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ABSTRACT

POLYHEDRAL OPTIMIZATIONS OF

RNA-RNA INTERACTION COMPUTATIONS

Studying RNA-RNA interaction has led to major successes in the treatment of some cancers,

including colon, breast and pancreatic cancer by suppressing the gene expression involved in the

development of these diseases. The problem with such programs is that they are computationally

and memory intensive: O(N4) space and O(N6) time complexity. Moreover, the entire application

is complicated and involves many mutually recursive data variables. We address the problem of

speeding up a surrogate kernel (named OSPSQ) that captures the main dependence pattern found

in two widely used RNA-RNA interaction applications- IRIS and piRNA.

The structure of the OSPSQ kernel perfectly fits the constraints of the polyhedral model, a well-

developed technology for optimizing codes that belong to many specialized domains. However, the

current state-of-the-art automatic polyhedral tools do not significantly improve the performance of

the baseline implementation of OSPSQ.

With simple techniques like loop permutation and skewing, we achieve an average of 17x

sequential and 31x parallel speedup on a standard modern multi-core platform (Intel Broadwell,

E5-1650v4). This performance represents 75% and 88% of attainable single-core and multi-core

L1 bandwidth. For further performance improvement, we describe how to tile all six dimensions

and also formulate the associated memory trade-off.

In the future, we plan to implement these tiling strategies, explore the performance of the code

for various tile sizes and optimize the whole piRNA application.
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Chapter 1

INTRODUCTION

Ribonucleic acid (RNA) is a single stranded nucleic acid. In cancerous cells, micro RNA

molecules (miRNA) often bind to messenger RNA (mRNA) molecules and change their functions.

Knowledge of this RNA-RNA interaction has led to major successes in the treatment of some

cancers, including colon, breast and pancreatic by suppressing the gene expression involved in

the development of these diseases [1–3]. We consider optimizing two applications that predict

RNA-RNA interaction structure and associated properties- IRIS [4] and piRNA [5]. Both these

applications involve calculations on single RNA folding as well as the interaction between RNA

molecules.

Figure 1.1: Example of a single RNA molecule, its folding and interaction loops formed between two RNA

molecules

The IRIS package uses dynamic programming to find secondary structures that have the max-

imum number of base pairs when two RNA sequences interact. piRNA is a bio-informatics ap-

plication that computes the partition function of two interacting RNA sequences using a similar

algorithm. The partition function is a weighted sum over the set of all possible secondary struc-

tures (S) given by the equation 1.1 where R is the universal gas constant and T is the temperature.

Q(T ) =
∑

s∈S

e−Gs/RT (1.1)
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This partition function is a scalar value and can be used to compute several other properties like

equilibrium concentration and melting temperature of interacting nucleic acids. Both the applica-

tions have the time complexity of O(N3M3) and space complexity of O(N2M2) where N and M

are lengths of the input sequences.

On examining these two applications, we find that the dominant computations fit the polyhedral

model [6–8]. This model is widely accepted as a powerful tool for optimizing a well defined,

limited, yet widely prevalent class of computational patterns that occur in many applications in the

form of nested loops. There are several frameworks, some integrated into compilers, and some

stand-alone user-guided tools that utilize these techniques for (semi) automatic compilation of

codes to benefit from locality and parallelization.

piRNA is written in C++. Partition function computations contribute to 96% of the execution

time and fit the polyhedral model. Although the authors implemented a simple parallelization

strategy, we will see that it can be significantly improved. The parallelization of piRNA is not well

suited for modern computers that have sophisticated memory hierarchy and SIMD features. The

entire application is complicated and involves many mutually recursive data variables. It is diffi-

cult to apply automatic polyhedral tools on this whole application due to these complicated code

structure. It is also known that polyhedral techniques are successful in optimizing computations

found in small to medium benchmark like Polybench [9], relatively few attempts tackle large appli-

cations [10]. So, we decided to analyze a surrogate kernel named Optimal String Parenthesization

SQuared (OSPSQ) that captures the main dependence pattern. Chapter 2 explains the complicated

structure of piRNA application and details of the gap between piRNA and OSPSQ. The IRIS ap-

plication also has OSPSQ-like dependence structure. In OSPSQ, the operation is multiply-add

whereas, with IRIS, it is max-plus. Although the operations are different, the dependence pattern

is same, and optimizations for OSPSQ can be applied to IRIS without any modifications.

In this work, we focus on optimizing OSPSQ computation. Although this kernel is small when

compared to the entire piRNA application, it is much more complex than kernels typically handled

by most polyhedral tools, since it has O(N4) space and O(N6) time complexity. Most of the
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Polybench kernels has O(N2) memory and O(N3) time complexity. It has only two kernels that

have O(N3) space and O(N4) time. Even the highly optimized BLAS library has routines only

for O(N3) time and O(N2) space computations.

1.1 CONTRIBUTIONS

• After identifying that the control and dependence patterns of the critical part of both the

applications can be succinctly described by a simple surrogate kernel that we call OSPSQ,

we achieved 17× sequential and 31× parallel speed-up on Intel Broadwell.

• This performance corresponds to 75% and 88% of attainable single-core and multi-core L1

bandwidth.

• For further improving performance, we show how to tile all six dimensions and also formu-

late the associated memory trade-off.

1.2 RELATED WORK

Although we use important principles of the polyhedral model in this thesis, we believe that

the readers can understand the concepts without the mathematical formulations of the polyhedral

model. We provide the necessary background on polyhedral tools and concepts as and when re-

quired throughout the thesis.

Different algorithms have been proposed to predict RNA-RNA interaction structure. However,

most of them suffer from high computational time. There are several algorithms and techniques to

mitigate this problem but to our knowledge, none of these aims at improving the performance based

on the dependence structure between the variables in the code. For interested readers, following is

a review of optimization techniques that are entirely orthogonal to our strategy.

Syed Ali Ahmed and Saad Mneimneh introduce an approximation algorithm [11], where an

RNA-RNA interaction graph is created in which every edge represents a possible bond in or be-

tween two RNA sequences. A set of edges is found to maximize the number of bonds. Fenix et
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al. [12] introduce a statistical sampling algorithm based on some modifications to the grammars.

It calculates the interaction probabilities for any given single region on RNA. Alkan et al. [13]

develop fast algorithms to minimize the free-energy between RNA molecules.

RactIP [14] predicts RNA-RNA interaction using integer programming. It uses the approxi-

mate information of the internal and external base pairing probabilities of joint structures as an

objective function of integer programming. The authors claim that “RactIP is the fastest method

for predicting both internal structures and binding sites simultaneously on condition of the com-

prehensive class of interactions." But, their computational complexity remains the same.

Salari et al. [15] propose a fast interaction prediction broken down into two steps. In step 1, they

focus on calculating the probability of at most two regions remaining unpaired within a given RNA

sequence of length n; their method calculates the probability of any pair of regions of length ≤ w

each in O(n4w) time and O(n2) space. In step 2, for two RNA sequences, their method computes

the most probable non-conflicting matching of accessible regions in O(n2.w4 + n3/w3) time and

O(w4 + n2/w4) space complexity. They achieve this based on the observation that independent

secondary structure is preserved even after the joint structure is formed with another RNA. In a

follow-up work [16], they apply sparsification techniques to reduce time and space complexity to

O(n4Ψ(n)) and O(n2Ψ(n) + n3) respectively for some function Ψ(n). This function turns out to

have small values for the range of n encountered in practice. Using the polymer-zeta property, they

prove that Ψ(n) = O(n). So, they achieve linear time and space improvement.

Hamidreza et al. [17] introduce a fast algorithm, based on sparse folding, to calculate an upper

bound on the partition function. The space complexity is O(m2 + n2 + MFES(m,n)), and the

time complexity of O(MFE(m,n)l) for RNA-RNA interaction. Here, MFES and MFE are the

memory space and the running time of minimum free energy prediction and l ≤ n(ln + m) is a

sequence-dependent parameter.
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1.3 THESIS STRUCTURE

Chapter 2 explains the structure of piRNA application and details of the gap between piRNA

and OSPSQ. It also motivates the reason for why we chose to manually optimize OSPSQ com-

putation amidst the existence of powerful automatic tools. Chapter 3 explains the implemented

optimization strategies. In Chapter 4 we present the experimental evaluation. In Chapter 5 we

introduce the six-dimensional tiling technique and the associated memory trade-off derivation.

Chapter 6 presents conclusion and pointers to future work.
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Chapter 2

OSPSQ CREATION AND MOTIVATION

piRNA is written in C++. The entire application is divided into several files of about 8000

lines of code. Out of this, partition function calculations are about 1000 lines and contribute to

96% of execution time. It includes code for calculating partition function on a single sequence as

well on the interaction of two RNA sequences. The time and space complexity to calculate single

sequence partition function tables are O(N4) and O(N2) respectively. There are techniques to

optimize these calculations [18–22]. The asymptotic time complexity of interaction (joint) partition

function O(N6) is greater than this So, we are focused only on the optimization of interaction

partition function computations.

There are about 96 four-dimensional tables used to calculate the joint partition function. These

tables depend on the single partition function results as well as among itself. The listing 2.1 shows

the code structure for the calculation of all the 96 tables.

Listing 2.1: Code structure of piRNA joint partition function calculations

1 for (d1 = 1; d1 <= N − 1; d1++) {

2 for (d2 = 1; d2 <= M − 1 ; d2++){

3 for (i = 0; i <= N− d1 − 1; i++){

4 for (k = 0; k <= M− d2 − 1 ; k++){

5 j=i+d1; l=k+d2;

6 c[i][j][k][l] = quadratic_accumulation_function_call(i,j,k,l);

7 }}}}

Here, i, j, k and l are the four data dimensions. To calculate one single variable (c[i][j][k][l]),

a quadratic (double-loop) accumulation of values are involved. These quadratic accumulations

are structured into four different function calls depending on the type of computation. Since the

asymptotic complexity of all the function calls is same, we can deduce the dominant computation

in the code just by having the count of these function calls.

From table 2.1, we can see that “product" function call is the dominant computation. We further

explain the computation of each of these four calls next. In the equations below, the parameter
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Table 2.1: Profiling of quadratic accumulation function calls in piRNA

S.No. Function call Percentage of total calls Percentage of execution time

1 product 67.9% 68%

2 lsemiproduct 9.5% 1.8%

3 rsemiproduct 10.7% 20.8%

4 capproduct 11.9% 2%

names in function calls and the variable on the left hand side are place-holders, and come from the

set of 96 tables (variable names) in the program. d and e denote the accumulation dimensions.

1. product: The input to this function call is a and b which are four dimensional tables that

belong to the same 96 set of tables. The output of this function call is one scalar variable.

Equation 2.1 represents the computation.

c[i, j, k, l] = product(a, b) =

j−1
∑

d=i

l−1
∑

e=k

a[i, d, j, e] ∗ b[d+ 1, j, e+ 1, l] (2.1)

2. rsemiproduct: The input to this function call is a1, a2 and b. b is one of the 96 four

dimensional tables. a1 and a2 are two dimensional tables from single partition function

calculations. The output of rsemiproduct function call is one scalar variable. This function

call can be made to have a structure similar to product by performing outer product of a1 and

a2 tables. Equation 2.2 gives the equation of this computation.

c[i, j, k, l] = rsemiproduct(a1, a2, b) = product(outerproduct(a1, a2), b) (2.2)

3. lsemiproduct: This computation is similar to rsemiproduct. The input to this function call

is a, b1 and b2. a is one of the 96 four dimensional tables. b1 and b2 are two dimensional

tables from single partition function calculations. The output of lsemiproduct function call

is one scalar variable. This function call can be made to have a structure similar to product

by performing outer product of b1 and b2 tables.

7



c[i, j, k, l] = lsemiproduct(a, b1, b2) = product(a, outerproduct(b1, b2)) (2.3)

4. capproduct: The input to this function call is a and b. Here, b is the only one which belongs

to the 96 four dimensional table set. The table a′ is also four dimensional but has different

data layout and is calculated from the results of single partition function calculations. There

are two variations of this function depending on the limits of the accumulation loop dimen-

sions d and e. The output of this function call is one scalar variable. Equation 2.4 gives the

equation of the computation.

c[i, j, k, l] = capproduct1(a′, b) =

j−2
∑

d=i

j
∑

e=d+2

a′[d+ 1, e− 1, k, l] ∗ b[i, j, d, e]

c[i, j, k, l] = capproduct2(a′, b) =
l−2
∑

d=k

l
∑

e=d+2

a′[k, l, d+ 1, e− 1] ∗ b[i, j, d, e]

(2.4)

From the above discussion, we see that product kind of dependencies contribute to 90.6%

(combining product, lsemiproduct and rsemiproduct) of the execution time and 88.1% of total

accumulation loop function calls. Since the inter-dependence of these 96 variables are complicated,

in this work, we address the problem of speeding up a surrogate kernel (named OSPSQ) that

captures the “product" dependence pattern.

2.1 PLUTO PERFORMANCE ON OSPSQ

We used PLUTO [23], one of the current state-of-the-art automatic polyhedral tools to optimize

OSPSQ kernel. This tool transforms C programs from source to source for coarse-grained paral-

lelism and data locality simultaneously. We compared the performance of PLUTO on baseline

code. The details of the baseline code are provided in Chapter 3. The target mapping that PLUTO

produces for OSPSQ-base is (i, j, k, l, d, e → l− k, l, j − i, j, d, e) and it tiles the outer four loops

with default tile size (32). Please refer section 2.2 for the contextual meaning of target mapping

and the notation.
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Figure 2.1: Pluto versus OSPSQ-base: Performance Comparison on single core, six core and twelve threads

As seen in figure 2.1, PLUTO’s performance on average is 18% poor on single-core, 51%

poor on six-core, 26% poor on twelve-core when compared to the baseline code. It has improved

performance on twelve-core for two problem instances. Here, N is the length of miRNA and M is

the length of mRNA.

• 22% improvement when N is sixteen and M is 750

• 9% improvement when N is sixteen and M is 1000

But these are 20% and 25% less than the best performance that the baseline code achieves

respectively. It can be seen that although the structure of the OSPSQ kernel perfectly fits the
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constraints of the polyhedral model, the current state-of-the-art automatic polyhedral tool PLUTO

does not significantly improve the performance of the baseline implementation of OSPSQ.

2.2 ALPHAZ : BACKGROUND

Since the automatic polyhedral tool didn’t improve OSPSQ performance, we use the manual

polyhedral toolset- AlphaZ [24] to generate the optimized C code. This section provides a brief

background on this tool-set. There are two important parts in generating this optimized code.

1. Input specification: The input âĂIJprogramâĂİ consists of one or more mathematical equa-

tions (using the Alpha/Alphabets language) that specify just what needs to be computed. It

is also called as an Alpha specification.

2. Command script: To produce a (conventional/imperative) program that implements the input

specification, one needs to specify a schedule (when), a processor allocation (who), and a

memory allocation (where to store). These are specified as commands using a script which

has three main parts.

(a) Transformations: These commands are used to perform transformations. They produce

a different Alpha specification. It is the responsibility of the user to make sure that the

transformations are valid and produces the required results.

(b) Target Mapping: These commands are used to specify the execution order of the pro-

gram. This also needs the user’s effort to specify a valid map. Memory mapping allows

the variables to use the same memory space. Space-Time map specifies the order in

which the iteration points are executed for each variable. An alternate way to call the

space-time map is scheduled as it schedules the execution order of the iteration points.

(c) Code-generation: These commands are used to transform alphabets to other high-level

languages.

We specify the transformations and mappings using a notation:

(ListOfIndices → ListOfIndexExpressions). Consider the following two examples:

10



1. A target mapping (i, j → j − i, i). This map says that the initial iteration domain of the

variable is two dimensional represented by indices i and j. The points in this iteration space

are visited in the order given by the right-hand side of the arrow.

2. A memory map (i, j, k → i). This map says that the initial memory allocation (in the

alpha specification) of the variable is three dimensional. But, in the generated code it is one

dimensional. So, there is a quadratic memory saving.

11



Chapter 3

OSPSQ DEPENDENCE STRUCTURE AND OPTIMIZATION

Now that we have identified OSPSQ as the surrogate kernel to optimize, in this chapter we

discuss the OSPSQ dependence structure and the applied optimizations.

3.1 OSPSQ DEPENDENCE STRUCTURE

The recursion equation of OSPSQ is given by equation 3.1.

T [i, j, k, l] =

d=j−1,e=l−1
∑

d=i,e=k

T [i, d, k, e] ∗ T [d+ 1, j, e+ 1, l] (3.1)

Each value T[i,j,k,l] is the double summation of a quadratic number of values. Figure 3.1 shows

the four dimensional variable T that is defined, as well as the dependences in the computations.

j

i

l

k

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4
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5

(1,5,2,5)

Figure 3.1: OSPSQ Dependence pattern
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Black axes represent the outer two dimension and each point in it is a 2D triangle. The black

axes range over the outer two indices, i, and j. The red axes rage over the inner dimension k and

l. The bounds i < j < k < l imply that the data is an upper triangular array of smaller triangles.

For example, to calculate [1, 5, 2, 5], the magenta, yellow and green points in the west white

triangle is multiplied to the corresponding color-coded locations in the south white triangle. This

pattern repeats for blue, cyan and pink triangles. These multiplied values are reduced using addi-

tion operator.

This dependence pattern can be imagined as a multi-dimensional extrapolation of Optimal

String Parenthesization (OSP) [25]. But, OSP has the two-dimensional data structure. So, the

bounds are just i < j implying that the data is an upper triangular array of points. In Chapter 5, we

give a background on OSP dependence structure and tiling problem to explain the tiling technique

of OSPSQ.

3.2 OSPSQ BASELINE CODE

The starting point of all optimization is an Alpha specification. We chose a target mapping

(i, j, k, l, d, e → j − i, l − k, i, k, d, e) that matches piRNA code. We call this version as OSPSQ-

base.

From the OSPSQ equation, for every iteration of the inner-most loop e, there are three reads

and one write of data. Since e is the innermost loop (i.e., rightmost index in the target mapping) in

the generated code, the read of T [i, j, k, l] is independent of e, and this variable can be assumed to

be in the register. So, we can say that for every two reads of data, two operations are performed.

The two operations (one multiplication and one addition) are on double precision floating point

numbers (8 bytes each). So, the Arithmetic Intensity (AI) would be,

AIOSPSQ = 2/(3 ∗ 8) = 1/12 (3.2)

For Intel Broadwell machine e5-1650 v4, the stream triad [26] benchmark on single core gives

the peak DRAM bandwidth as 17.8 GB/s. The peak single-core performance is 57.6 GFLOPS
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since each core on the 3.6GHz processor can issue fused multiply-add (two ops) per clock cycle

on two sets of four-way double precision vector units (i.e., 16 ops per cycle). The inflection point

of the roofline model graph [27], is at 3.24 so the baseline code is memory bound.

3.3 OSPSQ OPTIMIZATION

From the ICC vectorization guide, the necessary and sufficient conditions for an affine program

to be vector friendly are,

1. No dependence in the inner-most loop nest.

2. Constant stride access (preferably +−1) in the inner-most loop nest.

The innermost loop in OSPSQ baseline code is,

Listing 3.1: Innermost loop of OSPSQ: baseline

1 for(e=k;e<l;e++)

2 T[i,j,k,l] += T[i,d,k,e] ∗ T[d+1,j,e+1,l]

One iteration (read of T[i,j,k,l]) of the inner-most loop depends on its previous iteration (write

of T[i,j,k,l]) which creates a bubble in the pipeline and thereby decreases performance. Loop

permutation is one way to work around this issue. Loops have to be permuted such that there is no

forward dependence (read-after-write) present in the innermost loop and resulting transformation

is legal. In our code, making either of the accumulation loop dimensions, d,e as the inner-most

loop will create a forward dependence. So, we have a choice of having one of j-i, l-k, i, k as the

inner-most loop.

In table 3.1, stride length refers to the difference in length between the reads of two successive

memory address if that particular dimension is made as the inner-most loop. It can be seen that

when l − k is the innermost loop, we achieve unit stride and hence we have an improved target

mapping:(i, j, k, l, d, e → j − i, i, k, d, e, l − k). We call this version as OSPSQ-vect.

The baseline schedule traverses along diagonals. In other words, it is a column-major access. In

order to benefit from cache behaviour, we move to row-major sequential schedule (i, j, k, l, d, e →

14



Table 3.1: Stride length for the choice of inner-most loop dimension

Inner-most loop dimension Stride length

j-i O(M2)
l-k 1

i O(M2 ∗N)
k O(M)

−i, j, d,−k, e, l). We call this version as OSPSQ-best-row. There are several points to note in the

schedule that we chose.

• Memory is accessed row-wise but in reversed order for the outer-most loop (i) to maintain

legality.

• From figure 3.1, we call the triangle formed by outer two dimensions as an outer triangle and

the triangle formed by inner two dimensions as smaller triangles. Memory accessed within

the small triangle can be in forward k or reverse −k row-direction. Since the outer triangle

is accessed in reverse order, it makes sense to access the lower triangle also in reverse order

so that the successive memory accessed is contiguous.

• We have l as the inner-most loop to benefit from vectorization.

• The accumulation loop d is exchanged with the k loop. This is also because of the stride

length argument. The stride length for d loop can be either O(M2) or O(M2N) depending

on which data is accessed. But, the stride length of k is O(M) which is at least an order of

magnitude less than d loop. So, this loop exchange ensures better utilization of bandwidth.

• The target size of the application is such that outer dimension is small (20-30) and inner

dimension is around 1000. For instance, if we chose the outer dimension range as 30 and

inner dimension range as 1000, from figure 3.1, we can see that there will be 30∗30/2 = 450

smaller triangles of dimension 1000∗1000. So having the d loop on top of k, l, e loops, makes

us view the computation as a series of 450 two-dimensional OSP problems. The data foot-
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print of the entire problem would be O(N2 ∗M2). But, for one iteration of the k loop, the

amount of memory needed is 2 ∗ M + M2/2. We can conveniently fit the data in a 15MB

LLC until when M = 1936.

As a fair comparison, we experiment on a code with (i, j, k, l, d, e → j − i, i, d, k, e, l − k)

schedule that uses the baseline diagonal-traversal, improved vectorization and also the benefits of

interchanging d and k loops. We call this version as OSPSQ-best-col.

We chose two different parallelization strategies. Fine-grain parallelism: Here, outer loops

traversing the collection of small triangles are executed sequentially, and rows of the inner trian-

gles are executed in parallel. Coarse-grain parallelism: Here, all small triangles along an outer

triangle’s diagonal are computed in parallel by different threads.
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Chapter 4

EXPERIMENTAL EVALUATION AND RESULTS

The machine used for the experiments is Intel Broad-well: e5-1650v4 and its specifications are

shown in Table 4.1 along with chosen compiler flags.

Table 4.1: Machine configuration

Architectural parameters Broadwell

Processor E5-1650v4

Number of cores 6

Base freq 3.60 GHz

Turbo boost freq 4 GHz

Instruction Set Features AVX 2.0, FMA3

Max. DP performance 384 GFLOPS/s

L1 cache 32KB per core

L2 cache 256KB per core

L3 cache 15MB shared

RAM 2 * 8GB

Memory support DDR4-2400

Max. Memory bandwidth 38.4 GB/s

Compiler ICC 16.0.2 20160204

Compiler Flags O3, xhost, ipo, fma, qopenmp

Table 4.2: Test cases: Sequential OSPSQ

S.No. Test Case Target Mapping

1 OSPSQ-base (i, j, k, l, d, e → j − i, l − k, i, k, d, e)
2 OSPSQ-vect (i, j, k, l, d, e → j − i, i, k, d, e, l − k)
3 OSPSQ-best-col (i, j, k, l, d, e → j − i, i, d, k, e, l − k)
4 OSPSQ-best-row (i, j, k, l, d, e → −i, j, d,−k, e, l)
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Table 4.3: Test cases: Parallel OSPSQ

S.No. Test Case Parallel loop dimension

1 OSPSQ-base-par III in OSPSQ-base

2 OSPSQ-best-row-par IV in OSPSQ-best-row

3 OSPSQ-best-col-coarse II in OSPSQ-best-col

4 OSPSQ-best-col-fine IV in OSPSQ-best-col

Based on different Target Mapping, we have four test cases for sequential and four parallel

version. Target mapping of these versions are provided in Table 4.2 and 4.3. The memory mapping

for these test cases are (i, j, k, l, d, e → i, j, k, l).

piRNA is often used to investigate interactions between miRNA and mRNA, and the typical

lengths of these sequences are 20-25 nucleotides and 1000-300. There are 25 data-points corre-

sponding to all possible combinations of five values of M (750, 1000, 1500, 2000, 2500) and N

(16, 20, 22, 25, 30) each.

4.1 SINGLE-CORE PERFORMANCE

Figure 4.1 illustrates the sequential results. The baseline for all speed-up data is OSPSQ-base

version. In the graph, all the versions are normalized to the base version. We use the arithmetic

mean for summarizing the costs, harmonic mean for summarizing the rates and geometric mean

for summarizing the ratios [28].

The average speed-up of OSPSQ-vect version is 7.4×. This speed-up is because the vector

length is four for doubles and with two FMA units, we can achieve up to 8× speed-up.

Average speed-up of OSPSQ-best-col and OSPSQ-best-row across 25 data-points are 16.01×

and 16.09× respectively. The maximum speed-up we obtain is 21.52× for OSPSQ-best-row ver-

sion when N=30 and M=1500. There is not much performance difference between OSPSQ-best-

row and OSPSQ-best-col version which is not surprising as row and column-major access for outer

triangular matrix do not significantly affect performance. In either schedule, the traversal within a

single inner triangle is the same and having an efficient schedule for this part of the kernel is the
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Figure 4.1: Performance comparison of OSPSQ sequential test cases normalized to the baseline on e5-

1650v4. Vectorization test case shows an average of 7 fold improvement and the two locality test cases

shows added two-three fold improvement.

key determinant of the overall performance. In addition to the 8× speed-up from the vectorization

benefits, these two versions get an extra two to three-fold speed-up because of locality.

For a given N, when we increase M, the performance increases up to M=1500 and drops after

that for OSPSQ-best-row and OSPSQ-best-col versions. This variation is because when M is

around 1930, the 2 ∗ M + M2/2 capacity exceeds 15MB LLC and we get the performance loss

due to DRAM traffic. With OSPSQ-base version, an average performance loss of the geometric

mean of the flops/s rate observed is 9% with increasing value of M for a given N. Whereas with

OSPSQ-vect version, performance decrease of 9.5% is observed when N is 16 and 6.8% when N

is 22. When N is 25, performance degradation drops to 5.2%. On average, we observe a 5.5%

performance loss with increasing value of M for a given N.
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Figure 4.2: GFLOPS versus M when N=30 on OSPSQ-best-col version: Performance drops when M is

around 1650 as the memory foot-print exceeds LLC

Across the 25 data-points for OSPSQ-best-row version, we obtained maximum speed-up when

N is 30. So keeping N as 30, we vary M between two and 3200 (maximum malloc capacity) to

observe the maximum performance that we can obtain on a single-core. The total number of data-

points sampled was 1610. The interval between successive data points was not constant. From

figure 4.2, it can be seen that maximum performance (7.92 GFLOPS) is achieved when M=1636

which is less than 1930 as per the previous discussion. This performance makes sense because

the AlphaZ generated code has a rectangular domain and so, having a strict M2/2 for memory

calculation need not be true.

For an AI of 1/12, the corresponding bandwidth would be 95.04 GBytes/sec. This bandwidth is

75% of DAXPY L1 bandwidth measured using LMBench suite [29]. We compare the performance

to DAXPY since the innermost loop of OSPSQ is similar to DAXPY kernel. So, we conclude that

we have achieved the best performance for the given bandwidth and there is a need to tile for

further improvements.

4.2 MULTI-CORE PERFORMANCE

We have four test cases for comparing parallel performance. OSPSQ-base-par is the paralleliza-

tion found in piRNA application. We apply the two parallelization strategy to OSPSQ-best-col
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Figure 4.3: Performance comparison of OSPSQ parallel test cases on e5-1650v4 showing effects of hyper-

threading, memory requirement and scaling, performance variation with N and M
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version whereas for OSPSQ-best-row version we could use only the fine-grain parallelization. For

the fine-grain parallelization versions, we observe that dynamic scheduling improves performance

on average by 2.5× whereas it does not improve for coarse-grain version. We do not parallelize the

vectorization only version as the OSPSQ-best-col, and OSPSQ-best-row versions carry the benefits

this version.

Figure 4.3, shows the parallel performance of the four test cases across twelve threads. Al-

though there are 25×12 values plotted for each version, we can see that there is an overlap of the

plots giving an illusion that there are only 5times12 data points. In other words, we can see five

band formation corresponding to five different values of M. Following the color and symbol coded

legends in the figure helps in better understanding of this band formation. So, parallel performance

is not very sensitive to the variation of N. But, the bands and scaling across threads is not uniform

across the versions.

1. OSPSQ-best-row-par and OSPSQ-best-col-fine: The top-most band is when M is 1500 fol-

lowed by 1000, 750, 2000 and 2500. This is because of LLC as discussed for sequential

performance. It can also be seen that a perfect scaling across threads is obtained even with

hyper-threading. There is a performance drop at twelve threads when M=2k and 2.5k. On

average, hyper-threading on six cores (with twelve threads) seems to improve performance

by 34% when M ≤ 1500. When M is 2k, it is 45% and 67% for 2.5k. Since every row is exe-

cuted in parallel, they share common read accesses from the south triangles. Hyper-threading

can overlap the read traffic of multiple threads and thereby improve performance. The best

performance that we obtain on six cores without hyper-threading is about 44 GFLOPS. For

an AI of 1/12, this corresponds to 528 GBytes/sec which is about 66% of DAXPY L1 band-

width measured using LMBench suite. With hyper-threading, the best performance is about

59 GFLOPS, and the corresponding bandwidth is 88% of DAXPY L1 bandwidth.

2. OSPSQ-best-col-coarse: Here, the band formation is in the increasing order of M. Top-most

is 750, and the bottommost is 2.5k. The scaling drops when the LLC is not big enough to

fit the data required for all the cores. So, the capacity limit would be P ∗ (2M + M2/2)
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where P is some cores. It is also interesting to note that hyper-threading severely degrades

performance for this version. This performance degradation is because LLC is not able to

handle several DRAM traffic demands and results in unnecessary stalls.

3. OSPSQ-base-par: The band formation is similar to OSPSQ-best-col-coarse. But, scaling

is not dependent on the LLC. It scales on average up to 3.6x on 6-cores. Hyper-threading

slightly degrades performance beyond that.
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Chapter 5

OSPSQ : TILING

In the previous chapter, we saw that to improve performance; there is a need to tile the compu-

tations. In this chapter, we discuss the tiling challenges and its solutions.

5.1 MIDDLE SERIALIZATION : BACKGROUND

In chapter 3, we mentioned that OSPSQ is a multi-dimensional extrapolation of OSP computa-

tion. To explain the problem associated with tiling all six dimensions in OSPQSQ, we present the

recurrence equation, dependence pattern and the tiling problem of 2D-OSP here. The recurrence

equation for OSP is,

T [i, j] =















0, if i = j.

j−1

min
k=i

T [i, k] + T [k + 1, j] + (P [i− 1] ∗ P [k] ∗ P [j]), if j > i.

(5.1)

where P is the input. Considering only the table (T) dependencies, we see that an iteration

point (1,6) in figure 5.1a depends on all its west and south neighbors. The arrowhead says that

the particular point must be computed before the computation of the point at which the tail of the

arrow is located. So, to compute (1,6), a total of 10 points must be computed before. The color-

coded edges represent the pair of data points that (1,6) depends to compute one instance of the

accumulation loop.

Figure 5.1b shows the dependence pattern in three dimensions. The points (1,6,1), (1,6,2) until

(1,6,5) all contribute to one single point (1,6). It can be seen that the farthest west point((1,1) in

red) is paired with the south point((2,6) in red). These two points are added to get (1,6,1). To

calculate (1,6,2), the two magenta points and (1,6,1) (represented by the black arrow) are required.

This pattern continues until (1,6,5) which is the required result. So, in general, the results of

accumulation are located on the 16(~k −~j) plane formed by points (1,2,1), (1,6,5) and (5,6,5). We

24



j

i

k

1

1

6

6

(a)

j

i

k

1

1

6

6

(b)

j

i

k

1

1

1
3

3

3

4

4

4

6

6

6

(c)

Consumer Producer

(6,1,1) blue tile (6,2,4) green tile

(6,1,2) blue tile (6,3,3) green tile

(6,1,3) green tile (6,1,2) blue tile

(d)

Figure 5.1: (a) Dependence graph of a OSP computation in 2D view (b)dependence graph of an OSP

computation in 3D view (c) Inter-tile dependencies (d) Table to show the iteration points that create inter-

tile dependency
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can say that any point in the accumulation dimension will depend on the top-most plane and the

immediate bottom neighbor.

When we generalize this dependence pattern, it can be realized that points in a diagonal depend

on the south and west points of diagonals below it. So, to produce a functionally correct code, one

of the many ways the program can traverse is along the diagonals starting from the inner-most

where j = i. This scheduling is accurate with three-dimensional reasoning as well.

The problem arises when we try to tile all three dimensions. Suppose for a tile size three; we

get tiles as shown in figure 5.1c. Now, the dependencies are not among points instead tiles. The

magenta tiles do not depend on any other tiles. The blue tile depends on magenta tiles and green

tile. The green tile depends on magenta tiles and blue tile. The legality of tiling is that there should

not be any cyclic dependencies between the tiles. Because of this reason, it is not possible to tile

all three dimensions in OSP. The inter-tile dependency between blue and green tile is due to the

points illustrated in figure 5.1d. The producer is one whose results must be computed before the

consumer can use it. This conflict occurs in the two accumulation dimensions of OSPSQ.

GKT serialization or the middle-serialization was introduced by Gubias et al. [30] for a 2D sys-

tolic array. This solves the locality problem found in 2D OSP problem and enables tiling in all three

dimensions. It has been established that the automation of these techniques is an open challenge

and no state-of-the-art automatic polyhedral tools can apply these transformations. Therefore,

there is a need to apply them through manual or semi-automatic polyhedral tools.

The idea behind middle-serialization is to iterate the accumulation loop starting from the mid-

dle. When going from the middle, the results are accumulated on the i-j plane. This ensures that

all tiles depend on bottom tiles alone and avoids inter-tile dependencies. We call this as OSPGKT

version, and the corresponding recurrence equation is given by equation 5.2.
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T [i, j] =















































0, if i == j.

min
(j−i)/2
k=0 min((T [i, i+ k] + T [i+ k + 1, j] + (P [i− 1] ∗ P [i+ k] ∗ P [j])),

(T [i, j − k − 1] + T [j − k, j] + (P [i− 1] ∗ P [j − k − 1] ∗ P [j]))),

if j > i.

(5.2)

Here, k has to be executed in decreasing order. In equation 5.1, the accumulation loop was

from i to j. Now, it is from 0 to j-i/2. For example shown in figure 5.2, j-i=5. Since there is

an odd number of points, in the first accumulation iteration, we have only one set of data points

represented by green arrows. In the next iteration, the four blue points are touched. Notice that

instead of accessing the west most point, the data points are accessed from middle and goes towards

west. Similarly, instead of accessing the near south, the data points are touched from the middle

and goes towards the nearest point. This order of accumulation ensures that we do not wait for the

closest data point to start our computation. Once the middle points are available, the calculation

can begin. This method not only helps to tile all three dimensions but also help to improve locality

and performance.
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5.2 OSPSQGKT : SIX DIMENSIONAL TILING

Here, we apply GKT method to tile all six dimensions of OSPSQ. In the original reduction

body, we have two dependencies for each iteration. When we do a middle serialization, the accu-

mulation loop reduces by half and number of dependencies per iteration doubles and so, for double

accumulation it increases by a factor of 4. Equation 5.3 reflect this phenomena. We append "GKT"

and call it as OSPSQGKT. The accumulation loops d, and e are executed in decreasing order.

T [i1, j1, i2, j2] =

(j1−i1)/2
∑

d=0

(j2−i2)/2
∑

e=0

((T [i1, i1 + d, i2, i2 + e]∗

T [i1 + d+ 1, j1, i2 + e+ 1, j2]) + (T [i1, j1− d− 1, i2, j2− e− 1]∗

T [j1− d, j1, j2− e, j2]) + (T [i1, i1 + d, i2, j2− e− 1]∗

T [i1 + d+ 1, j1, j2− e, j2]) + (T [i1, j1− d− 1, i2, i2 + e]∗

T [j1− d, j1, i2 + e+ 1, j2]))/func(([j1]− [i1]), [d], ([j2]− [i2]), [e])

(5.3)

Notice the "func()" term in equation 5.3. This additional term is because, when we have an odd

number of terms to accumulate, we end up repeating the computations. This phenomenon happens

for every odd diagonal in the outer as well as inner accumulation loop. In the OSPGKT example to

calculate (1,6), we saw that there was an odd number of points to accumulate. There was no need

for the division because the operation performed is an idempotent operator, min. Whereas with

OSPSQ, the accumulation operation is multiply, and so it either doubles or quadruples the result

calculated.

Consider diagrams shown in figure 5.3. It shows two different execution order in the double

accumulation iteration. (6, 6) gives the accumulated result. When we tile the iteration space ac-

cording to the execution order in figure 5.3a, we get tiles with cycles as the first point in each

row depends on the last point of the previous column. Tiling the iteration space with the execu-

tion order in figure 5.3b yields cycle-free legal tiles. This order of scheduling ensures tiling in all
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Figure 5.3: Execution order of double reduction in (a) yields tiles with cycles (b) yields cycle free tiles

six dimensions but needs an additional memory. This additional memory varies under different

circumstances. We describe the steps to derive the memory formula.

1. Sequential tiled version: There is a change in the memory requirements depending on the

loop permutations.

• As long as the accumulation loops are the innermost, there is no additional memory.

Since each tile will be executed in sequential order, the partial result from each tile

can be accumulated as a scalar to the actual output data point. So, the total memory

required is O(N4) which the initial data-space.

• We denote the number of non-accumulation loops inner to accumulation loop by k. If

any of the non-accumulation loops is made inner to the accumulation loop, there is a

necessity to save the partial results. This is because, the accumulation loops are in the

time dimension and therefore, many-to-one memory mapping occurs which results in

overriding of data if additional memory is not allocated. For example, let us have a

space-time map (i, j, k, l, d, e → i, j, k, d, e, l). Here, l is the non-accumulation loop

inner to the accumulation loops d and e. To compute a point (i,j,k,l), we revisit that

same point for every iteration of d and e loop. There are N such points for a given

(i,j,k) plane. The memory required to store partial results would be N for every (i,j,k)

plane. Assuming N is the range of i,j and k dimensions, the additional memory required
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would be O(N4). Since we are dealing with sequential tiles of identical size say s, we

can save the memory by re-using the tile space of (i,j,k) plane. So, the final additional

memory required is (s3 ∗N).

2. Sequential non-tiled version: The additional memory required will increase by order of N.

This is because in figure 5.3a there is only one starting point (1, 1) whereas in figure 5.3b

there are six starting points (represented by black dots) corresponding to the number of rows.

In other words, there exist a parallel dimension. The memory space cannot be shared with

the four-dimensional table as it will be over-written when each row is executed. Therefore

an additional O(N) memory is required to store the accumulations of each row. This is

the minimum additional memory required when the accumulation loops are the inner-most.

There is an increase in the order by N for each non-accumulation loop that is inserted inner

to the accumulation loops as discussed for tiled version. So, it is better not to use this kind

of schedule when there is no tiling involved.

3. Parallel versions: With each parallel dimension, there is an increase in the memory required

by order of N. This is because, with each parallel dimension, there must be unique locations

to store the partial tile accumulations without which there will be overriding of data. We de-

note the number of parallel dimensions outside the accumulation as p. This does not include

the loops inner to the accumulation dimensions. The same argument on tiled version’s tile

space re-use holds here too.

Memory_required = st∗(d−k−p)
∗Nk+p +O(N4) (5.4)

where,

• N : Problem size

• s : Tile size

• d : no. of data dimension, here it is 4
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• p : no. of parallel dimension outside the accumulation loop

• k : no. of non-accumulation loops inner to accumulation loop

• t : if the code is tiled or not (takes 0 or 1)

Equation 5.4 gives the formula for additional memory required for various scenario. The first

term with the involving s gives the amount of additional tile space memory required. If the code

is not tiled, it is zero. The second term is one if the code is sequential and accumulation loop are

the inner-most. If not, it increases as per the previous discussion. The third term is the default

data space memory of the program. For example, the sequential tiled schedule (i, j, k, l, d, e →

−i, d, j,−k, e, l) would require O(s ∗ N3) additional memory. In future, we plan to implement

these tiling strategies and explore the performance of the code for various tile sizes.
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Chapter 6

CONCLUSION & FUTURE WORK

In this work, we were able to identify and optimize OSPSQ kernel that captures the main

dependence pattern found in RNA-RNA interaction applications - IRIS and piRNA. With simple

techniques like loop permutation and skewing, we achieve an average of 17x sequential and 31x

parallel speedup on a standard modern multi-core platform (Intel Broadwell, E5-1650v4). This

performance represents 75% and 88% of attainable single-core and multi-core L1 bandwidth. For

further performance improvement, we describe how to tile all six dimensions and also formulate

the associated memory trade-off. In the future, we plan to implement these tiling strategies, explore

the performance of the code for various tile sizes and optimize the whole piRNA application.
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EBioMedicine, 12(Supplement C):34 – 42, 2016.

[2] Behzad Mansoori, Siamak Sandoghchian Shotorbani, and Behzad Baradaran. RNA In-

terference and its Role in Cancer Therapy. Adv Pharm Bull, 4(4):313–321, Dec 2014.

25436185[pmid].

[3] T. F. Duchaine and F. J. Slack. RNA interference and micro RNA -oriented therapy in Cancer:

rationales, promises, and challenges. Curr Oncol, 16(4):61–66, Aug 2009.

[4] Dmitri D Pervouchine. IRIS: intermolecular RNA interaction search. Genome informatics.

International Conference on Genome Informatics, 15 2:92–101, 2004.

[5] Hamidreza Chitsaz, Raheleh Salari, S. Cenk Sahinalp, and Rolf Backofen. A partition func-

tion algorithm for interacting nucleic acid strands. Bioinformatics, 25(12):i365–i373, 2009.

[6] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul.

The Polyhedral Model is More Widely Applicable Than You Think. In Proceedings of the

19th Joint European Conference on Theory and Practice of Software, International Con-

ference on Compiler Construction, CC’10/ETAPS’10, pages 283–303, Berlin, Heidelberg,

2010. Springer-Verlag.

[7] Gautam Gupta and Sanjay Rajopadhye. The Z-polyhedral Model. In Proceedings of the 12th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’07,

pages 237–248, New York, NY, USA, 2007. ACM.

[8] Cedric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think. In

Proceedings of the 13th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004. IEEE Computer Society.

33



[9] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL: http://www. cs.

ucla. edu/pouchet/software/polybench, 2012.

[10] Tomofumi Yuki, Gautam Gupta, Tanveer Pathan, and Sanjay Rajopadhye. Systematic Imple-

mentation of fast-i-loop in UNAfold using AlphaZ. Technical report, CS-12-102, Colorado

State University, 2012.

[11] Ahmed, Syed Ali and Mneimneh, Saad. Multiple RNA Interaction with Sub-optimal Solu-

tions, pages 149–162. Springer International Publishing, Cham, 2014.

[12] Fenix W. D. Huang, Jing Qin, Christian M. Reidys, and Peter F. Stadler. Target prediction and
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