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Abstract

TESTING SCIENTIFIC SOFTWARE: TECHNIQUES FOR AUTOMATIC

DETECTION OF METAMORPHIC RELATIONS

Scientific software plays an important role in critical decision making in fields such as the

nuclear industry, medicine, and the military. Systematic testing of such software can help

to ensure that it works as expected. Comprehensive, automated software testing requires an

oracle to check whether the output produced by a test case matches the expected behavior

of the program. But the challenges in creating suitable oracles limit the ability to perform

automated testing of scientific software.

For some programs, creating an oracle may be not possible since the correct output is

not known a priori. Further, it may be impractical to implement an oracle for an arbitrary

input due to the complexity of a program. The software testing community refers to such

programs as non-testable. Many scientific programs fall into this category of non-testable

programs, since they are either written to find answers that are previously unknown or they

perform complex calculations. In this work, we developed techniques to automatically predict

metamorphic relations by analyzing the program structure. These metamorphic relations

can serve as automated partial test oracles in scientific software.

Metamorphic testing is a method for automating the testing process for programs without

test oracles. This technique operates by checking whether a program behaves according

to a certain set of properties called metamorphic relations. A metamorphic relation is a

relationship between multiple input and output pairs of the program. It specifies how the

output should change following a specific change made to the input. A change in the output
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that differs from what is specified by the metamorphic relation indicates a fault in the

program. Metamorphic testing can be effective in testing machine learning applications,

bioinformatics programs, health-care simulations, partial differential equations and other

programs.

Unfortunately, finding appropriate metamorphic relations for use in metamorphic testing

remains a labor intensive task that is generally performed by a domain expert or a program-

mer. In this work we applied novel machine learning based approaches to automatically

derive metamorphic relations.

We first evaluated the effectiveness of modeling the metamorphic relation prediction prob-

lem as a binary classification problem. We found that support vector machines are the most

effective binary classifiers for predicting metamorphic relations. We also found that using

walk-based graph kernels for feature extraction from graph-based program representations

further improves the prediction accuracy. In addition, incorporating mathematical properties

of operations in the graph kernel computation improves the prediction accuracy. Further, we

found that control flow information of a function are more effective than data dependency

information for predicting metamorphic relations. Finally we investigated the possibility of

creating multi-label classifiers that can predict multiple metamorphic relations using a single

classifier. Our empirical studies show that multi-label classifiers are not effective as binary

classifiers for predicting metamorphic relations.

Automated testing will make the testing process faster, reduce the testing cost and make

it more reliable. Automated testing requires automated test oracles. Automatically dis-

covering metamorphic relations is an important step towards automating oracle creation.
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Work presented here is the first attempt towards developing automated techniques for de-

riving metamorphic relations. Our work contributes toward automating the testing process

of programs that face oracle problems.
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CHAPTER 1

Introduction

Scientific software is widely used in science and engineering. For example, in nuclear

weapons simulations, code is used to determine the impact of modifications, since these

weapons cannot be field tested [1]. Climate models make climate predictions and assess

climate change [2]. In addition, results obtained from such software are used as evidence for

research publications [3]. Due to the lack of systematic testing of scientific software, faults

can remain undetected. Some of these faults can cause incorrect program outputs without

causing a program to crash. Software faults such as one-off errors have caused loss of precision

in seismic data processing programs [4]. Other software faults have compromised coordinate

measuring machine (CMM) performance [5]. In addition, there have been several retractions

of published work due to software faults [6]. Hatton et al. [7] found that several software

systems written for geoscientists produced reasonable yet essentially different results. There

were situations where scientists believed that they needed to modify a physics model or

develop new algorithms but later discovered that the real problem was small faults in their

code [8]. Comprehensive automated testing of scientific software can help to ensure that it

is implemented correctly.

One of the greatest challenges in software testing is the oracle problem. Automated test-

ing requires automated test oracles, but such oracles may not exist. This problem commonly

arises when testing scientific software. Many scientific applications fall into the category

of “non-testable programs” [9] where an oracle is unavailable or too difficult to implement.

In such situations, a domain expert must manually check that the output produced by an

application is correct for a selected set of inputs. Further, Sanders et al. [10] found that,
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due to a lack of background knowledge in software engineering, scientists tend to conduct

testing in an unsystematic way. This situation makes it difficult for testing to detect subtle

faults such as one-off errors, and hinders the automation of the testing process. A recent

survey conducted by Joppa et al. showed that, when adopting scientific software, only 8% of

the scientists independently validate the software and the others choose to use the software

simply because it was published in a peer-reviewed journal or because of personal opinions

and recommendations [11]. Therefore undetected subtle faults can affect findings in multiple

studies that use the same scientific software. Techniques that can make it easier to test

software without oracles are clearly needed [12].

Metamorphic testing is a technique, introduced by Chen et al. [13], that can be used

to test programs that do not have oracles. This technique operates by checking whether a

program under test behaves according to an expected set of properties known as metamorphic

relations. A metamorphic relation specifies how a particular change to the input of the

program should change the output [14]. For example, in a program that calculates the

average of an integer array, randomly permuting the order of the elements in the input array

should not change the result. This property can be used as a metamorphic relation to test

this program.

Violation of a metamorphic relation occurs when the change in the output differs from

what is specified by the considered metamorphic relation. Satisfying a particular metamor-

phic relation does not guarantee that the program is implemented correctly. However, a

violation of a metamorphic relation indicates that the program contains faults. Previous

studies show that metamorphic testing can be an effective way to test programs without

oracles [14, 15].
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Enumerating a set of metamorphic relations that should be satisfied by a program is a

critical initial task in applying metamorphic testing [16, 17]. Currently, a tester or a developer

has to manually identify metamorphic relations using her knowledge of the program under

test; this manual process can easily miss important metamorphic relations that could reveal

faults.

In this dissertation we develop novel techniques for automatically deriving metamorphic

relations for a given program. As described in Chapter 3, we use machine learning tech-

niques to develop predictive models to find metamorphic relations. Initially we modeled

the metamorphic relation prediction problem as a binary classification problem.

We developed a set of features that represents information about nodes and paths in a func-

tion’s (or method’s) control flow graph. Then we used these features to build a predictive

model using machine learning techniques to classify whether a function exhibits a particular

metamorphic relation or not. We evaluated the effectiveness of three machine learning clas-

sification algorithms for predicting metamorphic relations using a set of numerical functions.

Our results showed that support vector machines were the most effective machine learning

algorithm for predicting metamorphic relations.

Chapter 4 describes how we applied graph kernels to improve the effectiveness

of feature extraction from graph-based function representations. A graph kernel

calculates a similarity score for a pair of graphs using different graph substructures. We

developed two graph kernels that can be applied to graph-based function representations.

These two graph kernels use walks and subgraphs as graph substructures when computing

the kernels. We found that graph kernels computed using walks are more effective than

the graph kernels computed using subgraphs for predicting metamorphic relations. We
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also found that utilizing properties of mathematical operations when computing the graph

kernels will further improve the predictive effectiveness of the classifiers. Further, we

evaluated the prediction effectiveness of different types of semantic information

of a function. For this we used control flow and data dependency information about

a function. Results of our empirical studies show that control flow information is more

effective than data dependency information for predicting metamorphic relations. But, for

some metamorphic relations, using both types of information to create the predictive models

improved the prediction accuracy.

Finally, we evaluated the effectiveness of modeling the metamorphic relation

prediction problem as a multi-label classification problem (Chapter 5). Multi-label

classifiers assign multiple labels to each instance. Instead of training separate binary classi-

fiers for each metamorphic relation as above, we investigated the effectiveness of developing a

single multi-label classifier to predict multiple metamorphic relations at once. Our empirical

studies showed that multi-label classifiers are not effective as binary classifiers for predicting

metamorphic relations.

We utilized this novel approach to test a scientific program that was developed in-house

to analyze small angle x-ray scattering (SAXS) data (Chapter 4). We were able to detect

90% of artificially inserted faults using the predicted metamorphic relations derived using

our approach.

The main contribution of our work is the development of techniques to automatically

create oracles for automated testing of scientific software. Automatically predicted meta-

morphic relations will serve as test oracles that determine if a test case passes or fails. Our

work will support automation of the metamorphic testing process without requiring domain
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experts to manually derive metamorphic relations. In addition, our work utilized advanced

machine learning algorithms for the task of predicting metamorphic relations. To the best of

our knowledge, this is the first time that graph kernels and multi-label classifiers have been

incorporated to solve an important problem in the field of software engineering. Finally,

our work is the first attempt at developing techniques to automatically infer metamorphic

relations. The ability to automatically create test oracles is an important advancement in

automated software testing, which will help to reduce the human labor involved in the testing

process.
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CHAPTER 2

Background

This chapter provides background and context for the work presented in this dissertation.

We present the motivation for this work through some real-world examples that we encoun-

tered along with information found through a systematic literature survey [12] in Section 2.1.

Then we describe the metamorphic testing technique in Section 2.2. Finally, we discuss the

machine learning techniques used in this work in Section 2.3.

2.1. Oracle problem in scientific software testing

This research began when we were asked to test a program written to analyze small

angle x-ray scattering data (SAXS)1. As with many scientific programs the SAXS program

fell into the category of non-testable programs. The absence of a test oracles made it difficult

to conduct systematic testing on the SAXS program, since we needed a domain expert to

manually evaluate the test results.

Through a systematic literature survey [12] we conducted, we found that oracle problems

are common in testing scientific software. More than 30% of the primary studies identified

in the systematic literature survey reported the lack of an oracle as a serious problem [12].

The following characteristics of scientific software make it challenging to create an oracle

that is required to perform systematic testing:

(1) Some scientific software is written to find answers that are previously unknown.

Therefore only approximate solutions might be available [18, 19, 9, 20, 21].

(2) It is difficult to determine the correct output for software written to test scientific

theory that involves complex calculations or simulations. Further, some programs

1http://www.cs.colostate.edu/hpc/SAXS/index.php
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produce complex outputs making it difficult to determine the expected output [22,

10, 23–27, 9, 28].

(3) Due to the inherent uncertainties in models, some scientific programs do not give a

single correct answer for a given set of inputs. This makes determining the expected

behavior of the software a difficult task, which may depend on a domain expert’s

opinion [5].

(4) Requirements are unclear or uncertain up-front due to the exploratory nature of

the software. Therefore developing oracles based on requirements is not commonly

done [22, 29, 27, 30].

(5) Choosing suitable tolerances for an oracle when testing numerical programs is diffi-

cult due to the involvement of complex floating point computations [26, 31–33].

We also found several methods used by scientific software developers to overcome oracle

problems:

(1) A pseudo oracle is an independently developed program that fulfills the same spec-

ification as the program under test [5, 29, 34, 35, 1, 10, 9, 36, 4]. For example,

Murphy et al. used pseudo oracles for testing a machine learning algorithm [23].

Limitations: A pseudo oracle may not include some special features/treatments

available in the program under test and it is difficult to decide whether the oracle

or the program is faulty when the answers do not agree [37]. Pseudo oracles make

the assumption that independently developed reference models will not result in

the same failures. But Brilliant et al. found that even independently developed

programs might produce the same failures [38].
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(2) Solutions obtained analytically can serve as oracles. Using analytical solutions is

sometimes preferred over pseudo oracles since they can identify common algorithmic

errors among the implementations. For example, a theoretically calculated rate of

convergence can be compared with the rate produced by the code to check for faults

in the program [5, 25, 34].

Limitations: Analytical solutions may not be available for every application [37]

and may not be accurate due to human errors [10].

(3) Experimentally obtained results can be used as oracles [5, 25, 29, 1, 10, 39].

Limitations: It is difficult to determine whether an error is due to a fault in the

code or due to an error made during the model creation [37]. In some situations

experiments cannot be conducted due to high cost, legal or safety issues [20].

(4) Measurements values obtained from natural events can be used as oracles.

Limitations: Measurements may not be accurate and are usually limited due to

the high cost or danger involved in obtaining them [25, 3].

(5) Using the professional judgment of scientists [3, 32, 40, 10]

Limitations: Scientists can miss faults due to misinterpretations and lack of data.

In addition, some faults can produce small changes in the output that might be diffi-

cult to identify [40]. Further, the scientist may not provide objective judgments [10].

(6) Using simplified data so that the correctness can be determined easily [9].

Limitations: It is not sufficient to test using only simple data; simple test cases may

not uncover faults such as round-off problems, truncation errors, overflow conditions,

etc [41]. Further such tests do not represent how the code is actually used [10].
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(7) Statistical oracle: verifies statistical characteristics of test results [42].

Limitations: Decisions by a statistical oracle may not always be correct. Further

a statistical oracle cannot decide whether a single test case has passed or failed [42].

(8) Reference data sets: Cox et al. created reference data sets based on the functional

specification of the program that can be used for black-box testing of scientific

programs [43].

Limitations: When using reference data sets, it is difficult to determine whether

the error is due to using unsuitable equations or due to a fault in the code.

Using these oracles, scientific software developers often only test whether a program pro-

duces obvious failures such as crashes or infeasible outputs. Therefore developing techniques

to create oracles that can be used for systematic testing of these programs will be highly

useful for improving the quality of scientific software.

2.2. Metamorphic testing (MT)

Metamorphic testing was originally presented as a technique to create additional test

cases using existing test cases, especially the tests that did not result in any failures [13].

Soon it was found that MT can be used to test programs that do not have test oracles [14, 15].

Metamorphic testing supports the creation of follow-up test cases from existing test cases as

follows:

(1) Identify an appropriate set of metamorphic relations that the program under test

should satisfy.

(2) Create a set of initial test cases using techniques such as random testing, structural

testing or fault based testing.
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public static int addValues(int a[]){

int sum=0;

for(int i=0;i<a.length;i++){

sum+=a[i];}

return sum;}

Figure 2.1. Function for calculating the sum of elements in an array

(3) Create follow-up test cases by applying the input transformations required by the

identified metamorphic relations in step 1 to each initial test case.

(4) Execute the initial and follow-up test case pairs to check whether the output change

complies with the change predicted by the metamorphic relation. A runtime vi-

olation of a metamorphic relation during testing indicates a fault or faults in the

program under test.

Since metamorphic testing checks the relationship between inputs and outputs of multiple

executions of the program under test, this method can be used when the correct result of

individual executions are not known.

Consider the function in Figure 2.1 that calculates the sum of integers in an array a.

Randomly permuting the order of the elements in a should not change the result. This

is the permutative metamorphic relation in Table 3.3. Further, adding a positive integer

k to every element in a should increase the result by k × length(a). This is the additive

metamorphic relation in Table 3.3. Therefore, using these two relations, two follow-up test

cases can be created for every initial test case and the outputs of the follow-up test cases

can be predicted using the initial test case output.

2.2.1. Previous work on MT. Metamorphic testing has been used to test applications

without oracles in different areas. Xie et al. [16] used metamorphic testing to test machine

learning applications. Metamorphic testing was used to test simulation software such as
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health care simulations [19] and Monte Carlo modeling [44]. Metamorphic testing has been

used effectively in bioinformatics [24], computer graphics [45] and for testing programs with

partial differential equations [46]. Murphy et al. [47] show how to automatically convert a

set of metamorphic relations for a function into appropriate test cases and check whether

the metamorphic relations hold when the program is executed. However they specify the

metamorphic relations manually.

Metamorphic testing has also been used to test programs at the system level. Murphy et

al. developed a method for automating system level metamorphic testing [48]. In this work,

they also describe a method called heuristic metamorphic testing for testing applications with

non-determinism. All of these approaches can benefit from our method for automatically

finding likely metamorphic relations.

Our work contributes to this body of knowledge by investigating approaches to automat-

ically derive metamorphic relations for a given program, which have not been investigated

previously. Our work demonstrates the possibility of automatically predicting metamorphic

relations from a function’s source code. This will help to automate the MT process starting

by deriving MRs, thus increase the applicability of MT.

2.3. Machine Learning

Machine learning methods focus on providing computer programs the ability to make

better decisions based on experience [49]. Usually, the set of examples used by a machine

learning algorithm are divided into two subsets: a training set and a test set. The training set

is used to create the predictive model, while the test set is used to evaluate the performance

of the predictive model.
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Supervised learning is one machine learning method, where a set of labeled examples

is used to learn a target function. The target function maps the input to a desired set

of outputs (labels). Input to a supervised classification algorithm is a set of training data

S = {s1, s2, ..., sn}. Each training instance si ∈ S takes the form {x1, x2, ..., xm, ci}, where

xj is a feature and ci is the class label of the training instance si. A feature is a measurable

property of an instance.

In this work, we model metamorphic relation prediction as a supervised learning prob-

lem. For a given metamorphic relation we create a supervised classification model using

features extracted from a set of functions already known to satisfy/not satisfy the consid-

ered metamorphic relation. Then the trained classification model is used to predict whether

a previously unseen function should satisfy the considered metamorphic relation or not.

2.3.1. Binary classification. In binary classification the class label can take only one

of two possible values (+1/−1). Input to a binary classification algorithm is a set of training

examples E = {xi, ci|xi ∈ X , ci = 1 or − 1}. Each xi = x1, x2, ..., xm is called a training

instance, where xj is a feature and ci is the class label of the training instance. We use three

binary classification algorithms in our work: Decision Trees [50], Support Vector Machines

(SVMs) [51], and Artificial Neural Networks [52].

2.3.1.1. Decision Trees (DT). In decision tree learning, the target function is a decision

tree. In classification, a decision tree maps the input to a binary label. Internal nodes of a

decision tree test a feature in the input and leaf nodes assign a label. We used the J48 Java

implementation of the C4.5 [53] decision tree generation algorithm from the WEKA [54] tool

kit. When choosing a feature for an internal node, the C4.5 algorithm chooses the feature

with the highest information gain [55].
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2.3.1.2. Support Vector Machines (SVMs). SVM [51] is another supervised learning algo-

rithm that is used for classification. SVM creates a hyper-plane in a high dimensional space

that can separate the instances in the training set according to their class labels. When a

linear separation cannot be found in the original feature space, SVMs use kernel functions

to map the training data into a higher dimensional feature space. Then the SVM creates a

linear separator in this higher dimensional feature space, which can be used to classify unseen

data instances. In this work we used the SVM implementation in the PyML Toolkit2.

2.3.1.3. Artificial Neural Networks (ANNs). ANN is a learning algorithm inspired by

biological neural networks [52]. ANN is a made up of multiple simple processing units called

neurons. These neurons perform a computation within itself using its input and produce

an output. A neuron typically uses a non-linear activation function to produce the output.

Neurons are connected through weighted connections, which represents knowledge in an

ANN. Typically neurons are organized as layers in an ANN. The features are supplied to the

input layer. This information is transferred to one or more hidden layers, where the actual

processing is done. Hidden layers are linked to an output layer that produces the output. In

this work used the ANN implementations developed by Dr. Chuck Anderson3.

2.3.2. Multi-label Classification. In multi-label classification each example is as-

sociated with multiple labels. The goal is to learn a predictive model from the training data

that will select a set of relevant labels for a previously unseen example [56].

Input to a multi-label classification algorithm is a set of training examples E = {xi,Yi|xi ∈

X ,Yi ∈ L, 1 ≤ i ≤ N}. Let X be the example space consisting of tuples of xi =

(xi1 , xi2 , ..., xiD). D is the number of features in a training example. Let L = {λ1, λ1, ..., λQ}

2http://pyml.sourceforge.net/
3http://www.cs.colostate.edu/ anderson/cs645notebooks/neuralnetworks.txt
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be the set of labels with Q discrete labels. Let N be the number of training examples. Let q

be some quality criterion that is used to measure the effectiveness of the learned predictive

model. In multi-label classification the goal is to find a mapping h : X → 2L that maximizes

q.

Methods used for multi-label classification can be divided in to two main categories [57]:

(1) algorithm adaptation methods and (2) problem transformation methods. Algorithm adap-

tation methods modify existing machine learning algorithms for multi-label classification.

Problem transformation methods transform the multi-label classification problem into a one

or more single label classification problems. Then binary classifiers can be used to solve these

single label classification problems. In this work we used four multi-label learning methods

falling in to these two categories. Below we describe these methods.

2.3.2.1. Pair-wise methods. Pair-wise methods fall in to the category of problem transfor-

mation methods. These methods use binary classifiers in a pair-wise or round robin fashion

to solve multi-label classification problems [58]. These methods use Q(Q− 1)/2 binary clas-

sifiers, where each classifier is trained with examples of one label λi as positive examples

and the examples of another label λj as negative examples. During the testing phase, for a

given test instance, each classifier predicts one of the two labels. Then the labels are ranked

according to their sum of votes. A label ranking algorithm uses these rankings to predict

the labels for a given test instance.

In this work we used a method called calibrated label ranking (CLR) that extends the

pair-wise approach described above [59]. CLR introduces an artificial calibration label λ0

to represent the split-point between relevant and irrelevant labels i.e. λ0 is preferred over

irrelevant labels and relevant labels are preferred over λ0 . During testing the classifiers
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predict a ranking for the Q+1 labels and labels ranked above λ0 are considered as relevant

labels for the testing instance.

2.3.2.2. Label power-set methods (LP). Label power-set methods also fall into the cate-

gory of problem transformation methods. This method converts the multi-label classification

problem into a single-label multi-class classification problem. The set of distinct unique sub-

sets of labels in the training set becomes the possible values of the class. Due to this trans-

formation, LP methods take into account the dependencies among labels. But the number of

possible label sets can increase exponentially with this method and can be a problem when

used with a large number of labels. Also class imbalance can be a potential problem with

this method since some of the newly formed classes might have very few training examples.

In this work we used a label power-set method called a hierarchy of multi-label classifiers

(HOMER) [60]. HOMER creates a hierarchy of multiple labels and constructs a classifier

for the label sets in the nodes of hierarchy. By creating this hierarchy each classifier deals

with a more balanced example distribution.

2.3.2.3. Ensemble methods. Ensemble methods are developed on top of problem trans-

formation methods or algorithm adaptation methods. In this work we used two ensemble

method called random k-label sets (RAkEL) [61] and ensemble classifier chains (ECC) [62].

RAkEL draws m random label subsets of of size k from L and trains a LP classifier on each

of the k subsets. Final set of labels for a given test instance is selected using a simple voting

mechanism. Similar to other LP methods, RAkEL also considers dependencies among labels

by using label subsets.

ECC method uses classifier chains (CC) [62] as base classifiers. In CC,Q binary classifiers

are linked as a chain as C1, C2, ..., CQ. The classifier Ci in the chain is responsible for learning
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and predicting the binary association of label λi where (1 ≤ i ≤ Q). The Feature space of

each classifier Ci in the chain is extended by adding the label values of all previous links in

the chain λ1, ..., λi−1. The CC method takes into account the label correlations by passing

the label information between classifiers as explained above. ECC trains m CCs, where

each CC is trained with a random ordering of the labels and a random subset of the data.

Therefore each CC is likely to give different multi-label predictions. Then these predictions

are summed for each label, and threshold is used to select the most popular labels from the

predicted set of labels.

2.3.2.4. Multi-label k-nearest neighbors (ML-kNN). ML-kNN [63] is an extension of the

k-nearest neighbors (kNN) algorithm [64] for single label classification. For each instance in

the test set, ML-kNN first finds the nearest neighbors from the training set. Then using the

statistical information calculated from the labels of these nearest neighbors, the label set for

the test instance is determined.

2.3.2.5. BP-MLL. BP-MLL is neural network algorithm that uses back-propagation for

multi-label classification [65]. BP-MLL is derived from the back-propagation algorithm [66]

by replacing the error function. The modified error function ranks labels belonging to an

instance higher than the labels that do not belong to that instance.

2.3.3. Kernel methods. Kernel methods perform pattern analysis by following two

main steps: (1) Embed the data in an appropriate feature space. (2) Use machine learning

algorithms to discover linear relations in the embedded data [67]. Figure 2.2 depicts how the

data is mapped to a feature space so that a linear separation of the data can be obtained.

There are two main advantages of using kernel methods. First, machine learning algorithms

for discovering linear relations are efficient and are well understood. Second, a kernel function
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Figure 2.2. Function φ maps data into a new feature space so that a linear
separation can be found.

can be used to compute the inner product of data in the new feature space without explicitly

mapping the data into that space. A kernel function computes the inner products in the

new feature space directly from the original data [67]. Let k be the kernel function and

x1,x2, ...,xm be training data. Then the kernel function calculates the inner product in

the new feature space using only the original data without having to compute the mapping

φ explicitly as follows: k(xi,xj) = 〈φ(xi), φ(xj)〉. Machine learning algorithms such as

support vector machines (SVMs) can use the kernel function instead of calculating the actual

coordinates in the new feature space.

In this work we represent the program functions using a graph that captures both control

flow and data dependency information. Therefore we provide some background on methods

used for comparing graphs. Graph comparison/classification has been previously applied in

areas such as bioinformatics, chemistry, sociology and telecommunication. Graph comparison

algorithms can be divided into three groups [68]: (1) set based, (2) frequent subgraph based

and (3) kernel based. Set based methods compare the similarity between the set of nodes

and the set of edges in two graphs. These methods do not consider the topology of the
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graph. Frequent subgraph based methods first develop a set of subgraphs that are frequently

present in a graph dataset of interest. Then these selected subgraphs are used for graph

classification. Frequent subgraph based methods are computationally expensive and the

complexity increases exponentially with the graph size. In this dissertation we use the

kernel based approach, specifically graph kernels and compare their performance to the set

of features we used in our previous work [69].

Graph kernels are a set of kernel functions used for graph data. Graph kernels compute

a similarity score for a pair of graphs by comparing their substructures, such as shortest

paths [70], random walks [71], and subtrees [72]. Graph kernels provide a method to ex-

plore the graph topology by comparing graph substructures in polynomial time. Therefore

graph kernels can be used efficiently to compare similarities between programs which are

represented as graphs (e.g. control flow graphs and program dependency graphs).

2.3.4. Evaluation measures.

2.3.4.1. Evaluation measures for binary classification. We used two evaluation measures

to measure the effectiveness of binary classifiers. The first evaluation measure is the balanced

success rate (BSR) [73]. Standard accuracy gives the fraction of the correctly classified

instances in the data set. Therefore it is not a good measure to evaluate success when the

data set is unbalanced as in our case. BSR considers the imbalance in data as follows:

BSR = P (success|+)+P (success|−)
2

,

where P (success|+) is the estimated probability of classifying a positive instance correctly

and P (success|−) is the probability of classifying a negative instance correctly.

The second evaluation measure is the area under the receiver operating characteristic

curve (AUC) value. AUC measures the probability that a randomly chosen negative example
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will have a smaller estimated probability of belonging to the positive class than a randomly

chosen positive example [74]. Therefore a higher AUC value indicates that the model has

a higher predictive ability. AUC takes a value in the range [0,1]. A classifier with AUC =

1 is considered a perfect classifier, while a classifier that classifies randomly will have AUC

= 0.5. Previous studies have shown that AUC is a better measure for comparing learning

algorithms [74]. Since the AUC does not depend on the discrimination threshold of the

classifier we use the AUC measure for comparisons.

2.3.4.2. Evaluation measures for multi-label classification. We used label based measures

from Madjarov et al. [56] to evaluate the effectiveness of the multi-label classifiers. We

can use these measures to compare the performance of multi-label classifiers with binary

classifiers, since these measures can be computed for a set of binary classifiers that predicts

the same set of labels. The measures are defined as follows:

• Macro-precision is the precision averaged across all the labels and it is defined as

(1) macro− precision =
1

Q

Q∑
j=1

tpj
tpi + fpj

where tpj and fpj are the number of true positives and false positives for the label

λj when considered as a binary label. Q is the number of unique labels.

• Macro recall is the recall averaged across all the labels and it is defined as

(2) macro recall =
1

Q

Q∑
j=1

tpj
tpj + fnj

where tpj and fnj are the number of true positives and false negatives for the label

λj when considered as a binary label.
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• Macro F1 is the harmonic mean between precision and recall and it is defined as

(3) macro F1 =
1

Q

Q∑
j=1

2× pj × rj
pj + rj

where pj and rj are the precision and recall for the label λj.

• Micro precision is the precision averaged over all the example/label pairs and it is

defined as

(4) micro precision =

∑Q
i=1 tpi∑Q

i=1 tpi +
∑Q

i=1 fpi

• Micro recall is the recall averaged over all the example/label pairs and it is defined

as

(5) micro recall =

∑Q
i=1 tpi∑Q

i=1 tpi +
∑Q

i=1 fni

• Micro F1 is the harmonic mean between micro precision and micro recall. It is

defined as

(6) micro F1 =
2×micro precision×micro recal

micro precision+micro reca

2.4. Summary

In this chapter, we described the oracle problem in scientific software testing, techniques

used to alleviate the oracle problem and their limitations. Then, we provided details of the

metamorphic testing technique, previous work done on metamorphic testing and how our

work contribute towards state of the art in metamorphic testing. Finally, we provided the
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background information for the machine learning techniques that we use in this work. Specif-

ically, we discussed the binary classification algorithms, multi-label classification algorithms

and kernel methods used in this work. We also described the evaluation measures used to

measure the accuracy of the machine learning prediction models.
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CHAPTER 3

Effectiveness of Machine Learning Approaches for

Predicting Metamorphic Relations

This Chapter presents an overview of using machine learning techniques for predicting

metamorphic relations of a given function [69]. Sections 3.2.1, 3.2.2, and 3.2.3 provide the

details of function representation, feature extraction, and prediction steps in our method.

We present our evaluation procedure and results in Section 3.3. Finally, we present our

conclusions in Section 3.4.

3.1. Motivating example

Figure 3.1 displays a function that finds the maximum value of an array. Figure 3.2

displays a function for setting a minimum value in an array. Figure 3.3 depicts the control

flow graphs of the two functions. Consider the permutative metamorphic relation, which

states that if the elements in the input are randomly permuted, the output should remain

constant. The function find max satisfies the permutative metamorphic relation. But the

set min val function does not satisfy the permutative property since the order of the elements

in the output will not be the same after permuting the input.

The overall structure of the two CFGs are very similar. But the main difference is in

the operations performed inside the loop. While find max perform a comparison over the

array elements, set min val performs assignments to individual array elements. Therefore it

is important to include information about the sequence of operations performed in a control

flow path in the features used for creating the machine learning prediction models. Based on
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this intuition, we developed two types of features for CFGs, which are based on the nodes

and paths in the CFG. We describe these features in Sections 3.2.2.

int f ind max ( int a [ ] , int n){
int max=−1000000, i ;

for ( i =0; i<n ; i ++){
i f ( a [ i ]>max){

max=a [ i ] ;

}
}
return max ;

}

Figure 3.1. find max

void s e t m i n v a l ( int a [ ] , int n , int k ){
int i ;

for ( i =0; i<n ; i ++){
i f ( a [ i ]<k ){

a [ i ]=k ;

}
}

}

Figure 3.2. set min val

(a) find max (b) set min val

Figure 3.3. CFGs of find max and set min val
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Figure 3.4 shows an overview of our method. We start by creating the control flow graph

(CFG) from a function’s source code. Next, we extract a set of features from the CFGs,

and a machine learning algorithm uses these features to create a predictive model. Finally,

we use the developed predictive model to predict the metamorphic relations in previously

unseen functions.

Figure 3.4. Overview of the proposed method

3.2. Method overview

3.2.1. Function Representation. We hypothesize that the metamorphic relations in

Table 3.3 are related to the sequence of operations performed by a function. Therefore, we

represent a function using a statement level CFG, since it models the sequence of operations.

The CFG G = (N,E) of a function f is a directed graph, where each nx ∈ N represents a

statement x in f and E ⊆ N ×N . An edge e = (nx, ny) ∈ E if x, y are statements in f and

y is executed immediately after executing x. Nodes nstart ∈ N and nexit ∈ N represents the

starting and exiting points of f.
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We used the Soot1 framework to create CFGs. Soot generates control flow graphs in

Jimple [75], a typed 3-address intermediate representation, where each CFG node represents

an atomic operation. This representation should considerably reduce the effects of different

programming styles and models the actual control flow structure of the function. Figure 3.5a

is the Jimple statement level CFG generated using the Soot framework for the function in

Figure 2.1. Converting Java code to the Jimple 3-address intermediate representation would

add goto operations and labels to represent conditional jumps in the original Java code.

Then a labeled CFG is created by giving a label to each node in the CFG in Figure 3.5a to

indicate the operation performed in the node. Figure 3.5b is the labeled CFG created from

the original CFG in Figure 3.5a.

(a) Soot CFG (b) Labeled CFG

Figure 3.5. CFG generated by Soot with 3-address code and Labeled CFG
for the program in Figure 2.1

3.2.2. Feature Extraction. We extracted two types of features based on the nodes

and paths in the CFG.

1http://www.sable.mcgill.ca/soot/
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3.2.2.1. Node Features. For a CFG, node features have the form op − din − dout, where

op is the operation performed in a node n ∈ N , din is the in-degree of n and dout is the

out-degree of n. The value for a given feature is the number of occurrences of nodes of type

op−din−dout in the CFG. Table 3.1 shows the node features calculated for the labeled graph

in Figure 3.5b.

Table 3.1. Node features calculated from the labeled graph in Figure 3.5B

Feature Feature Value
start-0-1 1
if-1-2 1
add-1-1 2
assi-1-1 3
assi-2-1 1
goto-1-1 1
exit-1-0 1

3.2.2.2. Path Features. Features based on paths are created by taking the sequence of

nodes in the shortest path from Nstart to each node and the sequence of nodes in the shortest

path from each node to Nexit. A path feature takes the form op1 − op2 − ... − opk where

opi(1 ≤ i ≤ k) represents the operation performed in the CFG nodes in the considered

path. The value of a path feature is the number of occurrences of that shortest path node

sequence in the CFG. Table 3.2 shows the set of features extracted from the labeled graph

in Figure 3.5b. For the example considered here, each node sequence occurs only once in the

labeled graph in Figure 3.5b. Therefore each feature value for this example takes the value

one.

3.2.3. Prediction. In this work we focus on predicting whether a given function f

exhibits a metamorphic relation in Table 3.3. We selected the permutative, additive and

inclusive metamorphic relations for this experiment. These relations represent three different

26



Table 3.2. Path features calculated from the labeled graph in Figure 3.5B

Feature
Feature
Value

start-assi-assi-goto-assi-if-assi-add 1
start-assi-assi-goto-assi-if-assi 1
start-assi-assi 1
start 1
start-assi-assi-goto-assi-if 1
start-assi-assi-goto-assi-if-exit 1
start-assi-assi-goto-assi 1
start-assi 1
start-assi-assi-goto-assi-if-assi-add-add 1
start-assi-assi-goto 1
assi-goto-assi-if-exit 1
exit 1
goto-assi-if-exit 1
assi-if-exit 1
if-exit 1
assi-add-add-assi-if-exit 1
add-assi-if-exit 1
assi-assi-goto-assi-if-exit 1
add-add-assi-if-exit 1

categories of input modifications: (1) changing the order of elements (permutative), (2)

changing the element values (additive, multiplicative and invertive) and (3) adding/removing

new element/s to/from the input (inclusive and exclusive). The three selected metamorphic

relations represent a diverse initial set of relations for use in evaluating our method. Although

there could be a variety of changes in the output when the input is modified using these

relations, we have considered only the specific output changes given in Table 3.3 for each

metamorphic relation.

We modeled this problem as a machine learning classification problem, where each func-

tion f has a class label with the value 1 or -1 depending on whether f exhibits a specific

metamorphic relation or not, respectively. Table 3.4 depicts an example data set used for

learning the classifier, where fi represents a function in the data set and featj represents
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Table 3.3. The metamorphic relations used in this study.

Relation Change made to the input Expected change in the output
Permutative Randomly permute the elements Remain constant
Additive Add a positive constant Increase or remain constant
Multiplicative Multiply by a positive constant Increase or remain constant
Invertive Take the inverse of each element Decrease or remain constant
Inclusive Add a new element Increase or remain constant
Exclusive Remove an element Decrease or remain constant

Table 3.4. Example Data set used for prediction

Function feat1 feat2 ... featn Class
f1 v11 v22 ... v1n c1
f2 v11 v22 ... v2n c2
. . . . . .
. . . . . .
. . . . . .
fm vm1 vm2 ... vmn cm

a node or path feature extracted from the labeled CFGs of functions. The feature value of

featj for the function fi is represented by vij ; ci represents the class label for the function

fi indicating whether fi exhibits a specific metamorphic relation or not. Three data sets

were created for each metamorphic relation in used in the experiments and they were used

as input to the SVM, decision tree, and ANN classification algorithms.

3.3. Evaluation

3.3.1. Data set. To measure the effectiveness of our proposed method, we built a code

corpus containing 48 mathematical functions that take numerical inputs and produce numer-

ical outputs. None of these functions have an oracle to check the correctness of the output

for a randomly generated input. Table A.1 and Table A.2 (in Appendix A) shows the details

of the functions used in the experiment. These functions were implemented using the Java

programming language.
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3.3.2. Evaluation Procedure. Our evaluation procedure is two fold. We measured

the effectiveness of (1) our predictive model and (2) the predicted metamorphic relations in

detecting faults. The latter was conducted to validate the usefulness of the metamorphic

relations predicted by our method.

3.3.2.1. Predictive Model Evaluation. We used the two evaluation measures: BSR and

AUC described in Section 2.3.4. We used stratified 10-fold cross-validation to evaluate the

performance of classification. The 10-fold cross-validation technique evaluates how a predic-

tive model would perform on previously unseen data. In 10-fold cross-validation the data set

is randomly partitioned into ten subsets. Then nine subsets are used to build the predictive

model (training) and the remaining subset is used to evaluate the performance of the predic-

tive model (testing). This process is repeated k times in which each of the k subsets is used

to evaluate the performance. In stratified 10-fold cross-validation, 10 folds are partitioned in

such a way that the folds contain approximately the same proportion of positive (functions

that exhibit a specific metamorphic relation) and negative (functions that do not exhibit a

specific metamorphic relation) examples as in the original data set.

3.3.2.2. Fault Detection Effectiveness. We used mutation analysis [76] to measure the

effectiveness of the predicted metamorphic relations from our method in detecting faults.

Mutation analysis operates by inserting faults into the program under test such that the

created faulty version is very similar to the original version of the program [77]. A faulty

version of the program under test is called a mutant. If a test identifies a mutant as faulty

that mutant is said to be killed.

Mutation analysis was conducted on 35 functions from Table A.3, which exhibits all or

several of the three relations in Table 3.3. We used the µJava2 mutation engine to create

2http://cs.gmu.edu/∼offutt/mujava/
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Table 3.5. Summary of the data sets used for prediction

Metamorphic
#Positive #Negative Total

Relation
Permutative 20 21 41
Additive 21 15 36
Inclusive 15 12 27

the mutants for the functions in our code corpus. We used only method level mutation

operators [78] to create mutants since we are only interested in the faults at the function level.

Each mutated version of a function was created by inserting only a single mutation. Mutants

that resulted in compilation errors, run-time exceptions or infinite loops were removed before

conducting the experiment.

For each function f we randomly generated 10 initial test cases. We then created follow-

up test cases using the metamorphic relations shown by f, for each of the initial test cases.

Finally we checked whether the corresponding metamorphic relations were satisfied by the

initial and follow-up test case pairs. A mutant of f is killed, if at least one pair of test cases

fail to satisfy the corresponding metamorphic relation m.

3.3.3. Predictive Model Evaluation Results. We conducted the evaluation of the

prediction of the metamorphic relations in Table 3.3. Table 3.5 gives the number of positive

and negative examples contained in each of the data sets used for the evaluation.

3.3.3.1. Performance of ANNs. When using ANNs it is required to test with different

ANN structures. We present the results of this evaluation first. First, we evaluated the effec-

tiveness of ANNs with a single hidden layer for metamorphic relation prediction. Figure 3.6

shows the variation of average BSR with the number of hidden units in the hidden layer.

The number of hidden units that gave the maximum BSR varied with the MR. Table 3.6

summarizes maximum average BSR, the standard deviation of the average BSR and the
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number of hidden units that gave the maximum average BSR for each MR. For permutative

and inclusive MRs the maximum BSR could be archived using only two hidden units. For

the other metamorphic relation the number of hidden units required were 16.

(a) Permutative (b) Additive

(c) Inclusive

Figure 3.6. Variation of BSR with the number of hidden units in NNs with
a single layer

Table 3.6. Performance of single layered NNs

MR Maximum BSR SD #Hidden units
Permutative 0.847 0.101 2
Additive 0.732 0.135 16
Inclusive 0.761 0.128 2

Secondly, we evaluated the performance of NNs with multiple hidden layers. We used the

hidden layer structures shown in the following list in our experiment. Each item in the list
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corresponds to a single hidden layer structure. The length of the number sequence gives the

number of hidden layers. Each number in the number sequence gives the number of hidden

units in the corresponding hidden layer. Table 3.7 displays the structure of the multi-layered

NN that gave the maximum BSR for each MR.

• (2)

• (2,2)

• (2,2,2)

• (2,2,2,2)

• (2,2,2,2,2)

• (3)

• (3,3)

• (3,3,3)

• (3,3,3,3)

• (3,3,3,3,3)

• (4)

• (4,4)

• (4,4,4)

• (4,4,4,4)

• (4,4,4,4,4)

• (2,3,4,5,6)

Table 3.7. Performance of multi-layered NNs

MR Maximum BSR SD Multi-layered NN structure
Permutative 0.879 0.08 (3,3)
Additive 0.728 0.151 (4,4,4,4,4)
Inclusive 0.743 0.128 (3,3,3)

3.3.3.2. Performance comparison of ML algorithms. We report the performance compar-

ison of the three ML algorithms in this section. We report only the BSR values for the ANNs

since the ANN implementation we used in this work did not provide facilities to compute

AUC values. For the SVM and decision tree models we report both the BSR and the AUC

values. Table 3.8 reports these results. Reported values in the Table 3.8 are the average BSR

and AUC values for the 10 cross validation runs with the standard deviation reported inside

parenthesis. Inital evaluation showed that linear kernel performas better than the polynomal

and gaussian kernels. Therfore here we report only the results for the SVM obtained using

the linear kernel (default parameters (C=10) provided by PyML. For ANNs we used one

hidden layer with two hidden units for this evalutation.
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As shown in Figure 3.7 and 3.8, when compared with the decision tree model and ANNs,

SVM gives an overall better performance with respect to BSR and AUC measures for all

three metamorphic relations. This is expected because SVMs tend to perform better than

other machine learning methods since they are less prone to over-fitting [79]. For all the

three relations used for prediction, SVM achieves an accuracy higher than 0.8 and AUC

higher than 0.9. The high accuracy and AUC achieved by the SVM model for the three

metamorphic relations shows that the feature set developed using the CFGs can effectively

predict metamorphic relations.

Table 3.8. Prediction results from SVMs, Decision Trees, and ANNs

Metamorphic BSR AUC
Relation SVM DT NN SVM DT
Permutative 0.89 (0.04) 0.87 (0.03) 0.85 (0.10) 0.93 (0.03) 0.81 (0.03)
Additive 0.83 (0.04) 0.78 (0.05) 0.66 (0.13) 0.90 (0.04) 0.82 (0.04)
Inclusive 0.87 (0.02) 0.73 (0.02) 0.76 (0.13) 0.94 (0.03) 0.66 (0.03)

0 0.2 0.4 0.6 0.8 1

Permutative

Additive

Inclusuve

BSR

ANN DT SVM

Figure 3.7. BSR for SVM, Decision Tree, and ANN models for predicting
Permutative, Additive and Inclusive Metamorphic Relations

Secondly, we evaluated how the performance of a classifier varies with the training set

size when predicting metamorphic relations. Using a large number of examples to train a

classifier will reduce the chance of the classifier being biased [80]. But using a large training
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Figure 3.8. AUC for SVM and Decision Tree models for predicting Permu-
tative, Additive and Inclusive Metamorphic Relations

set will increase the cost of this approach since it requires identifying metamorphic relations

for the programs in the training set manually. Therefore we investigated whether effective

classifiers can be learned using a small set of programs.

We used SVMs in this evaluation since they performed significantly better than decision

trees and neural networks. We first randomly partitioned each dataset in Table 3.5 into two

sets so that each half would contain approximately the same proportions of positive and

negative examples as the original dataset. One partition was used as the test set. From

the other partition we randomly selected training examples to train the classifier. For each

training set size we tested the trained classifier using all instances in the test set.

Figures 3.9, 3.10 and 3.11 show the variation of the accuracy and AUC of the classifiers

for different training set sizes in predicting permutative, additive and inclusive metamorphic

relations respectively. As expected, the accuracy and AUC of the classifiers increase with

the training set size. For the three metamorphic relations, even classifiers built using the

smallest possible training set perform better than a random classifier. For the permutative

relation, the classifier achieves a 0.8 AUC when trained with a set of five programs. For the

inclusive relation, even the smallest training set containing only three programs achieved
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Figure 3.9. Variation of accuracy and AUC with training set size for pre-
dicting permutative MR
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Figure 3.10. Variation of accuracy and AUC with training set size for pre-
dicting additive MR

an AUC of 0.8. For the additive relation, a 0.8 AUC was achieved with a training set of

15 programs. These result show that our method works effectively with a small number of

training examples.

Finally we evaluated the performance of the classifiers when the prediction is done on

programs that contain at least one fault. In practice, a test engineer may have a set of

programs that satisfies known metamorphic relations. The engineer can apply our prediction

method to determine which of these metamorphic relations should be satisfied by a new,
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Figure 3.11. Variation of accuracy and AUC with training set size for pre-
dicting inclusive MR

possibly faulty program. To evaluate how our method works when applied to such a scenario,

we did the following for each function f in the data set:

(1) We removed f from the data set and trained the SVM classifier using the remaining

functions.

(2) We generated predictions for the original function f and for randomly selected

mutants of function f using the classifier produced in Step 1.

(3) We compared the classification for each mutant to the classification for the original

function.

Table 3.9 shows the results of this evaluation. The third column shows the number of mutants

that were classified differently than the original function. The classification of the mutants

did not match that of the original function for only 1%-5% of the mutants, depending on

the metamorphic relation. These results indicate that the prediction model can provide a

reasonably accurate classification for functions that contain a fault.

3.3.4. Fault Detection Effectiveness Results. Table 3.10 gives a summary of

the mutants generated for the mutation analysis performed to evaluate the effectiveness
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Table 3.9. Results of predicting metamorphic relations for the faulty versions
of the functions

Metamorphic Relation # Mutants used # Classified differently
Permutative 171 3
Additive 146 7
Inclusive 131 2

Table 3.10. Summary of mutants used in the mutation analysis

# Mutants generated by muJava 1717
# Mutants resulted in Exceptions 591
# Mutants resulted in Infinite loops 138
# Mutants used in the experiment 988

of our approach in detecting faults. After removing mutants that are obviously incorrect

(mutants that gave exceptions and infinite loops), 988 mutants in total were used for the

experiment.

Out of 988 mutants, 655 (66%) were killed using the predicted metamorphic relations.

More than 50% of the mutants were killed in 29 functions. This shows that we can apply

these predicted relations successfully to detect faults. Table 3.11 shows the percentages of

mutants that were killed using each metamorphic relation alone. The permutative relation

has the highest percentage of killed mutants. This result was expected since, for the functions

studied in this experiment, the permutative metamorphic relation requires the outputs of

the initial and the follow-up test cases to be equal (see Table 3.3). This equality relation

is more restrictive and thus can be more easily violated than the inequality relation of the

additive and inclusive metamorphic relations.

Table 3.11. Percentage of mutants killed by each metamorphic relation

Metamorphic # Mutants # Mutants
Relation possible to kill killed (%)
Permutative 566 374 (66%)
Additive 869 196 (23%)
Inclusive 400 150 (38%)
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Several mutants could not be killed using any of the predicted metamorphic relations.

Some of these mutants are making changes that could not be captured by the metamorphic

relations that we used in this study. Additional metamorphic relations might be needed to

kill them. Some of the survivors are equivalent mutants that cannot be killed since they

produce the same output as the original program [77].

3.4. Conclusions

We have presented a novel machine learning approach to automatically detect likely

metamorphic relations of program functions using features extracted from a function’s control

flow graph. We have evaluated the performance of our predictive model using a set of real

world functions that do not have oracles. Overall, SVMs performed significantly better than

decision trees and ANNs. High accuracy and AUC achieved by the SVM predictive model

show that features developed using the CFGs are highly effective in predicting metamorphic

relations. We also showed that our method can create effective classifiers using reasonably

small training sets making this approach cost effective for use in practice. Further, we

show that, when applied to programs with an injected fault, our method produces the same

predictions as those produced for the original program in at least 95% of the cases. Thus,

the identified metamorphic relations should be accurate even for faulty programs. Finally,

using mutation analysis we showed that the predicted relations can effectively detect faults.

38



CHAPTER 4

Effectiveness of Graph Kernels for Predicting

Metamorphic Relations

In this Chapter we extended the approach introduced in Chapter 3 using graph kernels

for feature extraction. In Section 4.1 we provide an overview on how the graph kernels fit

into our approach. In Chapter 3 we showed that node/path features computed using the

control flow graphs are effective in predicting metamorphic relations. The first graph kernel

that we use is called the random walk kernel and it uses the paths in a graph for computing

the kernel value. Compared to node/path features, the random walk kernel allows you to

incorporate additional information about the types of operations represented by nodes in the

graph. We present the details of the random walk kernel in Section 4.2.1. Then we evaluated

the effectiveness of a different graph substructure: subgraphs for predicting metamorphic

relations. For extracting subgraph features we used the graphlet kernel. In addition, we

also compared the effectiveness of features that would represent the control flow and data

dependency information of a function for predicting metamorphic relations. We describe the

experimental setup and the results in Section 4.3 and Section 4.4, respectively.

4.1. Method overview

Figure 4.1 shows an overview of our approach. During the training phase, we start by

creating a graph based representation that shows both the control flow and data dependency

information of the functions in the training set, which is a set of functions associated with

a label that indicates if a function satisfies a given metamorphic relation (positive example)

or not (negative example). Then we compute the graph kernel values that give a similarity
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score for each pair of functions in the training set. Then the computed graph kernel is used

by an SVM to create a predictive model. During the testing phase, we use the developed

model to predict whether a previously unseen function satisfies the considered metamorphic

relation.

Figure 4.1. Overview of the approach. During the training phase a set of
functions associated with a label representing the satisfiability of an MR is
used for training an SVM classifier that uses graph kernel values computed
using the graph representations of these functions. During the testing phase
the trained model is used to predict whether a previously unseen function
satisfies the MR.

4.1.1. Function Representation. We extended the graph based representation used

in the previous Chapter to include both control flow information and data dependency

information: Gf = (V,E) of a function f is a directed graph, where each vx ∈ V represents

a statement x in f. Each node is labeled with the operation performed in x, denoted by
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label(vx). An edge e = (vx, vy) ∈ E if x, y are statements in f and y can be executed

immediately after executing x. These edges represent the control flow of the function. An

edge e = (vx, vy) ∈ E if x, y are statements in f and y uses a value produced by x. These

edges represent the data dependencies in the function. The label of an edge (vx, vy) is denoted

by label(vx, vy) and it can take two values: “cfg” or “dd” depending on whether it represents

a control flow edge or a data dependency edge, respectively. Nodes vstart ∈ V and vexit ∈ V

represent the starting and exiting points of f [81].

We created this graph-based representation by first creating the CFG using the Soot1

framework. Then we compute the definitions and the uses of the variables in the function

and use that information to augment the CFG with edges representing data dependencies

in the function. Figure 4.2 displays the graph based representation created for the function

in Figure 2.1.

4.2. Graph Kernels

We define two graph kernels for the graph representations of the functions presented in

Section 4.1.1: the random walk kernel and the graphlet kernel. Each kernel captures different

graph substructures as described next.

4.2.1. Random walk kernel. Random walk graph kernels [82, 71] count the number

of matching walks in two labeled graphs. In what follows we explain the idea, while the

details are provided in Appendix B.1. The value of the random walk kernel between two

graphs is computed by summing up the contributions of all walks in the two graphs. A

walk in a graph G = (V,E) is a sequence of nodes (v1, v2, ..., vn−1, vn) such that vi ∈ V and

(vi, vi+1) ∈ E. A step in a walk is two consecutive nodes in the walk. Each pair of walks is

1http://www.sable.mcgill.ca/soot/
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Figure 4.2. Graph representation of the function in Figure 2.1. cfg: control
flow edges. dd: data dependency edges.

compared using a kernel that computes the similarity of each step in the two walks, where

the similarity of each step is a product of the similarity of its nodes and edges. This concept

is illustrated in Figure 4.3. Computing this kernel requires specifying an edge kernel and

a node kernel. We used two approaches for determining the kernel value between a pair of

nodes. In the first approach, we assign a value of one to the node kernel value if the two

node labels are identical, and zero otherwise. In the second approach, we assign a value of

0.5, if the node labels represent two operations with similar properties, even if they are not

identical (Section B.1 equation (11)). The kernel value between pair of edges is determined

using their edge labels, where we assign a value of one if the edge labels are identical zero

otherwise.

4.2.2. Graphlet kernel. Random walks represent sequences of nodes of varying length

and do not capture subgraphs in a graph. Subgraphs can directly capture the structure of if
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Walks of length 1: A → B, B → C,
A→ C

Walks of length 1: P → Q, P → R,
Q→ S, R→ S

Walks of length 2: A→ B → C Walks of length 2: P → Q → S,
P → R→ S

Computation of similarity score between two graphs (restricted to walks up to length 2):
krw(G1, G2) = kwalk(A → B,P → Q) + kwalk(A → B,P → R) + ... + kwalk(A →
B → C,P → Q→ S) + kwalk(A→ B → C,P → R→ S)

Computation of similarity score between two walks:
kwalk(A→ B,P → Q) = kstep((A,B), (P,Q))

...
kwalk(A→ B → C,P → R→ S) = kstep((A,B), (P,R))× kstep((B,C), (R, S))

Computation of similarity score between two steps:
kstep((A,B), (P,Q)) = knode(A,P )× knode(B,Q)× kedge((A,B), (P,Q))
kstep((A,B), (P,R)) = knode(A,P )× knode(B,R)× kedge((A,B), (P,R))
kstep((B,C), (R, S)) = knode(B,R)× knode(C, S)× kedge((A,B), (P,Q))

Computation of similarity score between two nodes:
knode(A,P ) = 0.5 (two labels have similar properties)
knode(B,Q) = 1 (two labels are identical)
knode(B,R) = 0 (two labels are dissimilar)
knode(C, S) = 1
Computation of similarity score between two edges:
kedge((A,B), (P,Q)) = 1 (two edges have the same labels)
kedge((A,B), (P,R)) = 1

Figure 4.3. Random walk kernel computation for the graphs G1 and G2.
krw: kernel value between two graphs. kwalk: kernel value between two walks.
kstep: kernel value between two steps. knode: kernel value between two nodes.
kedge: kernel value between two edges.

conditions in a function that represent important semantic information about the function.

Therefore we apply a kernel based on subgraphs.

The graphlet kernel computes a similarity score of a pair of graphs by comparing all

subgraphs of limited size in the two graphs [68]. In this work we use connected subgraphs
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with size k ∈ {3, 4, 5} nodes. These subgraphs are called graphlets. Consider the pair of

graphs G3 and G4 in Figure 4.4. The graphlet kernel value of a pair of graphs is calculated

by summing up the kernel values of all the graphlet pairs in the two graphs. The kernel value

of a pair graphlets is calculated as follows: for each pair of graphlets that are isomorphic, we

compute the kernel value by multiplying the kernel values between the node and edge pairs

that are mapped by the isomorphism function. If a pair of graphlets are not isomorphic, we

assign a value of zero to the kernel value of those two graphlets. The kernel value between

pairs of nodes and pairs of edges are determined as explained in Section 4.2.1. In Figure 4.4

we illustrate the computation of the kernel and the complete definition of the graphlet kernel

is presented in Appendix B.2.

4.3. Experimental setup

This section describes our research questions and how they will be answered empirically.

4.3.1. Research questions. We conducted experiments to seek answers for the fol-

lowing research questions:

• RQ1: Are graph kernels more effective in predicting metamorphic rela-

tions than node/path features? In Chapter 3 we used a set of features that

represent node/path information of control flow graphs for creating predictive mod-

els [69]. In this Chapter we extend the feature extraction using graph kernels. We

created separate models using the node/path features used in our previous study

and the two graph kernels and compared the effectiveness.
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Graphlets of size 3 in G3: Graphlets of size 3 in G4:

Computation of similarity score between two graphs using graphlets:
kgraphlet(G1, G2) = ksubgraph(S1

3 , S
1
4) + ksubgraph(S1

3 , S
2
4) + ksubgraph(S1

3 , S
3
4) + ... +

ksubgraph(S2
3 , S

2
4) + ksubgraph(S2

3 , S
3
4)

Computation of similarity score between two graphlets:
ksubgraph(S1

3 , S
1
4) = 0

ksubgraph(S1
3 , S

2
4) = 0

ksubgraph(S1
3 , S

3
4) = knode(A,Q)× knode(B,R)× knode(C, S)× kedge((A,B), (Q,R))×

kedge((A,C), (Q,S))
...
ksubgraph(S2

3 , S
2
4) = knode(A,P )× knode(B,Q)× knode(D,S)× kedge((A,B), (P,Q))×

kedge((B,D), (Q,S))
ksubgraph(S2

3 , S
3
4) = 0

Computation of similarity score between two nodes:
knode(A,Q) = 1
knode(B,R) = 0.5
knode(C, S) = 0.5
...
knode(D,S) = 0
Computation of similarity score between two edges:
kedge((A,B), (Q,R)) = 1
...
kedge((B,D), (Q,S)) = 1

Figure 4.4. Graphlet kernel computation for graphs G3 and G3. kgraphlet:
graphlet kernel value. ksubgraph: kernel value of between two subgraphs. knode:
kernel value between two nodes. kedge: kernel value between two steps.
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• RQ2: What substructures in graphs are more suitable for predicting

metamorphic relations? This is answered by using two graph kernels that use

small subgraphs or all walks in the graphs that represent the functions.

• RQ3: Is control flow information more effective in predicting metamor-

phic relations than data dependency information? The two previous research

questions focused on feature extraction. Prediction accuracy can also depend on the

source of program information used to create the model. In this work we use two

types of information about the program: control flow information and data depen-

dency information. We compare the effectiveness of these two types of information

for predicting metamorphic relations.

• RQ4: Will combining control flow information with data dependency in-

formation improve the prediction effectiveness of metamorphic relations?

We further look at whether creating prediction models that use both control flow

and data dependency information can improve prediction effectiveness.

4.3.2. The code corpus. To measure the effectiveness of our proposed methods, we

built a code corpus containing 100 functions that take numerical inputs and produce numer-

ical outputs. We extended the corpus used in the previous Chapter with functions from the

following open source projects:

(1) The Colt Project2: set of open source libraries written for high performance scientific

and technical computing in Java

(2) The Apache Mahout3: a machine learning library written in Java

2http://acs.lbl.gov/software/colt/
3https://mahout.apache.org/
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(3) The Apache Commons Mathematics Library4: library of mathematics and statistics

components written in the Java

We list these functions in Table A.3 in Appendix A5. Table 4.1 shows the statistics about

the LOC and cyclomatic complexity [83] for the functions in the code corpus.

Table 4.1. Size and cyclomatic complexity of the functions in the code corpus

LOC Cyclomatic complexity

Average 12.37 3.01
Standard deviation 6.6 1.4
Median 10 3
Minimum 5 1
Maximum 54 11

4.3.3. Metamorphic relations. We used the six metamorphic relations shown in Ta-

ble 4.2. These metamorphic relations were identified by Murphy et al. [84] and are commonly

found in mathematical functions. We list the input modifications and the expected output

modification of these metamorphic relations in Table 4.2. A function f is said to satisfy (or

exhibit) a metamorphic relation m in Table 4.2, if the change in the output is according

to what is expected after modifying the original input. Previous studies have shown that

these are the type of metamorphic relations that tend to be identified by humans [85–87].

In this work we use the term positive instance to refer to a function that satisfies a given

metamorphic relation and the term negative instance to refer to a function that does not

satisfy a considered metamorphic relation. Table 4.3 reports the number of positive and

negative instances for each metamorphic relation.

4.3.4. Evaluation procedure. We used 10-fold stratified cross validation in our ex-

periments. We used nested cross validation to select the regularization parameter (C) of the

4http://commons.apache.org/proper/commons-math/
5These functions and their graph representations can be accessed via the following URL: http://www.cs.
colostate.edu/~upuleegk/data/functions.tar.gz
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Table 4.2. The metamorphic relations used in this study.

Relation Change made to the input Expected change in the output
Permutative Randomly permute the elements Remain constant
Additive Add a positive constant Increase or remain constant
Multiplicative Multiply by a positive constant Increase or remain constant
Invertive Take the inverse of each element Decrease or remain constant
Inclusive Add a new element Increase or remain constant
Exclusive Remove an element Decrease or remain constant

Table 4.3. Number of positive and negative instances for each metamorphic
relation.

Metamorphic Relation #Positive #Negative
Permutative 34 66
Additive 57 43
Multiplicative 68 32
Invertive 65 35
Inclusive 33 67
Exclusive 31 69

SVM as well as the parameters of the graph kernels. In nested cross validation, values for

parameters are selected by performing cross validation on training examples of each fold.

We used the SVM implementation in the PyML Toolkit6 in this work. We used BSR and

AUC as evaluation measures when reporting our results.

4.4. Results

We present the results of our empirical studies in this section. We first evaluated the

effectiveness of the two graph kernels used in this study. We specifically looked at how

the effectiveness of these kernels vary with the values given for the parameters in these two

kernels. Then we compared the effectiveness of the graph kernels with the features used in our

previous work. Finally we compared the effectiveness of control flow and data dependency

information for predicting MRs.

6http://pyml.sourceforge.net/
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4.4.1. Effectiveness of the random walk kernel. With the random walk kernel,

we first evaluated how the prediction accuracy changes with the weighing parameter λ in

the kernel (see Appendix B.1 Equation 14 for more details about λ). For this evaluation we

computed the random walk kernel values using only the control flow edges in the graph. We

varied the value of λ from 0.1 to 0.9 and evaluated the performance using 10 fold stratified

cross validation. We used the kernel normalization described in Appendix B.3 to normalize

the random walk kernel. We selected the regularization parameter of the SVM using nested

cross validation. Figure 4.5 shows the variation of BSR and AUC with λ for each MR. For

some MRs, such as additive and multiplicative MRs, there was a considerable variation in

accuracy with λ. For these two MRs, higher values of λ gave better performance than lower

values of λ. Since each walk of length n is weighted by λn, with higher λ values, the random

walk kernel value will have a higher contribution from longer walks (see Equation (14) in

Appendix B.1). Therefore, for predicting additive and multiplicative MRs, the contribution

from long walks in the CFGs seems to be important. For the other four MRs the accuracy

did not vary considerably with λ. These results show that the length of random walks has

an impact on the prediction effectiveness of some MRs.

Next, we evaluated the effects of the modifications that we made to the node kernel

used with the random walk kernel. For this we created separate prediction models using

knode1 and knode2 described in equation 10 and equation 11 in Appendix B.1. We used nested

cross validation to select the regularization parameter of the SVM and the λ parameter

of the random walk kernel. Figure 4.6 shows the performance comparison between knode1

and knode2 . Figure 4.6b shows that the modified node kernel knode2 improves the prediction

effectiveness of all the metamorphic relations. Therefore in what follows we use knode2 .
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Figure 4.5. Variation of the BSR and the AUC with the parameter λ in the
random walk graph kernel for each MR.

To identify whether adding more functions to our code corpus would help to increase the

accuracy, we plotted learning curves for the random walk kernel. A learning curve shows

how the prediction accuracy varies with the training set size. Figure 4.7 shows the learning

curves for the six MRs. To generate these curves we held 10% of the functions in our code

corpus as the test set. From the other functions we selected subsets 10% to 100% as the
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Figure 4.6. Performance comparison of knode1 and knode2 for the random walk
kernel.

training set. We repeated this process 10 times so that the test set would have a different

set of functions each time. For all the MRs the AUC values increased as the training set

size increases. But the AUC values did not converge indicating that adding more training

instances might improve the prediction accuracy further.
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Figure 4.7. Learning curves for the six metamorphic relations
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4.4.2. Effectiveness of the graphlet kernel. With the graphlet kernel, we first

evaluated how prediction accuracy varies with graphlet size. For this evaluation, we used

only the control flow edges in the graphs when computing the graphlet kernel values. We

used cosine normalization described in Appendix B.3 to normalize the random walk kernel.

We varied the graphlet size from three nodes to five nodes and created separate predictive

models. In addition, we used all the graphlets together and created a single predictive model.

Figure 4.8a and Figure 4.8b shows how the average BSR and average AUC varies with the

graphlet size for each MR. When predicting the multiplicative MR, the predictive model

created using graphlets of size 5 performed the best. For the invertive MR, graphlets with

three nodes performed better than the other predictive models. For the other MRs, all the

predictive models gave a similar performance.
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Figure 4.8. Variation of performance with the graphlet size. 3, 4 and 5
are the predictive models created using graphlets of size 3, 4 and 5 respec-
tively. 3&4&5 is the performance of the predictive model created using all the
graphlets.
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Similar to the random walk kernel, we also compared the performance of the graphlet

kernel with the node kernels knode1 and knode2 . As with the random walk kernel, the graphlet

kernel with knode2 performed better than the graphlet kernel with knode1 .

4.4.3. Comparison of feature extraction methods. We compared the perfor-

mance of the node/path features that we used in our initial study [69] with the two graph

kernels used in this study. Below we present the details of these three feature extraction

methods used for this evaluation:

(1) Node/path features: we followed the same protocol as our earlier work [69]. Node/-

path features were calculated using only the “cfg” edges of the graphs. Node features

are created by combining the operation performed in the node, its in-degree and its

out-degree. Path features are created by taking the sequence of nodes in the shortest

path from Nstart to each node and the sequence of nodes in the shortest path from

each node Nexit. We used the linear kernel over these features as it exhibited the

best performance in our previous experiments [69].

(2) Random walk kernel: we computed the random walk kernel using only the “cfg”

edges of the graphs.

(3) Graphlet kernel: we computed the graphlet kernel using only the “cfg” edges of the

graphs.

Figure 4.9a and Figure 4.9b shows the average BSR and average AUC for the three feature

extraction approaches: node and path features, random walk kernel and graphlet kernel.

Among the three feature extraction approaches, the random walk kernel gave the best pre-

diction accuracy for all the MRs. Except for the permutative MR, the AUC values of the

graphlet kernel were equal or greater than the AUC values of node/path features. This
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improvement in performance could be attributed to the flexibility provided by the graph

kernels. The node kernel can be used to compare high level properties of the operations

such as commutativity of mathematical operations, in addition to direct comparison of node

labels. In fact, Figure 4.6 shows that using such high level properties of operations would

improve the accuracy of the prediction models.

Our results show that the random walk kernel performs better than the graphlet kernel

for most of the MRs. The random walk kernel compares two control flow graphs based on

their walks. A walk in the control flow graph corresponds to a potential execution trace

of the function. Therefore it computes a similarity score between two programs based on

potential execution traces. The graphlet kernel compares two control flow graphs based on

small subgraphs. These subgraphs will capture decision points in the program such as if-

conditions. A metamorphic relation is a relationship between outputs produced by multiple

executions of the function. Some execution traces directly correlate with some metamorphic

relations. Therefore the random walk kernel, which uses execution traces to compare two

functions should perform better than the graphlet kernel.

We also evaluated the effect of adding the random walk kernel and the graphlet kernel.

Adding the two kernel values is equivalent to using both graph substructures, walks and

subgraphs for creating a single model. We added the random walk kernel value and the

graphlet kernel value computed for a pair of functions and created a single kernel matrix

with these added values. Our experiments showed that this combined kernel could not

outperform the random walk kernel. Therefore we do not discuss these results in detail.

4.4.4. Effectiveness of control flow and data dependency information.

Finally, we compared the effectiveness of the control flow and data dependency information
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Figure 4.9. Prediction accuracy of node and path features, random walk
kernel and graphlet kernel.

of a function for predicting metamorphic relations. Figure 4.10 shows the effectiveness of

using only control flow information, only data dependency information and both control flow

and data dependency information. Since the random walk kernel performed best, we used it

for this analysis. For this experiment we computed the random walk kernel values separately

using the following edges in the graphs: (1) only “cfg” edges, (2) only “dd” edges and (3)

both “cfg” and “dd” edges.

We observe that overall, “cfg” edges performed much better than “dd” edges. Perfor-

mance using “dd” edges was particularly low for the invertive MR. This is because the control

flow graph more directly represents information about the execution of the program com-

pared to the data dependency edges. Typically, combining informative features improves

classifier performance. We observed this effect in four out of the six MRs. The reduced

performance for the multiplicative MR might be the result of the poor performance of the

“dd” edges.
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Figure 4.10. Performance of control flow and data dependency information
using random walk graph kernel. CFG - using only CFG edges, DD - using only
data dependency edges, CFG and DD - using both CFG and data dependency
edges.

4.5. SAXS: a case study

We conducted a case study to evaluate the effectiveness of predicted metamorphic re-

lations in detecting faults in a real world scientific software. For this we used the SAXS 7

program, which analyzes small angle x-ray scattering data. The SAXS program reconstructs

macromolecular structures using scattering patterns obtained from experiments. For this

case study we used the following three functions that performed the main calculations used

in the program:

• calculateDistance: computes distance between atoms

• findGyrationRadius : computes gyration radius of groups of atoms

• scatterSample: main function responsible for scattering

We created faulty versions of these three functions using the µJava8 mutation engine. We

used all the traditional mutation operators provided by µJava for generating the mutants.

7http://www.cs.colostate.edu/hpc/SAXS/index.php
8http://cs.gmu.edu/~offutt/mujava/
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Table 4.4 shows the number of mutants that we used in the case study after removing the

mutants that gave exceptions or infinite loops. We also removed mutants that gave the same

outputs as the original version of the function for the test cases used in the experiment (listed

as equivalent mutants in the table).

Table 4.4. Details of mutants of SAXS functions

calculateDistance findGyrationRadius scatterSample Total
Exceptions 15 62 33 110
Infinite loops 1 1 1 3
Equivalent mutants 4 19 12 35
No. of mutants used 19 54 139 212

Initially we obtained metamorphic relation predictions for the original SAXS functions

using the the graph kernel based metamorphic relation system described in Section 4.1.

Then, for each of these faulty versions of the functions we obtained metamorphic relation

predictions using the same approach. For training the machine learning classification models

we used all of the functions in the code corpus described in Section 4.3.2.

We randomly generated 10 initial test cases for each of the functions. Using the pre-

dicted metamorphic relations we created the corresponding follow-up test cases. Finally we

executed these test case pairs on the functions and checked whether the predicted meta-

morphic relations were violated. Violation of a predicted metamorphic relation indicates

that the mutant was detected through metamorphic testing. For the original version of the

SAXS functions we could not observe any violations of the predicted metamorphic relations.

Table 4.5 shows the percentage of mutants killed using the predicted MRs. From all the

mutants of the three functions, 90% of the mutants could be killed using the predicted MRs.

This shows that the MRs predicted by our method can be effective in identifying faults in

real world scientific programs.
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Table 4.5. Mutants detected by predicted MRs. f1: calculateDistance, f2:
findGyrationRadius, and f3: scatterSample

f1 f2 f3 Total

No. of mutants used 19 54 139 212
Killed by MT (using predicted MRs) 19 45 127 191
Percentage of killed mutants (%) 100 83.33 91.37 90.09
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CHAPTER 5

Effectiveness of Multi-label Classification for

Metamorphic Relation Prediction

In this Chapter we investigate the effectiveness of multi-label classification for predicting

metamorphic relations. We compare the effectiveness of different multi-label classification

algorithms. We also compare these results with the results we obtained from binary classifiers

presented in the previous chapters.

5.1. Method overview

Figure 5.1 shows an overview of the method used for applying multi-label classification

for predicting metamorphic relations. During the training phase, we start by extracting

the node/path features described in Section 3.2.2 from the functions in the training set.

Training data set in Figure 5.1 shows how multiple labels are associated with each function

in the data set corresponding to each metamorphic relation satisfied by that function. Then

this training data set is used by a multi-label classification algorithm to create a prediction

model.

During the testing phase the same set of features are extracted from the functions in

order to get predictions of metamorphic relations. Then these features are supplied to the

previously trained prediction model. The prediction model uses these features to provide

predictions for the set of metamorphic relations satisfied by each function.

5.1.1. Multi-label classification algorithms. In this work we used four multi-

label classification algorithms. Figure 5.2 shows the classification of multi-label algorithms

used in this work. More details about these algorithms can be found in Section 2.3.2. Two
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Figure 5.1. Overview of the multi-label classification method

of these algorithms fall into the category of problem transformation methods: (1) calibrated

label ranking (CLR) [59] and (2) hierarchy of multi-label classifiers (HOMER) [60]. The

next two approaches, multi-label k-nearest neighbors (ML-kNN) [63] and BP-MLL [65] are

algorithm adaptation methods. The final two algorithms, RAkEL [61] and ECC [62] are

ensemble approaches. As described in Section 2.3.2, both problem transformation methods

and ensemble methods use binary classifiers as base classifiers. In this work we used SVMs

and decision trees as base classifiers for CLR, HOMER, ECC,and RAkEL.

Figure 5.2. Classification of multi-label algorithms used
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5.1.2. Experimental Setup. For this evaluation we used the same code corpus de-

scribed in Section 4.3.2. We extracted the node/path features described in Section 3.2.2

from the graph representations of these functions. Similar to the experiments done with

binary classifiers we focused on predicting the six metamorphic relations listed in Table 4.2.

Therefore these are the six labels in our multi-label classification problem.

When conducting the experiment, we used the implementations of the above mentioned

four multi-label classification algorithms provided in the MULAN1 library. When using the

SVM as the base classifier, we used the linear kernel and set the regularization parameter

C to 10 since these parameter settings gave good results in our previous experiments. As

described in Section 2.3.2.3, for RAkEL we had to select two parameters: number of base

classifiers and size of the label subset. We set the number of base classifiers to 12 (2× number

of labels) and the size of the label subsets to 3 (number of labels/2). Tsoumakas et al. [61]

has shown that these are reasonable choices for these parameters.

To obtain the results we used 10-fold cross validation as with our previous experiments.

Then we calculated the evaluation measures described in Section 2.3.4 to measure the effec-

tiveness of the multi-label classification algorithms.

5.2. Results

5.2.1. Performance of problem transformation methods. First we compare

the performance of the two problem transformation methods: CLR and HOMER. Table 5.1

shows the results obtained using these three algorithms. Within parentheses we present the

standard deviation of the value for each measure. Values highlighted in bold shows the best

performance for each evaluation measure. CLR-SVM and CLR-DT refers to using SVMs

1http://mulan.sourceforge.net/

61



and decision trees as base classifiers for the CLR algorithm. Similarly HOMER-SVM and

HOMER-DT refers respectively to using SVMs and decision trees as base algorithms.

Table 5.1. Effectiveness of problem transformation methods for metamor-
phic relation prediction

CLR-SVM CLR-DT HOMER-SVM HOMER-DT

Micro-precision 0.72 (0.13) 0.67 (0.11) 0.68 (0.13) 0.70 (0.13)
Micro-recall 0.81 (0.10) 0.77 (0.15) 0.84 (0.12) 0.71 (0.13)
Micro-F 0.75 (0.07) 0.70 (0.10) 0.74 (0.08) 0.69 (0.08)
Macro-precision 0.71 (0.15) 0.67 (0.12) 0.70 (0.14) 0.69 (0.12)
Macro-recall 0.77 (0.09) 0.76 (0.13) 0.84 (0.12) 0.69 (0.14)
Macro-F 0.71 (0.09) 0.68 (0.09) 0.72 (0.07) 0.65 (0.09)

CLR-SVM outperformed CLR-DT when considering all of the six performance mea-

sures. HOMER-SVM outperformed HOMER-DT for five evaluation measures. This shows

that when using problem transformation methods for predicting metamorphic relations, us-

ing SVMs as base classifiers can improve the performance over the use of decision trees.

This is consistent with the performance we observed with binary classifiers as shown in

Section 3.3.3.2.

When comparing the two problem transformation methods, the HOMER algorithm out-

performed CLR when considering both macro-recall and micro-recall measures. This means

that HOMER predicted more metamorphic relations than CLR at the cost of predicting

false positives. Therefore it might be useful to use HOMER for predicting MRs especially

when testing safety critical systems. For safety critical systems conducting more testing with

more MRs may be more important than having several false positives. On the other hand,

CLR outperformed HOMER when considering both micro-precision and macro-precision.

Therefore if you are conducting testing with a limited testing budget it might be better to

use CLR to get the predictions since it will predict fewer incorrect MRs.
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5.2.2. Performance of ensemble methods. Next, we evaluated the effectiveness

of ensemble methods for predicting MRs. We used two ensemble methods: RAkEL and

ECC described in Section 2.3.2.3. Table 5.2 displays the results obtained using these two

ensemble methods. RAkEL-SVM and RAkEL-DT refers to using SVMs and decision trees

as base classifiers with the RAkEL algorithm. Similarly, ECC-SVM and ECC-DT refers to

using SVMs and decision trees as base classifiers with the ECC algorithm.

Table 5.2. Effectiveness of ensemble methods for predicting metamorphic
relations

RAkEL-SVM RAKEL-DT ECC-SVM ECC-DT

Micro-precision 0.69 (0.14) 0.71 (0.15) 0.70 (0.13) 0.69 (0.12)
Micro-recall 0.80 (0.12) 0.67 (0.12) 0.80 (0.08) 0.71 (0.13)
Micro-F 0.73 (0.09) 0.67 (0.09) 0.73 (0.08) 0.68 (0.07)
Macro-precision 0.70 (0.17) 0.70 (0.17) 0.71 (0.17) 0.68 (0.14)
Macro-recall 0.78 (0.14) 0.65 (0.12) 0.75 (0.08) 0.70 (0.13)
Macro-F 0.69 (0.10) 0.63 (0.09) 0.69 (0.09) 0.65 (0.08)

RAkEL-DT outperformed RAkEL-SVM when considering micro-precision and both of

them performed equally when considering the macro-precision measure. But for the other

evaluation measures, RAkEL-SVM outperformed RAkEL-DT. ECC-SVM outperformed ECC-

DT when considering all the evaluation measures. Therefore, similar to problem transforma-

tion methods, ensemble methods also performed better when using SVMs as base classifiers.

When comparing the two ensemble methods, RAkEL and ECC, there does not seem to

be a clear winner. RAkEL outperformed ECC when considering the macro-recall measure.

All the other measures gave close values for the two algorithms.

5.2.3. Performance of algorithm adaptation methods. Finally, we evaluated

the performance of two algorithm adaptation methods, ML-kNN and BP-MLL described in

Section 2.3.2.4 and Section 2.3.2.5, respectively. Table 5.3 shows the the results obtained
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using the two algorithm adaptation methods. For three evaluation measures, BP-MLL out-

performed ML-kNN. But the standard deviations reported by BP-MLL were considerably

high compared to the standard deviations reported by ML-kNN.

Table 5.3. Effectiveness of algorithm adaptation methods for predicting
metamorphic relations

ML-kNN BP-MLL

Micro-precision 0.63 (0.11) 0.46 (0.18)
Micro-recall 0.63 (0.11) 0.77 (0.30)
Micro-F 0.62 (0.09) 0.57 (0.21)
Macro-precision 0.48 (0.15) 0.37 (0.16)
Macro-recall 0.52 (0.09) 0.72 (0.30)
Macro-F 0.46 (0.09) 0.47 (0.19)

5.2.4. Performance comparison across different multi-label classifica-

tion methods. Table 5.4 shows the performance comparison of the three categories of

multi-label classification algorithms used in this work. Problem transformation algorithms

performed best when considering the six evaluation measures. The algorithm adaptation

methods exhibited the worst performance.

Table 5.4. Performance comparison of multi-label classification methods

Problem transformation
methods

Ensemble methods
Algorithm adaptation

methods

Micro-precision 0.72 0.71 0.63
Micro-recall 0.84 0.80 0.63
Micro-F 0.75 0.73 0.62
Macro-precision 0.71 0.71 0.48
Macro-recall 0.84 0.78 0.52
Macro-F 0.72 0.69 0.46

5.2.5. Performance comparison of multi-label classifiers and binary clas-

sifiers. To compare the performance of multi-label classifiers with binary classifiers, we

calculated the same set performance measures as done for the multi-label classifiers using
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the results obtained with binary classifiers. We created the binary classifiers using SVMs with

the linear kernel and regularization parameter set to 10. We used the same set of node/path

features to train the SVMs that we used to create the multi-label classifiers. Even though the

random walk kernel performed better than node/path features, we did not use graph kernels

in this evaluation, since implementations of most of the multi-label classification algorithms

used in this study do not accommodate using graph kernels with them.

Table 5.5 shows the comparison of the two classification methods. Binary classification

outperformed multi-label classification when considering both the micro-precision and macro-

precision measures. For the micro-recall and macro-recall measures, multi-label classification

algorithms performed better than binary classification algorithms. Multi-label classification

algorithms consider dependencies among labels. Thus considering label dependencies may

help to improve the recall of the classifier but not its precision.

Table 5.5. Performance comparison of multi-label classification algorithms
with binary classification algorithms

Binary classifiers Multi-label classifiers

Macro-precision 0.82 0.72
Macro-recall 0.74 0.84
Macro-F 0.78 0.75
Micro-precision 0.83 0.71
Micro-recall 0.75 0.84
Micro-F 0.79 0.72

5.3. Conclusions

In this Chapter we evaluated the effectiveness of multi-label classification algorithms for

predicting metamorphic relations. Specifically we investigated whether the use of depen-

dencies among labels by the classification algorithm will improve prediction accuracy. Our
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results show that including dependencies among metamorphic relations can increase the clas-

sifier recall. In addition, problem transformation algorithms gave the best performance in

multi-label classification when using SVMs as their base classifiers. We evaluated the per-

formance of two problem transformation algorithms: CLR and HOMER. CLR had better

precision than HOMER, while HOMER had better recall than CLR. Therefore the selec-

tion of one of these two algorithms should be done depending on the type of program that

you plan to test. For example, when testing a safety critical system, using HOMER to get

metamorphic relations predictions might be useful, since it recalls most of the metamorphic

relations that should be satisfied by the program, when compared to CLR. If your are testing

a program with a limited testing budget, CLR maybe more suitable for making metamorphic

relation predictions.
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CHAPTER 6

Limitations and Threats to Validity

6.1. Limitations

One of the main limitations of our work is that the techniques we present here can only

be used to predict metamorphic relations at the function level. So the metamorphic relations

predicted by our techniques can be used as automated test oracles for conducting automated

unit testing. We believe that predicting metamorphic relations for a whole program would be

a very difficult task due to high variability among programs. Further, previous studies have

shown that higher number of metamorphic relations can be usually derived at the function

level compared to deriving metamorphic relations for a whole program [88]. Also, previous

work has shown that function level metamorphic relations can reveal defects that were not

found by metamorphic relations derived for the whole program [88]. Therefore even if the

techniques that we present here can only predict metamorphic relations at the function level

they can be highly effective in identifying faults when conducting unit testing.

Another limitation of our work is that we used only numerical programs that handle

numerical inputs/outputs and a set of metamorphic relations that are commonly found

in such programs in our evaluations. But we believe that our approach will extend to

programs that handle other types of inputs/outputs such as graphs, matrices, etc. In such

cases prediction models need to be trained for predicting metamorphic relations that are

commonly found in such programs.
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6.2. Threats to validity

6.2.1. External validity. Conditions that limit the ability to generalize experimental

results are considered as threats to external validity [89]. We used a code corpus consisting

of 100 mathematical functions for our empirical studies. These functions differ in size and

complexity. They also perform different functionalities such as sorting, searching, calculating

common statistics, etc. But this set of functions can pose a threat to external validity. We

tried to minimize this threat by using functions obtained from different open source libraries.

Even though we only used a set of 100 mathematical functions, the results demonstrate the

effectiveness of this novel approach for detecting likely metamorphic relations.

6.2.2. Internal validity. Influences that can effect the independent variable of an

experiment with respect to causality are called internal validity threats [89]. Threats to

internal validity can occur due to potential faults in the implementations of the functions.

Since we were not the developers of these functions we cannot guarantee that these functions

are free of faults. The competent programmer hypothesis [90] states that even though the

programmer might make some mistakes in the implementation, the general structure of the

program should be similar to the fault-free version of the program. We use control flow and

data dependency information about a program to create our prediction models. According

to the competent programmer hypothesis this information should not change significantly

even with a fault. In addition, there may be more relevant metamorphic relations for these

functions than the six metamorphic relations that we used for our empirical studies.

6.2.3. Conclusion validity. Issues that affect the ability to draw correct conclusions

about the relationships between treatments and outcomes in experiments are called threats

to conclusion validity [89]. The main threat to conclusion validity is the sample size used

68



in the validation. We used 100 programs that take numerical inputs and produce numerical

outputs in this study. We limited the set of programs to 100 since we believe it is not cost

effective for the classifier to learn from a larger set of programs.

6.2.4. Construct validity. Any concerns related to generalizing the results of an

experiment to the theory behind the experiment are considered as threats to construct va-

lidity [89]. We used the Soot framework to generate CFGs of the functions used in this

experiment. Further we used the NetworkX 1 package for graph manipulation. Use of these

third party tools represents potential threats to construct validity. We verified that the re-

sults produced by these tools are correct by manually inspecting randomly selected outputs

produced by each tool. Further, we used mutation analysis to measure the fault detection

effectiveness of predicted metamorphic relations. Mutation analysis represents a threat to

construct validity because mutations are synthetic faults. However, previous studies have

shown that mutations represent faults made by a real human programmer [76].

1http://networkx.lanl.gov/
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CHAPTER 7

Conclusion

In this chapter we describe our contributions, possible future work, and conclusions.

7.1. Contributions

In this dissertation we introduced a novel machine learning based approach for predict-

ing metamorphic relations in previously unseen functions. These predicted metamorphic

relations can be used as test oracles during automated testing. We evaluated the different

components of our approach: machine learning algorithms, feature extraction techniques

and the program information used to develop the features. Our key contributions include

the following:

• We are the first to present a systematic literature survey on testing scientific software

(Section 2.1). Through this systematic literature survey we found that challenges

faced when testing scientific software fall into two main categories: (1) testing chal-

lenges that are due to characteristics of scientific software such as oracle problems

and (2) testing challenges that are caused by cultural differences between scientists

and the software engineering community, for example viewing the code and the

model that it implements as inseparable entities. In addition, we identified methods

to potentially overcome these challenges and their limitations. Finally we described

unsolved challenges and how software engineering researchers and practitioners can

help to overcome them.

• We presented a novel method for predicting metamorphic relations at the function

level (Chapter 3). We developed a set of features using function’s control flow graphs
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for creating binary classification models. Then we evaluated the effectiveness of

three binary classification algorithms using a set numerical functions widely used in

scientific computing. We found that support vector machines are the most effective

of the three in predicting metamorphic relations.

• We conducted empirical evaluations of the effectiveness of different types of features

and program information used to develop the machine learning classification models

(Chapter 4). We used graph kernels to develop different categories of features that

represent semantic information about the programs. To our knowledge this is the

first time graph kernels have been developed to capture semantic information in

source code. We found that graph kernels developed using walks in the graphs are

highly effective in prediction metamorphic relations. Then we conducted empirical

evaluations to evaluate the effectiveness of control flow and data dependency infor-

mation for predicting metamorphic relations. Through this we found that control

flow information is more effective in predicting metamorphic relations than data

dependency information.

• We evaluated the effectiveness of multi-label classification algorithms for predicting

metamorphic relations. Our empirical studies showed that the precision of multi-

label classifiers is lower than that of binary classifiers. But multi-label classifiers have

a higher recall than binary classifiers. We also showed that problem transformation

methods works best for metamorphic relation prediction.

Work in this dissertation has also led to publication of two journal papers ( [12] and one

currently under review) and three conference/workshop papers [69, 91, 92]. Our work also

resulted in an invited contribution to a book chapter [93].

71



7.2. Future work

Automated test oracles are essential for conducting systematic automated testing. There

are a number of interesting future work possibilities for developing such automated oracle.

We discuss several of those future work possibilities below:

(1) Automatically deriving program specific metamorphic relations: in this work we

focused on predicting whether a function should satisfy a set of metamorphic rela-

tions commonly found in numerical programs. For example the additive metamor-

phic relation specifies that when you add a positive constant to the initial input,

the output will increase or remains constant. This metamorphic relation does not

specify the constant value or the exact increase in the output, which is specific to

the program under test. Such program specific metamorphic relations can be auto-

matically generated using search-based techniques. This analysis will require using

dynamic properties of the program.

(2) Hybrid test oracles: Effectiveness of test oracles may be improved by combining

automatically generated metamorphic relations with automatically generated pro-

gram assertions. These hybrid oracles will be especially useful for testing scientific

programs that face oracle problems. But these hybrid oracles needs to be created

in an effective manner so that the testing costs do not increase.

(3) Test oracle selection: Automatic generation of metamorphic relations will result in

generating multiple metamorphic relations for a given program. Then it is important

to select or prioritize the most effective oracle for reducing testing costs. Therefore

developing a set of metrics to measure the effectiveness of test oracles will be useful.

These metrics can be used to evaluate different features offered by different test
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oracles for a given program. For example, the metrics can help one to select between

multiple metamorphic relations when a testing budget is limited. These measures

need to consider different aspects of test oracles such as soundness and completeness

in addition to their fault finding ability.

7.3. Conclusion

Testing programs that do not have oracles is a continuing challenge in software test-

ing [94]. In this dissertation we addressed the problem of automatically predicting metamor-

phic relations that can be used as test oracles for programs that do not have oracles. We

developed a novel technique that creates machine learning models using semantic features

extracted from graph based program representations. We showed this method can effectively

predict metamorphic relations using a set of real world functions. In addition, we showed that

these predicted metamorphic relations can detect faults in these functions. Techniques that

we developed here reduce the testing cost by minimizing the human involvement required in

discovering the metamorphic relations for a given program.

Automatically predicted metamorphic relations can be used as automated test oracles

when conducting automated testing especially on scientific software. These predicted meta-

morphic relations can serve as automated test oracles during the testing process of scientific

programs and thus remove the need for a domain expert to be involved during the testing

of these programs. This automated process reduces the testing costs as well as the subjec-

tivity of the testing process. Systematic automated testing can help to reveal more faults in

scientific programs and increase our confidence in the results produced by these programs.
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APPENDIX A

Functions used in the empirical studies

Table A.1. Details of the functions used in the experiment in Chapter 3 (P:
Permutative, A: Additive, I: Inclusive, X: positive example for the relation,
×: negative example, -: not used as an example)

No. Function Name P A I

1. add values (Add elements in an array) X X X
2. add two array values (Adds elements at given index in 2 arrays) × X X
3. bubble sort (Implements bubble sort) X X ×
4. shell sort (Implements of shell sort) X X ×
5. binary search × X X
6. sequential search × X X
7. selection sort (Implements selection sort) X X ×
8. dot product × X X
9. array div (Divide array elements by k) × X -

10. set min val (Set array elements less than k equal to k) × × X
11. find min (Find minimum value in an array) X X X
12. find diff (Element-wise difference in two arrays) × X -

13. array copy (Deep copy an array) × - X
14. copy array part × - X
15. find euc dist (Euclidean distance between two vectors) × X X
16. find magnitude (magnitude of a vector) X X X
17. manhattan dist (Manhattan distance between two vectors) × × X
18. average X X X
19. dec array (Decrement elements by k) × X -

20. find max (Find the maximum value) X X X
21. find max2 (maximum value of addition of two consecutive elements in an

array)
× X ×

22. quick sort (Implements quick sort) X X ×
23. variance X X ×
24. insertion sort (Implements insertion sort) X X ×
25. heap sort (Implements heap sort) X X ×
26. merge sort (Implements of merge sort) X X ×
27. geometric mean X X ×
28. mean absolute error × × X
29. select k (Find the kth largest value from a set of numbers) X X ×
30. find median X X ×
31. cartesian product (Cartesian product between two sets) X × X
32. reverse (Reverse an array) × - -

33. check equal tolerance (Checks element-wise equality within a given toler-
ance)

× × -

34. check equal (Element-wise equality between two sets of integers) × × -

35. weighted average × X X
36. count k (Occurrences of k in an array) X × X
37. bitwise and × - -

38. bitwise or × - -
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Table A.2. Details of the functions used in the experiment in Chapter 3 (P:
Permutative, A: Additive, I: Inclusive, X: +ve example for the relation, ×:
-ve example, -: not used as an example)

No. Function Name P A I

39. bitwise xor × - -

40. bitwise not × - -

41. clip (Values outside a given interval clipped to the edges of the interval in
an array)

× × -

42. elementwise max (Element-wise maximum) × × -

43. elementwise min (Element-wise minimum) × × -

44. cnt nzeroes (Number of non-zero elements in an array) X × X
45. cnt zeros (Number of zero elements in a given array X × X
46. elementwise equal (Check for element-wise equality and returns a boolean

array)
× × -

47. elementwise not equal (Check two for element-wise for nonequality) × × -

48. hamming dist - × -

Table A.3. Functions used in the experiment in Chapter 4.

Open source
project

Functions used in the experiment

Colt Project min, max, covariance, durbinWatson, lag1, meanDeviation,
product, weightedMean, autoCorrelation, binarySearch-
FromTo, quantile, sumOfLogarithms, kurtosis, pooledMean,
sampleKurtosis, sampleSkew, sampleVariance, pooledVari-
ance, sampleWeightedVariance, skew, standardize, weight-
edRMS, harmonicMean, sumOfPowerOfDeviations, power,
square, winsorizedMean, polevl

Apache Mahout add, cosineDistance, manhattanDistance, chebyshevDis-
tance, tanimotoDistance, hammingDistance, sum, dec, er-
rorRate

Apache Commons
Mathematics
Library

errorRate, scale, eucleadianDistance, distance1, distanceInf,
ebeAdd, ebeDivide, ebeMultiply, ebeSubtract, safeNorm,
entropy, g, calculateAbsoluteDifferences, calculateDiffer-
ences, computeDividedDifference, computeCanberraDis-
tance, evaluateHoners, evaluateInternal, evaluateNew-
ton, mean, meanDifference, variance, varianceDifference,
equals, checkNonNegative, checkPositive, chiSquare, eval-
uateWeightedProduct, partition, geometricMean, weighted-
Mean, median, dotProduct

Functions from
the previous
study [69]

reverse, add values, bubble sort, shell sort, sequen-
tial search, selection sort, array calc1, set min val,
get array value, find diff, array copy, find magnitude,
dec array, find max2, insertion sort, mean absolute error,
check equal tolerance, check equal, count k, clip, element-
wise max, elementwise min, count non zeroes, cnt zeroes,
elementwise equal, elementwise not equal, select
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APPENDIX B

Definitions of graph kernels

B.1. Definition of the random walk kernel

Let G1 = (V1, E1) and G2 = (V2, E2) be two graph representations of programs as de-

scribed in Section 3.2.1. Consider two walks, walk1 in G1 and walk2 in G2. walk1 =

(v11, v
2
1, ..., v

n−1
1 , vn1 ) where vi1 ∈ V1 for 1 ≤ i ≤ n. walk2 = (v12, v

2
2, ..., v

n−1
2 , vn2 ) where vi2 ∈ V2

for 1 ≤ i ≤ n. (vi1, v
i+1
1 ) ∈ E1 and (vi2, v

i+1
2 ) ∈ E2. Then the kernel value of two graphs can

be defined as

(7) krw(G1, G2) =
∑

walk1∈G1

∑
walk2∈G2

kwalk(walk1, walk2),

where the walk kernel kwalk can be defined as

(8) kwalk(walk1, walk2) =
n−1∏
i=1

kstep((v
i
1, v

i+1
1 ), (vi2, v

i+1
2 )).

The kernel for each step will be defined using the kernel values of the two node pairs and

the edge pair of the considered step as follows:

(9) kstep((v
i
1, v

i+1
1 ), (vi2, v

i+1
2 )) = knode(v

i
1, v

i
2) ∗ knode(vi+1

1 , vi+1
2 ) ∗ kedge((vi1, vi+1

1 ), (v2i, v
i+1
2 )).

We defined two node kernels: knode1 and knode2 to get the similarity score between two nodes.

We use knode1 and knode2 in place of knode in equation (9). knode1 checks the similarity of the

node labels.
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(10) knode1(vi, vj) =


1 if label(vi) = label(vj),

0 otherwise.

In the second node kernel, knode2 we considered whether the operation performed in the

two nodes are in the same group if the node labels are not equal. For this study we grouped

the mathematical operations using commutative and associative properties.

(11) knode2(vi, vj) =



1 if label(vi) = label(vj),

0.5 if group(vi) = group(vj) and label(vi) 6= label(vj),

0 if group(vi) 6= group(vj) and label(vi) 6= label(vj).

The edge kernel, kedge is defined as follows:

(12) kedge((v
i
1, v

i+1
1 ), (vi2, v

i+1
2 )) =


1 if label(vi1, v

i+1
1 ) = label(vi2, v

i+1
2 ),

0 otherwise.

We used the direct product graph approach presented by Gärtner et al. [71] with the modi-

fication introduced by Borgwardt et al. [95] for calculating all the walks within two graphs.

The direct product graph of two graphs G1 = (V1, E1) and G2 = (V2, E2) is denoted by

G1 ×G2. The nodes and edges of the direct product graph are defined as follows:
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Figure B.1. Direct product graph of G1 and G1 in Table 4.3

VX(G1 ×G2) = {(v1, v2) ∈ V1 × V2}

EX(G1 ×G2) = {((v11, v21), (v12, v
2
2)) ∈ V 2(G1 ×G2) : (v11, v

2
1) ∈ E1 ∧ (v12, v

2
2) ∈ E2∧

label(v11, v
2
1) = label(v12, v

2
2)}

Figure B.1 shows the direct product graph of the two graphs G1 and G2 in Table 4.3. As

shown in figure B.1, the direct product graph has a node for each pair of nodes in G1 and G2.

There is an edge between two nodes in the product graph if there are edges between the two

corresponding pairs of the nodes in G1 and G2. Taking a walk in the direct product graph is

equivalent to taking simultaneous walks in G1 and G2. Consider the walk AP → BQ→ CS

in the direct product graph. This walk represents taking the walks A→ B → C in G1 and

P → Q → S in G2 simultaneously. Therefore by modifying the adjacency matrix of the

direct product graph to contain similarity scores between steps, instead of having one/zero

values, we can use the adjacency matrix of the direct product graph to efficiently compute

the random walk kernel value of two graphs. We present the definition of the direct product

graph and how it is used to compute the random walk kernel in Section B.1.

90



Based on the product graph, the random walk kernel is defined as:

(14) krw(G1, G2) =

VX∑
i,j=1

[
∞∑
n=0

λnAn
X

]
ij

where AX denotes the adjacency matrix of the direct product graph and 1 > λ ≥ 0 is

a weighting factor. To make the sum finite, we limited n in Equation (14) to 10 in our

experiments. The adjacency matrix of the product graph is modified as follows to include

kstep defined in Equation (9):

[AX ]((vi,wi),(vj ,wj))
=


kstep((vi, wi), (vj, wj)) if ((vi, wi), (vj, wj)) ∈ EX

0 otherwise

B.2. Definition of the graphlet kernel

Shervashidze et al. [68] developed a graph kernel that compares all subgraphs with k ∈

{3, 4, 5} nodes. The authors refer to this kernel as the graphlet kernel, which was developed

for unlabeled graphs. We extended the graphlet kernel for directed labeled graphs since

the labels in our graph based program represent important semantic information about the

function. We first describe the original graphlet kernel and then describe the modifications

we made to it.

Let a graph be a pair G = (V,E), where V = {v1, v2, . . . , vn} are the n vertices and

E ⊆ V × V is the set of edges. Given G = (V,E) and H = (VH , EH), H is said to be

a subgraph of G iff there is an injective mapping α : VH → V such that (v, w) ∈ EH iff

(α(v), α(w)) ∈ E. If H is a subgraph of G it is denoted by H v G.
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Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijective

mapping g : V1 → V2 such that (vi, vj) ∈ E1 iff (g(vi), g(vj)) ∈ E2. If G1 and G2 are

isomorphic, it is denoted by G1 ' G2 and g is called the isomorphism function.

LetMk
1 andMk

2 be the set of size k subgraphs of the graphs G1 and G2 respectively. Let

S1 = (VS1 , ES1 ) ∈Mk
1 and S2 = (VS2 , ES2 ) ∈M2. Then the graphlet kernel, kgraphlet(G1, G2)

is computed as

(15) kgraphlet(G1, G2) =
∑

S1∈Mk
1

∑
S2∈Mk

2

δ(S ' S2)

where

δ(S1 ' S2) =


1 if S1 ' S2

0 otherwise

The kernel in Equation (15) is developed for unlabeled graphs. To consider the node

labels and edge labels we modified the kernel in 15 as follows:

(16) kgraphlet(G1, G2) =
∑

S1∈Mk
1

∑
S2∈Mk

2

ksubgraph(S1, S2)

where

(17)

ksubgraph(S1, S2) =


∏

v∈VS1

knode(v, g(v)) ∗
∏

(vi,vj)∈ES1

kedge((vi, vj), (g(vi), g(vj))) S1 ' S2,

0 otherwise.
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We used Equation (16) to compute the graphlet kernel value for a pair of programs rep-

resented in the graph based representation described in Section 3.2.1. Similar to the random

walk kernel, knode in Equation (17) is replaced by knode1 and knode2 defined in Equation (10)

and Equation( 11) respectively. Equation (12) defines kedge.

B.3. Kernel normalization

We normalize each kernel such that each example has a unit norm by the expression [73,

67]:

(18) k′graph(G1, G2) =
kgraph(G1, G2)√

kgraph(G1, G1)kgraph(G2, G2)
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