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ABSTRACT 

 

 

 

QUANTIFYING THE EFFECTS OF PEDIATRIC OBESITY ON MUSCULOSKELETAL 

FUNCTION AND BIOMECHANICAL LOADING DURING WALKING  

 

With the high prevalence of pediatric obesity worldwide, there is a critical need for 

structured physical activity interventions during childhood. However, obese children exhibit 

altered walking mechanics that are associated with decreased gait stability, reduced walking 

performance and an increased prevalence of musculoskeletal pain and pathology. Left 

unaddressed, the increased pain and orthopedic conditions associated with pediatric obesity may 

lead to reduced physical activity and a cycle of perpetual weight gain for the child and future 

adult. To enhance the efficacy of health and weight loss interventions, clinicians could benefit 

from an improved understanding of how pediatric obesity affects the neuromuscular and 

musculoskeletal systems during walking, the most common form of daily activity.  

The mechanisms for the altered gait and associated risks to the developing 

musculoskeletal system in obese children are not well understood, particularly as they relate to 

excess adiposity and exercise related fatigue.  This void in the literature may be attributed in part 

to the lack of experimental and computational tools necessary to accurately quantify muscle 

function and joint loads during walking in obese and healthy-weight adults and children. 

Therefore, to improve our understanding of the musculoskeletal mechanisms for the altered gait 

mechanics and orthopedic disorders exhibited by obese children, this dissertation sought to first, 

establish the proper methods to adequately quantify the necessary biomechanical measures in 
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obese and healthy-weight individuals, and second, determine the effects of obesity and duration 

on muscle function and tibiofemoral loading during walking in children. 

The accuracy of muscle and joint contact forces estimated from dynamic musculoskeletal 

simulations is dependent upon the experimental kinematic data used as inputs. Subcutaneous 

adipose tissue makes the measurement of representative kinematics from motion analysis 

particularly challenging in overweight and obese individuals. We developed an obesity-specific 

kinematic marker set and methodology that accounted for subcutaneous adiposity. Next, we 

determined how this methodology affected muscle and joint contact forces predicted from 

musculoskeletal simulations of walking in obese individuals. The marker set methodology had a 

significant effect on model quantified lower-extremity kinematics, muscle forces, and hip and 

knee joint contact forces. We demonstrated the need for biomechanists to account for 

subcutaneous adiposity during kinematic data collection and proposed a feasible solution that 

likely improves the accuracy of musculoskeletal simulations in overweight and obese people. 

Understanding orthopedic disorders of biological and prosthetic knee joints requires 

knowledge of the in-vivo loading environment during activities of daily living. Anthropometric 

and orthopedic differences between individuals make accurate predictions from generic 

musculoskeletal models a challenge. We developed a knee mechanism within a full-body 

OpenSim musculoskeletal model that incorporated subject-specific knee parameters to predict 

medial and lateral tibiofemoral contact forces. To assess the accuracy of our model, we 

compared measured to predicted medial and lateral compartment contact forces during walking 

in an individual with an instrumented knee replacement. We determined the importance of 

specifying subject-specific tibiofemoral alignment and contact locations and validated a simple 

approach to measure and specify these parameters on a subject-specific basis using radiography. 
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The biomechanical mechanisms responsible for the altered gait mechanics in obese 

children are not well understood. We investigated the relationship between adiposity and lower 

extremity kinematics, muscle force requirements, and individual muscle contributions to whole 

body dynamics by generating musculoskeletal simulations of walking in a group of children with 

a range of adiposity. Body fat percentage was correlated with average knee flexion angle during 

stance and pelvic obliquity range of motion, as well as with relative vasti, gluteus medius and 

soleus force production. The functional demands and relative force requirements of the hip 

abductors during walking in pediatric obesity likely contribute to the altered gait mechanics in 

obese children. 

The combination of larger magnitude and altered application of tibiofemoral loads during 

physical activity in obese children is commonly theorized to contribute to their increased risk of 

orthopedic disorders of the knee, such as growth-plate suppression leading to conditions of 

malalignment. To evaluate this theory and determine how prolonged activity affects knee 

loading, we quantified the effects of pediatric obesity and walking duration on medial and lateral 

tibiofemoral contact forces. We found that obese children have elevated medial compartment 

magnitudes, loading rates, and load share, which further increased with walking duration. The 

altered tibiofemoral loading environment during walking in obese children likely contributes to 

their increased risk of knee pain and pathology. These risks may increase with activity duration.  

This dissertation provides a foundation for improved understanding of the effects of 

pediatric obesity on the neuromuscular and musculoskeletal systems during walking. The main 

research outcomes from this dissertation aim to improve rehabilitation and activity guidelines 

that minimize the risk of musculoskeletal pain and pathology in obese children, address 

degenerative gait mechanics, and assist in breaking the cycle of weight gain.  
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1. INTRODUCTION 

 

 

 

1.1 Research Focus 

Pediatric obesity is a major and growing global public health concern. There is a critical 

need for structured physical activity interventions during childhood. However, obese children 

exhibit altered walking mechanics that have been associated with an increased prevalence of 

musculoskeletal pain and pathology [1]. Left unaddressed, the increased pain and orthopedic 

conditions associated with pediatric obesity can lead to reduced physical activity and may 

facilitate a cycle of perpetual weight gain (Figure 1.1) [2]. To improve exercise prescription, 

clinicians could benefit from an improved understanding of how pediatric obesity affects the 

neuromuscular and musculoskeletal systems during walking. 

 

Figure 1.1 The cycle of weight gain theorized in pediatric obesity.  
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There are three reasons why the literature is incomplete in regards to adequately 

describing the effects of pediatric obesity on the neuromuscular and musculoskeletal systems 

during walking. First, experimental data collection methods have not adequately accounted for 

subcutaneous adiposity, particularly around the pelvis and torso, which obscures the motion of 

the underlying skeleton. This experimental oversight has resulted in inconclusive and conflicting 

results in the literature [3-6]. Second, rather than reporting individual muscle forces and joint 

contact forces, prior studies have only reported joint angles, moments, and powers during 

walking in obese and healthy-weight children [4-6]. Therefore, we lack information on how 

pediatric obesity affects individual muscle function and the magnitudes, distributions, and 

loading rates of the joint contact forces. Finally, prior studies may lack real-world applicability 

because experimental protocols have not reflected how children engage in daily physically 

activity. These studies report biomechanical outcome measures during walking only several steps 

rather than during walking continuously for several minutes [4-6]. Due to these limitations and 

the collective void in the literature, clinicians are unable to appropriately weigh the risk-benefit 

ratio of increased physical activity on the short and long-term health of the growing 

musculoskeletal system in obese children.  

The primary purpose of this dissertation was to investigate how pediatric obesity affects 

muscle function and knee joint loading during walking. While gait analysis and musculoskeletal 

modeling tools have made large improvements in recent years, two methodological challenges 

remained. The first challenge was that predictions of muscle and joint forces from dynamic 

simulations rely on accurately quantifying experimental motions of the skeleton, which is 

obscured by adiposity in obese individuals. The second challenge was that existing 

computational methods used to predict tibiofemoral contact forces were unsuitable for studying 
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how pediatric obesity affects tibiofemoral compartment (i.e. medial and lateral) loads during 

walking. Therefore, this dissertation had four goals. The first goal of this dissertation was to 

develop a kinematic marker set/methodology suitable for use in obese individuals that accounted 

for subcutaneous adiposity, and to determine the effect of using such a methodology to estimate 

muscle and joint contact forces during walking. The second goal of this dissertation was to 

develop an experimental protocol and musculoskeletal model that addressed subject-specific 

tibiofemoral alignment and contact locations and computed medial and lateral compartment 

contact forces during walking. The third goal of this dissertation was to investigate the 

relationship between adiposity and lower extremity kinematics, muscle force requirements, and 

individual muscle contributions to whole body dynamics during walking. Finally, the fourth goal 

of this dissertation was to determine the effects of pediatric obesity and walking duration on 

medial and lateral tibiofemoral contact forces.  

1.2 Dissertation Overview 

This dissertation is organized around four individual research studies, each designed to 

meet one of the dissertation’s four goals. Each study is either published or under review as an 

original research article in a scientific journal. Following this introduction, Chapters 2 and 3 

describe the development of the experimental and computational tools necessary for studying the 

proposed research on muscle function and joint loading during walking in children. Chapter 2, 

published in Medicine and Science in Sport and Exercise [7], explores an experimental 

methodology that was developed to more accurately capture kinematic data in obese individuals, 

while Chapter 3, published in Journal of Biomechanics [8], presents the development and 

validation of a combined experimental and computational approach to accurately predict medial 

and lateral tibiofemoral compartment contact forces during walking.  Chapters 4 and 5 apply the 
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methodological advancements presented in the two preceding chapters to investigate how 

pediatric obesity affects muscle function and knee joint loading during walking. In particular, 

Chapter 4, published in Journal of Biomechanics [9], examines how adiposity affects individual 

muscle forces and their contributions to mass center accelerations during walking, and Chapter 5, 

under review in Medicine and Science in Sport and Exercise, examines how pediatric obesity 

and walking duration affects the magnitude, distribution, and loading rates of medial and lateral 

tibiofemoral compartment contact forces. The sixth and final chapter summarizes the major 

findings of the four research studies and identifies several areas of future research.  

1.3 Significance of this Work 

This dissertation sought to investigate the impact of pediatric obesity on musculoskeletal 

function during walking, which, due to the global increase in childhood obesity and the 

associated comorbidities, has both clinical and public health implications. Because of the 

challenges associated with accurately quantifying the necessary musculoskeletal outcome 

measures in obese children, this investigation required the development of novel experimental 

and computational biomechanics/biomedical engineering tools. Therefore, this dissertation has 

implications for both the biomechanics and clinical research communities.  

The first two research studies of this dissertation make contributions primarily to the 

biomechanics community. The main contribution from Chapter 2 was the development and 

analysis of a kinematic marker set suitable for accurately quantifying the motion of the skeleton 

despite subcutaneous adiposity. This study, which demonstrated the importance of accounting 

for subcutaneous adiposity on estimates of muscle and joint contact forces, provides the 

biomechanics community with a readily achievable approach for use in gait analysis of obese 

individuals. The main contribution from Chapter 3 was the development of a customizable knee 
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joint mechanism within a full-body OpenSim gait model that was able to resolve individual 

tibiofemoral compartment contact forces. We developed and validated an experimental protocol 

to estimate the subject-specific parameters necessary to accurately resolve medial and lateral 

tibiofemoral contact forces during walking. We have made this musculoskeletal model publically 

available at www.simtk.org/home/med-lat-knee/.  

The final two research studies of this dissertation make contributions primarily to the 

clinical research community. The main contribution from Chapter 4 was an improved 

understanding of how adiposity affects individual muscle function during walking in children. 

Obese children walk differently than healthy-weight children, but the neuromuscular reasons are 

not well understood. We created dynamic musculoskeletal simulations of gait to identify the 

muscles that are implicated in the altered gait mechanics exhibited by obese children. This 

knowledge can be used to prescribe activities and/or strength training that may facilitate 

improved quality of movement. The main contribution from Chapter 5 was an improved 

understanding of the effects of pediatric obesity and walking duration on medial and lateral 

tibiofemoral compartment contact forces. With regard to caloric balance and cardiovascular 

health, obese children may benefit from increased physical activity. However, altered 

tibiofemoral loading during physical activity in obese children likely contribute to their increased 

risk of orthopedic disorders of the knee. We found that obese children walk with greater medial 

compartment contact forces, loading rates, and load share, providing empirical evidence for the 

reported orthopedic conditions. Further, we found that these measures of medial compartment 

loading increased with duration, suggesting that the prescription of shorter activity durations may 

reduce musculoskeletal injury risk for obese children.   

 

https://simtk.org/home/med-lat-knee/
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2. DEVELOPMENT AND ANALYSIS OF AN EXPERIMENTAL KINEMATIC 

METHODOLOGY FOR USE IN OBESE INDIVIDUALS1 

 

 

 

2.1 Chapter Overview 

The accuracy of muscle and joint contact forces estimated from dynamic musculoskeletal 

simulations are dependent upon the experimental kinematic data used as inputs. Subcutaneous 

adipose tissue makes the measurement of representative kinematics from motion analysis 

particularly challenging in overweight and obese individuals. The purpose of this study was to 

develop an obesity-specific kinematic marker set/methodology that accounted for subcutaneous 

adiposity, and to determine the effect of using such a methodology to estimate muscle and joint 

contact forces in moderately obese adults. Experimental kinematic data from both the obesity-

specific methodology, which utilized digitized markers and marker clusters, and a modified 

Helen Hayes marker methodology were used to generate musculoskeletal simulations of walking 

in obese and nonobese adults. Good agreement was found in lower-extremity kinematics, muscle 

forces, and hip and knee joint contact forces between the two marker set methodologies in the 

nonobese participants, demonstrating the ability for the obesity-specific marker set/methodology 

to replicate lower extremity kinematics. In the obese group, marker set methodology had a 

                                                 

 

 
1 The contents of this chapter have been published in: 

 

 

Medicine and Science in Sports and Exercise (2014); 46(6): 1261-1267 

 

Zachary F. Lerner 

Wayne J. Board 

Raymond C. Browning 
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significant effect on lower-extremity kinematics, muscle forces, and hip and knee joint contact 

forces, with the Helen Hayes marker set methodology yielding larger muscle and first peak hip 

and knee contact forces compared to the estimates derived when using the obesity-specific 

marker set/methodology. This study demonstrates the need for biomechanists to account for 

subcutaneous adiposity during kinematic data collection, and proposes a feasible solution that 

may improve the accuracy of musculoskeletal simulations in overweight and obese people. 

2.2 Introduction 

Accurate estimates of muscle and joint contact forces from dynamic simulations of 

human locomotion provide critical insight into normal and pathological function of the 

musculoskeletal system [10-14]. For example, musculoskeletal simulations can be used to 

enhance our understanding of the biomechanical mechanisms linking obesity and large joint 

osteoarthritis. The accuracy of experimentally driven musculoskeletal simulations is dependent 

upon the ability to collect accurate kinematic data. Using passive reflective markers placed on 

the surface of the skin to determine the kinematics of the underlying skeleton can result in 

inaccurate marker placement and soft tissue artifact (STA), particularly in overweight and obese 

subjects [15]. As our population becomes progressively overweight and obese [16], participants 

in locomotor biomechanics studies, especially those using obese participants, will likely include 

individuals with substantial subcutaneous adiposity. The majority of studies that use motion 

capture for gait analysis, even those directly assessing obesity [17-19], use standard kinematic 

marker sets/methodologies developed for nonobese individuals that do not attempt to account for 

adiposity, namely, some version of the Helen Hayes marker set methodology [20].  

Inaccurate marker placement and STA can lead to gross errors in basic biomechanical 

measures, such as hip and knee joint kinematics and net muscle moments [21]. Additionally, 
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when a generic musculoskeletal model is scaled to the anthropometrics of a subject, using 

markers placed on the skin to represent the size and motion of the underlying skeleton of an 

overweight or obese individual may lead to inaccurate scale factors and marker trajectories, 

respectively. Although various methods have been proposed to account for excess soft tissue 

obscuring the underlying bone, such as lateral relocation of the anterior superior iliac spines 

(ASIS) markers [22], DEXA derived anthropometric measures [22-24], biplane fluoroscopy [25], 

and functional joint locating methods [26], they are not consistently used and are limited by 

effectiveness, practicality, and/or cost. A methodology to account for excess soft tissue in 

overweight and obese individuals that is relatively accurate, relatively simple and inexpensive to 

employ would aid researchers who conduct biomechanical analyses of obese individuals [27]. In 

addition, investigating the influence of marker set methodology on musculoskeletal simulation 

outputs will provide insights into the sensitivity of kinematics and muscle/joint forces to how the 

musculoskeletal system is modeled. 

The purpose of this study was three-fold: first, to develop an obesity-specific motion 

capture methodology that was easy to implement and accounted for subcutaneous adiposity; 

second, to demonstrate the ability of the new methodology to replicate the kinematics of 

nonobese individuals using a standard methodology, and third, to determine the effect of using a 

methodology specifically developed for obese individuals to estimate muscle (vasti, hamstring, 

rectus femoris, and iliopsoas) and axial hip and knee contact forces during walking in obese 

adults. We hypothesized that 1) there would not be significant differences in lower extremity 

joint angles, lower extremity muscle forces, and axial hip and knee joint contact forces between 

the obesity-specific methodology and a modified Helen Hayes methodology in nonobese 
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individuals, but 2) there would be significant differences in these same parameters between the 

methodologies in obese individuals.  

2.3 Methods 

Subjects 

Nine obese adults with a body mass index (BMI) of 35.0 (3.78) kg·m-2 (Mean (SD)), of 

which 8 were female, and 9 nonobese adults with a BMI of 22.1 (1.02) kg·m-2, of which 5 were 

female, in good health with no known acute/chronic diseases or limitations to physical activity, 

participated in our study. All subjects gave written informed consent approved by Colorado State 

University’s Human Research Institutional Review Board.  

Experimental Protocol 

As part of a larger study, participants walked at nine randomized speed grade 

combinations, ranging from 0.50 m•s-1 to 1.75 m•s-1 at grades ranging from 0-9°. The 

biomechanics data was collected for the last 30 seconds of the 6 minute trials, and there were 5 

minutes of rest between trials. For purposes of this study, we used data from the 1.25 m·s-1, level 

(0°) trials. 

Experimental Data 

Ground reaction forces were collected using a dual-belt, force measuring treadmill (Fully 

Instrumented Treadmill; Bertec Corp, Columbus, OH) recording at 1000 Hz, while kinematics 

were collected using a 10-camera motion capture system (Nexus, Vicon, Centennial, CO) 

recording at 100 Hz. Marker trajectory and GRF data were digitally low-pass filtered at 5 Hz and 

12 Hz, respectively, using fourth-order zero-lag Butterworth filters. Electromyographic (EMG) 

data (Noraxon, Scottsdale, Arizona) from bipolar surface electrodes recording at 1000 Hz was 

collected for the soleus, lateral gastrocnemius, vastus lateralis, vastus medialis, biceps femoris 
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long head, and semimembranosus muscles using standard procedures [28]. The EMG signal was 

band-pass filtered (16-380 Hz), fully rectified and finally low-pass filtered at 7 Hz.  

Kinematic Marker Sets 

The obesity-specific methodology was developed for use in obese individuals and 

consisted of a combination of physical reflective markers, marker clusters, and digitally defined 

markers (Figure 2.1, Figure 2.2). Reflective markers were placed over the following anatomical 

landmarks identified via palpation: 7th cervical vertebrae, acromion processes, right scapular 

inferior angle, sterno-clavicular notch, xyphoid process, 10th thoracic vertebrae, posterior-

superior iliac spines (PSIS), ASIS, iliac crests (IC), medial and lateral epicondyles of the femurs, 

medial and lateral malleoli, calcanei, first metatarsal heads, second metatarsal heads, and 

proximal and distal heads of the 5th metatarsals. Marker clusters (four non-collinear markers 

affixed to a rigid plate) were adhered to the thighs, shanks, and sacrum to aid in three-

dimensional tracking. A spring-loaded digitizing pointer (C-Motion, Germantown, MD) was 

used to digitally mark the ASIS and IC. We placed the tip of the digitizing pointer on the soft 

tissue directly over the anatomical landmark and depressed the digitizing pointer until it reached 

the underlying bone in order to mark the location for post-processing. This process was also used 

to define the location of the digital ASIS and IC landmarks relative to three markers on the sacral 

cluster using Visual 3D (C-Motion/Visual 3D, Germantown, MD). This relationship was used 

during the motion trials to calculate the digital ASIS and IC trajectories during post processing in 

Visual 3D. Coordinate data (i.e. marker trajectories) for all additional markers were determined 

in Visual 3D as well. A modified Helen Hayes (basic) methodology [20] was defined as a subset 

of the previously described passive reflective markers as follows: five markers on the torso 

(excluding the acromion processes), ASIS, PSIS, one marker from each thigh cluster (posterior-



 

 

11 

 

superior marker), the lateral condyles of the femur, one marker from each shank cluster 

(posterior-superior marker), the lateral malleoli, the calcanei, and second metatarsal heads. 

 

 

Figure 2.1 Marker placements of the obesity-specific methodology and the subset of markers comprising the basic 

methodology relative to skeletal landmarks.  
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Figure 2.2 Marker and marker cluster placements of the obesity-specific methodology on a representative subject.  

 

Dynamic Musculoskeletal Simulation 

For each obese participant and for each methodology, we used OpenSim to scale a 

generic musculoskeletal model, determine joint angles, and quantify muscle and joint contact 

forces [29]. The OpenSim model was comprised of 12 body segments with 19 degrees of 

freedom, 92 muscle-tendon actuators, and a knee joint that included a planar patellofemoral joint 

that articulated with the femur [10, 30, 31]. The distance between the experimental ASIS 

markers (i.e. inter-ASIS distance between physical ASIS markers in the case of the basic 

methodology, or digitized ASIS markers in the case of the obesity-specific methodology) were 

used to uniformly scale the pelvis of each subject specific musculoskeletal model. The distance 

between the experimental ASIS and lateral femoral epicondyle markers were used to scale each 

thigh segment, while the distance between lateral femoral epicondyle and lateral malleoli 

markers were used to scale each shank segment. The joint angles during each gait trial were 

calculated using OpenSim’s inverse kinematics analysis with standard marker weighting factors 
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used to generate joint angles in nonobese individuals that follow guidelines from gait analysis 

software including Visual 3D, Vicon, and OpenSim [12, 29]. We used a weighted static 

optimization approach to resolve individual muscle forces from the net joint toques determined 

through the method of inverse dynamics [12, 29]. The static optimization objective function 

minimized the sum of squared muscle activations while incorporating individual muscle 

weighting constants of seven for the gastrocnemius, three for the hamstrings and one for all other 

muscles in the model. These weighting constants, established by Steele et al., resulted in the best 

agreement between model estimated tibiofemoral forces and those measured experimentally 

from an instrumented knee joint replacement [12, 29, 32]. Residual actuators were applied to the 

pelvis during static optimization to account for dynamic inconsistencies resulting from modeling 

assumptions and small errors in the experimental data. OpenSim’s Joint Reaction analysis was 

used to determine joint contact forces [12, 29], which represent the forces and moments that each 

joint structure carries due to all muscle forces, external loads, and inertial loads of the model. 

The compressive knee contact force was computed as the component of the resultant force acting 

on the tibia and parallel to the long axis of the tibia, while the compressive hip contact force was 

computed as the component of the resultant force acting on the femoral head, parallel to the long 

axis of the femur. 

Joint kinematics (sagittal plane joint angles of the pelvis, hip and knee), muscle forces 

(vasti, hamstring, rectus femoris, and iliopsoas), and axial joint contact forces (hip and knee) are 

reported from the right leg, normalized and averaged across two representative gait cycles per 

subject, and then averaged across subjects for each methodology. Muscle forces and axial knee 

joint contact forces were normalized to the body weight (BW) of each subject.  
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Statistical analysis 

Student’s t-tests were used to determine if there were significant differences in kinematic 

and kinetic variables (averages, maximums, and/or minimums) between the basic and obesity-

specific methodologies within each group. A criterion of p < 0.05 defined significance. 

SigmaPlot version 11.0 (Systat Software, Inc., San Jose, CA) was used to perform the statistical 

analyses.  

2.4 Results 

We present the results of eight obese individuals, as Static Optimization failed, despite 

repeated attempts, to find a solution using the basic methodology for one obese participant. The 

mean residual force in each coordinate direction applied to the center of mass of the pelvis was 

less than 4.1% BW for each completed simulation. In the nonobese participants, joint angles, 

muscle forces, and first peak hip and knee joint contact forces were not significantly different 

between the basic and obesity-specific methodologies (Table 2.1). In the obese individuals, peak 

hip flexion during stance and pelvic tilt angles were significantly different between the kinematic 

marker set methodologies (Figure 2.3). First peak rectus femoris muscle forces were significantly 

smaller (0.27 BW vs. 0.73 BW, p<0.001) in the obesity-specific methodology vs. the basic 

methodology, while all other muscle forces were similar. A qualitative comparison between 

estimated muscle forces and experimental EMG revealed relatively good agreement for the 

activation timing of the vasti and biceps femoris long head muscles (Figure 2.4). Compared to 

the basic methodology, the obesity-specific methodology resulted in smaller first peak axial hip 

(2.82 BW vs. 3.58 BW, p=0.002), and knee (2.12 BW vs. 2.54 BW, p=0.021) contact forces 

(Figure 2.5).  
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Table 2.1 Differences in joint angles, peak muscle forces, and joint contact forces (JCF) between the obesity-specific 

methodology relative to the basic methodology for the obese and nonobese participants. * Denotes significant 

differences within each group across marker set methodologies. Mean differences for each variable were found by 

subtracting the quantity obtained using the basic methodology from the quantity obtained using the obesity-specific 

methodology. 

 

 Mean Difference Between Sets 

 Obese Nonobese 

Average Anterior Pelvic Tilt (°) -13.3* -0.6 

Peak Hip Flexion during Stance (°) -10.0* 1.3 

Peak Knee Flexion during Stance (°) -1.4 -0.6 

Vasti Force (BW) -0.12 <0.01 

Hamstring Force (BW) -0.08 <0.01 

Rectus Force (BW) -0.46* -0.14 

Iliopsoas Force (BW) -0.36 -0.29 

1st Peak Hip JCF (BW) -0.76* -0.02 

1st Peak Knee JCF (BW) -0.43* -0.12 
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Figure 2.3Sagittal plane pelvic (top panel), hip (middle panel), and knee (bottom panel) joint angles in obese 

individuals determined using the obesity-specific (black solid line) and basic (grey dashed line) methodologies. Hip 

flexion angle and anterior pelvic tilt were significantly greater in the basic vs. obesity-specific methodologies.  
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Figure 2.4  Body weight normalized muscle forces in obese individuals, estimated using the obesity-specific 

methodology (black solid line) and the basic methodology (dashed grey line). * Denotes significant differences 

across marker set methodologies. Vasti and biceps femoris long head EMG was included in the first and second 

panels, respectively. Vasti (1st panel), hamstring (2nd panel), and iliopsoas (4th panel) BW normalized muscle forces 

were similar between methodologies, while the rectus femoris (3rd panel) muscle had greater BW normalized force 

output in the basic vs. the obesity-specific methodology. The stance phase occurs during ~0-60% of the gait cycle.  
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Figure 2.5 Body weight normalized axial hip (top panel) and knee (bottom panel) contact forces in obese 

individuals, estimated using the obesity-specific methodology (black solid line) and the basic methodology (dashed 

grey line). * Denotes significant differences across marker set methodologies. First peak hip and knee contact forces 

were significantly greater in the basic vs. the obesity specific methodologies.   

 

2.5 Discussion 

We accept our first hypothesis that sagittal plane joint angles, muscle forces, and joint 

contact forces would be similar between the methodologies in nonobese individuals. This 

demonstrates the ability of the obesity-specific methodology to replicate lower extremity 

kinematics determined from the well-established, modified Helen Hayes methodology. We found 

significant differences in hip flexion and pelvic tilt joint angles, rectus femoris muscle forces and 
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first peak axial hip and knee joint contact forces between marker methodologies in the obese 

group, and therefore also accept our second hypothesis.  

To account for additional subcutaneous adipose tissue at the pelvis and lower extremities 

in overweight and obese versus nonobese individuals, we created an obesity-specific 

methodology by probing and digitally marking several key pelvic landmarks directly on the 

underlying bone and adding additional marker clusters. As reported in the literature, but not in 

this current evaluation, segment tracking in the frontal and transverse planes is likely more 

accurate when utilizing marker clusters [33]. We elected to define the location and trajectory of 

the ASIS and IC digital markers relative to a cluster placed on the sacrum because the sacrum 

moves in unison with the pelvis, has reduced subcutaneous adipose tissue, and is likely to be less 

susceptible to STA than other locations on the pelvis.  

During the musculoskeletal model scaling process, it is possible to adjust the location of 

the model’s virtual markers relative to the skeleton to reduce the error in relation to the 

experimental markers. However, to be accurate this method requires some knowledge of the 

actual location of the skeleton (e.g. via an MRI image) relative to the skin and may be prone to 

inaccuracy when used to adjust markers by many centimeters, as required in obese individuals. 

Additionally, merely measuring the depth of the soft tissue separating a marker placed on the 

skin and the bone, and adjusting the virtual marker in the model accordingly, may not be 

adequate at the pelvis because physical markers attached on the abdomen in obese experience 

substantial STA and tend to move with the torso rather than the pelvis. Using a digitizing pointer 

to provide a physical measure of the location of underlying bony landmarks, and defining those 

digital locations relative to skeletal landmarks less susceptible to STA is likely more accurate 

and repeatable. 
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There was substantial subcutaneous abdominal adiposity positioned between the ASIS 

markers placed on the skin and the actual ASIS bony landmarks on the bone in all of the obese 

subjects. This made it difficult to accurately track the underlying pelvic skeleton when the basic 

methodology was used to generate joint angles. The inverse kinematics analysis, which solves 

the least squares equation for all of the markers, resulted in a kinematic solution that caused 

significant anterior rotation (anterior pelvic tilt) of the pelvis in the basic methodology. This is 

because musculoskeletal models capable of estimating muscle and joint forces are fully 

constrained, and a translation, as opposed to a rotation, of the pelvis to reduce the pelvic region 

marker errors would increase the marker errors on the body segments down the kinematic chain 

(i.e. the thigh and shank). We systematically tested a range of pelvic region marker weighting 

factors, yet the significant rotation of the pelvis remained when the adipose tissue was not 

accounted for (i.e. the basic methodology). Due to the kinematic relationship between the pelvis 

and femur, a more anterior rotated pelvis will increase the hip flexion angle even if the femur has 

not changed its own global orientation. Thus, the basic methodology resulted in likely inaccurate 

pelvic tilt and hip flexion angles.  

It was surprising that sagittal plane knee joint angles were similar between methodologies 

in the obese individuals because, while we did not expect differences in the sagittal plane 

orientation of the shank and foot, we did expect differences in the sagittal plane orientation of the 

femur. However, as mentioned previously, this is due to how the inverse kinematic solution of a 

fully constrained musculoskeletal model accounts for inaccurate marker placements around the 

pelvis (i.e. a preference to modulate the orientation of the pelvis rather than the hip joint center 

location). 
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With similar vasti and hamstring forces during early stance between the methodologies in 

the obese group, it was initially counter intuitive to find significantly different axial knee joint 

contact forces. On closer inspection, however, because the basic methodology elicited greater 

rectus femoris force output there was a net increase in the axial knee contact force during early 

stance vs. the obesity-specific methodology. During mid-late stance, axial knee joint contact 

forces were not significantly different between methodologies because the force outputs from the 

muscles crossing the knee joint were generally similar during that portion of the gait cycle.  

The first peak axial hip and knee contact forces estimated using the obesity-specific 

methodology (hip: 2.82 BW, knee: 2.12 BW) were in closer agreement to values reported in the 

literature from instrumented implants at similar walking speeds and in a similar population (hip: 

~2.75 BW [34], knee: ~2.15 BW [35]), than those estimated from the basic methodology (hip: 

3.58 BW, knee: 2.54 BW). Heller et al. compared model estimated and experimentally measured 

in-vivo hip contact forces and reported a tendency for musculoskeletal simulations to 

overestimate forces at that joint [34]. Interestingly, they used a kinematic marker set, similar to 

the basic marker set used in this study, comprised solely of passive reflective markers affixed to 

the skin even though half of their subjects were overweight (BMI>25 kg·m-2), while the other 

half was obese (BMI>30 kg·m-2). Our results demonstrate that failing to account for soft tissue at 

the pelvis may result in artificially large force output from certain hip flexor muscles, which 

might explain the tendency for their simulations to overestimate hip contact forces in this 

population.    

The primary limitation of this study was the small sample size, yet we believe our 

primary goal to establish the importance of accounting for adipose tissue during kinematic data 

collection was demonstrated, nevertheless. Surface EMG has been shown to be a viable way to 
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measure muscle activity in the lower extremity of obese adults [36]; however, the effectiveness 

of this method in this population can be limited and must be regarded as a limitation. Another 

limitation of this study was that scaling of each model’s pelvis segment based on the digital 

ASIS locations did not directly account for the overlying mass of adipose tissue. However, it has 

been reported that body mass distributions are generally similar between obese and nonobese 

adults [37] and the inertial properties of the body segments likely have limited influence on 

model kinetics during the stance phase of gait [38]. Thus, uniform scaling of the inertial 

properties in obese adults should have limited impact on the presented results. A subsequent 

limitation of this study was that we used a weighted static optimization approach to indirectly 

validate muscle force estimates based on comparing estimated and experimentally measured 

contact forces at the knee joint alone. However, we are confident in the ability of these Static 

Optimization weighting factors to provide reasonable estimates of both hip and knee contact 

forces because much of the primary hip musculature (i.e. rectus femoris, biceps femoris long 

head, semimembranosus, semitendinosus, and sartorius) cross both the hip and knee joints and 

were accounted for in the knee joint validation. Additionally, we have found that relative 

differences between conditions (e.g. marker set methodologies or weight status) are insensitive to 

the Static Optimization weighting factors themselves. Finally, results from inverse kinematic and 

inverse dynamic analyses generated using unconstrained (i.e. 6 degree of freedom) models 

common to gait analysis software such as Vicon and Visual 3D were not included in this study 

but warrant further investigation. 

2.6 Conclusion 

In summary, the effect of marker set methodology on estimates of muscle forces and 

axial hip and knee joint contact forces in obese individuals was significant, with the basic 
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methodology yielding larger muscle and joint contact forces. There were no significant 

differences in these same measures between the methodologies in the nonobese participants. The 

measured differences between the two methodologies can likely be attributed to tracking the 

motion of the pelvis using the digital ASIS and IC marker locations in the case of the obesity-

specific methodology, vs. the physical ASIS and IC markers placed on the skin in the case of the 

basic methodology. These findings are not only relevant for studies directly assessing the 

biomechanics of obese individuals, but also for studies in which a subset of the subjects are 

overweight or obese, because applying a basic methodology to all of the subjects, or different 

methodologies to separate subject groups, may act as confounding factors. The results of this 

study support the need for biomechanists to adopt kinematic data collection protocols that 

accounts for adipose tissue in overweight and obese individuals. 
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3. DEVELOPMENT OF A COMPUTATIONAL MODEL TO ACCURATELY PREDICT 

MEDIAL AND LATERAL TIBIOFEMORAL CONTACT FORCES2 

 

 

 

3.1 Chapter Overview 

Understanding degeneration of biological and prosthetic knee joints requires knowledge 

of the in-vivo loading environment during activities of daily living. Musculoskeletal models can 

estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences 

between individuals make accurate predictions challenging. We developed a full-body OpenSim 

musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral 

alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy 

of our model and determined the importance of these subject-specific parameters by comparing 

estimated to measured medial and lateral contact forces during walking in an individual with an 

instrumented knee replacement and post-operative genu valgum (6°). The errors in the 

predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, 

for a model with subject-specific tibiofemoral alignment and contact locations determined via 

radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. 

We found that each degree of tibiofemoral alignment deviation altered the first peak medial 
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compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation 

of the compartment contact point locations altered the first peak medial compartment contact 

force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the 

specification of subject-specific joint alignment and compartment contact locations to more 

accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral 

alignment. 

3.2 Introduction 

Abnormal knee loads are implicated in tibiofemoral osteoarthritis [39], which affects 

more than 12% of US adults [40]. The distribution of tibiofemoral contact forces between the 

medial and lateral compartments can be influenced by frontal-plane tibiofemoral alignment and 

affect degeneration of biological [41] and prosthetic [42] knees. The treatment of orthopedic 

disorders of the knee is likely to benefit from an improved understanding of the in-vivo knee 

loading environment during activities of daily living.  

Musculoskeletal models allow researchers to investigate medial/lateral tibiofemoral 

contact forces during activities like walking [32, 43]. Some modeling approaches require 

complex, multi-step analyses, or the use of both full-body gait models and finite element or 

contact models [44-48]. Finite element and contact models rely on an accurate representation of 

the articulating joint surfaces and require imaging techniques that may be unavailable or 

prohibitively expensive. Resolving the magnitudes of medial/lateral forces by approximating 

medial/lateral compartment points of contact is a promising approach for estimating contact 

forces [49-51]; however, no open-source, full-body gait model contains knee joint definitions 

that allow direct computation of medial/lateral contact forces.  

https://simtk.org/home/med-lat-knee/
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Predictions of medial/lateral tibiofemoral contact forces in an individual using a 

musculoskeletal model with generic geometry may be inaccurate when the model does not 

accurately represent the individual. The specification of certain subject-specific model 

parameters may improve accuracy [50]. Two parameters, frontal-plane tibiofemoral alignment 

and medial/lateral compartment contact locations, are likely to influence model-predicted 

medial/lateral compartment contact forces by altering how muscle forces and external loads pass 

relative to each compartment. Frontal-plane tibiofemoral alignment affects loading of the knee 

[47, 52-54], and can vary up to ±3.75° in individuals without obvious genu valgum-varum [55]. 

Existing modeling approaches have limitations that hinder the accurate representation of a 

subject’s frontal-plane alignment; for example, generic models typically lack or constrain the 

frontal-plane motion of the knee [44, 49-51] and subject-specific models based on geometry 

determined from MRI or CT images are of non-weight-bearing limbs [46, 50]. In addition, when 

medial/lateral compartment contact is approximated through single points, the locations of these 

points influence how the tibiofemoral loads are distributed. It has been assumed that the 

medial/lateral compartment contact locations are centered at the midline of the femoral condyles 

[51] in biological knees or located at set distances from the joint center in prosthetic knees [50], 

but variability in alignment and joint degeneration may alter these locations.  

To address the need to calculate tibiofemoral loads accurately this study had three goals. 

The first was to develop a musculoskeletal model that accounts for differences in tibiofemoral 

alignment and contact locations and computes medial/lateral contact forces during walking. The 

second goal was to quantify the accuracy of knee contact force estimates made using generic 

geometry and subject-specific geometry by comparing these estimates to in-vivo measurements 

from an individual with an instrumented knee replacement and genu valgum. The third goal was 
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to evaluate the effects of model-specified frontal-plane knee alignment and contact point 

locations on medial/lateral contact force predictions. The model, experimental data, and contact 

force predictions are freely available at www.simtk.org. 

3.3 Methods 

Model Development 

To compute medial and lateral tibiofemoral contact forces during walking we developed 

a model of the tibiofemoral joint in OpenSim [10] and incorporated it within a published full 

body musculoskeletal model [56]. The published model, designed for studying gait, was 

comprised of 18 body segments and 92 muscle-tendon actuators. Model degrees of freedom 

(DOF) included a ball-and-socket joint between the third and fourth lumbar vertebra, 3 

translations and 3 rotations of the pelvis, a ball-and-socket joint at each hip, and revolute ankle 

and subtalar joints. In our model, the sagittal plane rotation and translations of the tibia and 

patella relative to the femur were identical to those specified by (Delp et al, 1990); however, we 

augmented the mechanism defining the tibiofemoral kinematics. 

The tibiofemoral model introduced components for configuring frontal-plane alignment 

of the knee and for resolving distinct medial and lateral tibiofemoral forces. We introduced a 

distal femoral component body and a tibial plateau body (represented by CAD geometry of the 

instrumented implant, Figure 3.1, pink) with orientation parameters for configuring frontal-plane 

alignment in the femur (θ1) and tibia (θ2). Between the femoral component and the tibial plateau, 

we defined a series of joints to characterize the tibiofemoral kinematics and medial/lateral load 

distribution. Firstly, the knee joint from Delp et al. (1990) defined the sagittal-plane rotations and 

translations of the knee between the femoral component and the sagittal articulation frame of 

reference (Figure 3.1A, hidden, Figure 3.1B, translucent). Secondly, two revolute joints 

http://www.simtk.org/
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connected the sagittal articulation frame to medial and lateral tibiofemoral compartments (Figure 

3.1, purple). The axes for these two revolute joints were perpendicular to the frontal-plane. 

Lastly, the medial and lateral compartments were welded at the anterioposterior mid-point of the 

tibial plateaus such that they remained fixed to the tibia while articulating with the surface of the 

femoral component during flexion-extension. The patella segment articulated with the femoral-

condyle segment according to [56]. The quadriceps muscles wrapped around the patella before 

attaching to the tibial tuberosity to redirect the quadriceps forces along the line of action of the 

patellar ligament and allow the resultant tibiofemoral contact forces to be computed [56].  

 

Figure 3.1 Graphical (A) and schematic (B) depictions of the medial/lateral compartment joint structures in our 

musculoskeletal model. In both the graphic and schematic, the red axis is perpendicular to the frontal-plane, the 

green axis is perpendicular to the transverse-plane, and the blue axis is perpendicular to the sagittal-plane. The “Delp 

Knee Joint” defines the sagittal-plane tibiofemoral translations and rotations specified by [31] (blue cylinder in B). 

Two revolute joints (red cylinders), acting in the frontal-plane, connect the sagittal articulation frame (translucent) to 

both the medial and lateral compartments (purple). By acting in parallel, these two revolute joints share all loads 

transmitted between the femur and tibia and resolve the medial and lateral contact forces required to balance the net 

reaction forces and frontal-plane moments across the tibiofemoral joint. The medial compartment is fixed to the 

tibial plateau with a weld joint, and the lateral compartment is fixed to the tibial plateau with a weld constraint 

(black locks). Correspondingly, the knee remained a single DOF joint with articulation only in the sagittal plane. 

The locations of the medial and lateral compartments can be specified on a subject-specific basis (d1 and d2 in the 

inset graphic and schematic). Similarly, the model’s tibiofemoral alignment can be specified (θ1 and θ2 in the inset 

graphic and schematic) by modifying the weld joint between the femur and femoral component and the weld joint 

between the tibial plateau and tibia.  
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Experimental Data  

We used experimental data from a subject with an instrumented knee replacement (right 

knee, male, age 83, mass 67 kg, height 1.72 m) to generate dynamic simulations of walking. 

These data have been made available by the Knee Load Grand Challenge [32]. Researchers 

collected kinematic, kinetic, and instrumented implant data simultaneously during over-ground 

walking. Validated regression equations were used to calculate separate medial and lateral 

tibiofemoral compartment contact forces from the instrumented knee joint [57].  

Established methods [55] were used to quantify the frontal-plane alignment of the 

subject’s right lower-extremity from a standing anterioposterior radiograph  (Figure 3.2). The 

angle formed between the intersection of the mechanical axes of the femur and tibia was used to 

specify subject-specific model alignment. To model lower-extremity alignment, θ1 and θ2 from 

Figure 3.1 are each specified as one half of the varus-valgus alignment angle (180°-θ from 

Figure 3.2). To estimate subject-specific medial/lateral compartment contact locations, we 

measured the distance between the centerline of the femoral implant component and the 

centerline of the tibial implant component using a higher resolution anterioposterior radiograph 

of the knee (Figure 3.3). A measurement scale was established from the known width of the 

implant. Contact model predictions using in-vivo measurements of a similar implant have 

indicated an intercondylar distance of 40mm [58], and this distance has been used previously to 

inform model contact points [50]. Therefore, we maintained this intercondylar distance while 

shifting the medial/lateral contact locations medially by the distance (d) measured from the 

radiograph.  
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Figure 3.2 Anterioposterior radiograph of the participant’s lower-extremity used to determine the subject-specific 

alignment for the musculoskeletal model. Angle θ (174°) was found by drawing lines connecting the hip, knee, and 

ankle joint centers, which were defined as the center of the femoral head, center of the femoral condyles, and 

midpoint of the medial and lateral margins of the ankle, respectively.  

 

 

Figure 3.3 The anterioposterior radiograph of the participant’s instrumented (right) knee that was used to determine 

the frontal-plane location of the femoral implant component relative to the tibial implant component. The parameter, 

d, was measured as the distance between the centerlines of each component (3mm). A measurement scale was set 

from the known width of the implant. In the model, we specified the subject-specific medial/lateral compartment 

contact locations (black dots) by shifting the generic medial/lateral locations (white dots) medially by d, thus 

maintaining an intercondylar distance of the instrumented implant. Therefore, for the fully-informed model and 

contact-point-informed model, the medial compartment point of contact was located 23mm medial of the knee joint 

center, while the lateral compartment point of contact was located 17mm lateral of the knee joint center.  
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Varying Tibiofemoral Specificity in the Musculoskeletal Model 

To isolate the effects of specifying each subject-specific parameter we conducted 

simulations with the following four conditions of our musculoskeletal model. 

Fully-Informed Model: This model had subject-specific tibiofemoral alignment (θ=174°) and 

contact locations informed via radiographic analysis. Medial compartment contact was located 

23mm medial of the knee joint center and lateral compartment contact was located 17mm lateral 

of the knee joint center.  

Uninformed Model: Based on data from an instrumented implant contact model for a neutrally 

aligned lower-extremity [58], and matching assumptions for an artificial knee implant made 

previously [50], we specified the generic frontal-plane locations of the medial/lateral 

compartment structures 20mm medial and lateral of the knee joint center. The tibiofemoral 

alignment for this model (θ=180°) was maintained from skeletal geometry originally defined by 

[31]. 

Alignment-Informed Model: This model had subject-specific alignment (θ=174°) but 

uninformed contact locations (20mm medial and lateral of the joint center). 

Contact-Point-Informed Model: This model had subject-specific contact locations (medial 

compartment: 23mm medial of the joint center, lateral compartment: 17mm lateral of the joint 

center) but uninformed alignment (θ=180°).  

To investigate the effects of model-specified tibiofemoral alignment on model-

predictions, we created contact-point-informed models with variable tibiofemoral alignment 

ranging from 0°-8° valgus, at 2° increments. To investigate the effects of model-specified 

medial/lateral compartment contact locations on model-predictions, we created alignment-
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informed models with variable medial/lateral contact point locations spanning reported 

translations (±4mm) at 2mm increments with 40mm inter-condylar distances.  

Musculoskeletal Simulation of Walking 

We used marker location data from anatomical landmarks collected during a standing 

calibration trial to scale our models in OpenSim. For each scaled model, we used OpenSim’s 

inverse kinematics analysis, which minimized the errors between markers fixed to the model and 

experimentally measured marker trajectories [10], to determine the joint angles during four over-

ground walking trials. Model kinematics were recalculated for every model condition while the 

ground reaction forces remained the same. Because muscle forces are the main determinant of 

compressive tibiofemoral contact forces [59], variations in muscle activity greatly influence the 

magnitude and accuracy of knee joint contact force predictions [56]. We resolved individual 

muscle forces using a weighted static optimization approach that was calibrated to the subject 

[12, 29]. The objective function minimized the sum of squared muscle activations while 

incorporating individual muscle weighting values using the method described by [12].  We 

manually adjusted the weighting values by half-integers until the combined first and second peak 

error between the measured and predicted medial/lateral tibiofemoral contact force was 

minimized for this subject. Muscle weighting factors of 1.5 for the gastrocnemius, 2 for the 

hamstrings, and 1 for all other muscles in the model, resulted in the lowest combined 

medial/lateral first and second peak prediction errors for each of the model conditions. The same 

weighting factors were used across all model conditions.  

We computed the forces in the medial/lateral compartment joint structures using 

OpenSim’s JointReaction analyses [12], which determines the resultant forces and moments 

acting on each articulating joint structure from all muscle forces and external and internal loads 
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applied to the model. Medial/lateral tibiofemoral contact forces were computed as the component 

of each resultant force acting normal to the tibial plateau.   

We used the fully-informed model to verify the contact forces predicted by the 

medial/lateral joint structures by comparing the outputs from the JointReaction analysis to the 

medial/lateral contact forces determined from the well-established point-contact method [51]. 

This method balances the forces and moments acting at the knee joint about medial/lateral 

tibiofemoral contact points based on the principle of static equilibrium. OpenSim’s inverse 

dynamics tool was used to determine the external abduction-adduction moment, while the 

muscle analysis tool was used to determine individual muscle moment arms about the medial and 

lateral compartment joint structures. The contact forces acting on the medial/lateral joint 

structures of our OpenSim model, as reported from the JointReaction analysis, were identical to 

the medial/lateral tibiofemoral contact forces quantified using the point-contact method. 

Statistical Analysis 

For each model condition, the contact force predictions for each walking trial were 

normalized to percent stance phase and averaged across stance phases to determine the mean and 

standard deviation. We calculated 95% confidence intervals to determine if statistically 

significant differences existed for first and second peak contact forces between model predictions 

and the in-vivo measurements, and to determine if significant differences existed between peak 

muscle forces. Regression analysis was used to determine the relationship between model-

specified tibiofemoral alignment and contact point locations and first peak medial compartment 

forces. We also calculated the total (medial+lateral) root-mean-square errors (RMSE) between 

the predicted and measured contact forces. SigmaPlot, version 11.0 (Systat Software, Inc., San 

Jose, CA) was used to perform the statistical analyses. 
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3.4 Results 

The fully-informed model had the best prediction accuracy. The alignment-informed 

model resulted in more accurate predictions than the contact-point-informed model; the least 

accurate was the uniformed model (Figure 3.4, Figure 3.5). Specifying subject-specific 

alignment and contact locations improved prediction accuracy by decreasing the contact force in 

the medial compartment and increasing the contact force in the lateral compartment (Figure 3.4). 

Compared to the uniformed model, first peak prediction accuracy increased by 51% in the 

medial compartment and 30% in the lateral compartment when the fully-informed model was 

used (Figure 3.5). 
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Figure 3.4 Medial (top) and lateral (bottom) compartment tibiofemoral contact forces during stance measured in-

vivo from the instrumented implant (skinny black line) and predicted using the fully-informed (purple, solid line), 

uninformed (red, dashed line), alignment-informed (blue, dotted line), and contact-point-informed (green, dash-dot 

line) models.  
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Figure 3.5 Percent error in first (light) and second (dark) peak medial (top) and lateral (bottom) tibiofemoral contact 

forces between the in-vivo measurements from the instrumented implant and the fully-informed (purple), 

uninformed (red), alignment-informed (blue), and contact-point-informed (green) models. Error bars represent 1 

standard deviation (SD).  

 

The contact force predictions from the fully-informed model were statistically similar to 

the in-vivo measurements for each peak in both the medial and lateral compartments; predictions 

from the uniformed model were only statistically similar for the second peak in the medial 

compartment (Table 3.1). Over the stance phase, predictions from the fully-informed, uniformed, 

alignment-informed, and contact-point-informed models had RMSE of 220N, 332N, 241N, and 

297N, respectively. 
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Table 3.1 95% Confidence Intervals (CI) of the medial and lateral compartment first and second peak contact forces 

for the in-vivo data measured from the instrumented implant and each model condition. Bolded entries denote 95% 

CIs for the model predictions that do not overlap with the 95% CI for the in-vivo data (indicating significant 

difference). 

 First Peak (N) Second Peak (N) 

 Medial Lateral Medial Lateral 

In-Vivo 679-991 556-871 695-871 657-911 

Fully-Informed 827-1002 635-825 559-987 399-714 

Uniformed 1234-1461 319-502 786-1244 85-417 

Alignment-Informed 951-1139 531-689 648-1095 302-612 

Contact-Point-Informed 1119-1322 439-663 703-1136 183-507 

 

Specifying a more valgus alignment decreased medial compartment force and increased 

lateral compartment force (Figure 3.6). Specifying a medial shift of the contact locations had the 

same effect. We found that each additional degree of tibiofemoral valgus alignment decreased 

the first peak of the medial contact force by 51N and increased the first peak of the lateral 

contact force by 30N (r2=0.99). Translating the contact point locations medially by 1mm 

decreased the first peak of the medial contact force by 41N and increased the first peak of the 

lateral compartment contact force by 33N (r2=0.99); translating the contact point locations 

laterally by 1mm had the opposite effect.  

Muscle forces were the primary contributor to the knee joint contact force. For the fully-

informed model, the sum of the muscle forces crossing the knee was 903N at the first peak of 

knee loading and 853N at the second peak. The sum of the muscle forces crossing the knee were 

not significantly different between model conditions. Individual peak muscle forces were similar 

between model conditions for all muscles except for the tensor-fasciae-latae, which increased 

from 62N in the uniformed model condition to 82N in the alignment-informed and fully-

informed model conditions.  
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Figure 3.6 Effects of model-specified alignment (left), and compartment contact locations (right) on medial 

compartment (top) and lateral compartment (bottom) tibiofemoral contact forces during stance. The black-dashed 

lines represent the in-vivo measurements. Deviation of model-specified tibiofemoral alignment from 8° genu valgum 

(dark blue) to generic alignment (0° genu valgum, light blue), at 2° increments.  Deviation of compartment contact 

locations from 4mm medial (dark green) to 4mm lateral (light green), at 2mm increments.  

 

3.5 Discussion 

We developed a novel, configurable knee joint in a full body musculoskeletal model that 

simplifies the prediction of medial/lateral tibiofemoral contact forces during locomotion, 

fulfilling the first goal of this study. This model allows investigators to specify subject-specific 

joint alignment and compartment contact locations to more accurately estimate tibiofemoral 

contact forces in individuals with non-neutral alignment.  

The second goal of this study was to quantify the prediction accuracy of knee contact 

forces in an individual with non-neutral tibiofemoral alignment using our model with generic 
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geometric parameters versus our model with subject-specific parameters. We found that 

prediction accuracy was improved by specifying each subject-specific parameter. However, 

predictions for all model conditions had limited accuracy during early stance (Figure 3.4). Since 

muscles crossing the knee are not producing relatively large forces during this interval (e.g. 

summed muscle forces were <405N at 10% of stance), the predictions appear sensitive to small 

errors in the frontal-plane application of the external forces. During mid-stance, the lateral 

contact force was under-predicted for all models. Our objective function, which minimizes 

muscle activation and produces low levels of muscle co-contraction, may contribute to the 

reduced mid-stance accuracy since significant levels of co-contraction has been reported in older 

adults during mid-stance [60]. Furthermore, we selected static optimization weighting factors 

that minimized the first and second peak error, but not mid-stance error. Therefore, our results 

were not optimized for this portion of the gait cycle.  

The third goal of this study was to investigate how geometric parameters, in particular 

tibiofemoral alignment and contact locations, affect estimates of medial/lateral contact forces. 

Our results indicate that frontal-plane tibiofemoral alignment is an important model parameter 

when predicting medial/lateral compartment contact forces. Hast et al. predicted medial/lateral 

contact forces from the same subject and dataset used in our study, but did not report 

incorporating subject-specific frontal-plane alignment [44]. Acknowledging that they used a 

different approach to estimate muscle and contact forces, they reported larger medial contact 

forces and smaller lateral contact forces compared to the in-vivo data. Their results resemble our 

predictions from our model with neutral alignment. Specifying subject-specific tibiofemoral 

alignment may therefore improve estimates of medial/lateral contact forces from other 

approaches that rely on knee models with a constrained abduction-adduction DOF. Thelen et al. 
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report that small variations in tibiofemoral alignment (±2°) in their dynamic contact model 

altered the medial-lateral distribution by up to 12% [48], suggesting that specification of subject-

specific alignment would be important in this type of model as well. 

Predictions of medial/lateral tibiofemoral contact forces were directly proportional to 

model-specified frontal-plane alignment (Figure 3.6). This relationship is supported by findings 

from a study with five individuals with instrumented knee implants and a range of post-operative 

lower-extremity alignments [53]. Thirty percent of total knee replacement cases result in 

postoperative alignment beyond ±3° varus-valgus [61], while the standard deviations of 

tibiofemoral alignment are 3° in healthy individuals and 8° in osteoarthritic individuals [62]. A 

3° difference between model and subject alignment would alter first peak medial contact force 

predictions by 23% of body-weight and lateral contact force predictions by 14% of body-weight. 

Researchers can likely improve contact force estimates by utilizing subject-specific knee 

alignment acquired from radiographic images.   

Our model resolved medial/lateral compartment loads by approximating them as though 

they occurred at single points of contact. We estimated these contact locations from an 

anterioposterior knee radiograph with knowledge of the intercondylar distance (40mm) 

determined from a similar implant [58]. Since a non-neutral lower-extremity may influence the 

relative placement of the femoral and tibial prosthesis components, we analyzed a radiograph of 

the subject’s instrumented knee. We found a medial shift of the femoral component relative to 

the tibial component. Therefore, we shifted the medial/lateral locations in our model accordingly, 

while maintaining the previously reported intercondylar distance. It has been reported that 

medial/lateral contact points deviate in the medial-lateral direction up to ±2.6mm in artificial 

knee joints during walking [58]; therefore, we investigated the sensitivity of model predictions 
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across a similar range (±4mm). Tibiofemoral contact forces were directly proportional to the 

specified contact locations. A 2mm difference between model and subject contact-locations 

alters the predicted first peak of the medial contact force by 12% of body-weight and lateral 

contact force 10% of body-weight. We recommend that estimates of condylar contact based on 

center of pressure be used when this model is applied to biological knees. 

Tibiofemoral alignment and contact locations primarily affected the medial-lateral load 

distribution by altering how the external loads and muscle forces passed relative to each 

compartment in the frontal-plane. In model conditions with subject-specific alignment, the knee 

joint moved medially causing the external knee adduction moment to decrease. Similarly, in 

model conditions with subject-specific contact locations, the contact locations shifted medially 

causing the external adduction moment relative to each compartment to decrease. In both cases, a 

reduced adduction moment from the external forces increased the lateral compartment contact 

force and decreased the medial compartment contact force. Altering the frontal-plane 

compartment contact locations also affected the frontal-plane muscle moment arms about each 

compartment. A medial shift in the contact location caused the muscle forces to increase their 

contribution to lateral compartment loading and decrease their contribution to medial 

compartment loading.  

There are several limitations of this study. First, we were restricted to data from only a 

single individual because the design of our study necessitated a subject with an instrumented 

knee implant, post-operative non-neutral alignment, and radiographic images. Since we found 

directly proportional relationships between model-predictions and the geometric parameters, our 

results may apply across a range of individuals. Second, an assumption of our model was that 

tibiofemoral contact acted through single points in each compartment and the locations of these 
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points relative to the tibia reference frame remained stationary. The impact of this assumption is 

thought to be small since reports of the in-vivo frontal-plane medial/lateral contact locations from 

dual-orthogonal fluoroscopy and magnetic resonance images were not significantly different 

between 0° and 30° of weight-bearing knee flexion [63]. Third, we used a weighted static 

optimization approach to determine muscle weighting factors rather than an EMG driven 

approach. However, we found that the predicted medial-lateral distribution for each model and 

alignment condition were insensitive to variation of muscle weighting factors in static 

optimization. Since we applied the same objective function across all model conditions, our 

conclusions regarding the effect of the geometric parameters on model predictions are unlikely to 

depend on the method used to resolve muscle forces. 

3.6 Conclusion 

This study provides a novel articulating model of the knee to be used within a full-body 

musculoskeletal model with load bearing medial/lateral compartment joint structures for the 

prediction of these loads. For the participant in our study with genu valgum, specifying subject-

specific lower-extremity alignment and medial/lateral compartment contact locations estimated 

from a standing anterior-posterior radiograph improved predictions of medial/lateral tibiofemoral 

contact forces. This suggests that frontal-plane alignment and frontal-plane medial/lateral 

compartment contact locations are important subject-specific model parameters that should be 

incorporated when predicting medial/lateral contact forces.   
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4. HOW PEDIATRIC OBESITY AFFECTS MUSCLE FUNCTION DURING WALKING3 

 

 

 

4.1 Chapter Overview 

The biomechanical mechanisms responsible for the altered gait in obese children are not 

well understood, particularly as they relate to increases in adipose tissue. The purpose of this 

study was to test the hypotheses that as body-fat percentage (BF%) increased: 1) knee flexion 

during stance would decrease while pelvic obliquity would increase; 2) peak muscle forces 

normalized to lean-weight would increase for gluteus medius, gastrocnemius, and soleus, but 

decrease for the vasti; and 3) the individual muscle contributions to center of mass (COM) 

acceleration in the direction of their primary function(s) would not change for gluteus medius, 

gastrocnemius, and soleus, but decrease for the vasti. We scaled a musculoskeletal model to the 

anthropometrics of each participant (n=14, 8-12 years old, BF%: 16-41%) and generated 

dynamic simulations of walking to predict muscle forces and their contributions to COM 

acceleration. BF% was correlated with average knee flexion angle during stance (r=−0.54, 

p=0.024) and pelvic obliquity range of motion (r=0.78, p<0.001), as well as with relative vasti 

(r=−0.60, p=0.023), gluteus medius (r=0.65, p=0.012) and soleus (r=0.59, p=0.026) force 
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production. Contributions to COM acceleration from the vasti were negatively correlated to BF% 

(vertical: r=−0.75, p=0.002, posterior: r=−0.68, p=0.008), but there were no correlation between 

BF% and COM accelerations produced by the gastrocnemius, soleus and gluteus medius. 

Therefore, we accept our first, partially accept our second, and accept our third hypotheses. The 

functional demands and relative force requirements of the hip abductors during walking in 

pediatric obesity may contribute to altered gait kinematics. 

4.2 Introduction 

Walking is the most common form of daily physical activity, yet obese children walk 

differently than nonobese children [64]. The altered gait exhibited by obese children have been 

associated with decreased gait stability [3] and reduced walking performance [65], as well as an 

increased prevalence of musculoskeletal pain [66] and pathology [67], which, collectively, may 

pose both short and long-term barriers to physical activity [68].  

Gait analysis studies have shown that compared to nonobese children, obese children 

walk with wider step widths, increased medial-lateral motion, greater hip abduction, and reduced 

knee flexion during stance [3-5, 64]. Prior studies have also reported similar absolute knee 

extensor moments (Nm), greater absolute ankle plantarflexor moments (Nm), and greater 

normalized frontal plane moments (Nm•kg-1•m-1) of the hip/pelvis in obese vs. nonobese children 

[4, 5]. Therefore, compared to nonobese children, obese children may walk with reduced force 

requirements for the knee extensor muscles, but greater force requirements for both the 

plantarflexor and hip abductor muscles. 

While it is well established that obese children walk differently than nonobese children, it 

is not clear why or how gait mechanics change as adiposity increases. Previous studies have used 

body mass index (BMI) to categorize participants into obese and nonobese groups. Since BMI 
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can be a poor predictor of pediatric adiposity [69], the altered gait strategy could be a 

consequence of either excess mass or a body composition that impairs locomotor ability. 

Furthermore, it is not yet known if the relationship between relative adiposity (i.e. body fat 

percentage, BF%) and gait mechanics is continuous in children or whether there is an adiposity 

threshold above which gait mechanics change, as has been proposed in obese adults [17].  

Greater levels of adiposity appear to result in reduced muscle strength relative to total 

body mass [70-72] and gait mechanics appear to be sensitive to weakness of certain muscle 

groups [73]. Therefore, understanding the muscle force requirements of walking across a range 

of adiposity in children should provide insight into the possible imbalance between muscle and 

fat mass that may be responsible for the altered gait kinematics and kinetics. Additionally, 

certain muscles likely have functional requirements to accelerate and reposition the body during 

walking that are independent of adiposity and therefore may result in greater relative muscle 

force requirements with increasing BF% in children.  

The purpose of this study was to investigate the relationship between adiposity and lower 

extremity kinematics, muscle force requirements, and individual muscle contributions to the 

acceleration of center of mass (COM) determined from musculoskeletal simulations of walking 

in children. We focused our investigation on the muscles implicated in the altered mechanics 

reported in previous studies [3, 4, 6, 71, 74] and which have primary roles acting to support 

(vasti (VAS), gastrocnemius (GAS), and soleus (SOL)), stabilize (gluteus medius (GMED)), and 

propel (GAS, and SOL) the whole body COM during the stance phase of walking [75, 76]. We 

hypothesized that as BF% increased: 1) knee flexion during stance would decrease while pelvic 

obliquity would increase; 2) peak muscle forces normalized to lean mass would increase for 

GMED, GAS, and SOL, but decrease for the VAS; and 3) the individual muscle contributions to 
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the acceleration of the COM in the direction of their primary function(s) would not change for 

GMED, GAS, and SOL, but decrease for the VAS.  

4.3 Methods 

Subjects 

We used normalized frontal-plane hip joint moments between obese and non-obese 

children reported from prior literature [5] and power analysis to determine that a sample size of 

n=14 would allow us to detect strong [77], and meaningful correlation coefficients (e.g. r=0.80) 

with a power level of β=0.95 (SigmaPlot version 11.0, Systat Software, Inc., San Jose, CA). For 

this study, we defined a correlation coefficient as meaningful if greater than half of the 

variability in a gait measure could be attributed to adiposity. Gait analysis data from 14 children 

ages 8-12 years were selected from a larger study on the basis of creating a nearly continuous 

and even distribution of BF% from lean to obese (BF% 16-41%) (Table 4.1). We also analyzed 

subsets of 5 non-obese (BF% < 25%) and 5 obese children (BF% > 35%) children to allow 

comparisons between our results and previously published data. Participants were selected who 

did not report lower-extremity malalignment and were relatively tall, so as to minimize 

musculoskeletal model scaling (see below). Exclusion criteria included any neuromuscular, 

musculoskeletal, or cardiovascular disorder, other than obesity, impacting safe participation in 

the study. Prior to data collection, the study was approved by the Massey University Human 

Ethics Committee and informed written assent and consent was obtained from the participants 

and their parents, respectively. 
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Table 4.1 Subject characteristics and analyzed walking speed (values are mean (SD)). * denotes a significant 

difference between the obese and nonobese group. 

 

Experimental Protocol 

We quantified body composition, specifically BF% and lean tissue mass, for each subject 

using dual x-ray absorptiometry (DEXA, Hologic Discover, Bedford, MA). Participants walked 

barefoot on an instrumented treadmill at self-selected speeds. Self-selected speed was identified 

as the average walking speed of 5 overground trials [78]. Participants had similar self-selected 

walking speeds and dynamically similar dimensionless walking speeds [79] (Table 4.1). 

Participants were given a familiarization period on the treadmill that lasted several minutes and 

was terminated upon verbal and visual confirmation of comfortable gait.  

Experimental Data 

Three-dimensional kinematic data were collected using a 9-camera motion capture 

system (VICON MX System, Vicon, Oxford, UK) collecting at 200 Hz, while kinetic data were 

collected using a dual-belt, force measuring treadmill (Fully Instrumented Treadmill; Bertec 

Corp, Columbus, OH) collecting at 1000 Hz. Marker trajectory and ground reaction force data 

were digitally low-pass filtered at 5 Hz and 12 Hz, respectively, using fourth-order zero-lag 

Butterworth filters. We used an extensive, obesity-specific marker set methodology, reported in 

detail previously that was specifically developed to reduce the effects of subcutaneous adiposity 

 N Age 

(years) 

Height 

(cm) 

Mass 

(kg) 

Lean 

Mass 

(kg) 

BF% LEF% Walking 

Speed 

(m•s) 

Dim. 

less 

Speed 

Gender 

(# Male) 

All  14 10.1 

(1.5) 

151 

(10.8) 

54.9 

(22.5) 

36.3 

(11.6) 

29.6 

(8.7) 

45.2 

(3.3) 

0.96 

(0.08) 

0.34 

(0.02) 

6 

Obese 5 10.6 

(1.1) 

157 

(8.0) 

77.3 

(7.9) 

46.7 

(12.1) 

37.6 

(4.0) 

45.2 

(2.7) 

0.98 

(0.08) 

0.34 

(0.02) 

2 

Overweight 4 10.5 

(1.9) 

151 

(8.5) 

50.8 

(8.3) 

33.6 

(6.1) 

32.2 

(3.1) 

45.6 

(2.3) 

0.93 

(0.1) 

0.33 

(0.03) 

0 

Nonobese 5 9.4 

(1.6) 

145 

(13.5) 
35.9 

(21.1) 

28.1 

(6.2) 

19.4 

(2.2) 

44.8 

(4.9) 

0.98 

(0.08) 

0.35 

(0.02) 

4 
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obscuring the motion of the underlying skeleton, particularly around the pelvis [7]. Briefly, the 

methodology is as follows: Reflective markers placed over the 7th cervical vertebrae, acromion 

processes, right scapular inferior angle, sterno-clavicular notch, xyphoid process, 10th thoracic 

vertebrae, posterior-superior iliac spines, medial and lateral epicondyles of the femurs, medial 

and lateral malleoli, calcanei, first metatarsal heads, second metatarsal heads, and proximal and 

distal heads of the 5th metatarsals. A digitizing pointer (C-Motion, Germantown, MD) was used 

to mark the anterior superior iliac spines (ASIS) and iliac crests, while marker clusters (four non-

collinear markers affixed to a rigid plate) were adhered to the thighs, shanks, and sacrum.  

Musculoskeletal Modeling 

To predict muscle forces, we used OpenSim [10] to generate dynamic musculoskeletal 

simulations from the experimental gait data of two representative strides for each participant. 

Anatomical landmarks were used to scale a generic, 12 segment musculoskeletal model with 23 

degrees of freedom (DOF) and 92 muscle-tendon actuators [12, 31] to the individual 

anthropometrics (i.e. total body mass and segment length) of each participant. Model DOF 

included a ball-and-socket joint at the third lumbar vertebra, 3 translations and 3 rotations at the 

pelvis, a ball-and-socket joint at each hip, single DOF tibiofemoral joints with anterior/posterior 

and superior/inferior translations prescribed as a function of knee flexion [30, 31], and revolute 

ankle and subtalar joints.  

Inertial properties of each segment were scaled as a function of segment length and total 

body mass, regardless of BF%. Lower extremity joint angles were calculated using OpenSim’s 

inverse kinematics analysis, which minimized the errors between markers on the scaled model 

and experimental marker trajectories. Segment masses of the pelvis, thigh and shank were 
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adjusted during a residual reduction algorithm that minimizes the residual forces and moments 

acting on the model arising from dynamic inconsistency [10].  

We resolved individual muscle forces from net joint moments using a weighted static 

optimization approach implemented in a custom OpenSim plugin [12, 29]. The objective 

function minimized the sum of squared muscle activations, while incorporating individual 

muscle weighting constants (3 for the hamstrings, 7 for the gastrocnemius, and 1 for all 

remaining muscles) that were previously determined by minimizing the difference between 

model estimated tibiofemoral forces and those measured experimentally from an instrumented 

knee joint replacement [12, 32]. The muscle forces predicted using static optimization are not 

sensitive to maximum isometric force when the maximum isometric force of all of the muscles 

are scaled uniformly and the muscles operate below maximal activation. Therefore, because we 

lacked the information to scale the maximum isometric force of individual muscles (see 

limitations), the maximum isometric forces were scaled uniformly only if muscles reached 

maximal activation.  

Individual muscle contributions to the acceleration of the center of mass for each 

simulated gait cycle were quantified using an induced acceleration analysis method described 

previously by Lin et al., implemented in a validated OpenSim plugin [76, 80]. This method was 

selected because it allowed us to use the muscle forces predicted from static optimization. While 

described previously in extensive detail, this methodology resolves individual muscle 

contributions to the acceleration of the COM by solving the equations of motion which describe 

the dynamics of the simulation while each muscle is applied independently [76]. This approach 

assumes that the interaction between the feet and the treadmill occurs at 5 contact points 
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geometrically located around the foot. Contact conditions (i.e. constraint type) for each point are 

modulated based on the phase of the gait cycle determined from the ground reaction forces.   

To ensure our simulations were dynamically and physiologically representative, we 

analyzed the resulting residual forces and muscle activations, respectively. The average residual 

force applied to the COM of the musculoskeletal model in each coordinate direction, for all 

participants, was less than 3% body-weight, suggesting that our musculoskeletal simulations and 

experimental data were reasonably dynamically consistent. Average residuals, as a percentage of 

body weight, did not increase with BF%. Additionally, we found that the on/off timing of the 

muscle activations were in close agreement with experimentally measured EMG reported 

previously for the literature for the GAS [78], GMED [81], VAS [78], and SOL [82].  

In addition to normalizing muscle forces to body-weight, we also normalized the muscle 

forces to lean-weight as an estimate for the force requirement relative to the size/strength of the 

tissue responsible for producing force, skeletal muscle fibers. This was done to determine which 

muscles might be most susceptible to mechanical overload/fatigue with increasing BF%. We 

present the joint angles, peak muscle forces (absolute, body-weight normalized, and lean-weight 

normalized), and individual muscle contributions to the acceleration of the COM from the right 

leg, normalized to each gait cycle, averaged across two representative gait cycles for each 

subject.  

Statistical Analysis 

We used Pearson product-moment correlation analysis to determine the association 

between BF% and our outcome measures. Student’s t-tests were used to determine if there were 

significant differences in kinematic and kinetic variables between the obese/nonobese subsets. 
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SigmaPlot, version 11.0 (Systat Software, Inc., San Jose, CA) was used to perform the statistical 

analyses, where p<0.05 defined significance. 

4.4 Results 

There was a moderate negative correlation between average and peak early stance knee 

angle and BF% and a strong positive correlation between pelvic obliquity and BF% (Figure 4.1). 

The obese subset had a significantly greater pelvic obliquity range of motion (12.4° vs. 8.1°, p< 

0.001), and significantly reduced average early stance knee flexion angle (8.8° vs. 12.0°, p= 

0.024) compared to the nonobese subset (Figure 4.1).  

Absolute GAS, SOL and GMED muscle forces (N) had moderate-strong positive 

correlations to BF% (Figure 4.2, Table 4.2). Body-weight normalized VAS and SOL forces had 

strong and moderate negative correlations to BF%, respectively. The correlation between BF% 

and lean-weight normalized forces were positive and moderate-strong for GMED and SOL, 

while negative and moderate-strong for the VAS. Compared to the nonobese subset, the obese 

subset had significantly greater absolute muscle forces, except for VAS (Figure 4.2). Body-

weight normalized forces were lower for both the SOL and VAS between the obese vs. nonobese 

children. Lean-weight normalized GMED and SOL forces were 43% (1.80 vs. 1.26 lean-body-

weights (p=0.011)) and 17% (4.61 vs. 3.94 lean-body-weights (p=0.010)) greater, respectively, 

while lean-weight normalized VAS forces were 36% (0.64 vs. 1.0 lean-body-weights  (p< 

0.008)) lower in the obese vs. nonobese subsets. 

There were moderate-strong negative relationships between BF% and both the superior 

and posterior accelerations of the COM induced by the VAS (Figure 4.3, Table 4.3). We found 

no other significant relationships between BF% and the contributions to the acceleration of the 

COM for the other muscles analyzed. Contributions to the superior and posterior accelerations of 
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the COM induced by the VAS were 108% (0.51 m/s2 vs. 1.70 m/s2 (p<0.001)) and 81% (0.35 

m/s2 vs. 0.81 m/s2 (p<0.001)) lower, respectively, in the obese vs. the nonobese subsets.   

 

Figure 4.1 Left Panels: The relationship between BF% and average knee angle during stance (top) and range of 

pelvic obliquity (bottom). The bold regression lines represent significant relationships. The dashed lines represent 

the 95% confidence intervals. The regression equations describing the relationships between BF% and average knee 

flexion angle during stance (θKnee), and pelvic obliquity (θPO) were found to be θKnee = -0.15•BF% + 14.9 and θPO = 

0.32•BF% + 2.3, respectively. Right Panels: Mean early-mid stance knee joint angles (top) and pelvic obliquity 

(bottom) for the obese (dashed) and nonobese (solid) subsets during walking. Compared to the nonobese subset, the 

obese subset exhibited a more extended knee during stance and greater range of pelvic obliquity. *Denotes a 

significant difference. 
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Figure 4.2 Left Panels: The relationship between BF% and absolute (top 4), body-weight normalized (middle 4), and 

lean-weight normalized (bottom 4) VAS, GMED, GAS, and SOL muscle forces. The bold regression lines represent 

significant relationships. The dashed lines represent the 95% confidence intervals. The regression equations 

describing the significant relationships between BF% and absolute (FAB), BW normalized (FBW), and, LW 

normalized (FLW) muscle forces were FGMED, AB = 24.4•BF% -108, FGAS, AB = 12.5•BF% -9.6, FSOL, AB = 44.3•BF% + 

230, FSOL, BW = -0.020•BF% + 3.5, FVAS, BW = -0.022•BF% + 1.3, FGMED, LW = 0.033•BF% + 0.72, FSOL, LW = 

0.030•BF% + 3.4, and FVAS, LW = -0.018•BF% + 1.5. Right Panels: Mean absolute (top), BW normalized (middle), 

and LW normalized (bottom) muscle forces for the obese (dashed) and nonobese (solid) subsets. The EMG on/off 

timing taken from the literature for the GAS [78], GMED [81], VAS [78], and SOL [82] is presented below the 

abscissa of the top plot (A). *Denotes a significant difference. 
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Figure 4.3 Left Panels: The relationship between BF% and the individual muscle contributions to the acceleration of 

COM, averaged over the gait cycle, in the superior (top), anterior-posterior (middle), and medial-lateral (bottom) 

directions. The bold regression lines represent significant relationships. The dashed lines represent the 95% 

confidence intervals. The regression equations describing the significant relationships between BF% and induced 

acceleration to the COM in the superior (IAAS) and posterior directions (IAAP) were IAAS_VAS= -0.054*BF%+2.81 

and IAAP_VAS= -0.21*BF%-1.24, respectively. Right Panels: Individual muscle contributions to the acceleration of 

the COM in the superior-inferior (top), anterior-posterior (middle), and medial-lateral (bottom) directions for the 

obese (black) and nonobese (gray) subsets.  
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Table 4.2 The relationship between BF% and absolute, body-weight (BW) normalized, and lean-weight (LW) 

normalized peak muscle forces reported as Pearson product-moment correlation coefficients. Bold denotes a 

significant correlation or difference between the obese and non-obese groups. 

Muscle 

Absolute Force BW Normalized Force LW Normalized Force 

r p r p r p 

VAS 0.08 (p=0.770) -0.82 (p<0.001) -0.60 (p=0.023) 

GMED 0.76 (p=0.001) 0.27 (p=0.357) 0.65 (p=0.012) 

GAS 0.55 (p=0.044) 0.05 (p=0.861) 0.29 (p=0.319) 

SOL 0.66 (p=0.040) -0.55 (p=0.015) 0.59 (p=0.026) 

 

Table 4.3 The relationship between BF% and the average individual muscle contributions to the acceleration of the 

COM for select muscles reported as Pearson product-moment correlation coefficients (r) and the average individual 

muscle contributions to the acceleration of the COM for select muscles between the obese and nonobese subsets. 

Bold denotes a significant correlation or difference between the obese and non-obese groups.  

 

Direction Muscle Correlation to BF% (r) p Obese (m•s-2) Nonobese (m•s-2) p 

Superior 

VAS -0.75 (p=0.002) 0.51 1.70 (p<0.001) 

GMED 0.09 (p=0.768) 1.73 1.95 (p=0.489) 

GAS 0.06 (p=0.833) 1.25 1.02 (p=0.651) 

SOL <0.01 (p=0.995) 4.3 4.01 (p=0.920) 

Anterior 

GAS 0.27 (p=0.343) 0.11 0.06 (p=0.340) 

SOL 0.10 (p=0.732) 
0.60 0.54 (p=0.772) 

Posterior VAS -0.68 (p=0.008) -0.35 -0.81 (p<0.001) 

Medial GMED 0.23 (p=0.335) 0.61 0.56 (p=0.665) 

 

4.5 Discussion 

We sought to investigate the effects of adipose tissue on the sagittal plane knee angle, 

frontal plane pelvic angle, relative muscle forces, and muscle contributions to COM acceleration 

during walking in children. There was a significant negative correlation between BF% and the 

average knee flexion angle during stance, and a significant positive correlation between BF% 

and pelvic obliquity range of motion; thus, we accept our first hypothesis. GMED and SOL had 

significant positive correlations to BF% but GAS did not; thus we partially accept our second 

hypothesis. We accept our third hypothesis, as the individual contributions to the acceleration of 

the COM were similar for all muscles, but reduced for VAS in the vertical and anterior-posterior 

directions. A post hoc-analysis revealed generally similar, but weaker relationships between BMI 
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and outcome measures vs. the relationships determined with BF%. Therefore, while BF% 

appears to be a more accurate predictor of gait measures, BMI could be used to predict gait 

changes in obese children.  

The changes in muscle forces between the obese and non-obese subsets were consistent 

with what would be expected from the joint moments reported in the literature. Our finding of 

similar absolute VAS forces between our obese and nonobese subjects are consistent with 

previous reports of similar absolute knee extensor moments [4] between obese and non-obese 

children. Greater absolute GAS and SOL forces, and lower body-weight normalized SOL forces 

in obese participants corroborates reports of greater ankle plantar flexor moments in obese 

children [4]. Finally, larger absolute GMED forces are consistent with reports of greater absolute 

hip abductor moments in obese children, compared to non-obese children [6].  

The predictions of GAS, GMED, VAS, and SOL muscle forces and their contributions to 

the superior-inferior and anterior-posterior acceleration of the COM found in our non-obese 

subsets are similar, with some small differences, to those previously reported at similar walking 

speeds for normal weight children [83, 84]. In particular, compared to these previous reports, we 

found lower GAS forces and induced acceleration contributions, which is likely due to our use of 

weighting factors in the static optimization objective function.  

We found that lean-weight normalized GMED force had a strong positive correlation to 

BF%. This suggests that as BF% increases, GMED may operate closer to its maximum force 

production and therefore be susceptible to functional weakness/fatigue during walking. In 

addition to supporting the torso in the frontal plane during single limb stance, GMED repositions 

the COM from one stance leg to the other during double support [85]. While the contribution of 

GMED to the medial acceleration of the COM did not change with BF%, there was a strong 
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positive relationship between pelvic obliquity range of motion, which is controlled primarily by 

GMED, and BF%. This may suggest that the locomotor control strategy for muscle function 

prioritizes the fulfillment of functional roles (i.e. supporting, braking/propelling, and balancing 

the body) over maintaining normal joint angles.  

Greater pelvic obliquity during single limb stance results in a drop of the contralateral hip 

joint center. In order to maintain toe clearance of the swing limb, either the stance limb would 

need to become more extended or the swing limb to become more flexed (Figure 4.4). Walking 

with a straighter leg is likely more economical than the alternative and would allow normal 

swing limb kinematics, which appear to be tightly controlled [86]. The strong negative 

correlation between pelvic obliquity range of motion and average knee flexion angle during 

stance corroborate this theory (Figure 4.5). Since walking with a straighter leg results in reduced 

knee extensor moments, this may explain the reduction in body-weight and lean-weight 

normalized VAS force requirements in children with greater BF%. The reduced knee extensor 

muscle strength reported in obese children [70] may be a result of, rather than the cause of, 

walking with a straighter limb during stance.  
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Figure 4.4 The potential relationship between increased pelvic obliquity, stance limb knee flexion, and toe clearance 

during single support during walking. (1) Increased pelvic obliquity results in a drop of the contralateral hip joint 

center, while (2) the stance limb becomes more extended to allow the swing limb (3) to maintain toe clearance.  

 

 

Figure 4.5 The potential relationship between increased pelvic obliquity, stance limb knee flexion, and toe clearance 

during single support during walking. (1) Increased pelvic obliquity results in a drop of the contralateral hip joint 

center, while (2) the stance limb becomes more extended to allow the swing limb (3) to maintain toe clearance.  
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The negative correlations between the VAS contributions to both the superior and 

posterior COM accelerations and BF% is consistent with our finding of reduced VAS forces with 

increasing BF%. It is likely that a greater proportion of the COM acceleration in the vertical 

direction is attributed to a more aligned skeleton. Apart from the VAS, the other analyzed 

muscles had contributions to COM acceleration that were not correlated to BF% and not 

significantly different between the obese and non-obese subsets. This indicates that the ankle 

plantarflexors (GAS and SOL) and hip abductors (GMED) have functions to reposition the body 

that are independent of BF%.  

It has been suggested that walking with a straighter leg may be a compensatory 

mechanism to reduce the knee extensor moment during early stance [4]. Conversely, it has been 

reported that maintaining normal gait kinematics is insensitive to weakness of the VAS, the 

muscles responsible for producing this moment during early-mid stance [73]. Furthermore, the 

vastus lateralis and vastus medialis muscles operate at less than 30% and 15% of maximum 

voluntary isometric contraction (MVIC), respectively, during the stance phase of walking [87], 

indicating that these muscles are minimally active during normal gait. The strong negative 

correlation between lean-weight normalized VAS forces and BF% indicates that the VAS 

remains relatively unburdened by increased adiposity. Together with the previous literature, 

these findings would suggest that additional adiposity in obesity would not likely lead to 

unsustainable VAS force requirements during walking. Alternatively, normal gait mechanics 

appears to be very sensitive to GMED weakness [73]. Furthermore, GMED operates at ~70% of 

MVIC during walking in normal weight individuals [81]. These findings indicate that GMED is 

not only highly active during gait but also has a large potential to influence gait kinematics if 

overloaded. Our results support these previous findings and indicate that as BF% increases 
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GMED is unable to sustain/maintain normal pelvic region kinematics while fulfilling functional 

requirements to reposition the COM. Children with high BF% are not able to walk in such a way 

that reduces the relative requirements of GMED because the frontal plane lacks a redundant 

biomechanical mechanism to support the body during single limb stance.  

It was initially surprising to find that, unlike the SOL, lean-weight normalized GAS 

forces were not significantly positively correlated with BF%. We expected both muscles to have 

positive relationships between their lean-weight normalized force outputs and BF% due to the 

increasing imbalance between fat and muscle mass as BF% increases. However, there was 

greater variability in the peak GAS forces, which limited the significance of the positive 

correlation.  

The results of this study have important clinical implications. Hip abductor 

weakness/fatigue in overweight and obese children may hinder postural control [88] and thus 

prevent these children from being able to safely engage in sustainable weight bearing physical 

activity. In addition, increased frontal plane motion of the pelvis alters hip joint mechanics and 

articulation of the femoral head with the acetabulum, which has been implicated in slipped 

capitol femoral epiphysis [66]. Walking with greater frontal plane rotation of the pelvis can also 

strain the low back and likely contribute to increased prevalence of low back pain in pediatric 

obesity [89]. Importantly, obese children and adults appear to exhibit similar gait mechanics 

[90]. This suggests that without intervention in children with high BF%, the altered relative 

muscle force requirements, associated gait modifications, and implicated musculoskeletal 

pain/pathologies will persist and obstruct physical activity participation throughout life.  

A limitation of this study was that the sample size was relatively small. Model limitations 

included scaling a generic model to the anthropometrics of each participant, a knee joint with no 
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frontal plane degree of freedom, and muscle parameters based on adult physiology. We sought to 

limit the impact of these limitations by 1) selecting taller participants to minimize the amount of 

model scaling required in order to reduce the potential negative influence on muscle moment 

arms, and 2) excluding participants with significant knee joint malalignment to minimize the 

impact of the single DOF knee joint on lower-extremity kinetics. The literature suggests that 

intrinsic muscle contractile properties [91] and muscle strength/fatigue relative to fat-free mass 

for certain muscle groups (e.g. knee extensors) [92] are not affected by pediatric obesity. We 

found that muscle force predictions were not affected by the strength of the model when 

maximum isometric forces were scaled uniformly so long as muscles operated below full 

activation. This suggests that model limitations/assumptions would affect obese/non-obese 

children equally; therefore, we are confident that the relative differences in simulation outcomes 

between participants are a result of the experimental data and not model limitations. Another 

limitation was that we did not collect EMG data to compare to the results of our musculoskeletal 

simulations, but while this comparison would have been desirable, our simulations were not 

EMG driven and did not require them. Additionally, this musculoskeletal model and 

optimization method have been used to predict muscle activations in close agreement with 

experimental EMG in children [12], and a qualitative comparison between the results of this 

study and published EMG (Figure 4.2) demonstrated close agreement. Lastly, excess adiposity 

may obscure the motion of the underlying skeleton. These inaccuracies were minimized as much 

as possible by implementing an obesity-specific marker set methodology.  

4.6 Conclusion 

In conclusion, as BF% increased, we found reduced early stance knee flexion angles, 

increased pelvic obliquity range of motion, decreased relative demand of the VAS, but increased 
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relative demand of GMED and SOL. This suggests that changes in the relative force 

requirements of lower extremity muscles during walking may lead to the altered walking 

mechanics exhibited in children as BF% increases. Activities and interventions should facilitate 

hip abductor and plantar flexor strengthening, to normalize gait in the long-term, while reducing 

fatigue to these essential and at risk muscles in the short-term. Future studies should investigate 

the effects of altered gait mechanics on the osteoarticular loading environment in children with a 

range of adiposities to further elucidate the underlying mechanisms responsible for the negative 

effects of pediatric obesity on the musculoskeletal system.   
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5. HOW PEDIATRIC OBESITY AFFECTS MEDIAL AND LATERAL TIBIOFEMORAL 

CONTACT FORCES DURING WALKING4 

 

 

 

5.1 Chapter Overview 

With the high prevalence of pediatric obesity there is a critical need for structured 

physical activity during childhood. However, altered tibiofemoral loading during physical 

activity in obese children likely contribute to their increased risk of orthopedic disorders of the 

knee. The goal of this study was to determine the effects of pediatric obesity and walking 

duration on medial and lateral tibiofemoral contact forces. We collected experimental 

biomechanics data during treadmill walking at 1 m•s-1 for 20 minutes in 10 obese and 10 

healthy-weight 8-12 year-olds. We created subject-specific musculoskeletal models using 

radiographic measures of tibiofemoral alignment and centers-of-pressure, and predicted medial 

and lateral tibiofemoral contact forces at the beginning and end of each trial. Obesity and 

walking duration affected tibiofemoral loading. At the beginning time-point (1st minute after a 5 

minute acclimation period), the medial load share (percent of the total axial load passing through 

the medial compartment) during stance was 85% in the obese children vs. 63% in the healthy-

weight children. At the end time-point (20th minute), the medial load share was 90% in the obese 
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children vs. 72% in the healthy-weight children. Medial compartment loading rates were 1.78 

times greater in the obese vs. the healthy-weight participants. The medial compartment loading 

rate increased 17% in both groups at the end vs. the beginning time-point (p=0.001). We found a 

strong linear relationship between body-fat percentage and the medial-lateral load distribution 

(r2=0.79). Altered tibiofemoral loading during walking in obese children may contribute to their 

increased risk of knee pain and pathology. Longer walking durations may increase these risks.  

5.2 Introduction 

Pediatric obesity is a worldwide health concern with cardiovascular and orthopedic 

consequences for the child and future adult. Obese children have an increased risk of developing 

orthopedic disorders of the knee [1]. Dynamic mechanical loads incurred during physical activity 

(e.g. walking), affect the development and maintenance of joint tissues and surrounding bone 

[93, 94]. Compared to healthy-weight children, obese children walk with larger frontal [4, 6] and 

sagittal [6] plane knee moments, suggesting obese children have greater tibiofemoral contact 

forces that are more medially distributed. It has been theorized that the combination of larger 

magnitudes and altered application of joint loads in obese children may lead to bone and joint 

alterations [67], such as growth-plate suppression, that result in knee malalignment [95]. 

However, no studies have quantified medial and lateral tibiofemoral joint contact forces in obese 

children. Therefore, it is unknown how pediatric obesity affects the distribution, magnitudes, and 

loading rates of tibiofemoral contact forces during walking.  

From a cardiovascular and caloric-balance standpoint, obese children can benefit by 

participating sufficient daily physical activity. Children are recommended to engage in at least 60 

minutes of moderate to vigorous physical activity each day [96], and clinicians recommend 

physical activity bout durations of at least 10 minutes to improve cardiovascular capacity [97]. 
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During walking, obese children have greater relative force requirements for several muscles, 

including the hip abductors, which  function to control the kinematics and kinetics of the whole 

body center of mass in the fontal plane [9]. Therefore, these muscles may fatigue in obese 

children during extended periods of walking, which may affect the medial-lateral distribution of 

tibiofemoral contact forces by altering the dynamics of the body in the frontal plane. Our 

incomplete understanding of how childhood obesity affects joint loading during continuous bouts 

of activity limits our ability to evaluate the long-term risk-benefit ratio of prescribed physical 

activity on the musculoskeletal system. 

To improve orthopedic treatment and determine safe physical activity guidelines for 

obese children, clinicians need to understand how obesity and activity duration affects the knee 

joint loading environment during weight-bearing activities like walking. Knowledge of the 

magnitudes and medial-lateral distribution of knee loads in obese children may elucidate our 

understanding of the development of orthopedic disorders affecting the knee. Recent 

advancements in motion capture techniques for use with obese individuals [7] and 

musculoskeletal models capable of incorporating subject-specific parameters and resolving 

medial and lateral tibiofemoral compartment forces [8] make such an investigation possible.  

The purpose of this study was to determine how obesity and walking duration affect the 

knee joint loading environment in children. We hypothesized that 1) obese children would have 

larger tibiofemoral contact forces that were more medially distributed than healthy-weight 

children, and 2) walking duration would result in greater medial load share in all children, but 

that there would be greater changes in the obese children. To evaluate our hypotheses, we 

collected experimental biomechanics data during treadmill walking for 20 minutes in obese and 

healthy-weight children, quantified each participant’s anthropometrics and skeletal structure 
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using radiography, created subject-specific musculoskeletal models, and estimated the contact 

forces in the medial and lateral compartments of the knee.  

5.3 Methods 

Participants 

 This study was approved by Colorado State University’s Human Research 

Institutional Review board, and informed written assent and consent was obtained from the 

participants and their parents, respectively. This was a cross-sectional study of a convenience 

sample. Ten (10) obese (4 female) children with a BMI-Z score greater than the 95th percentile 

and 10 healthy-weight (5 female) children with a BMI-Z score between the 5th and 85th 

percentiles participated in our study. Subject characteristics and anthropometrics are presented in 

Table 5.1. Exclusion criteria included any disorder, other than obesity, of the neuromuscular, 

musculoskeletal, or cardiovascular systems that would preclude safe participation in the study.  

 

Table 5.1Participant characteristics. Values are mean (SD). Bold denotes a significant difference between groups. 

  

 Obese Healthy-Weight 

Body Mass (kg) 57.5 (11.7) 31.7 (6.6) 

Leg Length (m) 0.72 (0.05) 0.68 (0.06) 

Body Fat (%) 42.1 (5.0) 26.4 (3.0) 

BMI-Z (Percentile) 98 (2) 34 (23) 

Age (years) 9.5 (0.9) 9.6 (1.4) 

 

Body composition for each participant was quantified using dual x-ray absorptiometry 

(DXA) (Whole-Body Scan, Hologic Discover, Bedford, MA). The placement and orientation of 

each participant’s lower-extremity and feet on the imaging table were standardized using a 

custom jig. We also captured a higher-resolution DXA scan (1mm Line Spacing, <1mm Point 

Resolution) of each participant’s right knee. To investigate the periarticular skeletal structure in 

the medial and lateral tibial epiphyses, we defined a medial and lateral regions of interest (ROI) 
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on the knee DXA scan and measured the areal bone mineral density (BMD) similar to the 

method used by Lo et al. [98] (Figure 5.1).  

 

 

 
Figure 5.1 Anterioposterior high resolution DXA radiograph of a participant’s right knee. The white rectangle 

rectangles are the ROIs used to measure medial and lateral tibial epiphyses BMD.  

 

Experimental Walking Protocol 

Participants walked on an instrumented treadmill (Bertec Corp, Columbus, OH) at 1.0 

m•s-1 for 20 minutes. We collected kinematic data using a ten-camera, three-dimensional motion 

capture system (Nexus, Vicon, Centennial, CO). We used a custom marker set and calibration 

procedure designed to account for adiposity and improve tracking of the underlying skeleton [7]. 

While reported in extensive detail previously, this approach, in short, is as follows: reflective 

markers were placed over the 7th cervical vertebrae, acromion processes, right scapular inferior 

angle, sterno-clavicular notch, xyphoid process, 10th thoracic vertebrae, posterior-superior iliac 

spines, medial and lateral epicondyles of the femurs, medial and lateral malleoli, calcanei, first 

metatarsal heads, second metatarsal heads, and proximal and distal heads of the 5th metatarsals. 

We used a digitizing pointer (C-Motion, Germantown, MD) to probe through overlying soft-

tissue and mark the anterior superior iliac spines (ASIS) and iliac crests on their bony locations. 

Marker clusters (four non-collinear markers affixed to a rigid plate) were adhered to the thighs, 
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shanks, and sacrum. To account for adiposity surrounding the pelvis, post-processing (Visual 3D, 

C-Motion, Germantown, MA) was used to define the digital ASIS and iliac crest landmarks 

relative to the sacral cluster and generate virtual markers for subsequent segment tracking. 

Ground reaction force data were recorded at 1000Hz and low-pass filtered at 12 Hz using a 

fourth order zero-lag Butterworth filter. Kinematic data were recorded at 100Hz and low-pass 

filtered at 5 Hz using a fourth order zero-lag Butterworth filter.  

We also recorded electromyography (EMG) data (Noraxon, Scottsdale, AZ) from the 

medial gastrocnemius, vastus lateralis, vastus medialis, biceps femoris long-head, and 

semimembranosus muscles using standard procedures [28]. EMG data were recorded at 1,000 

Hz, band-pass filtered at 16–380 Hz, full-wave rectified, and low-pass filtered at 7Hz to generate 

a linear envelope.  

Musculoskeletal Model Description 

 We introduced a knee mechanism into a full-body OpenSim gait model that was 

capable of incorporating subject-specific knee parameters (tibiofemoral alignment and centers-

of-pressure) and resolving medial and lateral compartment contact forces. We conducted a model 

validation and sensitivity analysis in a prior study [8]. The full-body model had 18 body 

segments and 92 muscle-tendon actuators [31, 99], and has been used in studies investigating 

muscle function and joint loading in children [9, 12]. The knee mechanism included joint 

structures to represent the medial and lateral tibiofemoral compartments. These structures 

articulated over the surface of the femoral condyles during knee flexion-extension and bore the 

medial and lateral contact forces required to balance the net reaction forces and frontal-plane 

moments across the tibiofemoral joint. In our prior validation study we used experimental 

walking data from an individual with an instrumented knee implant and compared model 
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predictions to the in-vivo measurements. Predictions were sensitive to tibiofemoral alignment 

and centers-of-pressure. When these parameters were specified via anterior-posterior radiograph, 

the model accurately predicted medial and lateral contact forces (14).  

Subject-Specific Model Building 

We scaled our model for each subject using markers placed on anatomical landmarks of 

each segment (Figure 5.2A). In this way, segment inertial properties, joint articulations, muscle 

moment arms, muscle attachments, and muscle length properties (muscle-tendon, tendon slack, 

and optimal fiber lengths) were scaled to each individual’s anthropometrics. Next, we modified 

each participant’s scaled model and created a subject-specific model by specifying their lower-

extremity alignment, medial and lateral tibiofemoral centers-of-pressure, and segment masses 

determined from the DXA radiographs (Figure 5.2B-D, detailed below). We also ensured that the 

distances between the knee joint center and the medial and lateral femoral epicondyle markers in 

each subject-specific model were within a ½ cm to the actual, physical distances measured on 

each knee radiograph. 
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Figure 5.2 Schematic depiction of the musculoskeletal modeling workflow used to resolve medial and lateral 

tibiofemoral contact forces.  The blue blocks represent the analysis step. The red blocks represent step outcomes and 

inputs. A) The generic musculoskeletal model is scaled for each participant using experimental markers placed on 

anatomical landmarks (highlighted in yellow for the lower-extremity). B) Anterioposterior DXA radiograph of a 

participant’s lower-extremity depicting how we determined subject-specific alignment for use in the musculoskeletal 

model. Angle θ was found was found by drawing lines connecting the hip, knee, and ankle joint centers, which were 

defined as the center of the femoral head, center of the femoral condyles, and midpoint of the medial and lateral 

margins of the ankle, respectively. C) Anterioposterior high resolution DXA radiograph of a participant’s right knee 

depicting how we determined the locations of the centers-of-pressure in the medial and lateral compartments. We fit 

a circle to each condyle and measured an angle of 21.8 toward the knee center in the medial compartment and 16.8 

toward the knee center in the lateral compartment. We defined the frontal plane center-of-pressure location in each 

compartment as the distances (dM and dL) between the centerline of the knee and the location of each angle on the 

fitted circles. D) DXA image of a participant partitioned into shank, thigh, pelvis and torso segments used to specify 

the mass of each segment in the model. E) Graphic depiction of specifying subject-specific alignment (θ) and medial 

(dM) and lateral (dL) tibiofemoral contact locations. F) Inverse kinematics was used to determine joint angles (e.g. 

the hip (θh), knee (θk), and ankle (θa) angles) during walking. G) Residual reduction algorithm was used to modify 

the torso center of mass (COM) location (green sphere) to improve dynamic consistency. H) Weighted static-

optimization was used to resolve muscle forces. I) Joint reaction analysis was used to determine medial and lateral 

tibiofemoral contact forces (green arrows).  
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We quantified each participant’s lower-extremity alignment by analyzing the whole-body 

DXA image using established analysis methods [66]. The angle formed between the intersection 

of the mechanical axes of the femur and tibia was used to specify subject-specific model 

alignment (Figure 5.2B) [55]. To estimate subject-specific medial and lateral compartment 

center-of-pressure locations, we analyzed the higher resolution DXA image of each individual’s 

right knee. We defined the center-of-pressure locations on the femoral condyles based on the 

approach and findings introduced by Li et al. [63] Using bi-planar fluoroscopy and 3D MRI 

reconstructions of the knee, Li et al. found that the in vivo medial-lateral locations of the centers-

of-pressure, defined as the centroid of the area enclosed by the intersection of tibial and femoral 

cartilage layers, were concentrated on the inner portion of the medial and lateral femoral 

condyles rather than at their mid-lines. As done by Li et al., but with our 2D radiographs, we fit a 

circle to each condyle and defined the center-of-pressure locations by an angle relative to the 

circle’s vertical midline (Figure 5.2C). These angles, which Li et al. found were not statistically 

different at varying levels of knee flexion, were 21.8° toward the joint center for the medial 

compartment and 16.8° toward the joint center for the lateral compartment [63]. The whole body 

DXA image was sectioned at the torso, pelvis, thigh, and shank to obtain the masses for each 

respective segment (Figure 5.2D). The measured lower-extremity alignment, contact locations, 

and segment masses were used as inputs into each subject-specific model (Figure 5.2E).  

Prediction of Muscle and Joint Contact Forces  

The workflow for predicting medial and lateral compartment joint contact forces is 

depicted in Figure 5.2 F-I. In OpenSim, we used inverse kinematics to determine segment 

motion by minimizing the distance between markers on the model and the experimental marker 

trajectories (Figure 5.2F). Next, we implemented a residual reduction algorithm [10] to refine the 
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torso mass properties to improve dynamic consistency between the external forces and segment 

accelerations (Figure 5.2G). We used a weighted static optimization approach to estimate muscle 

forces that satisfied the net joint torques and reproduced the measured walking motions (Figure 

5.2H). As done in our validation study, the objective function minimized the sum of squared 

muscle activations, while incorporating individual muscle weighting constants of 1.5 for the 

gastrocnemius, 2 for the hamstrings, and 1 for all other muscles. Finally, we calculated the 

contact force in each compartment using OpenSim’s joint reaction analyses [12], which 

determined the resultant forces and moments acting on each articulating joint structure from all 

muscle forces and external and inertial loads applied to the model (Figure 5.2I). The tibiofemoral 

contact forces in each compartment were computed as the component of each resultant force 

normal to the tibial plateau.  We calculated the medial compartment loading rate by taking the 

difference between the maxima and minima of the medial compartment contact force during 

weight acceptance (the first 20% of the gait cycle) and dividing by the time elapsed between 

those extremes. 

We averaged the tibiofemoral loads across three representative gait cycles for each 

participant. We analyzed our data at a beginning time-point (the 6th minute) and the end time-

point (20th minute). The beginning time point was specified as the 6th minute rather than the 1st 

minute to allow for a 5 minute treadmill acclimation period. 

 We evaluated the dynamic consistency of our simulations by analyzing the 

residual forces applied to the model’s center of mass. The average residuals were less than 6% 

BW for all participants, and there were no differences between the obese and healthy-weight 

group averages, which suggests that our simulations were reasonably dynamically consistent. We 

also qualitatively compared our predicted muscle activations to our experimental EMG data and 
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prior reports in the literature to ensure our predictions were physiologically representative. We 

found good agreement between the periods of predicted activation and EMG during early stance 

for the quadriceps (vasti and rectus femoris) and hamstrings (semimembranosus, semitendinosus, 

biceps femoris short head, and biceps femoris long head) and during mid-stance for the 

gastrocnemius.  

Statistical Analysis 

We computed group means and standard deviations for each variable. Two-factor 

repeated measures ANOVA tests determined how obesity and walking duration affected joint 

loads. When a significant main effect was observed, post hoc comparisons were made using the 

Tukey method, where p<0.05 defined significance. Linear regression analysis was used to 

determine the relationship between participant anthropometrics (e.g. BMI-Z and BF%) and the 

medial-lateral distribution of the knee joint contact forces. We conducted a power analysis with 

α=0.05 and found power levels of β≥0.979 for the ANOVA tests of our primary outcome 

measures (i.e. absolute and normalized compartment contact forces), indicating our sample size 

was sufficient to detect meaningful differences [100]. SigmaPlot version 11.0 (Systat Software, 

Inc., San Jose, CA) was used to perform statistical analyses.  

5.4 Results 

Obesity affected tibiofemoral loading (Figure 5.3). In the obese vs. healthy-weight 

participants, peak contact forces (N) during stance were 2.1 times greater in the medial 

compartment (p<0.001), but similar in the lateral compartment (p=0.406). Normalized to BW, 

medial compartment contact forces were similar (p=0.704), while lateral compartment contact 

forces were lower in the obese vs. health-weight children (p<0.001). Normalized to the BMD in 

the medial tibial epiphysis region of interest, peak medial forces (N•kg-1•cm2) were 1.77 times 
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larger in the obese vs. healthy-weight individuals; no differences between groups were found for 

BMD normalized forces in the lateral compartment. Peak early stance knee flexion-extension 

angles were similar between groups (p=0.778), while the peak early stance knee adduction 

moment (N•m) was 2.2 times greater in the obese vs. healthy-weight children (p<0.001). 

 
Figure 5.3 Absolute (top), BW normalized (middle) and BMD normalized (bottom) medial (left) and lateral (right) 

compartment contact forces in the obese (solid black line) and healthy-weight (dashed black line) participants.  
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The average medial-lateral distribution during stance was 22% more medially distributed 

in the obese (85% medial load share) vs. healthy-weight (63% medial load share) children 

(Figure 5.4). The medial compartment loading rate (kN•s-1) was 1.78 times greater in the obese 

(5.57 kN•s) vs. the healthy-weight (3.12 kN•s) participants (p<0.001).  The medial compartment 

loading rate normalized to medial tibial epiphysis BMD (N•kg-1•cm2•s-1) was 1.53 times greater 

in the obese vs. the healthy-weight children (p=0.005). 

 
Figure 5.4 The medial-lateral distribution of the tibiofemoral contact force (% medial load) in the obese (solid lines) 

and healthy-weight (dashed lines) at the beginning (black lines) and end (gray lines) time-points.  

 

Walking duration affected tibiofemoral loading. At the end vs. beginning time-point, first 

peak medial compartment contact forces increased by 122 N (12% increase) in the obese 

participants, and 65 N (15% increase) in the healthy-weight participants. The medial load share 

increased to 90% in the obese children and 72% in the healthy-weight children at the end time-

point (Figure 5.4). The medial compartment loading rate increased 17% in both groups at the end 

vs. the beginning time-point (p=0.001). The peak early stance knee flexion-extension angle was 

not affected by duration in either group (p=0.148). The knee adduction moment increased by 2.5 
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N•m in the obese group (p<0.001) and 2.0 N•m in the healthy-weight group (p=0.004) at the end 

vs. beginning time-point.  

There was a strong linear relationship (r2=0.79, p<0.001) between body fat percentage 

and the medial-lateral distribution of the tibiofemoral contact forces (Figure 5.5). The 

relationship was described by: 

% Medial Load = 1.34•BF% + 28.27 

There was a moderate linear relationship between BMI-Z score and the medial-lateral 

distribution (r2=0.50, p<0.001). There was no relationship between the lower-extremity 

alignment and the medial lateral distribution (r2=0.01, p=0.917).  

 
Figure 5.5 The relationship between BF% and the average medial-lateral distribution during stance. The solid line 

represents the linear regression and the dashed lines represent the 95% confidence intervals. The regression equation 

describing the relationship was % Medial Load = 1.34•BF% + 28.27.  

 

Muscle forces were the main contributor to the total tibiofemoral contact force (Figure 

5.6). Peak early stance quadriceps muscle forces (N) were statistically similar between obese and 

healthy-weight children (p=0.10), but greater at the end vs. the beginning time-point in both 

groups (p=0.023). Peak mid to late stance quadriceps muscle forces were not affected by group 
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(p=0.626) or duration (p=0.089). Peak gastrocnemius muscle forces were greater in the obese vs. 

healthy-weight children (p=0.010), but similar at the end vs. beginning time-points in both 

groups (p=0.292).  

 

Figure 5.6 Quadriceps (vasti and rectus femoris; top), hamstrings (semimembranosus, semitendinosus, biceps 

femoris short-head, and biceps femoris long-head; middle), and gastrocnemius muscle forces in the obese (left 

panels) and healthy-weight children (right panels) at the beginning (black lines) and end (gray lines). EMG data 

from the vasti (vastus medialis, vastus lateralis, and rectus femoris), hamstrings (semimembranosus, and biceps 

femoris long-head), and gastrocnemius, normalized to the peak value during each trial and expressed as percentage 

are represented by the gray shading. Due to movement artifact at heel strike that persisted after signal processing, 

EMG data for the gastrocnemius was included for only 3 obese participants and 7 healthy-weight participants. At 

mid-stance, hamstring muscle force production was due to the biceps femoris short head, which was not assessed 

with EMG.  
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5.5 Discussion 

The goal of this study was to evaluate how pediatric obesity and walking duration affect 

tibiofemoral loading. We found that obese children walk with greater medial compartment loads 

and had greater medial load share compared to healthy-weight children. Since lateral 

compartment loads were similar between groups, we only partially accept our first hypothesis. 

Additionally, we also found that the medial load share increased linearly with BF%. In both 

groups, walking duration altered the tibiofemoral contact forces by increasing the medial load 

share, the peak medial compartment forces, and the medial compartment loading rate. Since the 

obese children had similar changes due to duration compared to the healthy-weight children, we 

only partially accept our second hypothesis. 

We found good agreement between our predictions of the medial-lateral distribution in 

our healthy-weight participants (63% medial load share) compared to measurements obtained 

during walking from instrumented knee implants in adults with similar lower-extremity 

alignment [53]. Our finding of elevated absolute knee adduction moments and elevated absolute, 

but similar BW normalized medial compartment forces in our obese participants is consistent 

with reported greater absolute, but similar BW normalized knee adduction moments in obese vs. 

healthy-weight children [4, 6]. In contrast, McMillan et al. reported lower BW normalized knee 

adduction moments in obese vs. healthy-weight children [74]. The finding of statistically similar 

quadriceps muscle forces but greater gastrocnemius muscle forces in the obese vs. healthy-

weight children in this study is consistent with our findings from a previous muscle function 

study [9]. The similar sagittal plane knee angles between groups in this study is similar to 

findings from Shultz et al.  [6],  but different to findings from Gushue et al. [4]. These 

discrepancies in the literature are likely due to differences in experimental methodologies, such 
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as kinematic marker sets, walking speed, as well as differences in participant characteristics like 

severity of overweight and obesity, gender, age, and leg length. In this regard, our study had 

several strengths: our participant's had similar age, gender, and leg length; walking speed was 

standardized; and we used radiographic measures in conjunction with a robust kinematic marker 

set that was specifically designed for use in obese individuals to accurately track segment motion 

in all three planes [7]. Therefore, we are confident that the kinematic and kinetic results reported 

in this present study are representative.  

Walking duration increased medial loading in both groups. Since a greater imbalance of 

the medial-lateral distribution at the knee is associated with negative orthopedic outcomes, this 

finding suggests that longer durations of walking may increase the possibility of bone and joint 

tissue injuries in all children at risk for musculoskeletal injury. While walking duration affected 

loading in both groups, the baseline values for medial loads/loading rates in the obese children 

were significantly higher. Therefore, longer activity durations may increase musculoskeletal 

injury risk more in the obese children compared to the healthy-weight children. It may be 

advantageous for obese children suffering from knee pain or with a history of knee pathology to 

engage in shorter (e.g. <20 minute) bouts of activity.  However, knee joint loads incurred during 

walking may be smaller compared to joint loads during more vigorous forms of activity (e.g. 

running) and walking physical activity may have a limited impact on orthopedic outcomes. 

Future studies that examine the relationship between walking physical activity and lower 

extremity musculoskeletal injury in obese children are needed to address this issue.  

Of the tested variables, we found that BF% was the best predictor of the medial load 

share (r2=0.79). BF% explained a greater proportion of the medial load share variance than BMI 

(r2=0.50). Combined with our previous finding of stronger relationships between muscle forces 
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and gait kinematics and BF% compared to BMI during walking in children [9], these results 

indicate that there may be gait adaptations in children with higher levels of BF% that contributes 

to altered knee loading. This suggests that a reduction in BF% likely improves the distribution of 

knee loads and that some benefit would remain if obese children maintain the same weight but 

increase muscle mass due to strengthening. The relationships between the medial load share and 

both BF% and BMI may partially explain the previously reported positive association between 

pediatric obesity and knee pain [89]. 

During the adolescent growth spurt there is a disassociation between longitudinal bone 

growth and mineral accrual, which affects bone quality and microarchitecture [101]. This 

imbalance, combined with findings that obese children have low bone mass and area for their 

weight [102], suggests that larger and/or abnormally distributed tibiofemoral contact forces 

during daily physical activity in obese children may play a role in the development of skeletal 

disorders. In order to investigate how obesity affects joint loads relative to skeletal structure, we 

normalized the medial contact force to the BMD in the medial tibial epiphysis ROI. While the 

BMD in the medial ROI was greater in the obese children, the medial contact force normalized 

to the BMD in the medial region was still significantly higher (1.77 times greater) in the obese 

vs. healthy-weight children. When considering bone adaptation to loading, the entire loading 

history must be considered. Therefore, a possible explanation for this imbalance (greater loads 

relative to BMD in the obese children) is that obese children are less physically active than their 

healthy-weight counterparts [103], which would result in reduced BMD [94]. Our results 

supports the theory that higher levels of stress on growing bones and joints in obese children 

when they are physically active may contribute to the increased risk of developing orthopedic 

disorders of the knee [101].  
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A limitation of the cross sectional design of this study was that we were unable to 

establish cause-effect relationships. Future studies should investigate knee loading and the 

progression of skeletal and joint development longitudinally throughout childhood. Still, our 

results support the theory that pediatric obesity may lead to a cycle of weight gain due to an 

increased risk of knee pain/pathology that may limit the ability of a child to engage in sufficient 

physical activity [2].  

Predictions of medial and lateral tibiofemoral contact forces during walking rely on 

accurate estimates of muscle forces and tibiofemoral skeletal geometry [8, 50]. In a previous 

validation study, we demonstrated the ability of our approach to accurately predict medial and 

lateral contact forces during walking when using weighted-static optimization to predict muscle 

forces and an anterior-posterior radiograph to specify tibiofemoral alignment and contact 

locations [8]. For this study of biological knees, we did not assume that contact was concentrated 

at the center of each compartment, which appears to be unsupported in the literature. Instead, we 

specified the contact locations based on findings from Li et al., who demonstrated that the 

centers-of-pressure in each compartment occurs closer to the tibial eminence than compartment 

mid-line. While defining different muscle weighting factors and compartment contact locations 

may change the magnitudes of the contact force predictions, prior sensitivity analyses [8, 12] 

suggest that the relative differences due to obesity and walking duration would remain so long as 

the same approach is applied to each group and condition. Therefore, we believe the primary 

conclusions of this study are insensitive to these parameters. 

5.6 Conclusion 

This study demonstrated that obese children have altered knee joint loading compared to 

their healthy-weight counterparts. Medial compartment loading increased linearly with BF%, and 
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both absolute and BMD normalized medial compartment contact forces were greater in the obese 

children. Walking duration increased medial compartment loading in both groups. Altered 

tibiofemoral loading during walking in obese children may contribute to their increased risk of 

lower-extremity pain and pathology. Longer walking durations may increase these risks.  
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6. CONCLUSION 

 

 

 

6.1 Dissertation Summary 

The overarching objective of this dissertation was to better understand how pediatric 

obesity affects musculoskeletal function and biomechanical loading during walking. The rational 

for the work of this dissertation was that the research outcomes should aid the ability of 

clinicians to develop effective weight-bearing physical activity interventions for the children 

who need it most. This dissertation has enhanced our understanding of the altered gait mechanics 

exhibited by obese children and allows for an improved evaluation of the long-term risk/benefit 

ratio of walking physical activity on the musculoskeletal system.   

This dissertation had four main goals. The first goal of this dissertation was to develop a 

kinematic marker set and methodology that was suitable for use in obese individuals. In the first 

study (Chapter 2), we developed an experimental protocol that accounted for excess 

subcutaneous adiposity at the pelvis and determined the effect of using such a methodology to 

estimate muscle and joint contact forces during walking. The results of this study demonstrated 

the need for biomechanists to account for subcutaneous adiposity during kinematic data 

collection in obese individuals. 

The second goal of this dissertation was to develop an experimental protocol and 

musculoskeletal model that addresses subject-specific tibiofemoral alignment and contact 

locations and computes medial and lateral compartment contact forces during walking. In the 

second study (Chapter 3), we created a novel knee mechanism in OpenSim that was able to 

incorporate subject-specific knee parameters and predict medial and lateral tibiofemoral 

compartment contact forces. Using data from an individual with an instrumented knee implant, 
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we found that our model was able to accurately predict medial and lateral tibiofemoral contact 

forces when we specified tibiofemoral alignment and contact locations from an anterior-posterior 

radiograph. 

The third goal of this dissertation was to investigate the relationship between adiposity 

and lower extremity kinematics, muscle forces, and individual muscle contributions to the 

acceleration of center of mass. In the third study (Chapter 4), we evaluated how pediatric obesity 

affects the requirements of individual muscles during walking. The results of this study indicated 

that the altered gait mechanics exhibited by obese children may be attributed to greater force 

requirements for the hip abductor muscles.  

The fourth goal of this dissertation was to determine the effects of pediatric obesity and 

walking duration on medial and lateral tibiofemoral contact forces. In the fourth study (Chapter 

5), we applied both the experimental and computational methodologies developed in this 

dissertation’s first two studies, and estimated tibiofemoral contact forces during walking from 

subject-specific musculoskeletal models. The elevated medial compartment loading during 

walking in obese children may contribute to the increased prevalence of tibiofemoral pain and 

pathology associated with pediatric obesity.  

6.2 Future Work 

Additional research may improve our understanding of the biomechanical mechanisms 

responsible for the orthopedic and locomotor disabilities caused by pediatric obesity. A 

limitation of the studies presented in this dissertation were that they were cross sectional by 

design. Therefore, we were unable to establish any cause-effect relationships in regards to the 

development of the musculoskeletal disabilities associated with pediatric obesity. Future studies 

should determine how the neuromuscular and musculoskeletal systems adapt to excess adiposity 



 

 

85 

 

longitudinally throughout childhood. We hope the methodological tools and techniques 

presented in the first two studies of this dissertation combined with the experimental results 

presented in the third and fourth studies of this dissertation will provide a strong foundation from 

which biomechanists can evaluate the impact of future longitudinal and intervention based 

studies aimed at improving musculoskeletal function and health in obese children.  

In order to break the cycle of weight gain in pediatric obesity, clinicians and researchers 

may apply the knowledge gained from this dissertation to design improved guidelines for 

rehabilitation and physical activity. For example, in Chapter 4 we identified several specific 

muscles that could be targeted for strengthening and may improve walking performance in 

children with high levels of adiposity. Future studies should evaluate the impact of targeted 

muscle strengthening on the biomechanics of walking in pediatric obesity. Further, our results 

from Chapter 5, which describes the effects of pediatric obesity and walking duration on 

tibiofemoral loading, may allow clinicians to weigh the long-term risk/benefit ratio of increased 

physical activity on the musculoskeletal system. We found that longer activity durations may 

increase the risk of musculoskeletal pain and pathology of the knee. Future studies should 

evaluate the impact of activity quantity and duration on weight status, and musculoskeletal and 

cardiovascular health in children.   

The development of new and/or improved experimental and computational 

biomechanical methods may improve our understanding of how obesity affects the 

neuromuscular and musculoskeletal systems. Future studies should combine measures of both 

mechanical and metabolic factors (e.g. cartilage health and joint biomarkers) to improve our 

understanding of the mechanisms by which obesity affects the development, maintenance, and 

degeneration of weight-bearing joints. The use of predictive musculoskeletal simulations, while 
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exceptionally challenging, may provide researchers with the ability to critically evaluate novel 

movement patterns that are efficacious for musculoskeletal health in obese children.  
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