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ABSTRACT

SALT TRANSPORT IN SOIL PROFILES WITH APPLICATION TO IRRIGATION RETURN FLa~

Experimental information on the dissolution of gypsum and the sub­

sequent tra~sport of the dissolved species in a soil-water system was

obtained by measuring the calcium concentration in the solution phase as

a function of time at different positions in columns filled with a 50il­

gypsum mixture that were leached with distilled water. These gypsum

leaching experiments were performed with two different soils for a range

of flow rates of the solution phase, solution contents and particle sizes

of the gypsum material.

The measured concentration-time curves were compared with results

from two models, the first based on equilibrium chemical principles and

the mixing cell concept and a second based on the one-dimensional con­

vection-dispersion equation combined with a first-order kinetic rate

equation describing the gypsum dissolution process. The formulation of

the rate equation was based on the hypothesis that the rate of dissolu­

tion was proportional to the product of the saturation deficit and a

function of the mass of gypsum present in the system.

The equations in the kinetic model were solved numerically and a

graphical and an optimization procedure were used to determine those

values of the kinetic parameters for which the best possible agreement

was obtained between the measured concentration-time curves and curves

calculated from the kinetic model.

It was concluded from the comparison between the experimental data,

the mixing cell model and the kinetic model that the dissolution reaction

of the gypsum was time dependent and was not controlled by the solubility

product relationship, as assumed in the mixing cell model. The
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qualitative agreement between the kinetic model and the experimental

results seems to support the hypothesis used in the formulation of the

rate equation.

KEY WORDS: leaching, gypsum, salt transport, salt transport equation,

numerical solution, dispersion-convection, source term, dissolution

calcium sulfate, soil leaching, percolation, salt removal, water quality,

dissolved solids, solubility
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INTERPRETIVE SUMMARY

The leaching of salts from soils contributes to the salinity of

irrigation return flow and hence to deterioration of water quality. In

some instances gypsum is an important contributor to the salinity of the

leachate. Three processes are involved in the movement of salts in soils:

(1) bulk, convective flow of the solution phase, (2) diffusion and dis­

persion in response to concentration gradients, and (3) reactions such

as precipitation, dissolution and adsorption. The leaching of solid phase

gypsum from soil involves dissolution, followed by dispersion and con­

vection of the dissolved gypsum. This study was conducted to evaluate

two methods of describing or modeling the dissolution process. The first

method, the mixing-cell model, uses concepts of equilibrium between the

solid gypsum and that in solution. The second method, a kinetic model,

does not assume equilibrium, but attempts to describe the rate of dis­

solution.

The results showed that under the conditions of the study, the

dissolution process must be described kinetically, and that the equil­

ibrium assumption was not valid. A kinetic model for the dissolution

was proposed. A better understanding of the leaching process has been

obtained as a result of this work.

iv



COOPERATION AND ACKNOWLEDGEMENTS

In addition to the support from the Office of Water Research and

Technology, U. S. Department of Interior, this research was also supported

in part by +he Agricultural Research Service, U. S. Department of Agri­

culture, and the Departments of Agronomy and Agricultural Engineering,

Colorado State University.

Principle investigator for the project was Dr. D. B. McWhorter,

Department of Agricultural Engineering. One graduate student, T. K. Glas,

was supported by the project, and obtained the PhD degree in Agronomy.

Other investigators were Drs. C. V. Cole and A. Klute, Agricultural

Research Service and Agronomy Department, Colorado State University, and

Dr. D. K. Sunada, Department of Civil Engineering, Colorado State Univer­

sity.

Invaluable assistance was also obtained from Dr. Paul Duchateau,

Department of Mathematics, Colorado State University and from Dr. Dale

F. Heermann, Agricultural Research Service, Fort Collins, Colorado.

v



PUBLICATIONS IN PREPARATION

A presentation of part of the results of this research was made by

T. K. Glas at the Annual Meeting of the American Society of Agronomy,

Knoxville, Tennessee, August 24-30, 1975.

A thesis entitled liThe Dissolution and Transport of Gypsum in Soils"

was prepared by T. K. Glas and has been accepted by the Graduate College,

Colorado State University in partial fulfillment of the requirements for

the PhD degree in Agronomy.

A paper is being prepared for submission to the Soil Science Society

Proceed i ngs.

OBJECTIVE

The objective of this research was to investigate the applicability

of (l) the equilibrium-solubility product model and (2) a kinetic model

for the dissolution and leaching of gypsum in soil.
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CHAPTER I

INTRODUCTION

Gypsum (CaS04
0 2H20) is found as extensive sedimentary deposits inter­

bedded with limestones, sandstones or shales, as is the case in certain

regions in Colorado. In these deposits gypsum occurs as coarsely crystal­

line material, as aggregate material with a parallel fibrous structure

and as fine grained massive material (Berry and Mason, 1959). Gypsum is

also used extensively in agriculture as a soil amendment because of its

beneficial effects on plant growth and soil properties.

The effectiveness of gypsum as an amendment and fertilizer depends,

among other factors, on the degree of subdivision of the material, which

affects the rate of dissolution and subsequent transport through the soil

in the solution phase. The transport of dissolved gypsum plays an import­

ant role in its agricultural use, from the fertilizer and amendment view­

point. Three types of processes are involved in the transport of a

chemical species in a porous medium: (a) bulk convective transport in the

solution phase, (b) hydrodynamic dispersion and (c) chemical and physical

reactions. The leaching of gypsum from a soil profile involves all of

these. The reaction is the dissolution of the gypsum.

Two approaches have been used to describe dissolution and precipi­

tation reactions of solid phase salts in porous media. The first approach

is based on the assumption that the solid phase and the solution phase

are in equilibrium at all times. Equilibrium chemical principles are

used to describe the chemical reactions. In the second approach the

dissolution-precipitation reactions are treated kinetically, with a

specification of the time rate of dissolution. The primary objective

of the present study was to investigate which of these two approaches

1
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best describes the dissolution process in the leaching of gypsum from a

soil, by a combined experimental and modeling approach.



CHAPTER II

THE TRANSPORT OF CHEMICALS IN SOILS

Modeling of Transport

Theories of transport in chromatographic colums have been considered

for application to transport in soils (e.g., see Frissel and Poelstra,

1967 and Boast, 1973). There are various ways of classifying these

theories, but for the present purpose we will consider two types, plate

and rate theories (Van Deemter et al. 1956).

According to the plate theory approach the flow domain is assumed

to consist of a finite number of plates or cells. Within each plate,

variables such as concentrations are considered uniform. Plate theories

of various levels of sophistication have been developed, but in the

simpler ones the flow process is treated discontinuously, i.e., a volume

element of solution is brought into a plate or cell, chemical equilibrium

is attained, and a volume element of solution is then taken out of the

cell. A model of this type was applied by Tanji et al. (1967) to the

leaching of soil containing solid phase gypsum, exchangeable calcium and

magnesium, and calcium and magnesium chloride in solution. Dutt et a1.

(1972) describe a model which combines a numerical solution of the one­

dimensional water flow equation with a chemical model based on equilib­

rium principles which is capable of treating the processes of infiltration,

redistribution and percolation of soil water, as well as cation exchange,

and dissolution and precipitation of gypsum and calcium carbonate. The

modeling of such a complex system becomes feasible because of the assump­

tion of chemical equilibrium. The principle drawbacks of the model are

the perhaps questionable validity of the equilibrium assumption under

certain conditions, the discontinuous treatment of the flow process,

3
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and the more-or-less accidental simulation of the dispersion process

through a built-in numerical dispersion (Tanji et al. 1967).

Rate models are based on the balance of mass, and flux concepts,

in combination with some kind of kinetic expression for the reaction.

At the macroscopic level (Bear, 1972; Raats and Klute, 1968) the one-

dimensional form of the balance of mass for a component of the solution

phase is:

(1)

in which Pi is the mass of component i per unit volume of porous medium,

Fi is the mass flux (density) of the component, Gi is the rate of pro­

duction of the component by reactions per unit time and per unit volume

of porous medium. The mass flux is composed of a diffusion-dispersion

flux, Ji ' and a convective flux, ciQ. The diffusion flux is usually

assumed to be proportional to the solution phase concentration gradient

so that:
de.

F. = - D.e ~ + c.Q (2)
1 1 oZ 1

where c. is the mass of i per unit volume of solution phase, and Q
1

is the volumetric solution phase flux. The hydrodynamic dispersion

coefficient Di is assumed to include the effects of hydraulic disper­

sion and molecular diffusion (Bear, 1972). Combining Eqs. (1) and (2)

and using Pi = ciG the resulting equation of transport for the compon­

ent becomes:

d(ciQ)
---+ G.

dZ 1
(3)

The dispersion coefficient D. depends on the properties of the
1

porous medium, the seepage velocity, U , and possibly the solution con-
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content, e. For example, Rose (1973) states that the data collected by

Pfannkuch (1963) can be represented by:

O.
1 no = 0.67 + yp
o

(4)

where DO is the molecular diffusivity of species i in "free space",

y = 0.5 , n = 1.2 and P is the Peclet number given by:

P = Ud/DO (5)

where U is the seepage velocity and 0 is a characteristic microscopic

length such as average pore size or grain size. The above is fairly

representative of dispersion coefficient behavior in single grain media,

such as sands, of rather uniform' pore size. In aggregated media, the

relation of 0; to P ;s more complex (Rose, 1973), but is grossly

similar to that depicted in Eq. (4). The effect of the solution content

on the dispersion coefficient has not been extensively studied (e.g .•

see Nielsen and Biggar, 1961 and 1962; Gupta et a1., 1973a, 1973b) and

the results are not too conclusive. In this study the effect of e on

Di will be ignored.

The dispersion coefficient is usually measured by analysis of break-

through curves, i.e., the concentration-time curve for the effluent from

a finite column of porous medium, which has been subjected to a displace-

(6 )

and G. is zero. Under these conditions O.
1 1

reduces to:

oC. 2 Oc.d C.
_1 = Di

1 Ui
1

at az 2 - az

ment of one solution by another. Either the initial, solution or the dis­

placing solution may be water. Experimental conditions are normally

arranged so that 8 and Q are constant in the column of porous medium

is constant and Eq. (3)
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Analytic solutions to (6) subject to various boundary conditions are

available (Brenner, 1962; Ogata and Banks, 1961; Gerson and Nir, 1969).

To determine the dispersion coefficient the breakthrough curve is measured

and matched to the analytic solution of (6). Rose and Passioura (1971)

give a convenient procedure for this. If there is no interaction of any

kind between the component and the porous medium the seepage velocity

may be calculated from the Darcy velocity and the solution content. In

the case of an anionic species such as Cl the phenomenon of anion

exclusion may be present to a significant degree, especially in media

with appreciable clay content. Part of the solution phase volume is

not accessible to the anion because it is to a greater or less degree

repelled from the vicinity of the negatively charged surfaces of the clay.

One of the results of this is that the effective seepage velocity for

the anion is higher than it would appear to be from the Darcy velocity

and the solution content (Smith, 1972). Looked at another way the volume

of pores occupied by the anion is less than the total liquid filled pore

space. If anion exclusion is present to a significant degree both 0;

and U must be determined by the breakthrough curve matching procedure.

Usually this process involves an optimization procedure to get the best

trial-and error fit between the experimental data and the analytic solu­

tion to the transport equation.

If the chemical species being transported by convection and disper-

sion is also involved in a reaction and is thereby immobilized, the

source function in Eq. (3) can be treated as follows:

The mass balance for the adsorbed iroo~bi1e species is:

(7)
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Assuming that the adsorption reaction is the only one in which the species

is involved so that G + G. = 0 we have then:a ,

(8)

Usually the concentration of adsorbed material is expressed as the mass

of adsorbed species per unit mass of soil, Na . Using the relation

Pa =6 N (9)a
where S is the bulk density, which we shall consider as constant, Eq.

(3) becomes:

a(c i 8) d dC i
at = az (Die az- ) (10)

in which aNa/at is the time rate of change of the adsorbed phase con­

centration. If equilibrium between the adsorbed species and the free

species is assumed, an isotherm, which expresses the equilibrium relation

between ci and Na ' can be used to evaluate the last right hand term

in (10). An isotherm is of the form

Na=f(C i ) (11)

and if the function f is continuous and has a derivative then:

aN df ac. ac.a - , - f' ,
at - dC

i
a:t - at (12 )

where f' is the slope of the isotherm. In general, f' will be a

function of c.. Substitution of (12) into (10) gives:,
3c.

Sf' -'at (13 )

as the transport equation applicable to the dispersion-convection and

reaction of a species that is immobilized by adsorption when equilibrium

between the adsorbed and free states is assumed to exist. The isotherm
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can possibly be measured independently of the system whose behavior is

to be predicted by a solution of Eq. (13). If so, this is a major advan­

tage resulting from the assumption of equilibrium.

If a solid phase salt is in equilibrium with its dissolved components

in a solution that does not contain any other species, the concentrations

of the components in solution are determined by the solubility product

relationship, and will be equal to the saturated concentrations as long

as any solid phase is present. Mathematically this can be written:

N>Oforc = cS
c < Cs for N=O

where Cs is the concentration of the dissolved components in equilibrium

with the solid phase. For such a relation between Nand c the deriv­

ative f' in Eq. (12) does not exist. Consequently the isotherm concept

as it is used in adsorption reactions cannot be applied to dissolution

processes and Eq. (13) or a simplification of it cannot be used.

An alternate approach to the treatment of the source function in­

volves a specification of the rate of production of the dissolved species

Gi . The rate of adsorption, which is the negative of the rate of pro­

duction of the mobile species, is in general a function of Na and ci
Kinetic expressions for Gi can be of many forms, depending on the

nature of the reaction. Chemical and physical reactions can be of zero

order, first order, a higher order or a fractional order. The rate

parameters may be constants or functions of one or more system properties.

The reaction may be reversible or irreversible, and there may be multiple

coupled reactions occurring simultaneously. In practice only the sirnpler

kinetic expressions have been used (Frissel and Poelstra, 1967; "oa~t.

(1973).
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Equilibrium Chemistry of Gypsum

The dissolution-precipitation reaction for gypsum can be written as:

{14 }

The solubility product for gypsum is defined as:

where the parentheses denote ionic activities. The activities of the

solid phase and the water are set equal to unity by convention. As noted

by Nakayama (1971) activities cannot usually be measured directly, but

have to be calculated from measured concentrations. The calculation

involves an estimate of the activity coefficients which are essentially

factors correcting for the non~ideal behavior of electrolyte solutions

due to electrostatic interactions between ions. In dilute solutions

activity coefficients can be calculated using the concept of ionic

strength and the Debye-Huckel equation (e.g. see Adams, 1972). An appre-

ciable fraction of the cations and anions of certain electrolytes in sol-

ution behave as if un-ionized and are called ion-pairs. The association

of free ions to form ion-pairs is expressed as a dissociation reaction,

which for the ion-pair caso40 is:

{16 }

The equilibrium dissociation constant for this reaction is:

(ca2+)(S042-)
K = (17)
D (caso40)

The activity coefficient of the ion-pair is generally assumed to be unity.
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General principles applying to ion-pair formation of common soil

solution cations and anions are given by Adams (1972). Considerable

research has been devoted to the determination of the solubility product

of gypsum (Rance and Davey, 1968; Bennet and Adams, 1972) and the 501-

ubility of gypsum in water and in solutions containing different salts

at varying concentrations (Longenecker and Lyerly, 1959; Tanji, 1969).

Values of the solubility product l reported in the literature range from

2.4xlO-5 to 4.24xlO-5 25°C . h h h 1 dat ,wlt per aps t e most common y use
-5value about 2.5xlO . Measured solubilities of gypsum in water range

from 30.2 to 30.6 meq/l . The solubility increases in the presence

of non-common ions due to the ionic strength effect on the activity

coefficients, and decreases in the presence of common ions.

The most commonly used value for the dissociation constant of
a -3CaS04 is 4.9xlO In a solution containing only solid phase gypsum

and its dissolved components the concentration of the ion-pair is con-

stant and can be calculated from:

K
(CaSO 0) = 2£. (18 )

4 KD

which is obtained by combining Eqs. (15) and (17). For Ksp = 2.5x10-5

the concentration of the ion-pair is 5.1 mmol/l or about 35 percent

of the total calcium concentration.

Kinetics of Dissolution

From a microscopic viewpoint the dissolution of a solid phase par­

ticle is heterogeneous since it takes place at the surface of the dis-

solving particle. In general, heterogeneous reactions involve three

lActivities and concentrations are usually expressed in moles per liter.
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steps: the transfer of reactants to the reaction surface, the reaction

itself, and the transfer of the products away from the reaction surface.

In the case of the dissolution of gypsum particles only the last two of

these are involved. The rate of the overall reaction will be determined

by the slowest step. If the transfer of products or reactants is the

rate determining step, the reaction is said to be diffusion or transport

controlled. In the opposite case, the chemical reaction is the slowest

step and the rate is determined by chemical kinetics.

According to Levich (1962) the dissolution of most solids in liquids

is diffusion controlled. Weyl (1958) showed experimentally that this is

the case for the dissolution of limestone particles. Barton and Wilde

(1971), using a rotating disc method, determined that the dissolution of

gypsum was transport controlled, while that of anhydrite (CaS04) was

intermediate between chemical and transport controlled.

An empirical relation for dissolution of solids in liquids based

on extensive experimental data was given by Shchukarev (1891) as:

dm _ ( )- - KA c -cdt S (19 )

where m is the amount of solid phase material per unit volume of sol­

ution at time t, A is the surface area of the dissolving material per

unit volume of solution, Cs is the concentration in a solution saturated

with the dissolving material, c is the concentration in solution at a

given distance from the particle and K is a proportionality constant

(L -2T-l) .

Further studies, especially by Nernst (1904), showed that K was

proportional to 00 the diffusion coefficient of the dissolved substance

in the solvent, and led to the following expression for the dissolution
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rate:

d DOA
.J!!. = - (c -c)dt 0 S (20)

where 0 is a constant designating the thickness of the region through

which the solute diffuses. Equation (20) is an expression for the dif-

fussion flux in a static liquid layer of thickness O. with a concen­

tration difference across it equal to cS-c. It is assumed that the

liquid is always saturated with the solute immediately adjacent to the

surface of the particle. In a case where mass transfer takes place due

to convective motion of the solution phase. Nernst assumed that there is

a thin layer of static liquid of thickness 0 next to the particle.

The theory has been criticized on several grounds. Equation (20) does

not permit dm/dt to be calculated a priori because 6 is not known

independently. Experimental measurements have shown that liquid motion

may be observed at distances 1/10 to 1/100 of that assumed by Nernst.

It has also been found that 0 apparently depends in some wayan DO'

Levich concludes that the Nernst theory is basically incorrect and only

has value as an empirical relation.

Levich develops a more rigorous treatment of the dissolution of a

particle based on the convection-diffusion equation. In this theory a

diffusion boundary layer concept is developed, but it differs fundamentally

from the static boundary layer concept in Nernsts' theory, in that it

accounts for the motion of the liquid inside the layer and the mass

transfer induced by it. However, Levich showed that the diffusional

flux through the boundary layer can be approximated by an expression



13

similar to equation (20) where 6 is now a known function of the fluid

properties, the fluid velocity, and DO'

By combining the convective and diffusive fluxes an expression for

the time rate of decrease of the mass of a single particle can be derived

(Bird et al. 1960). The resulting equation is similar to Eq. (19), with

the parameter K designated as a mass transfer coefficient. Ranz and

Marshall (1952), in a study of mass transfer from liquid drops, obtained

an expression for the mass transfer coefficient in terms of the radius

of the drop, the fluid properties, the fluid velocity, and the diffusion

coefficient. Using these results Millington and Powrie (1968) calculated

the time rate of dissolution of a single fertilizer granule. They con­

cluded that the rate of dissolution was diffusion controlled and that

the magnitude of the flow velocities of the soil solution encountered

under field conditions was too small to have any significant effect on

the dissolution process.

A somewhat different approach to a theory of the dissolution of a

particle is embodied in the equal reduction hypothesis which was advanced

by Bear and Allen (1932) in a study of the effect of particle size on

the rate of dissolution of limestone. In this hypothesis the rate of

dissolution is assumed proportional to the surface area and the rate of

reduction of the diameter of the particles is considered to be independent

of the diameter. Bear and Allen concluded that the hypothesis was

approximately valid for particles less than 0.1 mm in diameter.

Elphick (1955) used the equal reduction hypothesis in a study of lime­

stone dissolution and also considered that predictions based on the

hypothesis were successful. Swartzendruber and Barber (1965) derived

a dissolution equation using the equal reduction hypothesis based on
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spherical particles of uniform size, density and composition. In this

case, since the mass of a particle is proportional to the cube of the

particle radius we have:

where cl is a constant. According to the equal reduction hypothesis,

dr/dt is independent of r and is constant. At any time t the sur-

face area of a particle is proportional to r2

dm - c f2 = KAdt - 2

so that:

(21)

where K is a negative constant. After examination of Elphick1s data,

Swartzendruber and Barber concluded that for particles less than 0.5 mm

diameter the assumption of equal reduction did not hold, and that the

rate of dissolution was not proportional to the surface area. They pro­

posed an alternative rate equation of the form of Eq. (20) but did not

test its experimental validity.

The literature reviewed above clearly indicates that the particle

size of the gypsum is an important factor in determining its rate of

dissolution. However, there do not seem to have been any attempts to

incorporate the dissolution process into the transport equation for

prediction purposes.



CHAPTER III

MATERIALS, EQUIPMENT AND METHODS

One of the objectives of this study was to obtain experimental in­

formation ~~ the dissolution of solid phase gypsum in a dynamic soi1­

water sy~tem. In order to accomplish this objective and to facilitate

the testing of proposed dissolution models, an idealized experimental

system, as compared to a field situation, was devised. Known amounts

of gypsum with varying particle sizes were mixed with two different soils.

The mixtures were packed in columns. The initial solution phase was

saturated with gypsum. The gypsum was leached from the column with water,

and the solution phase was sampled at regular times and at several eleva­

tions.

Two soil materials were used in the columns: one a sand, the other

a clay. Tables 1 and 2 show the results of various physical and chemical

analyses of the soil materials. The sand was from the surface horizons

(0-30 cm) of a soil mapped as Blakeland sand in Washington County, Colo­

rado. The clay was from the 20-35 cm depth of a Weld clay from near

Greeley, Colorado.

The exchange complex of the clay was saturated with calcium by

leaching with 5N CaC1 2 until Mg2+ could not be detected in the efflu­

ent by the EOTA titration method (Richards, 1954). The excess salt was

then removed by leaching with distilled water until no precipitate was

formed upon addition of AgN03 to the effluent. The soil was then re­

dried, crushed and passed through a 2 mm sieve. More than 95 percent

of the exchange complex was occupied by Ca2+ after this process.

The sand contained some solid phase carbonates. In part of the

sand, this was removed by treatment with 3N HCl , followed by leaching

with water until the pH of the leachate equaled that of the water.
15
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Table 1. Some physical properties of the soils used.
Soil: Sand Clay

Sieving analysis

0.05 - 0.125 mm

0.125 - 0.25 mm

0.25 - 0.5 mm

0.5 - 1.0 rnm

1.0 - 2.0 mm

Particle size distribution

Sand (0.05 - 2 mm)

Silt

Clay

8%

31%

53%

5%

1%

98% 21%

33%

46%

Particle density Pd (g/cm3) 2.65 2.69

Sat. hydraulic condo (cm/hr) 1.28 0.24
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Table 2. Some chemical properties of the soils used.
Soil: Sand Clay

Cation exchange capacity
(meq/lOO g) 5.0 25.7

Exchange complex composition

Ca 88% 55%

Mg 7% 41%

Na 1% 1%

K 4% 3%

Saturated paste

Water content (% weight) 21.3 60.9

pH 8.06 7.65

EC (rnmho/cm) 0.31 0.24

Ca (meq/1 ) 2.6 1.2

Mg (meq/1 ) 0.3 1.0

Na (meq/1 ) 0.6 0.3

K (meq/1 ) 0.5 0.1

Carbonate content (% weight) 0.1 nil
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Water content-pressure head drainage relationships (see Fig. 1) were

determined for both soils using weighable cells similar to those used by

Reginato and Van Bavel (1962).

The agricultural gypsum used in this study was obtained from a com­

mercial plant in Salida, Colorado. The material was separated into the

following size ranges: 63 ,63-125 ,125-250 ,250-500 , 500-1000

and 1000-2000 In a few experiments, reagent grade powdered gypsum

was used. This material was either mixed directly with the soil, or

applied by evaporation of a saturated gypsum solution ponded on a thin

layer of soil. The dried soil-gypsum mixture was crushed and passed

through a 2 mm sieve.

The purity of the gypsum material was measured by shaking 0.5 9

of each of the finely ground size ranges with 250 ml of distilled water

for time periods varying from 167 to 592 hours. The dissolution

rate of each size fraction was determined by shaking 0.5 g samples

(unground) in 250 ml water. Solution samples (2 ml) were removed at

1,3,6,12,23,36,72,119 and 167 hours. Calcium analyses were

made with a Perkin-Elmer atomic absorption spectrophotometer (AA).

Some samples were analyzed for sulfate by a turbidimetric procedure

as a BaS04 precipitate suspended in a gum arabic solution. This pro­

cedure was a slight modification of the method described by Massoumi

and Cornfield (1963). The solubility of the various size fractions of

the gypsum material was measured by shaking an excess (1.25 g) of the

finely ground gypsum with distilled water (250 ml) and determining the

calcium concentration in the solutions.

Some of the material in the 1-2 mm size range was separated by

hand into three fractions. One fraction consisted of colorless particles
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• sand

o clay

- 1000 -100 -/0

PRESSURE HEAD (em)

Fig. 1. Pressure head - solution content relationship for the sand
and the clay soil.
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with a crystalline appearance and white chalk-like pieces. A second

fraction consisted of yellow mostly amorphous particles. The particles

in the remaining fraction were dark gray or black with little crystalline

structure. These fractions are referred to later as the white, yellow

and black fractions. The purity of each fraction was determined as

described above.

The carbonate content of each size fraction and the white, yellow

and black fractions was measured using CO2 evolution (Williams, 1948).

The experimental arrangement, which was used for conducting experi­

ments under downward unsaturated flow of the solution phase, is shown

in Fig. 2. A Lucite cylinder with an inside diameter of 15 em and

33 em long was used to contain the soil. Ceramic suction cups at two

positions (10 and 20 cm from the bottom) were used to sample the solution

phase. Duplicate tensiometers were installed at 5, 15 and 25 cm from

the bottom of the column. A ceramic plate was used at the bottom of the

column so that suction could be applied to the lower end of the soil

column.

The air dry soil was mixed with the desired amount of one of the

size ranges of gypsum, passed several times through a screen "particle

distributor" of the type described by Wygal (1963) and then was placed

in the column by passing it through the particle distributor. The column

was filled to just above the position of the lower solution sampling

tube. After tapping, the upper sampling tube was inserted and the column

was filled until after settling a depth of about 30 cm of soil was

obtained. The column was then wetted from the bottom with a saturated

gypsum solution.
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Fig. 2. Schematic overview of the experimental set-up used in the
gypsum leaching studies.
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After wetting the column a constant flow rate of the same solution

was applied to the top of the column. By regulating the flow rate to

less than that equivalent to the hydraulic conductivity of the saturated

soil and by applying an appropriate suction at the bottom of the column,

a condition of steady-state downward unsaturated flow with unit hydraulic

gradient can be approached. Under this circumstance the pressure head

and solution content would be constant. This constant-water content,

constant-flux condition was desired in order to simplify the application

of the models to the leaching system. Analysis shows that if the suction

at the bottom is made larger than the ideal for unit gradient, the unit

gradient condition will prevail throughout th~ column except for a limited

region near the bottom.

When the solution phase came under suction the tensiometers were

installed. Water manometers were used to display the hydraulic head

(and pressure head) of the solution phase.

After the steady-state flow condition with a saturated gypsum sol­

ution was established, the initial solution was displaced by water at

the same flow rate. The solution phase was sampled at three positions

(at the outflow and 10 and 20 cm above the bottom of the column) at

intervals of 4 to 6 hours. The solution samples were analyzed for cal­

cium using the AA. In some samples sulfate was determined turbidimetri­

cally as previously described. The leaching was continued until all or

most of the solid phase gypsum was dissolved, and the calcium concentra­

tion approached zero. After termination of the flow the soil columns

were separated into 2-3 cm long sections and the solution contents of

the sections were determined.
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The general procedures for experiments conducted under saturated

flow conditions were similar to those described above. Most of the sat-

urated flow experiments were conducted using Lucite cylinders with a

diameter of 6.9 or 6.3 cm. No tensiometers were installed and a

ceramic plate was not used at the bottom (outflow) end of the column.

The columns were wetted with a saturated gypsum solution. Leaching was

carried out by applying distilled water with a constant flow rate pump

to the top of the column. The connecting tubing and reservoir between

the pump and the column was closed, i.e., not open to the atmosphere.

By this means a greater variation in flow rate was possible than would

have been the case with ponded water open to the atmosphere at the top

of the column.

To reduce the contribution by the ceramic suction cups used for

solution sampling to the calcium in the extracted solution they were

leached with IN HCl until the Ca2+ concentration in the leachate

was less than 0.1 meq/; (Grover and Lamborn, 1970). The excess Cl

was removed by leaching with distilled water. It was assumed that any

exchange capacity of the ceramic was saturated with Ca2+ ions during

the initial wetting of the column with saturated gypsum solution.

Chloride breakthrough curves were measured and used to determine

the dispersion coefficient. Most measurements were made under saturated

conditions. The columns for these measurements were packed as described

above and wetted with distilled water. The water was displaced with a

KCl solution containing approximately 500 ppm Cl A specific ion

electrode was used to determine Cl in the effluent. After the water

was displaced by the KCl solution the column was leached with distilled

water to obtain a backward breakthrough curve. The cycle of forward and
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backward breakthrough curves was repeated several times at different

flow rates on a given soil column.

To investigate the uniformity of the initial soil gypsum mixture a

sectioned Lucite column made from 10 rings with an i.d. of 5 cm and

a height of 3 cm was filled with the mixture in a manner comparable to

that used to fill the leaching columns. Samples of the mixture were

taken from each 3 cm section, and the mass of gypsum in each was deter­

mined by dissolving (with shaking) the gypsum in water and determining

the calcium concentration in the resulting solution.



CHAPTER IV

THEORETICAL ANALYSIS

In the leaching columns described for use in this study. at each

point in tr.~ system (macroscopic viewpoint) there was a solution phase.

a solid phase and possibly a gas phase. The solid phase consisted of

the soil solids and gypsum, unless all the gypsum had been dissolved.

The components of the solution phase were water, calcium ion. sulfate

ion, and calcium sulfate ion-pair. unless all the dissolved gypsum had

been displaced by the incoming water. The possible effects of sulfate

adsorption by the soils, and exchange of adsorbed calcium ions by hydro­

gen ions were neglected.

Two models were applied to the gypsum leaching data. a mixing cell

model and a kinetic model.

The Mixing-Cell Model

Equilibrium chemical principles are used in the mixing cell model.

which is a simplified version of a model developed by Tanji et al. (1967).

The continuous flow process is represented by a discontinuous sequence

of flow followed by mixing and chemical equilibration.

The column is considered to consist of n segments of equal height

~z = LIn where L is the length of the column. Each segment is identi-

fied by an index i. where i=1.2, ...•n. The time axis is divided into

equal increments 6t which are indexed by j. where j=1.2, ..... At

time j and position the equilibrium concentration of a given species

is denoted by c.· A flow of solution at Darcy velocity q from layer
1 ,J

;-1 to layer ;, and from layer; to layer ;+1 • is assumed to occur

in the time interval 6t. The concentration in layer; after the flow

has occurred can be calculated from mass balance principles and is given

25
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by:

c. ·+1 = c. . + ~ t ~e (c 0 1 . -c. .)
1 , J 1 , J uZ 1 - ,J 1,J

(21)

In developing Eq. (21) it is considered that no dispersion processes or

chemical r~3ctions occur during the flow, and that complete mixing in

each cell is obtained. Due to the flow and mixing process the chemical

equilibrium in each cell will be upset. Chemical reactions between the

species will occur, which in the system being considered, are the pos­
osible dissolution of solid phase gypsum and formation of CaS04 .

The changes in concentration due to chemical reactions can be cal-

culated by an iterative procedure in which the values of Ci ,j+1 are

used as the first estimate, cl. 0+1' of the equilibrium concentrations.1,J

Successive estimates of the equilibrium concentrations, c~ '+1 ' where
1 ,J

K is an iteration index, k=1,2, .... , are made by the following procedure:

as long as solid phase gypsum is present in a layer, the concentration

of ca5040 is constant at that point (se Eq. (18). In this case the

improved estimates of [Ca]k+l and [S04]k+l , which are the estimates of

the equilibrium concentrations of the calcium and sulfate ions in layer

i and time j+l, are calculated from:

[Ca]k+l = [Ca]k + x (22 )

(23 )

where x is the change in concentration of the ions due to dissolution

of gypsum. Writing the solubility product for gypsum, Eq. (15), as:

and substituting (22) and (23) into this relation leads to:
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=° . (24)

estimated from the concentrations

activity coefficients of calcium and

Equation (24) is a quadratic in x which can be solved for x

ck+l for the calcium and sulfatei ,j+1

In (24), YCa and YSO are the
4

sulfate io" respectively and are
k

c i ,j+1

and used in (22) and (23) to give

ions.

When solid phase gypsum is no longer present, the concentration of

cas040 is no longer constant and Eq. (24) does not apply. In this case

the dissociation of the ion-pair controls the concentrations of ionic

calcium and sulfate. Improved estimates of the equilibrium concentrations

are calculated from:

[Ca]k+l = [Ca]k _ y (25 )

[SO ]k+l = (SO ]k _ y
4 4

[caS0
4
o]k+l = [caS0

4
0]k + y

(26 )

(27 )

where y is the change in concentrations due to ion-pair dissociation.

Substitution of (25), (26) and (27) into Eq. (17) gives:

(28 )

Equation (28) can be solved for y which then can be used in (25), (26)

and (27) to give the improved estimate of the equilibrium concentrations.

The successive estimates of the equilibrium concentrations are then com-
. k+l k

pared. If thedlfference between Ci,j+l and ci ,j+l for all the

species is less than a small value E:, chemical equilibrium is considered
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If any of
k+lis replaced by c..+1 and1,J

to be attained and the process advances to a new time step.
kthe differences are larger than £, Ci,j+l

the iteration is repeated.

A flow chart of the above computation scheme is shown in Fig. 3.

The Kinetic Model

For the kinetic model it is assumed that Eq. (3) describes the trans­

port of the dissolved gypsum. The mass balance of the immobile solid

phase gypsum is given by Eq. (7). In the experimental system it is

assumed that the dissolution of gypsum is the only reaction so that a

pair of partial differential equations describes the transport and dis-

solution:

a(ce) =~ (De dC ) _ a(Qc) + G
at az az az g (29 )

am- = -6at 9
(30)

in which a model for the source function for dissolved gypsum, Gg , must

be formulated. In these equations c is the concentration of dissolved

gypsum in the solution phase and m is the mass of solid phase gypsum

per unit volume of porous medium.

Several rate expressions representing the dissolution of a single

solid phase particle into a liquid have been suggested in the literature.

These expressions are only applicable on a microscopic scale in a porous

medium, and a transition to the macroscopic level must be made before

they can be used in Eqs. (29) and (30).

The solution immediately adjacent to the surface of the gypsum

particles is assumed to be saturated, with concentration Cs The con­

centration of di'isolved gYPsullI in the solution itway from the IMrtlc1p
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c. .+1 = c. . + 9.e --i (c. 1 .-c . .)
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k
Ci,j+l = Ci,j+l
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Ionic strength
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Calculation of x or y

k+l
c. "+1, ,J

Fig. 3. Computation scheme in the mixing cell model.
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will be denoted as c(z,t) where the bar indicates a variable defined

on a microscopic scale. By combining expressions for the mass flux of

the dissolving species resulting from the bulk motion of the fluid and

from the diffusion superimposed on the bulk flow the following expression

for the rate of dissolution of a gypsum particle can be derived (Bird

et a1., 1960):

(31)

where R is a microscopic reaction rate parameter (T-1L-2) and m ;s

the mass of the particle. Equation (31) was used by Millington and

Powrie (1968) to describe the dissolution of a fertilizer granule. For

particles with a common geometric shape it can be shown that

(32 )

where Pp is the density of the particle and f is a factor depending

only on the particle shape. As the particle dissolves m changes with

time. It is also possible and even likely that f will change with

time. Thus A will be time dependent.

A transition from Eq. (31) at the microscopic level to a correspond-

ing relation at the macroscopic level could conceptually be made by inte-

grating Eq. (31) over a representative elementary volume (REV) of the

porous medium in the manner described by Bear (1972) and by Raats and

Klute (1968). The difficulty here is that one of the variables in the

equation is the total surface area of the gypsum in the REV which cannot

be calculated as a function of position and time. It does not seem

possible to develop an expression for Gg beginning with Eq. (31).

However, Eqs. (31) and (32) suggest that it might be possible to describe
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the dissolution of gypsum on the macroscopic level by an expression in

which the dissolution rate is proportional to the product of the satura­

tion deficit (c-c5) and a dimensionless function of the mass of gypsum

present per unit volume of porous medium, F(m). Thus:

om _ ]at - kF(m)e[c(z,t) - Cs (33)

where k is a reaction rate parameter. The function F(m) should

satisfy the following conditions:

(a) F(O) = 0

(b) 0 ~ F(m) ~ 1

(c) . dF/dm > 0

F(m.) = 1
1

o < m < m.
- - 1

(d) F(m) is continuous for 0 < m < m.
- - 1

In the above mi is the initial amount of solid phase gypsum present in

the porous medium. Under the above conditions the dissolution rate is

zero if all the gypsum is dissolved. and for a given saturation deficit

(c-cS) the dissolution rate is larger if more solid phase gypsum is pres­

ent. After investigating several functions satisfying the above condi­

tions the following formulation for F(m) was selected:

F(m) = ( ~ )am.
1

(34)

In Eq. (34), a is an empirical parameter that cannot be measured inde-

pendently from the leaching data. Attempts to calculate a using

theoretical considerations have been unsuccessful in part due to problems

with the factor f in Eq. (32).

Using Eq. (34) in (33) and the result in turn in Eqs. (29) and (30)

the transport equations become:

a(ce) =~ (De ac ) _ d1~c) - Ke ( mm. )a(c-cs) (35)
at dZ dZ 1
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(36 )

The experimental conditions were selected so that 8 and Q were

constants in any given leaching column. The transport equations then

reduce to:

(37)

(38)

Boundary and initial conditions on (37) and (38) which describe the

experimental situation are:

-0 E£ + Uc = 0az

~ = °az

z=O , t>O

z=L ,t>O

(39)

(40 )

m(z,O) = m. (4l),
c(z,O) = c (42)S

For convenience in comparison of the solution of (37) and (38)

subject to the conditions (39) - (42) the following dimensionless vari-

ables were used:

T = Ut/L

Z = z/L

C = c/cS

M= m/(6cS)

G = Lk/U

B = LU/D

Substitution of the dimensionless variables into Eqs. (37) through (42)

gives:

~c ·1 ~2 ~C M
a _ a C a G ( __ )a(C-l)
aT - B az2 - az - Mi

(43)
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subject to:

ae
dZ - Be = 0

ae = 0az

M(Z,O) = M.
1

e(z,o) =

z=O

z=O

o < Z < 1

a < Z < 1

T>O

T>O

(44)

(45)

(46)

(47)

(48)

In the above Mi = mi /(6c S)

The dimensionless time T represents the number of liquid filled

pore volumes of solution that have passed through the column in physical

time t. The Brenner number B is a measure of the relative importance

of convection as compared to dispersion in a given column.

An analytic solution to (43) and (44) does not seem to be available,

and numerical procedures were applied to obtain the solution. Several

numerical methods were tried and compared. The first was finite differ­

ence method similar to that of Bresler (1973) designed to minimize numer-

ical dispersion. The second was a variation of the method of character­

istics, similar to that described by Smajstrla et al. (1973) (see also

Garder et al., 1964). The third, the method of lines, utilized a program

package called GEARB that was obtained from the Argonne National labor-

atory, Agronne, Illinois. Additional details of these methods are avail­

able from the authors. 1

'The Ph.D. dissertation by Tjaart Glas gives additional information on

these methods and is available upon request.



CHAPTER V

RESULTS AND DISCUSSION

Dispersion Coefficient-Seepage Velocity Relationship

Oispe,sion coefficient data were obtained for the two soils by

determining the best fit between measured chloride breakthrough curves

and an analytical solution to Eq. (6) given by Brenner (1962). An optim-

ization technique was used to minimize an objective function F by

adjusting the parameters U and 0 in Brenner's solution. The optim-

ization technique, first proposed by Powell (1964) and modified by Zang­

will (1967) is available as the subroutine ZXPOWL in the International

Mathematical Statistical Library. The objective function was defined as:
n

2F = (c. O-c. ) /n
i=l 1, 1,p

(49)

where ci,O and ci,p are the observed and calculated values of the

chloride concentration at a particular sampling time and n is the total

number of samples for the chloride breakthrough curve.

The results of the dispersion coefficient and seepage velocity

determinations by the optimization procedure are given in Table 3. As

shown in Table 3, the values of U , calculated from the Darcy velocity,

the bulk and particle densities, and the area of cross-section of the

column, did not agree with the values of U obtained by optimization.

These discrepancies are probably due in part to measurement errors, but

are also due to the effect of anion exclusion especially in the case of

the clay. The optimized seepage velocities for the clay soil were con­

sistantly higher than those based on the Darcy velocity which would be

the case if anion exclusion had occurred.

Figure 4 shows the dispersion coefficient-seepage velocity

34
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Tabl e 3. Results of the chloride breakthrough curve experiments.
Soil Column Solution Bulk Measured Two parameter optimization

Length Content Density U U D B Fx102

em cm3tcm3 g/cm3 cm/hr cm/hr cm2/hr

Sand 30.0 0.25* 1.45 7.6 8.2 16.9 14.6 0.30
Sand 31.5 0.25* 1.59 6.6 8.2 24.8 10.4 0.26
Sand 30.0 0.28* 1.48 6.6 8.1 9.4 25.9 0.35
Sand 30.0 0.25* 1.50 8.4 8.0 13.3 18.2 0.21
Sand 31.5 0.25* 1.51 7.0 7.4 29.2 8.0 0.61
Sand 31.5 0.25* 1.51 4.5 5.8 17 .0 10.7 0.31
Sand 30.0 0.25* 1.56 5.5 5.7 23.1 7.4 0.13
Sand 30.0 0.23* 1.51 5.0 5.4 17.3 9.4 0.29
Sand 30.0 0.27* 1.52 3.5 5.0 14.7 10.2 0.35
Sand 30.0 0.25* 1.40 5.4 5.0 2.4 62.5 0.17
Sand 30.0 0.25* 1.60 5.1 4.9 2.3 63.9 0.20
Sand 30.0 0.27* 1.52 3.8 4.1 6.7 18.4 0.37
Sand 30.0 0.41 1.56 3.4 3.6 3.8 28.5 0.07
Sand 30.0 0.41 1.56 3.1 3.2 4.0 24.0 0.02
Sand 30.0 0.41 1.56 3.1 3.7 5.3 20.9 0.05
Sand 30.0 0.41 1.56 2.5 3.0 3.9 23.1 0.06
Sand 30.0 0.41 1.56 1.9 2.0 2.2 27.3 0.03
Sand 30.0 0.40 1.58 1.3 1.8 1.8 30.0 0.01
Sand 30.0 0.41 1.56 1.2 1.4 1.5 28.0 0.08
Clay 31.0 0.52 1.24 2.3 3.7 7.3 15.7 0.19
Clay 32.5 0.52 1.24 1.5 2.6 3.9 21.7 0.01
Clay 31.0 0.50 1.32 1.4 2.3 6.4 11.1 0.07
Clay 31.0 0.49 1.35 1.2 1.9 4.3 13.7 0.16
Clay 32.5 0.52 1.24 1.0 1.8 2.9 20.2 0.04
Clay 32.0 0.50 1.32 0.9 1.5 1.1 43.6 0.06
Clay 30.0 0.48 1.38 0.9 1.5 4.2 10.7 0.30
Clay 30.0 0.47 1.40 1.0 1.2 2.5 14.4 0.05
Clay 32.0 0.50 1.32 1.0 1.2 1.7 22.6 0.06
Clay 30.0 0.49 1.35 0.6 0.9 1.0 27.0 0.18
Clay 32.5 0.52 1.24 0.6 0.7 1.4 16.3 0.07

In the experiments indicated by the symbol * the solution content e
was smaller than the saturated solution content as •
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relationship for the sand and clay, as well as the results of linear

regressions using the form:

Log( ~ ) =m Log( ~ ) + b
DO DO

(50)

where m and b are the slope and intercept of the linear log (0/00 )

versus log(U/DO) relationship. The molecular diffusivity DO used in

this regression was that for KCl which is 0.069 cm2/hr at 25°C. The

regression equations given in Fig. 4 were used to calculate dispersion

coefficients for the gypsum leaching experiments.

Properties of the Gypsum Material

Table 4 gives the calcium concentrations of solutions equilibrated

with an excess of the gypsum material by shaking for 168 hours. Dupli-

cate measurements A and B were made on each size range. These results

show no systematic differences between the size ranges and duplicates,

and are within the range of measured solubilities for gypsum in distilled

water as reported in the literature. Based on the results in Table 4 the

concentration scaling factor Cs was set equal to 30.5 meq/l .

The purity of the gypsum material was studied by shaking less than

an excess of the material in distilled water. The calcium and sulfate

concentrations in the resulting solutions differed by less than 10 per-

cent in terms of milliequivalents per liter, indicating that the main

source for calcium and sulfate in the solution was solid phase gypsum.

The magnesium concentration in all of the samples was less than 0.01 meq/l

Assuming that the solid phase gypsum was the only source of calcium in

the solution, the amount of pure gypsum was calculated from the calcium

concentrations in the solutions. These results for the different size

fractions are shown in Fig. 5. The amount of pure gypsum ranges from
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Calcium concentrations (meq/l)
solid phase gypsum material of

Size ranges (~)

Table 4.

o

63 125 250

in solutions saturated with
the six different size ranges.

Average
500 1000 Ca2+ conc.

500 1000 2000 (meq/l)

A 29.8 31.2 30.1 31.0 30.5 29.7 30.4

B 31.6 30.6 29.7 29.9 30.0 36.1 30.6

about 85 percent for the finest particle size class to approximately

65 percent for the 1-2 mm size range. The scatter in the data are

attributed to the nonuniformity of sub-samples of the gypsum material.

Table 5 gives the carbonate content of the different size ranges and

the white, yellow and black fractions of the 1-2 mm material. From

the data in Table 5 and Fig. 5 it appears that pure gypsum and carbonates

account for 80-90 percent of the gypsum material. It was found in

the shaking studies that part of the material was insoluble in water.

Analyses showed this insoluble material to consist mainly of silica and

iron compounds.

The results of the dissolution rate study for the various particle

sizes are shown in Fig 6. The calcium concentration is plotted versus

shaking time. The smallest size ranges were apparently dissolved within

1 hour, but the two largest size ranges showed significant increases in

calcium concentration up to 6 hours of shaking time. These shaking study

results are not useful as a measure of the rate of solution in a porous

medium because of the different conditions under which the dissolution

occurs. In a shaking study the dissolved material is swept away by

turbulence in the solution, while in a soil-water system the transport

away from the particle surface is by a slower laminar convection and

diffusion process. However, the results of the shaking studies indicate
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that at least for the larger particles it will not be possible to describe

the dissolution as an equilibrium process.

Table 5. Carbonate content (% by weight) in the different size ranges
and separated fractions of the gypsum material.

Size range (~) Fraction of 1-2 rom material
0- 63- 125- 250- 500- 1000- white yellow black
63 125 250 500 1000 2000

%car-
bonate 3.6 2.0 2.3 5.4 10.1 14.7 0.7 13.0 32.5

Gypsum Leaching Results

Tables 6 and 7 summarize the physical parameters of the various

gypsum leaching experiments for the sand and clay respectively.

Experiments in which the solution content was less than the satur-

ation value are indicated with the symbol +. It wa$ attempted in

these experiments to maintain the solution content constant with respect

to position and time. The tensiometer readings indicated that this goal

was not completely attained. In general the tensiometer readings varied

with respect to elevation as well as time. The differences with respect

to elevation corresponded to an absolute solution content variation of

up to 10 percent. In most cases the solution content increased with

depth. It was found that the solution contents inferred from the tensi­

ometer readings and the pressure head-solution content relationships in

Fig. 1 were not the same as those obtained from gravimetric determinations

at the end of the experiment, probably because of packing differences

between the column and the samples used to obtain the data in Fig. 1.

It was decided to use the average of the solution contents determined

at the end of each experiment under unsaturated conditions as the solu­

tion content for modeling purposes. In the saturated columns the total

porosity was calculated from the bulk and particle densities.
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Table 6. Physical parameters of the gypsum leaching studies performed
in the sand.

uL Ae 0 8

--- 2------r-/r 9/-eo--'13"'---
em em em em em/hr

Exp2r;lIie-nt
No.

---- -----------------

0.38 1.64 1.45 ±0.25 31.3 16.7

0.41 1.57 1.93 ± 0.25 29.0 15.8

0.41 1.56 2:82: 0.30 22.2 16.0

0.25+ 1.51 5.80: 1.10 17.3 1~.3

0.27+ 1.52 3.44: 0.55 30.0 15.3

0.42 1.55 1.44: 0.50 37.6 15.6

0.41 1.57 1.99 ~ 0.35 26.6 16.0

0.27+ 1.52 3.81 ~ 0.35 20.4 15.5

0.40 1.55 4.02: 1.25 18.9 15.8

0.41 1.55 0.14 ~ 0.03 36.8 15.6

0.38 1.65 1.21 ± 0.02 35.6 16.7

0.28+ 1.52 6.21: 0.90 15.9 29.4

0.38 1.64 1.24: 0.10 34.0 16.5

0.25+ 1.53 1.74: 0.60 30.6 14.9

0.43 1.52 2.34: 0.25 24.9 15.8

0.38 1.65 2.66 ~ 0.30 24.6 16.7

0.37 1.64 8.11: 1.35 14.5 16.0

0.23+ 1.51 4.50 ± 0.60 18.7 15.3

0.38 1.63 1.47: 0.20 30.6 8.3

0.36 1.70 1.58: 0.35 32.1 8.5

0.37 1.66 2.73: 0.35 24.2 8.3

0.36 1.69 6.30 ± 0.55 15.8 8.5

0.39 1.64 1.46 ± 0.40 37.6 18.4

63-125

63-125

500-1000

500-1000

500-1000

500-1000

63-125

125-250

250-500

250-500

250-500

250-500

500-1000

63--125

63-125

63-125

Prec i pi ta ted

Preci pita ted

Reagent Grade

1000-2000

1000-2000

1000-2000

1000-2000

1000-2000

1000-2000

Precipitclted

Precipitated

1.55 11.99: 0.35 10.9 15.7

1.66 11.34 ± 2.70 11.3 15.5

1.63 16.4

1.55 1.31: 0.20 33.0 15.7

0.40

0.42

0.37

0.39

31.5 176.7

29.0 37.8

28.0 37.8

28.0 37.8

30.0 31.2

28.0 37.8

30.0 176.7

33.5 31.2

28.0 37.8

30.0 176.7

28.5 37.8

10.0 60.8

29.0 37.8

30.0 176.7

29.0 37.8

28.5 37.8

28.0 37.8

30.0 176.7

28.5 37.8

30.0 31.2

31.537.8

30.0 176.7

27.5 37.8

30.0 37.8

30.0 31.2

30.0 37.8

30.0 31. 2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

"0

+ Solution content e smaller than the saturated solution content.
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Table 7. Physical parameters of the gypsum leaching studies performed in the
clay.

Experiment
L A e U B 3 Particle

13 mi ,totx10
No. c Size

cm2 CJ!l~L<;.l!C......9!cm3____ cm/hr 3cm -.9.1.£~__.2..:.!!!-. lJ

28 31.5 176.7 0.55 1. 21 0.13 ± 0.02 28.5 6.0 0-63

29 31.0 37.8 0.50 1.34 0.26 -: 0.05 24.8 13.7 0-63

30 28.0 37.8 0.55 1. 21 1.97! 0.15 15.8 13.8 0-63

31 30.0 176.7 0.51 1.32 0.18 ! 0.10 25.6 12.8 63-125

32 30.0 37.8 0.53 1.25 0.83 ! 0.10 19.6 12.6 63-125

33 28.5 37.8 0.48 1.40 0.98 ± 0.10 18.1 13.8 63-125

34 30.5 37.8 0.54 1.24 2.07 t 0.50 17.0 12.3 63-125

35 31.0 176.7 0.53 1.26 0.51 t 0.10 22.1 6.2 125-250

36 28.5 37.8 0.47 1.42 0.55 ± 0.10 20.0 14.1 125-250

37 30.0 176.7 0.53 1.26 23.7 6.2 250-500

38 30.0 176.7 0.51 1.32 0.29 :: 0.10 23.6 6.6 250-500

39 31.0 176.7 0.42+ 1.29 0.35 ;t 0.05 21.6 6.4 250-500

40 30.5 37.8 0.46 1.45 1.37 ± 0.30 18.3 14.5 250-500

41 28.0 37.8 0.47 1.42 2.00:t 0.50 15.7 14.1 250-500

42 32.0 176.7 0.42+ 1.22 0.33 ± 0.10 24.6 6.2 500-1000

43 31. 0 176.7 0.52 1.29 0.81 t 0.10 20.4 6.2 500-1000

44 31.0 176.7 0.41+ 1.25 0.10 ± 0.05 29.3 6.3 1000-2000

45 31.0 176.7 0.53 1.26 0.41 ± 0.15 22.9 6.3 1000-2000

46 30.0 37.8 0.49 1.37 0.49 ± 0.20 17.9 13.2 1000-lOOO

47 30.0 31.2 0.50 1. 34 1. 92 ± 0.25 17.0 13.4 1000-2000

48 28.0 37.8 0.53 1.26 1.74±0.20 16.1 5.6 Preci pita ted

49 30.0 37.8 0.54 1.24 3.90 t 1.0 15.0 6.2 Precipitated

50 31. 0 37.8 0.47 1.42 0.91±0.15 19.3 22.2 Reagent Grade

+Solution content e is smaller than the saturated solution content.
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The seepage velocities calculated from the measured Darcy velocity

and solution content ranged from 0.14 to 11.99 cm/hr in the sand~

and from 0.10 to 3.90 cm/hr in the clay. The error bounds on U

shown in Tables 6 and 7 were calculated from the measured fluctuations

in the Darcy velocity. Usually these fluctuations were within 25 per­

cent of the average. In experiments 16 and 37 the flow rate was purposely

varied with time by turning off the inflow pump during certain time

periods.

The Brenner number B, which varied from 10.9 to 37.6 in the sand

and from 15.0 to 29.3 in the clay, was calculated from the relation­

ship B=LU/D. The dispersion coefficients were obtained from the seepage

velocities using the regression equations given in Fig. 4.

The results of the experiments conducted to test the uniformity of

the initial soil-gypsum mixture are shown in Fig. 7. The mass of calcium

recovered in the solution samples expressed as a percentage of the total

mass of gypsum material added is plotted against depth. The scatter in

the data in the experiments in which natural gypsum material was used

could be due to nonuniformity of the gypsum material or to nonuniformity

of the mixture. The bottom graph in Fig. 7 shows that an almost uniform

gypsum distribution was obtained by using reagent grade gypsum in the

mixture. Accordingly, it is believed that the scatter in the case of

the natural material is largely due to the nonuniformity of the material.

The sand contained about 0.1 percent of carbonates (see Table 2).

When a sand column (without gypsum) was leached with distilled water at

a Darcy velocity of about 1.5 cm/hr it was found that the calcium con­

centration in the effluent and suction cup solution samples was less

than 1 meq/l . Although the carbonates were removed by acid washing in

some of the experiments, their presence was neglected in all cases.
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In two experiments (Nos. 20 and 36) the calcium and sulfate concen­

trations were measured in the solution samples. The generally good

agreement between the calcium and sulfate concentrations versus time

shown in Figs. 8 and 9 indicates that the main source of calcium in the

solution was the gypsum and that the carbonates present in the gypsum

material contributed little calcium to the solution.

The concentration-time curves shown in Figs. 8 and 9 are representa­

tive of the two types of curves obtained in the experiments. In certain

cases as shown in Fig. 9, the concentration remained at the saturation

value for some time before gradually decreasing with time. Some of the

curves, e.g., that for z=0.30 in Fig. 9, resemble breakthrough curves.

However, the inflection point of the observed curves occurred at pore

volume values (dimensionless time) far too large to be due to dispersion.

In general, the number of pore volumes of leaching required to bring

about a decrease in the calcium concentration was mainly determined by

the amount of solid phase gypsum added.

Predictions of the Mixing Cell Model

In order to explore the characteristics of the predictions of the

mixing cell model, the model was applied in some hypothetical situations.

In the first, a column of salt that contained no solid phase gypsum,

with a solution phase concentration that was constant and equal to cO'

was leached with distilled water. No reactions were considered to occur

and the change in concentration with time was calculated from Eq. (21).

The effect of the chosen magnitudes of the depth and time increments on

the calculated breakthrough curves is shown in Fig. 10. An increase in

~z or a decrease in ~t caused the concentration to decrease more grad­

ually with time in a manner suggestive of the dispersion process. This
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"built in" numerical dispersion has no physical meaning but it has been

used to simulate the dispersion process (e.g., Tanji et al., 1967; Outt

et a1., 1972).

The results of a simulation of the leaching of solid phase gypsum

from a column are shown in Fig. 11. The calculated concentration-time

curves resulting from the mixing cell model are step like due to the

fact that the solution phase concentration remains equal to the saturation

value as long as there is solid phase gypsum in the region above the

depth at which the concentration-time curve is calculated. As soon as

all the solid phase gypsum in the region is dissolved the concentration

drops to zero. There is a small effect of the numerical dispersion on

the results, but it is not large enough to change the basic shape of the

step front type curves.

The physical time at which the concentration drops to zero can be

estimated from mass balance principles in which the total mass of gypsum

to be dissolved and displaced is equated to the initial amount of solid

phase and solution phase gypsum in the column in a region of depth zd·

On a unit cross-sectional area basis we can write

cSqtd = zdm; + zdecS

which can be solved for t d:

m. e
t d = zd( C'q + q )

S

In terms of dimensionless variables this becomes:

(51)

(52 )

The dimensionless times for the occurrence of the step decrease in con-

centration at a given depth calculated from Eq. (52) agree with those
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calculated from the mixing cell model except for small uncertainties due

to the numerical dispersion effect in the latter.

Predictions of the Kinetic Model

The effect of the various parameters in the transport equation on

the concentration-time curves was examined in a series of computer solu­

tions. These results are shown in terms of dimensionless variables in

Figs. 12, 13, 14 and 15. Figure 12 displays the effect of the Brenner

number. A decrease in B, corresponding to an increase in the ratio

of the dispersion coefficient to the seepage velocity, causes the curves

at all positions to become flatter. The effect on the effluent curve

is smaller than on the two curves at the internal positions. This is

due to the action of "back-dispersion", i.e., a flux component proportional

to the concentration gradient, which is present at the internal positions,

but is not present at the outlet boundary. The outlet boundary condition

is one of zero concentration gradient.

The dimensionless reaction rate parameter has a marked effect on

the shape of the curves at all positions (Fig. 13). As G is increased

from 2.5 to 30 the curves change from a concave to a convex shape.

At smaller values of the reaction rate parameter the reaction does not

proceed fast enough to keep the concentration in the solution phase

equal to Cs ' and the tail on the curves is longer.

An increase in the exponent a increases the tailing but does not

greatly change the shape of the curves (Fig. 14). As a increases the

rate of dissolution decreases more than linearly with a decrease in the

mass of solid phase gypsum.

Figure 15 shows that an increase in M; , corresponding to an increase

in the amount of solid phase gypsum, causes the curves to shift to the

right.
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In the gypsum leaching studies a variation of solution content with

depth was observed. Figure 16 shows the effect of a linear variation of

e with z on the concentration time curves as calculated from the kin­

etic model. It appears that a variation of e of about 10 percent

would not significantly affect the time dependence of the concentration.

In the leaching studies. a time variation of the seepage velocity was

also observed. Figure 17 shows the calculated effect of a Darcy velocity

that varies linearly with time on the concentration-time curves. Also

shown is the concentration-time curve for a constant Q equal to the

time integrated mean of the varying velocity. A systematic change in Q

of the magnitude shown in Fig. 17 produces a significant shift in the

curves. However, a systematic change of this magnitude was not found in

the experiments. It was much more typical for Q to vary in a fluctuat­

ing manner. Figure 18 shows the effect of a hypothetical fluctuation in

Q of ! 20 percent of the mean value of Q on the concentration-time

curves. In this case the concentration fluctuates to some extent on

either side of the curve for constant Q. Another problem observed in

the leaching experiments was the nonuniformity of distribution of the

natural solid phase gypsum (see Fig. 7). In Fig. 19 concentration-time

curves for a variable distribution of solid phase gypsum are shown. and

compared to the results for a constant distribution of Mi' It was

concluded that the deviations from nonuniformity of distribution of solid

phase gypsum of the kind shown in Fig. 19 did not significantly affect

the measured concentration-time curves.

Comparison Between the Gypsum Leaching Studies and the Models

Parameters for the kinetic model - In preliminary attempts to com­

pare experimental data with calculated results. large deviations were
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found if the initial dimensionless mass of gypsum was calculated from

mi)t/(8CS) ) where mi,t is the total amount of gypsum material per

unit volumeof medium added to a column. The amount of pure gypsum that

actually dissolved during an experiment was not equal to m. t ) partly
1 ,

because of impurities in the gypsum material. Consequently M. was
1

estimated from mass balance principles using the measured concentration-

time curve. This procedure, which is given in full detail in Glas (1976),

required that the concentration measurements be continued until they had

essentially reached zero. In some experiments this was not done, and an

estimation of M. was made using the available concentration-time data.
1

The Brenner number B for a given experiment was calculated from

the seepage velocity, column length and a dispersion coefficient value

obtained from the appropriate regression in Fig. 4.

Preliminary estimates of G and a were made by a graphical method

which utilized the measured concentration-time curve in conjunction with

the computed results of the kinetic model. For the details see Glas (1976).

The preliminary estimates were then used to calculate the concentration-

time curve. Upon comparison with the experimental data a decision was

made whether or not further refinement of G and a was necessary.

If so) an optimization procedure was utilized to improve the estimates

of G and a.

The values of Mi ) G and a obtained for each experiment are

shown in Tables 8 and 9. The Brenner number values have already been

given in Tables 6 and 7.

G~hical comparison of some!e_~_YJJs of the J~~~_h_inJL_~.t!J_c1ie_s__w5_1~.b.

_!-~.!'~i.~j.!l9..se11!1l.9.95!J,-.~nd.-lti~_l<fn~ti.c_ !!'.9.9_~_ - The measured calcium con­

centration-time data from experiment 28 (black dots) are given in Fig.
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Table 8. Values of M.• G. a and r for the gypsum leaching studIes performed
in the silnrJ. 1

rxo;---.----.------.. - ..---..-.--.---. -.------- .,.-- .._-_._--
xp. ,.__.s.!J.~.tj.':l.!l__c:.~p_L__._. .s...u.c-_t_i.2~C"..I!.P-l ._ ...__ELLLuen.t. . ---T
No. M. G u Fx102 M. G u Fxl0?' M. G u fxlo___2 .._. ..'!..... "" ...! ... .....__... _

9.430.0 0.50.1'8* 14.110.10.9 0.38

2 11.7 142.1 1.4 0.30 11.8 16.1 0.4 0.42* 9.7 6.6 1.0 0.23

3 11.9 10.1 0.3 0.94 13.5 17.0 0.8 0.19 8.4 9.0 1.3 0.37*

4

5

7.5 27.3 0.9 0.34

13.1 7.7 1.0 0.20*

8.7 10.3 1.3 0.05 10.2 4.7 1.0 0.13

15.5 12.3 1.2 0.81 lG.l 4.5 1.? 0.37

6 5.3 15.0 0.8 0.43* 12.3 19.7 2.0 0.30 11.8 6.2 1.7 0.27

7 18.8 8.0 0.7 0.45* 18.1 3.9 '0.6 0.18

8 6.0 23.0 1.0 0.43* 8.8 11.3 2.1 0.36 7.8 7.5 1.2 0.22

9 6.8 16.6 0.9 0.12 6.8 17.0 1.6 0.16 10.0 4.9 0.5 0.27

10 8.8 2.7 2.6 0.21 6.5 2.8 2.3 0.32 7.9 3.2 1.2 1.88

11 5.3 14.0 1.3 0.14* 10.4 10.0 0.6 0.44* 10.5 11.4 1.2 0.13

12 9.6 15.0 1.3 0.18

13 7.0 8.0 1.8 0.18* 8.0 4.0 1.3 0.29* 10.1 3.6 1.0 0.26

14 16.6 2.8 1.20.76 10.6 1.61.5 0.60 16.3 1.01.40.69

15 8.5 5.0 2.8 0.05* 10.2 2.5 1.2 0.35* 13.3 4.0 1.2 0.29*

17 7.1 4.0 0.7 0.08* 8.7 5.0 1.3 0.16* 9.0 3.5 1.1 0.10

18

19 5.5 2.3 1.2 0.36

1.2 2.0 1.5 0.61

6.8 2.8 1.1 0.10

8.8 3.1 1.2 0.20

3.6 1.5 1.5 0.71

5.8 1.7 0.9 0.41

20 12.4 4.5 2.2 0.12* 11.1 3.0 1.6 0.22* 8.9 2.0 1.5 0.29*

21 10.0 2.2 1.1 0.05

22

11.4 2.5 1.5 0.24*

8.7 2.1 1. 2 0.09 11. 9 1. 9 1. 4 0.17

5.0 1.0 1.8 0.31*

5.3 24.0 1.0 0.47* 5.7 26.4 0.8 0.86

23

24

24+

5.5 17.6 1.3 0.41 7.4 25.0 1.2 0.24 9.4 4.1 1.0 0.15

5.3 30.0 1.0 0.42*

5.1 18.6 0.8 0.86

25 3.0 15.0 0.8 0.48* 4.5 19.0 1.6 0.40* 5.9 5.0 0.9 0.18*

26 15.8 14.0 0.9 0.34 14.7 8.1 1.0 0.07 11.6 6.2 1.2 0.19

27 18.0 20.5 0.8 1.03 14.1 35.0 0.75 0.07 12.0 14.0 1.2 0.08*

11.6 30.0 1.3 0.28*

* G. a and F obtained from the graphical procedure.
+Data from suction cup located directly above the bottom of the column.
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Table 9. Values of Mi , G, u and F for the gypsum leaching studies performed
in the clay.

Suet ion _cupT--- __~5:.~5on_~~~~ ---==--t(fILJ5'n! -----

G a Fxl02 M. G a Fxl02 M. G a Fxl02
___________1________ 1

Exp.

No.

28

29

4.2 20.9 1.9 0.21

8.3 39.0 0.8 0.24

3.9 26.1 2.1 0.30

8.3 11.5 0.8 0.21 7.5 7.2 0.9 0.60

30 14.6 30.7 2.4 0.46

31 7.2 12.5 0.6 0.36*

9.7 10.6 1.9 0.29 10.2 10.0 1.4 0.32

33

34

35

36

36+

37

38

1.7 15.0 0.8 0.23* 2.6 6.1 0.4 0.48

8.4 17.6 0.7 0.21 10.0 6.4 0.8 1.44

3.0 24.0 1.9 0.05* 14.9 8.1 1.3 0.72

2.8 28.7 2.8 0.37* 3.2 17.5 1.5 0.20

9.2 46.7 0.6 0.09 11.6 12.7 0.9 0.40

2.6 14.0 0.6 0.28* 2.8 5.6 0.4 0.36

2.4 15.0 0.8 0.18* 4.5 13.1 0.7 0.17

3.1 5.3 1.4 0.18

2.7 4.3 1.2 0.25

8.8 5.7 0.9 0.43

7.9 2.5 1.2 0.37*

3.4 16.0 1.5 0.05

9.9 4.5 1.2 0.20

9.9 19.0 1.0 0.14

2.4 4.0 0.8 0.21

3.6 4.9 1.1 0.11

39 4.0 15.0 2.2 0.22*- 3.9 24.2 2.0 0.22

2.6

6.6

8.0 2.6 0.47* 3.0 2.5 1.2 0.29* 3.5 4.0 1.2 0.44*

4.3 5.3 1.4 0.28* 3.7 5.0 1.0 0.53

0.9 _1.2 0.43 2.3 1.0 1.3 0.18. 2.0 1.5 0.7 0.13

3.0 2.5 0.33* 4.5 3.4 2.0 0.22 5.2 3.0 1.8 0.22

9.5 1.9 0.40* 4.3 3.3 1.5 1.13 6.0 3.6 1.5 0.16

5.4 4.0 1.6 0.13*

9.0 2.5 1.5 0.27 10.9 1.9 2.0 1.0S

10.1 2 .0 1. 5 O. 83*

10.2 7.52.1 0.37* 7.611.41.70.23

4.1 2.5 1.1 0.36*4.1 4.2 1.5 0.344.2 1.2 0.55

46 4.5

47 4.9

47+

41

42

43

44

45 1.5

5.0 12.5 0.8 0.17* 5.7 10.0 1:, 0.18

48

49

6.9 117.2 1.0 0.24 6.5 6.9 1.0 0.19 4 . 7 5'. 1 1. 1 O. 12

5.0 4.71.10.1.:'3

50 17.6 45.0 1. 5 1. 31 17. a 40.2 1. 1 0." 5 1%•3 (j • (, 1. 0 O. 7. 9
---------------- -----------------._---------------------------- - _.- ------- ---
*G, a and F obtained from the graphical procedure
+Oata from suction cup located directly above the bottom of the column.
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20. The prediction of the mixing cell model {step-type curve} and the

results of fitting the kinetic model to the experimental data are also

given. The mixing cell model was not capable of representing the experi­

mental data. Good agreement between the data and the kinetic model was

obtained even with the preliminary estimate of G and a (dashed curve).

and some improvement was attained by optimization (solid curve). Note

that different values of Mi G and a were obtained for the two sampl­

ing depths.

Figure 21 shows the measured concentration-time data of experiment

20 compared with the mixing cell model and the kinetic model. Again the

mixing cell model is incapable of representing the results. With the

kinetic model it is possible to describe the experimental results. but

the parameters G. a and M. vary with position.
1

Another example of comparison between the experimental data and the

two models is shown in Fig. 22 for the data of experiment 36. In this

case G decreased with position while a increased.

Behavior of the parameters G. a , Mi and k; - The reaction rate

parameter G for each sampling position is plotted against particle

size class in Fig. 23. The data are very scattered, but the parameter

tends to decrease with increasing particle size, and thus with decreas-

ing surface area of the material. Several authors have suggested or

noticed a possible relation of this kind between the surface area and

the reaction rate parameter. The average value of G for each particle

size class tends to decrease with increasing depth from the top of the

column. except for the two largest size classes where G remains approx-

imately constant. A possible explanation for this decrease of G with

increasing depth may be the formation of less soluble coatings on the



66

M; =4'2
G=27-5
a=I-9
F=O<>036

-Mi=4-2
G=20·5
a =1'9
F=O'OO21

Z=O'335-2

O~--L.--'U-_&.....ILL._..J.-_L--.....I-_-I.---..I_--'--~""-

·8

-6

-4

--- M, =3-9
G=30-0

a= '-9
F=O'OO45

-M;=3'9
G=20'O
a=2"
F=O'OO30

-8

0 0 I 2 3 4 5 6 7 8 9 10 , I '2
T= Ut

L

·6

·4

-2 Z =0,68

(J~fI)

I·OIe-4t-411~~....---.

Fig. 20. Comparison between the measured calcium concentrations from
experiment 28 (bl ack dots), results froo the mixing cell
model (solid strai9ht lines) and results from the kinetic
model based on parameters from the graphical procedure
(dashed curves) and from the optimization procedure (solid
curves) •



67

,.~

·4

Ml =12-4
G=4-5
a=2-2
F=0·OOI2

M;= ""
G=3'0
a=I·6
F=o-0022

Z=0'67

·6

'·0'8-------\

'"'8'- "......
'".'".) ...........

.....-..........--- ...---- .o'----'-__''----'-'_-'-_.&..-'--I.'_-L._-'--'--!'__L-'---L-_-r--J,;;;",:-"::;.,a

M, =8-9
G=2-0
0=1·6
F=O'OO29-6

-4

.2 Z= 1·0

I'~ ........

.....~
·8 ~

'-................
""'l"e

"'--!. •-...-- ..------..
O ' , , , ,
O!:--2~~4-""".!6~-::8~'""':'IO~-'~2--f-'4:--~'6=--...J'8i::---::2L::O--::2~2-2~4~26

T =Jl.L
L

Fig. 21. Comparison bebJeen the r:1easured calcium concentrations from
experiment 20 (black dots), results from the mixing cell
model (solid straight lines) and results from the kinetic
model based on parameters frcxn the graphical procedure
(dashed curves),



68

M; :: 9·2
G=46'7
a=O'6
F=O'0009

Z=0'30

·4

·8

-6

·2

0"-......._..J.---lL-~~-'--......J,_-'-_..L-.....I._...J-_.L-....A

M; =",6
G= 12·7
a=0-9
F =0·0040

Z=0'65

·8

, ..~-...--1t---4I.--.tI:::~-----,

•

M;:: g.g

G=4·5
a='·2
F=O'0020

Z='·O

-6

·4

·8

·2

,·O'r--...........l=-....-------------,

00 I 2 3 4 5 6 7 8 9 /0 II 12 '3 '4 15
r=Jl.L

L

Fig. 22. Comparison between the measured calcium concentrations from
experiment 36 (black dots), results from the mixing cell
model (solid straight lines) and results from the kinetic
model based on paraneters from the optimi zation procedure
(solid curves).



69

/51 •100 0 sucf,oncup ,
50

0 0 Particle sIze range:
40 0 o =preClpI,ated /reogent grade

30 0 I 0
I =0-63p.

• 0 •
2 =63-,25p.

20 i 0 3 =125-250p.

':t t ~ 4 =250-5oop.

• LL
5 =500-JOOOp.

! ! 6 ='00O-2000p

41 0 • SAND

35 • suct,oncup 2 o CLAY
30 0

f Scole change
25 I 0

• •
0 • 0 •'5

8 • 0 0

10 0 • ••8 0 0

5 8 0 8• e
0

30 •
effluent

25

• 0

0 ••
0

e
0 •

I 13 •
0 f a' JJ0 (1)

0 I 2 3 4 5 6
PartIcle SIZO range

5

O~--L_-'-_.J.----I--l-_~-a.---,

20

15

Fig. 23. Plots of the dimensionless reaction'rate parameter G against
particle size of the gypsum material in the sand (black dots)
and in the clay (open circles).



70

gypsum particles after they have been present in the soil column for a

period of time. Barrows et al. (1966) found that surface coatings formed

on limestone particles shortly after they were placed in soil due to the

combined processes of weathering and recrystallization of calcite and

adsorption or precipitation of phosphates from the soil. In the gypsum

leaching experiments, particles located at a greater depth were in contact

with the soil for a longer time, and were subjected to the possible form­

ation of surface coatings for a longer time. If such a process were

operative we would expect the reaction rate parameter to decrease with

depth. However, whether this mechanism is applicable is somewhat specu­

lative and further study is required.

No systematic differences were found between the values of G for

the sand and the clay, nor was there any systematic difference between

G values for saturated or unsaturated conditions.

Figure 24 shows the reaction rate parameter G plotted against

seepage velocity. There seems to be some tendency for G to decrease

with increasing U, although the trend is poorly defined. The physical

reaction rate parameter, ki = G U/L , showed no discernible trend with

seepage velocity. Values of k. were on the order of 1 hr-1 , and
1

decreased with increasing depth in accordance with the same trend in G

The parameter a is plotted against particle size in Fig. 25. No

systematic trends with respect to particle size, or sampling depth can

be noticed. There does not seem to be any effect of seepage velocity

upon the parameter a (see Tables 6, 7, 8 and 9). It is concluded from

these observations that a is a purely empirical parameter that varies

from experiment to experiment for reasons that cannot be adequately

explained at this time. The average value of a for the sand was about

1.2 • that for the clay was about 1.4.
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Different values of the parameters G , M.
1

and a were obtained

from the concentration-time curves at each sampling depth in a given

experiment. The process of estimating the parameters utilized solutions

to the kinetic model (Eqs. (43) and (44)) in which the parameters were

assumed independent of position. Consequently the parameter values

obtained at each position are not the lIactual ll values of G , M. and a
1

applicable in a given section of the column, but are some kind of average

values, which are related to the actual space dependent parameters in an

unknown way.

The effect of step-wise variations with depth of the parameters G,

a and Mi on the concentration-time curves was explored using the kin­

etic model. The results of these calculations are shown in Figs. 26, 27

and 28. The magnitude of the imposed variations in the parameters are

comparable to those observed in the results from the leaching experiments.

All curves calculated for a variable parameter were compared with curves

obtained for a constant average value of the parameter.

The results (Fig. 26) for a variable M. differ significantly from
1

those for a constant Mi at positions z=0.32 and z:0.68, but the

difference is small at z=l.O. The effect of a variation in G (Fig.

27) is especially pronounced in those regions where G is smaller than

the average. The spatial variation of a had little effect on the con­

centration-time curves (Fig. 28).

While it would be possible to formulate a kinetic model in which

the parameters were functions of position, it would not be feasible to

fit the results of such a model to experimental data by optimization

since the number of parameters to be found by optimization is proportional

to the number of different layers which are considered to be present and

the required computer time would become too great.
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The kinetic source term model used in this study is of the form:

(53)

where Kl = ki(m/mi)ae is the effective dissolution rate parameter.

A possible approach to a theory from which Kl could be calculated

is based on the theory described by Millington and Powrie (1968). These

authors calculated the dissolution rate of a single particle from:

-
d- 2 c-cm - k TId __$
dt - m cS-l

where km was calculated from:

p 0 Up
k =~ [2 + 0 6 dl / 2 {~ )( ~ )1/3 ]m d • n pO

w

(54 )

(55)

In the above d is the particle diameter. Pw is the density of solution.

o is the molecular diffusion coefficient. U is the seepage velocity

and n is the fluid viscosity. If we assume that the source function

in the kinetic model, is given by N dm/dt ,where N is the number of

equal-sized particles per unit volume of porous mdeium then we can write:

(56 )

where f l is a constant and f2 is a function of seepage velocity.

Assuming that the particles are spherical, d = [(6m)/(pNTI)]1/3 and Eq.

(56) can be written

(57 )

From this the effective dissolution rate parameter is found to be

(58 )
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Comparison of K2 with K1 indicates that K2 will not describe the

dissolution in the present experiments. The parameter Kl contains a

term ma where a is on the order of 1.2 to 1.4. The parameter

~ shows a more complex dependence on m but it does not appear to be

as strongly dependent on m as Kl From this it is concluded that a

dissolution rate based on the Millington-Powrie theory does not describe

the leaching of gypsum in the present experiments.

Effect of seepage velocity variation - The flow rate of the solution

phase was delibrately varied with time in experiments 37 and 16. In experi­

ment 37, the flow rate was changed periodically with time in such a way

that it was either approximately 0.3 cm/hr or zero for periods of time

of about 12 hours. The results from this experiment are shown in Fig.

29. In experiment 16 the flow rate was kept constant at about 0.6 cm/hr

except during the time period between 75 and 200 hours from the start

of the experiment when the flow rate was zero (Fig. 30).

The increases in calcium concentration that occurred during periods

of zero flow in both experiments is another indication of the kinetic

nature of the dissolution process. If the process were controlled by

the solubility product relationship, the concentration in the solution

phase would not have been affected by the variation in flow rate.

By assuming that the solution phase flow took place at a constant

flow of 0.15 cm/hr in experiment 37, which is the integrated mean of

the varying flow rate, values of G and a were estimated. These values

of G and a are listed in Table 9 and the corresponding concentration­

time curves are shown as solid lines in Fig. 29. A reasonable fit to an

"average" concentration-time curve was obtained in this manner.
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Concentration-time curves for a Darcy velocity varying linearly and

step-wise with time were calculated from the kinetic model using the

finite difference method of solution (Fig. 31). The step-wise flow rate

variation in this simulation is similar to that imposed in experiment 16.

A qualitative similarity can be seen between the simulated results and

those from experiment 16.



CHAPTER IV

CONCLUSIONS

The concentration-time curves obtained from gypsum leaching experi­

ments were ~ompared with two models, a mixing cell model based on equili­

brium principles, and a kinetic transport model based on the dispersion­

convection equation in combination with a kinetic expression for the

source term which represented the dissolution of solid phase gypsum.

Under the conditions of the leaching experiments (gypsum particle sizes

ranging from less than 63~ to 2000~ ; two soils, a sand and a clay;

seepage velocities from 0.1 cm/hr to 12 cm/hr; saturated and unsaturated

soils) the mixing cell model could not represent the observed concentra-

tion-time curves and a kinetic source term description was required.

The kinetic source term representation used in this study was:

where Gi is the mass of gypsum dissqlved per unit of time and per unit

volume of soil, and k. , m.
1 1

and a are parameters. By adjustment of

the three parameters the observed concentration-time curves could be

satisfactorily fitted with a solution of the dispersion-convection equa­

tion which included the above source term representation.

A dimensionless reaction rate parameter, G = (kiL)/U • tended to

decrease with increasing gypsum particle size. and with increasing seep­

age velocity, although the trends were poorly defined. The parameter

m. could not be determined from the amount of added gypsum material
1

partly because of impurities in the material, but also because of some

other reason(s). Speculative possibilities as the formation of coatings

on the gypsum particles and the location of some of the particles in
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micro-zones that are relatively inaccessible to convective flow of the

solution phase. The parameter a seems to have no physical basis and

remains an empirical parameter.

While it was clear that a kinetic source term representation was

necessary to describe the dissolution process, the problem of a source

term model is still not satisfactorily solved. A model such as the one

used in this study, which contains one or more empirical parameters,

requires that those parameters be determined using the very data that

one desires to predict. Such a situation is not entirely unsatisfactory

if the empirical parameters can be measured in a reproducable manner and

established as properties of the soil-water-gypsum system. Whether this

in fact can be done is as yet uncertain. A more satisfactory source term

model would be one built upon a theory of the dissolution process, with

less empiricism in it, and would allow a better possibility of prediction

of the leaching process. An example of this kind of approach is that

used by Millington and Powrie (1968). However, from the brief examination

of their theory made to date it does-not appear that their theory will

describe the dissolution process. Some further study of this approach

seems warranted, however.
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