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ABSTRACT 

Tests were conducted in the meteorological wind-tunnel using 1:200 

scale model to determine the distribution of gas concentration resulting 

from gaseous plumes released from four stacks associated with Maui 

Electric Company Power-Plant at Kahului Hawaii. The tests were conduct-

ed over a model power-plant includi ng all significant structures in the 

vicinity. Data obtained included photographs and color motion pictures 

of smoke-plume trajectories and plots of contaminant concentration down 

wind of the power-plant at ground-level sampling positions. The effects 

of wind direction and stack height on ground-level concentrations are 

established. Evaluation of test r esults revealed that an increase of 

stack height from 30.48 m to 60.96 m will reduce the maximum ground-

level concentrations by a factor of three to five depending upon the 

wind direction. Location of stacks upwind of the power-plant structures 

was found to show distinct improvement of plume characteristics. 
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I. INTRODUCTION 

A wind tunnel study of the Maui Electric Company Power-Plant was 

motivated by the desire to determine the minimum height of stacks which 

will eliminate downwash and reduce the concentration of sulfur dioxide 

at ground-level such that it can meet the Hawaii ambient air-quality 

standards. The field measurements carried out by Beckner (1) have 

revealed that sulfur dioxide from the power-plant stack exhaust contri-

bute to the local environment pollution to the extent that the air 

quality does not meet the required local air-quality standards, 

The power-plant is located in Wailuku-Kahului, near the sea shore. 

Its peculiar location is such that the ambient wind carries the stack 

exhaust over the city. The wind direction for about 90% of the time 

varies within the limits of± 15° from the northeast at a typical wind 

velocity with gusts at 20 kn. A typical measurement by Beckner (1) 

indicated that the maximum daily average value of sulfur dioxide concen-

tration was approximately eleven times greater than that permitted by 

the Hawaiian air-quality standards. 

It has been a traditional design criterion to release the exhaust 

gases through the top of tall stacks located near the power-plant, where 

the stack height is at least two and one-half times taller than the 

nearby buildings. Calculations of peak and mean ground-level concen-

trations of these gases are then based on some semi-empirical model 

which relates the release rate from an elevated point source to the 

concentration at some point down-wind. Models have been suggested by 

Sutton (2), Pasquill (3), Roberts (4), and Cramer (5). These models 

require the assumption of plane homogeneous atmospheric turbulence and 
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constant mean lateral and mean vertical velocities. These assumptions 

are satisfied for a point release over a flat undisturbed terrain. 

In addition, considerable effort has been made to determine the 

effect of vertical stack velocity and gas buoyancy on the effective 

stack release height. Briggs (6), Carson and Moses (7) have reviewed 

over 15 plume rise formulas constructed to calculate the effective 

stack height for conditions where there are no effects from local terrain 

or buildings. They concluded that no available plume-rise equations 

can be expected to accurately predict short-term plume rise. 

Often it is desirable due to aesthetics, cost and maintenance of 

good public relations to utilize a shorter stack or vent connected 

directly to the power-plant. In these cases the plume dispersion is 

sufficiently modified by the presence of local building structures or 

ground topography that the only approach available for determination 

of concentration field is by means of a wind-tunnel model study (8, 9, 10). 

A number of wind-tunnel studies have investigated the effects of 

variation in geometry of a single building or plume entrainment and 

dispersion (11, 12, 13, 14). These studies have permitted the specifica-

tion of pertinent scaling criteria for model studies of plume excursions 

near buildings. There exists in the literature descriptions of a 

variety of different model studies on diffusion near reactor and 

industrial plants (9, 10, 15, 16, 17, 18, 19, 20). These studies are 

significant in that their results have been essentially confirmed by 

either direct prototype measurements or absence of gases or particu-

lates where the study predicted this would be the result. Martin (19) 

compared his wind-tunnel concentration data about a model of the Ford 

Nuclear Reactor at the University of Michigan with prototype measurements. 
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Munn and Cole (21) have made concentration measurements on a power-

station complex at the National Research Establishment, Ottawa, Canada, 

to confirm the general entrainment criteria suggested by the model 

studies of Davies and Moore (16). The agreement of the pollution 

concentration measurements with the field values were usually satisfactory. 

The objective of this study is to reduce the sulfur-dioxide 

concentration at ground-level to an acceptable level by releasing the 

exhaust at a greater elevation of minimum height such that the effect 

of downwash due to the local buildings and other structures will be 

eliminated. To accomplish this objective a model investigation in which 

stack height is varied systematically was designed. 

A systematic wind-tunnel study was planned which consisted of a 

two-stage program of measurements on a geometrically similar model of 

power-plant structures and down-wind buildings of 1:200 scale. In the 

first stage, downwash characteristics as a function of stack height and 

wind direction was observed through flow visualization by discharging 

smoke from the four stacks. Motion pictures were made of down-wind 

plumes to provide permanent record (Appendix D). The second stage con-

sisted in measuring actual tracer gas concentrations at ground-level for 

a down-wind distance of 3000 meters. These measurements provide direct 

evidence that the effect of downwash is eliminated for a particular 

stack height, permit evaluation of the reduction in ground-level con-

centration for additional stack height increases and provide information 

on the magnitude and location of maximum ground-level concentrations. 
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II. SIMULATION OF ATMOSPHERIC MOTION 

The use of a wind-tunnel for model tests of gas diffusion by the 

atmosphere is based upon the concept that nondimensional concentration 

coe f ficients will be the same at contiguous points in the model and 

the prototype and will not be a function of the length scale ratio. 

Concentration coefficients will only be independent of scale if the wind-

tunnel boundary layer is made similar to the atmospheric boundary layer 

by satisfying certain similarity criteria. These criteria are obtained 

by i nspectional analysis of physical statements for conservation of mass, 

momentum and energy. Detailed discussions have geen given by Halitsky (11), 

Martin (19) and Cermak (22). Basically the model laws may be divided 

into requirements for geometric, dynamic, thermic and kinematic similarity. 

In addition, similarity of up-wind flow characteristics and ground 

boundary conditions must be achieved. 

For the Maui Electric Company Power~Plant study, geometric 

similarity is satisfied by an undistorted model of length ratio 1:200. 

This scale was chosen to facilitate ease of measurements, provide a 

boundary layer equivalent to 300 m for the atmosphere and minimize wind 

tunnel blockage. (The ratio of projected area to the area of the wind 

tunnel cross section should not exceed 5%. The model of Maui Electric 

Company Power-Plant at a scale of 1:200 produced a blockage of 1.9%.) 

Dynamic similarity is achieved in a strict sense if a Reynolds 

number 
(tT /T) 2 0 0 , a Richardson number [ g (L/u )] and a Rossby 

number for the model is equal to its counterpart for the 

atmosphere. The Reynolds number for the model exceeded 104 which is the 

lower critical value established by Golden (9) for flow patterns to become 
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independent of Reynolds number. The minimum Reynolds number encountered 

in the present study was 15,000 based on a building model width of 0.3 m 

and minimum velocity of 0.915 m/sec. Strong atmospheric winds were 

found to give maximum downwash. For these winds thermal stratification 

is of little significance. Therefore, all plumes were modeled in iso-

thermal boundary layer or for zero Richardson number, The model Rossby 

number cannot be made equal to the atmospheric value. However, over 

the short distances considered (up to 3000 m), the Coriolis acceleration 

has little influence upon the flow. Accordingly, the standard practice 

is to relax the requirement of equal Rossby numbers (10, 22). Correla-

tion tests of flow about the Rock of Gibraltar (23), flow over Pt. Arguelo, 

California (24), and flow over San Nicolas Island, California (20) may be 

cited as examples of large Reynolds number flows which have been modeled 

successfully in a wind tunnel. 

Thermic similarity requires equality of model and prototype Prandtl 

numbers and Eckert numbers. However, because of the isothermal modeled 

flows, these equalities were not necessary. 

Kinematic similarity requires similarity of mean velocity and 

turbulence characteristics of the approach flow with corresponding 

quantities in the atmospheric boundary layer. These requirements are 

automatically satisfied through use of the long wind-tunnel test section 

and appropriate surface roughness (22). An additional kinematic re-

quirement is associated with the stack-gas jet. The ratio of stack-gas 

exit speed to wind speed at stack exit should be equal for model and 

prototype for exhaust gas at air ambient density. However, actual stack-

gas temperatures were above that of the ambient air. Therefore, to 

simulate the effect of stack-gas buoyancy without changing 
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density of the model stack-gas an increment of exit speed was added to 

give a plume rise effect equivalent to the buoyancy effect (see Appendix 

A). 

The simulated approach mean-wind conditions were described by an 

exponent of the velocity distribution power law of n = 0.16 This 

was found to be adequate for an upstream rough sea condition (26). 

Approach velocity was modified by suitably adjusting the roughness 

condition upwind of the model such that the measured velocity profile 

confirmed with the following relation. 

U (z) 
u Cz 1) 

where n = 0 .16. 

= (~)n 
z1 

The need for scaling of the atmospheric mean wind profile was 

demonstrated by Jensen (14). Substitution of a uniform velocity 

profile for a logarithmic profile results in a three fold variation in 

the dimensionless pressure coefficient downstream of a model building. 

Such variance in the pressure fields indicate a strong effect of the 

upstream wind profile on the kinematic behavior of the fluid near the 

building complex. The only tunnel currently capable of generating a 

turbul ent boundary layer thick enough for a 1:200 scale model is the 

meteorological wind-tunnel at Colorado State University (25). Other 

i nvestigators have attempted to generate special grids upstream of the 

test section; however, this technique normally creates nontypical 

turbulence field which decays rapidly downstream. 

Buildings and building complexes produce nonuniform fields of 

flow which perturb the regular upstream atmospheric wind profiles. 

Around each building a boundary layer exists, where the velocity is 
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zero at the surface but increases rapidly to a relatively constant value 

a short distance from the building walls. Outside the boundary layer 

and downstream there exists a region of low velocities and pressures 

called the cavity. In this region circulations are such that flow 

actually reverses direction with respect to the upstream winds. 

Surrounding the cavity and extending further downstream is a parabolic 

region called the wake in which the presence of the buildings is still 

evident in terms of deviation of velocity, turbulence and pressure 

from conditions found in the upstream atmospheric boundary layer. Lower 

pressure conditions prevailing in the wake region exert strong 

influence on the plume in drawing it closer to ground level. The purpose 

of the present model study has been primarily to establish the 

minimum stack height that would keep the exhaust plume free from the 

influence of building wakes. Figure 10 establishes the size character-

istics of the wake. A series of pictures shown in Fig. 12 compares the 

influence of location of stack 3 with respect to the power-plant on the 

plume characteristics. 
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III. WIND-TUNNEL AND MEASUREMENT TECHNIQUES 

A. Wind-Tunnel 

The model study was conducted in the meteorological wind-tunnel 

of the Fluid Dynamics and Diffusion Laboratory at Colorado State 

University shown in Fig. 1. The wind-tunnel, specially designed 

to study atmospheric flow phenomena has a 2 m square and 26 m long test 

section with an adjustable ceiling to provide a zero pressure gradient 

over modeled terrain (22, 25). Specially designed roughness floor 

strips with 3 cm gravel elements are located just upstream from the 

test section entrance serve to stabilize the flow pattern as well as 

provide thicker turbulent boundary layer. The test facility permits 

variation of mean ambient velocity between 0.1 and 37 m/sec. The 

boundary layer thickness at the downstream portion of the test section 

can be adjusted between 0.3 and 1.3 m. 

B. Model 

The model consisted of power-plant, stacks, and auxiliary 

buildings constructed to a linear scale of 1:200. The basic flat 

topography was reproduced by fixing the model complex on a large 

plywood sheet which could be rotated into positions corresponding to 

different wind directions. The surface roughness length Z0 was 

typically 1 cm for the prototype and could be satisfactorily modeled 

by a smooth wind-tunnel floor. The model was built to dimensions taken 

from reference 1 and Betchel Corporation drawings 5366-C-13-3. 

Model stacks were made of 6mm (ID) brass tubing and were passed 

through the wind-tunnel floor so as to facilitate easy variation of 

stack height. A metered quantity of tracer gas was allowed to flow 

through each stack to simulate the exit velocity and also account for 
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buoyancy effects due to temperature difference between the stack gas 

and the ambient atmosphere. The method of correcting exit stack-gas 

velocity to account for buoyancy effect of hot stack gas is directed 

in Appendix A. Four model stacks were tested. All the building models 

were constructed from styrofoam and painted with black latex paint. 

C. Flow Visualization Technique 

Smoke was used to define plume behavior over the power-plant com-

plex. The smoke was produced by passing humid air over titanium-

tetrachloride located in a container outside the wind-tunnel. The 

smoke (titanium oxide) was transported through tygon tubes to the 

stack inlets, visible plumes were recorded by means of still pictures 

(Figs. 10, 12, and 13) and a series of color motion pictures (see 

Appendix D) which constitute a separate part of the final report. 

Stack heights were increased until the plume of stack exhaust remained 

above the building complex. A mean ambient wind speed of 0.915 m/sec 

was used for all visualization studies. The approach flow velocity 

distribution is shown in Figs. 8 and 9. 

D. Gas Tracer Technique 

After the flow in the tunnel was stabilized, a mixture of Kr-85 

of predetermined concentration (0.211 µci/cc) was released from model 

stacks at a required rate (Appendix B). Samples of air were withdrawn 

from the sample points on the wind~tunnel floor (Figs. 5 and 14) and 

analyzed. The flow rate of Kr-85 mixture was controlled by a pressure 

regulator at the supply cylinder outlet and monitored by Fischer and 

Porter precision flow meters (Appendix Cl. Source concentration was 

Q.211 µci/cc of Kr-85, a beta emitter (half life time= 10.3 years). 

The sampling and detection systems are shown in Figs. 2, 3, 4 and 5 
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and described in Ref. 27 . A sampli_ng grid of 40 sample points was spaced 

on the wind-tunnel floor (Figs. 5 and 14) at suitable locations to 

establish the plume axis and l ocate the points of maximum ground-level 

concentrations. A reference sample point was located in the free 

stream, upwind of the model to measure the background concentration 

i n the tunnel. The general arrangement of the sample points for the 

three directions investigated is shown in Fig. 14. 
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A. Test Program 
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The test program consisted of two stages. In the first stage 

a qualitative study of exhaust plume and flow field around the power-

plant complex was made by visual observation of smoke trajectories. 

Plume characteristics from each stack were studied separately by 

recording smoke plumes on a 16 mm color motion picture which supplements 

this report (Appendix D). Flow visualization studies were conducted 

for various sta~k heights and model stack exhaust flows as detailed in 

Appendix B. Special visualization studies were conducted on stack 3 

to expose the effect of location of the stacks with respect to the 

power-plant structures along the direction of flow (Fig. 12). Observa-

tions were also recorded with all the plumes operating simultaneously 

and discharging flows as computed in Appendix B. In the second stage 

of the study the qualitative findings from stage one were confirmed by 

making quantitative measurements. Concentration measurements were 

made downwind of stacks by allowing corresponding discharge of Kr-85 

and air mixture through each of the stacks. Only the cases with all the 

stacks operating simultaneously were studied in this stage. 

Direction of the approach winds are referred to in terms of azimuth 

angle from magnetic north. Downwind distances, x refer to the lengths 

as measured from stack 4. Unless otherwise noted, the term wind velocity 

refers to the free stream velocity above the tunnel boundary layer, 

however, a velocity at any reference height is available by referring to 

the velocity profiles shown in Fig. 8. 
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B. Test Results: Visualization 

The test results consist primarily of color motion pictures 

(Appendix D) which supplement this report. The motion pictures depict 

the characteristics of exhaust plumes from each of the stacks 1, 3 and 4 

for their heights varying from 30.48 m to 98.44 min steps of 7.62 m 

The visualization study (Pig. 12) reveals that the cavity-influence 

behind the power-plant structures on the plumes is pronounced for all 

cases with stack heights less than 60.96 m. It also reveals that the 

plumes from stack 1 and 2 contribute heavily to the downwash, whereas, 

those from stack 3 and 4, by virtue of higher exit gas velocity, remain 

above the cavity for all cases of stack heights. Downwash from each of 

the stacks was found to be very severe when stack height was 30.48 m 

It was also found that influence of the power-plant structure on the 

plume was more severe when the stack was located downwind than that 

when located upwind (Fig . 12). For wind direction 030°N the downwash 

is seen to be a minimum, when the wind direction is 045° Nor 060° N the 

downwash effect becomes more severe. 

C. Test Results: Concentration Measurements 

Since the conventional point-source diffusion equation cannot be 

used for predicting diffusion near objects which cause the wind to be 

nonuniform and nonhomogeneous in velocity and turbulence, it is necessary 

to calculate gaseous concentrations on the basis of experimental data. 

It is convenient to express the diffusion results in terms of non-

dimensional concentration factors independent of model and prototype 

scale. Halitsky (9) and Martin (19) have discussed the problem in detail. 

It is suggested that the concentration measurements be transformed to 

K - isopaths by the formula 
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c = sample volume concentration 

L = characteristic length 

u = velocity at stack height 

Q = tracer gas release rate 

For the present case L and u remain constant for each case and hence 

characteristics of K - isopaths can be represented by C 

Q isopaths. 

The results of the present investigation are represented by ~ - isopaths. 

Concentration measurements were made downwind of stacks at suitable 

points (Figs. 5 and 14) by passing required quantity (Appendix B) of 

tracer gas through each of the four stacks simultaneously. Stack heights 

of 30.48 m, 53,34 m, 60.96 m and 68.58 m were investigated. Concentra-

tion measurements were made at ground-level sections 229 m, 394 m, 788 m, 

1182. m, 1576 m, and 1970 m from stack 4. Centerline concentration 

measurements were made from 131 m to 3152 m downwind of stack 4. 

Results of the concentration measurements are summarized in Figs. 

15 to 23. The effect of stack height on the center line concentration 

distribution is exposed in Figs. 15, 17 and 19 for approach wind 

directions 045° N, 060° N and 030° N, respectively. Corresponding 

concentration distributions at various transverse sections are shown in 

Figs. 16a to 16d, 18a to 18d, and 20a to 20d respectively. Figure 21 

shows the variation of concentration at Maui Meat Company with stack 

height for the wind direction of 045° N. 

In general, it is evident that the concentration of pollutant is 

reduced by a factor of three to five by increasing the stack height from 

30.48 m to 60.96 m depending upon the wind direction. 
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Figure 22 describes the percentage reduction of maximum ground -

level concentration with stack height. Effects of downwash due to the 

local structures on short stacks (less than 53.34 m) as seen by flow 

visualization studies is confirmed by the quantitative measurements, 

represented in this figure, by the significantly higher rate of increase 

of maximum ground-level concentrations as the stack height is decreased. 

The effect of wind direction on the maximum concentration distribution 

illustrated by this figure confirms also that 045° N wind direction 

produces the highest ground-level concentrations. 

Figure 23 represents the variation with stack height the downwind 

distance where the maximum ground-level concentration occurs, for the 

three wind directions tested. It appears that the nature in which the 

point of maximum ground-level concentration shifts in the downwind di-

rection is similar for all the three wind directions tested. 

A close examination of ground-level concentration distribution at 

different sections down-wind of sources (Figs. 16, 18 and 20) for each of 

the wind directions reveals that the meandering effect of the plume is 

insignificant. 
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V. CONCLUSIONS 

The investigation was undertaken to determine the dispersion of 

exhaust gases released from stacks of Maui Electric Company Power-Plant 

by employing simulation techniques in a wind-tunnel. The primary aim 

of the study was to determine the optimum height of the stacks which 

would eliminate downwash and reduce the concentration of sulfur-dioxide 

to meet the local air quality standards. 

On the basis of the experimental measurements reported here, the 

following conclusions may be made: 

1) The influence of local structures on the plume characteristics 

is severe when the stack height is 30.48 m (present height). 

2) A stack height of 60,96 m raises the plumes clear of the 

influence of local structures. A stack height of 68.58 m should be 

sufficient to eliminate downwash effect even for power-plant operation 

at less than capacity loads. 

3) Concentration measurements indicate that the pollution at 

ground-level is reduced by a factor of three to five when the stack 

height is increased from 30.48 to 60.96 m depending upon the wind 

direction. 

4) Location of stacks on the upwind side of power-plant structures 

shows a distinct improvement in the plume characteristics. 
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APPENDIX A 

Effect of Buoyancy of Stack Exhaust 

The present study is an effort to establish the plume characteristics 

of Maui Electric Company Power-Plant by wind-tunnel simulation techniques. 

The problem of simulating buoynacy effects of the plume is difficult. 

Calculations indicate that high temperatures like 1100°F are necessary 

for model exhaust gas in order to meet this simulation. An ,alternative 

method was used to take into account the effect of buoyancy by supplying 

additional equivalent vertical momentum to the stack exhaust gases. 

Examination of several cases of plume rise by Briggs (6) shows that 

the profile of center line plume with simple jet effect in a uniform 

flow traces a path given by 

Ah F 1/3 -2/3 1/3 o = 2.3 U X m (Al) 

The rise for a buoyant plume in a uniform flow field is described as 

follows: 

th= 2 _3 F 1/3 u-2/3 xl/3 (l + FFx )1/3 
m u (A2) 

m 

An equivalent jet effect to represent the buoyant plume can be obtained 

by matching the plume rise given by Eq. (Al) and (A2) at a suitable 

distance downwind of the source. In the present study the plume rises 

are matched at 180 m downwind of stacks where the storage structures are 

located. Thus, 

F V 2 
(1 + Fx me oe X cL - L 2F u) = -- = V2 = {l + 2V 1) } (A3) F Po u m m 0 0 0 
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For an average stack exhaust temperature of 370°F and velocity at stack 

height, 15.72 m/sec and V0 = 23.6 m/sec and ~ -V - 1.5099. 
0 

Thus, 

l.5V0 is used as the equivalent stack exhaust velocity that accounts 

for the effect of buoyancy. 
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APPENDIX B 

Simulation of Stack Exhausts 

For the present study stack exhaust was simulated by maintaing the 

ratio of stack exhaust velocity to the local vel ocity at the stack top, 

for the model equal to 1.5 times the prototype value. The effect of 

buoyancy (as described in Appendix A) was found to produce an effective 

exhaust velocity of 1.5 times the prototype exhaust velocity. 

The following calculations give the details of simulation. 

Approach Conditions 

a) Wind velocity which gave maximum so2 concentration= 20kn 

b) Height at which wind velocity was measured in the field= 3 m 

c) Approach= Ocean, rough 

d) Approximate exponent of power law= 0.16 

e) Velocity distribution with height 

f) Atmospheric boundary layer for the above condition is assumed 

to be 490 meters 

Details of Simulation 

a) Free-stream velocity in the field= 21.8 m/sec 

b) E h 1 . . V · x aust ve ocity ratio= u(Z) =y 

c) Size of the model stack 6 mm (ID) 

d) Range of stack heights studied= 30.48 m - 91 .44 m 

e) Scale of the model= 1:200 

f) Ambient velocity for flow visualization studies= 0.915 m/sec 

g) Ambient velocity for concentration measurements= 1.8 m/sec 

h) Stack exit velocity at height h = t'czr • u(h)m = V 
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i) Stack discharge of hot gas= AV= q 

j) Equivalent stack discharge of gas at ambient temperature = Q = 

1.50 q . 

k) Concentration of S02 is assumed to be the same for all the 

stack exhausts 

1) Concnetration of tracer gas Kr-85 and air mixture= 0.211 uci/~c 

The following tables summarize the results of computations. 

Table I gives the details of exit velocity ratios. Table II shows 

the results of calculations for discharges from model stacks for various 

stack heights for both visualization studies and concentration measurements. 



Table I. Exit Velocity Ratios 

Stack No. lff V V V V V V V V 
oF. m/sec u(30.5)* u(38.l) u(45.72) u(53.34) u(60.96) u(68.58) u(91.44) 

1 270 10.39 0. 79 · 0.76 0.74 0. 72 0. 71 0.69 0.66 

2 305 8.83 0.67 0.65 0.63 0.61 0.60 0.59 0.56 

3 300 18 .4 7 1.40 1.36 1. 32 1.28 1.26 1.23 1.18 

4 315 41.91 3.19 3.08 2.99 2.92 2.85 2.80 2.67 N 
vi 

* ( z ) - meters 



Table II. Calculation 'of Model Stack Discharges f or a) flow visualization studies 

Stack 1 Stack 2 Stack 3 Stack 4 Stack lieight 
V2 Q2 V3 q3 Q- V4 q4 Q4 model prototype velocity V 

c~Jmin 
Q1 q2 

cc/mill m/sc c cc/min cc/mi n cc/min cc/min m/sec cc/min m m model m/sec cc/min cc/min 
m/sec m/sec 2!119 2.335 4437 6655 

30.48 0.730 0.579 1100' 1650 0 .491 933 1399 1.024 1946 0.1524 

0.1905 38 .10 0.762 0.579 1100 1650 0.494 938 1408 1.036 1968 2952 2.347 4458 o6S7 

0.2286 45. 72 0.792 0.585 1112 1667 0.500 950 1424 1.045 1986 2979 2.368 4498 674S 

0.2667 53.34 0.808 0 . 582 1106 1660 0.494 938 1408 1.033 1964 2946 2. 35 ~) 4484 67c5 

0 . 3048 60.96 0.838 0.594 1130 1694 0.503 955 1434 1.055 2004 3006 2 . 39u 454 1 6S I2 

0.3429 68.58 0.853 0.588 1118 1677 0.503 955 1434 1.049 1993 2!!89 ~- 39 4541 t>SI2 N 
+::> 

0. 4572 91.44 0 . 899 0.594 1129 16!13 0.503 955 1434 1.061 2015 3022 2.40c 4562 t,843 

Table II. Calculation of Model Stack Discharges for b) concentration measurements 

0.1524 30 . 48 1.323 1.046 .1986 2980 0.884 1680 2520 I. 853 3.522 52113 4 .20(, 7994 11990 

0.2667 53.34 1.448 1.046 1986 2980 0.884 1680 2520 I .853 3.522 5283 4.226 8034 12052 

0.3048 60.96 1.494 1.061 2016 3024 0.896 1703 2555 I. 881 3.574 53(,l 4. 251' 8092 1~13S 

0.3429 68.58 1.524 1.052 1998 2998 0. 899 1709 2564 1.875 3.502 5344 4.267 8109 12lt,4 
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APPENDIX C 

Instrumentation and Materials Employed: 

Camera movie: Bolex 16 mm camera lens 
still: Speed Graphic Camera 4" x 5" 

Film movie: Ectachrome - 7242, ASA 125 - Forced developed ASA 500 
still: Tri-X-Pan-4164 Kodak film 

Exposure movie: f-1.9, 18 frames per second 
still: f = 8-11, t = 1/50 sec 

Flow meters 

Counters 

1) Fischer & Porter Co. Precision flow rator No. B4-21-10 
float B SVT-45 

2) Fischer ·& Porter ·co. Precision flow rator No. 
09-G-G3/4 I 4 / 61 

3) Fischer & Porter Co. Precision flow rator No. 
20-5/70 

1) Ultra scaler - model 192A by Nuclear Chicago 
2) Ortec timer model 482, Scaler model-484 

power supply model 446, amplifier model 485 
ratemeter model 441 

FPl/4-

2F-l/4-

Hot-Wire Anemometer Disa 55D05 Battery Operated constant temperature 
anemometer. 

Hot Wire Pt (80%) Ir (20%) wire, diameter - 0.1 mm, mounted on 
probe support made at C.S.U. 

Traversing Mechanism Made at C.S.U., with remote control, range 0.5 m 

Recorder 

Meter 

Hewlett and Packard X-Y Recorder Model 7035B 

HP Integrating digital voltmeter model 2401C 

Pressure Meter MKS Barotran pressure meter type 77 with pressure 
head type 77 range 0-30 mm Hg 

Sampling Panels 1) Made at D.S.U., 25 sample point capacity as shown 
in figure 4 

2) Radioactive gas samplers (figure 3) 
a) Noool4-68-A-0493-0001-65234 
b) Noool4-68-A-0493-0001-65227 
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APPENDIX D 

Details of the flow visualization study recorded in the motion pictures are given in the following 
table: 

S. No. Stack No. Stack ht. Wind direction Remarks S. No. Stack No. Stack ht. Wind direction Remarks 
m m 

l General Introduction 36 3 30 . 48 060° N 

2 General view from outside tunnel 37 53.34 045° N 

3 General view from inside the tunnel 38 53.34 030° N 

4 1,2,3,4 30.48 045° N 39 53.34 060° N 

5 30.48 030° N 40 60.96 045° N 

6 30 . 48 060° N 41 60.96 030° N 

7 53.34 045° N 42 60.96 060° N 

8 53.34 030° N 43 68.58 045° N 

9 53 , 34 060° N 44 68.58 030° N 

10 60.96 045° N 45 68.58 060° N 

11 60,96 030° N 46 91.44 045° Ii. 

12 60.96 060° N 47 91.44 030° N 

13 68.58 045° N 48 91."44 060° N 

14 68.58 030° N 49 4 30.48 045° N 

15 68.58 060° N so 30.48 045° N 

16 91.44 045° N 51 30.48 060° N 

17 91.44 030° N 52 53.34 045° N 

18 91.44 060° N 53 53.34 030° N 

19 l 30.48 045° N 54 53,34 060° N 
'\ 55 60.96 04S 0 N 

20 30.48 030° N 

21 30.48 060° N 56 60.96 030° N 

22 53 . 34 045° ~ 57 60.96 060° N 

23 53,34 030° N 58 68.58 045° N 

24 53. 34 060° N 59 68.58 030° N 

25 60.96 045° N 60 68.58 060° N 

26 60 .96 030° N 61 91.44 045° N 

60.96 060° N 
62 91.44 030° N 

27 
045° N 

63 91.44 060° N 
28 68.58 

68 , 58 030° N 64 1,2,3,4 68.58 045° N Far D/S 
29 
30 68.58 060° N 65 60.96 045° N 

31 91.44 045° N 66 53.34 045° N 

32 91.44 030° N 67 30.48 045° N 

33 91.44 060° N 68 3 68.58 045° N 

34 3 30.48 045° N ·oo•m wash behind stack structure at low wind 
35 " 30.48 030° N vcloc,i ties . 
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Fig . 5 Distribution of sampling points in the 
test facility 

Fig . 6 A view of detection and sampling system 
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Fig. 10 Flow cavity downwind of the power-plant 
structure - flow visualization 

Fig. 11 Motion picture photography of plumes 
(stack height 53.34 m) 
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-:';I;;. . 
~ : -- .. 
. . 

Fig. 12. Characteristics of exhaust plume for stacks located 
a) downwind, b) upwind of the power plant structure. Grid 
interval - 22 meters. Stack 3. 
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Fig . 19. Center line concentration distribution for wind 030°N 
All stacks operationa1. 



·~,~E (/) u L---J,---------------------~--------------------, ID 
0 
)( 

ulrr 
20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

Model 
a) Stack Height 30.48 m 

Prototype 
0 X = 1.97m 394m 

-0.6858 -0.4572 -0.2286 C/L 0 .2286 

Northwest 
y-m 

a) St ack height 30.48 m. 

0 X = 3.94m 788m 

• X = 5.91 m 1182m 
A X = 7.88m 1576m 
y X = 9.85m 1970m 
H = 30 . 48 
U = 1.68 m/sec · 
8 = 030° N 
Y, = 0.79 
Y2 = 0.67 
Y3 = 1.40 
Y4 =3 . 19 

0.4572 

Southeast 

0.6858 

Fig. 20a. Sectional concentration distribution for wind direction 030° N , 
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Fig . 20d. Sectional concentration distribution for wind direction 030° N . 
All stacks operational. 
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