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ABSTRACT

ON THE EVALUATION OF EXACT-MATCH AND RANGE QUERIES OVER

MULTIDIMENSIONAL DATA IN DISTRIBUTED HASH TABLES

The quantity and precision of geospatial and time series observational data be-

ing collected has increased alongside the steady expansion of processing and storage

capabilities in modern computing hardware. The storage requirements for this infor-

mation are vastly greater than the capabilities of a single computer, and are primarily

met in a distributed manner. However, distributed solutions often impose strict con-

straints on retrieval semantics. In this thesis, we investigate the factors that influence

storage and retrieval operations on large datasets in a cloud setting, and propose a

lightweight data partitioning and indexing scheme to facilitate these operations. Our

solution provides expressive retrieval support through range-based and exact-match

queries and can be applied over massive quantities of multidimensional data. We

provide benchmarks to illustrate the relative advantage of using our solution over a

general-purpose cloud storage engine in a distributed network of heterogeneous com-

puting resources.
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Chapter 1

Introduction

A distributed hash table (DHT) is a type of key-value store that utilizes a hash

function to facilitate storage and retrieval operations across a network of computing

resources, often called nodes. To store a piece of information, called a value, a unique

key is provided, which is passed through a hash function to determine where the

information should be stored in the network. Once stored, information can easily be

located by hashing the key again. In a system that utilizes consistent hashing, the

entire hash space is partitioned among the available computing resources, making

each responsible for a range of hash values. This means that adding or removing a

node only affects other nodes that are managing a nearby portion of the hash space,

greatly reducing the amount of data that must be migrated when the system is faced

with network topology changes.

Designing and implementing distributed storage systems always involves trade-

offs. Because of their design, DHTs generally have a number of desirable features in

a distributed environment: they are decentralized, extremely scalable, and provide

excellent load-balancing capabilities. However, these benefits do not come without

a cost. Storage and retrieval semantics in a DHT are generally composed solely of

get and put operations or variants thereof. While these operations are sufficient for

information retrieval when the hash key is known, they are not amenable to situations

where only a subset of the information required to retrieve a file is available or when a
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range of values is requested. Additionally, values stored in a DHT are often treated as

one-dimensional binary objects, ignoring the content and dimensionality of the data.

The research focus of this thesis is providing support for exact match

and range queries over multidimensional data managed by a DHT . The

dimensions we consider include a geospatial component for location and elevation, a

chronological component used for time series, and additional dimensions that could

be numeric or string-based. In this case, range queries can involve the following

activities:

1. Contracting or expanding geospatial regions

2. Constraining chronological components to a portion of a time series

3. Specifying upper or lower bounds for numeric attributes of an element

In this thesis, we have developed a hierarchical hashing scheme to create logical

groupings of data with common attributes. These commonalities are often problem-

specific; for instance, readings from multiple sensor arrays in particular regions could

be grouped together to facilitate future analysis. Other properties used to correlate

data points might include the time they were generated or the particular instrument

or device that recorded the information. To create these logical groups, we control the

dispersion of data items over a set of nodes such that small changes in the data values

do not result in wide fluctuations in the set of nodes responsible for the corresponding

hash space. An important aspect of this strategy is that it is executed without

introducing large storage imbalances across the nodes in our system. We call this

feature that manages the collocation of similar data items over a subset of nodes

controlled dispersion , which is one of the primary components of our retrieval

solution.

To exploit our data partitioning strategy, we also introduce a lightweight, graph-

based index that is shared among computing resources through a simple gossip pro-
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tocol that involves the nodes in the system exchanging small messages at regular

intervals. The index is used to significantly reduce the search space of distributed

queries, eliminating any nodes that do not have relevant data from the search. This

optimization means faster response times, less network congestion, and lower CPU

load across distributed processing elements in our network. We have implemented

the design outlined in this thesis in our storage framework, Galileo, to demonstrate

the efficacy of our solution in a production environment.

1.1 Usage Scenarios

Galileo [11, 12, 16] is primarily tailored for scientific use with multidimensional

data streams. Information handled by the system often has geospatial and time series

properties and must be stored and retrieved quickly. Therefore, the space and time

complexity of the partitioning and indexing algorithms used in our solution should

not preclude fast and timely evaluation of range-based and exact-match queries. For

example, atmospheric data often must be processed within a given time frame or it

will not be useful in forecasts of environmental conditions. Other uses include data

visualization, which can require real-time streaming responses to queries, and data

mining to discover correlations or trends.

Nodes in Galileo are processes running on commodity hardware that can be as-

similated into the cluster one at a time in a scale-out manner. To help manage

more of the overall system load and deal with heterogeneity, more powerful nodes can

advertise as multiple virtual nodes.

1.2 Research Challenges

Supporting efficient search and storage capabilities for multidimensional data in

a DHT provided a number of challenges that we address in this thesis:
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1. Query Flexibility. Users should be able to specify exact-match queries or use

ranges and wildcards to retrieve their data.

2. Correctness of Query Results. Reductions in the search space to optimize query

response times should produce results that are identical to those generated by

doing an exhaustive search, i.e., reductions in the size of the search space should

not come at the expense of correctness.

3. Storage with Spatial Locality. Information with common properties should be

placed using our controlled dispersion paradigm to facilitate range queries and

efficient disk access patterns.

4. Adaptable Placement and Partitioning. To maintain spatial locality, the storage

algorithm employed by the system should be adaptable as storage needs evolve.

5. Load Balancing. To effectively utilize available computing resources, storage and

processing requests should be balanced across the resources in system; placing

most of the information being stored in the system on a small number of nodes

would greatly reduce the search space, but also severely underutilize resources.

6. Scalability. Adding more computing resources should not have a significant

impact on storage or query performance. Large indexing schemes or strategies

that require excessive global state to be exchanged should be avoided.

1.3 Thesis Contributions

This thesis demonstrates the viability of using a hierarchical partitioning and

indexing strategy to effectively reduce the search space of queries in a distributed

setting. Our solution involves using controlled dispersion to place data items within

the system, which in turn reduces the amount of information that must be stored

in the global index. Using the techniques described in this thesis, it is possible
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to provide query support that is much more expressive and flexible than that of a

standard distributed hash table while still maintaining many of the core benefits of

DHTs. Our work is applicable to other DHT-based systems as well.

To illustrate the effectiveness of our approach in a distributed environment, we

provide end-to-end performance benchmarks of throughput as well as a comparison

with the well-known HBase cloud storage system. Distribution statistics for the

balance of load in the system are provided and analyzed, in addition to in-depth

breakdowns of memory and IO consumed by our indexing scheme under different

workloads. The throughput benchmarks and comparison with HBase were performed

on a dataset consisting of one billion (1,000,000,000) files totalling 8 TB stored

across a 75-node heterogeneous cluster, underscoring the scaling capabilities of our

system.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes our distributed

storage system and provides an overview of its intended use cases and architecture.

Chapter 3 investigates storage and partitioning schemes using a hierarchical hashing

structure. Chapter 4 explains our distributed index and illustrates how our chosen

storage scheme facilitates efficient retrieval of information, followed by end-to-end

performance benchmarks and a comparison of our system to HBase in Chapter 5.

We bring the thesis to a close with a survey of related work in Chapter 6 and our

conclusions and future work in Chapter 7.
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Chapter 2

System Overview

Data storage in the scientific domain is the primary use case Galileo is designed

to handle. Specifically, Galileo provides support for multidimensional data that has

both spatial and temporal components, though any number of dimensions (called

features) can be indexed and queried by the system. Galileo can read data stored in

scientific formats such as Network Common Data Format (NetCDF) [18] or Hierar-

chical Data Format 5 (HDF5) [9] and also provides its own native multidimensional

storage unit called blocks. This work provides support for retrieval of blocks with

exact-match or range-based queries.

2.1 Granules

Galileo is based on the Granules [15] open-source distributed stream processing

system. Granules provides support for computations that can be expressed using the

MapReduce paradigm or as directed, cyclic graphs. These computations are orches-

trated by Granules across a number of computing resources with a flexible scheduling

strategy. Galileo provides an API that allows users to exploit the distributed com-

putation features of Granules to process scientific data that has been stored in the

system, or even pre-process incoming data streams before storage.
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Figure 2.1: A hash space divided among six computing resources.

2.2 Network Topology

Galileo is organized as a Distributed Hash Table (DHT). A DHT is a type of

overlay network that is created by partitioning a hash space among a number of

computing resources. DHTs are generally decentralized and highly scalable; examples

include Chord [21], Pastry [19], and Symphony [13]. Much like Apache Cassandra [10]

and Amazon Dynamo [8], Galileo is a zero-hop (or one-hop) DHT, meaning requests

are routed directly to their destination instead of taking intermediate hops through

the network. Figure 2.1 illustrates how a hash space could be divided between six

hosts in a DHT, where each host is responsible for managing a particular segment of

the hash space.

Contrasting with traditional flat DHTs, Galileo has a hierarchical structure. Indi-

vidual nodes that represent computing resources in the system are placed into groups,
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which further subdivide the network. Groups can also contain any number of sub-

groups, and the number of groups is a user-configurable parameter. Research has

shown that there are several performance and reliability advantages in using hier-

archical DHTs [25, 17], and in particular they can provide benefits for storage and

retrieval operations [6]. The logical groupings that arise from a hierarchical structure

allow Galileo to place similar data items closer to each other in the network, which

greatly increases the efficiency of range-based queries.

2.3 Metadata

The authors of SciDB identified multiple differences between scientific and business-

oriented data when designing their storage system [4]. In particular, they found that

scientific data often has a much higher quantity and dimensionality, requiring a stor-

age paradigm that can deal with data in the petabyte scale. Additionally, these data

items have large sets of associated metadata that must be managed and stored.

To cope with these storage needs, Galileo maintains a hierarchical metadata graph

for data management capabilities at individual nodes in the system. This graph

stays resident in main memory, making it possible to quickly evaluate queries and

then respond with results in the form of subgraphs called datasets. Datasets can be

traversed, modified, and then used retrieve files from the system.

2.4 Experimental Data

For the purposes of this study, we sourced real-world data from the North Amer-

ican Mesoscale Forecast System (NAM) [14], which is maintained by the National

Oceanic and Atmospheric Administration (NOAA). The NAM is run four times daily,

and we sampled data recorded from 2009-2012 using our NetCDF input plugin to gen-

erate a dataset containing one billion (1,000,000,000) Galileo blocks, each of which

is 8 KB. The data attributes we indexed and queried against included the spatial
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location for the sample, temporal range during which the data was recorded, percent

maximum relative humidity, surface temperature (Kelvin), wind speed (meters per

second), and snow depth (meters).
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Chapter 3

Hashing and Storage Methodology

Galileo supports streaming data that incrementally enters the system from a va-

riety of sources. These data items are constantly evolving over time and can share a

number of common attributes. Therefore, simply applying a standard hash function

on the incoming data results in an approximately even distribution of files across all

the nodes in the system, but does not account for similarity in the data being stored.

Inspecting the dimensions present in incoming data streams facilitates our con-

trolled dispersion strategy by creating logical groupings of data in the hash space, but

also increases the likelihood of storage imbalances across nodes in the system; a large

amount of similar data could be stored in the same location, essentially eliminating

the benefits of distributed storage. Using a hierarchical approach allows a balance

to be struck between these two storage extremes: placing logically similar data items

in the same groups and then using a second hash function to place data on specific

nodes within the groups ensures that similar information is relatively balanced across

a subset of the nodes in the system.

For our initial implementation, we used a two-tiered hashing hierarchy to deter-

mine where incoming data streams would be stored in a system consisting of 48 nodes.

Since our experimental data was distributed across North America, we grouped the

data items based on their spatial location and then applied a second hash function

on the remaining dimensions of the data stored in each group.
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Figure 3.1: Increasing precision in the Geohash algorithm to represent finer-grained
spatial regions.

3.1 Geohash: Spatial Hashing Algorithm

To obtain a location-based hash for spatial groupings, we applied the Geohash Al-

gorithm on incoming data [24]. A Geohash is a string-based representation of a

bounding box around a location created by interleaving bits obtained from latitude

and longitude pairs. For example, the latitude and longitude coordinates of N 39.54,

W 107.32 fall within the Geohash bounding box of 9x58vy4. Longer Geohash strings

represent more precise spatial regions, a characteristic which can be exploited during

the hashing process to obtain a specific granularity for positioning data in the system.

Figure 3.1 illustrates how adding additional characters to a Geohash string describes

a more precise spatial area.

Since Galileo deals with range queries in addition to exact-match semantics, it

is beneficial to limit the precision of the Geohashes for incoming data to provide

coarser-grained groupings. For instance, using the first two characters (10 bits) of a

Geohash results in spatial “hash buckets” of approximately 600 by 1000 kilometers.

Increasing the precision to four characters (20 bits) results in a bucket size of 20 by

30 kilometers. In the case of a 20-bit hash, users of the system can predict that

data samples taken within about 20 kilometers of each other will be placed in the

same or similar spatial group. Galileo’s retrieval system also exploits this property of
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Geohashes to expand or contract the desired search space in queries.

The Geohash precision used for positioning files in the system can be tuned by

users depending on their storage needs; if a user plans to store data belonging to

a small geographic region, a more precise hash should be used. Conversely, a less

precise Geohash would be optimal for data spread across the entire Earth. The

precision can also be modified over time as storage needs evolve, or change depending

on the application that is streaming data into Galileo; unlike a traditional DHT our

retrieval system, described in Chapter 4, does not require the hashing algorithm to

stay consistent in order to locate data.

3.2 Feature Hashing

Once a group has been chosen for a data item based on its spatial characteristics,

an additional level of hashing is required to select a destination node within the

group. At this stage in the hashing process, any number of the remaining available

data dimensions can be used as input for the hash function. Our particular dataset

has a temporal range associated with each data item, so we used the initial recording

time as input to the SHA-1 hash algorithm and then divided the hash space among

the nodes in each group.

3.3 Data Distribution and Load Balancing Evalu-

ation

To determine the impact of our hierarchical hashing scheme on how files are dis-

tributed in the system, we compared the distribution results of our controlled disper-

sion strategy against the same data inserted using a flat SHA-1 hash of all metadata

values. Figure 3.2 illustrates the distribution of files in the system using the flat hash;

each of the 48 nodes represented in the figure contains approximately 2% of the data

in the system. This distribution mechanism provides excellent load balancing capa-
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bilities, but does not assist the system’s retrieval engine because similar data items

are spread across all nodes in the cluster.

The distribution results for our hierarchical hashing scheme are shown in Fig-

ure 3.3. Unlike the flat SHA-1 hash, we have imposed a greater storage imbalance

in the system, but similar data items are now placed logically closer to each other.

Table 3.1 contains a summary of the differences between the two storage schemes.

While our hierarchical solution provides less balance in load, there are no nodes in

the system with an extreme shortage of data; the lightest-loaded node in a 48-node

system still contains 15.2 million blocks (1.5%) of the total system data.

Table 3.1: Percentage of Total Data Stored at Each Node

Flat SHA-1 Hash Hierarchical Hash

Average (%) 2.08 2.08

Min (%) 2.05 1.52

Max (%) 2.13 2.68

SD (%) 0.03 0.41
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Figure 3.2: Distribution of files in the system using a partitioning scheme based on a
flat SHA-1 hash of all data dimensions.
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Figure 3.3: Distribution of files in the system using our two-tiered hierarchical hashing
scheme.
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Chapter 4

Indexing and Retrieval

Once data has been stored across the nodes in the system, an efficient means for

retrieval is necessary. In a traditional DHT a hash function is used for both storage

and retrieval operations, which constrains the expressiveness of the queries that can

be performed during retrieval. We address this weakness with our indexing system.

Additionally, data storage needs often evolve over time and may require changes to

be made to the hashing hierarchy, meaning that all previously-stored data would not

be reachable using a new set of hash functions.

To alleviate these issues, we have developed a lightweight global indexing scheme

called the feature graph. This graph is similar in design to the per-node local metadata

graph, but is a completely separate entity in the system. In general, maintaining a

global index of all information being stored in a distributed system is costly both in

terms of memory and network IO, so we focused on ensuring that the addition of this

index would not have a noticeable impact on the system’s performance.

4.1 Feature Graph Implementation and Structure

Any node in the system can be contacted to perform a storage operation, which

will then route the request directly to its destination node. Upon arrival, the data

is fully inspected to determine its attributes, which could include spatial location,

temporal information, features, and details about the device that generated the data.
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These individual pieces of metadata become vertices that will be inserted into the

feature graph. A collection of vertices for a given data item is pieced together to form

a path, which has a specific ordering of features. If a feature is not present in the

incoming data stream, a null vertex is inserted in its place.

To decrease the amount of data points being stored in the global index, the res-

olution of each feature is reduced. For example, the precision of a Geohash can be

reduced by applying a simple bit shift. Smaller units of time, such as minutes or

even hours can be ignored from temporal values, and numeric readings can be placed

within coarser-grained ranges of values. This operation is especially crucial in stor-

ing collections of floating-point values since exact matches are not possible. These

reductions in resolution place data points in common groups, called tick marks in our

implementation. Tick marks can be derived from domain knowledge about the infor-

mation being stored or from the data source itself; many datasets stored in formats

like NetCDF describe expected ranges and the attributes of each dimension. Each

tick mark is assigned to a vertex in the feature graph.

The granularity of tick marks used impacts system performance in a number of

ways. For instance, increasing granularity also increases the number of vertices stored

in the feature graph, which in turn decreases the number of storage nodes associated

with each vertex. As the number of nodes associated with each vertex drops, fewer

nodes will need to be contacted during a query operation, leading to faster response

times. On the other hand, increasing granularity does not come without a cost: more

vertices require more memory and more state to be exchanged between nodes in the

system.

Table 4.1 provides an overview of three tick mark configurations we used to achieve

a smaller or larger granularity in the feature graph. For example, the “coarse” gran-

ularity allocates temperature readings within ranges of 10 Kelvin and humidity levels

within ranges of 5%. This would effectively place all temperatures from 300-309 K
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into one group, 310-319 K into another group, and so on. The wind speed and snow

depth readings in our dataset already contained a small range of values, so were not

constrained further in our tests. It is also important to consider that each dimension

in our dataset is represented as a floating-point number, so even an integer value of

1 will still reduce the resolution of the data being indexed. These configurations help

illustrate the impact of tick marks on the performance and resource consumption of

the feature graph.

Table 4.1: Feature Graph Granularity Configurations: Values Represent Tick Mark
Ranges

Index Granularity Temperature (K) Humidity (%)

Coarse 10 5

Medium 5 2

Fine 1 1

Figure 4.1 demonstrates how increasing or decreasing the granularity of the tick

marks impacts query performance. For this benchmark, we assumed that the query

does not contain any geospatial information and therefore the destination group can-

not be ascertained from the query parameters. In this worst-case scenario, the figure

shows the average reduction in search space as additional features are specified in

the query. Traversing a path is similar to performing a logical AND operation across

available dimensions, so the sharp reduction in search space as more dimensions are

specified is fairly intuitive. If an approximate geospatial location is provided with

enough precision, no more than 17% of the nodes in our 6-group system will be

contacted. The search space within a group can also be reduced similarly as more

dimensions are added. Table 4.2 contains statistics on how the number of vertices

and edges in the graph increases as granularity increases, and the resulting memory

consumption.
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Table 4.2: Graph Statistics with Differing Index Granularity

Index Granularity Memory (MB) Vertices Edges

Coarse 1.8 13,927 193,348

Medium 6.3 56,967 614,627

Fine 38.0 454,569 2,267,984
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Figure 4.1: Reduction of the search space with different tick mark configurations as
more dimensions are added.

Vertices in the feature graph have a number of components: an adjacency list, an

associated tick mark that data is placed within, and a list of nodes and replicas that

contain data within the range. Once a path of vertices has been constructed it can be

added to the feature graph. Starting with the first vertex, the system determines if the

graph already contains a vertex associated with the same tick mark. If such a vertex

exists, its list of storage nodes is updated (if necessary) and the next vertex in the

path is added as an adjacent vertex. Otherwise, a new vertex is created. This process

continues until the end of the path is reached. The resulting graph generated by this
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Figure 4.2: A simplified view of a feature graph for three dimensions. References to
storage node IDs are included at each vertex in our implementation, but they are
omitted in this example for clarity.

process has a large number of edges pointing to destination computing resources in

the system, but it also means that the entire remaining search space is known at

any vertex in the graph. Figure 4.2 provides a simple example of a feature graph

that indexes three dimensions (spatial location, humidity level, and temperature).

The Geohash of 9XJ6 represents a 20 by 30 kilometer bounding box near Denver,

Colorado. Increments of 10% and 2 Kelvin are used as tick marks for humidity and

temperature, respectively, and the identification number of relevant storage nodes is

shown at the end of each path.

4.2 Graph Optimization

Before inserting any new data into the system, a lookup is performed to determine

if an identical path already exists in the feature graph. If such a path exists and

contains references to nodes that are candidates for storing the new data, one of

the eligible nodes is selected at random to complete the storage operation. This

optimization helps ensure that logically similar data items stay grouped within the

system. In addition, if new data matches a preexisting path and does not require any

graph updates, then no state will need to be exchanged between nodes as a result of

the new data insertion.
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Over time, the feature graph reaches a state where only a small number of new

vertices and edges must be created as data is stored in the system. It is possible to

pre-allocate a large portion of the graph using the configured tick mark ranges during

the initial setup of the system, which decreases the amount of vertices and edges that

must be created as new data is inserted.

Our approach for inserting paths in the feature graph imposes a hierarchical struc-

ture on the search space; search terms near the top of the hierarchy can be found

without traversing as far through the graph. This also has an impact on the number

of vertices inserted in the graph depending on the possible range of values for each

dimension. A visualization of the growth of vertices in the feature graph is provided

in Figure 4.3. “Hierarchy 1” refers to a path layout that inserts features in the follow-

ing order: temperature, humidity, wind speed, and then snow depth. “Hierarchy 2”

reverses the order of the features; this results in a sharp reduction of vertices in the

graph but places the features with a lower range of values at the top of the graph. In

this situation, there is a clear trade-off between the size of the graph and the speed

at which search terms can be located. We have leveraged functionality in Galileo to

permit users to reorient the feature graph at runtime depending on their memory and

query needs.

4.3 Gossip Protocol

Galileo employs an eventually consistent [23] model, meaning that changes to the

system are not visible to all nodes immediately. In general, Galileo is considered

an AP system under Brewer’s CAP Theorem [3]. The CAP theorem states that

providing consistency, availability, and partition tolerance at the same time is not

possible in a distributed system. In the case of Galileo, a network partition results in

consistency being sacrificed; the system remains available and can continue servicing

requests, but the global state maintained at each node may not be consistent with
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Figure 4.3: Vertex growth for two different path hierarchies as more data is added to
the system using the “fine” granularity configuration.

the rest of the nodes in the system.

To disseminate these state changes, we developed a simple gossip protocol that

involves sharing collections of new paths that have been added at each node. Within

a group, nodes monitor the status of their neighbors with small, frequent heartbeat

messages. These heartbeats are sent through the entire group at a regular interval,

set to one second in our current implementation. As new information enters a node,

“dirty” paths through its feature graph that have been updated are maintained in a

separate data structure and then included in the heartbeat messages. A monotonically

increasing graph state identifier is incremented each time an update is received, and

the group eventually converges on a consistent feature graph.

Table 4.3 provides an overview of the size of heartbeat messages sent by a node

while storing approximately 500 Galileo blocks per second. While the updates are

larger than a proportionately-sized part of the overall feature graph, they still provide

some inherent “compression” when incoming data is similar due to duplicate vertices
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in the paths. As the heartbeat interval increases, the size of the messages decreases.

Table 4.3: Heartbeat Message Size, Inserting 500 Blocks Per Second

Index Granularity Message Size (KB) Vertices Edges

Coarse 8.7 90 528

Medium 28.0 365 996

Fine 45.0 631 1,208

To deal with the rest of the nodes in the system, groups elect a leader that is

responsible for informing other group leaders of updates to the feature graph. Lead-

ers communicate in the same fashion as they do within their group, but instead of

communicating with adjacent nodes the leaders simply publish updates on a corre-

sponding group stream within the Granules framework. This means that leaders only

need to know of the existence of other groups, but not their assigned leaders. Contin-

uing down through the network hierarchy, subgroups communicate in the same way.

Subgroups lowest in the hierarchy will be most consistent as updates trickle back up

to the higher groups.

4.4 Consistency and Fault Tolerance

While our feature graph and partitioning system help provide fast responses to

queries, we do not guarantee that the index state is consistent across all nodes in

the system. However, using the feature graph is not required for retrieval operations;

requests can be broadcast through the entire system or to specific groups if desired,

but latencies will increase as more nodes are involved in a query. In fact, Galileo

supports running in a fully-stateless mode to facilitate usages where group sizes are

small and can be located reliably. As mentioned previously, the feature graph can

also be used to reduce the search space within a group rather than across the entire

system.
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Galileo primarily expects transient failures to occur within the network, so if a

node is started with an older version of the feature graph it can request a full update

from one of its neighbors. Detailed graph information including the time of the last

update and counts for vertices and edges is included in heartbeat messages, so a node

can quickly determine that it is not synchronized with its group. The system also

ensures that a set replication level is maintained for all data, so if a node is not

responding then one of the replicas can be requested instead.
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Chapter 5

Performance Evaluation

To evaluate the performance of our partitioning strategy and index, we ran sev-

eral tests to simulate production usage of the system on a 75-node cluster running

OpenJDK 1.6.0. Detailed information about the cluster is provided in Table 5.1.

Table 5.1: 75-node Cluster Configuration

Count Model CPU Memory Disk Speed

47 HP DL160 Xeon E5620 12 GB 15000 RPM

28 Sun SunFire X4100 Opteron 254 8 GB 10000 RPM

Our “end-to-end” test begins with a query that requests a random 20 by 30

kilometer geographic region with random temperature, humidity, wind speed, and

snow depth features. Once submitted to the system, the node receiving the query

determines relevant storage nodes by traversing the feature graph and returns a list

of nodes to the client. Using the list, the client submits requests to the cluster and

waits until the results have been received, which concludes the test. Table 5.2 provides

timing information for the initial query that results in a traversal through the feature

graph as well as the time it takes to complete the query and transfer the requested

data to a client. The mode of the number of machines contacted is reported as

well; it is clear that adding more machines incurs additional latency during a query
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operation. Since the queries in this test were random, it provides a good estimate of

the worst-case performance of the system for our particular dataset.

Table 5.2: End-to-end test results. Each result is averaged over 100 runs.

Dataset Initial Query Nodes Complete Query

Size Time (ms) SD (ms) Contacted Time (ms) SD (ms)

1 0.202 0.001 1 0.89 0.33

250 0.203 0.001 2 22.59 3.72

500 0.203 0.001 3 28.31 4.02

1000 0.204 0.002 6 85.07 11.23

To complement our end-to-end benchmarks, we also compared the read and write

throughput of Galileo to Apache HBase [22] version 0.92.1, an open-source implemen-

tation of Google BigTable [5]. We ran HBase on Hadoop [2] and HDFS version 1.0.3.

We reimplemented our storage strategy to fit the BigTable data model by using block

UUIDs as our row key, prefixed with a Geohash of the block’s spatial location. This

ensures that rows are sorted using spatial locality. Since HBase does not support

range queries without scanning across records, we also modified our indexing strate-

gies to operate on top of HBase, which provided our test program with block UUIDs

that could be retrieved directly from the system. Each record from our dataset was

approximately 8 KB in size. We also used the official Java API provided with HBase

to communicate with the system rather than the interactive shell or a third-party

interface.

Table 5.3 compares the read throughput of Galileo and HBase. Queries were

constrained to a 20-kilometer geographic region and then sent to both systems, with

the HBase request submitted as a single batch operation. Each test was performed

100 times on different spatial areas to balance requests across the cluster. In the case

of Galileo, no more than two groups were contacted per query. Read throughput was
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the primary area we aimed to improve with the feature graph; by contacting fewer

nodes, Galileo can provide extremely fast retrievals.

Table 5.3: Read Throughput: Galileo vs HBase (100 Runs)

Blocks Galileo HBase

Read (ms) SD (ms) Read (ms) SD (ms)

1 0.89 0.33 0.97 0.07

250 22.59 3.72 172.65 48.43

500 28.31 4.02 479.12 456.01

1000 85.07 11.23 865.68 158.86

Write operations, outlined in Table 5.4, take longer but scale up similarly to the

read results. Data from a different spatial region was submitted to both systems

for each of the 100 iterations of this test. These tests dealt with data from North

America starting roughly in California, United States, and moved further toward the

east coast with each iteration.

Table 5.4: Write Throughput: Galileo vs HBase (100 Runs)

Blocks Galileo HBase

Write (ms) SD (ms) Write (ms) SD (ms)

1 0.94 0.42 5.18 0.03

250 146.33 13.62 627.71 120.03

500 232.80 14.20 1,138.09 208.61

1000 409.79 14.91 2,442.61 414.26

This benchmark illustrates the stark difference in intended use cases between

Galileo and HBase. Galileo is mainly concerned with retrieving large amounts of small

files based on their metadata and transferring them to client applications, whereas

HBase deals primarily with sparse, semi-structured or unstructured data for process-
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ing operations. The two systems could be used in similar areas, but they have much

different data models that may fit some problems better than others. Ultimately, this

benchmark shows that there is a niche in current state-of-the-art distributed storage

systems than can be filled by Galileo.
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Chapter 6

Related Work

Cassandra [10] shares many attributes with Galileo in its network layout and

storage system. It provides a number of different data partitioning approaches for

users depending on workloads, which can also be extended or reconfigured for different

data types. Contrasting with Galileo, the partitioning algorithm used in Cassandra

directly affects possible retrieval operations; using the random data partitioner backed

by a simple hash algorithm does not allow for range queries or later reconfiguration

of the partitioning scheme. Cassandra is also primarily concerned with write-heavy

workloads on textual data rather than the multidimensional binary arrays that Galileo

deals with.

SciDB [4] is a scalable scientific storage system that supports multidimensional

data. Although its name implies a link with relational databases, SciDB is not

concerned with providing ACID guarantees or strong transaction support. Instead,

SciDB focuses on incremental scalability and petabyte scale datasets. The system

also provides built-in computation and analysis tools, whereas Galileo is only con-

cerned with storage; analysis can be performed outside the system within the Gran-

ules framework or some other distributed computation engine. Metadata is stored

in a centralized system catalog implemented as a PostgreSQL database, contrasting

with the combination of feature graph and metadata graphs used in Galileo.

Apache HBase [22] is an open-source implementation of Google BigTable [5] de-
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signed to handle massive amounts of tabular data. HBase runs on HDFS [20], the

distributed file system included with Hadoop [2]. HBase is not specifically designed

for Geospatial storage, but its tabular data model is well-suited for multidimensional

data. Contrasting with Galileo’s eventual consistency, HBase provides strictly con-

sistent reads and writes. In addition, HBase does not support queries across all of a

file’s dimensions as Galileo does.

Citing the use of hierarchies in traditional distributed applications such as mul-

ticast and DNS, Ganesan, Gummadi, and Garcia-Molina [6] propose a paradigm

called Canon, which provides a hierarchy on top of existing flat DHTs. Canon sub-

divides system computational nodes into domains, which provide logical groupings

of resources. Domains can contain any number of subdomains, and a domain that

contains system nodes is referred to as a leaf domain. Leaf domains are structured in

the same way as a traditional flat DHT.

Crescendo, a hierarchical version of Chord [21] implemented using Canon, provides

a link structure in which each domain is allocated a discrete Chord ring. The Chord

ring for each domain is derived by merging subdomains recursively, with the top-level

domain’s ring containing the entire DHT. Once the ring hierarchy has been created,

routing requests through the network can be done in a similar fashion to a standard

Chord implementation.

2T-DHT [17] implements a two-tier DHT hierarchy for publish/subscribe systems.

In 2T-DHT, the hierarchy is used to organize nodes based on their uptime and avail-

able resources. All nodes begin in a lower tier and then migrate to the higher tier as

they demonstrate their stability. The 2T-DHT network is implemented as multiple

Chord rings, which reduces the amount of communication required to publish mes-

sages to all nodes. This communication pattern is similar to that used in Galileo’s

gossip protocol.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The partitioning and indexing scheme we have implemented in Galileo allows

clients to make efficient exact-match and range queries across a number of dimensions,

a feature not supported by traditional DHT-based storage systems. This functionality

is made possible by:

1. Ensuring that data items with some similarity, e.g., spatial locality, time series,

or another attribute are stored using our controlled dispersion strategy.

2. Indexing the location of these data items.

3. Reasoning about the data stored in the system at a lower resolution, thus pro-

viding a higher-level or general view of the information to reduce network traffic

and memory consumption.

This work is not only applicable to our DHT implementation, but could be used

to augment other distributed storage systems that deal with multidimensional data,

including usage scenarios that do not involve spatial or temporal characteristics. We

have shown that our modifications to the DHT paradigm are effective in provid-

ing advanced query support through our extensive benchmarks, including a favorable
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comparison against the HBase cloud storage system. In addition, we have also demon-

strated that our indexing scheme scales up even when storing massive datasets and

still provides significant performance improvements. These features were provided

without sacrificing efficient load balancing of storage resources in the system, a fun-

damental attribute of DHTs.

7.2 Future Work

Clustering algorithms such as STREAM [7] and CluSTREAM [1] could greatly

enhance the effectiveness of our controlled dispersion scheme. These algorithms fo-

cus on using a small amount of CPU time and memory to generate their clusters,

and therefore would complement our lightweight gossip protocol. In addition, many

stream-based clustering algorithms can effectively handle data evolution over time,

meaning the storage algorithm would not require modification or reconfiguration by

the end user as incoming data changes.

Along with making queries more efficient, our feature graph could also help facili-

tate load-balancing functionality in Galileo. The gossip protocol we use to disseminate

state through the system contains diagnostic information about each node, including

resource utilization. This information could be leveraged to migrate files dynamically

to respond to storage imbalances or changing load conditions.

Additionally, Artificial Neural Networks could be used to predict and react to

changing query workloads or new resource constraints and provide information that

could be used to reorient our feature graph dynamically. Reinforcement learning tech-

niques could be employed for query optimization, load balancing, and fault tolerance

operations. Several other components in our system, such as the tick marks, could

benefit from automated tuning functionality to provide better performance without

requiring user intervention.
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