of frequency 
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curves of obse rved data is thus the bell type , two ­
tailed curve. They are either slightly to very skewed 
or asymmetrical, having the following order of 
characteristics of centr al tendency: mean, median 
and mode. The brief inspection of raw data, how­
ever, indicates that this usual order of measures of 
central tendency changes in some extreme cases of 
natural conditions . Hence, the lar ge variety of 
skewness of fr equency curves of obser ved data could 
be expected. 

From the comparability point of view, the 
annual data, as it is published, collected and classi­
fied, does not provide a comparison between stations 
because of high variability oC means and standard de­
viations , In order to bridge this difficulty, actual 
observed values are transformed to dimensionless 
var iables . At the same time, they should be simpli ­
fied for ease in making comparisons . It has been 
shown that the most suitable form is to transform the 
a nnual values of P I -, P Z-' Ql- and QZ- ensembles 

into modular coefficients (K), as 
Pi 1 Q i K.· - or K • - IZ) 

I P i Q 

in which P or Q denotes the sample mean of each 
selected station. The transformed annual values into 
dimensionless form are given in the example of river 
gaging station Weldon River at Mill Grove, Missouri, 
USA, in the Appendix. 



CHAPTER III 

SELECTION OF THEORETICAL DI STRIBU TION FUNCTIONS 

AND ESTIMATION OF PARAMETERS 

I , Criteria for selection. According to pro­
pertIes of observed data, the theoretical distribution 
functions of best !it to obse r ved distributions of annual 
precipitation and annual runo!! should have the follo w­
ing characteristics: (1) the function is continuous 
and defined for a ll positive values of the observed 
variable K; (Z) the lower tail is bounded by z e r o 
value or by a positive value , K ; (3) the uppe r tail 
is unbounded; (4) the density carve is asymptotic to 
the axis for large values of K; (5 ) the basi c shape 
is one peak bell - shaped two-tailed curve , with a 
large variety of skewness; and (6) the number of 
parameters which describe theor etical functions is 
limited to three. 

Z. Applicable {unctions . The general class 
of functions, originally studied by Karl P earson, may 
be r epr esented by the di!!erential equation 

df (K) 

-.m-
f (K) (K + Km) 

a (KJ 
(3) 

with f (K) a density function , • (K) a function of the 
independent variable K, and Km the distance from 

the origin to the mode. 

With ~ (K) expanded in power series 
form , the general e quation rewritten is 

I 

lTKl 
df (K) 

OK c + o 

K+ K m 
C K + C K t + 

I l 
(4) 

in which Co' C 1, C z' . .. are constants . Their 

values dete rmine th e shape of the curve. Equation 
(4) is the di!!erential equation of density functions for 
various values of Km , Co ' C1 and C z. Thus, for 

the particular case with C1' C Z' . .. zeros, eq. (4) 

results in the normal (Gaussian) probability density 
function. The log- normal probability density function. 
as an example of transform ation of the norm al func ­
tion. has been fou nd to provide a significant goodness 
of fi t to many observed distributions of hydrologic 
variables . Likewise. the Gamma function has very 
convenient properties for application to hydrologic 
data . and it can be defined with two or three para­
meters . The latter one is often known as Pearson 
T ype III function. From several functions obtainable 
from eq. (4), by assigning various values to constants 
Ct. C Z' •.•• and Km , the following functions only 

have been select ed for investigation. 

3. Selected fu nctions. Screening of the 
applicable functlons with respect to the crite r ia re­
qu i red, their convenience for use in mass computa ­
tion, and the experience already obtained in applying 
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them in hydrology , lead to the following selection: 

(1) Normal density function, or Normal; 

(Z) Log - normal density fun ction with 
two parameters, or Log-normal Z; 

(3) Loa -norm al density function with 
three parameters, or Log - normal 3; 

(4) Gamma density function with two 
param et e rs, or Gamma Z; and 

(5) Gamma density function with three 
parameters , or Gamma 3. 

The expressions and parameters of these five 
functions are [8J: 

( 1) Normal with the classical fo rm : 

_ (K_~ )l 

l.' 
• 

with K - the variable values; J.I - the population 
m ean; and f1' - the population standard deviation. 

f(K) 

( Z) Log-normal Z with the form: 

(InK - 1!]..!)2 

ZaJ 
• 

(5) 

(6) 

with jJ - the population geometric m ean; and rr - the 
population s t andard deviation of the In K values . 

(3) Log-normal 3 with the form: 

KO'S K ~ w 
(7) 

with ~ - the population g eomet r iC mean of (K - Ko); 

Ko the lower boundary of the dist r ibution of the 

variable K; and rr - the standard deviation of the 
In (K-Ko) values. 

(4) Gamm a Z with the Corm: 

~ - 1 e -K Ia 
r (0) 

(B) f(K) • 
If' 

0 'E K ~ 00 

with a - the shape parameter; a -, th e scale 



parameter; and r (a) the gamma function of a . It is 
skewed to the right fo r all values of parameters a 
and (3 . 

(5) Gamma 3 with the form 

(9) 

with Ko ~ the location parameter of the lower bound ­

ary, and a, /3 , and r(a), as previously defined. 

4 . Estimation of parameters of selected 
functions. In estimating the values of parameters of 
the parent population the following properties of es · 
timato r s are desirable [z, 5, 6,J: 

(a) Consistent estimators, meaning 
that , the probability ot the absolute value of the de~ 
viatlOn of estim ator 'It from the population para~ 
meter 9 is less than any small quant ity ( , tends to 
unit yap sample size n tends to infinity, 1. e. 
PI' ( I tt ~ ~<d~1 as n---..,.co; 

(b) Unbiased estimators , or the ex­
pected value of estimator is equal to t he population 
paramete r , E (9) • 9 with biasedness being defined 
as E (9) ~ 9; and 

(c) Efficient estimators , or among 
the class of consistent estimators, the minimum un~ 
biased estimator 1t has the smallest variance . 

According to desirable properties of 
estimators, the maximum likelihood method is chosen 
as the most suit able for the estimation of para­
meters in this investigation. 

Maximum likelihood method, developed 
by R . A. F isher, is based upon likelihood function L . 
This function is maximized by setting the first de­
r ivative of InK with respect to 9 equal to zero , 
and solving the resulting equation for 6: 

n 
3(:E In [f(K.;9)] 1 

i - 1 1 • 0 (10) a' 
This yieldS a single equation for the solution of 8 in 
terms of K's. For m param eters, m equations of 
eq. ( 10) give m estimators or unknown parameters . 
Maximum likelihood est imators arc conSistent, 
asymptotically normal and asymptotically efficient 
under general conditions . The method is completely 
numerical, applicable to all selected functions and 
convenient for mass comput ation. The maximum 
likelihood method gives the following equations for 
parameter estimators [8 J : 

Normal. Based on eq. (5) and the con­
cept of eq. ( 10) , the maximum likelihood function 
produces : 

1 
n 

as estimator of the population mean, and 

( 11) 

8 

ii 

" i = 1 
(K. -W , (12) 

as the estimator of population standard deviation. 

LoJZ-norma12. According to eq. (6) and 
using the max imum likelihood equation, the maximum 
likelihood estimator of the population mean is : 

1 
n 

(13) 

and the estimator of the population standard deviation : 

n 

" i = 1 (14) 

Log - normal 3. Equations (7) and ( 10) 
yield th e maximum likelihood equation with respect 
to parameters In/.l, f1 and Ko' The maximum like­

l ihood estimator of the population mean is: 

1 
n 

n ~ 
E In(K.-K) 

i= 1 1 0 

of the population standard deviation is : 

yin " ~ = -!: [in (K .-K ) 
n i= 1 1 0 

and of the lower boundary Ko is 

n 

" i= I 

n , 
E In2 {K.- K }-

i s 1 I 0 

1 n '1 n - !; In (K.-K ) + :z: 
n i =1 I 0 i=1 

, 

In( Ki -KO) 

K j Ko 

( 15) 

(16) 

o ( 17) 

~gew;~~~la~fbn al~~he~ ~~~~a~~ ~~~l~~o~~l~:~r:;~l~~;f 
an iteration procedure . 

Gamma Z. Applying the same technique 
to eq. (8), the maximum likelihood equation gives 
the two maximum likelihood partial differential equa­
tions for parameters a and p, and f rom them i t 
follows 

In-a InK 

with (; the estimator of a, and 

n 

" n i= 1 

n 
1.. ,~ 1 K .... n i 
n i *1 

R (is) 

, . 
with 13 the estimator of 13 . The equation for a in ­
volves the digamma function 

and it is solved by a Simplified technique . Norlund 
[111 shows that 



II(S)"lnS--h 
n 
E 

i - i 

(_I)i -I B . 
> 

ZiQ Zi 
+ R n 

Is an asymptotic expansion in which B. a r e the , , > 
Bernouli numbe r s B I = f ' B Z ""1O' etc., and Rn 

Is th e remainder after n terms; for n '" I it be­
comes 

, , 
""!If 1 2a~ 

Substituting this in the above expression, a quadratic 
equation is obtained 

(
In I n " ~ ,, 

I Z [In - r K.) - - l: In K ] a, - 6a - I :: 0 
n i'" I I n I - I 1 

whose only pertinent root is 

A 

• 
Y ' , h 

1 + 1 + J(lnK - -l: InK .) 
n i - I I 

, n 
n z: InK i ) i-I 

4{1nR -

The .!!rror in -a, resulting from using only one term 
in Norlund ' s expansion Is not readily expressed in 
mathematical form . Hence, ~ should be corrected. 
that is, the correct ion factor l>.-a. which takes care 
of th e errar. is s ubtracted from the estim ator, and 
giving 

, + ..)1 + 1 (lnK 

4 (InK _ I 
n 

n 
l: InK.) 
i~ 1 I ( 19) 

which is the final maximum likelihood estimator of a , 
The.s0rrection factor l>.~ is given in T able I . [II]. 
As K" I for modular coefficients, then In R .. 0, so 
that in t his case eqs , ( 18) and ( 19) can be simplified. 

Gamma 3. In accordance with eq, (9). the 
maximum likelihood equation produces three partial 
differential equations which give the maximum likeli­
hood estimator of the shape parameter a as [8] : 

+.),+ ~ [In (R-Kol _1 n A 
~ In(K .-K ») 

'6: n i"l > 0 
-l>.~ 

_ A , n A 
4 tln(K -K )-- l: In(K .-K ») (ZO) o n i= 1 1 0 

the maximum likelihood estimator of the scale para­
meter f3 

(K .-I<)" 1. (R-R) 
lOA 0 • (211 

• 
and the maximum likelihood estimator of the lower 
boundary parameter, K , obtained in implicit form 

o 
to be solved by an iteration procedure: 

Y ' A , n A 
1 + 1 +""j"[ln(K-K )-- l: In(K .- K») 

o n 1"' 1 I 0 * 

1+ I +jpnm-K ) - !.1: ln(}\. .- 1< ») -4[lnlK-K) 
o n I" 1 I 0 0 

* _ " In 
n -(K - K) - .!:(K _J<: )-O 

-.!. r In(K.-K)] 0 ni"l i 0 
n i" 1 I 0 

(ZZ) 

5 . Computation of maximum likelihood es ­
timates. By using the annual values e xpressed in 
dLmensionless form K . and stored on magnetic tape, 
the ma:'Cimum likelihoot:! estimates Cor each of the livtl 
s elected func tions and for each station sample sep­
arately are computed on a CDC 3600 electronic 
computer. 

Parameters of the normal function are 
estimate d by eqs . ( II ) and ( I Z); those of Log - normal 
Z, eqs. (13) and (14) ; thos e of Log - normal 3, eqs . 
( 15), (16) and ( 17). Parameters of Gamma 2 are 
estimated by eqs . (18) and (19), and those of Gamma 
3 by eqs. (20), (Z I) and (2Z). 

H aving computed estimates of para­
meters, the five s e lected funct ions are the n co m­
pletely defined. 

As an example , the computation of the 
maximum likelihood estimates for all five functions 
is shown for the case of the river gaging station of 
the Weldon River at Mill Grove, Missouri (Appendix). 

TABLE 

CORRECTION FACTOR l>.~ F OR COMPUTATION OF MAXlMUr-.l UKEUHOOD ESTIMATES 
OF THE SHAPE PARAMETER S OF GAMMA FUNCTIONS WIT H Z AND 3 PARAME TERS 

A 6S a A 
0 6. 

0, lOO 0. 034 1. 4 00 0. 006 
O. 300 0. 029 1. 500 0, 005 
0, 400 0. OZ5 I. 600 0, 005 
0, 500 0. 021 1. 700 0. 004 
0. 600 0. 017 1, 800 0. 004 
O. 700 0, 014 t . 900 0.003 
0,800 0,0 12 2. 200 0, 003 
0. 900 o. Ot 1 2, 300 0. 002 
1. 000 0, 009 3.1 00 0. 002 
1. 100 0. 008 3. 200 0. 001 
1. ZOO 0, 007 5, SOD 0. 001 
1. 300 0. 006 5, 600 0. 000 
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CHAPTER IV 

TECHNIQUES FOR TEST OF GOODNESS OF FIT 

r" h't1 ! 1!1\' theo retical probability distribution 
f .. , ,, ! j "ll/i !" ,' ll""<!l1css of fit to observed data, as in 
" IIV "'!wr r" ' ~'lu" ,l(:y analysis, the distribution of a 
":<U<l"111 vadablc should be c lassified into mutually 
"~"l\l!:l'v~! a nd exhaustive categories or class inter ­
'.' .tit>. [I is not desirabJe to make a frequency dis­
,,":bllt ion for fewer than about zo to 25 observations, 
~l llce a smaller number of observations may be 
studied in an array . In c lassifying the observed data, 
it is necessary to decide upon the number and the 
length of class intervals. 

1. Number and length of class intervals . No 
satisfactory hard-and-fast rule has been established 
for the num ber of class int ervals to be used. It is 
obvious, however , that i f too many classes are used, 
some of them would have few o r no frequencies and 
the resulting frequency distribution would be irregular. 
Likewise, i f there a r e t oo few classes, the observed 
data wou ld be very compressed, a large proportion 
of the frequencies would fall in one or two classes, 
and much information would be lost . In addition, 
different class ifications for a given set of observa­
tions and for a continuous variable lead to different 
observed distributions and hence to different values 
of departures fr om postulated distribution. 

Since there is no generally accepted 
method for determination of the number of class in­
tervals, numerous rule s have been suggested by 
many statisticians . According to these rules, the 
number of class intervals should not be smaller than 
about 10 and not larger than ZO, but these practical 
rules have no theoretical basis. Nevertheless, a 
guide for the systematic choice of the number of class 
intervals has been developed. Br.sed upon some the­
oretical considerations. several mathematical for ­
mulas have been suggest ed for the number of class 
intervals for different sample s i.ze s and levels of 
sign ific a nce. In such a situation. a practical rule 
commonly used by many statisticians will be applied 
in this analysis . The rule states that the number of 
class intervals should be chosen so that the average 
cxpected frequency of a ny class intervals is at least 
five . Since th e observed sample sizes used in th is 
study range from 30 to n, with an average of about 
37 for river flows, the total number of class inter­
vals select ed is seven. 

The choice of the length of c lass intervals 
should be done in such a manner that the main char ­
acterist ic featUres of the observed distribution are 
emphaSized and chance variations are obscured [4] . 
Bas ically, there are two concepts for choice of the 
length of class intervals: (a) equal lengths, and 
(b) equal probabilities . 

Equal lengths of class intervals are e x­
tensively used even though there is no theoretica l 
foundation for it. However , it has some advantages 
in g raphical representation of observed distributions , 
since the comparability is difficult to carry out by 
inspection when there exist inequalitles in class in­
tervals. Al so, two arbit rary actions must be 
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introduced : the choice of the Size of equal interval, 
and the beginning of the fir s t interval limit . E ach of 
these actions directly affects the observed distribu­
tion, which is a disadvantage of this method. 

Equal probabilities of class intervals , 
which can be considered as special case of unequal 
lengths, has some advant ages ove r the previous 
method [7] . The arbitrary s t eps for equal le ngth s 
may be avoided by chOOSing intervals of equal pro­
babilities instead of intervals of equal lengths . The 
required inte r vals are obtained from the probability 
integral t r ansformation. The probabilities are uni­
form ly distributed. Thus, the comparison of the 
observed distributions with any cont inuous theoreti­
cal distribution is reduced to the comparison of an 
observed with a theoretical uniform distribution . 
This method is more convenient and m u ch simplie r 
for numerical analysis than the previous one, and it 
is used in this report. According to this method, 
with the total number of c lass inte r vals already 
chosen in the above discussion, and with the fact that 
the total valu e of the probability integral i s unity, the 
probability of each class interval is determined by 

1 . . 2 k Pj ,. k wlth J" 1, , ... . (23) 

F or this value of probability, the required length of 
any class interval can be obtained from the pr oba­
bility integral transformation. 

Z. T est of fit . The well - known and fre ­
quent ly applied Chi - square test is used here as a 
measure of goodness of fit of the theoretical pro ­
bability distributions to observed ones. Other 
similar tests to be noted, but were not used, include: 
the likelihood ratio (observed over expected maxi ­
mum likelihood function), which is asymptqti~all.Y 
eOllivalent to Chi -square test; Smirnov s t atl$tl cs \aU 
of obser vations involved); and Kolmogorov statistics 
(only maximum departure involved) as function of 
cumulative distribution of the sample. 

The problem of testing the goodness of 
fit of a hypothesized probability distribution to.ob ­
s e rved sample distribution was solved in the main 
by K. Pearson in 1900, who developed the Chi-square 
test. Later, R. A. Fisher contribut ed the significant 
idea of "degrees of f r eedom" by which prope r account 
is taken of parameters estimated from t he observed 
data [3] . 

The basic concept of the Chi - s quare te st 
can be summarized as follo ws: The t otal r ange of 
s ample observations is divided into k mutually ex ­
clusive a nd exhaustive class inter vals , each having 
the observed class frequency OJ and corresponding 

expected class probability E. (j " 1, 2, . .. , k). 
USing the exp,ected value E

j 
Jas the norm of any 

class int erval, it is reasonable to choose the quan ­
tity (0. - E. )l as a measure of departure from the 

norm. JHow~ver, the magnitudes of the squared 



deviations (0 . • E.) would not be comparable from 
one class to artother,l since the scale of each is near· 
ly proportiona l to the expected value. Therefore, a 
suitable measure is expressed by (0 . . E . )~ IE . and 

J J J 
the measure of total discrepancy between observations 
and expectations, Xl, becomes 

x' 
k 

" j" 1 

(0 . • E.) l 
J 1 

This statistic is distributed asymptotically as Ch i­
square (Xl) with k - 1 degrees of freedom, if the 
population parameters have not been estimated from 
the sample observations . Since in ihis study only the 
general form of the probabil ity distribution is hypo­
th esized. t he parameters of the selected functions 
shou ld be estimated from observed data. In such a 
case, the number of degrees of freedom is decreased 
for the number of parameters e stimated from obser­
vations. For v parameters, the tot al number of de· 
grees of freedom is 

f:k ·t· v (Z4) 

The Chi -square statist ic as previously given is a 
convenient form for representing the direct funct ion 
of the differe nce s between the observed frequenc ies 
a nd their hypothetical expectat ions, so that the com­
parability is poss ible by direct inspection. FUrther­
more, due to the large volume of computations invol · 
ved in th is investigation, this statistic is Simplified 
for computational purposes, Thus, expanding the 
quadratic in the numerator 

k 
0J.+ ~EJ 

j= 1 

and noting that:rO :rEo '" n (sample size). and 
J J 

E j " Pjn but Pj'" 11 k, the following equivalent ex· 

pression to be used is obtained 

k X' 0 

n 

k 

" j: 1 
O .l - n 

J 
(25) 

3. E xpected and observed class frequencies , 
As the total number of class intervals is seven and 
the probability of each interval is the same, for given 
sample size, the expected class probability for a ny 
interval should be the same and independent of the type 
of probability function, i. e. , it is dependent only on 
the sample si ze n, or 

(26) 

Therefore, the computation of expected class pro· 
babilities is simplified by choos ing the constant num­
ber of class intervals of the same probability. 

The observed class frequencies depend 
upon sample size ; the class limits depend upon the 
type of probability function applied. Since the com­
putational procedure is identical fo r all observed 
samples, as an example the five selected probability 
fun ctions a re applied to one station sample . (See 
Appendix). 

First, the sample observations should be 
arranged in an array in increas ing order. Then, to 
determine how many observations will fall in each of 
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the seven chosen class inte rvals, six cl:ass interval 
limits must be computed for each of five selec ted 
functi ons sepa r ately , 

Normal. Knowing the probability of any 
class interval, p. (equal for all intervals), which re· 

J 
presents the area under the probability curve, any 
class interval limit, Kj' can be evaluated from the 

corresponding cumulative distribut ion obtained by in­
tegrating eq . {5} in the limits which produce the same 
probabilities, provided that the lower limit of inte­
gral is previously known, a s well as the parameters 
of the function. The solution of the integral of eq. (5) 
can be simplified by s tandardizing the variable, or 

F (U) 
u' 

1 ·z 
'I/T""Ti e dV (2:7) 

with j = t, Z, ... , 7, and with the lower integral 
limit - en, the mean zero and the variance unity. 
This is a we ll known probability integral, the value 
of which is generally given in tabulated form . The 
class interval limits a s express e d in terms of Vj 

are determined and given in Table 2:. From the 
values of V, and the estimates of population mean 

J 
and standard deviation, ~ an r.! ~, the particuli.ll' class 
int erval lim its K of the variable K. are 

J ' 
, 
" . u ' 

j " 
(2:8) 

in which Vj are c la ss interval limits of the variablc 

Vi of eq . (2:7) . 

Log-norma l 2: . Similar t o the previous 
case, the class interval limits of log -normal 2 arC' 
computed by using eq. (6), which is firSt transfOrmed 
into a normal probabili ty integral form . Th e class 
interval limits are then computed from the expre S­
sion 

exp (l~ + (29) 

in which K . are class interval limits for the varw· 
~J 

ble Ki ' lnj.l is the mean of In Ki ' and ~. is the 

standard deviation of InK i, whil e Vj are class 

tervallimits of the variable U i from eq . ( z. n. 

mo 

Log-normal 3. The class interval 
lim its are determined by usi»g eq. (7) and trans­
forming the variable (Ki • Ko) first into normal 

probability integral form . Then, the class interval 
limitS are obtained as 

(30) 

where K . are class interval limits for the va r iabl e 
J A A 

K . of eq . (7). Inj..l is the mean of In (K . • K ), and 
1 Al 0 

~ is the standard deviation of In (Ki • Ko)' while 

V . are class interval limits of the variable U . 
J ' from eq. (2:7) . Since parameters of this func tion 

are determined earlier and the values of U. are 
J 



give n in Table 2: , eq, (30) gives class interval lim its , 

T AB LE 2 

NORMA L DENSITY F UNCTION 
FOR COMPUTATION OF CLASS INT E RVA L UMlT VALUES 

0 , of class 
"nte r val Z 
im its , j 

tpr oba bility. 
F lU) 0, 14 286 0,28571 

!Abscissa, 
Uj 

- 1. 068 -0 . 566 

Gamm a 2. The class interva l limits a r e 
computed by using eq. (8) with the lower integral 
limit zero. In order to use the existing Tables of In ­
com plete Ga mm a Function, the integral of eq. (8 ) is 
first expressed In term s of the shape param ete r only, 
by u sing the value of scale parameter of eq. ( 18) as 
follows: 

• 
F(K) = frar (3 1) 

Then, introducing the r eplacem ents a -I " p a nd 
a K = x from which a " p + 1 and K = x /o , or 

dK. dx 
• 

form of: 

• p ~ 1 dx, the above integral takes the 

I (x, p) . (p+ 1)P+l IXj 

1 P -x 1 d 
r(p + tj (p+ l )PX e p:iT" x 

o 

1 J Xjp - x 
r (p+ 1) x e dx (32) 

o 

Because the a r gument x theoretiCally runs [rom 
o to + co, the more workable argument u is used in 
its pla ce, therefor e , t he range is conside rably de­
creas ed in the existing t ables and determ ined by 

U • 
x (33) 

The final form for which the values are tabulated, 
rl!p r esents pra'c t ically thl! fam iliar probability int e ­
gral e xpressed as the r atio of incomplete to complete 
gamma function for arguments u and p: 

U 

I (u, p) 
~(p+ 1) 

ico(p+ l ) 

fo uP e - u du 
(34) 

oSCO uP e -u du 

Standard tables [9 J give I (u , p) wi th the a r gument u 
proceeding by increments of 0, 1 from zero up to that 
value of u which gives 1 (u, p) equal unity to the 
seventh decimal place . The argument p increases 
from ' 1. 00 to 1. 00 by increments of 0, OS, I rom 1. 0 

3 4 5 6 

0, 4 28 37 0 . 57 14 3 0,7 1429 0 . 8 571 4 

-0.1 80 +0, 180 +0 , 566 +1 . 068 
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to 5, 0 by incr ements of O. J and from 5. a to 50 , 0 by 
inc r e m ents of O. 2:. 

F or the purpose of this report the s t and­
a rd tables. previously m entioned , a re recomput ed 
and are presented in T able 3. For the negative 
values of argument p, p $ 0, and u $ 0. 800 the 
graphical procedure was applied, swce the linea r 
interpolation would r esu lt in a n error ( fig . 3). F or 
0< p,!: 50 the exist ing tables were used, and for 
p> 50 the corresponding values were extrapolat ed by 
using the numerIcal procedure explained in reference 
[9]. 

The class inte rval lim its a.re computed 
by using eq. (33) for x and replacement K S x/Q in 
eq. (32), so that 

K
j 

=;i; (35) 

with u s elect ed fo r ,iven value of G from T able 3. 
j 

Gamma 3. The computatIOn of the class 
interval limits is similar to that of the Samma func­
tion with two parameters . F rom eq. (8) thtl cumu la ­
tive di stri bution is obtained and by means of trans­
formation is reduced to that of eq. (35) , Then. the 
class interval limit equation is [8 J 

(36) 

By knowing the estimated parameters, the value of 
u" can be selected for given ~ from T able 3, 

J 
Then, class lim its arc computed by c q. (36) , 

4 . Com putation of station sam pl{< Chi .sruarcs, 
The computational procedure is ldcn1ical for al sta­
tion samples . To each of them, five se!ect~d pro ­
bability [unctions are fitted . Since seven class inter ­
vals are already chosen, Six class interval limits for 
each function and every s t ation sample are deter­
mined according to the following equations: for Nor ­
mal function by eq. (28); Log- normal Z by eq. (2::1); 
Log - normal 3 by eq . (30); Gamma l by eq, (35); and 
Ga mma 3 by eq . (36) , 

Knowing the class interval li m its , the 
corresponding obser ved class frequencies are deter­
mined, squared and summed and then station salnple 
chi - squares computed by eq. (2:5) . Since five 



TABLE , 
I NCOMPLETE GAMM A FUNCTION 

FOR COMPUTATION OF CLASS INTERVAL UMIT VALUES 

CIOI;;S interval, J 2 , • 5 , 
I (u, p) ~ 

r)p+lj 
0.14l86 0 . l8571 0. 4Z857 

rm(p +l ) 
0. 57143 0 . 714l9 0 . 857 14 

P = ~ - 1 
A 

• "1 "2 u, u. u
5 

u6 

-0.8 0.2 0. 007 0. 0 15 0. 036 0 . 09 l O. 303 0.932 
-0. (I 0. ' 0 . 02:1 0 . 060 0 , 14 7 0 , 335 0 , 675 1. 381 
-0.4 0. 6 0. 048 0,1 40 0.299 0. 540 0 , 9 19 1.6 30 
- 0 , l 0. 8 0 , 004 0 , 2:40 0.434 O. 708 I. 10 3 I. 806 
?O 1. 0 0 , 15 3 0. 338 0 , 559 O. S50 I. Z54 1. 947 
O. 5 1. 5 O. 3 13 0. 557 0.819 1. 131 I. 54 (1 Z.2 18 
1.0 2. 0 0.468 0.748 1. 033 I, 357 I. 774 2.4 30 
1.5 2. 5 O. (1 14 0. 9 19 1. ZI7 I, :)49 I. 967 2:.610 
2 , 0.74 9 1. 074 I. 38Z 1,786 l.. 136 2: . 770 
l • 1. 000 1, 349 1. 670 2:.01 3 2:,4l9 3.049 

• 5 1.22:4 I. 591 1. 91 1 2: , 2:67 Z, 682: 3. 291 
5 , 1. 42:9 1. 810 2.145 2:.4 94 2: . 907 3. 508 , 7 1. 6 l 0 2,010 2. 350 2, 700 3. 112 3. 7 07 
7 8 I . 709 l ,I 96 2.540 2: . 891 3.302 3.891 

• , 1.966 2. 370 l . 7 17 3.070 3.480 4.065 

" 10 2. 126 2. 535 2. 884 3. 238 3.647 4.228 
10 11 Z, l78 l.69l 3,043 3. 397 3. 805 4.383 
11 " Z.420 l. 8 38 3. 191 3. 568 3. 953 4. 528 

" 13 l.563 l . 985 3, 339 3. 694 4. 101 4. 674 
13 14 2,696 3. 1 lO 3, 476 3. 831 4. 238 4. 808 
14 15 l . 8l8 3. l55 3. f.:i I 2 3. 968 4. 374 4.942 
15 If; 2.!.I5l 3. 382- 3. 740 4,096 4. SOl. 5.0[>7 

" 17 3.07(. 3. 508 3. 867 4. l 23 4.629 5 , 1 gz 
17 16 3. 194 3. 627 3. 987 4.344 4. 748 5.310 
16 " 3. 311 3.74 6 4. 107 4.464 4.868 5. 4l9 
19 20 3, 422: 3, SaO 4. 210 4. 57ij 4.981 5.541 
20 11 3.53l 3. 97 Z 4. 334 4.6 9 1 5.094 5. 653 

" " 3.638 4.08 0 4.442 4.8 32 5.2:02: 5. 760 

" l3 3.744 4. 187 4 . 550 4.974 5.310 5.867 

" " 3. 84f, 4. 290 4 . 654 5 . 044 5 . 41-1 5 . 969 

" l..i 3. !.H7 4. 393 4.757 5. 114 5, 5 11 6,071 

" l.f; 4. 04-1 4.4 92 4.856 5. 214 5. 616 6, 169 

" 17 4 . 142 4.590 4. 955 5. 313 5. 7 15 6. 267 
2.7 18 4 . 236 4 . 685 5. 051 5.408 5.8 10 6, 362 

" " 4. 331 4 . 780 5. 147 5. 504 5.906 6, 457 

" '0 4.42.l 4.8 72 5, 23!) 5. 596 5.998 6. 548 
30 J1 4 . :) 14 4. 964 5. 331 5,689 6, 090 6. 63!) 

31 12 4 . 602: 5 . 053 5, 4 20 5.778 6.1 80 G. 978 
12 33 4. 6!W 5.142 5.5 10 5.868 6.269 6.816 
Jj 34 4.77 5 5. ll8 5. 596 5.954 6.356 6. 904 
H 35 4.8GO 5. 315 5.683 6. 04 1 6 .44 Z 6.991 
3.1 3fi 4. 944 5. 398 5 . 767 6 ,125 6. 566 7.073 

36 37 5,02:7 5.48? 5 , 851 6. 209 6. 689 7, l 55 

31 38 5.1 08 5, 564 5 , 932 6. 291 G. 731 7. 23!.; 

38 39 5.1 89 5. 645 (; . 014 6. 3,3 6. 773 7. 316 

" ' 0 5, ZU8 5. 744 6.094 6.4 ;'2: 6,872: 7 . 39(; 

40 41 5 , 346 5. 843 6. 174 6. 532 6.93 2 7. 475 

4 1 " 5.423 5, 90 1 6 , 25Z 6. 610 7. 010 7. 552 

" 43 5. 501 5. !l5!.1 6 . 320 6.688 7.087 7. 629 

4 ' 44 5 . 576 6. 035 6.405 6. 764 7. 163 1. 704 

44 " 5 , 650 6. 111 6 . 48 1 6.840 7. 2]9 7, 780 

45 46 5,724 6 , 184 6. 555 6. 9 14 7. 313 7. 854 

46 47 5 . 799 6 . l58 6. 62:9 6 . 968 7. 387 7. 927 

" 48 5. 860 6. 331 6. 702 7,061 7.460 8.000 

•• 49 5. 941 6.404 6.775 7. \ 34 7.532 8 . on 

" 50 6 . 012 6. 474 6. 846 7. 205 7. 603 8 . 14Z 

50 51 6. 083 6 , 545 6,917 7.276 7. 674 8 . 213 

" 56 6 . 306 6. 791 7. 181 7,558 7.97(1 8 , 541 

60 61 6. 583 7. 089 7.4 96 7.889 8 . 325 8 . 924 

65 66 6. 854 7. 380 7. 804 8. 214 8.667 9.600 

70 71 7. 124 7 . 672 8 , 11 2 8 . 538 9.01 0 9. u48 

" 



TABLE , - continued 

, , 
" 1 "z ", ", "5 ", p " a - 1 0 

80 81 7.605 8. 190 8. 660 9. 114 9. 6 18 10 . 300 
90 91 8. 080 8. 701 9. 20 1 9. 684 10. 218 10. 94 3 

100 101 8. 507 9. 16 1 9.687 10. 195 10 . 758 11. 52 1 
11 0 111 8 . 9Z2 9. 607 10. 159 10. 692 11.283 12. 083 
"0 121 0. 3 19 10. 035 10. 6 11 1 I. 168 11. 785 12. 620 

I (U,p) 

0 .' 

0.8 

p s ~O .a 

0 .7 

Q. 

0.' 

0 .4 

0.3 

0.2 

0 .1 

U 
0.1 0 .' 0.3 OA 0 . ' 0.6 0 .7 0.8 

Fig. 3 Incomplete Gamma Funct ion 
Used only for p OS 0 and u 'S 0. 800 

functions are fitted to ilnnual observations of every 
station , each station sample is l'epresented by five 
chi - square values . These five computed values for 
Normal , Log-no,'mal 2 and Gamma 2 are distributed 
as Chi-square(x l

) with four degrees of freedom (I" 
4 1.1. r.). while for Log-normal 3 and Gamma 3 distributed 
as Chi-square (,c:l.) with threl;' degrees of freedom (f" 
3 d. f.). These five chi-squure values per station, one 
for .,;Ilch of live probability density functions, give 
autorI"H .• tically the measure of j(oodness of fit of a par ­
ticulo.l' theoretical function to observt:d data for each 
illuividu.:lI station sample. Jlowever, this is not the 
only purpose of this inve!ltigation, but also includes 
the ensemble analysis involving a U samples of the 
same population poolcd together. 

Class mh'rval limits, observed class fre­
quenCies, and chi-squares for all fivc functions and 
all 2506 stalion samples arc computed by the CDC 
3600 electl'onic computer, 

To c heck the proj(ram for computer and 
to show the computation, o ne example is pre sented. 
For that purpose Chi-~quares with three and four de ­
grees of freedom and different level of significance 
are given in Table 4, and their cumulative distribu­
tions plotted in fi g. 4, The t'xample used i s the ana­
lysis of data for Weldon River :1t Mill Grove, Missouri, 
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USA, and is given in the Appendix. 

5. Transformation of station sam ple chl­
square. As it is evident . the station sample chi ­
s quares arc not of the same degrees of freedom and 
thus, they arc beyond comparison among themselves . 
In order to avoid this difficulty, to facilitate the fur­
ther analysis and to insure their comparability, the 
computed station sample ch i - squares are transformed 
into their corresponding probabilities. This trans­
formation was performed on the CDC 3600 tdectronic 
computer by using the Chi-square cumulative uistri ­
bution funct ion 

(37) 

in which f stands for the number of degrees of free­
dom, and X Z

, the upper integral limit, standS for 
the computed station sample Chi-square . In this way. 
the probabilities of station sample chi-squares m ­
stead of chi*square s themselves. are used as a uni­
que measure of goodness of fit of theoretical fUnc­
tions to observed distributions , 
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TABLE 4 

CHI SQUARE DISTRIBUTION 

,,1 (or 

F (Xl) , • 3 d. r. ! ~ -4 d . f. 

r 
F (Xl) 

0.00 1 0. 01 9 0. 07-4 0 . 550 

0.005 0. 072 O. 207 0. 600 

0. 0 10 O. 11 5 0. 297 0. 650 

0.020 0 .1 85 0.4 29 O. 700 

0.025 O. Z1 6 0.4 84 0. 750 

0.050 O. 35Z 0. 7 11 0 . 800 

0.075 0 .-468 0. 890 0. 850 

O. 100 0 . 58-4 1. 064 0. 900 

O. 150 0. 808 1. 360 O. 925 

O. ZOO 1. 005 1. 6-4 9 0 . 950 

O. Z50 1. 213 1. 9Z3 0. 975 

0. 300 1. -4Z4 Z. 195 0. 980 

O. 350 1. 6-40 Z. -4 60 0. 990 

0.-4 00 1. 875 2.7-4 0 0. 99:> 

O. -4 50 2. 110 3. 040 0 . 999 

0. 500 2. 366 3. 357 

FPtt. j 

Xl for 

f = 3 d . f. f = 4 d. f. 

Z. 650 3. 680 

2. 950 4.04 0 

3.290 4. 430 

3. 665 -4 . 878 

-4 . 108 5. 385 

-4.6-42 5.989 

5. 296 6.725 

6. Z51 7. 779 

6. 920 B. -4 80 

7. 8 15 9. -488 

9. 3-4B t 1. 143 

9.8 37 11. 668 

11. 3-45 13. 27 7 

1 Z. 838 1-4. 860 

16. 268 \ 8 . 46 5 

x' 
~ <)(I)i e -t)(.t.dx." 
o 

x' 

\ X· 
o 

.~~~--__ ----r---.----r---'----~---r---'----r----r--~--~r---~-X· 
10 n " OJ ,4 

Fig. -4 Chi-square Cumulative Distribution 
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CHAPTER V 

ANALYSIS OF RESU LTS 

I, Individual st:ltions. As stated in the pre ­
',' I "1I1i o'/lolpll: l', the prob:lbihty of station sample chi­
' h llllll'" 1:1 chosen as a measure of the goodness of fit 
"r a theoretical function to an observed station sample 
dhH ribution. If this probability of a hypothesized 
function is less than an assigned level of significance, 
this function would be acceptable as a good approxi.­
mation to the distribution o f a considered station sam­
ple. T he departures between the theoretical and ob­
served distribution are considered as not being Signi ­
ficant. If the reverse is true, the departures would 
be sign ificant and the postulated function would be re­
jected for a selected level of significance. For the 
purpose of this study, a significant level of 95 percent 
is used. For instance, if a normal function was fitted 
to the distribution of annual precipitation observed at 
the precipitation station at Anacortes, washington, 
the departures between normal and observed distribu­
tion would eive the probability of chi - square of 0.882. 
This value is less than 0. 95 . The departures are not 
Significant, and the normal function is a good fit . 
This conclusion is supported by a relatively small 
skewness coefficient . This coefficient at this station 
is only 0. 06 1 indicating that annual precipitation diS­
tribution is close to normal. 

On the other hand, if the normal function 
is fUted to the distribution of annual precipitation ob­
served at the precipitation station San Diego WB AP, 
California, the conclusion is somewhat different. The 
probability of sample chi-square is 0. 984. It is 
greater than O. 95, i ndicating a high departure between 
the theoretical and the observed distribution. Hence, 
the normal function does not satisfactorily fit the ob­
se rved data and it is rejected at 95 percent level of 
signiHcance. This conclUSion is supported by a re­
latively high skewness coefficient which is 1. 304, in­
dicating that the observed distribution is highly posi ­
tively skewed and is far from normal. 

These two precipitation stations offer two 
extreme examples. Though both stations are located 
at low e levations and on the coast of the Pacific Ocean 
clORe to the moisture source, thei.r precipitation 
characteristics differ considerably. The average 
a nnual precipitation at Anacortes is 26 . 52 in. /year, 
while at San Diego WB AP, California, it is 9.86 in. / 
year. Their coefficients of variation a r e O. 186 and 
0.408, and thei r skewness coefficients are 0.061 and 
1. 304 respectively. This data illustrates that it is 
not likely that either the altitude of s tation or its dis­
tance from the ocean could explain differences between 
distributions of annual precipitation of these two sta­
tions . The other factors, such as ocean currents, 
latitude, temperature, evaporation, prevailing wind 
direction of moist air masses, envirorunentaloro ­
graphic and other conditions are certainly governing 
factors in cr eating the difference in distribution. 

The normal function was the only function 
considered in the above example. However, since 
five theor etical functions have been applied to the 
same observed distribution of any individual station, 
the live values of station sample chi-square probabil ­
ities were obtained. All these five values are of the 
same nature, namely, all of them are dimensionless 
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and are comparable among themselves . The smaller 
the value of this probability , the smaller are depar­
tures between the theoretical and observed distribu­
tions and the better theoretical function fits an ob­
se rved distribution. In the previous examples, the 
probabilities of chi- s quares are: 

Normal 
Log -normal 2 
Log-normal 3 
Gamma 2 
Gamma 3 

Anacortes, 
Washington 

0.882 
O. 302 
O. 302'" 
0.654 
0. 894 

San Diego WB 
AP, California 

0.984 
0. 063 
0. 063'" 
0.476 
0. 442 

It follows that distributions of annual precipitation at 
Anacortes and San Diego WB AP preCipitation sta­
tions are best fitted by a Log-normal function with 2 
paramete rs . Parameters whIch describe this func­
tion are different at each station. 

The detel.nination of the lower boundary 
was a problem in both the Log-normal 3 and Gamma 
3 functions. Namely, the maximum likelihood eqs . 
(17) and (22) produce often negative values of the 
lower boundary parameter estimate. This was par ­
ticularly true for distributions approaching a normal 
function with the following characte r istics: (a) sl1eht­
ly positively or negatively skewed; (b) highly con­
centrated o r wi th small range distributions; and 
(cl a relatively large natural logarithm of the geo­
metric m ean. Negative estimates for the lower 
boundary parameter in the cases of Log-normal 3 
and Gamma 3 functions need clarifications . F irst, 
from the physical point of view, neither precipitation 
nor river flows r.an be negative . Second , from the 
mathematical point of ,·jew, both Log-normal 3 and 
Gamma 3 functions are defined only for the positive 
range of an independent variable. Therefore, the 
estimates of the lower boundary parameter have been 
constrained to a positive range, Ko ~ O. 

When a variable of the type of flow or 
precipitation can have zero values, then for Q" 0 
or p . 0 there is a finite probability mass. In this 
case, the probability distribution is composed from 
a discrete part (probability mass at the value zero) 
and a continuous part for all values greater than zero. 
The negative value of the lower boundary and the 
negative values of the variable of probability density 
curve can be conceived. However, the area under 
the probability density curve between the lower boun­
dary and the value zero should be approximate ly 
equal to the observed discrete probability of the 
value zero. However, there was no zero value of 
annual precipitation or annual runoff for stations 
considered by this study. This fact means that the 
above concept of negative (though immaginary) values 
of precipitation and runor! cannot be a pplied to cases 
when annual values constitute the samples . There­
fore, it is necessary to replace negative lower 

'" Denotes that the lower boundary parameter of the 
function is zero, and, hence, Log-normal 3 reduces 
to Log-normal 2. 



boundary estimates by zero values for Log - normal 3 Two precipitation and two river - gaging 
and Gamma 3 functions when the maximum likelihood station samples are selected for thi s discussion. 
equations produce the above values . As a consequence , The precipitation stations are; Oc ean Fails, British 
Log-normal 3 and Gamma 3 were automatically re - Columbia, Canada, and Greenland R anch, California. 
duced to Log-normal 2 and Gamma 2, respectively. The first has the highest and the latter the lowest 
This was the reason why some station sample proba- average of annual precipitation. The river-gaging 
bilities of chi - squares had the same value for t wo and stations are ; Frenchman Creek near Hamlet, Ne-
three parameter fun ctions of the same family . braska, and Arroyo Trabuco near San J uan CapiS -

trano, California. The first has the lowest and the 
As stated earlier, 2506 individual station latter the highest coefficient of variation of annual 

samples have been used in this s tudy. It is nearly river flows . BaSic data illustrating station charac -
impossible to analyze them individually , For the teristics are listed below. They include : altitude 
purpose of th is report, only a fe w characteristic sta- (H), latitude (Y) , l<lllgitude (X) , drainage area (AL 
tio n samples are diccusse d and some conclusion ad- the sample mean (P. Q) , the average specific yield 
vanced. of a river basin ((f) , s t andard deviation (s). coef -

ficient of variation (C ) and skewness coefCicient 
(C ) v , . 

H Y X A l'oi"Q q , Cv C, 
STATION ft . digr. digr. sq. mi. ini(o:) ds/sq. t . ~r d, mi. d, 

Precipi - Ocean Falls 16 52. 35 127 . 67 173. 21 24 . 61 0 . 140 O. 338 
tation Greenland 

Ranch - 168 36.4 5 116. 87 1. 66 1. 17 0, 700 O. 768 

Run~ Frenchman 
off Creek 2798 40 . 38 101. 21 1480.0 98 .8 3 0.067 9.29 0.092 " - 0.245 

Arroyo Tra -
buco 180 33. 53 117.67 

T ime series of annual values, their duration, (cumu ­
lative frequency) and frequency curves are graphe d 
for precipitation s tations in fig. 5 and for river-gag­
ing s t ations in fig . 6. 

The preCipitation station Ocean F a lls is 
located at a low altitude and relatively high latitude . 
It is clos e to the Pacific Ocean and i n a wet region. 
Th e preCipitation s t ation Greenland R anch is located 
in a land depression - Death Valley - below s ea 
level, a t a lower latitude, several hundreds of miles 
inland, and in a very dry region, A big difference in 
annual precipitation and in its time distribution for 
two locations is m ainly caused by t he gener al air cir ­
culation patterns, and ocean curr ents . The station 
at Ocean Falls i s under the influence of the warm 
North P acific Current , which is closely associated 
with a high cyclonic activity and hence has frequent 
and h igh amounts of precipitation. The Southern 
Californ ia Coast is predominantly under the influence 
o f t he col d California Curre nt . It is related to a high 
anticyclonic activity with infrequent and generally 
low prt:cipitation. Besides, Greenland Ranch station 
is farther inland than Ocean Falls station. hence, it 
is affected by an additional decrease of precipitation 
which comes with an increase in the distance from 
the moisture source , Freque nt rainfall causes the 
annual amounts of precipit ation to be more uniformly 
distributed in tim e and more concentrated around the 
sample mean. The reverse is true for the infrequent 
rainfall. This fact is best illustrated by comparing 
the stations in fig. 5. Henc e , th e observed frequency 
distribution at Ocean Falls is best f itted by the Nor­
mal function, showing the lowest probability of s t ation 
sample chi - square of O. 49 1. The Normal function 
seems to offer a satisfactory fitting within the ob­
served range of annual precipitation values . The ob ­
served distribution at Greenland Ranch station is 
positively skewed and is better fitted by the Gamma 2 
function. showing the lowest probability of station 
sample chi - square, 0, 188, of all five functions in ­
vestigated. 

Distributions of annual river flows are 

36.5 5.04 O. 138 9.2 1 1. 796 2. 198 
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affected by physiographic factors of a river bas in a­
part from its precipitation. In the case of Frenchman 
C ree k which has a r elat ively large drainage area, low 
average annual flow and remarkably low specific yield, 
the annual flow distribution is highly uniform. The 
fr equency di s tribution of annual flows has a slight 
negative skewness though the annual precipitation 
over this basin is slightly positively skewed and fo l ­
lows the Log - normal 2 dis t ribution. The e xplanation 
of these facts is closely related to drainage basin 
characteristics . The river basin in a relatively 
smooth topography and moderate relief is composed 
of Ogallala and Sandborn formations cons isting main­
ly of g ravel. sand, silt and clay . This hugh aquifier, 
averaging hundreds of feet in thickness, is underlain 
by an impermeable barrier of upper cretaceous shale 
and partially overlain by sand dunes. Su ch a very 
permeable surface structure provides for high infil ­
tration resulting in water recharging the large under­
laying groundwater reservoir. This large aquilier, 
connecte d with surrounding basins, is mainly respon­
sible for extremely high participation of groundwater 
in the total runoff, on one side, and groundwater ex ­
change between adjacent baSins or watershed leakage 
on the other side, The topographic and phreatic 
divide of the wat e rshed do not coincide because of the 
plain topography and geological s t ructure . As a r e ­
sult, the distribution of annual river flows is highly 
uniform . This observed distribution is approximated 
by Normal function with P (XZ) '" 0. 931, the other 
four functions being positively skewed and hence, of 
worse fitting. The annual flow distribution at Arroyo 
Trabuco is h ighly nonuniform in time and of a very 
skewed distribution. Observed frequency distribution 
at this station is best fitted by Log-normal 2 function, 
having the probability of station sample chi - square 
of O. 133. Differences in annual flow distributions ob­
served at these two river gaging stations are best 
illustrated by fig . 6. 

These few examples of individual station 
sample analyses show a large variety of climatic and 
physiographjc conditions which influence distributions 
of annual precipitation and runoff. As a consequence, 
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Fig . 6 Time series, cumulative distribution and fr equency curves of a nnual river flows at Frenchman 
Creek near Hamlet, Nebraska, and at Arroyo Trabuco near San Juan Capistrano, California 

18 

50 



3. large variety of observed di str ibutions is obtained. 
They have a very small and very high range, from 
e xt r emely pos iti ve through symmetri cal up to slight­
ly negative skewness , and from a fl at to a very high 
pickadness . These facts greatly complicate any 
ge neraliz a tion concerning the distribu tions at indi vi ­
dual stations. 

Precipitation Stations 

Scon , Saskatchewan, Canada 
Galveston WB C ity, T e xas 
Parma, Missouri 
Superior, Nebraska 
Hat Creek PH No.1 , California 

R ive r Gaging Stations 

Middle F ork J ohn Day River at Ritter, Oregon 
Martin Creek ncar Paradise Valley, Nevada 
Chevelon Fork near Winslow, Arizona 
8lk River a t Clark, Colorado 
Hat chie Ri ver at Boliva r, Te nnessee 

II seems f rom these limited number of 
example s that no function studied has a particular 
advantagl..' in fitting the observed distributions of in­
dividual s tat ion samples. Often a ll fi ve fu nctions fit 

N 

All five functions are applicable indivi­
dually and can staisfactorily fit the observed fr equen­
cy distributions of annual prec ipitation and annual 
runoff. In some particu lar cases th iS fit is ~xc('p­
tionally good : 

Best F it By Function p{Xl) 

Normal 0.0 90 
Log-normal 2 0 . 047 
l...og -normal J 0 . 093 

Gamma Z 0. 074 
Gamma 3 O. 104 

Norma l 0. 067 
Log-normal 2 0 . 094 
Log - normal J 0.0 t 9 

Gamma Z 0. 04 5 
Gamma 3 0. 057 

the same observed distribution very well . how{'ver . 
some of them better than the others, as It is shown 
for the following four s ta t ions : 

P (X z) 
LN2 LN3 G2 GJ PreCipitation Stations 

Ro chl'l le 3E, Wyoming 
Hudson, Kansas 

0 . 34l 0.05Z O. l35 O. 187 0.133 
0. 098 O. 159 O. Z99 0. 098 0. 529 

R iver Gaging Stations 

North River near Raymond, Washington 
Trapper Creek near Oak ley. Idaho 

0.48 7 O. 187 O. 335 0.1 14 O. 335 
O. 6Z3 O. Z80 O. 167 O. 582 0. 505 

O n the other b;>.nd, th ere are cases where no funct ion 
fits th£' observed distributIOns at the 95 percent level, 

Pn'cipitaHon Stations N 

and some of them do not fit at th t' 99 percent level of 
significance . Some examples arE': 

PiX!) 
LN2 LN3 GZ G3 

Fort Bidwell, Califo rnia 
Marlow 1 WSW. Oklahoma 

0. 999 
O. 995 

0. 999 
0.997 

O. 999 
O. 997 

0 . 999 
0. 975 

O. 999 
O. 997 

River Gaging Stations 

Chowchilla R iver a t Buchanan Dam Site, 
California 

Comal Ri ver at New Braunfels, Texas 
0.999 
O. 998 

0.999 
o. 999 

0. 999 
O. 999 

O. 999 
O. 999 

0. 999 
0. 999 

These results indicate thc' need fo r an additional 
mathematical function or functions in orde r to covet' 
the whole rang'" of obsl' rved individual sample dis­
tributions . One of the properties of a dditional fu nc ­
tio~)should be the ability to be negatively skewt'd, 
since <l ll five functions used in th is study a re either 
symmetric;).l or posit ively skewed . 

Conside r ing the fitting of individual sta ­
Han sample distributions, in general, the two para ­
meter func tlons arc simplier and easier to work with 
than the thr ee parameter functions . This is mainly 
due to the d iff iculty in estimating the lower boundary 
paramete r s . Besides. among two parameter func· 
tions, Normal and Log-normal Z have some practical 
and computationa l advantages over G amma Z: (1) 
They are familiar functions and have tables of normal 
integ ral; and (Z) They can be easily transformed 
from one to another and have graphical scales to be 
plotted as straight h nes . 
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T he probability of s tat ion samp!~ chi­
square, as a measure of the goodness of !it of a the­
oretical fu nction to an observed distribution, i s more 
universal an d more convenient for use in mass com~ 
putation than the sample chi - square itse lf. The pro­
bability of chi-square is dimensionless an d. hence. 
i s very useful for comparison of distributions, r e ­
gardless of the number of degrees of f reedom and 
the phySical unit s of basic data involved in the s tatis­
tic:il analysis , 

Z. Ensel)l bles of stations . T he probabilit ies 
of station sample chi-squares , previously arranged 
by variables and grouped into PI' P Z' Q 1 and Qz -

ensembles, represent the basic mater ial fot' ensemble 
analyses . Several ways can be used to test which 
one of the fiv e se lected functions is of the best fit to 
each of the four ensembles . One way is Simply to 
count the number of station samples from the same 



" ,. ,,,Il"', ,,111<"11 arc clth~r Satisfactorily or unsatis-
1 .. , ' .or!l\ , ,11 ,'<1 by Ihuoretical funchon at an assigned 
"', <'1 .. ( sIgni ficance . In other words, to count suc -
, " " ,,,,,.; ,ulCl failures in fitting tests. The gro;ater the 

TOTAL 

number of successes or the smallcr tilt' lIumllt I' "f 
railures. Ihe bt!tter IS the fitung of ob:wrvl·d d, ';1,', ­
butions by a theoretical function, If Ihe 95 and !IB 
percent levels of significance arc applkd , as common-
1y used, Ihen the results 3rc as follows: 

NUMBER OF STATION S.·I,.! .... lPLES 
NUMBER OF 950/0 Level of Signif icance 99<;'. Lo:!vel of Significa.nce 

ENSEMBLE SAMPLES FUNCTION Success 

P , 1\41 Normal 1053 
Log - normal 2 1054 
Log-normal j TO"4'4 
Gamma Z 1036 
Gamma 3 929 

P 2 '" Normal '29 
Log-normal 2 435 
Log -normal j ill 
Gamma Z 4 34 
Gamma 3 3% 

Q, 44' Normal 322 
Log -normal 2 398 
Log -normal 3 393 
Gamma Z 400 
Gamma 3 1ST 

Q2 44 6 Normal 321 
Log - normal 2 399 
Log-normal 3 397 
Gamma Z 39, 
Gomma 3 4 0 ' 

According to this success-failure test results, P, 

and P z ensembles are best fHtcd by Log - normal l. 

parameter function at both 95 and 99 percent levels 
of significance. Q 1 -ensemble IS best fitted by the 

Gamma l. function at both 95 and 99 percent levcls 
of signLflcanc~, while Q!-enscmble by Gamma l at 

95 and Log-normal Z at 99 percent levels of signifi­
cance. It should be noted at this point that some 
differences between functions are negligible and th:lt 
the above conclusions may be misleading, particu lar ­
ly in the case of the Qz-(:tJls+nnbl~ . It should be 

noted that Log - norm al 3 and Gamma 3 functions are 

Failure Stlccess Failure 

88 1111 ;0 

87 l1l6 " ". TIn "IT 
105 111 5 " 212 ,085 56 

44 463 10 
38 465 8 

" .fti.f 1i 
39 4" " 77 455 IS 

124 356 " 48 4" 16 
53 43O '" '" 432 14 
55 DO "ib 

IZ5 3tiQ " 47 430 '" 49 ill IT 
48 .,S " 45 "8 " 

not consis tently three pal'anwt~'l' functiun,,; In tlu,; \'1\ " 

semble analysis, but ratiwl' ('ombinatlOn,,; 011\\'0 ;.lmJ 
thl'ce parameter functions of the ,,;ame fanBly of 
functions . ThiS IS the cOl\s~'qut-nC(' 01 Ihc pl't' viuuS 
rcstnction upon the lower boundary pal-am<:tel' to be 
equal 10 or gl'('at~r than ZCI'O. Whenevcr the low('r 
boundary parameter i>:i cOl\sld(r..,d to b" 2C\-O, Iill' 
thrN' parameter functlons automata-ally haVl' be",n 
reduced 10 tWO paraml'tcr junctions . ThiS happ<'ned 
a surpriSIng number of tunes, so Ihat the i<'asibllity 
of the use of thrt'e pal'amcter functIOns c.:tn be seri ­
ously questioned. The following l;.tble . whH.:h con­
tains the numbel' of STaTIOn s;.tmplcs with a boundary 
z.ero for three panllnetel' functions, illustl';.ttcs thiS 
problem: 

LOG-NORMAL 3 GAr\Ii\'IA 3 
Ensemble Number of Samples 

P, 942 

P 2 385 

Q, 375 

Q2 377 

This success-failure test is relat ively unrefined. 
It only takes care of the cumulative frequency of 
successes at a particular level of significance . 

Another way of testing the fLtS of ensem­
bles is by determining the maximum deviation of 
probabilities of station sample chi-squares for variouS 
functions and ensembles from a given standard dis­
tribution of probabilitie s of chi-squares . The idea 
of this t est is a comparison of absolut e m aximum 
deviation, D, between the observed cumulative fre-
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Percentage Number of Samples Percentagt> 

82: . 56 192 16 . 83 

81. 40 77 16. !8 

84 . 08 283 63.4 5 

84. 53 283 63. 45 

quency, F 0' of probabilities o f chi-squares, and a 

hypothesized uniform cumulative distribution, F
u

' of 

these chi-square probabilities . The smaller the 
maximum deviation the better tht> fitting of a theore­
tical function to observed station sample dist r ibutions 
grouped into an ensemble . Applying this concept to 
probabilities of stat ion sample chi -squares. P{X2). 
the above maximum deviation can be determined from 
the expression: 



0: maxIFo[p(XllJ-Fu [p(X1)11 (38l 

For this purpos~, the probabiht!es of star~on sam pIt! 
chi-squar(:s art> classified into 40 equal class inte r­
vals, the obs('rved class frcqut!ncics determined, the 
r dauve and cumu lativt: relative class frequencies 
computed . F or th .. sakI;' of brevity, computations 

ENSEMBLE FUNCTION 

Normal 
Log-normal 2 
Log - normal j 

Gamma 2 
Gamma 3 

Normal 
Log -normal 2 
Log -norma l 3 
Gam m a 2 
Gamma 3 

Normal 
Log-normal 2 
Log - normal 3 
Gamma 2 
Gamma 3 

Normal 
Log - normal 2 
Log - normal 3 
Gamma 2 
Gamma 3 

PI -cnscmblc is btlst fitted by Log-normal 

Z, Sinc(' for this function thc deviation bt>tw('en the 
observ£-d and the hypothl'tical distrIbution is the 
smallest. Close fitting to Ihis ensemble could be ob­
tained by the Gamma 2 function. The order of b~st 
goodness of fit then follows: Log-normal 3, Normltl l 
and Gamma 3 (fig. 7) . 

Pz. - ens('mble is fitted e xactly the sam\.' 

way as PI ' Probability functions follow the same 

ordt:r according to goodness of fi t as in the PI - en­

semble . The only difference is that the PI - ens",m­

bIt' is better fitted in general then the P 2 ' ensemble . 

Though the random errors and the inconsistency in 
data of annual prt:clpltatlon artl partiy Involved in 
both PI and P l enscmblt:s, mos. inconsistency 

appears in the latter. It st!ems that non-homogeneity 
is the prevailing factor fot· the- aboVl' difference b('­
lwt;en these twO ensembles . The effect of non-homo ­
genei,y in data is manifest(>d in higher maximum de­
v!ations btltwcen obst'rvt!d and hypothes ized distribu­
tions , and hence, in worst! fming (fig . 8) , 

Q
j 

- enst'mbh' 1s approximated better by 

Gamma 2, then by Log-normal l which shows almost 
the same result a s Gamma 2. These two funct ions 
are then followed by Log - normal 3, Gamma 3 and 
Normal. The latter tWO funcllons show considerable 
deviat ions which represent bad fits (fig . 9) . 

QZ - ensemble, as n:ting results show, 

does not diffe r f r om the Q1 - ensemble. What was 

said for the Q1 - ensemble ill valid for the QZ - en -

2 1 

are omitted here, but the result in the form of fre­
quency and cumulative frequency distribution!; arc 
graphed in figs . 7 through 10. From these figures, 
the maximum absolute deviations, 0, between tht-­
observed and the hypothesized uniform cumulative 
dist rIbution are obtained for each ensemble and for 
all five functions , as follows: 

F o[ P(XZ)] F lP(X~)] 
u D 

% % "i, 

36 . 19 52. 50 16. 31 
52:.58 65 . 00 12.42 
27 . 86 42.50 'i4.64 
41. 91 55 . 00 13. 09 
32. 61 62. 50 2::l.89 

4 5. 66 65 . 00 19.34 
29 . 38 45. 00 15.6Z 
26.00 45. 00 T9:OO 
25. 16 42. 50 17. 34 
37 . 00 70 . 00 33. 00 

42. 58 70 . 00 27 . 4 Z 
36. 56 52.50 15.94 
34. 97 52 . 50 17. 53 
20. 19 35 . 00 14.81 
30. 74 52. 50 !l:"""f6 

52 .4 7 80 . 00 27. 53 
29 . 84 4 5.00 15. 16 
4 6. 61. 62 . 50 15 . 88 
38 . 78 52. 50 13.72 
30 . 95 52 . 50 21. 55 

semble . It indicates that the correction of observed 
annual river flows for thl' change in water carryover 
from year to yt'ar does not significantly affect the 
distribution of annu".} river flows (fig. 10). 

It is inlel'eslmg to not .. in fig s . 7 through 
10, left side graph,;, that the frt.quenc)' curves of 
P{XZ) are approxImately linear . The zig-zag rel:l.­
t!v~ class frequt.nc!E!S clearly oscillate around Stl-aighl 
lines . These rdative class ft-e~ul'ncies increasl' 
linearly with an increaSe of P(X ) from Zl.'ro 10 un ity. 
Condusions ar!.l that ensembles of station samples of 
annual precipjtation and annual dver flow h.wc pro­
babilities of chi-squares which !l.re more frequent for 
greater values of p l'obabilities than for smaUfol' values . 
F its of straight hnes to relative frequencies of P{X!) 
mean that the cumulative frequency distributions of 
p (Xl) are clOSe to parabolas with various parameters . 

This maximum deviation method of test­
ing the distributions gives a relatively good and reli­
able result . Nevertheless, another test is ustld in 
o r der to confirm the above conclusions . The enSem­
ble s tatis t ics are used for this purpose . Since the 
probaLility of sam pI£> chi - squal'e is selected as the 
measure of deviation of a theoretical function fr om an 
observed one, it seems that the ensemble mean of 
these deviations is a good measure of goodness of fit. 
T he smaller the value of the e nsemble mean of pro ­
babilities of station sample chi-squares, the smallel' 
is the tota l deviation between the two distributions and. 
the better is the fitting. Additional statistics in the 
form of standard deviation, variance, coefficient of 
variation, skewness coefficient and excess, are used 
t o describe the distribution of these deviations . The 
computation of statistics is done on a digital computer. 
The results are as follows: 
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E::\ISE:\lBLE FU NCTION P (X~) 

P, Normal 0. 606 
Log-normal 2 0. 582 
Log -normal 3 0":60i) 
Gamma 2 0. 590 
Gam m a 3 O. 702 

P, ):ormal 0. 6 21 
Log- normal , 0. 604 
Log-normal 3 0. 625 
Gamma 2 0. 605 
Gamma 3 0.724 

« , Norma) 0. 688 
Log-normal , 0. 608 
Log-normal l 0. 624 
Gamma 2 0.505 
Gamma 3 0. 64 1 

Q, Norma l O. 68 1 
Log - norm al 2 0. 60H 
Log - norm al 3 0. 618 
Gamma l 0.592 
G.J.mmll. j O. bB 

Th l:~e results confirm the statt:mems of previous 
teiitS, :'\amely . P I and P 2 - ens!;mbles are best 

fittt!cl hy Lug - normal 2, while Q, and QZ - ensem ­

bles arc ht:st Ciut:d hy th(! Gamma 2: function . These 
two functions have: the smallt:st ensemble mean of 
prohabilith.'s of station s .. rnplt: chi - squares for tIl(' 
correspondinK ensembles . It il:l eVIIJcnt from the 
ahov" results that the lh ffcrences in fitting ohs('rved 
distributions hy Log-normal Z :lnd Gamma l in all 
four cnsembh:s a r e very small , This diff(.'r{·n<:e 
could bt: neglected 10 most cases. J-ie['l<:e, all four 
ensembles of ohscrvtld station Sampl(' dis u 'ihutions 
~an lie equally appr oximat cd eilher by Log - normal t. 
or by Gamma 2 fun~tions. 

Con!'lidering the djstrihuti()n of probabili ­
tit'S of station sample chi - squa r es , they arc n(~gativ e' 
ly skewed (ncgaUvr- skew c()effici<:nt) and gene·rally 
fla t (negativ!! !!xcess) fo r all fo ur ense mhles a nd a ll 
fi v!! fu nctions studied. 

3. F: ffect of various facto r s o n probabilities 
of chi-square . The statistic - the probability of s t a -
tion sample chi - square - as used in this study is th!! 
exclusive measure of goodness of fit of a th eoretical 
function to an ohs!!rvcd distribution of annual precipi­
tation or ::mnual river flow. One may wish to know 
if there is any significant relationship between this 
statistic and some other factors of statiOn sample 
characteristics and physiographic parameters. If 
there is such a relationship one might . a priori, infe r 
some conclusions .:l.bout observed distributions and 
give some indications about probability distribution 

, 
" C C E v , 

O. 268 0, 072 0.44 3 -0 , 370 -0 . 972 
0, 282 0, 080 0. 48 5 - 0, 306 -1. 094 
0.278 0. 077 0, 464 - 0. 376 - LOl3 
0.279 0.078 0 .4 il -0 . Z9l -1. 087 
O. 247 0.06 1 O. 35 Z - 0. 737 -0.431 

O. 274 0. 075 0.441 -0 .487 -0. 94 2 
O. 261 0. 068 0.4 32: -0. 288 -1. 00 1 
O. 255 0.065 0.408 -0 . 363 -0. 94Z 
O. 267 0. 07 1 0.44 2 -0. 373 -0 . 903 
O. z:36 O. 056 O. 32:6 -0 . 9 12 - 0 . 00t) 

O. 290 0.08 4 O.HI -0.587 -0. 944 
O. 28 Z 0. 080 0.464 -0 . 334 -1. 1Z8 
O. Z7fl 0.078 0.447 - 0.41 !) - \. 018 
0. 277 0. 077 0. 45H -0.334 - 1. 04 3 
O. 267 0. 07 1 0. 41 7 -0. 5 18 - 0 . 84 4 

O. 30Z 0. 09 1 0.44 3 -0.623 - 0 . 93Z 
O. l 76 0. 076 0. 453 -0 . 326 - L 0;)0 
O. 27 5 0. 076 0.H5 -0. 353 - 1. 044 
O. 283 O. OgO 0.4 79 - 0 .279 -I. 130 
O. 265 0. 070 0. 41 9 - 0. 4!)fi - 0. 788 

functions of be81 fit . For this purpcse, the PI and 

Q\ - ensemhles of st:'ltion samples arc studh~d. T he 

eventual rclationl:lhip can be expe(:ted to equal thC'se 
for the P Z and QZ - ensembles, and fur the sakC' of 

b r evity the P 2: and Qz - ensembles are omitted in this 

analysis, 

'rhc ('haracteristh: [a(:tors to 1)(' J'elated 
to tIll' proh,lbiUty of station sample chi - squarc , 
P(XI), of "aeh of the fivC' pr obability functions and 
t'a('h of the two consldC'rc~1 clls(!mh]('s, arc as follows: 

P I - (:nl:lcmbi(' (114 1 stJ. tio ll samples): 

Ave rage J.nnua l precipitation, Of sumpJe mean, 
P(in./y r . ); Standard deviat ion, s (in. /yr. ); Coef­
ficien t of variation , Cv ; a nd Skcwnt'l:Is col'fficicnt , 

C s ' 
(~ 1 - ('l1sf'mblc (446 station sampleb) : 

Drainage area, A (sq. mi. ); Averugc annuall'ivcr 
flow , ur sam ph' Ilwan, Q (ds); Ave l'age bpecific 
yield of river hasin, q (ds/sq. mi. ); Standard devia­
t ion of a nnual flows , S (cIs); Coefficient of variation 
o f annual flows C v : and Skewness coefficient of 

annual flows. es • 

T he coefficient of cor relation, 1', was 
chosen as a meal:lure of the linear association bctw('t.'n 
P(XI ) , and any of the above faclo rs. Linear correla­
tion co(·fficients were computed with a digital com ­
puter. The ~sults arc as follows : 
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FACTORS 
, fo, 

N RMAL LOG - NORMAL 

PI - enseJ!!.ble 
P -0. 052 - 0. 052 , -0. 027 - 0. 070 
Cv 0. 060 0. 029 

C, o. 193 -0 . 058 

Q 1 - ensemble 
A 0. 059 0.075 
Q -0. 183 - 0. 055 
q -0.003 -0. \ 18 
s 0. 046 - 0. 03 1 
Cv 

0. 474 0. 032 

Cs O. 502 - 0. 078 

According to these results, since all values of th e 
linear corre lation coeffi cients are small, slightly 
positive or negative, there Is no significant relation ­
ship between the statistic p(Xl) and any of the above 
factors. A somewhat hiihcr value of r is expected 
for the normal function and the skewness coefficient 
in the case of the Q 1 - ensemble. Genera lly, a high 

value of C
s 

indicates a more skewed distribution, 

or further deviance from ~~rmal. Hence, the 

P X' of function 

Z7 

- NORA'1AL MMA l. G. ).ll~IA 

-0.039 o. on O. 037 
-0.058 - 0. 048 - 0. 0:,>[1 
0.0 11 -0 , 151 - D. I jG 

-0 . 0 12 O. 019 -0.068 

0.06 2 0. 045 0. 031 
0. 060 -0.040 -0 . 057 
0. 009 0. 030 0. 019 
0. 049 0. 006 0. 000 
0. 042 0.1 59 o. 108 

-0.029 O. 132 O. 11 0 

higher the probabili ty of chi-square the higher is the 
difference bet ween Normal and observcd distributions. 
Although the values of r are the highest for C v and 

C
s 

of the Q
j 

- ensembl(' and Normal function, all 

factorS considered for all functions and both til(' PI 

and Q\ - ensembles, therc is no Significant indication 

of any strong relationship between the statistic 
p(Xl) and the various factors investIgated . 



CHAPTER VI 

CONC LUSIONS 

Five probability function!! • Normal, Log· 
normal 2, Log · normal 3, Gamma Z and Gamma 3 
parameter functions - have been fitted to distribu­
tions of annual precipitation arid annual runoff in the 
Western United States and the Southwestern Canada. 
Th e Chi-square lest has been used to measure the 
goodness of fi t of each function to each indi vidually 
observed distribution of 2506 station sample., involved 
in this investigation. These five functions have becn 
then tested on all station samples which werc grouped 
into four large ensembles: homogeneous precipita ­
tion (PI)' nonhomogcneous precipitation (PZ)' river 

flows (Q l )' and river flows corrected for the change 

in carryover (QZ) ' From the results of this study, 

obtained under criteria and conditions stated earlier 
in this report, the following concluSions can be drawn. 

1. All five probability fu nctions s tudied are 
applicable and none is more suitable than the other in 
fitting an observed individual station sample of annual 
precipitation or annual r iver flow distributions . 

Z. Probability functions described by two 
parameters have computational a dvant3.ges in esti­
mating paramflters, J.nd lc .... time consuming in their 
\lSP than those described by thl'ce pJ.rJ.mett:rS . 
Furthermore, they are more suit able for ensemble 
analysis than three parameter functions . This is due 
to the gain achieved by introdUCing a th ird po.rameter 
which is less than the loss caused by loosing one de ­
gree of freedom in ihe Chi-square test . When d('aI­
!ng with small sample sizes, slllull numbers of de ­
grees of fre t'dom, and large ensembles of stat ion 
samph's of a nnual precipitation and annual l'unoff, th", 
three p<l.l':uncter functions can be omitted from con­
sideration. Th is is particularly true in cases of 
lar"e scale a nnlYSIl:i OVt'l' large regions or continents, 

3. Distributions of homogeneous annual 
pr~:r;ipjtati()ll for the t:nsemhle of 114 1 Station san l­
pIes o.re best fitted by Log·normal Z parameter func­
tion. This indicates that, on the average, the annual 
precipitations an: pOSitiwly ske w\ 'd . 

.t . Distributions of nonhomogeneous annual 
preclj>itation for th e ensembl(' of 473 station samples 
are also best fi tted by Log·normal 2. param.,ter func­
tion. The nonhomogt'neity in data introduces a de­
cccast: in the goodn(:ss of fit. 

5 . DiStributions of annual river flows for 
the ensemble of 446 station samples a l'e best fItted hy 
the Gamma Z paramete r funct ion. This indicates 
tllat, on the average, the distribution of annual river 
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flows is pOSitively skewed, but somewhat more than 
the annual precipit ation. 

6, Distributions of annual river flows cor­
rected for the change in carryover, for the ensemble 
of 446 station samples, are also best fitted by the 
Gamma Z parameter funct ion. The correction for 
the change in carryover acts in the di rection of 
smoothing the distribution of annual runoff and hence, 
re sulting in slightly better goodness of fit in gen eral 
than fOr thc annual river flows . 

7 . Differences in goodness of fi l in ensem~ 
ble analyzes between Log-normal Z and Gamma Z 
funct ions are very small. For practical PU1-POS€S 
they are negligible . Hence, in larger scale distribu­
tion analysis , these two funt'tions arc interchange ­
able. 

8 . No r~'gional characteriStiC especially 
favors t he use of one of these five probability dis­
tribution i'unl;tions in fi tting the obs':I'vcd d i stribll~ 

tions of e ithe l' annual pl'ecipit3.tiOn Or annual I'iver 
flows . 

9. The us.;> of pl'obabilities of s:llnple chi~ 
squares as llleaSU1"et; 01' goodness of fit of a pn)ba­
bility distribution function to an observed distribu ~ 

!Ion is mon' suitable th:.ln the sam pI.: chi-squares 
th,,'m~C'lves. These probabilities provide for dirL'ct 
comparison of fitting functions with diff.:rent dcgl'ees 
of ft·l·\ ,clom , wllt'n tb e Chi - square distribution is in­
volved. 

10. Th~'I' (' is no siglllJ'icant line:!.!" association 
betw(:'e ll tlw prubability of stati on .,;ample chi - squares 
of any fun!:t.u.)O untl any t: llSt'm\)le :md the "tation sam ­
ple nH':l.l)S, stamlard deviations, coefficients of varia­
tion, and skcwnt' ss coefficient s . In addition to these 
drainage areas and average specifi!: yidds for rivcr 
flow ('nsembles do not show any significant linear 
<.:orre iatlOn with the probabilit i <..:s of stalion sample 
chi - squal'"S foL' the various functions investigated . 
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APPENDIX 

i:\'lIME RICAL EXAM PLE 
WELDON RIVER AT MILL GROVE, MISSOURI , U. S. A. 

1. Transformation o f observed data into 
dime nsionless form . The observed dat a for Weldon 
River at Mlll G rove, Missouri , U. S. A. , are tabulated 
at the end of this Appendix , T able 5. By using the 
sum in Column 3 the sam ple mean of the actual ob­
served data is 

1 n 1 
Q - - 1: Q .• ""'!"l""" x 7957 . 7 = 256 . 7 ds . 

n i- I 1 ~ l 

With this , the observe d annual flo ws are transform ed 
into dimensionless form, in term s of the sample mean 
byeq. ( 2) 

and given in Column 4. In order to facilitate the fur­
ther computation, the modular coefficientS are ar ­
ranged in an array , Colum n 5. 

2. Maximum likelihood estimates. 

(1) Normal function . Equation ( 11) with 
numerical data in Column 4, leads to 

1 Ji x 3 1.000 1. 000 

and eq. ( 12) with Column 7 

~ . V-tr x 17.018 - 0. 74 1. 

(2) Log - normal 2. Applyi ng eq. (13) 
and Colum n 8 

In " - *" ( - 9.806) - 0. 317 

then tlq . (14) and Column 10 

f; - ~-rr x 2 1. 837 s 0. 840 

(3) Log - normal 3. First the lower 
boundary parameter is estimated by iteration pro­
cedure according to eq. ( 17). F or Ko " 0. 050 

columns II , 12, 13, 14 and 15 are set up .::md the 
above equation checked as follows : 

73. S67{+' X 32 . 4 92 -("*(-13.1 30~ ! 
- +, (- 13. 130)} + ( - 95 . 40 7) '"' 0 

95 . 5 10 - 95 .407 ,., 0 

He nce , 

~o s 0. 050. 

30 

According to eq. ( 15) and Column 13, 

A 1 in ", -3T (-1 3. 130) - -0. 4Z4 

then eq . ( IS) and Colum n 14 

~ • -y"* x 32.4 92 - (-0 .4 24) ' " 0 . 933 

8 gives 

A • 

(4) Gamma l . Equation ( 19) with Column 

I + 1+4 [o--h (- 9. 8 10)] A 

- 6 • 

.. 0 - iT (-9. 810l] 

_ 1.73 1 -0. 004 a 1. 727 

the co rrection factor .o,{} being 0. 00 4 for ~ " I. 731 
according to Table 1. Then eq . ( 18) and Column 4 
yield 

1 1 
~ x 3i x 31.000 = 0. 579 

(5) Gamma 3. First lower boundary or 
location parameter is computed by the iterat ion pro­
cedure in accordance With eq . (22) and Columns 16, 
17 and 18: 

1 + 1 +"j In [I. 000 - (- 1. 500)-n 27 .1 24 -4t1n [1. 000-

» -[1. 000 - (-1. 500)1 x i l x 
- (-1. 500)]- !-I21. 124l 

Hence, 

x 13.4 18 ·0 

1. 087 - 1. 083 .. 0 

KO " -1. 500 

Since the lower boundary is negat ive it should be re­
placed by zero, and thiS function reduces to Gamma 
2. However, in this particular example the obtained 
negative value is carried throughout in order to show 
the computatlonal procedure . 

By eq . (20) and Column IS 

= 12. 36 0 - 0.000 '" 12. 360 



the corre ction factor A f; being zero accordmg I" 
T able I. 

Using eq. (21) and the nUlm · ' ·I ,".l 
values from Column 16 

~ 12\60 x -it x 77.500 '" 0.202 

3. Class interval limits and observed c las!' 
rrequencies. 

( I ) Norma\. F or seven class intervals 
s ix class Interval limits are computed by eq. (28) 
and Table 2, and observed class frequencies, OJ' 
de termined and s quared as rollows: 

Kl '" I. 000 - 1. 068 x 0. 741 s. 0.209 

K " l 
1. 000 - O. 566 x O. 741 .. 0.58 1 

K,' 1.000-0. 180 x 0.74 1 - 0.867 

K " 4 
1. 000+0. 180 x 0. 741 1. 133 

K5 • I. 000+0 . 566 x 0.741 1. 4 19 

KG " I. 000+ I. 068 x 0.7 41 1. 79 1 

10 

, 
, 

4 

6 
31 

0' 
) 

" 
100 

9 

9 

" 
36 

187 

(2) Log-normal 2. According to eq. (29) 
and parameter estimates previously computed, the 
c lass interval li m its are: 

OJ 0' 
) 

5 25 
KI • exp [-0. 317 -I. OG8 x 0. 840)- 0. 297 

5 25 
K2 "' exp [-0. 317 - O. 566 x 0,8401 = 0,4 53 

5 25 
K) " exp [-0 . 317 - 0. 180 x 0.84 0]= 0.624 

2 4 
K4 1: exp [-0 . 317+0. 180 x 0.8401 - 0.847 

4 " K5 • exp [-0. 3 17+0 . 566 x 0,840] - 1. 17\ 
4 " KG '" exp [-0 . 317 + I. OG8 x O. 840 J" I. 786 
6 36 

3t 147 

(3) Log-normal 3. By using eq. (30) 
and parameters estimated earlier, th e clas s interval 
limits are: 

KI " O. 050 +exp [-0 .4 24 - 1. OG8 x 0 . 933 ] 
.. 0, 29 1 

K2 ~ O. 050+exp[-0. 424 - O. 566 x 0, 933] 
"O,43G 

K3 " 0, 050 +exp [-O. 424 - 0,180 xO. 933] 
"0 . G05 

K4" 0, 050 + exp [ - 0. 424 + O. 180 x 0 . 933] 
.. O. 824 

4 " 

6 36 

31 

O. 0' 
) ) 

"0 " O. 050 + exp [-0.424 +0. 566 x 0.933) 4 !6 
·' . 1.1 59 

5 25 
K ." O. 050 +exp[-O. 424 + 

h" 1.819 
1. 066 x O. 933) 

6 36 
31 155 

(4) Gamm a 2. 
t·oIT, ·sponding values of u

j 

Equation (35) with the 
f rom Table 3, gives: 

• 
YI. 727 

, 
• 

x 4 . 999 

.. 0.761 x O. 384 " O. Z92 

K Z - 0.76 1 x 0.644" 0.490 

K 3 .. 0.76 1 x 0, 9 16 " 0.697 

K4 " 0.76 1 x 1. 234" 0.939 

K5 " O. 761 x I. 649 - 1. 255 

K6 " 0.76 1 x 2. 314 " 1. 76 1 

0). 0' j 
5 25 

6 36 

4 " 
l 4 

4 " 

4 " 

~ 36 
3 1 T49 

(5) Gamm a 3. Solving eq. (36) with the 
corresponding values of u

j 
selected for given value 

of; Irom Table 3, the class interval limits are 

obtained, the observed class frt'quencies are deter­
mined and squ ared: OJ Of 

K = -1.500 + 1.000 - ( -1. 500) x 2.470 
1 -V1 2.3f;i0 

4 16 

K2 : 

K 3 : 

K " 4 

K " 5 

K.6 " 

-I. 500 + O. 71 1 x 2. 470 .. O. 256 

-1.500+0.71 1 x 2.888 " 0.553 

-1.500+0. 7 11 x 3. 241 • 0 . 604 

-1. 500 + 0.7 11 x 3. 612 " 1. 068 

-I. 500 + O. 7 11 )(4 . 003- I, 346 

-1.500+0.71\ x4 . 578 a 1. 755 

9 " 

2 4 

5 25 

4 16 

6 36 
11 m 

4. Com utaHon 01 sam Ie chi-s uares . The 
sample chi-squares are computed by eq . 2 for 
each selected function separately and then converted 
into corresponding probability by means of Table 4 , 
and fig. 4. 

(I) Normal, f " 4 degrees of freedom 

X' • 7 167 - 3 1 . 11. 267 P (XZ) " O. 976 
1T x 

(2) Log-normal 2, f a 4d.C. 

X' • 7 
1T x 14 7 - 31 " 2. 222 P (X') a O. 307 

(3) Log-normal 3, f " 3 d, r. 

X' • 7 155 - 3 1 " 4. 030 P (XZ) " 0.74 2 
1T x 



(4) Gamma Z, f . 4 d, r. 

Xl" ft x 14 9 - 31 Z. 674 

(5) Gamma 3, f a 3 d. f . 

Xl" Tt X 179 - 31 - 9.4 54 P(X,> = 0.976 

5. Analysis of results. Consi dering this 
station separately, only Log - normal 2, Log- normal 
3, and Gamma Z are applicable . since each of them 
has the pr obability of chi -square less than commonly 
used level of Significance 0, 95 . Hence, the statistical 
tests for these three functions are nonsignificant, and 
for Normal and Gamma 3 they are signifi cant . How­
ever, since the smaller probability of chi-square 
means the better fitting to observed data, it turns out 
that the Log - normal Z With the s m allest probability of 
chi - square is of best fit to annual observations at 
We ldon R iver at Mill Grove, Missouri, USA. The 
c haracteristic histogr ams of annual river flows at 
this s tation, including the discrete time series, the 
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cumulative frequency, the observed and the expected 
fre quency histograms for Log-normal Z, are graphed 
in fig. 11. It is interestinlt to not e that in the freQuency 
analysis dealing with the class intervals of equal pro­
babilities , the observed frequency C'lrve is trans­
formed to a histogram , and the expected frequency 
curve to a rectangular . Therefore, the comparison 
of an observed distribution with a continuous theoreti ­
cal distribution reduces to the comparison of an ob ­
served histogram with a theoretical uniform distri­
bution. This is well illustrated in fig . 11, histo ­
gr ams 3and 4. 

In this particular numerical example, 
attention is called upon Gamma 3, where the lower 
case was presented here only to show the computa­
tional procedure, otherwise the lower boundary would 
be zero, and Gamma 3 would reduce to Gamma Z. 

Further analysis of this station is done 
in grouped rorm for all samples together in the Ql­

ensemble as shown in Chapter V. 
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F ig. 11 Characteristic histograms of annual river flows at Weldon River at Mill Grove, 
MiSSouri, USA: (I) Discrete time series; (Z) Duration or cumu lative frequency; 
(3) Observed frequency; and (4) Expected frequency . 
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O:der 
No. 

1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
i3 
14 
15 
16 
17 
18 
19 
20 
11 
II 
l3 
l4 
l5 
16 
21 
18 
19 
30 
3! 

3! 

Y e a r 0 
Obser -
vation 

1930 
1 
2 
3 
4 

1935 
6 
7 
B 
9 

194 0 
1 
2 
3 
4 

194 5 
6 
7 

• 
9 

1950 
1 
2 
3 
4 

1955 
6 
7 

• 9 
196 0 

3! 

" 1 

Annual Q . K . 
River K. =........l • 
Flow • Q i n arr a 
Q

i 
(cfs) 

4 5 

10 8 . 0 0.42 1 2. 567 
53 . 6 0,209 2. 474 

585 . 0 2. 279 2 , 27 9 
98 . I' 0 , 382 2 . 20 9 
40. 6 O. 158 1 . 97 9 

4 72 . 0 I. 8 39 1. 839 
96. 5 0 .376 1. 7 18 

2 17. 0 0. 84 5 1. 5 58 
42 . 7 0 . 166 1. 5 5 1 

208 .0 0 . 8 10 1. 504 
14 3. 0 O. 557 1. 16 1 
93. 7 O. 365 0 . 96 6 

398. 0 1. 55 1 . 955 
298 .0 1. 161 • 9 5 1 
24 8 . a 0 . 966 . 8 45 
441,0 1. 7 18 .8 10 
38 6 . 0 1. 504 . 588 
567 . 0 2. 209 . 5 57 
122.0 0 .415 . 5 26 
15 1. 0 O. 588 . 5 14 
244 . 0 0 . 95 1 . 475 
400 . 0 1. 558 . 444 
2'1 5. 0 0 . 955 .421 
114 . 0 0 . 444 . 38 2 
659 .0 2 . 561 . 376 
132 ,0 0 . 5 14 . 365 
44 . a 0 , 17 1 . 282 
72 .5 0 . 282 . 209 

135 . 0 O. 526 · 17 1 
635 . 0 2.414 · l uG 
508 . 0 1. 979 · 158 

7957 . 7 3 1. 000 3 1. 0 0 

TABLE 5 

DA T A FOR WE L OON RI VE R AT MI LL G ROV E, MISSOURI 
Station Sam ple o f Q1 ~EnsembIe 

In K. ~ . (In K i , 
(K - ;; t A' 

, I 
In(K( KJ Ki - ~ In Ki In~ )l 

K . -K , 
• In" 

• 0 
;-1.000 «-.- O.OSO 

K. - K 
h..Ju-O.!.I7 • 0 

6 7 • 9 10 11 12 13 

1. 567 2.455 0. 94 2 1. 259 I. 58 5 2. 5 17 O. 397 0 . 923 

1. 4 74 2. 173 0. 905 1. 222 1. 4 93 2. 4 24 0 . 41 3 0. 885 

1. 279 1. 636 0.8 23 1. 140 I. 30 0 2. 2 29 .449 . 801 

I . 20 9 L 46 2 0 . 7 9 2 I . 109 1. 2 30 2. 159 . 4 63 . 769 
0 , 97 9 O. 958 0.683 I . 0 00 I. 000 I. 929 · 5 18 . 657 

. 8 39 . 704 0 .609 0. 926 0. 857 I. 789 · 559 . 58 2 

. 7 18 . 51 6 0 . 54 2 . 859 . 7 38 1. 668 . 600 • 5 11 

.558 · 3 11 0 . 444 . 76 1 . 579 1. 50 8 . 663 . 411 

.55 1 , 304 0 . 4 38 . 755 . 570 1. 501 , 6 6 6 . 406 

.504 . 254 0 .407 . 724 . 5 24 1. 4 54 . 688 . 374 

. 16 1 · 026 O. 14 9 . 466 ,217 1. I II . 900 • l OS 
- . 0 34 • 00 1 - 0. 0 35 . 28 2 . 080 O. 9 16 1. 092 - . 088 
- .04 5 . 00 2 -0 . 04 6 .2.7 1 . 0 7 3 . 905 1. 10 5 - . 100 
- • 04 9 .002 - 0. 0 51 .266 • 0 71 . 90 I I. 110 - • 104 
- . 155 . 0 24 - • 168 .1 4 9 · a ll . 795 1.258 - . 229 
- • 190 . 036 - . 211 . 106 .0 11 ,7 6 0 I. 3 16 - .274 
- .41 2 · 110 - • 53 1 - . 2 14 . 04 6 . 538 1. 8 5 9 - , 6 20 
- . 44 3 · 196 - . 585 - . 268 . 072 · 501 1.97 2 - . 6 79 
- . 4 74 . 2 24 - . 64 3 - • 326 . 106 .416 2. 10 1 - . 142 
- , 486 · 236 - .666 - . 34 9 • 12 2 . 4 64 2. 155 - . 768 

- . 5 25 · 276 - . 744 - . 4 27 · 182 . 425 2. 353 - . 856 
- • 556 . 309 - . 81 2 - . 4 95 .24 5 , 394 2. 538 ~ . 93 1 

- • 579 . 335 - . 8 65 - . 54 8 . 300 • 37 1 2. 6 95 - . 99 2 
- . 6 18 . 38 2 - • 96 2 - . 6 4 5 . 41 6 . 3 32 3. 0 12 -1. 103 

- . 624 . 389 - . 918 - . 66 1 . 4 37 · 326 3. 0 67 -1. 121 
- . 63 5 . 40 3 - \. 008 - . 6 9 1 . 4 7 7 • 3 15 3. 17 5 -I. 155 
• • 718 · 5 16 - I. 266 - . 94 9 • 90 1 . 232 4.3 10 - \. 4 61 

- . 79 1 . 626 -I. 565 -I. 24 8 I. 5 58 . 159 6 .289 - 1. 839 
- . 8 29 . 687 -1. 76 - I. 44 9 2 . l Oa · 121 8 .264 - 2. 112 

- . 8 34 . 696 - I. 79 -1. 419 2 .1 8 1 . 11 6 8.6 2 1 -2. 154 
- .84 2 . 7 09 -1 . 84 - 1. 529 2. 338 · 108 9.259 -2 . 226 

17 . 0 18 - 9.81 2 1. 837 9 . 4 50 73.867 - 13. 130 

In' 
,/ n, 

(K. - K 
(Ki - Ko) , 

In K . - K I (K . -I< ) 
• 0 

, • 0 ~ K .-K 
..... - 1.500 

• 0 

• 0 
• 0 

14 15 16 17 18 

0. 85 2 O. 367 4. 0 67 0 ,24 6 1. 4 0 2 
. 783 .365 3. 97 4 . 252 I. 37 9 
. 64 2 , 359 3.779 . 265 1. 329 
. 59 1 • 356 3. 70 9 . 270 t , 3 11 
.4 32 · 341 3. 479 . 287 1. 247 
. 339 · 325 . 3. 339 . 299 1. 205 
. 26 1 . 306 3. 2 18 · 3 11 1. 169 

· 169 . 273 3. 058 · 327 1. 118 
. 165 . 270 3. 05 1 . 328 1. 11 5 
. 140 · 188 3,004 • 333 1. l Oa 
. 0 11 . 0 95 2, 6 61 · 376 0 . 978 
· 008 .096 2. 4 66 . 4 06 . 9 0 3 

· 0 10 .11 0 2.455 . 4 07 . 898 

• 0 1 1 · 11 5 2.4 5 1 . 4 08 . 896 
. 05 2 . 288 2. 345 . 4 26 . 852 
.015 · 36 1 2. 3 10 .4 33 . 837 
. 384 I. 15 2 2,088 . 419 . 736 
. 4 6 1 1. 339 2. 057 . 4 86 . 12. 1 
. 55 1 1. 559 2.0 26 . 4 94 . 106 
, 590 I. 655 2 . 0 14 . 4 97 . 100 
. 733 2. 0 14 1. 915 . 506 . 680 
. 8 6 7 2.363 1. 944 · 5 14 . 665 
. 91;1 4 - 2.6 74 I. 92 1 · 521 . 65 2 

I. 2 17 3. 3Z 2 1. 8 82 • 531 . 6 32 
1. 257 - 3. 4 39 1. 8 1 6 . 533 . 6 28 
I. 334 - 3. 667 I. 865 · 536 . 6 23 : 
2. 135 6 . 297 I. 78 2 · 56 1 . 578 
3. 38 2 I I. 566 1. 70 9 . 585 . 536 
4 . 46 1 17 . 4 55 1.67 1 . 598 .5 13 
4. 6 40 18 . 569 1. 666 . 600 . 5 10 
4 .955 20.6 11 1. 658 . 603 . 50S 

32. 4 9 2 95 . 4 07 7 7 . 500 13. 41 8 27. 124 
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