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ABSTRACT 

PERSONAL, SPATIOTEMPORAL EXPOSURE ASSESSMENT:  

METHOD DEVELOPMENT AND APPLICATION 

 

Asthma is a common health disorder in children. Children‘s exposure to 

particulate matter (PM) air pollution has been implicated in asthma prevalence and 

severity.  Individual exposure to PM depends on one‘s proximity to PM sources and on 

the immediate environment (i.e., the microenvironment) that surrounds the individual.  

Common PM sources include combustion by-products (gasoline and diesel engine 

exhaust, wood and cigarette smoke), other man-made particles (road dust and other 

fugitive emissions), and bioaerosols (pollen).  

There is a paucity of studies that assess children‘s exposures to PM across 

space and time. Outdoor, community-based PM monitors (the current standard for 

regulatory monitoring of air pollution) do not adequately capture the spatial and 

temporal variability of ambient PM, nor can they capture the variability of personal 

exposure associated with movement through the community, e.g. vehicle transit, or 

movement into indoor microenvironments.  Studies assessing personal exposures have 

been limited in scope, mainly because personal monitors are expensive and intrusive.  

Most studies of children‘s exposures have employed the method of time-averaged, 

filter-based sampling, where a sample is collected (integrated) over a 24-hour period.  

Time-integrated sampling tends to attenuate our ability to detect acute exposures, or 

peaks, which in turn may obscure our ability to detect relationships between exposure 

and adverse health outcomes.  Recently, however, the advent of portable PM monitors, 
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capable of measuring concentrations every few seconds and suitable for wear, even for 

children, has enabled the assessment of children‘s exposure to PM across both space 

and time.  

This work describes the development, evaluation, and application of a high-

resolution, space and time-referenced sampling method for personal exposure 

assessment to airborne PM.  This sampling methodology provides continuous 

measures of personal PM levels along with the corresponding location-activity, or 

microenvironment, of the subject.  The exposure assessment method utilizes 

miniaturized monitoring equipment, including a handheld global positioning system 

(GPS) receiver, a miniature aerosol nephelometer, and an ambient temperature 

monitor. Collectively, these instruments estimate the location, time, and magnitude of 

personal exposure to particulate matter air pollution.  

Method development consisted of laboratory and field evaluation of instrument 

performance (precision and accuracy testing), as well as development of a classification 

algorithm to apportion spatial data into pre-determined location-activity categories (i.e. 

work/school, home, transit).  GPS units were more accurate than manufacturer's claims, 

providing outdoor locations within ~4 m and indoor locations within ~7 m.  Dynamic 

thermal response of temperature monitors captured indoor/outdoor transitions ~20 

seconds.  The apportioning algorithm was very effective with an overall accuracy of 

99.6%.   

This novel sampling method was then applied to a panel of asthmatic school-

children to examine their personal exposure to PM in four distinct microenvironments 

(home, school, morning and afternoon transit).  In the school-based panel, 30 children 
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with physician-diagnosed asthma were monitored daily for four consecutive days (Mon-

Thu) on two occasions during a school year.  Personal PM exposures, asthma 

exacerbation markers, and data on personal behaviors were collected over a 5-month 

winter period (2008–2009) in Denver, Colorado.  

This dataset provided over 950,000 personal exposure data points over 125 

sampling days, as well as associated health outcome and personal behavior data.  

Relationships were evaluated between personal exposures measured in each 

microenvironment and concentrations measured by a community-based, outdoor 

monitor. Relationships were also evaluated between personal exposure to traffic-related 

particulate matter encountered during the morning commute to school and markers of 

asthma exacerbation (urinary leukotriene E4 levels).  The data in both cases were 

analyzed using linear mixed models to control for the hierarchical nature as well as the 

repeated measures aspect of the data.  

Analysis of microenvironment-based personal exposures showed that variation in 

personal exposures was primarily within-subject and space- and time-related. The 

highest to lowest mean personal concentrations per microenvironment were: home, 

morning transit, afternoon transit, and school (p<0.01 for differences between each 

microenvironment, except morning and afternoon transit). Concurrently measured 

ambient PM concentrations were not associated with personal exposures within 

microenvironments.  Personal exposure in each microenvironment was associated with 

exposure in subsequent microenvironments (15-111% increase per 1 µg/m3 increase in 

personal PM in preceding microenvironment, p<0.01).  
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For personal exposure to traffic-related particulate matter during the morning 

commute, an increase of an interquartile range in personal PM exposure was related to 

a 15.7% increase in urinary leukotriene E4 measured within 3-6 hours after exposure 

(95% CI, 7-46%; p < 0.001). This association was not discernible when measures of 

personal exposure were replaced with ambient concentrations measured by community-

based monitors, or their statistical moments. Children‘s exposure to fine particles during 

morning commutes were lower, on average, than indoor exposures encountered at 

home and higher, on average, than exposures encountered at school. 

Overall, we found that differences in personal PM exposures within urban-poor 

schoolchildren with asthma are microenvironment-driven; exposures are generally 

highest at home, followed by transit and then school. Personal home exposures are 

poorly predicted with community-based monitors, but are themselves strongly predictive 

of personal exposures in subsequent microenvironments. These data suggest a 

"personal cloud" effect that persists through different microenvironments and can only 

be measured with spatially and temporally precise personal monitoring. In addition, brief 

exposure to traffic-related particulate matter is associated with clinically significant 

increases in urinary leukotriene E4 levels among children with persistent asthma.  This 

association was discernible from a relatively small sample size by measuring personal 

exposure segregated into specific microenvironments (i.e., the morning commute).  
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INTRODUCTION 

 

Asthma prevalence among children has increased over the past three decades 

(Van Cleave, Gortmaker et al. 2010), sparking further interest in the role environmental 

factors play in asthma etiology and exacerbation. Ambient air pollution has long been 

associated with increased symptoms and decreased lung function among asthmatics 

(Peters 1997; NRC-NAS 1998; Yu 2000; EPA 2004; Pope and Dockery 2006). For 

children, asthma is the most common of chronic health problems and also one of the 

most common health complaints of the entire US population (IOM 2000).   

Most epidemiological studies have not validated their estimates of individual 

exposure to PM, mainly because personal exposure monitoring can be obtrusive and 

also resource intensive.  Community-based air pollution monitors, collecting 24-hour 

integrated samples, are often used to assign exposures to individuals, but these 

monitors cannot capture the spatial and temporal variability of ambient air pollution (Ott, 

Kumar et al. 2008), nor can they capture the variability of personal exposure associated 

with movement throughout the community, e.g. vehicle transit (Setton, Marshall et al. 

2011; Brown, Sarnat et al. 2012), or movement into indoor microenvironments (Van 

Roosbroeck, Li et al. 2008).  As a result, individual exposure estimates derived from 

ambient monitoring data are subject to exposure measurement error (Strand, Hopke et 

al. 2007; Hutcheon 2010).  

In asthmatic children, increased symptoms and disease exacerbation occur with 

exposure to air pollution (Rabinovitch, Strand et al. 2006).  In addition to chronic, long-

term exposure, acute exposures to PM may also exacerbate asthma in children.  This 
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exacerbation is most likely due to airway inflammation and hyper-responsiveness 

(Koenig 1999; Gauvreau, Parameswaran et al. 2001; Rabinovitch 2012).  Recently, 

emphasis has been placed on the need for research regarding disease exacerbation 

associated with acute exposure to particulate matter (PM) from motor-vehicle traffic 

(HEI 2010).  

Asthma exacerbation and the resultant changes in direct and indirect markers of 

disease, e.g. fractional nitric oxide in breath, serum eosinophil granulocytes, and 

increased urinary leukotriene E4, can occur within minutes or hours of an exposure 

(Rabinovitch, Strand et al. 2006; Rabinovitch, Reisdorph et al. 2011; Rabinovitch 2012). 

The resulting airway inflammation can be assessed with noninvasive markers, such as, 

exhaled gases, induced sputum, and urinary measurements. Exhaled nitric oxide 

(eNO), induced sputum eosinophils, and urinary cysteinyl leukotriene E4 (LTE4), and 

other markers have been assessed as non-invasive markers of airway inflammation.  

Urinary LTE4 is relatively insensitive to inhaled corticosteroid therapy (Rabinovitch 

2007).  This characteristic makes it attractive when attempting to assess health 

outcomes in a population using steroid-based therapies to control asthma symptoms. 

Cysteinyl leukotrienes (LTC4, LTD4, LTE4), are highly potent mediators closely 

linked to the pathobiology of asthma (Drazen, Obrien et al. 1992; Bousquet, Jeffery et 

al. 2000; Kumlin 2000; Rabinovitch 2007; Sanak, Bochenek et al. 2010; Laidlaw and 

Boyce 2012; Rabinovitch 2012) . Cysteinyl leukotrienes are released by most cells 

involved in airway inflammation and facilitate several mechanisms that cause lung 

function decrement.  Cysteinyl leukotrienes are potent bronchoconstrictors, directly 

binding to airway smooth muscle receptors (Bousquet, Jeffery et al. 2000).  Cysteinyl 

http://en.wikipedia.org/wiki/Leukotrienes
http://en.wikipedia.org/wiki/Leukotrienes
http://en.wikipedia.org/wiki/Leukotriene_C4
http://en.wikipedia.org/wiki/Leukotriene_D4
http://en.wikipedia.org/wiki/Leukotriene_E4
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leukotrienes also mediate airway inflammatory response (Gauvreau, Parameswaran et 

al. 2001) and accelerate recruitment and proliferation of eosinophils (Braccioni, Dorman 

et al. 2002).  They act as potent chemoattractants (Fregonese, Silvestri et al. 2002), 

leading to hyperresponsiveness of the inflammatory response to various stimuli 

(Gauvreau, Parameswaran et al. 2001).  

Personal monitoring of exposure (i.e., sampling air from within a person‘s 

breathing zone) is an alternative to community-based monitoring; this form of exposure 

assessment is more precise but also more resource intensive, as each study subject 

must be fitted and monitored individually. Studies of personal PM exposure have shown 

that individual PM levels (i.e., personal samples) are often greater than estimates 

provided by stationary, area-based samples of indoor or outdoor environments (Weisel, 

Zhang et al. 2005; Wallace, Williams et al. 2006). This phenomenon has been termed 

the ―personal cloud‖ effect. These increased personal exposure estimates are attributed 

to either a "proximity effect" (i.e. being closer to a source than an area monitor, or a 

"pigpen effect" (i.e. particles released from clothing or re-suspended due to subject 

movement) (Wallace, Williams et al. 2006). 

To date, studies assessing personal exposures have been limited in scope and 

have mainly used measurement methods that average, or integrate, over a 24-hour 

period. Such personal sampling methods typically draw a known volume of air through a 

filter over time, followed by gravimetric or chemical analyses (Ozkaynak 1996; Williams, 

Suggs et al. 2000; Adgate, Ramachandran et al. 2002).  Filter-based sampling is more 

accurate and precise than modeling an individual‘s exposure using a community-based 

monitor (Rodes, Lawless et al. 2001; Adgate, Ramachandran et al. 2003; Strand, Hopke 
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et al. 2007; Rodes, Lawless et al. 2010).  However, gravimetric filter methods require 

time-integration (typically across 8 or 24 hours) to achieve sufficient PM mass for 

detection; such time averaging cannot capture changes in personal exposure that occur 

across space and time.  For example, Quintana et al. reported that personal PM 

concentrations collected over 15 minute intervals were up to 10 times greater than the 

24-hour mean measured during the same period (Quintana, Valenzia et al. 2001).  

When considering the transient nature of exposure to environmental 

contaminants, knowing whether or not a person is in a particular microenvironment is an 

important step toward determining if exposure may occur (Klepeis, Nelson et al. 2001; 

McCurdy and Graham 2003).  Time-location, which is defined as a person‘s location at 

a certain time, has been measured using self-report diary instruments for many years 

(Wallace, Pellizzari et al. 1987; Robinson 1988; Freeman, Lioy et al. 1999).  The 

National Human Exposure Assessment Survey (NHEXAS) and EPA's Consolidated 

Human Activity Database (CHAD) are examples of self-report diaries.  The CHAD self-

report diaries were used to collect extremely detailed and regionally specific time-

location data (EPA 2001).  The CHAD-type diary is problematic for most exposure 

assessments as it requires extreme vigilance on the part of the respondent.  This 

problem is even greater when a parent must report time-location for a child.   

The use of 24-hr averaging periods for exposure assessment may attenuate the 

perceived relationship between exposure and adverse health outcomes, especially 

when a causal exposure is acute, lasting only minutes (Quintana, Valenzia et al. 2001). 

Thus, although personal sampling may be considered more representative (compared 

to area monitoring), the use of filter-based gravimetric analysis and activity logs for 



 5 
 

personal sampling has limited our ability to determine when and where exposures to 

increased PM concentrations occur.  

Identifying the magnitude, timing, and location of acute exposures are important 

aspects of symptom prevention and disease management. For example, combining 

patterns of exposure with clinically-relevant outcome measures may help to elucidate 

our understanding of environmental sources that act as triggers for this complex 

disease.  A personal, spatiotemporal exposure assessment using miniaturized sensors, 

such as handheld real-time aerosol monitors and global positioning system receivers, 

allows for resolving temporal and spatial data related to personal exposures at levels 

down to seconds and meters.  GPS-derived time-location data is the best available 

―gold standard‖ to use in testing the accuracy of self-reported time-location data.  GPS-

derived time-location information has several advantages over diary reported time-

location.  First, most compliance issues are avoided, second, human recall bias is 

avoided, as the continuous operation eliminates the need for ―best guesses‖, and finally, 

the highly-resolved continuous time-location data allow researchers to pinpoint where 

subjects are in relation to contaminants.  In a study of child time-location, Elgethun 

(2007) found that concurrent parent-reported diaries based on the NHEXAS format 

misclassified child time-location approximately 48% of the time when compared to GPS-

derived time-location data.  One important limitation of location monitors, however, is 

that they can only define location-time; estimating a subject's location-activity (i.e., what 

a person is doing at a given time and in a given location) is difficult.  

The goal of this work was to develop a highly-resolved, space- and time-

referenced method to improve personal exposure assessment for PM health hazards.  
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This method apportioned personal exposures based on highly resolved measurements 

(10-second intervals) of personal PM levels and location.  Historically, such data has 

been difficult to collect and interpret.  However, we developed a computer-based 

algorithm to transform this large amount of exposure data into useable information by 

interpreting the temporal and spatial information together. The assessment of the raw 

data resulted in a location-activity classification (i.e., at home, at school, in transit) being 

assigned to each exposure measurement.  This project had two specific aims: 

Specific Aim 1: Develop and validate method to assess personal exposure to 

particulate matter air pollution at high resolution across both space and time (i.e., 

personal, spatiotemporal exposure assessment).  We hypothesized that time and space 

referenced data could be used to classify personal exposure into at least three different 

microenvironments: home, school, and transit. 

The approach was to create a lightweight, low-profile sampling apparatus from 

off-the-shelf components.  We tested the individual components of the apparatus 

against known standards and /or existing equipment to ensure adequate performance.  

In addition, we developed a space- and time-based algorithm to apportion exposure 

data into pre-determined location-activity, or microenvironment, categories (e.g., home, 

work/school, transit).  Each data point was assigned a specific location-activity 

classification (home, work/school, morning transit, afternoon transit) using geographic 

proximity analyses of the spatial data, supplemented by time-based rules.  We 

assessed the accuracy of the method in a controlled pilot study. The method 

development and assessment of the algorithm accuracy is presented in Chapter 1 
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(Adams, Riggs et al. 2009) which is reproduced by permission of The Royal Society of 

Chemistry. 

Specific Aim 2:  Apply the personal, spatiotemporal sampling method to 

investigate the timing and locale of peak PM exposures for asthmatic children and 

contrast these measurements with classical sampling techniques (e.g. time-integrated 

personal and time-integrated area-wide samples).  Evaluate potential associations 

between daily activities and increased exposure to PM2.5.   

We monitored personal PM exposures of thirty schoolchildren over a 5 month 

period during a school year. Ethical and scientific approval for the study was obtained 

from the National Jewish Health's Institutional Review Board.  The school-based panel 

was composed of inner city urban, mostly poor children with physician-diagnosed 

asthma. Microenvironment-based (i.e. home, school, morning transit, and afternoon 

transit) personal PM exposures were derived using the aforementioned sampling 

method. The microenvironment-apportioned personal exposure data was compared and 

contrasted with exposure data collected by stationary, community-based monitors.  The 

application of the personal, spatiotemporal exposure method using a panel of asthmatic 

children is presented in Chapter 2.  This chapter is version of a manuscript entitled, 

"Spatiotemporal Profiles of Particulate Matter Exposure Among Asthmatic Children,‖ 

that has been prepared for submission for publication. 

In addition to assessing the overall PM exposures of the panel, we examined the 

relationship between exposure to traffic-related air pollution during morning commutes 

and personal markers of asthma exacerbation (urinary cysteinyl leukotriene E4). 

Personal PM exposures were segregated into three categories: at home (morning), 
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morning commute to school, and at school.  Urinary biomarkers were collected from the 

children during the school day. Asthma worsening following the morning commute, 

based on the urinary cysteinyl leukotriene E4 levels, was evaluated relative to each 

personal exposure category (home, commute, school) and also to ambient PM levels 

measured by a fixed, community-based monitor.  This study is presented in Chapter 3. 

This chapter is version of a manuscript entitled, "Commute-related Particulate Matter 

Exposure Is Associated with Acute Asthma Worsening in Children,‖ that has been 

prepared for submission for publication. 
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CHAPTER 1 

"Development of a Method for Personal, Spatiotemporal Exposure Assessment"1 

1.1. Summary 

This work describes the development and evaluation of a high resolution, space 

and time-referenced sampling method for personal exposure assessment to airborne 

particulate matter (PM).  This method integrates continuous measures of personal PM 

levels with the corresponding location-activity (i.e. work/school, home, transit) of the 

subject.  Monitoring equipment include a small, portable global positioning system 

(GPS) receiver, a miniature aerosol nephelometer, and an ambient temperature monitor 

to estimate the location, time, and magnitude of personal exposure to particulate matter 

air pollution. Precision and accuracy of each component, as well as the integrated 

method performance were tested in a combination of laboratory and field tests. Spatial 

data was apportioned into pre-determined location-activity categories (i.e. work/school, 

home, transit) with a simple, space- and time-based algorithm.  The apportioning 

algorithm was extremely effective with an overall accuracy of 99.6%.  This method 

allows examination of an individual‘s estimated exposure through space and time, which 

may provide new insights into exposure-activity relationships not possible with 

traditional exposure assessment techniques (i.e., time-integrated, filter-based 

measurements).  Furthermore, the method is applicable to any contaminant or stressor 

that can be measured on an individual with a direct-reading sensor. 

                                            

1
Adams, C., P. Riggs, et al. (2009). "Development of a method for personal, spatiotemporal exposure 

assessment." Journal Of Environmental Monitoring 11(7): 1331-1339. - Reproduced by permission of The 
Royal Society of Chemistry (RSC) 
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1.2. Introduction 

The current state-of-the-art for estimating human exposures to occupational and 

environmental stressors involves the use of time-integrated, personal sampling.  

Personal sampling refers to individual-level exposure assessment (as compared to area 

sampling for one or more individuals).  Traditionally, such samples are time-integrated 

for the collection of sufficient material for subsequent quantification.  In workplace 

atmospheres, for example, time-integrated personal sampling involves placing a 

miniature sampler (or sampling inlet) within the worker‘s breathing zone and passing a 

pre-determined volume of air through a filter (or other collection media) over a period of 

several hours.  The filter is then weighed or chemically analyzed to give an indication of 

the individual‘s time-averaged exposure for the period in question.  Similar techniques 

are used to estimate individual exposures in the home or community (Lachenmyer and 

Hidy 2000).  Time-integrated, personal sampling provides important information 

regarding an individual‘s average exposure, albeit with some drawbacks.  First, the 

temporal variability in exposure throughout the sampling period is unknown (sampling 

periods typically span several hours).  As a result, acute exposure events (i.e., 

concentration peaks), are often attenuated by corresponding periods of low exposure.  

The collection of short-term samples, which usually average about 15 minutes each, 

can be used to identify acute exposure trends.  However, the repeated collection of 

short, consecutive samples is particularly labor and resource intensive.  A second 

drawback is that the spatial variability of exposure is unknown, so that particular 

activities or locations cannot be directly ascribed to high exposure events.  Third, the 
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results from laboratory analyses of collected samples may not be available for days to 

weeks.   

These shortcomings hinder our ability to recognize and control potentially 

hazardous exposures, which is distressing in light of a growing body of evidence that 

associates acute exposures with adverse health effects (Salvi, Blomberg et al. 1999; 

Michaels and Kleinman 2000; Delfino and McLaren 2002; Oudyk, Hatnes et al. 2003; 

Henneberger, Olin et al. 2005; Kanwal, Kullman et al. 2006).  Knowing when and where 

exposures occur is crucial for understanding the causality of exposure-related disease.  

The space and time resolution of exposure can also inform the design of effective 

intervention and control techniques.  Consequently, there is a need for alternative, more 

informative, exposure assessment methodologies. 

Several alternatives to traditional, time-integrated personal sampling have been 

proposed or attempted.  Personal activity logs identify factors that may contribute to the 

integrated exposure metric (Lachenmyer and Hidy 2000).  Activity logs specify the time 

and location of an individual when (pre-determined) activities occur.  The logs are 

recorded by hand or voice and detail events such as leaving, or arriving, at home or 

work (Quintana, Valenzia et al. 2001; Williams, Suggs et al. 2003).  However, these logs 

do not identify the time, location, or magnitude of exposure and are often affected by 

reporting bias (Elgethun, Yost et al. 2007).   

To address the temporal facets of exposure, methods for direct-reading data 

collection were developed (Cohen 2001).  Historically, direct-reading sampling methods 

have been both labor intensive and cost-prohibitive.  Recently, however, the 

development of inexpensive, miniaturized personal monitors capable of collecting data 
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at second-to-minute resolution has afforded direct-reading methods wider use.  The 

increased resolution of direct-reading instruments allows for the identification of short-

term or peak exposures (Chakrabarti, Fine et al. 2004). However, without additional 

spatially-referenced information, the location and the activity associated with exposure 

remains undefined.   

Combining direct-reading exposure assessment with personal, direct-reading 

location assessment may help identify activity patterns at the time of exposure, whether 

at home, work, or during transit between locations.  This is important, as contaminant 

sources, strengths, and exposures can vary throughout the day as individuals move 

through different microenvironments.  Understanding travel patterns may also be 

beneficial as recent research suggests there are increased health effects from exposure 

to traffic-generated pollution (Janssen, Brunekreef et al. 2003; McCreanor, Cullinan et 

al. 2007; Roosbroeck 2008).  Integrating stationary ambient sampling information with 

the location of the subject may also assist in improving intervention and control of 

disease (Hsueh-Ting, Chir-Chang et al. 2006).  Accurate assessment of instantaneous 

peak personal exposure would allow researchers to investigate associations between 

personal microenvironmental exposures and ambient, community-wide exposures.   

To this end we have developed a highly-resolved, space and time-referenced 

sampling method for personal exposure assessment.  Data collected with this method is 

transformed with a space- and time-based algorithm to apportion the exposure data into 

pre-determined location-activity profiles (described below).  Although we present this 

method in the context of particulate matter air pollution, it can be adapted to any 

contaminant or stressor that may be monitored using miniature, direct-reading sensors. 
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1.3. Methods 

The space- and time-based personal sampling method employs an aerosol 

nephelometer to measure fine particulate matter (PM) concentrations, a global 

positioning system (GPS) receiver to record geographic position data, and a 

thermocouple sensor to record the ambient temperature.  These monitors are housed in 

a small backpack with a total weight of approximately 3.2 kg (7 lbs); each monitor is 

programmed to record data at 10 second intervals.  We evaluated aspects of accuracy 

and precision for each instrument separately.  We then conducted controlled field tests, 

where we evaluated the ability of the method to differentiate PM exposure as a function 

of activity (i.e., location and time). 

The personal DataRAM 1200, or pDR, (Thermo Fisher Scientific Inc., Waltham, 

MA) is a light-scattering, direct-reading nephelometer that measures aerosol mass 

concentration.  The pDR was programmed to collect an integrated sample every 10 

seconds.  The pDR was operated in conjunction with a pump (6.8 L/min flow, Omni 

Personal Pump, BGI Inc., Waltham MA) and cyclone (1.6 µm cut point, Model GK2.05, 

BGI Inc., Waltham MA) so that fine particulate matter was actively sampled and 

subsequently collected on a downstream filter (Teflo 37mm, Pall Inc. East Hills, NY).  

The 1.6 µm cut point resulted from a volumetric flowrate that was required to meet the 

gravimetric limit of detection for the downstream filter.  The available equipment was 

configured to allow the best approximation of the fine particulate aerosol fraction.  Other 

sampling train configurations would allow for a different cut point.  The pDR inlet was 

positioned 2 inches above the top surface of the backpack, slightly to the rear of the 

wearer‘s left shoulder (Fig 1).  The projected use of the backpack sampler constrained 
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the placement of the sampling train as minimal protrusion of equipment outside the 

physical boundaries of the backpack was required.  Therefore the inlet location was 

chosen to best approximate the breathing zone, defined as the envelope around the 

head which is considered to have the same concentration of pollutant as the air 

breathed in by the person.  The pDR has been used extensively in assessing personal 

exposure to PM (Reed 2000; Quintana, Valenzia et al. 2001; Fischer 2007) and can 

provide an estimate of aerosol mass concentration over very short time periods.  

Chakrabarti (Chakrabarti, Fine et al. 2004) found the pDR to be precise and in good 

agreement with other continuous monitors.  However, the pDR has two major 

limitations. First, instrument response (i.e., the degree of scattered light) is positively 

biased when relative humidity exceeds 60% (Chakrabarti, Fine et al. 2004; Wu, Delfino 

et al. 2005).  Second, the instrument response varies depending on the size, shape, 

and composition of sampled aerosol (Chakrabarti, Fine et al. 2004).  To compensate for 

these biases, a filter sampler is used to normalize the direct-reading nephelometer 

measurements (Kim 2004; Benton-Vitz and Volckens 2008) during data processing.  

The filter was located immediately downstream of the sensing zone and was analyzed 

by standard gravimetric or chemical analysis.  Because the accuracy and precision of 

the pDR (and similar devices) have been studied extensively, we did not conduct 

additional laboratory evaluation of this device.  However, following the guidelines of 

Chakrabarti and Benton-Vitz, we operated the instrument in low-humidity environments 

and used a filter sampler to normalize the direct-reading measurements. 

A consumer-grade GPS receiver (GPSMap 60Cx, Garmin Inc. Olathe KS) 

located inside the backpack and connected to an external, low-profile antenna (GA25 
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MCX, Garmin Inc. Olathe KS) recorded latitude and longitude every 10 seconds.  The 

receiver included a high-sensitivity GPS microcontroller (SirfStar III, SiRF Technology, 

San Jose, CA) and was operated using the wide area augmentation system (WAAS), a 

form of differential GPS (DGPS) giving enhanced position accuracy.  WAAS was 

developed primarily for aeronautical navigation but is available to other users (Bolstad, 

Jenks et al. 2005).   

Positioning capability of the GPS units were evaluated both indoors and outdoors 

against reference standards, such as, geographic benchmarks (Floyd 1978).  On three 

different days, four GPS receivers with antennae were placed upon the benchmark and 

positioning accuracy was recorded during morning and afternoon periods.  Unit 

accuracy and precision was determined by comparing measured longitude and latitude 

positions with the National Geodetic Survey benchmark location.  The average 2DRMS 

(twice distance root mean square) was calculated for each unit.  The 2DRMS 

represents the 98th percentile for error between the monitor-reported position and 

known benchmark position.   

Estimating the accuracy of the GPS receivers when indoors was less 

straightforward, as geographic benchmarks are only located outdoors.  Therefore, we 

generated six indoor reference positions, three within a single-story, wood-framed, 

residence and three within a concrete masonry, single-story converted warehouse.  

These positions were established with data from a high-resolution, survey-grade GPS 

receiver (Geo XT, Trimble, Sunnyvale, CA) located on the roof of the structure.  The 

positions within the residence were located in the living room, dining room, and 

bedroom.  The offset distances and directions from the indoor reference positions were 

http://en.wikipedia.org/wiki/High_Sensitivity_GPS
http://en.wikipedia.org/wiki/Microcontroller
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accounted for by the GPS receiver and the reference position data was differentially 

corrected during post-processing to produce indoor reference positions with a horizontal 

accuracy within 50 cm.   

Three locations were evaluated within the converted warehouse, including a 

glass-walled lobby, an office (with exterior windows), and an interior office (no 

windows).  Indoor reference positions in the workplace were established as described 

above.   

A miniature ambient temperature monitor (Thermo Record TR-52, T and D Inc., 

Saratoga Springs, NY) was used to determine whether the subject is indoors or 

outdoors by comparing recorded temperatures with known ambient conditions. In 

Colorado, average wintertime highs rarely exceed 15 °C (NOAA-NWS 2008).  The 

reported accuracy of this unit is ±0.3°C with a thermal time constant of 15 sec.  The 

thermal time constant is the time required for the monitor to register 63.2% of 

temperature differential following a sudden temperature change.  Monitor accuracy was 

tested in the laboratory by comparison to a NIST-traceable reference standard across a 

range of temperatures (0-25°C).  Additionally, we measured the dynamic thermal 

response of the monitors by moving the sampling apparatus between indoor and 

outdoor environments (~ 11°C span).  The dynamic response is defined as the amount 

of change recorded by the thermistor within a certain time.  A faster dynamic response 

reduces the likelihood of misclassification between indoor and outdoor environments. 

After sampling, data from the pDR, GPS receiver, and temperature monitor were 

collated into a database by matching the associated timestamps from each instrument, 
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thereby integrating the data into a common array.  The collated data is then available for 

post-processing and analysis. 

We developed a simple temporal spatial algorithm to apportion exposure data 

into pre-determined location-activity categories (e.g., home, work, transit).  Each data 

point is assigned a specific location-activity category (home, work/school, morning 

transit, afternoon transit) using geographic proximity analyses supported by time-based 

rules.  The geographic proximity analysis determines if a recorded point lies within a 

predefined, two-dimensional area (i.e., a home boundary).  The time-based rules further 

support the proximity analysis by establishing expected times for the individual to be in 

the home or work/school area.  For example, if the recorded position of a sample is 

within a certain radius of the work/school position (e.g., 50 m) during expected 

work/school hours then the exposure is assigned to the work/school category.  Similarly, 

the home category is assigned if the recorded position of the sample is within the 

defined home area during expected home hours.  If the recorded position of the sample 

is neither at home or work/school, the sample is considered in-transit.  To further 

categorize transit as morning or afternoon, the timestamp of the recorded location is 

evaluated.  For each day, a timestamp before noon is considered morning transit, and a 

timestamp after noon is considered afternoon transit.  More complicated location-activity 

schemes are easily derived, however, we chose to develop the method initially with a 

simple home/transit/work-school paradigm. 

When a recorded sample interval lacked positional data (i.e., loss of satellite 

signal to the GPS), a time-based rule was applied.  If the sample was recorded during 

one of the expected home or work/school time periods, the home or work position was 
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assigned to the sampling interval.  The sample would then be apportioned to 

work/school.  If the sample interval occurred outside the expected home or work/school 

time periods it was assigned the location-activity code as in the preceding sample. 

Finally, an indoor or outdoor status is assigned to the sample.  The status is only 

assigned when the recorded sample has been categorized as work/school or home.  As 

the method is designed specifically for use during winter months, the sample is 

assigned an indoor status when the ambient temperature at the time of the aerosol 

sample is above 15.55°C (60°F).  Otherwise, the status is assigned as outdoor.   

We conducted an integrated field test to evaluate the effectiveness of the method 

for collecting and apportioning exposures during a normal workday.  For this exercise, 

the sampling apparatus was worn by an individual for four workdays while an 

independent log of location-activities was recorded.  The individual varied departure and 

arrival times and routes of transit to and from work.  For evaluating the field data the 

expected time to be at the work/school location was from 9 AM to 3 PM and the 

expected time to be at the home location was from 8 PM to 6AM. 

To prepare the sampling apparatus the following steps were performed: 1) A pre-

weighed filter was placed downstream of the pDR sensor chamber, 2) Pump flowrate 

was calibrated, 3) A GPS receiver was allowed to acquire signal lock on at least four 

satellites, 4) The internal clocks of the pDR and TR-52 were synchronized to the clock 

of the GPS Receiver, 5) The data-logging memory of each monitor was reset, 6) The 

monitoring equipment and pump were secured to a custom frame (Figure 1.1), 7) 

Sampling hoses were connected and sampling equipment was placed in backpack, 8) 
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Monitors were activated (i.e., data-logging was initiated) and the sampling pump was 

turned on. 

 

Figure 1.1. Apparatus for spatiotemporally-referenced sampling 

During the integrated field testing the sampling apparatus was worn by the test 

subject over both shoulders like a normal backpack.  A NIST-traceable timepiece was 

used to log ingress/egress of the residence, the workplace, and transportation vehicles 

to the nearest second.  When the test subject was sitting or lying the backpack was 

placed upright on the floor nearby.  Following the sampling period the pump flowrate 

was verified and the filter was removed for gravimetric analysis. The logged data from 

the monitors were downloaded to a personal computer. 

We investigated two methods of defining the work/school or home boundaries.  

One method defines the home or work/school area by the physical footprint of the 

structure, taken from geo-referenced satellite imagery.  The other method defines the  
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home or work/school area with a circular buffer region.  In this case, the buffer denotes 

the area within a radial distance from the center of a defined point of interest (i.e., a 

home).   

The accuracy of the apportionment algorithm was assessed by comparing the 

algorithm classification of the collected exposure data with the independent log of the 

location-activity categories recorded during the field test.  The overall percent accuracy 

was calculated using the total number of samples that were correctly classified vs. the 

total number of recorded samples.   

1.4. Results  

1.4.a. GPS Positioning 

The GPS receiver provided greater positional accuracy when outdoors versus 

indoors, as expected (Table 1.1).  The 2DRMS distances for the four units when tested 

outdoors ranged from 3.1- 4.6 m (average, μ, was 3.8 m, standard deviation, σ, was 

0.6). This accuracy was much greater than the manufacturer stated accuracy of the unit 

(<15 meters 95% of time).  No signal losses were detected outdoors. 

During the outdoor benchmark testing periods, the positional precision of the 

individual GPS receivers ranged from a 2DRMS distance of 0.65m to 6.6m (Table 1.2).  

Neither the GPS Receiver (p>0.4) nor the testing day (p>0.7) was a significant factor in 

determining the 2DRMS values.  The average 2DRMS and standard deviation of the 

individual receivers from low to high were 2.1±1.2 m, 2.3±0.9 m, 3.5±0.8 m, and  

4.0±1.8 m.  
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Table 1.1. GPS position accuracy (outdoors, in-residence and in-workplace) 

Positioning Location 

GPS Receiver 2DRMS(m)† 

Min. Max. Avg. Std. Dev. 

Outdoor Benchmark 3.1 4.6 3.8 0.6 

Home: Living Room 3.9 13.0 7.4 3.9 

Home: Dining Room 6.3 12.9 8.4 3.0 

Home: Bedroom 6.3 12.9 8.4 3.0 

Work: Lobby 29.0 33.7 32.4 2.6 

Work: Window Office 26.8 43.0 33.3 7.3 

† 2DRMS represents the 98th percentile for error between the monitor-reported position 
and known benchmark position 

When placed inside a typical wood-framed, single-story, residential structure the 

average 2DRMS of the GPS receiver increased by a factor of two.  The range of the 

2DRMS distances for the four units tested in the living room was 3.9 - 13 m (μ = 7.4 m, 

σ = 3.9), in the other two rooms the range was 6.3 - 12.9 m (μ = 8.4 m, σ = 3.0).  The 

GPS receiver accuracy indoors was also greater than the manufacturer stated accuracy 

of the unit (<15 meters 95% of time).  No signal losses were detected indoors.   

In the concrete masonry building the average 2DRMS of the GPS receiver 

increased over the outside results by nearly a factor of 9 to approximately 33 m when in 

an office or lobby with exterior windows.  In rooms with exterior windows the units 

recorded a position during more than 99.9% of the sampling intervals.  When placed in 

an interior, windowless room the GPS receiver was not able to maintain signal reception 

and recorded a position during less than 1% of the sampling intervals.  However, the 
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receiver regained the satellite signal nearly instantaneously and began recording 

positions when moved to a room with exterior windows or outdoors.  

Table 1.2. GPS position accuracy (GPS receiver units over multiple periods) 

 2DRMS(m) by Period 

Unit 1 2 3 Avg Std Dev 

1 3.52 4.44 2.43 3.47 0.82 

2 2.15 3.52 0.65 2.11 1.17 

3 2.60 2.83 6.60 4.01 1.83 

4 1.52 3.46 1.87 2.29 0.85 

 

1.4.b. Temperature Monitors 

The ambient temperature monitors were tested for accuracy across a range of 

temperatures (0°C - 25°C).  Over that range the temperature monitors were never 

greater than ±1°C from the reference standard. The Pearson's correlation coefficient 

(r2) between the reference standard and each of the temperature monitors over the 

same range was greater than 0.99.  The dynamic thermal response of the sampling 

apparatus when moved from an indoor (~21°C) environment to an outdoor (~10°C) 

environment is shown at Figure 1.2.  An exponential curve was fit to the data, T = 

10.34e-0.059t, where T = temperature (°C) and t = time (sec).  This model results in a 

thermal time constant of 16.9 seconds.  Following this model, 44.6% of the temperature 

span between the two environments was recorded within 10 seconds of changing 

environments.  Similarly, 69.3% of the change has been recorded within 20 seconds, 
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Figure 1.2. Thermal dynamic response of ambient temperature monitors 

and 83.0% has been recorded within 30 seconds.  The dynamic thermal response of the 

monitor was slightly faster when moving from an outdoor environment to an indoor 

environment.   

1.4.c. Apportionment Algorithm 

A geo-referenced aerial photograph of the residential structure used during the 

integrated field tests is shown at the upper left of Figure 1.3.  At the upper right of Figure 

1.3, the positions recorded while inside the residential structure are overlaid upon the 

physical footprint of the building.  At the lower left of Figure 1.3, the results of a 

geospatial intersect operation between the recorded positions and the physical footprint 
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of the structure is displayed.  Only 64.4% of the recorded positions are within the 

physical boundary of the structure.  Using the physical footprint of the residence to 

define the home location resulted in 35.6% of the recorded position being misclassified 

as transit (shown in red).  Therefore, we created ‗buffer areas‘ to define the home and 

work locations that extended slightly beyond the physical boundaries of each building.  

At the lower right of Figure 1.3, circular buffers centered on the structure with radii of 20 

m and 30 m are displayed.  An intersection operation between the recorded positions 

and the 20 m radius buffer area captured 98% of the points.  Using a circular buffer with 

a 30 m radius captured over 99.9% of the recorded positions, substantially reducing the 

amount of misclassification due to scattered GPS signals. 

The accuracy assessment of the location-activity category classifications is 

shown at Table 1.3.  The accuracy of the classification algorithm was determined by 

comparing the algorithm classifications with the user-defined classifications.  The 

accuracy is a measure of the proportion of logged space- and time-referenced samples 

correctly assigned by the algorithm.  The accuracy of the classification into the 

individual location-activity categories ranged from 93.9% to 99.9%.   

For the home location-activity, 99.9% of the samples were classified correctly.  

There were 7 (0.03%) of the 21271 recorded samples misclassified as afternoon transit.  

This was due to scattering of the GPS-recorded signal, which resulted in a measured 

position outside the area delineating the home location.   

For the work/school location-activity, 98.5% of the samples were classified 

correctly.  There were 57 (1.47%) of the 3865 recorded samples misclassified as 

morning or afternoon transit.  Once again this misclassification was due to signal scatter 
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Figure 1.3. Location-activity classification using different geographical proximity 
analyses.  Each circle represents a coordinate location recorded by the GPS 
receiver when sampling inside the residence.  The green circles in the lower left 
indicate recorded positions encompassed by the physical footprint of the 
structure and classified as the Home location-activity.  Using a circular buffer 
(lower right) substantially increases the proportion of samples correctly 
classified. 
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Table 1.3. Assessment table for the spatiotemporally-based algorithm 
classifications 

  True Classification of Sample 

  Home School 

AM 

Transit 

PM 

Transit 

Num of 

Classified 

Samples 

A
lg
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th

m
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s
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p
le

 Home 21264  37 28 21329 

School  3808 9 17 3834 

AM Transit  15 654  669 

PM Transit 7 42  1196 1245 

Number of 

Recorded 

Samples 21271 3865 700 1241 27077 

 Accuracy (%) 99.9 98.5 93.4 96.3  

 
outside the buffer area around the workplace.  The combination of the concrete/brick 

construction and small windows of the workplace resulted in a larger amount of scatter 

than at the home, however, the proportion of misclassification was considered 

acceptable.  Enlarging the buffer would capture more of the recorded locations, 

however this would impinge on the classification of morning and afternoon transit.  

Amending the algorithm to reduce the number of these misclassifications would have 

eliminated the ability to capture transit periods away from the workplace between the 

hours of 9 AM and 3 PM.   

For the morning transit location-activity, 93.4% of the samples were classified 

correctly.  There were 46 (6.57%) of the 700 recorded samples misclassified as home 
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or work/school.  As before, this misclassification was due to the size of the buffer area 

around the physical locations of the home and workplace.  The subject independently 

recorded ingress and egress times when crossing the threshold of the structure‘s 

doorway, as this threshold was considered more intuitive and easier to identify than an 

invisible boundary line (i.e., the buffer zone).  However, this choice did introduce error 

into the classification of the morning and afternoon transit activities.  This percentage of 

misclassification was greater than with the home or work/school misclassification due to 

a smaller amount of time spent in transit.  The misclassification of morning transit to the 

home or work/school amounted to less than 2 minutes per day.  

For the afternoon transit location-activity, 96.3% of the samples were classified 

correctly.  There were 45 (3.6%) of 1241 recorded samples misclassified as home or 

work/school.  The misclassification of afternoon transit was due to the same causes as 

the misclassification of morning transit.  The number of misclassifications of this 

location-activity was similar to the morning transit location-activity, however the 

percentage was lower because of an increased amount of time in the afternoon transit 

category.  

Overall, the algorithm was 99.6% accurate at classifying location-activities.  Over 

the 75.2 hours of sampling, approximately 74.9 hours were classified correctly and 

approximately 26 minutes were misclassified.  This misclassification amounted to less 

than 7 min per day.  The majority of that daily misclassification, about 4.5 min, was due 

to the misclassification of transit activity samples as home or work/school when the 

samples were recorded within the buffer areas of the home and workplace.  The 
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remainder of the time, just over 2 min was due to the scattering of the GPS-recorded 

positions when at home or work/school. 

When the indoor/outdoor ambient temperature monitor data were assessed with 

the apportionment algorithm, the algorithm classification of indoor/outdoor changed in 

less than 8 seconds.  The response of the ambient temperature monitors can be seen in 

Figure 1.4.  In the Figure each circle represents a 10-second interval measurement of 

the ambient temperature at the subject‘s location.  The change in temperature recorded 

at each sampling location while the sampler was moved from indoors to outdoors is 

represented with color scaling (red = warmer, blue = colder).  Points 1 and 2 were 

indoors, the others outdoors.  Recorded temperatures below 15.55°C were classified as 

outdoors. In this example only one sampling interval was misclassified as indoors.  

The accuracy assessments for the classification of indoor vs. outdoor status 

while within the home buffer area and the school buffer area are shown at Table 1.4 and 

Table 1.5.  The accuracy of the indoor/outdoor classification algorithm was determined 

by comparing the algorithm classifications of samples with the independently-logged 

classifications of samples.  As before, the accuracy is a measure of how many of the 

logged indoor/outdoor locations were correctly classified by the algorithm.  The 

accuracy of the individual apportionment categories ranged from 65.4% to 99.9%.   

While the subject was within the home area buffer, 99.9% of the indoor samples 

were correctly classified.  There were 21 (0.01%) of the 21225 recorded indoor samples 

misclassified as outdoor.  This misclassification was due to the dynamic thermal 

response of the ambient temperature monitor.  Additionally, 65.4% of the outdoor 

samples were correctly classified.  There were 36 (34.6%) of the 104 outdoor samples 
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misclassified as indoors.  This was due mostly to driving into the home buffer area in a 

warm vehicle during the afternoon transit.   

While the subject was within the work/school area buffer, 99.8% of the outdoor 

samples were correctly classified.  There were 6 (0.16%) of the 3808 recorded samples  

Figure 1.4. Ambient temperature monitoring analysis.  Each circle represents a 
10-second interval measurement of the ambient temperature at the subject’s 
location.  Circle color indicates the relative temperature at the location.  Points 1 
and 2 were indoors, the others outdoors.  Temperatures below 15.55°C were 
classified as outdoors. In this example only one sampling interval, #3, was 
misclassified as indoors. 
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Table 1.4. Temperature-based classification algorithm accuracy assessment table 
(home location-activity category) 

 True Classification  

of Sample  

Indoor Outdoor 

Num of 

Classified 

Samples 

Algorithm 

Classification 

of Sample 

Indoor 21204 36 21225 

Outdoor 21 68 104 

 Number of 

Recorded 

Samples 21225 104 21329 

 Accuracy (%) 99.9 65.4  

 

misclassified as outdoor.  Once again this misclassification was due to the dynamic 

thermal response of the ambient temperature monitor.  Additionally, 84.6% of the 

outdoor samples were correctly classified.  There were 4 (15%) of the 26 outdoor 

samples misclassified as indoors.  This was also due to the dynamic thermal response 

of the ambient temperature monitor.   

Overall, the accuracy of the indoor/outdoor classification portion of the algorithm 

was 99.7% accurate.  The algorithm was 99.7% accurate at the home and school 

locations.  The classification results from the simple 60° F were surprisingly good. 
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Table 1.5. Temperature-based classification algorithm accuracy assessment table 
(work/school location-activity category) 

 True Classification  

of Sample  

Indoor Outdoor 

Num of 

Classified 

Samples 

Algorithm 

Classification 

of Sample 

Indoor 3802 4 3806 

Outdoor 6 22 28 

 Number of 

Recorded 

Samples 3808 26 3834 

 Accuracy (%) 99.8 84.6  

 

However, a more complex algorithm that classified samples relative to the outdoor 

temperature could improve the accuracy by reducing the effect of the monitor‘s thermal 

dynamic response.   

A 24-hour portion of the integrated field test data is represented with an 

emphasis on spatial characteristics in Figure 1.5.  Here, location-activity categories are 

differentiated by color (green = home, blue = school, orange = morning transit, purple = 

afternoon transit) while relative personal PM exposure levels are represented by the 

size of each data point (larger circles represent higher concentrations).  With this 

representation, the viewer may appreciate the subject‘s movements throughout the day 
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while still gaining a sense of the timing and magnitude of measured personal PM levels.  

In Figure 1.5, the viewer can see that during the morning commute, measured personal 

PM levels while traveling on major roadways (8:19AM and 8:25 AM) were relatively 

larger than measured personal PM levels while traveling on side streets (8:15 AM). 

 

Figure 1.5. Street-map overlay for personal PM levels.  Each circle represents a 
10-second average exposure of at the subject’s location throughout a single day.  
Circle color indicates the location-activity of exposure and circle size indicates 
the relative magnitude of measured PMFine levels. 

The advantage of associating time-activity data with exposure monitoring is 

further depicted in Figure 1.6, with an emphasis on temporal effects.  Here, the 

algorithm- derived location-activity categories are represented by coloring of the 

recorded personal PM level.  In Figure 1.6 the viewer can appreciate the temporal 

attributes of the exposure assessment.  At home, PM concentrations increase after 7:30 

AM as the subject prepares for work/school and food is prepared.  During the morning 

transit period (8:15 AM – 8:40 AM) the PM levels are relatively less than at home.  
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However, one large peak during the morning commute is evident and coincides with the 

crossing of a major traffic intersection. This phenomenon is annotated in Figure 1.5 at 

8:19 am. 

 

Figure 1.6. Time-series of a subject’s personal PM levels apportioned into 
location-activity categories.  Data is color-coded based on output from the 
spatiotemporally-based algorithm. 

1.5. Discussion 

The GPS receivers were more accurate than expected.  The outdoor capability 

was more than adequate; inside residential structures, the receivers performed 

surprising well.  This performance was most likely due to the use of a high-sensitivity 
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GPS microcontroller in the GPS receiver.  Even with a high-sensitivity GPS receiver, 

indoor positioning accuracy will likely vary based on the construction materials (e.g., 

brick, metal) or on the construction design (e.g., multiple stories, apartment buildings).  

The performance of the units in the workplace was also better than expected.  There 

was a larger amount of scatter, however, the units recorded a position whenever within 

an area with an exterior window.  Although positions were not recorded when the 

sampler was in an interior room of a concrete building, the receiver regained the 

satellite signal nearly instantaneously when moved to a room with exterior windows or 

to the outdoors, as evinced by the data in Tables 1.4 and 1.5. 

Newer handheld, consumer-grade GPS receivers have greatly improved the 

ability to receive satellite signals when indoors.  This improved capability is most likely 

due to the higher sensitivity GPS controllers that have recently been introduced into 

these product lines.  However, additional sensitivity for these instruments may not be 

available in the near term.  Therefore, alternatives may be needed to improve to the 

positioning portion of the method when a subject is inside a building.  This is especially 

important in industrial settings where large exposure gradients can occur over a small 

distance.  A GPS signal repeater could be used inside larger indoor spaces to mimic 

satellite signals.  Another technology that may prove useful is radiofrequency-

identification (RFID).  RFID readers used in conjunction with RFID tags could provide a 

means to track the subject‘s movement where GPS signal reception is difficult.  

The temperature monitors appeared to be very sensitive to changes in the 

ambient temperature.  Our results indicated that they were slightly less accurate than 

the manufacturer‘s claim.  However, the accuracy was adequate for our sampling 
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method.  The dynamic thermal response of the monitor when used in the sampling 

apparatus was also adequate.  In practice, the results from the monitor allowed correct 

classification of the indoor/outdoor status within a 10 second interval.   

Using temperature as an indicator of the indoor/outdoor status of the sampler will 

likely work best when there is a large temperature gradient between the indoor and 

outdoor environments.  However, this technique would be limited in more temperate 

climates. Alternative, or additional, indicators of indoor/outdoor status include ambient 

light (Quintana, Valenzia et al. 2001) or logging the strength of the satellite signals 

received by the GPS receiver. 

Most personal sampling methods, including this one, cannot ensure that the 

subject is wearing the sampler at all times.  Adding a lightweight accelerometer to log 

movement of the sampler would assist in confirming that subjects were wearing the 

sampler during non-sleeping periods. 

When assessing which geographic proximity analysis method to use to 

determine if a recorded location was classified as home or work/school, a geographic 

intersection operation between the recorded points and the physical footprint of the 

structure was considered inadequate to support the apportionment classification 

algorithm.  Therefore, the classification algorithm used a geographic proximity analysis 

with a buffer region (circular area centered on the structure) to capture a greater portion 

of the recorded positions.  The required size of the buffer varied based on the 

construction characteristics of the structures involved.  Determination of an adequate 

buffer radius was obtained by visually evaluating the recorded positions in a GIS 

software program.  This allowed an optimum size buffer for each structure as using one 
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larger sized buffer for all structures would capture more of the recorded locations, 

however this would also impinge on the classification of morning and afternoon transit. 

The classification error inherent in using a geographical buffer larger than the 

physical footprint of the building could be reduced with additional, more complex signal 

analysis of the ambient temperature.  The analysis of temperature changes near the 

time of transition between stationary locations (work, school, or home) and commuting 

period could be used to ―fine tune‖ the algorithm and reduce the amount of 

misclassification at the beginning and end of transit periods caused by the proximity 

analyses with geographical buffers. 

1.6. Conclusion 

The resultant location/activity-exposure database provides a powerful means to 

assess personal exposure through multiple methods of analysis and visualization.  The 

spatial and temporal aspects of the exposure can be represented in complementary 

figures.  Figures 1.5 and 1.6 allow one to view the when and where of exposure with a 

high degree of spatial and temporal resolution.  For example in Figure 1.5, the viewer 

can see that during the morning commute measured personal PM levels while traveling 

on major roadways (8:19AM and 8:25 AM) were relatively larger than measured 

personal PM levels while traveling on side streets (8:15 AM).  During the morning 

commute there were several low-level peaks and one larger peak during the morning 

commute.  The larger peak coincides with the transit of a major traffic intersection.  This 

type of representation is especially useful when analyzing spatial and temporal 

attributes.  For instance, the personal PM levels occurring during the commute to and 

from work/school can be compared to traffic densities on the corresponding roadways.  



 37 
 

Also the locations where a majority of time is spent can be related to other spatially-

referenced data (e.g. traffic density, industrial areas, etc.) to model the influence of 

potential environmental exposure sources. 

This ability to temporally-delineate personal PM levels along short time intervals 

allows visualization of peak PM levels that occur throughout the day.  The timing and 

magnitude of peak signals can then be analyzed for association with other events (e.g. 

asthma exacerbation, symptoms, perceptions).  This method could be used to 

supplement traditional time-integrated personal monitoring techniques (i.e., a filter-pump 

sampling method) (used in compliance monitoring of personal exposures) that reduce 

these thousands of exposure phenomena to a single, averaged data point.   

This method can collect and apportion over 8600 personal exposure data points 

per day with both high resolution and accuracy.  The method provides greater resolution 

of personal PM levels in the home, work/school, and transit micro-environments and 

allows preparation of a more detailed ‗exposure budget‘ for each subject.  The 

production of highly-resolved, space- and time-referenced exposure data allows for 

rigorous exposure assessment of mobile cohorts in the workforce or community.  These 

personal exposure estimates can then be compared to estimates of personal exposure 

derived from ambient air pollution monitors to evaluate the correlation between the two.  

Exposure models may be further developed by incorporating additional environmental 

information, such as traffic density, ambient temperature, atmospheric mixing height, 

and wind velocity relative to the exposure of interest.  
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CHAPTER 2 

"Spatiotemporal Profiles of Particulate Matter Exposure Among Asthmatic Children‖2 

2.1. Summary 

Background: Children‘s exposure to particulate matter (PM) air pollution has 

been implicated in asthma prevalence and severity.  There are a paucity of studies that 

assess children‘s exposures to PM air pollution across space and time.  

Objectives: Examine children‘s personal exposure to PM in four distinct 

microenvironments (home, school, morning and afternoon transit).  Evaluate 

relationships between personal exposures measured in each microenvironment and 

those measured by a community-based, outdoor monitor. 

Methods: We monitored thirty schoolchildren for four consecutive days (Mon-

Thu) on two occasions during the school year. Microenvironment-based personal PM 

data were derived from personal, space- and time-referenced exposure assessment by 

integrating data from direct-reading, personal exposure PM monitors with global 

positioning receivers. Data were analyzed using linear mixed models. 

Results: Variation in personal exposures was primarily within-subject and space- 

and time- related.  Highest to lowest mean personal concentrations per 

microenvironment: home, morning transit, afternoon transit, and school (p<0.01 for 

differences between each microenvironment except morning and afternoon transit). 

Concurrently measured ambient PM concentrations were not associated with personal 

exposures during microenvironments.  Personal exposure in each microenvironment 

                                            

2
 Adams, C., N. Rabinovitch et al. (2013). "Spatiotemporal Profiles of Particulate Matter Exposure Among 

Asthmatic Children.‖ Unpublished manuscript. 
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was associated with exposure in subsequent microenvironments (15-111% increase per 

1 µg/m3 increase in personal PM in preceding microenvironment, p<0.01).  

Conclusion: Differences in personal PM exposures in urban-poor schoolchildren 

with asthma are microenvironment-driven; exposures are generally highest at home, 

followed by transit and then school. Personal home exposures are poorly predicted with 

community-based monitors, but are themselves strongly predictive of personal 

exposures in subsequent microenvironments. These data suggest a "personal cloud" 

effect that persists through different microenvironments and can only be measured with 

spatially and temporally precise personal monitoring.  

2.2. Introduction 

Asthma is a complex disease whose development is influenced by inherited 

genes and environmental exposures (Arrandale, Brauer et al. 2011) .  Asthma 

prevalence among children has increased over the past three decades (Van Cleave, 

Gortmaker et al. 2010), sparking further interest in the role environmental exposure 

plays in asthma etiology and exacerbation. In particular, asthmatic children appear to 

have an increased risk of adverse health effects from airborne pollutant exposures due 

to airway inflammation and hyper-responsiveness (Rabinovitch, Strand et al. 2006; 

Rabinovitch, Silveira et al. 2011). 

Epidemiologists have typically used outdoor, fixed-site monitors, and 

questionnaire data to predict personal exposure and investigate potential associations 

with health effects (Dockery, Pope et al. 1993; Samet, Dominici et al. 2000; Pope 2004).  

Community-based exposure assessment has long been associated with increased 

symptoms and decreased lung function among asthmatics (Peters 1997; NRC-NAS 
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1998; Yu 2000).  However, fixed-site monitors rarely capture spatial and temporal 

variability of air pollution (Strand, Hopke et al. 2007; Ott, Kumar et al. 2008; Setton, 

Marshall et al. 2011), leading to exposure misclassification when such data are used to 

assign exposure levels to individuals (Hutcheon 2010).  Recently, more complex land-

use regression models have been developed to improve estimates of personal 

exposure (Weis, Balshaw et al. 2005; Hoek, Beelen et al. 2008).  However, such 

models have met with only limited success, given that individual exposures to air 

pollutants are highly variable through time and space and indoor sources dominate 

personal exposures (Ozkaynak 1996). Additionally, the majority of a child‘s time is 

typically spent indoors in various microenvironments (e.g., at home or school) (Hoek, 

Brunekreef et al. 2002). Models for indoor exposures based on ambient concentrations 

have been developed (Wilson and Brauer 2006; Hystad, Setton et al. 2009), but these 

models often do not account for indoor sources of air pollution and are limited in their 

ability to account for penetration of ambient air pollutants indoors (Thornburg, Ensor et 

al. 2001; Qing Yu, Turpin et al. 2005).  Subject reporting bias is also an issue when a 

parent is asked to recall where and when a child spent their day (Elgethun, Yost et al. 

2007).  For these reasons, children‘s personal exposures to PM remain poorly 

understood.  

As an alternative to community-based sampling, individual exposures to PM can 

also be estimated by sampling air directly within an individual's breathing zone.  Such 

personal sampling methods typically draw a known volume of air through a filter over 

time, followed by gravimetric or chemical analyses (Ozkaynak 1996; Williams, Suggs et 

al. 2000; Adgate, Ramachandran et al. 2002).  Filter-based sampling is more accurate 
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and precise than modeling an individual‘s exposure using a community-based monitor 

(Rodes, Lawless et al. 2001; Adgate, Ramachandran et al. 2003; Strand, Hopke et al. 

2007; Rodes, Lawless et al. 2010).  However, personal sampling is also resource 

intensive and thus, limited in scope. A second disadvantage to filter-based methods is 

that they are time-integrated (typically across 8 or 24 hours); such time averaging 

cannot capture changes in personal exposure that occur across space and time.  For 

example, Quintana et al. reported that personal PM concentrations collected over 15 

minute intervals were up to 10 times greater than the 24-hour mean measured during 

the same period (Quintana, Valenzia et al. 2001).  Bi-modal personal exposure profiles 

(morning and evening concentration peaks) have been reported (LaRosa 2002; Zhu, 

Aikawa et al. 2005) in various populations.  Because asthma exacerbation can occur 

within minutes or hours of an exposure (Delfino, Staimer et al. 2006; Rabinovitch, 

Strand et al. 2006), knowing when and where exposures are greatest would likely 

improve our understanding of environmental triggers of this complex disease. 

Recently, methods have been developed to resolve personal exposure across 

both space and time (Elgethun, Fenske et al. 2003; Gulliver and Briggs 2007). For 

example, miniature direct-reading, or real-time, instruments have been developed to 

measure PM concentrations at fine temporal scales (i.e., seconds to minutes) 

(Chakrabarti, Fine et al. 2004; Benton-Vitz and Volckens 2008; Dons, Int Panis et al. 

2011).  Personal tracking methods have also been developed; these methods typically 

use global positioning system (GPS) receivers to follow an individual as they move 

between microenvironments (Phillips 2001; Elgethun, Fenske et al. 2003; Wu, Jiang et 

al. 2011).  Compared to personal log entries, GPS-derived location information was 
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considered the best available solution or ―gold standard‖ for determining time-location of 

a subject (Elgethun, Yost et al. 2007; Shoval 2008).  The combination of miniature 

direct-reading instruments with personal tracking technology allowed the advent of new 

methods for personal spatiotemporal exposure assessment (Adams, Riggs et al. 2009). 

This work examined children‘s exposure to PM as a function of time, location, 

and activity for a panel of asthmatic children living in Denver, Colorado during 

wintertime in 2008. The primary objective was to evaluate the relationship between a 

child‘s microenvironment (home, school, or in-transit) and their exposure to PM.  A 

secondary objective was to compare these micro-environmental exposures to each 

other and to contrast them with community-based, ambient PM concentrations 

measured by a fixed outdoor monitor (located at their school). 

2.3. Methods 

2.3.a. Study Panel, Design and Methods 

The study panel consisted of 32 children (6–14 years of age), with physician-diagnosed 

asthma, attending the Kunsberg School on the campus of National Jewish Health in 

Denver, Colorado.  Panel subjects at the Kunsberg School were predominately African 

American (43%), followed by multiracial (36%), Hispanic (16%) and White (5%).  All 

suffered from asthma with diagnoses of mild (41%), moderate (45%), or severe (14%).  

The majority of students were urban poor living in the Denver area (Rabinovitch, Strand 

et al. 2008).  Over a 5-month period, (Dec 2007- Apr 2008) personal PM exposures 

were measured continuously on a daily basis (~ 21 hrs per day) using a recently 

developed method for personal spatiotemporal exposure assessment (Adams, Riggs et 

al. 2009).  Ethical and scientific approval for the study was obtained from the National 
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Jewish Health's Institutional Review Board. The study design called for each child to be 

followed across two non-consecutive weeks and for four consecutive days each week (8 

days total) during the school year, mid-day Monday through mid-day Friday.  Subjects 

were asked to carry backpacks containing an aerosol nephelometer to measure fine PM 

concentrations, a global positioning system (GPS) receiver (GPSMap 60Cx, Garmin Inc. 

Olathe KS) to record geographic position data, and a temperature sensor to record 

personal microenvironment temperature; a separate section of each backpack was 

available to carry books and school supplies.  Each monitor recorded data at 10-second 

intervals.  Personal PM levels were actively sampled with a Personal DataRAM 1200, or 

pDR, (Thermo Fisher Scientific Inc., Waltham, MA) in conjunction with a pump (6.8 

L/min flow, Omni Personal Pump, BGI Inc., Waltham MA) and cyclone (1.6 µm size cut, 

Model GK2.05, BGI Inc., Waltham MA). The 1.6 µm aerodynamic size cut resulted from 

a volumetric flow necessary to meet method quantification limits for gravimetric analysis 

of a filter sampler (Teflo 37mm, Pall Inc. East Hills, NY) located immediately 

downstream of the pDR. 

The pDR has been used extensively to assess personal PM exposure (Reed 

2000; Quintana, Valenzia et al. 2001; Fischer 2007) and has been found to be precise 

and in good agreement with other continuous monitors (Chakrabarti, Fine et al. 2004).  

However, the pDR has limitations; instrument response (i.e., degree of scattered light) is 

positively biased when relative humidity exceeds 60% (Chakrabarti, Fine et al. 2004; 

Wu, Delfino et al. 2005) and instrument response also varies depending on the size, 

shape, and composition of sampled aerosol (Benton-Vitz and Volckens 2008).  This 

study was conducted during wintertime in Denver, when average ambient relative 
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humidity was below 60%.  To correct for instrument bias due to PM light scattering 

properties, data from the pDR were normalized to personal filter data (Kim 2004; 

Benton-Vitz and Volckens 2008) during data processing.  The normalization factor was 

calculated from the ratio of the daily personal filter data (integrated over 21 hr) to the 

corresponding daily pDR average; this correction was specific to each child‘s daily 

exposure. Hereafter, levels of PM1.6 measured in this fashion are referenced as 

personal PM; levels of ambient PM2.5 measured using outdoor federal reference 

methods will be referred to as ambient PM2.5. The pDR inlet was positioned 2 inches 

above the top surface of the backpack, near the wearer‘s left shoulder, so as to sample 

air from within the child‘s breathing zone.   

Backpacks were issued to subjects with instructions to wear them as much as 

possible throughout the day and to place the backpack upright on the floor nearby when 

sitting or lying.  Subjects were also surveyed on activities, behaviors, and potential 

household exposures during the sampling period.  Data from the pDR, GPS receiver, 

and temperature sensor were collated into a database by matching timestamps 

associated with each instrument‘s data.  Collated data were then processed 

algorithmically to classify each 10-second sample into a predetermined 

microenvironment.   

The microenvironment classification algorithm has been described in detail 

previously (Adams, Riggs et al. 2009).  Briefly, geographical areas, or buffer regions, 

were developed to define an area surrounding each child‘s home and the common 

Kunsberg school using geographical information system software (ArcGIS 9.1, ESRI 

Inc.).  Size and shape of the buffer regions were optimized to minimize misclassification 
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error, especially during times of transit between home and school.  Using customized 

home and school buffer regions in conjunction with time-based rules, a space- and time-

based algorithm classified exposures into four pre-determined microenvironments: at 

home, at school, morning transit (i.e., commuting from home to school), and afternoon 

transit (after school-hours and not at home).  Accuracy of the classification for home 

and school using this method during a pilot study was greater than 98% (Adams, Riggs 

et al. 2009).  Additional quality assurance of post-processed data was performed to 

ensure that the subject was carrying the backpack during the sampling period.  Data 

were excluded with geospatial information indicating the backpack was left at school 

overnight or backpack temperature data indicating the backpack was left in a car 

overnight. 

Additional data collection included ambient PM and weather data, and survey 

data regarding potential exposures (e.g. smoking, fried food preparation, and 

fireplaces).  Ambient PM2.5 concentrations at the Kunsberg School were measured with 

a Tapered Element Oscillating Microbalance averaged over one-hour time periods 

located on National Jewish Health (NJH) Campus (East Colfax Ave and Colorado 

Boulevard), approximately 2.5 miles south east of the urban center of Denver.  

2.3.b. Statistical Analysis 

This novel dataset presented several challenges for statistical analyses.  For 

example, the continuous, 10-second levels of personal PM taken throughout the day 

tended to be non-normally distributed and auto-correlated in time.  These issues 

(hierarchical, or nested data structure, temporal autocorrelation, and repeated 

measures) were addressed by using linear mixed models with a nested structure and a 
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covariance matrix to account for repeated measures.  Model results and descriptive 

statistics were obtained using log-transformed personal PM data, associated ambient 

data, and additional covariates, described below.   

To include 10-sec personal PM readings that were assigned zero values by the 

instrument (i.e., values lower than the instrument detection limit of 1 µg/m3); an imputed 

value was substituted for the zero reading.  This substitution was performed prior to 

(and necessary for) log-transformation of the data set.  Imputed values were created 

first by stratifying the dataset by subject.  Next, zero values for each subject were 

replaced with a heuristic value equal to one half of the smallest concentration recorded 

by the pDR (0.5 µg/m3).  Geometric means and geometric standard deviations of the 

log-transformed stratified data subsets were then calculated.  These distribution 

parameters were used to impute values for the original zero readings via a probability 

integral transform (Casella 2002).  The imputed, or modeled, values were substituted for 

the original zero readings.   

The basic linear mixed model is represented in Equation 2.1:  

      (   )       ∑       
 

   
         (Equation 2.1) 

for i = 1, 2,…, k individuals 

for j = 1, 2,…, ni measurements of the ith individual, and 

for m = 1, 2,…, p covariates 

where Xij  represents measurements at the jth time interval for child i, and Yij is the 

natural log-transformed value of Xij.  Yij represents the sum of the effects of: µY,  

representing the overall intercept; the product of the regression coefficients β1, β2,…, βp 

(the fixed effects) and the observed values of their corresponding covariates C1ij, C2ij,…, 
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Cpij; bi representing the random effect for the ith individual; and εij representing the 

residual error for jth observation on the ith individual.  Random variables bi and εij were 

assumed to be independent and normally distributed with means of 0 and variances of 

  
  and   

  (representing the between- and within-subject components of variance, 

respectively).  

Several, more complex, models were also developed as described below to 

evaluate different aspects of the dataset (model structure and output are described in 

detail in Appendix 1).  These models included additional covariates such as: ambient 

PM2.5 concentration, pDR instrument used, sampling date, and microenvironment 

temperature. Models were also adjusted for the autoregressive aspect of repeated 

samples.  All data analyses were conducted using SAS (version 9.2; SAS Institute Inc., 

Cary, NC) with an alpha level of 0.05 to evaluate statistical significance. 

2.3.c. Personal PM (Panel-level) 

Summary statistics were generated for personal and ambient PM levels and for 

personal and ambient temperatures on a daily and hourly basis. Additional analysis 

included estimating within-subject and between-subject variance components of PM 

exposure.  The variance components were evaluated with an unconstrained model (sup 

Model 3).  This model controlled for hierarchical effects of different samples (first level) 

within individual subjects (second level).   
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2.3.d. Personal PM (Microenvironment) 

Summary statistics were generated for each microenvironment on daily and 

hourly bases: personal and ambient PM levels, personal and ambient recorded 

temperatures, and cumulative personal PM exposures.  The effects of different 

microenvironments on personal PM exposure (using 10-sec data) was also explored 

(Appendix 1, model 1).  This model controlled for hierarchical effects of 10-sec samples 

within different sample periods (first level) and for different sample periods within 

individual subjects (second level).  Additionally, a relative exposure measure, or 

mass/time ratio, was calculated for each microenvironment. The mass/time ratio was 

calculated by dividing the percentage of time spent (on a daily basis) in a given 

microenvironment into the percentage of cumulative PM exposure (based on the total 

exposure from all microenvironments) experienced in that microenvironment  The 

mass/time ratio provides a relative exposure metric to compare relationships between 

exposures experienced in the subjects' microenvironments.   

2.3.e. Ambient PM as a Predictor of Personal Exposure 

The ability of the fixed-site ambient PM2.5 monitor to predict personal exposure in 

and across microenvironments was evaluated with a model (Appendix 1,  model 2) that 

included additional covariates of: ambient PM2.5 concentration, pDR instrument, 

sampling date, and microenvironment temperature. Adjustment for the autoregressive 

aspect of the repeated samples was also considered.  Several different variations of 

covariates and covariance matrix structures were evaluated and a final model was 

chosen based on Akaike information criterion (AIC) statistics.  This model controlled for 

hierarchical effects in the same manner as previous models with the addition of the 
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ambient PM2.5 data as a covariate and an exponential spatial covariance matrix 

structure. The model used 5 minute averaging intervals (based on original 10-second 

data) to reduce run-time due to computing requirements.   

2.3.f. Personal Exposure between Microenvironments 

The uniqueness of the exposure sampling methodology allowed us to investigate 

whether PM exposure in one microenvironment was related to a subsequent 

microenvironment.  For example, we assessed the relationship between home and 

school exposures during morning hours (Appendix 1, model 4).  As with the 

development of previous models, several different variations of covariates and 

covariance matrix structures were evaluated.  Personal PM concentrations at school 

were related to levels measured earlier in the day (at home and during morning transit) 

while adjusting for ambient PM2.5 levels measured during various time intervals by the 

fixed-site monitor (located adjacent to the school). This model contained an exponential 

spatial covariance matrix and controlled for hierarchical effects within different sample 

periods (first level) and for different sample periods within individual subjects (second 

level).  Pairwise comparisons were then assessed between each microenvironment.   

Relationships between other microenvironments were also assessed (Apppendix 

1, model 5).  For example personal PM concentrations at school were used to predict 

personal PM concentrations measured later that day during afternoon transit.  As in the 

development of previous models several different variations of covariates and 

covariance matrix structures were evaluated.  This model controlled for hierarchical 

effects within different sample periods (first level) and for different sample periods within 

individual subjects (second level). 
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2.4. Results 

The sampling campaign successfully collected 137 daily samples from 30 

different subjects, resulting in 1,036,422 measurements (10-second data).  At the 

beginning of the sampling campaign a battery charging fault damaged the sampling 

pumps, causing the first 44 potential samples (15%) to be lost/uncollected; 40 additional 

samples (14%) were lost due to subject compliance issues (e.g., backpack left at home 

or absence from school due to illness), and 30 (14%) samples were lost due to 

miscellaneous equipment failures (e.g., tubing breakage, filter tears, etc.).  Following 

exclusion due to the preceding causes, 5 of the remaining samples were excluded 

because of abnormally low readings from the direct-reading instruments. Additional 

sampling was not pursued after the scheduled sampling campaign to avoid seasonality 

effects between Winter and Spring/Summer. 

Approximately 18% of the direct-reading measurements in the dataset (i.e., 

186,556 of the 1,036,422 10-sec personal PM readings) were lower than the instrument 

detection limit of 1 µg/m3 and were replaced with imputed values in order to allow log-

transformation.  A Box-Cox analysis of both gravimetric filter data (137 samples) and 

direct-reading pDR data (1.03M samples) indicated that personal PM concentrations 

collected during this study were log-normally distributed.  Similar tests indicated that 

personal temperature, ambient temperature, and ambient PM2.5 levels were normally 

distributed. Mean daily sample length was 21 hours; the remaining three-hour period 

(11 AM-2 PM each day) included time to download data, replace batteries, calibrate 

sampling equipment, and survey subjects.   
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2.4.a. Personal PM (Panel-level) 

The geometric mean concentration of the daily filter-based personal PM samples 

(Table 2.1) was 10.4 µg/m3, with a geometric standard deviation (GSD) of 2.5. The daily 

median for direct-reading personal PM concentration was 10.9 µg/m3.  After 

normalization with filter-based sampling data, geometric mean and median direct-

reading personal PM concentrations (10-second pDR samples) were 4.3 µg/m3 (GSD = 

5.2) and 4.5 µg/m3, respectively.  Histograms based on the 10-second personal PM 

data for each child (across all days and microenvironments) are shown in Figure 2.1. 

Personal PM exposure variance within subjects was 8 times larger than the PM 

exposure variance between subjects.  Within-subject variability of personal PM 

dominated throughout each of the microenvironments.  Although within-subject variance 

was dominant, variations between-subject were also noted, as shown in Figure 2.1.  

The unconstrained model estimate for the intercept (representing the overall mean 

concentration from pDRs) indicated a geometric mean personal PM concentration for 

subjects at 4.6 µg/m3; approximately 7% greater than the study subject's direct-reading 

measured geometric mean.   

Table 2.1. Summary Statistics for Daily (21-hr average) Personal PM Levels  

Statistic pDR Filter 

Geometric Mean (GSD), µg/m3 4.3 (5.2) 10.4 (2.5) 

Median, µg/m3 4.5 10.9 

5th percentile, µg/m3 0.3 2.6 

95th percentile, µg/m3 64.6 45.5 
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Average times spent in each microenvironment were (Table 2.2): 14.4 hours for 

home (59.9% of the day), 7.5 hours (31.4%) for school, 0.6 hours (2.4%) for morning 

transit, and 1.5 hours (6.3%) for afternoon transit.  Afternoon transit included all travel 

between school and home, including errands, afterschool care, etc..  Geometric means 

of personal PM concentrations for each of the microenvironments were: 5.8 µg/m3 (GSD 

=5.3) for home, 2.0 µg/m3 (GSD = 3.8) for school, 3.4 µg/m3 (GSD = 4.7) for morning 

transit and 2.7 µg/m3 (GSD = 5.2) for afternoon transit.  Pairwise comparison (Appendix 

1, model 3, averaged in 5-min increments) indicated each mean microenvironmental 

personal PM concentration (home, school, afternoon transit, and morning transit) was 

significantly different from the others (p<0.01) except when comparing afternoon and 

morning transit (p=0.7). 

Median personal PM concentrations measured in the home were approximately 

three times larger than concentrations measured in school (Figure 2.2); this ratio 

increased slightly with increasing cumulative exposure.  Home exposures were 

approximately five times higher than school at the 90th percentile and seven times 

higher at the 99th percentile. Median personal PM concentrations measured during 

morning transit were approximately 30% higher than concentrations measured during 

afternoon transit.  However, this relationship was reversed at the 90th percentile where 

PM concentrations during afternoon transit were greater than morning transit. 

Cumulative distributions of personal PM concentrations by microenvironment 

(direct-reading data averaged across all subjects and days) appeared log-normally 

distributed (Figure 2.2).  Gravimetric filter data were also log-normally distributed, 

however, the integrated daily filter data had a larger median value and a narrower 
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distribution compared to the direct-reading data.  Personal PM (10-sec data) averaged 

daily (analogous to the gravimetric filter) appeared log-linear with a slightly larger 

variance than the daily filter data.   

 

Figure 2.1. Personal PM Distributions by Subject (averaged across all sampling 
days).  Personal PM (Microenvironment) 
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Figure 2.2. Cumulative Personal PM Levels (entire panel) by Microenvironment 

Mass/time ratios were calculated to evaluate the relative contribution of a given 

microenvironment to an individual‘s daily PM exposure.  Mass/time ratios larger than 

unity indicated a higher contribution of the particular microenvironment to the total 

exposure.  For example, mass/time ratios indicated that an hour spent at home 

contributed three times more to personal PM exposure compared to an hour spent at 

school (Table 2.2, Figure 2.3).  The home environment represented the largest relative 

personal PM exposure per time spent of all microenvironments (Figure 2.3).  Mean 

(median) values of mass/time ratios ranged from 1.18 (1.28) for the home environment 

to 0.43 (0.22) for the School environment; the transit ratios fell near the middle of the 

range, Afternoon at 0.82 (0.61), and morning at 0.72 (0.50).   
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Table 2.2. Personal and Ambient Sampling Statistics by Microenvironment 

 
School 

PM 
Transit Home 

AM 
Transit 

Number of 10-second Samples 224148 74844 708966 28464 

Daily Time in Microenvironment, hrs 
(SD) 7.5 (0.7) 1.5 (1.6) 14.4 (1.7) 0.6 (0.5) 

Percent Time 31.4 6.3 59.9 2.4 

Mass/Time Ratio 0.43 0.82 1.19 0.72 

Geometric Mean Personal PM, 
µg/m3 (GSD) 2.0 (3.8) 2.7 (5.2) 5.8 (5.3) 3.4 (4.7) 

Median Personal PM, µg/m3 2.4 3.0 6.3 4.5 

5th % PM, µg/m3 0.2 0.2 0.3 0.1 

95th % PM, µg/m3 14.0 35.8 80.3 26.9 

     Ambient PM2.5† Mean, µg/m3, (SD)† 8.4 (6.7) 5.8 (4.5) 6.7 (6.8) 7.0 (5.7) 

Ambient PM2.5† Median, µg/m3 6.3 4.9 5.1 5.1 

Ambient PM2.5† 5th %, µg/m3 1.1 0.8 0 1 

Ambient PM2.5† 95th %, µg/m3 22.9 15.3 18.7 18.3 

     Microenvironment Temp Mean, °C, 
(SD) 21.4 (2.3) 

21.1 
(6.1) 21.3 (2.5) 18.0 (6.8) 

Microenvironment Temp Median, °C 21.5 21.8 21.5 19.5 

5th % Microenvironment Temp, °C 18.5 9.6 17.4 1.9 

95th % Microenvironment Temp, °C 24.2 29.5 24.9 25.4 

     Outdoor Temp, °C (SD) 4.0 (6.7) 6.8 (7.9) 1.1 (6.5) -0.5 (6.3) 

Outdoor Temp Median, °C 4.5 6.4 1.4 0.2 

5th % Outdoor Temp, °C  -7.8 -5 -9.4 -12.7 

95th % Outdoor Temp, °C 14.2 22.3 11.7 8.2 
† Ambient PM2.5 levels were measured within 100 m of the subject‘s school. 

2.4.b. Ambient PM as predictor of Personal PM 

Ambient PM2.5 was not a significant predictor of personal PM at 5-min (p=0.8) or 

15-minute (p=0.3) averaging intervals.  Ambient PM2.5 concentrations were significant 

predictors of personal PM at slightly longer intervals.  For example, ambient PM2.5 was 

significant (p<0.01) in predicting personal PM when data were averaged over several 

hours (Appendix 1, model 2).  The magnitude of the relationship between ambient and 

personal PM, while statistically significant, was small; a unit increase (1 µg/m3) in 
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ambient PM concentration explained only a 1% change in hourly personal exposure.  

During the 6 AM to 11 AM timeframe (morning waking hours), ambient PM2.5 accounted 

for 6% of the relative variation in personal exposure (i.e., a 1 µg/m3 increase in the 

ambient concentration resulted in a 0.06 µg/m3
 increase in personal PM levels).  The 

daily (24-hr average) ambient PM2.5 was not a significant predictor of personal PM 

concentrations experienced within microenvironments (home, school, and afternoon 

transit) during the same day.  The exception was the morning transit period when 

children commuted to school (Table 2.3). 

2.4.c. Relationships of Personal PM between Microenvironments 

Mean personal PM concentrations (Table 2.4) from preceding microenvironments 

were significant in predicting personal PM concentrations in subsequent, or ensuing, 

microenvironments (p<0.03).  This effect was relatively independent of how the personal 

PM data were averaged or aggregated.  The relative effects (% change) on personal 

PM concentration during subsequent microenvironments (referenced relative to a 1.0 

µg/m3 increase in preceding environment) were relatively large (20% to 111%).  For 

example, a unit increase in personal exposure at school was associated with a 111% 

relative increase in personal PM exposures experienced during the afternoon transit. A 

unit increase in personal PM exposure at home during the morning hours was 

associated with a 77% increase in personal PM exposure during morning transit.  

Afternoon transit personal PM had the smallest relative increase effect on the personal 

PM at home (only 20%).  Additionally, we found personal PM exposures at home were 
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Figure 2.3. Mass / Time Ratio by Microenvironment (percent of cumulative 
personal PM from a microenvironment over percent of the daily time spent in that 
microenvironment) 

predictive of school exposures later that day (p<0.03), with a relative increase effect of 

38% regardless of exposures measured during transit (Table 2.3).  A simple 

representation of this relationship in exposure between microenvironments is illustrated 

in Figure 2.4, where the relationship between mean personal PM levels from the home 

and school microenvironments are plotted (beginning at 6 AM until 11 AM).  Effects of 

personal PM from home on the personal PM at school during different hours of the 

morning indicated a continued predictive ability.  Personal PM from the home 
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Table 2.3. Percent Increase (and  associated p-values) in Personal Exposure in a 
Given Microenvironment as Predicted by a Unit Increase in Ambient PM Levels (1 
µg/m3) Measured by the Fixed Ambient Monitor over the same time period. 

 PM School PM Transit Home AM Transit AM School 

PM School Ambient 8 (<0.01) 8 (<0.01)    

PM Transit Ambient  10 (<0.01) 0 (0.85)   

Home Ambient   0 (0.84) 4 (.05)  

AM Transit Ambient    7.4 (<0.01) 6 (<0.01) 

AM School Ambient     5.9 (<0.01) 

Daily Ambient 3 (0.17) 3 (0.22) 0 (0.84) 6 (0.01) 2.7 (0.23) 

 

microenvironment (6 to 7 AM) was predictive of personal PM at school during the 9 to10 

AM and the 10 to 11 AM hours (p<0.01). The strength of these associations, however, 

tended to decrease as the duration between different microenvironmental exposures 

increased (i.e., there was a slight decrease in the slope estimate between home and 

school PM when home was compared to the 9-10 AM school exposure vs. the 10-11 

AM time frame). 

Table 2.4. Percent Increase (and associated p-values) in Personal Exposure in an 
Ensuing (later) Microenvironment as Predicted by a Unit Increase in Personal 
Exposure (1 µg/m3) Measured in a preceding (earlier) Microenvironment 

 Ensuing Microenvironment 

Preceding 

Microenvironment 

PM School PM Transit Home AM Transit AM School 

Afternoon School  111 (<0.01) 15 (0.03)   

Afternoon Transit   20 (<0.01)   

Home    77 (<0.01) 38 (<0.01) 

Morning Transit     87 (<0.01) 
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Figure 2.4. Personal PM at Home vs. School during 6-11 AM Timeframe (by 
Subject) 

2.5. Discussion 

2.5.a. Personal PM (Panel-level) 

Asthmatic children living within metropolitan Denver experience PM exposures 

generally comparable with adults and children studied in other areas.  The normalized 

direct-reading geometric mean (4.3 µg/m3) was lower than exposure assessments of 

asthmatic children in Southern California, GM = 12.6 µg/m3 (Wu, Delfino et al. 2005).  

The geometric mean filter-based personal concentration (10.4 µg/m3) was lower than 

the geometric mean of 19 µg/m3 reported in Minneapolis-St Paul (Adgate, 



 60 
 

Ramachandran et al. 2002), and higher than the 2.3 µg/m3 reported in Gothenburg, 

Sweden (Johannesson, Rappaport et al. 2011).  Attempts to compare measured 

concentrations are difficult without considering a multitude of co-factors, e.g. sources of 

both personal PM vs. ambient PM2.5, indoor penetration of ambient PM, human activity 

patterns, and meteorology.  In addition, comparison of these results with studies 

focused on adults from the general population is problematic, as asthmatic children are 

not as likely to conduct the same PM producing tasks as adults, e.g. cooking (frying, 

grilling), household cleaning, or work-related.  However, children are likely engaged in 

indoor play activities (e.g. on carpet or furniture) that can generate PM.  

Although a normalization factor was used in the analysis, the difference in the 

geometric means between the direct-reading instrument (4.3 µg/m3) and gravimetric 

filter sampler (10.4 µg/m3) was relatively large.  This was likely due to the overall greater 

number of direct-reading (pDR) samples and a greater proportion of direct-reading 

samples with low concentrations, skewing the central tendency of continuous (pDR) 

samples toward zero.  This aspect of the central tendency was also represented by the 

much lower median value for direct-reading samples (4.5 µg/m3) vs. the gravimetric filter 

sampler median (10.9 µg/m3).  The 95th percentile value from direct-reading 

measurements in this study was 15 times higher than the geometric mean taken across 

all the data.  The tendency for subjects' direct-reading samples to have lower mean 

levels when averaged over longer periods was described by Quintana et al (2001).  

They observed 15-min and 1-hour means up to 10 and 5 times higher than 24-hour 

means. 
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The 95th percentile value for the daily filter-based measures (45.5 µg/m3) was 

larger than the value mandated by the National Ambient Air Quality Standards (NAAQS) 

24-hour concentration (35 µg/m3).  The NAAQS standard is an outdoor ambient PM2.5 

compliance standard, which was established to protect the health of sensitive 

populations from outdoor air pollution.  Although comparisons to this standard provide a 

reference point for personal exposure, it should be noted that the composition of 

personal vs. ambient PM are often quite different (Qing Yu, Turpin et al. 2005). 

Within-subject variability in the daily personal PM concentrations dominated 

between-subject variability. Within-subject variation in exposure is likely driven by the 

dynamic nature of daily human activity; transit exposures, day-to-day differences in 

microenvironment sources (household cooking and cleaning), and daily differences in 

personal activities and behaviors (or other personal-cloud effects).  Greater within-

subject variability for personal PM concentrations has been reported in other studies of 

environmental exposure (Rappaport and Kupper 2004; Egeghy, Quackenboss et al. 

2005; Sørensen, Loft et al. 2005; Lanki, Ahokas et al. 2007; Johannesson, Rappaport et 

al. 2011).  Sørensen et al. (2005) reported that, surprisingly, nearly all variability among 

college students' exposures to PM2.5 in Copenhagen was due to the within-subject 

component.  Lanki reported within-subject variability accounted for 8 times the between-

subject variation of PM2.5 exposure in elderly subjects in Amsterdam and Helsinki.  

Johannesson found equal within-subject and between-subject variances for PM2.5.  

Rappaport and Johannesson also reported that within-subject variance was dominant 

for other environmental contaminants, e.g. black smoke, trace elements, and VOCs. 
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Between-subject variation in personal PM exposure was likely due to differences 

among residences, personal activities, household- and lifestyle- associated sources, 

etc.  Heterogeneity both between and within subjects was clearly visible in the subjects' 

distributions (Figure 2.1).   Generally, the distributions of personal PM concentrations 

among panel subjects were unimodal and symmetric, however, variations were 

observed from subject to subject (Figure 2.1).  Personal PM concentration distribution 

peaks within the histograms centered on values spanning from 1 µg/m3 to 100 µg/m3.  

Some histograms indicated a skewed or bimodal tendency in the distribution, however, 

concentrations below 1 µg/m3 (instrument limit of detection) have been imputed from the 

remainder of the data (above 1 µg/m3).  Imputed data tends to smooth the lower end of 

the exposure distributions but may indicate a more bimodal character than actually 

exists (Figure 2.1).  Histograms of personal PM concentrations grouped by each of the 

microenvironments indicated that the distributions were generally symmetric for all 

microenvironments (data not shown).   

2.5.b. Personal PM (Microenvironment)  

Personal PM concentrations were highest at home, followed by concentrations 

from morning and afternoon transit; personal PM concentrations were lowest when 

subjects were at school (Table 2.1 and Figure 2.2).  Study subjects also spent the 

largest amount of time in the home microenvironment, followed by school, afternoon 

transit and morning transit.  Percent time recorded at home (59.9%) was slightly lower 

than reported for other studies, such as the DEARS study (Rodes, Lawless et al. 2010) 

and the National Human Activity Pattern Survey (Klepeis, Nelson et al. 2001), 77.4% 

and 68.7%, respectively.  The DEARS study involved Detroit-area adults, only some of 
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which had employment outside the home, whereas all of the current study subjects 

attended school daily.  The NHAPS studied a sample of US inhabitants (all ages, 

employment status, and geographic areas). 

Personal PM levels at home were also more variable (GSD = 5.3) than the other 

microenvironments, as indicated in Table 2.2. The cumulative distribution (Figure 2.2) of 

the daily averages (filter and PDR) were "flatter" due to reduced variability from 

averaging over a longer (daily) sampling period. 

The analysis of mass/time ratios indicated that an hour spent at home 

contributed nearly 3 times more to personal exposure than an hour spent at school 

(Table 2.2, Figure 2.3).  The mass/time ratio is a measure of exposure intensity; it is 

calculated by normalizing relative PM levels from a given microenvironment (taken as a 

percentage of the daily cumulative exposure) by the percent of total time spent in that 

microenvironment.  A mass/time ratio greater than unity indicated a greater exposure 

than would be expected based solely on the amount of time spent in that 

microenvironment. The difference between the school and home mass/time ratios was 

likely due to differing indoor sources in two microenvironments.  Morning and afternoon 

transit periods had similar mass/time ratios, despite the afternoon transit period lasting 3 

times longer. Rank order of the mass/time ratios roughly corresponded with rank order 

of the mean personal PM concentrations from each microenvironment, indicating that 

measured personal PM levels tend to drive cumulative exposures, as opposed to the 

total time spent in a given microenvironment.   

Mass/time ratio for personal PM in the home microenvironment was much larger 

than unity (1.43) and also varied less than other microenvironments (Figure 2.3).  The 
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lower variance was expected because children spent most of their day at home.  A 

larger amount of time spent in a microenvironment (expressed in the denominator of the 

ratio) tends to attenuate effects of concentration swings (expressed in the numerator of 

the ratio).  Mean mass/time ratios from the other microenvironments were less than 

unity but had greater variation.  Afternoon transit mass/time ratios had the largest 

variability; one reason for the larger amount of variability could be exposure 

misclassification during afternoon transit, especially if subjects encounter various indoor 

environments (errands, daycare, etc.) after leaving school and before arriving home 

(Adams, Riggs et al. 2009).  Mass/time ratios of the microenvironments in this study did 

not have an upper range as great as in a study by Branis (2010) in which a mass-time 

ratio greater than 20 was found in restaurant microenvironments (where smoking was 

allowed).  However, there was some correspondence between mass/time ratios.  In 

both studies transit and school microenvironments were less than unity.  Mass/time 

ratios of the home microenvironments varied widely between the studies, most likely 

due to a greater percent of the samples in the other study being collected outdoors near 

the home.  Branis (2010) described observing the highest mass/time ratios in highly-

polluted indoor spaces, specifically, restaurants and buildings heated with wood-burning 

stoves. 

Percent of subjects' time spent in microenvironments other than home was 

dominated by the school microenvironment (31.4%). Personal PM levels at school 

tended to be lower and less variable than other microenvironments. This was expected 

as the school was generally considered the ―cleanest‖ of the microenvironments 

(without any obvious indoor sources of PM). The mass/time ratio was also lowest at 
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school, which emphasize the relative "cleanliness" of the school microenvironment.  

Branis (2010) also observed a school (college campus) microenvironment mass/time 

ratio less than unity. 

Transit to and from school accounted for <10% of a subject's typical day. Mean 

morning transit time was 0.6 hours while afternoon transit was 1.5 hours.  Personal PM 

levels measured during morning transit (4.5 µg/m3) were second only to the home 

microenvironment (6.3 µg/m3). Children‘s transit to school was concurrent with the 

general population‘s transit to work and occurred during the latter portion of the typical 

morning commute period. Compared to the subjects typical afternoon transit timeframe, 

the ambient atmosphere during the morning transit timeframe was more likely to have 

calm winds and a lower atmospheric mixing height; both of these phenomena would 

result in higher pollutant concentrations near roads (Adams, Nieuwenhuijsen et al. 

2001; Patel, Chillrud et al. 2009).  Vehicle traffic has been identified as a significant 

source of PM2.5 (Kinney, Aggarwal et al. 2000) and several studies have reported higher 

in-vehicle exposures to PM2.5 compared to central ambient monitors (Riediker, Williams 

et al. 2003; Brown, Sarnat et al. 2012).  Emissions from combustion and non-

combustion sources (HEI 2010)  during commutes are of interest; more specific 

commuting-related analyses will be described in follow-up work.   

Afternoon transit had the second lowest personal PM concentration (3.4 µg/m3) 

of the four microenvironments.  Subject's spent over twice as much time in afternoon 

transit than morning transit.  The afternoon transit microenvironment encompassed all 

travel away from school or home in the afternoon.  Therefore, other activities such as, 

errands, visiting friends/relatives homes, afterschool care, etc. were classified as 
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afternoon transit.  Children‘s afternoon transit periods typically began before peak 

commuting window for Denver (4-6 PM).  Also, afternoon transit was more likely to 

occur during periods with greater atmospheric mixing heights due to afternoon winds 

typical for the Front Range of Colorado. These conditions would likely minimize traffic-

related PM exposure.  However, the largest 10% of recorded concentrations during the 

PM transit period were larger than those of the AM Transit (Figure 2.2).  This may be 

due to traffic-related exposures or could be from subjects visiting ―dirtier‖ indoor 

microenvironments away from home in the afternoon/evening timeframe.  

2.5.c. Ambient PM as predictor of Personal PM 

Ambient PM2.5 levels were a significant but not a strong predictor of personal PM 

levels. At hour-long time periods a unit increase (1 µg/m3) in ambient PM2.5 

concentration was associated with only a 0.02 µg/m3 increase in the average personal 

PM levels, a relative increase of <1%.  A growing body of research has described the 

geographic (spatial) and temporal variability of ambient PM (Delfino, Zeiger et al. 1998; 

Henderson, Beckerman et al. 2007; Jerrett, Arain et al. 2007; Ott, Kumar et al. 2008), 

suggesting that central ambient monitors are not an important predictor of the personal 

PM exposure within various microenvironments.  The relationship between ambient and 

personal PM was not significant at shorter (15 min) and longer (daily) averaging 

periods. 

The ability of the ambient PM2.5 monitor to predict personal exposure was 

strongest during morning and afternoon transit periods (Table 2.3; p < 0.01). The 

relative effect size, however, was small: a unit change in ambient PM2.5 accounted for 

less than a 10% change in personal PM.  The same relationship (and effect size) was 
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also true at the school microenvironment, which is somewhat surprising since the 

ambient PM2.5 monitor was located adjacent to the children‘s school.  The ambient 

PM2.5 concentration during the home microenvironment was not significant when 

predicting personal PM concentrations (p = 0.8), which is understandable, since most 

subjects lived several miles from the school.  

2.5.d. Relationships of Personal PM Exposures between Microenvironments 

Personal PM exposures were correlated from one microenvironment to the next 

(Table 2.3, Appendix 1, model 5), even when the two microenvironments were 

separated by distances of several miles (i.e., home to school).  The findings that 

personal PM levels from one microenvironment were not only significant predictors but 

also had relatively large effects on subsequent microenvironments was somewhat 

surprising.  For example, personal exposure at home had a strong predictive effect on 

school exposures, even though these two microenvironments were interceded by 

morning transit.  The strength of this association is shown graphically in Figure 2.4.  

This result suggests a strong ‗personal cloud‘ effect within the panel, such that the child 

either continually generated or carried with them a 'cloud' of PM throughout the day.  

This 'personal cloud' effect was more pervasive and stronger at predicting personal PM 

exposure compared to ambient PM2.5 levels measured by a central, outdoor monitor.  

Several potential confounders for this relationship (e.g. sampling day and 

sampling instrument ID) were investigated and did not reduce the strength or 

significance of this association.  Further assessment of the effect indicated that the 

prediction capability of the home personal PM concentration did not decrease as the 

morning progressed at the 'clean' school microenvironment.  This finding suggests that 
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the 'personal cloud' is a subject-specific phenomenon that depends more on the person 

generating the cloud than the microenvironment where the cloud is being generated. 

The largest personal cloud effects occurred between the afternoon school and 

afternoon transit microenvironments (a 111% relative effect) and between the home and 

morning transit microenvironments (a 77% relative effect, Table 2.3).  These relatively 

large effects occurred on the two shortest duration microenvironments.  Since these two 

microenvironments were relatively short, any misclassification errors that occurred while 

subjects were transitioning from/to a buffer area (e.g. sitting in a car or standing at a bus 

stop while still physically within the designated school buffer zone) would have had a 

larger influence.  The afternoon transit had the lowest relative effect on the home 

microenvironment, only a 20% increase on the home personal PM concentration.  This 

could be expected as the home environment was likely to provide the strongest and 

most variable sources of PM exposure.  However, the 38% relative increase observed 

during school due to the personal PM concentrations from the home microenvironment 

would not be greatly affected by misclassification as the larger amount of time spent in 

these microenvironments would minimize any misclassification effects created during 

transition from one microenvironment to another. 

2.5.e. Study Limitations and Avenues for Continued Research 

Previous studies have shown that seasonality can affect air pollutant 

concentrations (Rodes, Lawless et al. 2010).  Our sampling campaign did not allow 

assessment during both a winter and a summer season (the school- based panel 

curtailed possibility for summer sampling).  Our sampling occurred only in the winter, 

when most of the day was spent indoors.  With a younger panel there is a possibility 
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that substantially more time could be spent outside during the summer.  Therefore, 

future work should examine children‘s exposures during fall and spring school seasons. 

Our sampling was limited to weekdays, given that instrument battery life was 

limited to 30 hours and that all interactions with subjects took place at school. Thus, 

weekend exposures were not studied.  During week-days, a larger amount of time spent 

in a relatively "clean" microenvironment may have biased the daily personal PM 

exposure.  The data from the weekdays indicated that personal PM concentrations in 

the home environment were substantially larger than other microenvironments.  

Subjects spending larger portions of the weekend days at home would likely experience 

increased daily personal PM concentrations. 

As in other studies, various technological problems (e.g. battery failures, tube 

connections, etc.) reduced the overall number of samples that could be collected within 

the available timeframe.  Panel compliance was also an issue; approximately 14% of 

available sample days were lost because sampling backpacks were left at school or at 

home.  Compliance may have also been an issue when outside of the school 

environment.  Subjects were educated on proper handling of the backpack and 

interacted with the study coordinators on a daily basis, however we cannot be certain 

how long the samplers were worn at home (although GPS data confirmed locations 

during home, transit, and school periods).  

The particle cut size of our personal sampling equipment was not standardized to 

more common measures such as PM2.5, PM10, or respirable PM.  However, based on 

common urban aerosol particle distributions (Seinfeld 1998) the cut size was large 

enough to capture greater than 90% of the likely urban PM2.5 size distribution.  Aerosol 
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monitoring with a nephelometer has limitations that are inherent to most light-scattering 

instruments.  However, we attempted to account for aerosol specific biases by 

normalizing our data each day (and for each child) to a gravimetric filter measurement 

made immediately downstream of the pDR.   

The panel investigated in this study may have only represented a subfraction of 

the population of young asthmatics. The majority of the children in this panel suffered 

from moderate to severe asthma.  Also, some of the children in this panel were 

attending the Kunsberg school because they were at higher risk due to poor disease 

management.  These panel background factors indicate that the panel would not 

adequately represent the likely population of all asthma sufferers. 

2.6. Conclusions 

A key goal of this study was to enhance the understanding of children‘s 

exposures to fine particulate matter.  Our research demonstrated that children‘s 

personal exposures vary substantially between different places (microenvironments) 

visited throughout the day. The exposures can be more fully characterized using 

mobile-monitoring protocols and time- and space-based rules.   

Centrally-located ambient monitors were, at best, only marginally predictive of 

medium-term (hour-length) personal exposures and only when individuals are proximate 

to that monitor, which suggests that ambient PM measurements represent only a small 

fraction of an individual‘s daily intake.  Ambient monitor concentrations were not 

correlated with personal exposure in the home microenvironment where subjects were 

exposed to the highest PM levels. Alternatively, an individual's microenvironment had 

significant impact on measured personal exposures.  Furthermore, personal exposures 
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in one microenvironment were strongly correlated with levels in ensuing 

microenvironments later in the day.  This finding supports a 'personal cloud' effect that 

is subject-specific and indicates that subjects may create a 'personal cloud' effect as 

they travel from one microenvironment to the next.   

Spatiotemporal exposure assessment is a powerful new technique that can 

provide substantial insight into an individual‘s daily intake of PM.  Such data may 

eventually be used to develop a personalized approach to prevention, or treatment, of 

asthma exacerbation based on multiple personal environmental risk factors, not simply 

the measured ambient concentration of particulate matter "near" someone's home. 
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CHAPTER 3 

"Commute-related Particulate Matter Exposure Is Associated with Acute Asthma 

Worsening in Children" 3 

3.1. Summary 

Rationale: Traffic-related particulate matter (PM) concentrations have been 

associated with adverse effects in children with asthma but the relationship between 

personal PM exposures while commuting and asthma severity has not been studied. 

Objectives: To determine whether personal exposures apportioned to home, 

school and morning commute are associated with increases in urinary leukotriene E4 

(uLTE4); an asthma-related biological mediator in children with asthma. 

Methods and Measurements: In an elementary school-based panel, 30 children 

with physician-diagnosed asthma were monitored over a 5-month winter period (2008–

2009) in Denver, Colorado. Real-time personal exposure monitoring integrated with a 

geographical position sensor was performed daily (n = 125 sample-days) and measures 

of asthma severity were collected.  Mixed linear models assessed the association 

between home, school and transit-related personal and ambient PM exposures and 

same-day uLTE4 levels. 

Results: Transit related PM exposures were lower, on average, than home and 

higher than school-related exposures. In models controlling for second hand smoke 

exposure and upper respiratory infection symptoms, an interquartile range increase in 

personal transit-related PM exposure was associated with a 15.7 % increase in uLTE4 

                                            

3
 Adams, C., J Volckens et al.; "Commute-related Particulate Matter Exposure Is Associated with Acute 

Asthma Worsening in Children.‖ Unpublished manuscript. 
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measured within 3-6 hours after exposure (95th CI, 7, 46%; p < 0.001). Weaker 

relationships were observed between uLTE4 and personal PM exposures at home 

(13.9% increase per IQR, 95th CI 2, 58, (p=0.03) and school (8.6% per IQR, 95th CI, -4, 

31, p=0.15).  Similar associations were not observed with PM concentrations measured 

concurrently by outdoor, area-wide monitors (p>0.7).  

Conclusions: Brief localized exposure to traffic-related PM is associated with 

increased uLTE4 levels in children with asthma. 

3.2. Introduction  

Asthma prevalence among children has increased over the past three decades 

(Van Cleave, Gortmaker et al. 2010), sparking further interest in the role environmental 

factors play in asthma etiology and severity. In asthmatic children, increased biological 

and physiological markers of asthma severity are associated with fine particulate matter 

(PM) concentrations measured by area-wide monitors during the morning commute to 

school (Rabinovitch, Strand et al. 2006). Proximity to busy roadways has also been 

associated with pediatric asthma prevalence and severity in multiple studies (HEI 2010). 

Almost all such studies employ surrogate measurements to estimate actual exposures, 

mainly because personal exposure monitoring can be obtrusive and also resource 

intensive.  Community-based air pollution monitors are often used to assign exposures 

to individuals, but these monitors cannot fully capture the spatial and temporal variability 

of ambient air pollution (Ott, Kumar et al. 2008), nor can they capture the variability of 

personal exposures associated with movement throughout the community, e.g. vehicle 

transit (Setton, Marshall et al. 2011; Brown, Sarnat et al. 2012), or movement into 

indoor microenvironments (Van Roosbroeck, Li et al. 2008).  As a result, individual 
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exposure estimates derived from ambient monitoring data are subject to exposure 

misclassification and error (Strand, Hopke et al. 2007; Hutcheon 2010). Exposure 

assignment based on home and/or school proximity to busy roadways may be 

confounded by correlation with important asthma related factors prevalent in low 

socioeconomic status households such as poor medication compliance and increased 

exposure to second hand smoke (SHS) (Green, Smorodinsky et al. 2004).  

Personal monitoring of exposure (i.e., sampling air from within a person‘s 

breathing zone by virtue of a miniaturized sampler) is an alternative to these surrogate 

exposure measurements; this form of exposure assessment can capture localized 

exposures that cannot be measured with community monitors, but is also more 

resource intensive, as each study subject must be fitted and monitored individually. To 

date, studies assessing personal exposures have been limited in scope and have 

mainly used personal PM exposure samples that were averaged, or integrated, over a 

24-hour period. Unfortunately, the use of 24-hr averaging periods for exposure 

assessment can attenuate the perceived relationship between exposure and adverse 

health outcomes, especially when a causal exposure is brief, lasting only minutes 

(Quintana, Valenzia et al. 2001).   

In earlier studies (Rabinovitch, Zhang et al. 2004; Rabinovitch, Zhang et al. 

2006), we reported changes in urinary leukotriene E4 (uLTE4), a mediator of airway 

inflammation and bronchospasm. Increased uLTE4 occurred within minutes to hours 

after ambient outdoor PM concentrations spiked during the morning rush-hour 

(Rabinovitch, Strand et al. 2006; Rabinovitch, Reisdorph et al. 2011; Rabinovitch 2012). 

However, we could not precisely identify the magnitude, timing, and location of localized 
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traffic exposures which presumably were responsible for this response and could not 

discern individual exposure patterns with health outcomes until now.  

In the present study, we utilized a personal monitoring system that could 

integrate real-time monitoring with a geographic information system (GIS) platform. By 

using this novel approach, we were able to apportion PM exposures to home, school 

and transit microenvironments and assess the relationship between these 

microenvironmental exposures and increased uLTE4 in a well-defined group of mostly 

urban-poor schoolchildren. In this way, we were able to determine the magnitude, 

location and timing of personal PM exposures and their relationship with asthma-related 

inflammation while also comparing these health effects to PM concentrations measured 

by an area-wide monitor. 

3.3. Methods 

3.3.a. Study Subjects 

Elementary-aged children, who attended the Kunsberg School at the National 

Jewish Medical and Research Center (Denver, CO) and who had physician-diagnosed 

asthma, were studied over a 5-month winter period.  Ethical and scientific approval for 

the study was obtained from the National Jewish Health's Institutional Review Board. 

Personal PM exposures were measured continuously on a daily basis (~ 21 hrs) using a 

recently developed method for personal spatiotemporal exposure assessment (Adams, 

Riggs et al. 2009).  In addition, ambient PM and personal asthma exacerbation data 

were collected on school days from the 30-child panel from December 2008 to April 

2009. Each child was to be followed across two non-consecutive weeks and for four 

consecutive days each week (8 days total) during the school year, mid-day Monday 
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through mid-day Friday. Ethical and scientific approval was obtained from the National 

Jewish Center‘s Institutional Review Board. 

3.3.b. Personal PM and Exposure Survey 

Personal PM monitoring backpacks, including a nephelometer, air pump, PM 

sample filter, GPS recorder, and temperature monitor were worn by students with 

instructions to wear them as much as possible throughout the day and to place them by 

their bed at night.  The methodology has been published (Adams, Riggs et al. 2009), 

however, a brief description follows.  

Monitoring backpacks contained an aerosol nephelometer to measure fine PM 

concentrations, a global positioning system (GPS) receiver (GPSMap 60Cx, Garmin Inc. 

Olathe KS) to record geographic position data, and a temperature sensor to record 

ambient temperature within the breathing zone. These monitors were housed in a small 

backpack with a total weight of approximately 3.2 kg (7 lbs); a separate section of each 

backpack was available to carry books and school supplies.  The monitors recorded 

data at 10-second intervals.  Personal PM levels were actively sampled with a Personal 

DataRAM 1200, or pDR, (Thermo Fisher Scientific Inc., Waltham, MA) in conjunction 

with a pump (6.8 L/min flow, Omni Personal Pump, BGI Inc., Waltham MA) and cyclone 

(1.6 µm size cut, Model GK2.05, BGI Inc., Waltham MA). The samplers collected data 

on PM concentration, temperature, and location every 10 seconds.  Daily, the 10-

second readings of PM, location, and temperature were downloaded and PM sample 

filters collected for gravimetric analysis.  Data from the pDR, GPS receiver, and 

temperature monitor were collated into a database by matching the associated 

timestamps from each instrument, thereby integrating the data into a common array.  
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Time- and location- based algorithms were used to categorize and assign direct-reading 

exposure data with predetermined microenvironment classifications (at home, in transit, 

and at school). Personal temperature records were used to segregate indoor vs. 

outdoor periods. Subjects were surveyed about behaviors (e.g. mode of transport during 

commute), and potential household exposure sources (cigarette smoke, cooking) each 

day.  

3.3.c. Leukotriene E4 and Cotinine 

On days when personal monitoring was performed, urine was collected at 

approximately the same time each day (11:00 AM to 1:00 PM), spun down and frozen at 

minus 70 degrees Celsius after addition of protease inhibitors. Samples were 

subsequently batch assayed for uLTE4 levels by mass spectrometry as previously 

described (Armstrong, Liu et al. 2009). Cotinine levels were determined by 

immunoassay (Muscat, Djordjevic et al. 2005). Urinary LTE4 levels were reported in 

picograms (pg) per milliliter and standardized per milligram (mg) of creatinine 

(measured via Jaffe procedure) in order to control for urine volume. Urinary cotinine 

levels were reported in nanograms (ng) per milliliter and standardized per mg of 

creatinine.  

3.3.d. Ambient PM2.5 Monitoring 

Ambient PM2.5 concentrations were measured by a Tapered Element Oscillating 

Microbalance (TEOM; Rupprecht and Patashnick, East Greenbush, NY) located on the 

National Jewish Campus, adjacent to the elementary school and operated by the 

Colorado Department of Health Air Pollution Control Division.  This monitor produced 

hourly mean concentrations on a continuous basis. 
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3.3.e. Analysis 

We assessed whether personal PM experienced during the morning commute 

was associated with asthma exacerbation as indicated by uLTE4 levels. The commute 

microenvironment comprised the outdoor portion of travel, from home to school. 

Additionally, ambient PM2.5 data collected at the school was tested for a corresponding 

association with uLTE4.  

To include personal 10-sec PM readings that were lower than the instrument 

detection limit, an imputed value was substituted for the zero reading.  This substitution 

was performed prior to (and necessary for) log-transformation of the data set.  Imputed 

values were created first by stratifying the dataset by subject.  Next, zero values for 

each subject were replaced with a heuristic value equal to one half of the smallest 

concentration recorded by the pDR (0.5 µg/m3).  Geometric means and geometric 

standard deviations of the log-transformed stratified data subsets were then calculated.  

These distribution parameters were used to impute values for the original zero readings 

via a probability integral transform (Casella 2002).  The imputed, or modeled, values 

were substituted for the original zero readings.   

Levels of uLTE4 were modeled as a function of home, school and morning 

transit-apportioned personal PM exposure and ambient morning maximum PM2.5 using 

a linear mixed model with a hierarchical structure for multiple samples per panel 

member and a spatial exponential covariance structure to account for within-subject 

repeated daily measurements. Model results and descriptive statistics were obtained 

using log-transformed personal PM data, log-transformed uLTE4 values, associated 

ambient data, and additional covariates, described below.   
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The basic linear mixed model is represented in Equation 3.1:  

       (   )       ∑       
 

   
         (Equation 3.1) 

for i = 1, 2,…, k individuals 

for j = 1, 2,…, ni measurements of the ith individual, and 

for m = 1, 2,…, p covariates 

where Xij  represents measurements at the jth time interval for child i, and Yij is the 

natural log-transformed value of Xij.  Yij represents the sum of the effects of: µY,  

representing the overall intercept; the product of the regression coefficients β1, β2,…, βp 

(the fixed effects) and the observed values of their corresponding covariates C1ij, C2ij,…, 

Cpij; bi representing the random effect for the ith individual; and εij representing the 

residual error for jth observation on the ith individual.  Random variables bi and εij were 

assumed to be independent and normally distributed with means of 0 and variances of 

  
  and   

  (representing the between- and within-subject components of variance, 

respectively) (see Appendix 2 for detailed models).  

Survey responses about health status (upper respiratory infection (URI), or cold) 

were included with a separate model containing concurrent ambient PM2.5 

concentrations and co-variates. Subject behavior, urinary cotinine, time-trend, 

meteorological conditions (temperature, pressure, humidity), subject physical 

characteristics (height, weight, and body mass index), and sampling instrument were 

tested in these models and found to be non-significant. A linear mixed model, with a 

spatial exponential covariance structure was used to account for within-subject repeated 

measures over time. All statistical analyses were conducted using SAS, PROC MIXED  
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(version 9.2). The interquartile range (IQR) (i.e 75th percentile minus the 25th 

percentile) was used to standardize pollutant slope estimates. Two-sided p-values are 

reported.  

3.4. Results 

3.4.a. Panel Data 

Table 3.1 summarizes the demographics and physiological characteristics of the 

panel. These children were predominately African American (43%), followed by 

multiracial (36%), Hispanic (16%) and White (5%). One-third had been admitted into an 

intensive care unit for asthma at least once and nearly two-thirds had experienced an 

asthma exacerbation during the previous year. Based on the frequency of nighttime 

symptoms, approximately one-third were classified as mild, and 20% were severe 

based on National Asthma Education and Prevention Program (NAEPP) guidelines 

(Colice, Vanden Burgt et al. 1999). The mean uLTE4 value of the panel over the study 

period was 78.8 pg per mg creatinine. Relationships between measured PM levels and 

daily uLTE4, for both personal sampling and outdoor ambient sampling, are plotted in 

Figure 3.1.  

3.4.b. PM Concentration Profiles 

We segregated each child‘s personal exposure into home, transit, and school 

periods using data from the GPS and temperature sensors (Adams, Riggs et al. 2009).  

Time series of ambient and personal PM exposures (averaged across the entire panel) 

are plotted in Figure 3.2.  Box-whisker plots overlaid on the Figure (3.2) indicate 

personal exposures for three different microenvironments (home, transit, and school).  
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Table 3.1. Subject demographics, asthma severity, urinary LTE4 levels. Entries are 
number of children or mean value. Shown in parentheses are percentage values 
or minima/maxima, where indicated. 

 

Subject Variable 

 

Data 

Panel size 30 

    Mild asthma* 11 (36.7%) 

    Moderate asthma*  13 (43.3%) 

    Severe asthma*  6 (20.0%) 

African American  13 (43.3%) 

Children with at least one ICU admission for asthma  10 (33.3%) 

Children with at least one exacerbation within past year†  19 (63.3%) 

Children using daily inhaled steroids  26 (86.7%) 

Urinary LTE4 (pg per mg creatinine) 78.8 (9.4, 445) 

Urinary Cotinine (ng per mg creatinine) 

Age 

23.5 (0.1,206) 

10 (7, 13) 

Definition of abbreviation: ICU - intensive care unit. 

Entries are number (percentage) of children or mean (minimum, maximum) unless 
otherwise indicated. 

* Daily asthma severity categories per National Asthma Education and Prevention 
Program criteria. 

† Exacerbations were defined as episodes requiring hospitalization, visits to emergency 
or urgent care departments, or prednisone bursts. 

 

Much of the children‘s time during this wintertime study was spent indoors where 

they were exposed to PM sources that varied in source and concentration from the 

ambient outdoor PM2.5 measured at the school. In the morning, during the 4 a.m. to 11  
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Figure 3.1. Relationships between PM levels and uLTE4. Top panels represent the 
relationship between uLTE4 and personal exposures; bottom panels represent 
uLTE4 and outdoor area-wide PM concentrations. Regression lines represent raw 
data associations, accounting for neither hierarchical data nor repeated 
measures. Panels for Home (1 & 2) represent 30 min time periods preceding 
transit between home and school.  Panels for School (1, 2 & 3) represent 30 min 
time periods subsequent to the transit period. 
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Figure 3.2. Average personal (solid line) and area-wide (dashed line) PM levels 
during morning hours. Boxplots illustrate medians and ranges for personal PM at 
home (left whisker plot - black), transit (center whisker plot – dark gray), and 
school (right whisker plot – light gray).  

 
a.m. period, personal exposures were generally decreasing with a small peak occurring 

during the 6-8 a.m. period. The personal PM profile (averaged across all subjects and 

days) indicates relatively low exposures within the school microenvironment. Elevated 

personal PM exposure occurred at home throughout the late afternoon and evening 

hours. Ambient PM2.5 concentrations tended to be highest from approximately 7-10 

a.m., with a smaller peak occurring in the afternoon, around 2 p.m.  
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Children‘s transit periods varied each day, with commuting typically beginning 

near 7 a.m. and lasting 32 min, on average (SD±17, range 10-72 min). Most commutes 

to school (84%) were via motor vehicle (bus, 3%; vanpool 64%; or car, 17%).  The 

remainder (16%), walked along city streets.  The majority of vehicular routes were 

driven on major city streets with traffic flow managed by stoplights. Mode of transport 

was not significantly associated with either personal exposure or commute duration. 

For modeling purposes, each child‘s personal exposure was time-averaged to 

the microenvironmental level. These microenvironments included: the hour before 

commuting to school (i.e., at home), time spent commuting to school (in transit), and the 

first hour spent within the school (school). Personal PM concentrations were typically 

highest at home and lowest at school (mean home, 4.3 µg/m3; mean transit, 4.0 µg/m3; 

mean school, 2.7 µg/m3) (Figure 3.2 and Table 3.2). Although ambient PM levels tended 

to rise throughout the morning, personal PM levels tended to decline as children moved 

from home to transit to school (see Figure 3.2).   

3.4.c. Morning Transit exposures are associated with increased uLTE4 levels 

The mean uLTE4 value of this study was 78.8 pg/mg creatinine (SD = 63.8 

pg/mg) and mean urinary cotinine was 22.1 ng/mg creatinine (SD = 44.3 pg/mg). An 

IQR increase of personal PM during home, transit or school did not have a significant 

effect on the level of urinary cotinine within panel subjects. Simple regressions for the 

relationships between uLTE4 and microenvironmentally-apportioned personal PM 

exposures (top panels) or concurrently measured ambient PM2.5 concentrations (bottom   
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Table 3.2. Summary statistics for PM Levels by microenvironment and outdoor 
PM Levels measured concurrently by a community-based monitor.  

Concentration 

metric  

(µg/m3) 

Micro-

environment Mean* SD* 

Min 

Val 

25th 

Quantile Med 

75th 

Quantile 

Max 

Value 

Personal PM  Home 4.3 1.4 0.2 1.8 4.5 8.6 103.3 

Personal PM  Transit 4.0 1.3 0.2 2.0 5.2 8.6 56.1 

Personal PM  School 2.7 1.2 0.2 1.4 3.1 5.3 24.0 

Outdoor PM2.5 Home 3.4 1.2 0.1 2.3 4.2 6.4 17.3 

Outdoor PM2.5  Transit 5.5 0.9 0.2 4.0 6.1 10.0 26.3 

Outdoor PM2.5  School 6.2 0.8 0.3 4.0 5.9 11.1 30.3 

Definition of abbreviations: PM personal samples of airborne particulates <1.6 µm in 
aerometric diameter; PM2.5   airborne particulates < 2.5 µm in aerometric diameter. 

* Geometric 

panels) measured outside the school are shown in Figure 3.2. These plots demonstrate 

that the strongest relationship was between transit-related personal PM and uLTE4 and 

that correlations were much weaker with ambient area-wide concentrations measured at 

the same times.  

In models controlling for second-hand cotinine and daily upper respiratory 

infection symptoms, an interquartile range increase in personal transit-related PM 

exposure was associated with a 15.7 % increase in uLTE4 measured within 3-6 hours 

after exposure (95th CI, 7-46%; p < 0.001). Weaker relationships were observed 

between uLTE4 and personal PM exposures at home (13.9% increase per IQR, 95th CI 

2-58, (p=0.03) and school (8.6% per IQR, 95th CI, -4, 31, p=0.15).  Similar associations 

were not observed with PM concentrations measured by area-wide monitors (p>0.7) 

(Table 3.3 and Figure3.3).  Transit-related PM effects of uLTE4 continued to be  
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TABLE 3.3. Percent increase in urinary leukotriene E4 per interquartile range 
increase in pollutant, based on linear mixed model fits for personal PM 
(nephelometer) and ambient PM2.5 (tapered element oscillating microbalance) 
exposures each morning. 

Exposure / Microenvironment 
% Change 

uLTE4 
95% CI; (p-value) 

   
Personal PM at Home 13.9  2, 58 (0.03) 

Personal PM in Transit 15.7  7, 46 (0.0005) 

Personal PM at School 8.6  -4, 31(0.15) 

Outdoor Ambient / Home -2 -10, 7 (0.7) 

Outdoor Ambient / Transit -1 -7, 6 (0.7) 

Outdoor Ambient / School -2 -12, 9 (0.8) 

 

 

Figure 3.3. Estimated effects of PM exposure (via personal or fixed outdoor 
monitors) on same-day levels of urinary LTE4. Estimates represent associations 
for exposures while subjects were at home, in transit or at school. Error bars 
represent two standard deviations about the estimate. 
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significant in 'co-pollutant' models that included all three microenvironments (24% 

increase in uLTE4 during transit, 95th CI, 4, 48; p<0.019). However, in the co-pollutant 

model, only the effects on uLTE4 per IQR of personal PM from the transit 

microenvironment remained significant (Transit, p=0.019; Home, p=0.6; School, 

p=0.16).  In all models the self-reported health status (cold/URI) was significant (p< 

0.003). 

3.5. Discussion 

In this study, personal PM exposures measured during the morning commute 

were associated with uLTE4 values measured within hours of exposure in children with 

asthma. Cysteinyl leukotrienes (LTC4, LTD4, LTE4), are highly potent mediators closely 

linked to the pathobiology of asthma (Drazen, Obrien et al. 1992; Kumlin 2000; 

Rabinovitch 2007; Sanak, Bochenek et al. 2010; Rabinovitch 2012) and other disease 

processes (Bousquet, Jeffery et al. 2000; Laidlaw and Boyce 2012). They act as potent 

chemoattractants (Fregonese, Silvestri et al. 2002), leading to hyperresponsiveness of 

the inflammatory response to various stimuli (Gauvreau, Parameswaran et al. 2001; 

Rabinovitch 2012). Leukotrienes have been assessed as a marker of asthma 

exacerbation (Rabinovitch, Strand et al. 2006; Rabinovitch, Reisdorph et al. 2011), as 

well as an indicator of susceptibility (Rabinovitch 2012). As LTE4 is thought to be an 

important mediator of airway inflammation and a marker of cysteinyl leukotriene 

formation, these results suggest that brief localized exposures to PM especially during 

transit are related to asthma worsening occurring soon after exposure.    

Although we had reported previously that uLTE4 levels increased on days when 

morning outdoor ambient PM2.5 concentrations are elevated, this is the first study to 

http://en.wikipedia.org/wiki/Leukotrienes
http://en.wikipedia.org/wiki/Leukotriene_C4
http://en.wikipedia.org/wiki/Leukotriene_D4
http://en.wikipedia.org/wiki/Leukotriene_E4
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report a direct link between personal PM exposures and increased uLTE4.  We used a 

direct-reading sampling methodology that recorded personal PM levels, location, and 

temperature data every 10-seconds throughout the day and categorized the exposure 

data into predetermined microenvironments (home, transit, and school) (Adams, Riggs 

et al. 2009).  We were able to discern a temporal pattern of brief exposure to traffic-

related air pollutants and early asthma-related outcomes. Using this methodology, the 

magnitude of the dose-response was shown to be considerably greater per IQR (15.7%, 

95th CI: 7-46%, p=0.005 based on 89 records) than estimated in our previous reports 

(6.2% per IQR, 95th CI: 1.9-10.5, p=0.009 based on 388 records) using outdoor ambient 

PM2.5 concentrations measured by an area–wide monitor.  This highlights the probability 

of considerably underestimating effects of PM on asthma with surrogate monitors that 

lack spatial precision. Similarly, Delfino et al. (2006) found that exhaled nitric oxide 

(eNO) levels in schoolchildren with asthma were associated with personal exposure but 

not ambient concentrations.  

The findings in our study are consistent with reports of increased markers of 

airway inflammation within hours of air pollutant exposure (Delfino, Quintana et al. 2004; 

Delfino, Staimer et al. 2006). Although our sample size (30 subjects, n=89 days) was 

relatively small, our exposure assessment was very precise.  A previous study with this 

panel using 24-hour averages of ambient air pollution found no significant associations 

between PM concentrations and daily lung function, asthma symptoms, medication use, 

or asthma exacerbations (Rabinovitch, Zhang et al. 2004).  A follow-up study of this 

panel found significant associations between the morning hourly maximum PM2.5 

concentration and medication use highlighting the importance of temporal precision 
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(Rabinovitch, Strand et al. 2006). In the present study, we did not find an association 

between concurrently measured or hourly maximum ambient PM2.5 and increased 

uLTE4, possibly due to limited sample size as our previous studies had more than triple 

the number of samples. 

Other asthma exacerbation markers have also been associated with personal 

exposure to particulate matter air pollution. In a panel study of 45 asthmatic children in 

urban regions of Southern California, Delfino et al. (2006), found exhaled nitric oxide 

(eNO) in schoolchildren with asthma was associated with personal exposure and 

ambient background particulate air pollutants. This association was stronger when the 

personal PM2.5 measurement was near the exhaled NO measurement. They also 

reported that while the 2-day moving average of personal PM2.5 was associated with 

inflammation, the corollary measurement of outdoor ambient PM2.5 was not.   

Children's outdoor transit to school accounted for only 2% (about 32 min) of a 

typical day, yet elevated PM exposures during such transit periods were significantly 

associated with asthma worsening.  Mean Personal PM levels during the morning 

commute (4.0 µg/m3) were second only to personal concentrations measured at home 

(4.3 µg/m3) (Table 3.2). The children‘s commute to school (7-8 a.m.) was concurrent 

with the general population‘s morning commute (Fig 3.2) resulting in higher ambient 

concentrations during this time period. Although ambient PM levels tended to increase 

during the morning timeframe, personal PM concentrations tended to decrease over the 

same time period suggesting that much of the home exposure was a result of indoor 

sources of PM.  The ambient atmosphere during morning transit was more likely to have 

calm winds and a lower atmospheric mixing height resulting in higher pollutant 
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concentrations near roads (Adams, Nieuwenhuijsen et al. 2001; Patel, Chillrud et al. 

2009).  However, on-road exposures may have been somewhat attenuated in 

wintertime, as vehicle windows were likely closed. Urban traffic has been identified as a 

significant source of PM2.5 (Kinney, Aggarwal et al. 2000) and is associated with 

respiratory morbidity and mortality (Peters, Wichmann et al. 1997; Peel, Tolbert et al. 

2005; Penttinen, Vallius et al. 2006; Chattopadhyay, Mukherjee et al. 2007; Liu, Poon et 

al. 2009), with stronger associations in asthmatic populations, especially children 

(Delfino, Zeiger et al. 1998; Chew 2000; Delfino, Gong Jr et al. 2003; Strickland, Darrow 

et al. 2010; Lin, Huang et al. 2011). Additionally, traffic-related PM may contain higher 

concentrations of oxidant-generating pollutants known to induce lung inflammation 

(Repine, Reiss et al. 2008) explaining some of the potency of the exposure/response 

relationship. Exposure to traffic-related PM and associated health effects are of specific 

interest in asthmatic sub-populations (HEI 2010) especially considering that in-vehicle 

exposure to PM2.5 can be higher than concentrations recorded at outdoor community-

based ambient monitors (Riediker, Williams et al. 2003; Brown, Sarnat et al. 2012).   

The highest mean personal PM concentrations occurred at home, where an IQR 

increase in personal PM exposure was also significantly associated with uLTE4 

(p=0.03). However, when the effects of IQR increases were assessed with all 

microenvironments evaluated in a single 'co-pollutant' model, only the transit 

microenvironment remained significant (Transit, p=0.019; Home, p=0.6; School, 

p=0.16). There was likely some collinearity between exposures between these three 

microenvironments. Additionally, the temporality of the exposure/response relationship 

may have influenced our ability to detect associations between multiple 
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microenvironmental exposures and a single biomarker of asthma worsening. Collection 

of uLTE4 occurred between 11am and 1pm each day; therefore, whether the timing of 

exposure/response favored an association between Transit exposures and uLTE4 

production (as compared to associations between uLTE4 and either home or school 

exposures) is unknown. Within this study the delay between exposure and response 

was detected within a fraction of a day, but additional work would be needed to define a 

more precise relationship between exposure and the expected temporal window of 

observed effect.  

As we were assessing a relatively acute exposure during a defined 

microenvironment, we did not assess for a lag effect in days following exposure. Our 

previous study (Rabinovitch, Strand et al. 2006) did not detect a lag effect when 

assessing morning ambient PM2.5 as a predictor of uLTE4.  Other studies have found lag 

effects on health outcomes (e.g. FEV1) when measuring personal exposure over 

multiple days (Delfino, Quintana et al. 2004; Delfino, Staimer et al. 2006).  

The characteristic peaks and valleys of outdoor ambient PM concentrations were 

evident in the daily average profiles of ambient and personal PM (Figure 3.2).  Studies 

using similar equipment have reported morning and evening personal exposure 

concentration peaks (LaRosa 2002; Zhu, Aikawa et al. 2005). We saw a similar bi-

modal pattern in this study (Figure 3.2). The evening peak in personal exposure likely 

results from indoor sources including cooking, heating/lighting (e.g., candle-burning), or 

play activities. In some households the evening peak may be dominated by PM from 

cigarette smoke, although urinary cotinine was non-significant in our models. The 

outdoor community-based monitor reported a characteristic peak each morning, likely in 
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response to traffic-related PM emissions during the morning rush hour. Ambient PM 

concentrations peaks during afternoon rush hour were not as high (data not shown), 

perhaps reflecting more turbulent (windy) conditions enhancing atmospheric mixing, and 

eliminating atmospheric inversions.  

Personal PM from any of the three microenvironments did not have a significant 

effect on the level of urinary cotinine within panel subjects. Most children's transit to 

school was via bus or vanpool, likely minimizing exposure to SHS during this period. 

While the median personal PM values at home and in-transit were similar (Fig 3.2) there 

was more variability in home microenvironments as some homes were very "clean" and 

some had higher PM concentrations, possibly from tobacco smoke. Children with high 

cotinine levels were likely exposed to higher PM levels at home (from both SHS and 

other sources) on a day-to-day basis. As such, the impact of an IQR change in personal 

home-apportioned PM on uLTE4 levels may have been blunted as children with SHS 

exposure would most likely be at the higher end of the PM dose range resulting in flatter 

dose-response curves from home exposures compared to transit (Rabinovitch, Silveira 

et al. 2011).  

The associations reported here are limited to wintertime exposures in an urban 

setting. Previous studies have shown that seasonality can affect air pollutant 

concentrations (Rodes, Lawless et al. 2010). In addition, ambient and personal PM 

exposures were estimated using different techniques; the former was a direct measure 

of PM mass concentration (TEOM) and the later was an indirect measure of PM mass 

using scattered light (nephelometer, PDR-1200). However, we attempted to account for 

measurement error by normalizing our personal exposure data to a filter sample 
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collected immediately downstream of the nephelometer and weighed for PM mass each 

day (and for each child). Further studies using new, miniaturized sampling equipment 

for specific PM constituents, such as black carbon PM, may provide even more precise 

exposure indices.   

In summary, we have reported a strong association between traffic-related 

personal PM exposure and same-day uLTE4 measurements that was not detectable 

using measurements from an area-wide monitor.  Health estimates from this study, 

although relatively large, may yet underestimate the association between traffic-related 

air pollution and airway inflammation in asthmatics since particle mass (measured in our 

study) may not sufficiently represent the most pathogenic components from fossil fuel 

combustion (Delfino, Staimer et al. 2006) . The panel investigated in this study may 

represent only a subfraction of the population of young asthmatics, as the majority of 

these children suffered from moderate to severe asthma.  Also, some of the children in 

this panel were attending the Kunsberg school because they were at higher risk of 

asthma exacerbation due to poor disease management.  Nonetheless, our findings 

suggest that personal, spatiotemporal exposure assessment is substantially more 

precise than using outdoor area-wide monitors and that reliance solely on area-wide 

measurements may severely underestimate the adverse effects of brief localized PM 

exposures.  
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CHAPTER 4 

 

4.1. Summary of Major Findings 

One aim of this work was to develop a highly-resolved, temporospatially-

referenced method to improve personal exposure assessment for particulate matter 

health hazards.  This method apportioned exposures based on highly-resolved 

measurements of personal PM levels as a function of location and time.  Historically, 

such data has been difficult to collect and interpret.  However, we developed a 

computer-based algorithm to transform this large amount of exposure data into useable 

information by interpreting the time and location of each data point taken and assigning 

a particular microenvironment classification.  We then applied this method to study PM 

exposure and asthma worsening in a panel of urban schoolchildren. Major findings from 

this work included: 

 Our study population of children experienced personal exposures that varied 

substantially between different microenvironments (home, school, transit) each day.  

Differences in personal exposures between these microenvironments are most likely 

generalizable to asthmatic children living in similar urban locales. 

 Centrally-located, outdoor, ambient monitors were, at best, only marginally predictive 

of medium-term (hour-length) personal exposures and only when individuals were 

proximate to that monitor. Thus, outdoor PM measurements made by a centrally-

located ambient monitor represent only a small fraction of an individual‘s daily PM 

intake.   
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 Centrally-located, outdoor, ambient monitor concentrations were not correlated with 

personal exposures experienced in the home microenvironment, where most 

subjects received the highest PM exposures.  

 A study subject's microenvironment had significant impact on measured personal 

exposures. Furthermore, personal exposures in one microenvironment were strongly 

correlated with levels in ensuing microenvironments later in the day.  This finding 

supports a within-day and subject-specific effect, known as the ‗personal cloud.‘  

This effect is hypothesized to occur because subjects either create or carry a 

'personal cloud' of PM as they move from one microenvironment to the next.   

 Within our study population there was a strong association between traffic-related 

personal PM exposure during the morning commute and same-day uLTE4 levels 

measured at school.  This association was not detected using PM exposure 

measurements from a centrally-located, outdoor, ambient monitor.  This association 

was stronger than ones previously detected using an outdoor monitor with a 

substantially larger sample size. Thus, studies that rely on outdoor, area-wide 

measurements may underestimate both the adverse effects of brief localized PM 

exposures, for example, during transit or other activities. 

 Asthma worsening estimates from this study, although relatively large, may 

underestimate the association between traffic-related air pollution and airway 

inflammation in asthmatics since PM mass (measured in this study) may not 

sufficiently represent the most pathogenic components from fossil fuel combustion 

(Delfino, Staimer et al. 2006). 
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 The ability to find associations with a relatively small number of samples suggests 

that personal, spatiotemporal exposure assessment is substantially more precise 

than outdoor, area-wide monitors. 

 The method was capable of collecting and apportioning over 8600 personal 

exposure data points per day with both high resolution and accuracy and allowed 

preparation of a detailed ‗exposure budget‘ for each subject.  The highly-resolved, 

space- and time-referenced data allowed more precise exposure assessment of 

mobile subjects.   

4.2. Limitations of the Method 

This method integrated continuous measures of personal PM levels with the 

corresponding microenvironment (i.e. work/school, home, transit) of the subject.  

Monitoring equipment include global positioning system (GPS) receiver, a miniature 

aerosol nephelometer, and an ambient temperature monitor to estimate the location, 

time, and magnitude of personal exposure to particulate matter air pollution. Application 

of the method provided greater resolution of personal PM levels in microenvironments 

and allowed preparation of a more detailed ‗exposure budget‘ for each subject.  The 

production of highly-resolved, space- and time-referenced exposure data permitted 

rigorous exposure assessment of mobile cohorts in the workforce or community.  

However, there were limitations experienced with the application of the developed 

method.  Some of the limitations were: 

 Nephelometers sense the amount of light (λ = 880 nm) scattered by particles drawn 

though a sensing zone.  The amount of light scattered by an aerosol is dependent 

not only upon the concentration of particles but also on properties of the particles, 
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themselves, such as their shape, composition, and index of refraction.  Thus, 

particles from different sources may scatter different amounts of light, leading to 

biases when PM exposure from one microenvironment is compared to another.  This 

source of bias was likely only partially ameliorated through the use of a gravimetric 

filter correction, applied each day. 

 Cyclones (1.6 µm cutpoint, Model GK2.05, BGI Inc., Waltham MA) used to sample 

fine particulate matter fine separated aerosols at a 1.6 µm cutpoint.  This cutpoint 

resulted from a volumetric flowrate required to meet the gravimetric limit of detection 

for the downstream filter.  The cutpoint did not match the 2.5 µm diameter that is 

regulated by the U.S. EPA‘s National Ambient Air Quality Standard.  However, this 

cutpoint should have collected more than 90% of the ambient PM2.5 fraction based 

on urban aerosol distributions. 

 Use of the backpack sampler by youth constrained the placement of the sampling 

inlet, as minimal protrusion of equipment outside the physical boundaries of the 

backpack was required.  Therefore the inlet location (2 inches above the top surface 

of the backpack, slightly to the rear of the wearer‘s left shoulder) was chosen to best 

approximate the breathing zone.  Sampling of adult populations would likely allow 

the placement of the sampling inlet to be configured closer to the traditional 'lapel' 

sampling location. 

 The pDR is prone to overestimating particle mass, however, correlation values 

between pDR signals and gravimetrically-derived mass concentrations are quite 

high. A differential correction based on the daily gravimetric analysis collected was 

used to normalize the pDR data. 

http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Reflectivity
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 Although GPS technology is improving in sensitivity it may not be able to receive 

signals in all environments (i.e. indoors).  In addition, the technology is still 

susceptible to spurious signals (signal bounce) that can provide incorrect geospatial 

references.  In many cases, these spurious signals can be detected and corrected 

through post-processing algorithms. 

 GPS units do not reference outdoors/indoors in their recorded signals. The use of 

complementary sensors (e.g. light meters and temperature monitors), can help 

enable these determinations.   

 GPS receivers and other miniaturized sensors are relatively expensive, however, 

this will change as miniaturization and integration continue (e.g. most cell-phones 

now have GPS receiver chips).   

4.3. Potential Future Research  

Use of GIS and GPS technologies in concert with highly-resolved sample 

collection holds potential to provide new insights in the field of human exposure 

assessment.  The combination of the technologies provides new levels of accuracy and 

precision for defining the relationship between time-location and exposure.  

Combination of the data within GIS allows for visual and tabular analysis of exposure-

related data and other geospatially relevant information. The existing data set from this 

research is very rich in terms of the amount of temporospatially referenced data, and 

the related health indicator data.  There are potentially many different analyses that that 

could be accomplished with the data.  Avenues for further research include: 

 Expanded evaluation of the geospatial aspect of the dataset. Vehicle-based 

navigation and web-based map delivery applications have generated a 
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corresponding increase in the geo-location information of businesses, other 

structures, and public gathering areas (e.g., parks). These geo-location data could 

be cross-referenced with the existing exposure profile data to potentially identify 

likely activities (e.g., grocery shopping, eating at restaurants, visiting fueling 

stations). Knowledge of the activities could produce further associations between 

microenvironments and personal exposures. 

 Similarly, traffic density data with respect to sections of roadways within the study 

area could be cross-referenced with exposure profile data to investigate potential 

associations between traffic density and personal exposure. 

 Other microenvironmental-based analyses could target relationships between 

exposures and health indicators, such as home exposures and urinary cotinine 

levels, or perhaps spirometry data.   

 Implementing improved instrumentation/technologies within the sampling method, 

such as direct reading technologies for specific components of ambient aerosols 

may provide and enhanced assessment of exposures. 

 Investigation of more complex microenvironmental classification algorithms could be 

assessed to improve precision, especially during transition from one 

microenvironment to another.  
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A1.1. Censored Data Imputation Procedure  

 
Censored (below limit of detection) data is commonly addressed with a 

substitution process.  A commonly used heuristic substitution value is one-half of the 

smallest value of quantification.  This procedure, however, leaves much to be desired 

when applied to observed data.  In many cases substitution skews the representation of 

data, as it does not represent the likely overall distribution of the collected data. 

An imputation operation was performed on this dataset in order to maintain 

censored PM exposure data collected within this research.  This imputation procedure 

was performed five different times so that the resulting values could be compared to 

ensure the operation was performing as expected.  The probability transform employed 

was designed to model the estimated values for the censored data based on the 

distribution observed in the remainder of the collected PM exposure data.  The data 

were log-normally distributed which required a transformation operation to acquire the 

distribution parameters needed for the imputation procedure.  Prior to transforming the 

data, a small constant was substituted for zero values to enable the lognormal 

transformation as part of the imputation procedure.  

The procedure for the imputation followed these steps: 

 
1. Direct-reading PM exposure data were stratified based on the subject. 

2. A small constant replaced concentration values equal to zero (non-detects). The 

value used was equal to one half of the smallest measurable value reported by 

the nephelometer (0.5 µg/m3). 
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3. The subject-stratified data were then log-transformed and distribution parameters 

(mean and standard deviation) specific to each subject were calculated. 

4. The censored data values (zeros) were then replaced with values generated by a 

probability integral transform (Eq. A1.1) based on the subject specific distribution 

parameters. 

 
R code for Probability Integral Transform value imputation step:  

 

Imputed value <- pnorm(log(0.001), sub_spec_ave, sub_spec_stdev)  (Eq A1.1) 

 

The issue of simple substitution of censored data with a heuristic value is 

displayed in Figure A1.1.  The subset of data appears to be bimodal with a smaller peak 

located at the arbitrarily selected substitution value.  In Figure A1.2 values for the 

censored data have been imputed and are the resulting histogram is displayed.  This 

process has produced a distribution based on the non-censored data and provides the 

expected characteristic 'tail' shape.  When the imputed values were substituted for the 

censored data, the histograms of the entire dataset (Figure A1.3) were unimodal and 

generally normal.  Multiple imputation procedures were performed and the parameters 

were evaluated for consistency (Table A1.1).  The resulting change in the mean for the 

censored data was less than 0.4%. 
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Figure A1.1. Histogram of personal PM data with heuristic substitution for 
censored data 

 

 

 
Figure A1.2. Sample distribution of imputed values for censored data 
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Figure A1.3. Sample histograms of data with imputed values substituted for zero 
readings 

Table A1.1. Sample Distribution Parameters from Datasets with Imputed Values 
 

 

 

 

 

 

 

A1.2. Nephelometer (10-sec PM) Data Normalization Procedure  

Direct-reading data from the nephelometer were normalized using a factor 

consisting of the ratio of the daily time-weighted average calculated from each 

gravimetric sample and the daily time-weighted average of the nephelometer during the 

concurrent sampling timeframe. This normalization factor was applied to the 10-sec 

Dataset Mean (mg/m3) Std Dev 

Uncensored 0.02654 0.1051 

Imputed 1 0.02664 0.1051 

Imputed 2 0.02663 0.1050 

Imputed 3 0.02663 0.1050 
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nephelometer data to obtain a corrected PM concentration (Eq. A1.2).  The 

normalization occurred in post processing following the imputation procedure. 

TWAuncorrpdr

TWAfilter

uncorrpdricorrected
C

C
CC

,,

,

,, 

  (Eq. A1.2)

 

A1.3. Model Development  

An additive approach using a linear mixed model was used to build a model to 

explore personal PM exposure relationships (Table A1.2).  The subject's 

microenvironment was assessed as a predictor of the mean log-normalized exposure 

concentrations for each subject's microenvironments (or shorter averaging times).  

There were multiple samples per child, requiring inclusion of a repeated measures term 

in the model.  A nested structure of child (samples within child) was also addressed with 

a random effects term in the model. With this model the location-activity classification 

was a significant predictor (p<0.0001) of the exposure. Other random effects evaluated 

included the sampling instrument IDs. The IDs did not explain much of the covariance in 

the model and did not improve the AIC value and were therefore excluded. 

Additional covariates examined included the outdoor ambient PM2.5 

concentrations (NJ TEOM) which were significant in modeling the mean personal PM 

exposure within the microenvironment.  The impact of the PM2.5 concentration was not 

great, but the improvement of the model overall, as indicated by the AIC value, 

warranted inclusion.  Other covariates evaluated and found to be non-significant 

included personal ambient temperature (p=0.66) and sampling date (p=0.1).   
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Table A1.2. Summary of Model Building 

Variable Included in Model  Model  

Type 1 2 3 3a 4 5 8 9 

Classifcation Fix X x X X X X X  

NJ TEOM Fix   X X    X 

Degrees Fix      X   

StartDate Fix       x  

 Covariance 

Child_id Rdm 0.14 0.054 .43 0 .022 .051 .08 0 

Sample_id Rdm         

sample_id (child_id) Rdm 0.43 0.51 1.39 .43 .445 0.51 .49 .49 

Classification(child_id) Rdm  0.36 .094 .35 .36 .36 .36 .58 

PDR_ID Rdm    .18 .173    

Residual  .85 .51 .46 .46 .51 .51 .51 .46 

AIC Value  1653 1567 1529 1519 1560 1574 1575 1560 
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A1.4. Model Descriptions (SAS Code and Output) 

Table A1.3. Model Descriptions 

Model Period Code Model 
# 

Simple 10 sec proc mixed data=sampdata.samp_data ratio noclprint; 
class classification sample_id child_id; 
model mean_lognorm = classification / solution; 
random child_id sample_id(child_id); 
lsmeans classification/ pdiff;  
run; 

(1) 

Full 5 min proc mixed data=sampdata.samp_hour5min_rep ratio 
noclprint; 
class classification sample_id child_id; 
model lognorm = classification NJ25 / solution; 
random sample_id(child_id); 
repeated / type=sp(exp)(samp_date_5min) 
subject=child_id; 
lsmeans classification/ pdiff;  
run; 
 

(2) 

Uncon-
strained 

10 sec class sample_id child_id; 
model lognorm = /solution; 
random intercept / sub = child_id; 
 

(3) 

Personal 
Cloud 

ME/ 
hour 

proc mixed data=Pigpen.pigpen_model_merge 
class sample_id child_id date; 
model School_lognorm = avgNJ25_6_11 
home_lognorm/ solution; 
random child_id date / solution; 
repeated / type=sp(exp)(date) subject=child_id; 
 

(4) 

Predict ME class sample_id child_id; 
model [microenvironment] = [preceding 
microenvironment]/ solution; 
random child_id; 
repeated / type=sp(exp)(date) subject=child_id; 
 

(5) 

 

  



 119 
 

A1.4.a. Simple (Model 1) 

proc mixed data=sampdata.samp_data ratio noclprint; 
class classification sample_id child_id; 
model lognorm = classification / solution; 
random child_id sample_id(child_id); 
lsmeans classification/ pdiff;  
run; 
                                         The Mixed Procedure 

 

                                    Covariance Parameter Estimates 

                             Cov Parm                   Ratio    Estimate 

                             child_id                  0.1111      0.2015 

                             sample_id(child_id)       0.2943      0.5340 

                             Residual                  1.0000      1.8142 

 

                                     Solution for Fixed Effects 

                                                       Standard 

       Effect            classification    Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                            -6.1689      0.1049      29     -58.79      <.0001 

       classification    Aftern              0.2275    0.005893     1E6      38.61      <.0001 

       classification    Home                1.0591    0.003275     1E6     323.40      <.0001 

       classification    Mornin              0.6658    0.008571     1E6      77.68      <.0001 

       classification    School                   0           .       .        .         . 

 

                                    Type 3 Tests of Fixed Effects 

 

                                            Num     Den 

                         Effect              DF      DF    F Value    Pr > F 

 

                         classification       3     1E6    38527.7    <.0001 

 

A1.4.b. Full (model 2) repeated measures avg period = 1 hr  

 
proc mixed data=sampdata.samp_hour_rep ratio noclprint; 
class classification sample_id child_id; 
model lognorm = classification NJ25 / solution; 
random sample_id(child_id); 
repeated / type=sp(exp)(samp_date_hour) subject=child_id; 
lsmeans classification/ pdiff;  
run; 
 

 

                                         The Mixed Procedure 

 

                                    Covariance Parameter Estimates 

                       Cov Parm                Subject        Ratio    Estimate 

                       sample_id(child_id)                  0.01403     0.02817 
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                       SP(EXP)                 child_id      0.1002      0.2012 

                       Residual                              1.0000      2.0080 

 

                                     Solution for Fixed Effects 

                                                       Standard 

       Effect            classification    Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                            -6.2585     0.08769     136     -71.37      <.0001 

       classification    Aftern              0.3130     0.06479    2811       4.83      <.0001 

       classification    Home                0.8800     0.06494    2811      13.55      <.0001 

       classification    Mornin              0.6177     0.07941    2811       7.78      <.0001 

       classification    School                   0           .       .        .         . 

       NJ25                                 0.01035    0.003754    2811       2.76      0.0059 

 

                                    Type 3 Tests of Fixed Effects 

                                            Num     Den 

                         Effect              DF      DF    F Value    Pr > F 

                         classification       3    2811      65.76    <.0001 

                         NJ25                 1    2811       7.61    0.0059 

 

A1.4.c. Full (model 2) repeated measures: avg period = 15 min  

 
proc mixed data=sampdata.samp_hourqtr_rep ratio noclprint; 
class classification sample_id child_id; 
model lognorm = classification NJ25 / solution; 
random sample_id(child_id); 
repeated / type=sp(exp)(samp_date_qtr) subject=child_id; 
lsmeans classification/ pdiff;  
run; 
 

                                         The Mixed Procedure 

 

                                    Covariance Parameter Estimates 

                       Cov Parm                Subject        Ratio    Estimate 

                       sample_id(child_id)                  0.04322     0.09432 

                       SP(EXP)                 child_id     0.07756      0.1692 

                       Residual                              1.0000      2.1821 

 

 

                                     Solution for Fixed Effects 

                                                       Standard 

       Effect            classification    Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                            -6.0716     0.08014     136     -75.76      <.0001 

       classification    Aftern              0.3558     0.03721    11E3       9.56      <.0001 

       classification    Home                0.6804     0.04146    11E3      16.41      <.0001 

       classification    Mornin              0.2882     0.03769    11E3       7.65      <.0001 

       classification    School                   0           .       .        .         . 

       NJ25                                0.002266    0.002219    11E3       1.02      0.3072 

 

                                    Type 3 Tests of Fixed Effects 

                                            Num     Den 
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                         Effect              DF      DF    F Value    Pr > F 

                         classification       3    11E3      90.23    <.0001 

                         NJ25                 1    11E3       1.04    0.3072 
 

A1.4.d. Full (model 2) repeated measures: avg period = 5 min  

 

proc mixed data=sampdata.samp_hour5min_rep ratio noclprint; 
class classification sample_id child_id; 
model lognorm = classification NJ25 / solution; 
random sample_id(child_id); 
repeated / type=sp(exp)(samp_date_5min) subject=child_id; 
lsmeans classification/ pdiff;  
run; 
 

                                         The Mixed Procedure 

 

                                    Covariance Parameter Estimates 

                       Cov Parm                Subject        Ratio    Estimate 

                       sample_id(child_id)                  0.07533      0.1692 

                       SP(EXP)                 child_id     0.05606      0.1259 

                       Residual                              1.0000      2.2462 

 

                                     Solution for Fixed Effects 

                                                       Standard 

      Effect            classification    Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                            -5.8599     0.07443     136     -78.73      <.0001 

       classification    Aftern              0.1468     0.02414    34E3       6.08      <.0001 

       classification    Home                0.4185     0.02774    34E3      15.08      <.0001 

       classification    Mornin              0.1358     0.02374    34E3       5.72      <.0001 

       classification    School                   0           .       .        .         . 

       NJ25                                -0.00047    0.001524    34E3      -0.31      0.7579 

 

                                    Type 3 Tests of Fixed Effects 

                                            Num     Den 

                         Effect              DF      DF    F Value    Pr > F 

                         classification       3    34E3      81.48    <.0001 

                         NJ25                 1    34E3       0.10    0.7579 

 

A1.4.e. Full (model 2) repeated measures: avg period = microenvironment  

proc mixed data=sampdata.samp_hourmicro_rep ratio noclprint; 
class classification sample_id child_id; 
model lognorm = classification NJ25/ solution; 
random child_id sample_id(child_id) ; 
repeated / type=sp(exp)(samp_date_sec) subject=child_id; 
lsmeans classification/ pdiff;  
run; 
 

                                         The Mixed Procedure 
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                                    Covariance Parameter Estimates 

                       Cov Parm                Subject        Ratio    Estimate 

                       child_id                              0.1359      0.1139 

                       sample_id(child_id)                   0.4775      0.4002 

                       SP(EXP)                 child_id     6.2E-17     5.2E-17 

                       Residual                              1.0000      0.8382 

 

                                     Solution for Fixed Effects 

                                                       Standard 

       Effect            classification    Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                            -6.8331      0.1736      29     -39.35      <.0001 

       classification    Aftern              0.4237      0.1489     406       2.84      0.0047 

       classification    Home                1.2816      0.1474     406       8.69      <.0001 

       classification    Mornin              0.6017      0.1428     406       4.21      <.0001 

       classification    School                   0           .       .        .         . 

       NJ25                                 0.05939     0.01053     406       5.64      <.0001 

 

                                    Type 3 Tests of Fixed Effects 

                                            Num     Den 

                         Effect              DF      DF    F Value    Pr > F 

                         classification       3     406      34.07    <.0001 

                         NJ25                 1     406      31.82    <.0001 

 

A1.4.f. Unconstrained (model 3) 

proc mixed data= sampdata.samp_data ratio noitprint noclprint; 
class sample_id child_id; 
model lognorm = / solution; 
random intercept/ sub = child_id; 
run; 
 

                                         The Mixed Procedure 

 

                                    Covariance Parameter Estimates 

                            Cov Parm      Subject        Ratio    Estimate 

                            Intercept     child_id      0.1245      0.3035 

                            Residual                    1.0000      2.4372 

 

                                      Solution for Fixed Effects 

                                            Standard 

                   Effect       Estimate       Error      DF    t Value    Pr > |t| 

                   Intercept     -5.3857      0.1006      29     -53.54      <.0001 
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A1.4.g. Personal Cloud (Model 4) 

proc mixed data=Pigpen.pigpen_model_merge ratio noitprint noclprint; 
class sample_id child_id date; 
model School_lognorm = avgNJ25_6_11 home_lognorm/ solution; 
random child_id date / solution; 
repeated / type=sp(exp)(date) subject=child_id; 
run; 
 

                                         The Mixed Procedure 

 

                                   Covariance Parameter Estimates 

                            Cov Parm     Subject        Ratio    Estimate 

                            child_id                   0.5983      0.4046 

                            date                            0           0 

                            SP(EXP)      child_id      1.0099      0.6830 

                            Residual                   1.0000      0.6762 

 

                                     Solution for Fixed Effects 

                                              Standard 

                Effect            Estimate       Error      DF    t Value    Pr > |t| 

                Intercept          -4.0556      0.4027      29     -10.07      <.0001 

                avgNJ25_6_11       0.04547     0.01442      60       3.15      0.0025 

                home_lognorm        0.4312     0.06192      60       6.96      <.0001 

 

                                    Type 3 Tests of Fixed Effects 

                                           Num     Den 

                          Effect            DF      DF    F Value    Pr > F 

                          avgNJ25_6_11       1      60       9.94    0.0025 

                          home_lognorm       1      60      48.49    <.0001 

 

A1.4.h. Prediction (Model 5): 

proc mixed data=predict.predict ratio noitprint noclprint;  
class sample_id child_id; 
model pmstransit = pmschool / solution; 
random child_id; 
repeated / type=sp(exp)(date) subject=child_id; 
run; 
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APPENDIX 2 

 

"Commute-related Particulate Matter Exposure Is Associated with Acute Asthma 

Worsening in Children" Paper Supplemental Information  
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A2.1. Model Development  

An additive approach using a linear mixed model was used to build a model to 

explore personal microenvironmental exposures and uLTE4 relationships.  Three 

morning microenvironments (home, transit, and school) from each personal exposure 

were initially assessed as a predictor of the uLTE4 levels collected once per day.  There 

were multiple samples per child requiring a repeated measures term to be included 

within the model.  A nested structure of child (samples within child) was also addressed 

with a random effects term in the model.  

A child's upper respiratory infection status (cold) was significant (p=0.005) and 

included in the model. Additional covariates evaluated (Table A2.1) and found to be 

non-significant included mode of transport (p=0.35), smoking family member (p=0.52), 

breakfast location (p=0.37), body mass index (p=0.91), outdoor temperature (p=0.39), 

and barometric pressure (p=0.71).  

 

Table A2.1. Summary of Evaluated Covariates 

Covariate p-value 

Upper Respiratory Infection (cold) 0.005 

Mode of Transport to School 0.35 

Smoking Family Member 0.52 

Breakfast Location  0.37 

Body Mass Index 0.91 

Outdoor Temp 0.39 

Barometric Pressure 0.71 
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A2.2. SAS Model Code and Output 

A2.2.a. Co-pollutant model 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = lognorm_h lognorm_t lognorm_s cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

                                      The Mixed Procedure 

                                       Model Information 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      6 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

                                    Number of Observations 

                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       198.97529638 

                          1              4       133.93051941      0.00336159 

                          2              1       133.89405524      0.00003254 

                          3              1       133.89371967      0.00000000 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3376      0.1031      3.27      0.0005 

              SP(EXP)      child_id    1.91E-17           .       .         . 

              Residual                   0.1112     0.02085      5.33      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           133.9 

                             AIC (smaller is better)         137.9 
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                             AICC (smaller is better)        138.0 

                             BIC (smaller is better)         140.6 

 

                                   Solution for Fixed Effects 

                                                 Standard 

        Effect       cold            Estimate       Error      DF    t Value    Pr > |t| 

        Intercept                      4.9430      0.3109      28      15.90      <.0001 

        lognorm_h                     0.02508     0.04619      56       0.54      0.5893 

        lognorm_t                      0.1381     0.05694      56       2.43      0.0185 

        lognorm_s                    -0.09578     0.06662      56      -1.44      0.1561 

        cold                    0     -0.5053      0.1664      56      -3.04      0.0036 

        cold                    1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         lognorm_h       1      56       0.29    0.5893 

                         lognorm_t       1      56       5.88    0.0185 

                         lognorm_s       1      56       2.07    0.1561 

                         cold            1      56       9.22    0.0036 

 

 

A2.2.b. Model with PPM Transit and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id; 
model logLTE = lognorm_t cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

 

                                      The Mixed Procedure 

                                       Model Information 

 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      3 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

 

                                    Number of Observations 
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                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       194.90402405 

                          1              4       130.63343498      0.12216144 

                          2              1       128.56118724      0.02801822 

                          3              1       128.08189380      0.00244296 

                          4              1       128.04300928      0.00002468 

                          5              1       128.04263625      0.00000000 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3310     0.09994      3.31      0.0005 

              SP(EXP)      child_id    3.37E-17           .       .         . 

              Residual                   0.1123     0.02064      5.44      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           128.0 

                             AIC (smaller is better)         132.0 

                             AICC (smaller is better)        132.2 

                             BIC (smaller is better)         134.8 

 

                                   Solution for Fixed Effects 

                                         Standard 

                Effect       Estimate       Error      DF    t Value    Pr > |t| 

                Intercept      4.6111      0.2075      28      22.22      <.0001 

                lognorm_t     0.09392     0.03218      58       2.92      0.0050 

                cold           0.5358      0.1657      58       3.23      0.0020 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         lognorm_t       1      58       8.52    0.0050 

                         cold            1      58      10.45    0.0020 

 

 

A2.2.c. Model with PPM Home and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = lognorm_h cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

                                      The Mixed Procedure 

                                       Model Information 

                     Data Set                     FOUR10.PTHALF_MULTI 
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                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

 

                              Covariance Parameters             3 

                              Columns in X                      4 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

                                    Number of Observations 

                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       202.43345600 

                          1              4       131.73136365      0.00354071 

                          2              1       131.68155926      0.00004457 

                          3              1       131.68096628      0.00000001 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3752      0.1120      3.35      0.0004 

              SP(EXP)      child_id    5.43E-17           .       .         . 

              Residual                   0.1133     0.02086      5.43      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           131.7 

                             AIC (smaller is better)         135.7 

                             AICC (smaller is better)        135.8 

                             BIC (smaller is better)         138.4 

 

                                   Solution for Fixed Effects 

                                                 Standard 

        Effect       cold            Estimate       Error      DF    t Value    Pr > |t| 

        Intercept                      5.0008      0.2651      28      18.86      <.0001 

        lognorm_h                     0.07059     0.03254      58       2.17      0.0341 

        cold                    0     -0.5104      0.1671      58      -3.05      0.0034 

        cold                    1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         lognorm_h       1      58       4.71    0.0341 

                         cold            1      58       9.33    0.0034 
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A2.2.d. Model with PPM school and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = lognorm_s cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

 

                                      The Mixed Procedure 

                                       Model Information 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      4 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

                                    Number of Observations 

                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       199.96290080 

                          1              4       200.55280736      0.00125118 

                          2              2       182.39642414      0.00796189 

                          3              2       165.42076562      0.08719233 

                          4              2       150.61614382      0.23382287 

                          5              2       139.51952889      0.15861151 

                          6              2       134.01315779      0.03406621 

                          7              2       133.76879891      0.00573247 

                          8              1       133.69350117      0.00010554 

                          9              1       133.69219888      0.00000004 

                         10              1       133.69219839      0.00000000 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3551      0.1073      3.31      0.0005 

              SP(EXP)      child_id     6.3E-17           .       .         . 
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              Residual                   0.1205     0.02215      5.44      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           133.7 

                             AIC (smaller is better)         137.7 

                             AICC (smaller is better)        137.8 

                             BIC (smaller is better)         140.4 

 

                                   Solution for Fixed Effects 

                                                 Standard 

        Effect       cold            Estimate       Error      DF    t Value    Pr > |t| 

        Intercept                      4.9763      0.3200      28      15.55      <.0001 

        lognorm_s                     0.05912     0.04089      58       1.45      0.1536 

        cold                    0     -0.5312      0.1726      58      -3.08      0.0032 

        cold                    1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         lognorm_s       1      58       2.09    0.1536 

                         cold            1      58       9.47    0.0032 

 

 

A2.2.e. Model with Ambient transit and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = log_nj25_t cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

                                      The Mixed Procedure 

                                       Model Information 

 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      4 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

                                    Number of Observations 

                          Number of Observations Read             125 
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                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       201.51453094 

                          1              4       238.29056498      0.00004996 

                          2              3       201.51453094       . 

                          3              1       177.73469005      1.37096296 

                          4              1       159.63000562     11.93714663 

                          5              1       147.19423640      1.03359007 

                          6              1       139.89612294      0.29448858 

                          7              1       136.52005569      0.08114217 

                          8              1       135.47069363      0.01225326 

                          9              1       135.31739587      0.00042159 

                         10              1       135.31248578      0.00000060 

                         11              1       135.31247900      0.00000000 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3637      0.1101      3.31      0.0005 

              SP(EXP)      child_id    2.12E-17           .       .         . 

              Residual                   0.1233     0.02269      5.43      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           135.3 

                             AIC (smaller is better)         139.3 

                             AICC (smaller is better)        139.5 

                             BIC (smaller is better)         142.0 

 

                                  Solution for Fixed Effects 

                                                 Standard 

       Effect        cold            Estimate       Error      DF    t Value    Pr > |t| 

       Intercept                       4.6238      0.2107      28      21.95      <.0001 

       LOG_NJ25_t                    -0.01070     0.05054      58      -0.21      0.8332 

       cold                     0     -0.4971      0.1733      58      -2.87      0.0057 

       cold                     1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                        Effect          DF      DF    F Value    Pr > F 

                        LOG_NJ25_t       1      58       0.04    0.8332 

                        cold             1      58       8.23    0.0057 

 

A2.2.f. Model with Ambient home and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = nj25_h cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
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run; 
 

                                      The Mixed Procedure 

                                       Model Information 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      4 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

 

                                    Number of Observations 

 

                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       201.99999719 

                          1              4       209.01039323      0.00065122 

                          2              2       190.59722181      0.00379055 

                          3              2       173.13359494      0.02822489 

                          4              2       157.44461986      2.05221463 

                          5              2       144.87634956      0.19994737 

                          6              2       137.24481432      0.27700652 

                          7              2       136.21994381      0.03371739 

                          8              1       135.79511103      0.00266898 

                          9              1       135.76372186      0.00002212 

                         10              1       135.76347383      0.00000000 

 

                                   Convergence criteria met. 

 

                                      The Mixed Procedure 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3643      0.1102      3.31      0.0005 

              SP(EXP)      child_id           0           .       .         . 

              Residual                   0.1230     0.02264      5.43      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           135.8 

                             AIC (smaller is better)         139.8 

                             AICC (smaller is better)        139.9 

                             BIC (smaller is better)         142.5 
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                                   Solution for Fixed Effects 

                                                 Standard 

        Effect       cold            Estimate       Error      DF    t Value    Pr > |t| 

        Intercept                      4.6162      0.1964      28      23.51      <.0001 

        nj25_h                       -0.01587     0.03772      58      -0.42      0.6755 

        cold                    0     -0.4870      0.1751      58      -2.78      0.0073 

        cold                    1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         nj25_h          1      58       0.18    0.6755 

                         cold            1      58       7.74    0.0073 

 

A2.2.g. Model with Ambient school and cold 

proc mixed data= four10.pthalf_multi covtest noclprint; 
class child_id cold; 
model logLTE = nj25_s cold /solution; 
random child_id; 
repeated / type=sp(exp)(sampledate) subject=child_id; 
run; 
 

                                      The Mixed Procedure 

                                       Model Information 

                     Data Set                     FOUR10.PTHALF_MULTI 

                     Dependent Variable           logLTE 

                     Covariance Structures        Variance Components, 

                                                  Spatial Exponential 

                     Subject Effect               child_id 

                     Estimation Method            REML 

                     Residual Variance Method     Profile 

                     Fixed Effects SE Method      Model-Based 

                     Degrees of Freedom Method    Containment 

 

                                          Dimensions 

                              Covariance Parameters             3 

                              Columns in X                      4 

                              Columns in Z                     29 

                              Subjects                          1 

                              Max Obs Per Subject             125 

 

                                    Number of Observations 

                          Number of Observations Read             125 

                          Number of Observations Used              89 

                          Number of Observations Not Used          36 

 

                                       Iteration History 

                  Iteration    Evaluations    -2 Res Log Like       Criterion 

                          0              1       201.13191949 

                          1              4       194.32709513      0.00249577 

                          2              2       176.57284008      0.01726515 

                          3              2       160.34893057      0.43299367 
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                          4              2       146.86605857      0.20805334 

                          5              2       137.85603339      0.88244724 

                          6              2       135.12075838      0.00368328 

                          7              1       135.07572930      0.00004260 

                          8              1       135.07523588      0.00000001 

 

                                   Convergence criteria met. 

 

                                Covariance Parameter Estimates 

                                                   Standard         Z 

              Cov Parm     Subject     Estimate       Error     Value      Pr > Z 

              child_id                   0.3635      0.1100      3.31      0.0005 

              SP(EXP)      child_id           0           .       .         . 

              Residual                   0.1230     0.02265      5.43      <.0001 

 

                                        Fit Statistics 

                             -2 Res Log Likelihood           135.1 

                             AIC (smaller is better)         139.1 

                             AICC (smaller is better)        139.2 

                             BIC (smaller is better)         141.8 

 

                                   Solution for Fixed Effects 

                                                 Standard 

        Effect       cold            Estimate       Error      DF    t Value    Pr > |t| 

        Intercept                      4.6513      0.2188      28      21.26      <.0001 

        nj25_s                       -0.02350     0.05262      58      -0.45      0.6568 

        cold                    0     -0.5003      0.1730      58      -2.89      0.0054 

        cold                    1           0           .       .        .         . 

 

                                 Type 3 Tests of Fixed Effects 

                                       Num     Den 

                         Effect         DF      DF    F Value    Pr > F 

                         nj25_s          1      58       0.20    0.6568 

                         cold            1      58       8.36    0.0054 
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APPENDIX 3 

 

Sampling Backpack Preparation and Collection Procedures 
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Sampling Backpack Preparation: 

1) Insert new batteries in GPS unit, pDR-1200, and TR-52 (temperature monitor), 

attach charged battery to air sampling pump 

2) Place pre-weighed filter in filter assembly on pDR-1200 sensor chamber, record 

filter number on sample form 

3) Open and then close petri dishes containing filter blanks (2 filters each day) 

4) Attach sample pump to sampling train  

5) Calibrate pump flowrate (6.8 lpm) with Gillibrator, record on sampling form 

6) Power on and Zero calibrate the pDR with HEPA filter assembly attached 

7) Power on GPS receiver ensure that signal lock acquired on at least four 

satellites,  

8) Verify internal clocks of the pDR and TR-52 are synchronized to within one 

second of the the clock of the GPS Receiver. If not adjust clocks as needed. 

9) Zero out instrument memory (GPS, pDR-1200, and temperature monitor) 

10) Prepare GPS, pDR-1200, and TR-52 for data-logging  

11) Secure equipment backpack internal frame  

12) Activate data-logging and the engage sampling pump. 

 

Sampling Backpack Collection: 

1) Collect backpack from child 

2) Visually verify that GPS unit, pDR-1200, TR-52 and sample pump are operating 

3) Suspend operation of monitoring equipment and sample pump 

4) Perform survey questionnaire with child and record answers 

5) Measure pump flowrate (~6.8 lpm) with Gillibrator, record on form 

6) Remove filter and place in petri dish, ensure label matches with form number 

7) Download recorded data (GPS unit, pDR-1200, TR-52) to laptop 

8) Power off monitors, store in backpack and place pump battery on charger 
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APPENDIX 4 

 

Sampling Form /  

Personal Behavior / PM Sources Survey Questionnaire 
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APPENDIX 5 

 

Basic Apportionment Algorithm  
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Figure A5.1. Microenvironment Classification Flowchart 


