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ABSTRACT

A LOCALITY-AWARE SCIENTIFIC WORKFLOW ENGINE FOR FAST-EVOLVING

SPATIOTEMPORAL SENSOR DATA

Discerning knowledge from voluminous data involves a series of data manipulation steps. Scien-

tists typically compose and execute workflows for these steps using scientific workflow management

systems (SWfMSs). SWfMSs have been developed for several research communities including but

not limited to bioinformatics, biology, astronomy, computational science, and physics. Parallel

execution of workflows has been widely employed in SWfMSs by exploiting the storage and com-

puting resources of grid and cloud services. However, none of these systems have been tailored for

the needs of spatiotemporal analytics on real-time sensor data with high arrival rates. This thesis

demonstrates the development and evaluation of a target-oriented workflow model that enables

a user to specify dependencies among the workflow components, including data availability. The

underlying spatiotemporal data dispersion and indexing scheme provides fast data search and re-

trieval to plan and execute computations comprising the workflow. This work includes a scheduling

algorithm that targets minimizing data movement across machines while ensuring fair and efficient

resource allocation among multiple users. The study includes empirical evaluations performed on

the Google cloud.
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CHAPTER 1

Introduction

Proliferation of large-scale wireless geo-sensor networks enables continuous and precise capture

of large amounts of geospatial, time-series information. Examples of such spatiotemporal data

harvesting can be found in settings ranging from nuclear power plants (nuclear optical sensors) to

smartphones (equipped with myriad sensing capabilities). GPS-enabled sensors, either static or on

mobile platforms, collect information frequently, and these data are used as inputs to analytical

processes that subsequently inform the monitoring environment. As these spatiotemporal data

collections become more available, the ability to generate insights from sensor datasets has been

critical for many high-priority scientific applications.

One of the dominant approaches to implementing complex scientific analyses is to modularize

the computing aspects. Each module then serves as a stage within a pipeline. One or more such

pipelines comprise a Scientific Workflow Management System (SWfMS). A SWfMS can involve

heterogeneous programming languages and tools. Furthermore, tasks within a SWfMS can be

implemented in domain-specific tools that were developed for use within the scientific community.

Consequently, scientists in several domains have widely adopted SWfMSs to facilitate composition,

execution, monitoring, and sharing of such complex computing components.

Much of the research in SWfMSs has emphasized usability aspects including ease of use,

composition, and reusability of software components[1–3]. Pegasus[4] and Askalon[5] target ef-

fective execution in a distributed environment. Recent systems, such as Apache Spark and Apache

Flink/Stratosphere, adapt the MapReduce programming model to express stages and connections

thereto. These efforts are not well-aligned with processing real-time sensor data collected across

the globe at different points in time that are not necessarily uniform or periodic.

Analytic workflows for the aforesaid datasets are quite distinctive compared to traditional

scientific workflows. This stems from the fact that such sensor data processing involves: (1) data
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selection constrained by arbitrary space and time, and (2) volatile resource requirements. We

define these workflows as data-bounded workflows whose stages account for the availability of data,

both input and intermediate. A workflow engine capable of executing a data-bounded workflow

must have the data selection mechanism integrated into the system, and it should be able to meet

the requirements of such workflows. The objective of this thesis is to support the composition

and orchestration of data-bounded workflows in the context of fast-evolving voluminous real-time

datasets generated in sensing environments.

1.1. Scientific Challenges

Efficient composition, scheduling, and execution of scientific workflows over voluminous sensor

data streams are tasks that introduce a set of unique challenges:

• Voluminous data: As the number of sensors grows, cumulative data generated by the

sensor network increases dramatically.

• Real-time data analysis: Despite the number of interacting components, their aggrega-

tions, and the rates at which data arrive, users must be able to analyze the results, both

intermediate and final, in real time.

• Shared computing and storage resources: Orchestration and execution of the work-

flow must be possible in a shared cluster with collocated processes and their accompanying

resource footprints.

• Scalability: The proposed approach must scale with increases in the number of workflows

and data volumes.

1.2. Research Questions

Inability to account for data characteristics within the workflow may result in queue buildups,

buffer overflows, increased latencies, and possibly reduced throughputs. Research questions that

are explored in this thesis include:

2



RQ-1 How can we compose data-bounded workflows? To allow users to compose data-bounded

workflows, the workflow must be able to identify data-bounded workflow components and

their corresponding dependencies alongside their mutable states.

RQ-2 How can we disperse spatiotemporal sensor data to support efficient data retrievals over

fast-evolving time-series phenomena? The data dispersion and indexing scheme should

provide fast data search and retrieval, and it must also allow the workflow engine to

allocate tasks with high data locality.

RQ-3 How can we schedule and execute data-bounded workflows effectively in high-throughput

analysis environments? The workflow engine should be able to schedule and execute real-

izable portions of the analysis to allow users to monitor incremental, intermediate results

for long-running analytics tasks in real time. It must accomplish this without postponing

workflow execution until all data is available or preempting computing resources.

1.3. Overview of our Approach

We introduce a locality-aware distributed workflow engine called Columbus that schedules and

executes data-bounded workflows while accounting for data locality and fair resource allocation

among multiple users. Columbus uses Galileo[6], a hierarchical distributed hash table, as its un-

derlying storage system. We extended Galileo to enable a flexible data dispersion and indexing

scheme for the space-time continuum such that data locality is maximized during the orchestration

of computations. To facilitate the composition of complex data-bounded workflows, we propose

a target-oriented workflow model that not only addresses the traditional SWfMS aspects such as

composing workflows with ease and reusability of the workflow components but also accounts for

data availability to individual components of the workflow. Columbus manages the execution of

these workflows using a master-worker architecture that employs a dual scheduling strategy where

both master and the workers run a scheduler to exploit parallelism at workflow and task levels. We

have devised three locality-aware scheduling schemes, local, remote, and hybrid, in order to slate
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the workflows for execution. The local scheme ensures the highest data locality, while the remote

scheme allows the tasks to be reallocated based on the resource utilization. The hybrid scheme is

a balance between local and remote that relies on WR ratios obtained from the computing nodes,

a metric representing the ratio of number of workflows waiting to running per user.

1.4. Thesis Contributions

This study describes a method that achieves efficient management of analytical scientific work-

flows over rapidly evolving sensor data. Specific contributions include:

(1) An effective data dispersion and indexing scheme that maximizes data locality to avoid

data movements and resource contentions.

(2) An expressive workflow composition model that enables complex spatiotemporal analyses

with effective planning and tracking.

(3) Our methodology encompassing algorithms and data structures could also be applied to

other scientific workflow engines that involve both resource- and data-constrained sched-

uling.

Our empirical evaluations demonstrate the feasibility of our approach and its ability to scale. In

our benchmarks, the test dataset spans more than 25 million observations, each of which contains

40 features for a specific location. Unless otherwise noted, the location information of the data we

considered was altered for the purpose of our experiments and illustrations included in this work.

Our benchmarks also contrast the data retrieval performance of Columbus with Geomesa[7].
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CHAPTER 2

Related Work

Several scientific workflow management systems exist[8, 9] to help discover knowledge from the

vast information at hand that have been developed for various research communities, including but

not limited to bioinformatics, astronomy, biology, computational engineering, and earth sciences.

Yet, new systems emerge from time to time because it is unlikely that any single system can handle

such diverse domain needs[10].

Kepler[1] is a free and open-source scientific workflow application designed to help scientists,

analysts, and computer programmers create, execute, and share models and analyses across a broad

range of scientific and engineering disciplines. Kepler can operate on data stored in a variety of

formats, locally and over the Internet, and it is an effective environment for integrating disparate

software components, for example, merging R scripts with compiled C code or facilitating remote,

distributed execution of models. Using Keplers graphical user interface, users simply select and

then connect pertinent analytical components and data sources to create a scientific workflow.

Taverna[2] is also an open-source and domain-independent SWfMS used to design and execute

scientific workflows and aid in silico experimentation. It was created by the myGrid team, and

it is now an Apache Incubator project. The Taverna tools include the Workbench (desktop client

application), the Command Line Tool (for a quick execution of workflows from a terminal), the

Server (for remote execution of workflows), and the Player (Web interface plugin for submitting

workflows for remote execution). Both Kepler and Taverna allow users to share workflows through

myExperiment[11], a collaborative environment where scientists can safely publish their workflows

and in silico experiments.

Triana[12] is an open-source problem-solving environment developed at Cardiff University that

combines an intuitive visual interface with powerful data analysis tools. Already used by scientists

for a range of tasks, such as signal, text, and image processing, Triana includes a large library of
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pre-written analysis tools and the capability for users to easily integrate their own tools. Triana

is particularly good at automating repetitive tasks, such as performing a find-and-replace on all of

the text files in a particular directory or continuously monitoring the spectrum of data that comes

from an experiment that runs for days or even years.

Galaxy[3] is another scientific workflow system that allows users to import workflows from

myExperiment, but this system was specifically developed for data-intensive biomedical research.

However, Galaxy uses Gridway to execute tasks on the grid, and it can exploit Globus[13] and

CloudMan[14] to achieve dynamic computing and storage provisioning across computing nodes.

The Pegasus project[4] encompasses a set of technologies that help workflow-based applica-

tions execute in a number of different environments including desktops, campus clusters, grids,

and clouds. Pegasus bridges the scientific domain and the execution environment by automati-

cally mapping high-level workflow descriptions onto distributed resources. It automatically locates

the necessary input data and computational resources necessary for workflow execution. Pegasus

enables scientists to construct workflows in abstract terms without worrying about the details of

the underlying execution environment or the particulars of the low-level specifications required

by the middleware (Condor, Globus[13, 15], or Amazon EC2). Pegasus also bridges the current

cyberinfrastructure by effectively coordinating multiple distributed resources.

The ASKALON project[5] crafts a novel environment based on new innovative tools, services,

and methodologies to make scientific application development and optimization for real applications

and execution on Cloud and Grid environments an everyday practice. Askalon is designed as

a distributed service-oriented architecture that provides a rich set of visualization diagrams for

post-mortem and online visualization.

Script-based workflows such as Swift[16] and JS4Cloud[17] exist as alternatives to the visual

workflows discussed above. They can provide implicit data-driven task parallelism and data par-

allelism. The former defines a new parallel scripting language to model the workflows that follows

C-like syntax, and the latter extends JavaScript for the same.
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None of these systems are tailored for the needs of data-bounded scientific workflows with

continuously arriving sensor data. Columbus addresses such workflows with its collocated scal-

able storage system and target-oriented workflow modeling, which allow users to specify complex

workflows having volatile resource requirements with an integrated data selection mechanism.

Researchers have also explored many-task computing (MTC)[18] in scientific workflows[19].

Ogasawara et al. aim at providing a middleware solution as a bridge between SWfMSs and high

performance computing (HPC), supporting workflow design and provenance combined to MTC.

Frameworks such as Falkon[20], SWARM[21], and AME[22] aim at rapid execution of many tasks on

distributed computing clusters and grids. The intention was to achieve a shortermakespan. Wang et

al. introduced load-balanced and locality-aware scheduling for data intensive workloads at extreme

scales through data-aware work stealing(DAWS) technique[23]. A survey of the workflow scheduling

algorithms[24] reveals that much of the research was in makespan optimization. However, in this

work, we aim at the execution of workflows with high data locality and fair resource allocation

among multiple users. The scheduling mechanism must also ensure reliable workflow execution

given the fact that the memory requirements of the tasks involved in a data-bounded workflow are

volatile.
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CHAPTER 3

Storage Framework

For our storage requirements, we extended Galileo[6, 25–27], a high-throughput, distributed

storage framework for voluminous, multidimensional, geospatial, and time-series datasets. We

modified the data dispersion scheme to maximize the data locality and to cope with continuously

arriving sensor data streams. In this chapter, we discuss the extensions made to Galileo in detail.

3.1. Data Partitioning

Galileo is a zero-hop hierarchical distributed hash table (DHT) where nodes are organized into

groups such that each node has enough information about the network topology to route requests

directly to their destinations[6]. In the original partitioning scheme of Galileo, a group of nodes

was determined by Geohash[28], whose length indicated its precision, and a node within the group

was identified by SHA-1 hash. In this work, we reoriented the original partitioning scheme to cope

with unevenly distributed time-series sensor datasets by considering a temporal hash function. A

destination group is determined first by using a hash scheme based on the temporal information

of the data, and then Geohash is used to determine the storage node within a group. Fig. 3.1

shows the network organization of the hierarchical DHT (3.1a), the original geospatial partitioning

scheme (3.1b), and the proposed chrono-spatial partitioning scheme (3.1c).

# #

#

#

(a) Hierarchical DHT

SHA-1

#

SHA-1 SHA-1

(b) Geospatial DHT (c) Chronospatial DHT

Figure 3.1. Network Organization
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The new Galileo partitioning mechanism provides a configurable temporal hash scheme, allowing

the user to choose a temporal pattern such as hour, day, week, month, or year for hashing the data

to a group based on time. The choice is generally made based on how a user wishes to process the

data, which could be different from how the data is getting collected. For instance, wind data is

collected by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric

Administration every hour, but the climatological mean wind speed is reported every month[29].

In such cases, choosing month as the temporal hash type will ensure that the data of any month

for a particular geospatial region is available with the minimum number of nodes. This reduces

data movement during computation significantly.

Unlike the original system, which was developed to store a single dataset and where the parti-

tioning scheme must be chosen beforehand, the new extension uses a dynamic network organization

so that the partitioning scheme can be specified at the time of creation of the dataset. This feature

allows a user to store multiple datasets with different partitioning schemes, which is another im-

portant refinement made to the system because scientific workflow analyses often deal with more

than one dataset. Fig. 3.2 shows the base network organization having three groups followed by

a dataset having a chrono-spatial partitioning scheme with three groups temporally partitioned on

day of month, a second dataset with the same partitioning scheme as before but with five groups,

and a third dataset having a chrono-spatial partitioning scheme with nine groups temporally par-

titioned on week of year.

#

#

#

#

Figure 3.2. Dynamic Network Organization
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The proposed chrono-spatial partitioning scheme can also be turned into a spatiotemporal

partitioning scheme where a group would be determined by Geohash and a node by the temporal

information of the data. The choice of this scheme depends on the dataset and the need for

parallelism at spatial or temporal levels. We adhere to the chrono-spatial scheme in this work as it

is more appropriate for the dataset we considered.

3.2. Data Storage and Retrieval

Galileo was intended to store point datasets, meaning the data associated with a spatial location

is stored in the system. While data of a spatial region can be stored in the system, it is represented

internally by the spatial location of the centroid of the spatial region. The storage units are called as

blocks, and they are stored as files on the host file system. Any information representing the block

is stored in a hierarchical graph residing in the memory, referred to as the metadata graph. Also,

the retrieval process was devised to differ from traditional databases or key-value stores. Instead of

matching the user submitted queries against the data available in the system and returning the raw

data, it streams metadata of matching blocks back to the requestor incrementally. This approach

works fine when the user is interested in retrieving the blocks; however, this may not always be the

case for scientific analyses. If a user makes a spatial query and is interested in the raw data, then

the blocks returned by Galileo should undergo further processing at the client side.

With the refinements made to the Galileo framework, data of a spatial region can be stored in

the system with user-defined Geohash precision that can be different from the Geohash precision

used for the spatial partitioning scheme. This gives the user more flexibility in grouping the data

together for storage in Galileo. Furthermore, a user can specify the features of the dataset at the

time of its creation in the system and designate the features responsible for the spatial location as

a hint. This enables Galileo to construct another hierarchical graph similar to the metadata graph

from the information stored in the block, called as feature graph, and return the raw data to the

user when requested. As a consequence of this change, the system distinguishes the queries made
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as metadata queries and feature queries depending on whether the request was made for blocks or

raw data, respectively. However, a user can specify both metadata and features in the same query

request when seeking to retrieve the raw data.

For the purpose of understanding, consider the NYC Yellow Taxi Dataset1 that has 19 features.2

As the dataset is confined to the New York city region, it is a good idea to consider a spatial

partitioning scheme having Geohash of length three involving a subset of the regions in the Geohash

area of dr, specifically dr4, dr5, dr6, dr7, drk, and drh. If we decide to store the trips that started

within an area of 3miles x 3miles per day together, which can be represented by a Geohash of length

five, and use the attributes min amount, mean amount, max amount, and num trips to represent the

minimum, mean, maximum total amounts, and number of trips in that data, respectively, then an

extract of the metadata graph on the node having the Geohash dr5 is shown in fig. 3.3, and an

extract of the feature graph for the block 2015-12-31-dr5ru.gblock is shown in fig. 3.4.

space=dr5ru

year=2015

month=12

day=30 day=31

year=2016

day=1

month=1

min_amount=3.3

mean_amount=12.77

max_amount=666.38

num_trips=163085

min_amount=2.7

mean_amount=14.38

max_amount=484.93

num_trips=164660

min_amount=1.4

mean_amount=13.72

max_amount=656.15

num_trips=160896

2015-12-30-

dr5ru.gblock

2015-12-31-

dr5ru.gblock
2016-1-1-

dr5ru.gblock

Figure 3.3. Metadata Graph

vendor_id=1

pick_up=31-12-2015 

23:59:58

drop_off=01-01-2016

00:05:19

passengers=2

distance=2.0

pickup_long=-73.9653

vendor_id=2

pickup_lat=40.76028

rate_code=1

fwd_flag=N

dropoff_long=-73.9395

dropoff_lat=40.7523

payment_type=2

fare=7.5

extra=0.5

tax=0.5

surcharge=0.00

tip=0

tolls=0.3

total=8.80

pick_up=31-12-2015 

23:59:59

drop_off=01-01-2016

00:12:55

passengers=2

distance=3.8

pickup_long=-73.9872

pickup_lat=40.73908

rate_code=1

fwd_flag=N

dropoff_long=-73.9887

dropoff_lat=40.6933

payment_type=2

fare=13.5

extra=0.5

tax=0.5

surcharge=0.00

tip=0

tolls=0.3

total=14.8

pick_up=31-12-2015 

23:59:59

drop_off=01-01-2016

00:21:30

passengers=1

distance=1.06

pickup_long=-73.9844

pickup_lat=40.76726

rate_code=1

fwd_flag=N

dropoff_long=-73.9909

dropoff_lat=40.76057

payment_type=1

fare=13.5

extra=0.5

tax=0.5

surcharge=2.96

tip=0

tolls=0.3

total=17.76

Figure 3.4. Feature Graph

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
2http://www.nyc.gov/html/tlc/downloads/pdf/data dictionary trip records yellow.pdf
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When a user wants to retrieve the blocks having mean amount more than $500, a metadata

query (mean amount > 500) is issued to all of the nodes in the system, and the resulting blocks are

returned to the client. However, if the user is interested in the trips that cost more than $50, then

a feature query (total > 50) is issued. Alternatively, if the user is interested in the trips that cost

more than $50 on a particular day, say 2015-12-31, both metadata and feature queries are made

in the same request (e.g., year=2015 & month=12 & day=31, total > 50).

3.3. The Geoavailability Grid

A geoavailability grid is a spatial indexing data structure[25] that translates points in space to

a reduced-resolution coordinate system for indexing purposes. It is described by a bitmap denoted

by a vector of bits, where a bit is set to 1 if information has been stored in that location and set to

0 otherwise. Galileo uses this grid to evaluate the spatial queries such that the polygonal bounds

of the query are decomposed into smaller polygons that cover the area of the grid. A new bitmap

is generated for the resulting query and is intersected with the bitmap representing the data. The

points that are set to 1 in both bitmaps are returned. Fig. 3.5 shows an example data bitmap in

blue, a query bitmap in red, and the result of the intersection in yellow.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0

0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0

0 0 0 0 1 1 1 0

0 0 0 1 1 1 0 0

Figure 3.5. Geoavailability Grid Evaluation

Unlike the original system, where a grid is maintained at a global level, we create a 30-bit

resolution grid on demand for the necessary blocks representing the area covered by them. If the

blocks are stored with a precision of four characters, or 20 bits, the actual resolution of the grid
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can be seen as 50-bit, which gives accuracy to nearly one meter in space. Moreover, the on-demand

creation of the grid aids in making the Galileo system collocated with the Columbus workflow

engine.

3.4. Query Evaluation

Galileo supports a variety of queries including feature queries, range queries, and geospatial

retrievals constrained by arbitrary polygonal bounds. The new partitioning scheme allows the

system to efficiently address the spatial and temporal queries with or without filtering criteria

specified on the features of the dataset or the metadata of the blocks, simply filters.

3.4.1. Spatial Queries. When a spatial query such as a polygon is submitted to Galileo, the

system tries to identify the nodes that can address the query. It starts the process by looking up the

precision level set for the spatial partitioning scheme. A Geohash with that precision is computed

for any one vertex of the polygon, and its bounding box is inspected to determine if the polygon

was enclosed by the box. In such a case, the process terminates, and the query is directed to the

nodes responsible for that Geohash. Otherwise, the system computes the set of all neighboring

Geohash values and determines if their bounding boxes are intersecting with polygon. The process

is repeated, eliminating the non-intersecting Geohash values until no more intersections are found.

The set of destination nodes from the resulting set of intersecting Geohashes is obtained from the

spatial partitioning scheme, and the query is directed to those nodes. Fig. 3.6 shows a spatial query

made in the region of the State of Colorado. A textual representation of this query translates to:

GET ALL FEATURES FROM DATASET IN POLYGON("-105.27 39.74,-105.01 39.87,-104.63

39.76,-104.57 39.52,-104.91 39.32,-105.23 39.43")

With a two-character Geohash precision set for the spatial partitioner and a four-character Geohash

precision set for the blocks, the system starts with one of the vertices of the polygon (e.g., one in

9xj6) and constructs the Geohash value as 9x. It computes all eight neighbors of this Geohash as

shown in fig. 3.7. The intersecting Geohashes are highlighted in bold. Of the neighbors, only 9w
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is found to be intersecting, and the system recomputes its neighboring Geohashes, excluding the

ones already processed. The resulting set is used to identify the set of destination nodes.

Figure 3.6. Columbus showing the data reported
by Galileo in the State of Colorado and a spatial

query made around Denver, CO

Figure 3.7. Determining intersecting
Geohash values to direct the spatial query to

the destination nodes

At the destination nodes, the system looks up the Geohash precision of the dataset and computes

the intersecting Geohash values of that precision. Unlike the process of identifying nodes, the system

uses a recursive binary partitioning on each Geohash region present at the destination that is known

to intersect the spatial query. This process returns a set of range queries on the spatial attribute

of the metadata graph. If a filter was specified on the metadata, the metadata query together with

the computed range queries are evaluated on the metadata graph to obtain the set of blocks that

contain the data for the region specified by the spatial query. For each block, the system loads the

raw data into a Geoavailability grid if the spatial region of the block intersects the query based on

the spatial hint provided at the time of creation of the dataset. Otherwise, the spatial region of

the block is enclosed by the query and computation on the grid can be avoided. The grid evaluates

the raw data against the query and returns the results. If a filter was specified on the features of
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the dataset, the returned results are then turned into a feature graph, and the query is evaluated

on it. The final results are written to the disk so that the Columbus workflow engine can push the

computation to that storage node.

For the query made in fig. 3.6, the recursive binary partitioning approach on the 9x Geohash

region returns a set of range values that result in the following query:

GET ALL FEATURES FROM DATASET WHERE (space≥9xj0 and space≤9xj3) or space=9xj4

or space=9xj6 or (space≥9xj8 and space≤9xj9) or space=9xjd

This query is then evaluated on the metadata graph to retrieve the blocks in those regions, in this

case 9xj1, 9xj3, 9xj4, 9xj6, and 9xjd. The system identifies that the region 9xj3 was enclosed by

the query and considers the blocks in that region as evaluated. For the blocks in the other regions,

data is loaded into the Geoavailability grids and evaluated against the spatial query intersecting

that region. Fig. 3.8 shows the grids for those regions, highlighting the spatial query in red and

the data in blue.

(a) 9xj1 (b) 9xj4 (c) 9xj6 (d) 9xjd

Figure 3.8. Geoavailability grids for the query in fig. 3.6 at nodes having 9x Geohash

3.4.2. Temporal Queries. Queries made in accordance with the temporal type specified

for the temporal partitioning scheme are directed to the nodes involved in the matching group.

Otherwise, they are treated as a metadata filter and are directed to all nodes in the system. For

instance, if a dataset was partitioned temporally on day of the month and the query includes the

day, the temporal partitioning scheme identifies a group responsible for having the data for that

day, so the query is directed to all of the nodes of that group. However, if the query was made on
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the month of the year for the same dataset, the temporal partitioning scheme cannot identify the

group; hence, the query is directed to all nodes of all groups. In any case, queries are evaluated

on the metadata graph at their respective destinations. If a filter was specified on the metadata,

it would be included in the query being evaluated on the metadata graph. The resulting blocks

obtained from the metadata graph do not need any processing if a filter was not specified on the

features of the dataset, and they can be returned to the requestor. Otherwise, data from the blocks

are loaded into feature graphs and evaluated against the feature query. The final results are written

to the disk.

3.4.3. Spatiotemporal Queries. Queries made on both space and time are resolved first by

time followed by space to identify the destinations. The first phase identifies the groups based on

the temporal type specified for the temporal partitioning scheme. The second phase eliminates the

nodes based on the spatial query as discussed in section 3.4.1. At the destinations, the recursive

binary partitioning technique yields the range queries on space, and they are evaluated on the

metadata graphtogether with the metadata query on time and the metadata filters if anyto obtain

the blocks. The resulting blocks are then evaluated on Geoavailability grids, and the results are

written to the disk if a filter was not specified on the features of the dataset. Otherwise, they are

loaded into feature graphs and evaluated against the feature query, and the final results are written

to the disk.
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CHAPTER 4

System Design

A workflow engine capable of providing insights on vast spatiotemporal datasets must have its

elements aligned to such domain needs. In this chapter, we discuss the core design details of the

system that aid in doing such analyses.

4.1. Target-Oriented Workflow Model

Designing a complex data-bounded workflow is a challenging task, and Columbus addresses

this concern with a target-oriented modeling paradigm. The system can be viewed as a composi-

tion of interdependent atomic units, called targets. A scientist defines a target by specifying its

dependencies on other targets in the system, hereafter referred to as parents, and optionally wraps

a computation in it, typically as a sequence of high-level programming instructions. These depen-

dencies are defined as active if the execution of a target invokes the execution of its parents, and

they are passive if the execution of a target depends on the output of the parents but does not

invoke their execution. Every target is associated with one of the output types supported by the

system, and this includes a visualizer to make the system enable data visualization by means of

web mapping [30]. Target-oriented modeling then allows the composition of a workflow by means

of a weak association between the targets and the workflow, meaning the targets are not coupled

with the workflow that encapsulates them. Rather, any target from the pool can be turned into a

workflow by tracing back its dependencies. This design principle is the key to leveraging reusability

of targets across workflows, and it represents a workflow as a directed acyclic graph of targets. A

distinctive feature arising out of this design principle is that it allows a scientist to choose data

from multiple data sources for a single workflow. Fig. 4.1a captures a few targets defined in the

system, and some workflows composed from those targets are shown in fig. 4.1b. We denote targets

with circles, active dependencies with a dashed line, passive dependencies with a dashed circle, and
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data flow with a solid line. A workflow is denoted as a directed acyclic graph of targets connected

by a solid line.
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Figure 4.1. Modeling Workflows from Targets

4.2. Building Blocks

Targets are realized in the system as Components and Combiners. A Component defines a

set of active dependencies on other Components and Combiners in the system. This set can be

null, meaning that the Component is independent. We refer to Components without dependen-

cies as φ−Components, those with one active dependency as α−Components, and those with

multiple active dependencies as β−Components. Graphically, α− and β−Components are de-

noted by circles with a solid line, and φ−Components are denoted by filled circles. Fig. 4.1a shows

eight Components, of which 1 and 3 are φ−Components, 4, 5, 7, and 8 are α−Components, and

6 and 9 are β−Components. Each Component may define a sequence of high-level programming

instructions to process the data that flows through it and must define an output.

Any Component can be turned into a Workflow, which can be seen merely as an entity

that facilitates the flow of data among the targets. A Workflow is realized only at the time of its

execution, at which point the system creates an instance of the same, capturing the state of all of

the targets involved in the Workflow. Any changes made to the Components will not influence
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the execution of Workflow instances already created. The changes are taken into consideration

only when a new instance of the Workflow is created by the system. The φ−Components

serve as the starting point of a Workflow, and because a Workflow can contain multiple

φ−Components (w3 in fig. 4.1b), a user makes the choice of the data source for each of those

targets when requesting the system to run that Workflow.

On many occasions, scientists want to combine the results of one or more workflows to do

further analysis on the aggregated data. Such needs are addressed by Combiners. A Combiner

aggregates the output of multiple instances of a single Workflow. Like Components, they

may define a sequence of high-level programming instructions for the system to execute on the

aggregated data. Users may not always want to aggregate the output of all of the instances;

therefore, Combiners provide a range of options to specify the aggregation period. These include

a start time—where the data is aggregated from the instances of the stated Workflow on or

after the time specified, an end time—to make the system consider the instances on or before

the mentioned time, or both—to restrict the instances to that period. Other options include the

number of past instances to be considered. Combiners always define a passive dependency, and

they are denoted by a double circle with one solid line and one dashed line (target 2 in fig. 4.1a).

4.3. Output Types

For the long-running spatiotemporal analysis of a continuously updating sensor dataset, frequent

access to the intermediate output is critical. Columbus maintains all of the intermediate outputs

and supports output types that assist in visualizations at any stage of the workflow. Accordingly,

Columbus defines the output types as Key-Values, Feature, Feature Collection, Multi Collection,

and Blob and associates them with targets.

Accessing multidimensional data using indices often creates the problem of mismatched data

and makes the instructions in a target difficult to comprehend. Key-Values allow subsequent

targets to access this data by means of identifiers, and they enable tabular display. Raw data to
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φ−Components is always fed in this format. Feature and Feature Collection output types are

based on GeoJSON specification[31], an open standard format for encoding collections of simple

geographical features along with their non-spatial attributes using JavaScript Object Notation

(JSON). A Multi Collection is a sequence of Feature Collections that supports the need to output

several Feature Collections from a single target. Lastly, a Blob represents output in any format

defined by the end users.

4.4. Pipelines

A Workflow must be converted into a topological sequence of pipelines before slating it for

execution. This helps achieve parallelism at the target level while ensuring data locality. Pipelines

are derived from the workflow by partitioning the graph at the β−Components while retaining

the original dependencies among the targets, generating a series of subgraphs . Each subgraph or

pipeline is a topological sequence of α−Components beginning with either a φ−Component,

a β−Component, or a Combiner; accordingly, we refer to these pipelines as φ−, β−, and

γ−Pipelines, respectively. Fig 4.2 shows the pipelines for the Workflow w3 in fig. 4.1b.
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Figure 4.2. A Workflow and its Pipelines
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CHAPTER 5

System Architecture

Columbus is built as a multiuser web-based distributed scientific workflow management system

that is integrated with the Galileo storage framework and other cloud based storage services for

diverse data source choices. It uses a master-worker architecture where the workers execute the

targets involved in a Workflow while the master manages its execution. In this chapter, we will

discuss some critical details of the system with respect to its architectural elements. A high-level

architectural block diagram is shown in fig. 5.1.
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Figure 5.1. Architecture of Columbus

5.1. User Interface

The master provides an authorized web user interface that allows users to create Components,

Combiners, and Workflows among others. A Workflow can be run in the system by choosing

a data source for every α− Component of that Workflow. Users can make the choice from any

of the available cloud storage services or Galileo. The latter allows a user to select the data by space,

time, feature, or metadata filters. Columbus creates a visualization of the data stored in Galileo

for a chosen dataset that acts as an interface for making spatial queries. Fig. 3.6 illustrates such
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a visualization and a user query on data stored in the State of Colorado. Furthermore, users can

associate priority with the workflows while triggering them so as to make the system prioritize their

execution. Columbus provides real-time monitoring of the workflows and allows users to visualize

or analyze the results.

5.2. Database

Columbus maintains a database to store users information, their authorizations to cloud ser-

vices, and their workflow execution traces besides other details. It helps in sharing Workflows

among multiple users and aids in visualizations by storing identifiers of Google fusion tables or file

paths of target outputs. Storing workflow execution traces in the database generates support for

real-time monitoring and provenance. The system makes transparent execution of the workflows a

priority; therefore, it hides the underlying distributed environment from the end users. However,

administrators can track the activity of workers on demand, in which case the system stores such

information in the database and allows the administrators to see the metrics such as workload and

resource utilization over time.

5.3. Scheduling

Columbus uses a dual scheduling strategy whereby the master runs a pipeline scheduler to dis-

tribute the pipelines involved in a Workflow, and a worker runs a target scheduler to execute the

targets in those pipelines. The pipeline scheduler focuses on minimizing the data movement across

machines, while the target scheduler ensures fair resource utilization among users and guarantees

the successful execution of a target when its resource requirements fall within the system capabil-

ities of the worker. The capacity of a worker indicates the number of targets that could be run

in parallel, and it is determined by the container size defined on the master. When a worker con-

nects to the master, it receives configuration parameters such as this, including user authorization

credentials. The worker then calculates its capacity based on the container size and reports the
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same back to the master along with other system information. The master uses this information to

update its capacity, C =
∑n

i=1
ci, where ci denotes the capacity of a worker i and n is the number

of workers. Also, if 0 ≤ ri ≤ ci indicates the number of targets running on a worker i, the workload

of that worker is estimated as ri/ci.

The system defines three scheduling schemes for the execution of Workflows viz. local,

remote, and hybrid. The first scheme ensures the highest data locality by allocating targets to the

workers housing the data. With the remote scheme, master queries the workers regarding their

workload and allocates the targets to the one having the data if its capacity is not full; otherwise, it

allocates them to the worker with the lowest workload. Lastly, with the hybrid scheme, workers are

requested to send their workload along with the ratio of the number of workflows waiting to those

running per user, referred to as the WR ratio. The targets are allocated to the worker containing

the data regardless of its workload when the WR ratio of the user is less than a preset threshold.

Otherwise, this scheme works just like the remote scheme.

Fig. 5.2 represents the communication between master and workers together with the data

structures used in the scheduling of workflows. Dashed lines indicate repeated communication, and

the ∗ijk subscript notation indicates the identifier of the User, Workflow, and Target, respectively.

Both master and worker scheduler are designed to be iterative processes such that the former main-

tains a priority waiting queue per user, a ready queue, and a backlog of Workflows. The latter

maintains a ready queue per Workflow per user, a shelf, and a backlog of targets, respectively.

When users submit Workflows, the pipeline scheduler removes as many Workflows as its ca-

pacity C, one from each user in a round-robin fashion, and sorts them on their creation time before

queueing them into the ready queue. For each workflow in the ready queue, the master creates

an execution plan as a topological sequence of the pipelines, distributes the φ− and γ−Pipelines

to the workers based on the chosen scheduling scheme, and adds the Workflow along with its

β−Pipelines to the backlog. The worker, upon receiving the Pipeline, queues the targets it holds

into the ready queue of that Workflow for that user. The target scheduler removes as many
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targets as its remaining capacity from those ready queues, again in a round-robin fashion, triggers

their execution as separate processes imposing the memory constraint specified by the container

size, and adds them to the backlog.
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Figure 5.2. Workflow Scheduling

The target processes begin by loading the needed data from the disk of that worker. If the

data is not found locally, the same is downloaded from the cloud storage. The target then proceeds

with processing user instructions. Currently, GIS computations are pushed to Google Earth Engine

[32]. However, domain-specific computations can be done locally if the appropriate software stack

is made available to the workers. Once the target processes finish executing the user instructions,

they write the output to the local disk and then to the cloud storage. These processes report their

success or failure to the worker. If any process fails because of the memory constraint imposed by

the worker, the same is added to the shelf with double the container size. If the new size is within

the capacity of the worker, the target is retried when the assigned size can be allotted. Finally,

the target is removed from the backlog of the worker, and its status is reported to the master,

at which time the pipeline scheduler examines the β−Pipelines of that Workflow and slates
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them for execution if their dependencies were resolved. All of the updates received from the worker

get recorded in the database for real-time monitoring and provenance. When all Pipelines of a

Workflow finish execution, the Workflow is removed from the backlog of the master, yielding

room to the next Workflow in the queue.

5.4. Visualizations

Figure 5.3. Columbus showing the output of a
Scientific Workflow.

Columbus supports both charting and web

mapping visualizations for the data associated

with aWorkflow. The master handles the re-

quest made by the user and renders the appro-

priate visualization. A variety of charting types

such as line, bar, spline, area charts, box plots,

and heat maps, among others, are included in

the system. Fig. 5.3 shows a web-mapping vi-

sualization for the output of a scientific workflow. Web-mapping visualizations are enabled through

Google Maps API, Google Fusion Tables, and Google Earth Engine.
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CHAPTER 6

Evaluation

In this section, we discuss the experiments conducted on our storage system and the distributed

workflow engine. Specifically, (1) we compare the performance of our storage system to Geomesa[7]

and (2) we evaluate the resource utilization of our system with respect to our scheduling schemes,

multiple users, and container size.

6.1. Geomesa

Geomesa is an Apache licensed open source suite of tools that enables large-scale geospatial

analytics on cloud and distributed computing systems, letting users manage and analyze the huge

spatiotemporal datasets. Geomesa does this by providing spatiotemporal data persistence on top

of the Accumulo, HBase, and Cassandra distributed column-oriented databases. It allows rapid

access to the data via queries that take full advantage of geographical properties to specify distance

and area.

6.2. Experiment Setup

For the purpose of our experiments, we setup a 12-node cluster on the Google cloud platform

comprising n1-standard-4 compute engine instances each with 2.6GHz Intel Xeon CPU having 4

vCPUs (threads per core=2, cores per socket=2) and 15 GB of memory. All nodes ran Debian 8

(Jessie) with Linux 3.16.0-4-amd64 kernel and had 512 GB bootable standard persistent disks. The

evaluation used Hadoop 2.6.0, Zookeeper 3.4.6, Accumulo 1.7.2, and Geomesa 1.3.0. HDFS block

size was defaulted to 128 MB, and the replication level was set to two for Hadoop. Tablet server

maps memory was set to 1GB, and index and data cache sizes were set to 512MB and 128MB,

respectively, for Accumulo. To run Hadoop NameNode, Accumulo masters, and Zookeeper server,

another Google compute engine instance with the same configuration was used. All nodes had the

limit on number of open files set to 65536 and ran Oracle JDK Java Runtime version 1.8.0 121-b13.
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We used the natural gas leak mobile sensor dataset collected as part of a project funded by the

Environment Defense Fund that covers multiple regions and divisions of the United States. The

dataset was collected over 4 years and consists of more than 25 million observations having 40

dimensions.

6.3. Query Performance

To evaluate the performance of the queries involving space or time, we considered ten different

queries in each of the six categories listed in table 6.1.

Table 6.1. Query categories and number of resulting observations

Query Number of resulting observations(K) / Size(MB)

Category Lowest Mean Highest

Spatial Region 603.6 / 196.5 1130 / 392.8 1655 / 607.9

Temporal Month 585.8 / 201.5 819.9 / 280.2 1097 / 372.5

Temporal Day 75.69 / 25.89 78.86 / 26.98 83.92 / 29.12

Spatial Year 28.35 / 9.590 390.9 / 134.5 728.6 / 253.9

Spatial Month 136.2 / 46.26 273.9 / 95.02 454.5 / 161.8

Spatial Day 21.67 / 7.270 31.98 / 11.06 43.83 / 14.89

Spatial region in any query category spans a four character Geohash region covering an area of

approximately 24x12 square miles (39km x 19.5km). Temporal month and day categories include

queries made for one day and one month, respectively. Spatial year, month, and day categories

include queries on both space and time periods of lengths one day, one month, and one year. Galileo

is capable of addressing the spatial queries efficiently by avoiding the processing of a block when

it lies inside the spatial query. Therefore, to show that the response times are not the best-case

values of Galileo and to demonstrate the influence of the Geohash precision used for storing the

blocks on the response time, we considered storing the same dataset in Galileo five times, each

having a different storage precision or network organization but temporally distributed on day. We
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ran the same queries on all five datasets and compared the response times to that of Geomesa.

Each dataset of Galileo is identified in the plot by the values of p and n that denote the number of

characters in Geohash used for storing the blocks and the number of nodes per group in the network

organization of Galileo, respectively. Each query was run five times, and the average response time

is reported. The circular points in the boxplot are the mean processing times of the actual queries,

and the triangular points are outliers.

For a fixed number of nodes in the cluster, an increase in the value of n decreases the parallelism

on spatial queries and increases the same for temporal queries. And for any network organization

and a given spatial query, an increase in the value of p results in a greater number of blocks and

helps Galileo avoid processing some of them, while a decrease in the same results in fewer blocks

and mandates their processing. The results included in fig. 6.1 and 6.2 capture this behavior.
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Figure 6.1. Spatial Query Performance
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Figure 6.2. Temporal Query Performance
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Results show that Galileo performs better than Geomesa in five out of six query categories

regardless of the storage precision and network organization used for the dataset. Temporal year

category was not considered because the performance of Geomesa was degrading linearly with the

rise in number of results (fig. 6.2a and 6.2b). For spatiotemporal queries on day, Galileo is up to

2 times slower than Geomesa. This is because Galileo writes the results to the disk before sending

them to the client. Moreover, when it comes to spatial queries on day, paralellism is limited to a

single node if the data was distributed on day. To improve the performance in such cases, blocks

must be stored in Galileo for smaller spatial area than spatial queries of interest. This can be seen

in fig. 6.3c for the dataset (p=5, n=1), which performs closer to Geomesa than other datasets in

Galileo. Galileo can perform better if the number of results increases, as observed from figs. 6.3a

and 6.3b. Table 6.1 also lists the cumulative result file size on all of the nodes in the cluster for each

query category. It should be noted that the file size is not dependent on the number of resulting

observations alone but rather on the values of the dimensions of those observations.

6.4. Resource Utilization

To evaluate the effectiveness of our scheduling strategy and distributed execution, we ran

Columbus workers alongside Galileo on the same 12-node cluster and deployed the Columbus mas-

ter on another Google compute engine instance of type n1-highcpu-8 having 8vCPUs, 7.2GB of

memory, and 256GB bootable standard persistent disk. Other configuration details are the same

as discussed before. Because Columbus was written in Python and Galileo in Java, Columbus

master interacts with Galileo through a RESTful web service interface. In each node of the cluster,

we reserved 4GB of memory for Galileo and used the rest for Columbus worker with container size

set to 1024MB.

We ran a scientific workflow as a single user on one year of data in all of the spatial regions

of the dataset (p=4, n=1) stored in Galileo. We triggered the run, asking Columbus to process

the workflow per day, and it resulted in a total of 773 workflow instances. This is more than the
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Figure 6.3. Spatiotemporal Query Performance

number of days in that year because some days had more than one block stored in Galileo. We

repeated the execution of these instances once for each scheduling scheme and measured the cluster

utilization as a percentage of the containers occupied. Fig 6.4 compares the cluster utilization

and time taken to finish the execution of all of the instances. As the data stored was distributed

temporally on day, some nodes had to process more workflows than others when using the local

scheduling scheme, which resulted in lower cluster utilization and higher time to finish, as shown

in the figure. The remote scheduling scheme had the lowest time to finish and better utilization

than the local scheme. However, it took slightly more time to finish the execution than the hybrid

scheme for some of the instances at around 500 to 625 seconds time frame. This is because of the

data transfer to the remote machine.

To demonstrate the reliability or successful execution of workflows when they are within the

resource capabilities of a worker, we reduced the container size to 512MB and repeated the same
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set of workflow instances as before using both remote and hybrid scheduling schemes. Fig. 6.5

compares the utilization and time for the two schemes with reduced container size to the original

hybrid scheme with 1024MB container size.
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Figure 6.4. Cluster utilization for different
scheduling schemes
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Figure 6.5. Reliable workflow execution
with reduced container size

It can be observed that the new container size resulted in higher cluster utilization and time to

finish than the previous case. This is because several instances failed due to insufficient memory,

and they were retried with double the container size. Moreover, the higher cluster utilization was

because of the fact that the containers were reserved for the failed instances. It should be noted

that the remote scheduling scheme with smaller container had higher time to finish because a failure

in execution will result in retrying and repeated data transfer. The takeaway from this experiment

is that the hybrid scheduling scheme with appropriate WR ratio will yield better utilization and

time to finish by ensuring fair data locality.

Finally, we conducted an experiment to demonstrate how resources were shared among multiple

users by running the workflow instances for four users. We triggered the same instances for users

one and two, and a different set of instances for user three. The instances were created for users

one after the other, in the order of their numbering. We triggered yet another set of instances for

user four at around three minutes after the execution started for other users. Fig. 6.6 shows the

resource utilization graphs for these four users in terms of cluster, CPU, and memory utilization.

The graphs clearly show that the resources are fairly shared among the users regardless of when
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the submission of instances took place. However, users who created the instances first will have

their execution begin early.
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Figure 6.6. Resource allocation among four users using hybrid scheduling scheme
having WR ratio as one.
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CHAPTER 7

Conclusion and Future Work

In this work, we presented a cloud-based, multiuser, distributed workflow engine that enables

efficient composition, scheduling, and execution of scientific analysis workflows over voluminous

spatiotemporal sensor datasets.

RQ1. To enable composing data-bounded workflows, target-oriented workflow modelling allows

users to specify dependencies such as data availability and execution of upstream components. This

allows the scheduler to delay allocation of the physical resources until the data is available and

prevents undesired resource idling.

RQ2. Columbus extends Galileo’s hierarchical DHT indexing scheme with customizable tem-

poral granularities. Since temporal data proximity is preserved, Columbus outperforms Geomesa

for most of the temporal and spatial data retrieval benchmarks as presented in chapter 6.

RQ3. Columbus schedules and executes tasks in data-bounded workflows with hierarchical

queues and three different data locality scheduling schemes. This multipronged approach was

shown to be effective in utilizing computing resources and providing fair scheduling to multiple

users.

While the proposed system is in good shape for spatiotemporal analytics on data at scale, there

is room for improvements to the system. This involves (1) changing the scheduling algorithm to

immediately execute the workflows of new users who submit them when the cluster utilization is at

its maximum by killing the processes of over-utilizing users and adding them back to their queues,

(2) improving spatial queries to allow multi-geometries, (3) providing support for other program-

ming languages in specifying the computation for targets, (4) exporting workflows as Columbus

archive files to share with external users, (5) root cause analysis, and (6) improved security for

executing end user computations, besides others. We leave such improvements to the system for

future work.
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