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ABSTRACT

Distributions of annual precipitation and annual river
flow are studied on 2506 selected precipitation and river gag-
ing stations in the Western United States and Southwestern
Canada,

Five probability functions - Normal, Log-normal with
2, Log-normal with 3, Gamma with 2 and Gamma with 3 para-
meters - are fitted to each individual observed distribution.
The maximum likelihood method is used for estimating the
functions' parameters from observed data. The probability
of chi-square is used as a measure of goodness of fit of each
function to every observed sample distribution. These five
functions are then tested on all station samples grouped into
four large ensembles: homogeneous precipitation, non-homo-
geneous precipitation, river flow, and river flow corrected for
the change in carryover.

As results of this study, it has been found that all five
probability functions investigated are applicable. No one func-
tion is more suitable than the other in fitting an observed in-
dividual station sample precipitation or river flow distribution,
However, distributions of annual precipitation in homogeneous
ensemble (1141 samples) and nonhomogeneous ensemble (473
samples) are best fitted by the Log-normal 2 parameter function.
Distributions of annual runoff in river flow ensemble (446 sam-~
ples) and river flow ensemble corrected for the change in carry-
over (446 samples) are best fitted by the Gamma 2 parameter
function. The difference in goodness of fit in ensemble analysis
between these two functions is negligible for all practical pur-
poses, and both could be used interchangeably for all four en-
sembles,



PROBABILITY FUNCTIONS OF BEST FIT TO DISTRIBUTIONS OF

ANNUAL PRECIPITATION AND RUNOFF

By: Radmilo D. Markovic

CHAPTER I

INTRODUCTION

1. General. The variability of precipitation
and river flows has long been recognized as an im-
portant factor related to water resources use and de-
velopment. In the past, this variableness has led to
an extensive study of precipitation and river flows,
especially with respect to their dependence on a large
number of climatic and physiographic factors.

Precipitation and river flow are governed
by chance phenomena, that is, there are so many
causes at work that the influence of each cannot be
readily identified. Therefore, statistical and proba-
bility methods must be applied to adequately describe
these hydrologic phenomena,

2. Subject. The purpose of this study is to
find theoretical probability functions of best fit to
distributions of annual precipitation and annual river
flow as exemplified by fitting theoretical curves to
observed data.

In addition to the main purpose of this
study, answers have been sought to the following
guestions:

(1) Are there significant regional char-
acteristics of annual precipitation and annual runoff
which would indicate a better fit to observed data
using a particular theoretical function?

(2) 1Is a particular theoretical distribution
function as compared to another distribution function
specifically advantageous in fitting the observed data?

(3) Are theoretical functions described
by three parameters more suitable in fitting the ob-
served data than those defined by two parameters?

(4) Does the nonhomogeneity of data sig-
nificantly affect the fitting of annual precipitation
values and if so, what is the resulting effect?

(5) Is there any significant difference in
fitting distributions of annual flow in comparison with
annual flow corrected for carryover?

3, Significant aspects of this study. To
achieve the objective of this study and to answer the
aforementioned questions, this study will investigaie
or make use of the following:

(1) Research data from a very large area,
involving different climatic and physiographic condi-
tions;

(2) A large number of precipitation and
river gaging stations, 2500 station samples,

(3) A minimum of 30 years of observa-
tion of all hydrologic data; and,

(4) Three theoretical distribution func-
tions are investigated simultaneously: normal, log-
normal and gamma; as these latter two functions have
each two cases, with two and with three parameters,
practically five different functions are studied.



CHAPTER II

SELECTION OF RESEARCH DATA

1. Area under consideration. For the pur-
pose of this study, the data from the western part of
the United States and the southwestern part of Canada
only is used. This large area was selected so that it
would include many river basins of different sizes, a
range of climatic areas from arid to humid regions of
varied physiographic conditions ranging from plains
to mountains. This large variety of natural conditions
provides the basis for a generalization of the theoreti-
cal probability distributions for both annual precipita-
tion and annual runoff. The selected area includes 21
states in the United States, as shown in fig. 1.

_ 2. Basic research material, The basic
material used in this investigation is constituted from
two broad categories of data: annual precipitations
from a large numbear of precipitation gaging stations;
and annual river flows from numerous river gaging
stations.

From these two categories of data, four
large ensembles are formed with the following yvaria-
bles and notations:

(1) The homogeneous annual precipitation,
P, - ensemble;

(2) The nonhomogeneous annual precipita-

tion, P, - ensemble;

2

(3) The annual river flow, Q1 - ensemble;
and,

(4) The annual river flow corrected for
carryover¥, Q2 - ensemble.

P
1
precipitation having homogeneous data. PZ - ensem-

- ensemble consists of station samples of annual

ble includes station samples of annual precipitation
having nonhomogeneous data, with the nonhomogeneity
being proven or with the obvious evidence of nonhomo-
geneity. Q, - ensemble includes station samples of

annual river flows. QZ - ensemble consists of the
same station samples as Qi - ensemble, with the -

significant difference being that flows are corrected
for the change in carryover.

Each station sample of annual observa-
tions for each of four ensembles has a size equal to
the total length of observation, but not less than 30
years. The minimum 30-year period of observation
is from 1931 to 1960, being chosen because it coin-
cides with the standard climatological reference
period. This period was adopted by the World Meteo-
rological Organization as a standard reference period
for all countries.

* The synonymous expression used in Colorado State
University Hydrology Papers Nos. 1, 4, and 7, is
"Annual effective precipitation. '

3. Criteria for selection of stations. Pre-
cipitation gaging stations were selected according to
the following criteria:

(1) Minimum length of continuous period
of observation of precipitation data is 30 years;

(2) Change of station location during the
period of observation is less than one mile in hori-
zontal direction and less than 100 feet in elevation for

P1 - ensemble; and the change is more than one mile

in horizontal direction and more than 100 feet in ele-
vation, and likewise not more than 5 miles and 500
feet, respectively, for P, - ensemble.

(3) No more than one year of missing
data is estimated by regression analysis with neigh-
boring stations and during the standard period of ob-
servations.

River gaging stations were selected
according to the following criteria:

(1) Minimum length of continuous period
of flow data observations is 30 years;

(2) No change in station location, or the
change is negligible, or the flows are corrected for
the change;

(3) No unaccounted transmountain diver-
sions into the river basin or out of it, or diversions
for irrigation do not exceed 2-3 percent of annual
runoff; in case of large diversions, corrections are
made in the river flows;

(4) No large storage reservoirs in river
basin (in which their net capacity providing signifi-
cant regulations);

(5) For large storage reservoirs the
river flows are corrected for the differences in
storage at the beginning and the end of water years;

(6) No more than one year of missing
data during standard period of observation is esti-
mated by regression analysis with neighboring sta-
tions; and

(7) Stations are independent among
themselves; If more than one station is selected
from the same river basin, the annual runoff at the
downstream station(s) is (are) reduced for annual
runoff at the upstream station(s).

4, Selected stations and their characteris-
tics. On the basis of the aforementioned criteria,
the following precipitation stations were selected:
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Number of Stations
P1 ensemble P2 ensemble

State or
Province

United States

1) Washington 47 36
2) Oregon 39 14
3) California . 153 28
4) Nevada 14 7
5) Idaho 40 20
6) Utah 43 15
7) Arizona 50 9
8) New Mexico 46 24
9) Colorado 41 23
10) Wyoming 26 21
11) Montana 60 17
12) North Dakota 48 14
13) South Dakota 44 17
14) Nebraska 83 24
15) Kansas 62 47
16) Oklahoma 42 26
17) Texas 85 41
18) Louisiana 22 7
19) Arkansas 34 17
20) Missouri 46 28
21) lowa 34 38
Canada

22) British Columbia 48

23) Alberta 17

24) Saskatchewan 17
TOTAL 1141 473

The locations of selected precipitation stations are
shown in fig, 1.

The lengths of the period of observation
range from 30 years (majority of P, - and P,-ensem-

ble stations) to 114 years (New Orleans WB City,
Louisiana, USA) for Pl—ensemble, and 125 years

(Leavenworth, Kansas, USA) for P,-ensemble. The

average station period of observation for all is 53.8
years for P, -ensemble and 57. 4 years for P,-en*

semble,

In accordance with the established crite-
ria a total of 446 river gaging stations were selected
from the considered area with the number of stations
for both the Ql- and Qz-ensembles as follows:

Location Number
(1) Part 14, Pacific slope basin in Oregon
and the lower Columbia River basin 60
(2) Part 13, the Snake River basin 32

(3) Part 12, Pacific slope basins in Washing-
ton and the upper Columbia River basin 55

(4) Part 11, Pacific slope basins in Califor-

ma(a) Outside Central Valley 22

(b) Central Valley 40

(5) Part 10, The Great Basin 21
(6) Part 9, The Colorado River Basin 40
(7) Part 8, Western Gulf of Mexico basin 41

(8) Part 7, the Lower Mississippi River

basin 49

(9) Part 6, The Missouri River basin
(a) Above Sioux City, Iowa 26
(b) Below Sioux City, Iowa 45

(10) Pacific Drainage basin, Canada

9
(11) Central Drainage basin, Canada &
TOTAL 446

The locations of these selected river gaging stations
are shown in fig. 2.

Drainage areas controlled by selected
stations range from 1. 90 square miles (The Little
Santa Anita Creek near Sierra Madre, California,
USA) to 34, 000 square miles (the Columbia River
at Birchank, British Columbia, Canada). The lengths
of the period of observation range from 30 years
(majority of stations) to 72 years for the Verde River
below Bartlett Dam, Arizona, USA. The Arizona
station also represents the longest uninterrupted
period of flow observation, from 1889 to 1960, The
average station period of observation is 37 years.

5. Compilation of annual river flows cor-
rected for carryover (QZ-EDsemble). While the three

ensembles Pi’ P2 and Q1 are observed data, QZ-
ensemble is derived. Basically, it is the Qi-ensem*

ble in which each annual river flow is corrected for
the change in water carryover from year to year.
The correction is done by applying the following
equation:

= W 1
QZ,i-Q1,1+{W1,i “1,1-1]T (1)
in which,
Q1 g = Annual observed river flow;
Q, . ° Annual river flow corrected for the change

in carryover in time T;

i, i-1 = Indices referring to the i-th and (i-1)th
member of samples; and

L Wy oy T Total stored volume in the river
' ’ basin at the end of the i-th and
(i-1)-th water year, respectively.

Details of this correction are explained in reference
[12]. With this correction the Q,-ensemble is ob-

tained from the Q1 -ensemble,

6. Properties of observed data. The most
important properties of observed data in fitting the
probability functions to observed distributions are
the sample size, range, frequency property and com-
parability of data.

As it has been shown, the station sample
sizes vary from 30 years of observation up to 114
for Pl’ 125 for P2 and 72 for Q1 and QZ ensem-

bles, Statistically speaking, all observed samples
can be treated as samples of small sizes.

Considering the range of independent
variables, it has been found that the average precipi-
tation - the station sample mean - ranges from 1,66
inches per year (Greenland Ranch, California) to



173. 21 inches per year (Ocean Falls, British Colum-
bia, Canada). The anmual precipitation as the sample
members for the same stations vary from 0.01 to
4.62 and from 109. 69 to 235, 94 inches per year re-
spectively, On the other hand, the average annual
flow range between 0. 723 cubic feet per second (Aliso
Creek at El Toro, California) and 70, 697 cubic feet
per second (Columbia River at Birchank, British
Columbia, Canada). The mean annual flows or sam-
ple members, range from 0.001 to 3, 520 and from
52, 300 to 88, 700 cubic feet per second respectively.
As it can be seen, the ranges of annual precipitation
and annual river flow are very considerable, indica-
ting the large variety of the climatic and physiographic
conditions of the area under consideration. The in-
dependent variables range practically from very small
values close to zero up to very high values which

are not defined. They can go physically from zero as
lower limit (dry) to very high values (flood), which
can be theoretically considered as unlimited, i.e.,
infinity as upper limit. Thus, the theoretical range
of the annual precipitation and annual river flow is
from zero to plus infinity.

_ The frequency distributions that are
generally found have the characteristic typical form.
They usually start with the zero frequency, then rise
to a maximum value, and again decrease finally to
zero. They are generally tangent to the base at both
lower and upper ends. The basic shape of frequency

curves of observed data is thus the bell type, two-
tailed curve. They are either slightly to very skewed
or asymmetrical, having the following order of
characteristics of central tendency: mean, median
and mode. The brief inspection of raw data, how-
ever, indicates that this usual order of measures of
central tendency changes in some extreme cases of
natural conditions. Hence, the large variety of
skewness of frequency curves of observed data could
be expected,

From the comparability point of view, the
annual data, as it is published, collected and classi-
fied, does not provide a comparison between stations
because of high variability of means and standard de-
viations, In order to bridge this difficulty, actual
observed values are transformed to dimensionless
variables. At the sametime, they should be simpli-
fied for ease in making comparisons. It has been
shown that the most suitable form is to transform the
annual values of Pl-, PZ_’ Ql- and QZ- ensembles
into modular coefficients (Ki), as

K, = or K, = -1 (2)

B Q
in which P or @ denotes the sample mean of each
selected station. The transformed annual values into
dimensionless form are given in the example of river
gaging station Weldon River at Mill Grove, Missouri,
USA, in the Appendix.



CHAPTER III

SELECTION OF THEQRETICAL DISTRIBUTION FUNCTIONS

AND ESTIMATION OF PARAMETERS

1, Criteria for selection. According to pro-
perties of observed data, the theoretical distribution
functions of best fit to observed distributions of annual
precipitation and annual runoff should have the follow-
ing characteristics: (1) the function is continuous
and defined for all positive values of the observed
variable K; (2) the lower tail is bounded by zero
value or by a positive value, K_; (3) the upper tail
is unboundéd; (4) the density clrve is asymptotic to
the axis for large values of K; (5) the basic shape
is one peak bell-shaped two-tailed curve, with a
large variety of skewness; and (6) the number of
parameters which describe theoretical functions is
limited to three.

2. Applicable functions. The general class
of functions, originally studied by Karl Pearson, may
be represented by the differential equation

df (K)

f(K) (K + Km)
aK - T

ELICEE 2
with f (K) a density function, ¢ (K) a function of the
independent variable K, and Km the distance from
the origin to the mode,

With ¢ (K) expanded in power series

form, the general equation rewritten is

1 df (K)
fK) ~&

K+ Km
4 ¥
C0+ C1h+ CZK + ...
(4)

in which CO, Cl' CZ’ ... are constants. Their

values determine the shape of the curve. Equation
(4) is the differential equation of density functions for
various wvalues of K. CO, C1 and C,. Thus, for

the particular case with C,, C,, ... zeros, eq. (4)

results in the normal (Gaussian) probability density
function. The log-normal probability density function,
as an example of transformation of the normal func-
tion, has been found to provide a significant goodness
of fit to many observed distributions of hydrologic
variables. Likewise, the Gamma function has very
convenient properties for application to hydrologic
data, and it can be defined with two or three para-
meters. The latter one is often known as Pearson
Type III function. From several functions obtainable
from eq. (4), by assigning various values to constants
Cis Cps vne s and K_, the following functions only

have been selected for investigation.

3. Selected functions. Screening of the
applicable functions with respect to the criteria re-
quired, their convenience for use in mass computa-
tion, and the experience already obtained in applying

them in hydrology, lead to the following selection:
(1) Normal density function, or Normal;

(2) Log-normal density function with
two parameters, or Log-normal 2;

(3) Log-normal density function with
three parameters, or Log-normal 3;

(4) Gamma density function with two
parameters, or Gamma 2; and

(5) Gamma density function with three
parameters, or Gamma 3.

The expressions and parameters of these five
functions are [8]:

(1) Normal with the classical form:

- (K-p)?
202

1 e ~-m SK<+ow (5)

T

with K - the variable values; u - the population
mean; and ¢ - the population standard deviation.

£(K) =

(2) Log-normal 2 with the form:

- (InK - 1lng)?
2
£(K) = K: - & 0< K< (6)

with p - the population geometric mean; and o - the
population standard deviation of the InK values.

(3) Log-normal 3 with the form:

K-K
5 i 2 [s)
. . ol In )
f(K-K)= ———————c¢
( O) (K-Ko]cr\/ 2T
K, <K< (7)

with p - the population geometric mean of (K-KO);
K, - the lower boundary of the distribution of the

variable K; and o - the standard deviation of the
In {K-KO) values.

(4) Gamma 2 with the form:

1 ket
g% [ ()
o< K< w

with @ - the shape parameter; B - the scale

£(K) = K/B (8)



parameter; and r(a) the gamma function of . It is
skewed to the right for all values of parameters «
and 3.

(5) Gamma 3 with the form

K < K<ow (9
o ERE

with K, - the location parameter of the lower bound-
ary, and «, 8, and r(a}, as previously defined.

4, Estimation of parameters of selected
functions. In estimating the values of parameters of
the parent population the following properties of es-
timators are desirable [2, 5, 6,]:

(a) Consistent estimators, meaning
that the probability of the absolute value of the de-
viation of estimator from the population para-
meter 6 is less than any small quantity e, tends to
unity a; sample size n tends to infinity, i.e.

B_ (| -4de)—>»1 as n—sm;

(b) Unbiased estimators, or the ex-
pected value of estimator is equal to the population
parameter, E () = 8 with biasedness being defined
as E (8) - 8; and

(¢) Efficient estimators, or among
the class of consistent estimators, the minimum un-
biased estimator & has the smallest variance,

According to desirable properties of
estimators, the maximum likelihood method is chosen
as the most suitable for the estimation of para-
meters in this investigation.

Maximum likelihood method, developed
by R. A. Fisher, is based upon likelihood function L.
This function is maximized by setting the first de-
rivative of InK with respect to 8 equal to zero,
and solving the resulting equation for 6:

n
9(Z Inlf (Ki;e)] 1
3(lnl) i=1 B
a6 h 06 i (10)

This yields a single equation for the solution of 6 in
terms of K's. For m parameters, m equations of
eq. (10) give m estimators or unknown parameters,
Maximum likelihood estimators are consistent,
asymptotically normal and asymptotically efficient
under general conditions. The method is completely
numerical, applicable to all selected functions and
convenient for mass computation. The maximum
likelihood method gives the following equations for
parameter estimators [8]:

Normal. Based on eq. (5) and the con~
cept of eq, (10}, the maximum likelihood function
produces:

1 n

f = = = K, (11)
By T4

as estimator of the population mean, and

n
*’r}=-‘/l (K - WP (12)

T
as the estimator of population standard deviation.

Log-normal 2. According to eq. (6) and
using the maximum likelihood equation, the maximum
likelihood estimator of the population mean is:

InK. (13)

A G
e= 5 . i

i=1

and the estimator of the population standard deviation:

1 n
? =\/H Z, (K, - Inf})? (14)

Log-normal 3. Equations (7) and (10)
yield the maximum likelihood equation with respect
to parameters Inu, ¢ and Ko' The maximum like-

lihood estimator of the population mean is:

In (X, - R (15)

lA'i
D8 = 3 { i o

"M

of the population standard deviation is:

& ='\/L [In (K.-K ) - Inp]2  (16)

noy i o

and of the lower boundary KD is

n I n
1 {1 2 A t 4 TS S
T ——1{ T In?(K-K)- [ = In(K.-K)]?-
=1 KK oy B9 Himy Lo
~
( n A n ln(Ki-KO}
s mmkxk )]+ 5 tp2 =0 (17)
Higed BURCE fay, T T

M
in which KD as the maximum likelihood estimator of
the population lower boundary may be solved only by
an iteration procedure.

Gamma 2. Applying the same technique
to eq. (8), the maximum likelihood equation gives
the two maximum likelihood partial differential equa-
tiong for parameters o and 3, and from them it
follows

~ i}
T N I:(C‘ - mkE- Lz mk
od 0=y i
with & the estimator of «, and
A1 1 I ok =
g= x5 ni:zi Kl—E E (18)

Fal
with B the estimator of 8. The equation for e« in-
volves the digamma function

20l @) .y @)

and it is solved by a simplified technique.
[11] shows that

Norlund



n (1) 1B
= _2.___£ + R
= 2ig< L

P @) =1nd - 45 -

=l

1

is an asymptotic expansion in which B, are the

. 1
Bernouli numbers B1 =5 B2 = %}, etc., and Rn
is the remainder after n terms; for n=1 it be-
comes

A 1 1
2a 1 28%

Substituting this in the above expression, a quadratic
equation is obtained

=

12 [ln[%

W

1 n
K.)- = =
i no._

i=1 i

The error in % resulting from using only one term
in Norlund's expansion is not readily expressed in
mathematical form. Hence, & should be corrected,
that is, the correction factor A% which takes care
of the error.is subtracted from the estimator, and

giving
n
1+ \/1+ % (InK -% Z InK))
8 = — 3 - 2%
4(InK- £ = InK)
i=1 . (19)

which is the final maximum likelihood estimator of o.
The correction factor A% is given in Table 1. [11].
As K= 1 for modular coefficients, then Iln K= 0, so
that in this case egs. (18) and (19) can be simplified,

Gamma 3, In accordance with eq. (9), the
maximum likelihood equation produces three partial
differential equations which give the maximum likeli-
hood estimator of the shape parameter o as [8]:

A

n
1+-\/1 + %[111 ('K-ﬁo) —% f 1n(£«:i-% )]
n

o AL B
4 [In(K-K )- ? In(K;-K )] (20)
the maximum likelihood estimator of the scale para-
meter 3

n ~ L A
> (K-K)= + ®-R),
- i A o
i=1 [+

4

B - (21)

ST

and the maximum likelihood estimator of the lower
boundary parameter, Ko’ obtained in implicit form

to be solved by an iteration procedure:

4 o 2 e A B B
1+V1 +§ [ln (K KO) = 2 In (Ki KO)]
i=1 *
4 o Mn f o L el Aoox
1+W+§_{1n (R-K,) Hifiln K.-K )]-4[In (R-K )
s T n
“R-R)L = (e =0
1 & e
-= % In(K,-K )]
n.o LNy
i=1 (22)

5. Computation of maximum likelihood es-
timates. By using the annual values expressed in
dimensionless form K. and stored on magnetictape,
the maximum likelihood estimates for each of the five
selected functions and for each station sample sep-
arately are computed on a CDC 3600 electronic
computer,

Parameters of the normal function are
estimated by eqs. (11) and (12); those of Log-normal
2, egs. (13) and (14); those of Log-normal 3, egs.
(15), (16) and (17). Parameters of Gamma 2 are
estimated by egs. (18) and (18), and those of Gamma
3 by egs. (20), (21) and (22).

Having computed estimates of para-
meters, the five selected functions are then com-
pletely defined.

As an example, the computation of the
maximum likelihood estimates for all five functions
is shown for the case of the river gaging station of
the Weldon River at Mill Grove, Missouri (Appendix).

TABLE 1

CORRECTION FACTOR A% FOR COMPUTATION OF MAXIMUM LIKELIHOOD ESTIMATES
OF THE SHAPE PARAMETERS OF GAMMA FUNCTIONS WITH 2 AND 3 PARAMETERS

2 AR 2 a2
0. 200 0.034 1,400 0,006
0, 300 0,029 1. 500 0. 005
0,400 0.025 1,600 0,005
0.500 0,021 1,700 0,004
0. 600 0,017 1,800 0,004
0,700 0.014 1, 900 0,003
0,800 0,012 2,200 0,003
0, 900 0,011 2, 300 0.002
1,000 0,009 3.100 0.002
1,100 0. 008 3, 200 0,001
1. 200 0, 007 5. 500 0,00t
1. 300 0. 006 5,600 0.000



CHAPTER IV

TECHNIQUES FOR TEST OF GOODNESS OF FIT

To test the theoretical probability distribution
fum tiona lor goodness of fit to observed data, as in
any uther [requency analysis, the distribution of a

vandom variable should be classified into mutually
c¢xclusive and exhaustive categories or class inter-
vils, [t is not desirable to make a frequency dis-
tribution for fewer than about 20 to 25 observations,
since a smaller number of observations may be
studied in an array. In classifying the observed data,
it is necessary to decide upon the number and the
length of class intervals.

1. Number and length of class intervals. No
satisfactory hard-and-fast rule has been established
for the number of class intervals to be used. It is
obvious, however, that if too many classes are used,
some of them would have few or no frequencies and
the resulting frequency distribution would be irregular.
Likewise, if there are too few classes, the observed
data would be very compressed, a large proportion
of the frequencies would fall in one or two classes,
and much information would be lost. In addition,
different classifications for a given set of observa-
tions and for a continuous variable lead to different
observed distributions and hence to different values
‘of departures from postulated distribution.

Since there is no generally accepted
method for determination of the number of class in-
tervals, numerous rules have been suggested by
many statisticians. According to these rules, the
number of class intervals should not be smaller than
about 10 and not larger than 20, but these practical
rules have no theoretical basis. Nevertheless, a
guide for the systematic choice of the number of class
intervals has been developed. Based upon some the-
oretical considerations, several mathematical for-
mulas have been suggested for the number of class
intervals for different sample sizes and levels of
significance. In such a situation, a practical rule
commonly used by many statisticians will be applied
in this analysis. The rule states that the number of
class intervals should be chosen so that the average
expected frequency of any class intervals is at least
five. Since the observed sample sizes used in this
study range from 30 to 72, with an average of about
37 for river flows, the total number of class inter-
vals selected is seven,

The choice of the length of class intervals
should be done in such a manner that the main char-
acteristic features of the observed distribution are
emphasized and chance variations are obscured [4].
Basically, there are two concepts for choice of the
length of class intervals: (a) equal lengths, and
(b) equal probabilities.

Equal lengths of class intervals are ex-
tensively used even though there is no theoretical
foundation for it. However, it has some advantages
in graphical representation of observed distributions,
since the comparability is difficult to carry out by
inspection when there exist inequalities in class in-
tervals. Also, two arbitrary actions must be
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introduced: the choice of the size of equal interval,
and the beginning of the first interval limit. Each of
these actions directly affects the observed distribu-
tion, which is a disadvantage of this method.

Equal probabilities of class intervals,
which can be considered as special case of unequal
lengths, has some advantages over the previous
method [ 7]. The arbitrary steps for equal lengths
may be avoided by choosing intervals of equal pro-
babilities instead of intervals of equal lengths. The
required intervals are obtained from the probability
integral transformation. The probabilities are uni-
formly distributed. Thus, the comparison of the
observed distributions with any continuous theoreti-
cal distribution is reduced to the comparison of an
observed with a theoretical uniform distribution.
This method is more convenient and much simplier
for numerical analysis than the previous one, and it
is used in this report. According to this method,
with the total number of class intervals already
chosen in the above discussion, and with the fact that
the total value of the probability integral is unity, the
probability of each class interval is determined by

with j=1, 2, ... k. (23)

o
1]
e

For this value of probability, the required length of
any class interval can be obtained from the proba-
bility integral transformation.

2. Test of fit. The well-known and fre-
quently applied Chi-square test is used here as a
measure of goodness of fit of the theoretical pro-
bability distributions to observed ones. Other
similar tests to be noted, but were not used, include:
the likelihood ratio (observed over expected maxi-
mum likelihood function), which is asymptotically
eonivalent to Chi-square test; Smirnov statigtics (all
of observations involved); and Kolmogorov statistics
(only maximum departure involved) as function of
cumulative distribution of the sample.

The problem of testing the goodness of
fit of a hypothesized probability distribution to.ob-
served sample distribution was solved in the main
by K. Pearson in 1900, who developed the Chi-square
test. Later, R. A. Fisher contributed the significant
idea of "degrees of freedom'' by which proper account
is taken of parameters estimated from the observed
data [3].

The basic concept of the Chi-square test
can be summarized as follows: The total range of
sample observations is divided into k mutually ex-
clusive and exhaustive class intervals, each having
the observed class frequency O. and corresponding

expected class probability E.(j =1, 2, ... , k).
Using the expected value E. Jas the norm of any

class interval, it is reasonable to choose the quan-
tity (Oj - E.)? as a measure of departure from the

norm. However, the magnitudes of the squared



deviations (O. - E.) would not be comparable irom
one class to afdother, since the scale of each is near-
ly proportional to the expected value. Therefore, a
suitable measure is expressed by (OJ )z fE and

the measure of total discrepancy between observanons
and expectations, X?, becomes

k (0.-E.)?
s i
5 E.
j=1 J

X? =

This statistic is distributed asymptotically as Chi-
square (x?) with k - 1 degrees of freedom, if the
population parameters have not been estimated from
the sample observations. Since in this study only the
general form of the probability distribution is hypo-
thesized, the parameters of the selected functions
should be estimated from observed data. In such a
case, the number of degrees of freedom is decreased
for the number of parameters estimated from obser-
vations. For v parameters, the total number of de-
grees of freedom is

ik = 4 mep (24)
The Chi-square statistic as previously given is a
convenient form for representing the direct function
of the differences between the observed frequencies
and their hypothetical expectations, so that the com-
parability is possible by direct inspection. Further-
more, due to the large volume of computations invol-
ved in this investigation, this statistic is simplified
for computational purposes. Thus, expanding the
quadratic in the numerator

e OF k k
Xt= 3 gb-2 = O, + T E
1 T =1 5=t
and noting that ZO, = ZE]. = n (sample size), and
Ej = but Py 1/k, the following equivalent ex-
pression to be used is obiained
Xk k
X2= = [ Sl o) (25)
=1

3. Expected and observed class frequencies.
As the total number of class intervals is seven and
the probability of each interval is the same, for given
sample size, the expected class probability for any
interval should be the same and independent of the type
of probability function, i.e., it is dependent only on
the sample size n, or

n

& K

. =pn= (26)
i P

Therefore, the computation of expected class pro-

babilities is simplified by choosing the constant num-

ber of class intervals of the same probability.

The observed class frequencies depend
upon sample size; the class limits depend upon the
type of probability function applied. Since the com-
putational procedure is identical for all observed
samples, as an exampile the five selected probability
functions are applied to one station sample. (See
Appendix).

First, the sample observations should be
arranged in an array in increasing order. Then, to
determine how many observations will fall in each of
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the seven chosen class intervals, six class interval
limits must be computed for each of five selected
functions separately.

Normal. Knowing the probability of any
class interval, p:l (equal for all intervals), which re-

presents the area under the probability curve, any
class interval limit, K,, can be evaluated from the

corresponding cumulative distribution obtained by in-
tegrating eq. (5) in the limits which produce the same
probabilities, provided that the lower limit of inte-
gral is previously known, as well as the parameters
of the function. The solution of the integral of eq. (5)
can be simplified by standardizing the variable, or

Uz

2 gu

F(U) = (27)

7.
= Lo
J V2~

i ee]

with j=1, 2, ..., 7, and with the lower integral
limit -co, the mean zero and the variance unity.
This is a well known probability integral, the value
of which is generally given in tabulated form., The
class interval limits as expressed in terms of Uj

are determined and given in Table 2. From the
values of U., and the estimates of population mean

and standard deviation, ﬁ and ?, the particular class
interval limits Kj of the variable Ki are

~ T ol
K. = + 1. 28
;T i° (28)

in which U:i are class interval limits of the variable
U, of eq. (27).

Log-normal 2. Similar to the previous
case, the class interval limits of log-normal 2 are
computed by using eq. (6), which is first transformed
into a normal probability integral form. The class
interval limits are then computed from the expres-
sion

K, = [Inp + (29)

ex
] P

~
U.
7

in which K. are class interval limits for the varia-
N

ble Ki’ lzﬁ.: is the mean of ani, and ¢ is the
standard deviation of ani, while Ui are class in-
terval limits of the variable U, from eq. (27).

Log-normal 3. The class interval
limits are determined by umpg eq. (7) and trans-
forming the variable (K } first into normal

probability integral form. Then, the class interval
limits are obtained as

K. (30)

J
where K. are class interval limits for the variable
Ki (7), is the mean of In (K - %0), and
% is the standard deviation of ln (K. - K o)» while
U. are class interval limits of the varlable Ui

from eq. (27). Since parameters of this function
are determined earlier and the values of UJ are

i ~ ~
= K, + exp [Ing + Uj 7]

of eq. 1n’;:a



given in Table 2,

eq. (30) gives class interval limits.

TABLE 2

NORMAL DENSITY FUNCTION
FOR COMPUTATION OF CLASS INTERVAL LIMIT VALUES

[No. of class

interval 1 2 3 4 5 6
limits, j
[Probability,
F (U] 0.14286 0.28571 0.428537 0,57143 0,71429 0.85714
Abé‘“ssa' -1.068  -0.566 -0.180 40,180 +0.566 +1, 068
i
Gamma 2. The class interval limits are

computed by using eq. (8) with the lower integral
limit zero. In order to use the existing Tables of In-
complete Gamma Function, the integral of eq. (8) is
first expressed in terms of the shape parameter only,
by using the value of scale parameter of eq. (18) as
follows:

K.
1
. a? -1 -« K
F(K)-——(-—)-F.a jK‘* & e (31)
Q

Then, introducing the replacements ¢ - 1 = p and
@ K=x from which ¢« =p+ 1 and K = x/a, or

dK = (i_x = p;i dx, the above integral takes the
form of:
%
+1
+1)P p_-x 1
I(x, p) = (p x" e dx
F(P"'I)_ (p+l)p p+1
o
(32)

x;
h]
= ﬁ;—_-ﬂ-f «P e ¥ dx
o]

Because the argument x theoretically runs from

0 to + o, the more workable argument u is used in
its place, therefore, the range is considerably de-
creased in the existing tables and determined by

(33)
pti

The final form for which the values are tabulated,
represents practically the familiar probability inte-
gral expressed as the ratio of incomplete to complete
gamma function for arguments u and p:

P _"-4
u e du
) F;(pﬂ}_fo
(s8]

h (p+1) ~
foe) -
J. we™ dqu

o]

I(u,p) (34)

Standard tables [9] give I (u,p) with the argument u
proceeding by increments of 0.1 from zero up to that
value of u which gives I (u, p) equal unity to the
seventh decimal place., The argument p increases
from -1.00to 1,00 by increments of 0,05, from 1.0
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to 5.0 by increments of 0.1 and from 5.0 to 50.0 by
increments of 0. 2.

For the purpose of this report the stand-
ard tables, previously mentioned, are recomputed
and are presented in Table 3. For the negative
values of argument p, p < 0, and u < 0,800 the
graphical procedure was applied, since the linear
interpolation would result in an error (fig. 3). For
0 < p < 50 the existing tables were used, and for
p > 30 the corresponding values were extrapolated by
using the numerical procedure explained in reference

[¢].

The class interval limits are computed
by using eq. (33) for x and replacement K = x/e in
eq. (32), so that

u.
K. =

IV

with uj selected for given value of £

(33)

from Table 3,

Gamma 3. The computation of the class
interval limits is similar to that of the gamma func-
tion with two parameters. From eq. (8) the cumula-
tive distribution is obtained and by means of trans-

formation is reduced to that of eq. (35). Then, the
class interval limit equation is [8]
A
A (1 -KO) u,
e 3 K b @ (36)
1Tt Vg

By knowing the estimated parameters, the value of
1 1 . ~ B 2
1, can be selected for given & from Table 3.

Then, class limits are computed by eq. (36).

4. Computation of station sample chi-squares.
The computational procedure is identical for all sta-
tion samples. To each of them, five selected pro-
bability functions are fitted. Since seven class inter-
vals are already chosen, six class interval limits for
each function and every station sample are deter-
mined according to the following equations: for Nor-
mal function by eq. {28); Log-normal 2 by eq. (28);
Log-normal 3 by eq. (30); Gamma 2 by eq. (35); and
Gamma 3 by eq. (36).

Knowing the class interval limits, the
corresponding observed class frequencies are deter-
mined, squared and summed and then station sample
chi-squares computed by eq. (25). Since five



TABLE 3

INCOMPLETE GAMMA FUNCTION
FOR COMPUTATION OF CLASS INTERVAL LIMIT VALUES

Ciass interval, j 1 2 3 4 b 6
[L(p+1) ;
I(u, p)= W 0. 14286 0. 28571 0,42857 0.57143 0,71429 0.85714
p=o -1 5
g u2 u3 u4 u5 1;1b
-0.8 0.2 0. 007 0.015 0.036 0.092 0,303 0.932
-0.6 0.4 0.021 0. 060 0. 147 0. 335 0.675 1, 381
-0.4 0.6 0. 048 0. 140 0,299 0. 540 0.919 1. 630
-0.2 0.8 0.004 0. 240 0.434 0.708 1,103 1. 806
9.0 1.0 0.153 0. 338 0.559 0.850 1,254 1,947
0.5 1.5 0.313 0,557 0.818 1. 131 1.546 2,218
1.0 2.0 0.468 0. 748 1,033 1. 357 1.774 2.430
(s 2.5 0.614 0.919 1217 1.549 1,967 2. 610
2 3 0. 749 1,074 1,382 1.786 2.136 2,770
3 4 1. 000 1,349 1.670 2.013 2.429 3, 049
4 5 1.224 1.591 1,921 2. 267 2.682 3,291
5 6 1,429 1.810 2. 145 2,494 2,907 3,508
6 7 1,620 2,010 2. 350 2,700 3. 112 3,707
7 8 1,799 2,196 2,540 2.891 3,302 3.8091
8 g 1, 966 2. 370 2,717 3.070 3,480 4,065
g 10 2.126 2,535 2. 884 3,238 3.647 4,228
10 11 2. 278 2.692 3,043 3,397 3.805 4, 383
11 12 2.420 2.838 3,191 3. 568 3,953 4,528
12 13 2.563 2,985 3,339 3,694 4,101 4,674
3 14 2,696 3.120 3,476 3,831 4,238 4,808
14 15 2.628 3. 255 3.612 3. 068 4,374 4,942
15 16 2. 952 3,382 3. 740 4,096 4,502 5. 067
16 17 3,076 3.508 3.867 4,223 4,629 5.192
17 18 3.194 3.627 3. 987 4, 344 4,748 5. 310
15 1y 3. 311 3. 746 4,107 4,464 4,868 5.429
19 20 3.422 3,859 4,220 4,578 4,981 5. 541
20 21 3.532 3,972 4,334 4.691 5.094 5.653
21 22 3,638 4. 080 4,442 4,832 5.202 5. 760
22 23 3.744 4,187 4,550 4,074 5. 310 5.867
23 24 3. 846 4,280 4, 654 5.044 5.414 5.969
24 25 3, 947 4, 3493 4,757 5.114 5.517 6.071
25 26 4, 044 4,492 4,856 5.214 5.616 6.169
26 27 4,142 4.590 4,955 5813 5.715 6. 267
27 28 4,236 4_685 5. 0561 5.408 5.810 6. 362
28 29 4,331 4,780 5. 147 5.0504 5, 906 6. 457
29 30 4,422 4.872 5.239 5.596 5.908 6. 548
30 31 4,514 4,964 5. 331 5.689 6. 090 6. 639
31 32 4,602 5,053 5.420 5.778 6.180 6.978
32 33 4,600 5.142 5.510 5,868 6.269 6.816
33 34 4,775 5,228 5.596 5. 954 6. 356 6. 904
34 35 4,860 5. 315 5.683 6.041 6.442 6. 991
35 36 4, 944 5. 398 5.767 6,125 6.566 7.073
36 37 5.027 5.482 5.851 6.209 6.689 7.155
37 38 5.108 5.564 5.932 6. 291 6.731 7.236
38 39 5. 189 5. 645 6.014 6.373 6.773 7. 316
39 40 5. 268 5,744 6,004 6.452 6.872 7. 396
40 41 5. 346 5.843 6.174 6.532 6,932 7.475
41 42 5.423 5. 901 6.252 6.610 7.010 T.552
4z 43 5.501 5. 959 6.329 6.688 7.087 7. 629
43 44 5.576 6.035 6.405 6,764 7.163 7.704
44 45 5.650 6.111 6.481 6.840 7.239 7. 780
45 46 5,724 6. 184 6.555 6. 914 7.313 7.854
46 47 5,799 6. 258 6.629 6. 988 7.387 7.927
47 48 5.860 6.331 §.702 7.061 7.460 8. 000
48 49 5. 941 6.404 6.775 7.134 7.532 8.072
49 50 6.012 6.474 6.846 7. 205 7.603 8. 142
50 51 6.083 6. 545 6,917 7.276 7.674 8.213
55 56 6. 306 6.791 7.181 7.558 7.976 8. 541
60 61 6.583 7.089 7,496 7.889 8.325 §.924
65 66 6.854 7. 380 7.804 8. 214 8.667 9. 600
70 71 7.124 7.672 8,112 8.538 9.010 9. 648



TABLE 3 - continued
p = 24 & uy u, u, uy ug ug
80 81 7.603 8.150 8, 660 9.114 9.618 10, 300
90 91 8. 080 8.701 9, 201 9. 684 10, 218 10, 943
100 101 8.507 9, 161 9,687 10,195 10,758 11,521
110 111 8,922 9.607 10,159 10,692 11, 283 12,083
120 121 9, 319 10, 035 10,611 11, 168 11,785 12,620
[(u,p)
0.9
0.8
p=-08
0.7
06 0.8
05 0.4
0.4+ -02
00
0.3+
0,24
01
0 ; I | 1 1 1 1 I 1 u
0 01 0.2 03 04 0.5 0.6 0.7 o8

Fig. 3

Incomplete Gamma Function

Usedonly for p € 0 and u < 0.800

functions are fitted to annual observations of every
station, each station sample is represented by five
chi-square values. These five computed values for
Normal, Log-normal 2 and Gamma 2 are distributed
as Chi-square (x% with four degrees of freedom (f =

4 d.f), while for Log-normal 3and Gamma 3 distributed
as Chi-square (x?) with three degrees of freedom (f =
3d.f.). These five chi-square values per station, one
for each of five probability density functions, give
automatically the measure of goodness of fit of a par-
ticular theoretical function to observed data for each
individual station sample. However, this is not the
only purpose of this investigation, but also includes
the ensemble analysis involving all samples of the
same population pooled together.

Class interval limits, observed class fre-
quencies, and chi-squares for all five functions and
all 2506 station samples are computed by the CDC
3600 electronic computer,

To check the program for computer and
to show the computation, one example is presented.
For that purpose Chi-squares with three and four de-
grees of freedom and different level of significance
are given in Table 4, and their cumulative distribu-
tions plotted in fig. 4. The example used is the ana-
lysis of data for Weldon River at Mill Grove, Missouri,

]

USA, and is given in the Appendix.

3. Transformation of station sample chi-
square. As it is evident, the station sample chi-
squares are not of the same degrees of freedom and
thus, they are beyond comparison among themselves.
In order to avoid this difficulty, to facilitate the fur-
ther analysis and to insure their comparability, the
computed station sample chi-squares are transformed
into their corresponding probabilities, This trans-
formation was performed on the CDC 3600 electronic
computer by using the Chi-square cumulative distri-
bution function

2
1 LA = —1f 2
F(x? = 7S A (Xa)/“(f z)e %X dy? (37)
2" Tesn) o

in which f stands for the number of degrees of free-
dom, and X? the upper integral limit, stands for
the computed staticn sample chi-square. In this way,
the probabilities of station sample chi-squares in-
stead of chi-squares themselves, are used as a uni-
que measure of goodness of fit of theoretical func-

tions to observed disiributions.
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TABLE 4

CHI SQUARE DISTRIBUTION

x?2 for
F (¥} f=3 4.1 f=4 d.f.
0.001 0.019 0.074
0.005 0.072 0,207
0.010 0.115 0. 297
0,020 0. 185 0,429
0.025 0.216 0.484
0. 050 0. 352 0.711
0,075 0. 468 0.880
0. 100 0.584 1.064
0. 150 0.808 1, 360
0. 200 1.005 1,649
0. 250 1.213 1,923
0. 300 1.424 2,195
0. 350 1.640 2,460
0.400 1.875 2,740
0,450 2.110 3,040
0. 500 2, 366 3. 357
F(xh)

xZ for
F (x3 f=3 d.i f=4 d.f.
0.550 2. 650 3.680
0.600 2,950 4,040
0.650 3,290 4,430
0.700 3.665 4,878
0.750 4.108 5. 385
0.800 4,642 5.989
0.850 5. 206 6.725
0. 900 6. 251 7.779
0,925 6.920 8.480
0. 950 7.815 9,488
0,975 9. 348 11,143
0. 980 0.837 11.668
0. 990 11, 345 13.277
0.995 12.838 14,860
0. 999 16. 268 18. 465

Fig. 4 Chi-square Cumulative Distribution




CHAPTER V

ANALYSIS OF RESULTS

t, Individual stations. As stated in the pre-
viouy chapter, the probability of station sample chi-
syuire is chosen as a measure of the goodness of fit
ol a theoretical function to an observed station sample
distribution, If this probability of a hypothesized
function is less than an assigned level of significance,
this function would be acceptable as a good approxi-
mation to the distribution of a considered station sam-
ple. The departures between the theoretical and ob-
served distribution are considered as not being signi-
ficant. If the reverse is true, the departures would
be significant and the postulated function would be re-
jected for a selected level of significance. For the
purpose of this study, a significant level of 95 percent
is used. For instance, if a normal function was fitted
to the distribution of annual precipitation observed at
the precipitation station at Anacortes, Washington,
the departures between normal and observed distribu-
tion would give the probability of chi-square of 0. 882,
This value is less than 0, 95, The departures are not
significant, and the normal function is a good fit.

This conclusion is supported by a relatively small
skewness coefficient. This coefficient at this station
is only 0. 061 indicating that annual precipitation dis=
tribution is close to normal.

On the other hand, if the normal function
is fitted to the distribution of annual precipitation ob-
served at the precipitation station San Diego WB AP,
California, the conclusion is somewhat different. The
probability of sample chi-square is 0,984, It is
greater than 0. 95, indicating a high departure between
the theoretical and the observed distribution. Hence,
the normal function does not satisfactorily fit the ob-
served data and it is rejected at 95 percent level of
significance. This conclusion is supported by a re-
latively high skewness coefficient which is 1. 304, in-
dicating that the observed distribution is highly posi-
tively skewed and is far from normal.

These two precipitation stations offer two
extreme examples. Though both stations are located
at low elevations and on the coast of the Pacific Ocean
close to the moisture source, their precipitation
characteristics differ considerably. The average
annual precipitation at Anacortes is 26, 52 in, [year,
while at San Diego WB AP, California, it is 9. 86 in. /
year, Their coefficients of variation are 0. 186 and
0.408, and their skewness coefficients are 0,061 and
1. 304 respectively. This data illustrates that it is
not likely that either the altitude of station or its dis-
tance from the ocean could explain differences between
distributions of annual precipitation of these two sta-
tions. The other factors, such as ocean currents,
latitude, temperature, evaporation, prevailing wind
direction of moist air masses, environmental oro-
graphic and other conditions are certainly governing
factors in creating the difference in distribution.

The normal function was the only function
considered in the above example. However, since
five theoretical functions have been applied to the
same observed distribution of any individual station,
the five values of station sample chi-square probabil-
ities were obtained. All these five values are of the
same nature, namely, all of them are dimensionless
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and are comparable among themselves. The smaller
the value of this probability, the smaller are depar-
tures between the theoretical and observed distribu-
tions and the better theoretical function fits an ob-
served distribution. In the previous examples, the
probabilities of chi-squares are:

Anacortes, San Diego WB

Washington AP, California
Normal 0.882 0. 984
Log-normal 2 0. 302 0.063
Log-normal 3 0. 302% ) 0. 063%
Gamma 2 0.654 0,476
Gamma 3 0.894 0,442

It follows that distributions of annual precipitation at
Anacortes and San Diego WB AP precipitation sta-
tions are best fitted by 2 Log-normal function with 2
parameters. Parameters which describe this func-
tion are different at each station.

The deter.nination of the lower boundary
was a problem in both the Log-normal 3 and Gamma
3 functions. Namely, the maximum likelihood egs.
(17) and (22) produce often negative values of the
lower boundary parameter estimate. This was par-
ticularly true for distributions approaching a normal
function with the following characteristics: (a) slight-
ly positively or negatively skewed; (b) highly con-
centrated or with small range distributions; and
(¢) a relatively large natural logarithm of the geo-
metric mean. Negative estimates for the lower
boundary parameter in the cases of Log-normal 3
and Gamma 3 functions need clarifications. First,
from the physical point of view, neither precipitation
nor river flows can be negative. Second, from the
mathematical point of view, both Log-normal 3 and
Gamma 3 functions are defined only for the positive
range of an independent variable, Therefore, the
estimates of the lower boundary parameter have been
constrained to a positive range, KO > 0.

When a variable of the type of flow or
precipitation can have zero values, then for @ = 0
or P =0 there is a finite probability mass. In this
case, the probability distribution is composed from
a discrete part (probability mass at the value zero)
and a continuous part for all values greater than zero.
The negative value of the lower boundary and the
negative values of the variable of probability density
curve can be conceived, However, the area under
the probability density curve between the lower boun-
dary and the value zero should be approximately
equal to the observed discrete probability of the
value zero. However, there was no zero value of
annual precipitation or annual runoff for stations
considered by this study, This fact means that the
above concept of negative (though immaginary) values
of precipitation and runoff cannot be applied to cases
when annual values constitute the samples. There-
fore, it is necessary to replace negative lower

* Denotes that the lower boundary parameter of the
function is zero, and, hence, Log-normal 3 reduces
to Log-normal 2.



boundary estimates by zero values for Log-normal 3
and Gamma 3 functions when the maximum likelihood
equations produce the above values.
Log-normal 3 and Gamma 3 were automatically re-
duced to Log-normal 2 and Gamma 2, respectively.
This was the reason why some station sample proba-
bilities of chi-squares had the same value for two and
three parameter functions of the same family.

As stated earlier, 2506 individual station
samples have been used in this study. It is nearly
impossible to analyze them individually. For the
purpose of this report, only a few characteristic sta-
tion samples are discussed and some conclusion ad-
vanced,

As a cons equence,

Two precipitation and two river-gaging
station samples are selected for this discussion.
The precipitation stations are: Ocean Falls, British
Columbia, Canada, and Greenland Ranch, California.
The first has the highest and the latter the lowest
average of annual precipitation. The river-gaging
stations are: Frenchman Creek near Hamlet, Ne-
braska, and Arroyo Trabuco near San Juan Capis-
trano, California. The first has the lowest and the
latter the highest coefficient of variation of annual
river flows. Basic data illustrating station charac-
teristics are listed below. They include: altitude
(H), latitude (Y), longitude (X), drainage area (A),
the sample mean (P, Q), the average specific yield
of a river basin (g), standard deviation (s), coef-
ficient of variation (Cv) and skewness coefficient

(e).
H Y X A Pord q s Cv CS
STATION ft. digr. digr. 5g. mi. | in, or efs/sq. | in. or
(cfs) mi. (cfs)
Precipi- | Ocean Falls 16 52,35 127.67 173, 21 24, 61 0. 140 0.338
tation Greenland
Ranch -168 36. 45 116,87 1. 66 1,17 0. 700 0.768
Run- Frenchman
off Creek 2798 40, 38 101,21 | 1480.0 08.83 0. 067 9.29 0.092- | -0.245
Arroyo Tra-
buco 180 33,53 117. 67 36.5 9.04 0,138 9. 21 1, 796 2.198

Time series of annual values, their duration, (cumu-
lative frequency) and frequency curves are graphed
for precipitation stations in fig. 5 and for river-gag-
ing stations in fig. 6.

The precipitation station Ocean Falls is
located at a low altitude and relatively high latitude.
It is close to the Pacific Ocean and in a wet region.
The precipitation station Greenland Ranch is located
in a land depression - Death Valley - below sea
level, at a lower latitude, several hundreds of miles
inland, and in a very dry region. A big difference in
annual precipitation and in its time distribution for
two locations is mainly caused by the general air cir-
culation patterns, and ocean currents. The station
at Ocean Falls is under the influence of the warm
North Pacific Current, which is closely associated
with a high cyclonic activity and hence has frequent
and high amounts of precipitation. The Southern
California Coast is predominantly under the influence
of the cold California Current. It is related to a high
anticyclonic activity with infrequent and generally
low precipitation. Besides, Greenland Ranch station
is farther inland than Ocean Falls station, hence, it
is affected by an additional decrease of precipitation
which comes with an increase in the distance from
the moisture source. Frequent rainfall causes the
annual amounts of precipitation to be more uniformly
distributed in time and more concentrated around the
sample mean. The reverse is true for the infrequent
rainfall. This fact is best illustrated by comparing
the stations in fig. 5. Hence, the observed frequency
distribution at Ocean Falls is best fitted by the Nor-
mal function, showing the lowest probability of station
sample chi-square of 0.491, The Normal function
seems to offer a satisfactory fitting within the ob~
served range of annual precipitation values. The ob-
served distribution at Greenland Ranch station is
positively skewed and is better fitted by the Gamma 2
function, showing the lowest probability of station
sample chi-square, 0. 188, of all five functions in-
vestigated.

Distributions of annual river flows are
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affected by physiographic factors of a river basin a-
part from its precipitation. In the case of Frenchman
Creek which has a relatively large drainage area, low
average annual flow and remarkably low specific yield,
the annual flow distribution is highly uniform. The
frequency distribution of annual flows has a slight
negative skewness though the annual precipitation
over this basin is slightly positively skewed and fol-
lows the Log-normal 2 distribution. The explanation
of these facts is closely related to drainage basin
characteristics. The river basin in a relatively
smooth topography and moderate relief is composed
of Ogallala and Sandborn formations consisting main-
ly of gravel, sand, silt and clay. This hugh aquifier,
averaging hundreds of feet in thickness, is underlain
by an impermeable barrier of upper cretaceous shale
and partially overlain by sand dunes. Such a very
permeable surface structure provides for high infil-
tration resulting in water recharging the large under-
laying groundwater reservoir. This large aquifier,
connected with surrounding basins, is mainly respon-
sible for extremely high participation of groundwater
in the total runoff, on one side, and groundwater ex-
change between adjacent basins or watershed leakage
on the other side. The topographic and phreatic
divide of the watershed do not coincide because of the
plain topography and geological structure. As a re-
sult, the distribution of annual river flows is highly
uniform. This observed distribution is approximated
by Normal function with P (X?) = 0, 931, the other
four functions being positively skewed and hence, of
worse fitting. The annual flow distribution at Arroyo
Trabuco is highly nonuniform in time and of a very
skewed distribution. Observed frequency distribution
at this station is best fitted by Log-normal 2 function,
having the probability of station sample chi-square

of 0,133, Differences in annual flow distributions ob-
served at these two river gaging stations are best
illustrated by fig. 6.

These few examples of individual station
sample analyses show a large variety of climatic and
physiographic conditions which influence distributions
of annual precipitation and runoff. As a consequence,
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Fig. 5 Time series, cumulative distribution and frequency curves of annual precipitation at Ocean
Falls, British Columbia, and at Greenland Ranch, California
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Fig. 6 Time series, cumulative distribution and frequency curves of annual river flows at French‘man
Creek near Hamlet, Nebraska, and at Arroyo Trabuco near San Juan Capistrano, California
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a large variety of observed distributions is obtained.
They have a very small and very high range, from
extremely positive through symmetrical up to slight-
ly negative skewness, and from a flat to a very high
pickadness. These facts greatly complicate any
generalization concerning the distributions at indivi-
dual stations.

Precipitation Stations

Scott, Saskatchewan, Canada
Galveston WB City, Texas
Parma, Missouri

Superior, Nebraska

Hat Creek PH No. i, California

River Gaging Stations

Middle Fork John Day River at Ritter, Oregon
Martin Creek near Paradise Valley, Nevada
Chevelon Fork near Winslow, Arizona

Blk River at Clark, Colorado

Hatchie River at Bolivar, Tennessee

It seems from these limited number of
examples that no function studied has a particular
advantage in fitting the observed disiributions of in-
dividual station samples. Often all five functions fit

All five functions are applicable indivi-
dually and can staisfactorily fit the observed frequen-
cy distributions of annual precipitation and annual
runoff. In some particular cases this fit is excep-
tionally good:

Best Fit By Function P (X3
Normal 0.090
Log-normal 2 0. 047
lLog-normal 3 0,093
Gamma 2 0.074
Gamma 3 0.104
Normal 0,067
log-normal 2 0.094
Log-normal 3 0.019
Gamma 2 0,045
Gamma 3 0,057

the same observed distribution very well, however,
some of them better than the others, as it is shown
for the following four stations:

P(X?

Precipitation Stations N LN2 LN3 G2 G3

Rochelle 3E, Wyoming 0,342 0.052 0,235 0.187 0.133

Hudson, Kansas 0,098 0,159 0. 299 0.098 0.529

River Gaging Stations

North River near Raymond, Washington 0.487 0.187 0,335 0,114 0.335

Trapper Creek near Oakley, Idaho 0.623 0. 280 0,167 0.582 0.505
On the other hand, there are cases where no function and some of them do not fit at the 899 percent level of
fits the observed distributions at the 95 percent level, significance. Sompcr(e:zcamples are:

Precipitation Stations N LN2 LN3 G2 G3

Fort Bidwell, California 0.999 0.999 0,999 0,999 0. 999

Marlow 1WSW, Oklahoma 0,995 0. 997 0,987 0.975 0,997

River Gaging Stations

Chowchilla River at Buchanan Dam Site,

California 0. 999 0. 999 0.999 0.999 0, 999
Comal River at New Braunfels, Texas 0.998 0. 9898 0. 999 0.999 0. 989

These results indicate the need for an additional
mathematical function or functions in order to cover
the whole range of observed individual sample dis~
tributions. One of the properties of additional func-
tionfs) should be the ability to be negatively skewed,
since all five functions used in this study are either
symmetrical or positively skewed.

Considering the fitting of individual sta-
tion sample distiributions, in general, the two para-
meter functions are simplier and easier to work with
than the three parameter functions. This is mainly
due to the difficulty in estimating the lower boundary
parameters. Besides, among two parameter func-
tions, Normal and Log-normal 2 have some practical
and computational advantages over Gamma 2: (1)
They are familiar functions and have tables of normal
integral; and (2) They can be easily transformed
from one to another and have graphical scales to be
plotted as straight lines,
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The probability of station sample chi-
square, as a measure of the goodness of fit of a the-
oretical function to an observed distribution, is more
universal and more convenient for use in mass com-
putation than the sample chi-square itself. The pro-
bability of chi-square is dimensionless and, hence,
is very useful for comparison of distributions, re-
gardless of the number of degrees of freedom and
the physical units of basic data involved in the statis-
tical analysis.

2. Ensembles of stations. The probabilities
of station sample chi-squares, previously arranged
by variables and grouped into Pi’ PZ’ Q1 and QZ =

ensembles, represent the basic material for ensemble
analyses. Several ways can be used to test which

one of the five selected functions is of the best fit to
each of the four ensembles. One way is simply to
count the number of station samples from the same



sacrshie, which are either satisfactorily or unsatis-
fastoz iy Lited by theoretical function at an assigned
‘evel of significance, In other words, to count suc-
cesses and failures in fitting tests., The greater the

number of successes or the smaller the numbor of
failures, the better is the fitting of observed distri-
butions by a theoretical function. If the 95 and 149

percent levels of significance are applicd, as common-

ly used, then the results are as follows:

TOTAL NUMBER OF STATION SAMPLES
NUMBER OF 95% Level of Significance 99% Level of Significance
ENSEMBLE SAMPLES FUNCTION Success Failure Success Failure
1:’1 1141 Normal 1053 88 1141 30
Log-normal 2 1054 87 1126 15
Log-normal 3 1044 97 1124 17
Gamma 2 1036 105 1115 26
Gamma 3 929 212 1085 36
P2 473 Normal 429 44 463 10
Log-normal 2 435 38 465 8
Log-normal 3 431 12 164 g
Gamma 2 434 34 461 12
Gamma 3 396 7 455 18
Q1 446 Normal 322 124 356 50
Log-normal 2 398 48 430 16
Log-normal 3 393 53 430 16
Gamma 2 400 46 432 i4
Gamma 3 391 55 130 16
QZ 446 Normal 321 125 350 26
Log-normal 2 399 47 430 16
Log-normal 3 397 49 124 17
Gamma 2 398 48 428 18
Gamma 3 401 45 128 18

According to this success-failure test results, l‘-‘1

and P‘2 ensembles are best fitted by Log-normal 2

parameter function at both 95 and 99 percent levels
of significance. Qi-ensemble is best fitted by the

Gamma 2 function at both 95 and 99 percent levels
of significance, while Q2~ensemble by Gamma 3 at

95 and Log-normal 2 at 99 percent levels of signifi-
cance, It should be noted at this point that some
differences between functions are negligible and that
the above conclusions may be misleading, particular-
ly in the case of the Qa-ensemble. It should be

noted that Log-normal 3 and Gamma 3 functions are

not consistently three parameter functions in this en-
semble analysis, but rather combinations of two uand
three parameter functions of the same family of
functions. This is the consequence of the previous
restiriction upon the lower boundary parameter to be
equal to or greater than zero. Whenever the lower
boundary parameter is considered to be zero, the
three parameter functions automatically have been
reduced to two parameter functions. This happened
a surprising number of times, so that the feasibility
of the use of three parameter functions can be seri-
ously questioned. The following table, which con-
tains the number of station samples with a boundary
zero for three parameter functions, illustrates this
problem:

LOG-NORMAL 3 GAMMA 3
Ensemble Number of Samples Percentage Number of Samples Percentage
Py 942 82.56 192 16.83
P, 385 81,40 77 16. 28
Q, 375 84.08 283 63.45
Q, i 84,53 283 63.45

This success-failure test is relatively unrefined.
It only takes care of the cumulative frequency of
successes at a particular level of significance.

Another way of testing the fits of ensem-
bles is by determining the maximum deviation of
probabilities of station sample chi-squares for various
functions and ensembles from a given standard dis-
tribution of probabilities of chi-squares. The idea
of this test is a comparison of absolute maximum
deviation, D, between the observed cumulative fre-
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quency, Fo’ of probabilities of chi-squares, and a

hypothesized uniform cumulative distribution, Fu’ of

these chi-square probabilities. The smaller the
maximum deviation the better the fitting of a theore-
tical function to observed station sample distributions
grouped into an ensemble. Applying this concept to
probabilities of station sample chi-squares, P(X?),
the above maximum deviation can be determined from
the expression:



D = max |F_ [P(X%] “W [P(X¥] (38)
For this purpose, the probabilities of station sample
chi-squares are classified into 40 equal class inter-
vals, the observed class frequencies determined, the
relative and cumulative relative class frequencies

are omitted here, but the result in the form of fre-
quency and cumulative frequency distributions are
graphed in figs. 7 through 10. From these figures,
the maximum absolute deviations, D, between the
observed and the hypothesized uniform cumulative
distribution are obtained for each ensemble and for

computed. For the sake of brevity, computations all five functions, as follows:
1 2 2
ENSEMBLE FUNCTION F [P{X%] F [P(XY)] D
%o o L
Py Normal 36.19 52.50 16, 31
Log-normal 2 52,58 65,00 12,42
Log-normal 3 27,86 42,50 14. 64
Gamma 2 41, 91 53. 00 13.09
Gamma 3 32,61 62,50 29.89
P, Normal 45. 66 65,00 19, 34
Log-normal 2 249, 38 45,00 15.62
Log-normal 3 26. 00 45,00 19,00
Gamma 2 25.16 42,50 17, 34
Gamma 3 37.00 70.00 33,00
Q, Normal 42,58 70.00 27.42
Log-normal 2 36. 56 52,50 15, 94
Log-normal 3 34, 97 52,50 17, /53
Gamma 2 20,18 35.00 14,81
Gamma 3 30. 74 52.50 21,76
Q?_ Normal 52,47 80.00 27.53
Log-normal 2 29,84 45, 00 15. 16
Log-normal 3 46.62 62,50 15.88
Gamma 2 38.78 52.50 13,72
Gamma 3 30. 95 52.50 2155
I—’1 -ensemble is best fitted by Log-normal| semble. It indicates that the correction of observed

2, since for this function the deviation between the
observed and the hypothetical distribution is the
smallest. Close fitting to this ensemble could be ob-
tained by the Gamma 2 function. The order of best
goodness of fit then follows: Log-normal 3, Normal
and Gamma 3 (fig. 7).

P2 -ensemble is fitted exactly the same
way as PI‘ Probability functions follow the same
order zccording to goodness of {it as in the P1 e
semble., The only difference is that the P1 - ensem-
ble is better fitted in general then the P,- ensemble,

Though the random errors and the inconsisiency in
data of annual precipitation are partly involved in
both P1 and P, ensembles, most inconsistency

appears in the latter. It seems that non-homogeneity
is the prevailing factor for the above difference be-
iween these two ensembles. The effeci of non-homo-
geneity in data is manifested in higher maximum de-
viations between observed and hypothesized distribu-
tions, and hence, in worse fitting (fig. 8).

- ensemble is approximated betier by
' PP

Gamma 2, then by Log-normal 2 which shows almost
the same result as Gamma 2. These two functions
are then followed by Log-normal 3, Gamma 3 and
Normal. The latter two functions show considerable
deviations which represent bad fits (fig. 9).

QZ -ensemble, as fitting results show,
does not differ from the Q1 - ensemble, What was

said for the Q1 - ensemble is valid for the QZ -en-
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annual river flows for the change in water carryover
from year to year does not significantly affect the
distribution of annual river flows (fig. 10).

It is interesting io note in figs. 7 through
10, left side graphs, that the frequency curves of
P(X? are approximately linear. The zig-zag rela-
tive class frequencies clearly oscillate around straighi
lines, These relative class frequencies increase
linearly with an increase of P(X*) from zero to unity,
Conclusions are that ensembles of station samples of
annual precipitation and annual river flow have pro-
babilities of chi-squares which are more frequen: for
greater values of probabilities than for smaller values,
Fits of straight lines to relative frequencies of P(X?)
mean that the cumulative frequency distributions of
P (X% are close to parabolas with various parameters.

This maximum deviation method of test-
ing the distributions gives a relatively good and reli-
able result. Neveriheless, another itest is used in
order to confirm the above conclusions. The ensem-
ble statistics are used for this purpose. Since the
probability of sample chi=square is selected as the
measure of deviation of a theoretical function from an
observed one, it seems that the ensemble mean of
these deviations is a good measure of goodness of fit,
The smaller the value of the ensemble mean of pro-
babilities of station sample chi-squares, the smaller
is the total deviation between the two distributions and
the better is the fitting. Additional statistics in the
form of standard deviation, variance, coefficient of
variation, skewness coefficient and excess, are used
to describe the distribution of these deviations. The
computation of statistics is done on a digital computer,
The results are as follows:
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ENSEMBLE FUNCTION P(X?) s g? C, C, E
l:’1 Normal 0.606 0, 268 0,072 0.443 -0, 370 -0, 4872
Log-normal 2 0.582 0. 282 0. 080 0. 485 -0, 306 -1.094
Log-normal 3 0.600 0.278 0.077 0.464 -0. 376 -1,023
Gamma 2 0. 590 0,279 0.078 0.472 -0. 292 -1, 087
Gamma 3 0.702 0. 247 0.061 0. 352 -0, 737 -0.431
B Normal 0.621 0.274 0.075 0. 441 -0. 487 -0. 942
Log-normal 2 0. 604 0, 261 0. 068 0,432 -0, 288 -1.001
Log-normal 3 0.625 0. 255 0. 085 0. 408 -0. 363 -0, 942
Gamma 2 0.605 0.267 0.071 0.442 -0. 373 -0, 903
Gamma 3 0.724 0.236 0. 056 0. 326 -0. 912 -0. 009
Qi Normal 0, 688 0,290 0. 084 0.421 -0, 587 -0, 944
Log-normal 2 0.608 0. 282 0. 080 0.464 -0. 334 -1, 128
Log-normal 3 0.624 0,279 0,078 0,447 -0.419 -1,.018
Gamma 2 0.605 0.277 0.077 0.458 -0. 334 -1, 043
Gamma 3 0.641 0.267 0.071 0.417 -0.518 -0. 844
Q, Normal 0.681 0. 302 0. 091 0.443 -0.623 -0.932
Log-normal 2 0,608 0,276 0.076 0.453 -0, 326 -1, 0350
Log-normal 3 0.618 0,275 0.076 0. 445 0353 -1.044
Gamma 2 0.592 0.283 0. 080 0.479 -0.279 -1.130
Gamma 3 0.6533 0. 265 0.070 0.419 -0. 496 -0.788

These results confirm the statements of previous

tests. XNamely, P, and P, -ensembles are best

fitted by Log-normal 2, while Q1 and Qz-ensem-

bles are hest fitted by the Gamma 2 function. These
two functions have the smallest ensemble mean of
probabilities of station sample chi-squares for the
corresponding ensembles. It is evident from the
above results that the differences in fitting observed
distributions by Log-normal 2 and Gamma 2 in all
four ensembles are very small, This difference
could be neglected in most cases, Hence, all four
ensembles of observed station sample distributions
can be equally approximated either by Log-normal 2
or by Gamma 2 functions,

Considering the distribution of probabili-
ties of station sample chi-squares, they arc negative-
ly skewed (negative skew coefficient) and generally
flat (negative excess) for all four ensembles and all
five functions studied.

3. Effect of various factors on probabilities
of chi~square. The statistic - the probability of sta-
tion sample chi-square - as used in this study is the
exclusive measure of goodness of fit of a theoretical
function to an observed distribution of annual precipi-
tation or annual river flow. One may wish to know
if there is any significant relationship between this
statistic and some other factors of station sample
characteristics and physiographic parameters, If

there is such a relationship one might, a priori, infer

some conclusions about observed distributions and
give some indications about probability distribution
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functions of best fit, For this purpcse, the P1 and
Ql -ensembles of station samples are studied, The

eventual relationship can be expected to equal these
for the PZ and QZ -ensembles, and for the suke of

brevity the P2 and Q2 - ensembles are omitted in this
analysis.

The characteristic factors to be related
to the probability of station sample chi-square,

P(X?), of cach of the five probability functions and
ecach of the two considered ensembles, are as follows:

P, - ensemble (1141 station samples):

Average annual precipitation, or sample mean,
P(in./yr.); Standard deviation, s (in. /yr.); Coef-
ficient of variation, Cv; and Skewness coefficient,
G c
=
Q, - ensemble (446 station samples):

Drainage area, A (sq.mi.); Average annual river
flow, or sample mean, @ (c¢fs); Average specific
yield of river basin, § (cfs/sq, mi.); Standard devia-
tion of annual flows, s (cfs); Coefficient of variation
of annual flows CV; and Skewness coefficient of

annual flows, Cs'

The coefficient of correlation, r, was
chosen as a measure of the linear association between
P(X?), and any of the above factors. Linear correla-
tion coefficients were computed with a digital com=-
puter. The results are as follows:



r for P(X% of function

FPACTORS NORMAL TOG-NORMAL 2 LOG-NORMAL 3 GAMMA 2 GAMMA 3
P, - ensemble
P -0, 052 -0.052 -0, 039 0.032 0, 037
s -0, 027 -0.070 -0. 058 -0. 048 -0, 059
G, 0. 080 0.029 0.011 -0, 154 ~0. 176
c, 0.193 -0. 058 -0.012 0.019 -0. 068
Q1 - ensemble
A 0. 059 0.075 0.062 0. 045 0.031
a -0. 183 -0. 055 0. 060 -0. 040 -0. 057
5 -0, 003 -0.128 0. 009 0.030 0. 019
S 0. 046 -0, 031 0. 049 0. 006 0. 000
e, 0.474 0.032 0. 042 0. 159 0. 108
c, 0.502 -0.078 -0, 029 0.132 0.110

According to these results, since all values of the
linear correlation coefficients are small, slightly
positive or negative, there is no significant relation-
ship between the statistic P (X?) and any of the above
factors. A somewhat higher value of r is expected
for the normal function and the skewness coefficient
in the case of the Q1 - ensemble. Generally, a high

value of Cs indicates @ more skewed distribution,

or further deviance from Normal, Hence, the
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higher the probability of chi-square the higher is the
difference between Normal and observed distributions.
Although the values of r are the highest for C}v and

CS

factors considered for all functions and both the

of the Qi - ensemble and Normal function, all

Py

and Ql - ensembles, there is no significant indication

of any strong relationship between the statistic
P (X% and the various factors investigated.



CHAPTER VI

CONCLUSIONS

Five probability functions - Normal, Log-
normal 2, Log-normal 3, Gamma 2 and Gamma 3
parameter functions - have been fitted to distribu-
tions of annual precipitation and annual runoff in the
Western United States and the Southwestern Canada.
The Chi-square test has been used to measure the
goodness of fit of each function to each individually
observed distribution of 2506 station samples involved
in this investigation. These five functions have been
then tested on all station samples which were grouped
into four large ensembles: homogeneous precipita-
tion (Pi}, nonhomogeneous precipitation (Pal, river

flows (Qij, and river flows corrected for the change
in carryover (Qz). From the results of this study,

obtained under criteria and conditions stated earlier
in this report, the following conclusions can be drawn.

1. All five probability functions studied are
applicable and none is more suitable than the other in
fitting an observed individual station sample of annual
precipitation or annual river flow distributions.

2,  Probability functions described by two
parameters have computational advantages in esti-
mating parameters, and less time consuming in their
use than those described by three parameters.
Furthermore, they are more suitable for ensemble
analysis than three parameter functions. This is due
to the gain achieved by introducing a third parameter
which is less than the loss caused by loosing one de-
gree of freedom in the Chi-square test. When deal-
ing with small sample sizes, small numbers of de-
grees of freedom, and large ensembles of station
samples of annual precipitation and annual runotf, the
three parameter functions can be omitted from con-
sideration. This is particularly true in cases of
large scale analysis over large regions or continents.

3. Distributions of homogeneous annual
precipitation for the ensemble of 1141 station sam-
ples are best fitted by Log-normal 2 parameter func-
tion. This indicates that, on the average, the annual
precipitations are positively skewed.

4, Distributions of nonhomogeneous annual
precipitation for the ensemble of 473 station samples
are also best fitted by Log-normal 2 parameter func-
tion. The nonhomogeneity in data introduces a de-
crease in the goodness of fit,

5. Distributions of annual river flows for
ihe ensemble of 446 station samples are best fitted by
the Gamma 2 parameter function. This indicates
that, on the average, the distribution of annual river
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flows is positively skewed, but somewhat more than
the annual precipitation.

6. Distributions of annual river flows cor-
rected for the change in carryover, for the ensemble
of 446 station samples, are also best fitted by the
Gamma 2 parameter function. The correction for
the change in carryover acts in the direction of
smoothing the distribution of annual runoff and hence,
resulting in slightly better goodness of fit in general
than for the annual river flows.

7. Differences in goodness of fit in ensem-~
ble analyzes between Log-normal 2 and Gamma 2
functions are very small, For practical purposes
they are negligible. Hence, in larger scale distribu-
tion analysis, these two functions are interchange-
able.

8. No regional characteristic especially
favors the use of one of these five probability dis-
tribution functions in fitting the observed distribu-
tions of either annual precipitation or annual river
flows.

9. The use of probabilities of sample chi-
squares as measures of goodness of fit of a proba-
bility distribution function to an observed distribu-
tion is more suitable than the sample chi-squares
themselves, These probabilities provide for direct
comparison of fitting functions with different degrees
of freedom, when the Chi-square distribution is in-
volved,

10, There is no significant linear association
between the probability of station sample chi-squares
of any function and any ensemble and the station sam-
ple means, standard deviations, coefficients of varia-
tion, and skewness coefficients. In addition to these
drainage areas and average specific yields for river
flow ensembles do not show any significant linear
correlation with the probabilities of station sample
chi-squares for the various functions investigated.
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APPENDIX

NUMERICAL EXAMPLE
WELDON RIVER AT MILL GROVE, MISSOURI, U. 5. A,

1. Transformation of observed data into
dimensionless form. The observed data for Weldon
River at Mill Grove, Missouri, U.S. A., are tabulated
at the end of this Appendix, Table 5. By using the

sum in Column 3 the sample mean of the actual ob-
served data is

o- 4L = Q = 5y x 7957.7 = 256.7 cfs.
ooy 31

With this, the observed annual flows are transformed
into dimensionless form, in terms of the sample mean

by eq. (2)

and given in Column 4. In order to facilitate the fur-
ther computation, the modular coefficients are ar-
ranged in an array, Column 5.

2. Maximum likelihood estimates.

(1) Normal function. Equation (11) with
numerical data in Column 4, leads to

Ao L i
A = 55 x 31.000 = 1.000
and eq. (12) with Column 7

b e % x 17.018 = 0,741,

(2) Log-normal 2. Applying eq. (13)
and Column 8

.

Ind = 5T (79.806) = -0.317

then eq. (14) and Column 10

A

T x 21.837 = 0,840

A
31
(3) Log-normal 3. First the lower

boundary parameter is estimated by iteration pro-
cedure according to eq. (17). For K_ = 0.050

columns 11, 12, 13, 14 and 15 are set up and the
above equation checked as follows:

{ 2
73. 867{31 x 32,492 -[ﬁ(-u. 1soﬂ s

= _,%( 13.130)} + (-95.407) = 0

95,510 - 95,407 = 0
Hence,

N
K_ = 0.050.

30

According to eq. (15) and Column 13,

nf =-33-1- (-13,130) = -0, 424

then eq. (16) and Column 14

A= ‘\/~31—1 x 32,492 - (-0.424)% = 0,933

(4) Gamma 2. Equation (19) with Column

4 1
1+V.‘i+‘3- [0' 31( 9810}]—&3
p = 1, ]
4 [o +; (-9.810)

= 1.731-0.004 = 1,727

8 gives

A
[

Ir

the correction factor A% being 0. 004 for & = 1.731
according to Table 1. Then eq. (18) and Column 4
yield

- 1 1 = -.‘u
g = T 727 x 31 X 31,000 =0.579

(5) Gamma 3. First lower boundary or
location parameter is computed by the iteration pro-
cedure in accordance with eq. (22) and Columns 16,
17 and 18:

1/ L4 I B
1+\1+ Slln [1.000~(—1 (:00)] = 2?.124}

1+\/1+—{1: [1.000 (-1.500)]- = 27. 124 - 4{1n[ 000 -

3

1

- -[1.000-(-1.500)]:4 T X
~(-1.500)]- 5, 27. 124
x 13,418 = 0
1.087 - 1,083 = 0

Hence,

K 500

K, = -L
Since the lower boundary is negative it should be re-
placed by zero, and this function reduces to Gamma
2. However, in this particular example the obtained
negative value is carried throughout in order to show
the computational procedure.

By eq. (20) and Column 18

) 1+\[ i {m [1.000-(-1.500)] -5 2?.124}_

1+
afn 1. 000-(-1. 500]- 7 27.124]

= 12,360 - 0.000 = 12,360

s



the correction factor A 2 being zero according 1o
Table 1.

Using eq. (21) and the numerica!

values from Column 16

~ 1 1 .
|B = m b’ 3—1 x 77.500 = 0,202
3. Class interval limits and observed class

frequencies,

(1) Normal. For seven class intervals
six class interval limits are computed by eq. (28)

and Table 2, and observed class frequencies, Oj‘
determined and squared as follows:
z 2z
% 9
16
Ki =1,000-1.068 x 0,741 = 0, 209
10 100
KZ =1,000-0,566 x 0,741 = 0, 581
3 9
K3 =1,000-0.180 x 0. 741 = 0. 867
3 9
K4 =1.000+0,180 x 0,741 = 1,133
1 1
K5 =1.000+0,566 x 0.741 = 1,419
4 16
KG =1,000+1,068 x 0.741 = 1,791
5 3%
31 187

(2) Log-normal 2. According to eq. (29)
and parameter estimates previously computed, the
class interval limits are:

) 02
OJ i
5 25

K, = exp [-0.317-1,068 x 0,840]= 0, 297
5 25

K, = exp [-0.317-0.566 x 0.840]= 0,453
5 25

K, = exp [-0.317-0.180 x 0.840]= 0.624
2 4

K, = exp [-0.317+0.180 x 0.840]= 0,847
4 16

K. = exp [-0.317+0.566 x 0.840]= 1,171
g 4 16

Kg = exp [-0.317+1,068 x 0.840]= 1, 786
6 36
31 147

(3) Log-normal 3. By using eq. (30)
and parameters estimated earlier, the class interval
limits are:

o 2
% 9
5 25
K, =0.050+exp[-0,424 - 1. 068 x 0. 933]
= 0. 291
4 16
K, =0. 050 +exp[-0. 424 - 0. 566 x 0, 933]
=0,436
6 36
K, =0, 050 +exp[-0. 424 - 0, 180 x 0. 933]
=0.605
1 1
K, =0.050+exp[-0,424+0, 180x0. 933]
=0,824

31

0. o7
] J
K. =0.050+exp[-0.424+0.566x0.933] 4 16
= 1.159
5 25
K, =0. 050 +exp[-0.424+ 1. 068 x 0. 933]
il
=1.819
6 36
31 155
(4) Gamma 2. Equation (35) with the
corresponding values of uj from Table 3, gives:
0, 0?
] ]
1 5 25
K, = ——— x 4.989 .
b yho2r
= 0.761 x 0. 384 = 0,292
6 36
l‘;z = 0.761 x 0.644 = 0.490
4 16
K.,=0.761 x 0.916 = 0. 697
> 2 4
I';4 = 0.761 x 1.234 = 0.939
4 16
K5 = 0.761 x 1.649 = 1,255
4 16
KG = 0.761 x 2.314 = 1,761
6 36
31 149

(5) Gamma 3.
corresponding values of u,

Solving eq. (36) with the
selected for given value
of é‘ from Table 3, the class interval limits are

obtained, the observed class frequencies are deter=

mined and squared: Oj sz
4 16
K, = -1.500 + 1,000 = (51.500) . 5 479
'JIZ.. 360
= -1.500 +0.711 x 2,470 = 0. 256
g9 81

-1.500 + 0.711 x 2.888 = 0,553

=

3 = -1.500 + 0,711 x 3. 241 = 0,804
5 25
= -1,500 + 0,711 x 3.612 = 1. 068
5 1 i
= -1.500 + 0,711 x 4.003 = 1, 348
> . 4 16
= -1,500 +0.711 x 4.578 = 1,755
" 6 _36
31 179
4. Computation of sample chi-squares. The

sample chi-squares are computed by eq. (25) for
each selected function separately and then converted
into corresponding probability by means of Table 4,
and fig. 4.

(1) Normal, f =4 degrees of freedom

X?= 40 x 187-31 = 11.267 P (X%)=0.976
(2) Log-normal 2, f=4d.f.

X2= Loox 147-31 = 2,222 P (X%=0.307
(3) Log-normal 3, f=3d.1.

X?= 40 x 155- 31 = 4,030 P (X9=0.742



(4) Gamma 2, f=44d.1.

X¥= 5T x149 - 31 = 2,674 P(X? = 0. 388
(5) Gamma 3, = Fdils

X*= 37 %178 - 31 = 9,454 P(X? = 0.976

5. Analysis of results. Considering this
Station separately, only Log-normal 2, Log-normal
3, and Gamma 2 are applicable, since each of them
has the probability of chi-square less than commonly
used level of significance 0. 95, Hence, the statistical
tests for these three functions are nonsignificant, and
for Normal and Gamma 3 they are significant. How-
ever, since the smaller probability of chi-square
means the better fitting to observed data, it turns out
that the Log-normal 2 with the smallest probability of
chi-square is of best fit to annual observations at
Weldon River at Mill Grove, Missouri, USA. The
characteristic histograms of annual river flows at

this station, including the discrete time series, the

cumulative frequency, the observed and the expected
frequency histograms for Log-normal 2, are graphed
in fig. 11, It is interesting to note that inthe frequency
analysis dealing with the class intervals of equalpro-
babilities, the observed frequency curve is trans-
formed to a histogram, and the expected frequency
curve to a rectangular. Therefore, the comparison
of an observed distribution with a continuous theoreti-
cal distribution reduces to the comparison of an ob-
served histogram with a theoretical uniform distri-
bution. This is well illustrated in fig. 11, histo-
grams 3 and 4.

In this particular numerical example,
attention is called upon Gamma 3, where the lower
case was presented here only to show the computa-
tional procedure, otherwise the lower boundary would
be zero, and Gamma 3 would reduce to Gamma 2.

Further analysis of this station is done
in grouped form for all samples together in the Q1 o

ensemble as shown in Chapter V.
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Fig. 11 Characteristic histograms of annual river flows at Weldon River at Mill Grove,

Missouri, USA: (1) Discrete time series; (2) Duration or cumulative frequency;
(3) Observed frequency; and (4) Expected frequency.
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TABLE 5

DATA FOR WELDGN RIVER AT MILL GROVE, MISSOURI
Station Sample of leEnsemble

In
y Annual 2 A
Order |year of River |, _ % | i A A InK, -{(nK;q A 1 N RPN (LSS e Y
No. | Obser-|Flow Ki_ o) (in array) Ki-g {Ki P In K, lrﬁx n g )? Ky ks K -R 1n(Ki KJ(Ki By K.-f jKi Ko ﬁ— {K.-ﬁo)
vation Ql [Cfs) }2 ={000 hﬁ“o-!ﬂ ﬁﬂ‘ Q.050 1 o] i O IEQ“LSOO i fo) 1

i 2 3 4 b 6 7 8 9 10 i1 12 i3 14 i5 16 17 18

1 1930 108.0 0,421 2.567F 1,567 2.455 0, 942] 1. 259 1,586 2,517 0. 397 0.923] 0,852 0. 367 | 4. 067 0,246 | 1.402

2 i 53.6 0, 209 2.474) 1.474 2.173 0, 905] 1.222 1,493 2,424 0,413 0. 885 .783 . 365 13,974 252 | 1.379

3 2 585.0 2,279 2,279 1,279 1.636 0,823] 1.140 1,300 2, 229 , 449 LBO1 . 642 ., 359 13.779 . 265 1, 329

4 3 a8, 0,382 2,209] 1, 209 1,462 0,792] 1.109 1. 230 2, 158 L463 . 769 . 591 . 356 | 3.709 S270 | 1531

5 4 40, 6 0,158 1,979]1 0,978 0. 958 0.683| 1.000 1,000 (| 1. 929 .H18 . 667 .432 L3411 3.479 L2BT | 1, 247

6 1935 472,0 1.839 1.839 . 839 . 704 0. 608f 0,926 0.857 1| 1. 789 559 .582 L339 . 3254 3. 339 L. 2991 1,205

T 6 96. 5 0. 376 1.718 . 718 + 010 0. 542 . 859 .738 || L. 668 .600 511 . 261 . 306 | 3,218 311 1,169

8 7 217.0 0. 845 1. 5568 . D58 ol 0. 444 L 761 L5791 1. 508 L 663 411 . 169 L2734 3,058 L3327 1,118

9 8 42,7 0,166 1,551 . D61 . 304 0,438 L1050 LB70 |1, 501 . 666 . 406 . 165 L2701 3. 051 L3281 1,115
i0 9 |208,0 0.810 i, 504 . h04 254 0. 407 . 724 524 | 1,454 . 688 . 374 . 140 . 188 1 3,004 . 3331 1,100
i1 1940 143, 0 0,557 i, 161 161 026 0. 149 . 466 J21T L. 111 . 900 . 105 L 011 .0951 2,661 L3761 0,978
i2 i a3. 7 0. 365 0.966) .034 . 001 || -0,035 . 282 L0801} 0Q.916 1.092 | - o088 .008 | ,096 1 2,466 . 406 L, 903
13 2 398.0 1, 5561 L9556 .045 002 || -0, 046 L2714 L073 . 905 1.105 | - , 100 L0110 | .1i0] 2,455 . 407 . 898
14 3 298.0 1. 161 L9511- . 049 .002 | -0,051 . 266 L0711 . 901 1,110 | - , 104 L0011 F . 11517 2.451 . 408 . 896
15 4 248.0 0. 966 .845]- . 155 .024 | - . 168 . 149 .022 « 195 1,258 | - , 229 .052 F . 288171 2. 345 . 426 .85H2
16 1945 441, 0 1,718 .810)- .190 L0368 ) - . 211 . 106 L0111 . 760 1.316 | - , 274 L0075 F . 361 ¢ 2.310 L, 433 . 837
i7 6 386.0 1. 504 . 588 .412 170 )| - . 531~ . 214 . 046 . H38 1,859 | - ,620| .384 | 1,152 2,088 .479 . 736
18 7 567.0 2. 209 .557)- .4453 ,i96 || - . 585~ .268 .072 . 507 1,972 - .679| .461 | 1,6339]2, 057 . 486 721
19 8 122.0 0.475 .526) .474 L224 || - .643|- . 326 . 106 . 476 2.101 | - 742 .551 |- 1.559]2. 026 . 494 . 706
20 9 151, 0 0,588 ,514)- .486 .236 1 - .666]- .349 JE22 . 464 2.1551 - .768] .590 |- 1,655]2.014 L4097 . 700
21 1950 244, 0 0. 951 .475)- .525 L276 | - . 744|- . 427 182 .425 2,353 ]| - .856 .T733 | 2.01441.975 . 506 . 680
22 i 400, 0 1,558 ,444)- ,556 L3000 - .812]- .495 . 245 . 394 2.538 | - ,931 .B867 |- 2,3634 1,944 . 514 . 665
23 2 245,0 0. 9565 L4211 .579 .335| - ,865|- 548 . 300 . 371 2.685 ] - ,992 .984 |- 2.67411.921 .ba1l 652
24 3 114, 0 0. 444 .3g2f- .618 L3820 - .962|- .645 . 416 . 332 3,012 | -1.103|1.217 |- 3,32211.882 .53 .632
25 4 659.0 2. 567 . 376f- .624 .389¢( - .978|- .661 L 437 . 326 3,067 | -1,121 | 1.257 |- 3.439¢1. 876 .533 .G28
26 1955 132,0 0,514 . 365~ .635 ,403 ] -1.008|- .691 B drd . 315 3,175 -1, 155| 1. 334 |- 3,667 1. 865 . 036 .623
27 6 44,0 0,171 L 282k . 718 516 -1, 266]- .949 . B01 L 232 4,310 | -1,461| 2.135 |- 6.207¢41.782 . 061 .078
28 7 72.5 0.282 L 209)- . 791 .626 | -1.565]-1. 248 1,558 . 159 6.289 | -1,830| 3.382 |11, 566 1,709 . 585 .536
29 8 135.0 0,526 L171)- .829 .687 1 -t.766]-1.449 2.100 121 8,264 | -2,112| 4.461 17,455 1,671 . 508 .513
30 9 635.0 2,474 .166]- .834 696 || -1.796/-1.479 2, 187 116 8,621 | -2, 154| 4.640 [18,.569) 1.666 . 600 .510
31 1960 508, 0 1,979 . 158(- .842 L7091 -1.846|-1.529 2.338 . 108 9,259 | -2,226| 4.955 20,611} 1. 658 .603 .h05

31
a1 3 7957.7 | 31, 000| 31, 000] 17,018 -9, 810 21.837(29.450 |73.867|-13,130 32.492 F95,407[77.500 13.418127.124
i




Key Words: Hydrology, Annual Precipitation, Annual River Flows, Frequency,
Probability Functions, Parameter Estimation, Fitting, Chi-square Test.

Abstract: Five probability functions - Normal, Log-normal with 2, Log-normal
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with 2 and the Gamma function with 2 parameters best fit the observed distribu-
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