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ABSTRACT

PLANNING FOR AN UNKNOWN FUTURE: INCORPORATING METEOROLOGICAL UNCERTAINTY

INTO PREDICTIONS OF THE IMPACT OF FIRES AND DUST ON US PARTICULATE MATTER

Exposure to particulate matter (PM) pollution has well documented health impacts and is regu-

lated by the United States (U.S.) Environmental Protection Agency (EPA). In the U.S. wildfire smoke

and wind-blown dust are significant natural sources of PM pollution. This dissertation shows how the

environmental conditions that drive wildfires and wind-blown dust are likely to change in the future

and what these changes imply for future PM concentrations.

The first component of this dissertation shows how human ignitions and environmental condi-

tions influence U.S. wildfire activity. Using wildfire burn area and ignition data, I find that in both the

western and southeastern U.S., annual lightning- and human-ignited wildfire burn area have similar

relationships with key environmental conditions (temperature, relative humidity, and precipitation).

These results suggest that burn area for human- and lightning-ignited wildfires will be similarly im-

pacted by climate change. Next, I quantify how the environmental conditions that drive wildfire activ-

ity are likely to change in the future under different climate scenarios. Coupled Model Intercomparison

Project phase 5 (CMIP5) models agree that western U.S. temperatures will increase in the 21st century

for representative concentration pathways (RCPs) 4.5 and 8.5. I find that averaged over seasonal and

regional scales, other environmental variables demonstrated to be relevant to fuel flammability and

aridity, such as precipitation, evaporation, relative humidity, root zone soil moisture, and wind speed,

can be used to explain historical variability in wildfire burn area as well or better than temperature. My

work demonstrates that when objectively selecting environmental predictors using Lasso regression,

temperature is not always selected, but that this varies by western U.S. ecoregion. When temperature

is not selected, the sign and magnitude of future changes in burn area become less certain, highlight-

ing that predicted changes in burn area are sensitive to the environmental predictors chosen to predict

burn area. Smaller increases in future wildfire burn area are estimated whenever and wherever the

importance of temperature as a predictor is reduced.
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The second component of this dissertation examines how environmental conditions that drive fine

dust emissions and concentrations in the southwestern U.S. change in the future. I examine environ-

mental conditions that influence dust emissions including, temperature, vapor pressure deficit, rela-

tive humidity, precipitation, soil moisture, wind speed, and leaf area index (LAI). My work quantifies

fine dust concentrations in the U.S. southwest dust season, March through July, using fine iron as a

dust proxy, quantified with measurements from the Interagency Monitoring of PROtected Visual En-

vironments (IMPROVE) network between 1995 and 2015. I show that the largest contribution to the

spread in future dust concentration estimates comes from the choice of environmental predictor used

to explain observed variability. The spread between different environmental predictor estimates can

be larger than the spread between climate scenarios or intermodel spread. Based on linear estimates

of how dust concentrations respond to changes in LAI, CMIP5 estimated increases in LAI would result

in reduced dust concentrations in the future. However, when I objectively select environmental pre-

dictors of dust concentrations using Lasso regression, LAI is not selected in favor of other variables.

When using a linear combination of objectively selected environmental variables, I estimate that fu-

ture southwest dust season mean concentrations will increase by 0.24 µg m−3 (12%) by the end of the

21st century for RCP 8.5. This estimated increase in fine dust concentration is driven by decreases in

relative humidity, precipitation, soil moisture, and buffered by decreased wind speeds.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO WESTERN U.S. PARTICULATE MATTER POLLUTION

Particulate Matter (PM) is a pollutant regulated by the U.S. Environmental Protection Agency (EPA)

under the National Ambient Air Quality Standards (NAAQS), a set of requirements mandated by the

United States Clean Air Act (Epa and OAR 2014). PM are aerosol that originate from a variety of anthro-

pogenic and natural sources (e .g . wind blown dust, wildfire smoke). The composition of PM varies and

can depend on its source. Some of the major constituents include sulfate, nitrate, ammonium, organic

carbon, sea salt, and dust (Dawson et al. 2014). PM can be emitted directly or formed from gas-phase

precursors. When inhaled, PM2.5 (particulate matter with diameters less than 2.5 microns) has well

documented cardiovascular and respiratory impacts, and exposure can lead to premature death (Cor-

reia et al. 2013; Gan et al. 2017; Lipner et al. 2019; Sacks et al. 2011). PM can also influence the earth’s

radiative budget, heterogeneous chemistry, cloud formation, and visibility (Bond et al. 2013; DeMott

et al. 2003; Hand et al. 2016; Krueger et al. 2004). In recent decades, PM concentrations have been de-

clining in many parts of the U.S. These reductions are largely attributed to environmental legislation

(Dawson et al. 2014). The public health benefit from these gains in air quality have been significant.

Pope et al. (2002) attribute reductions in PM concentrations with nearly 20% of the gains in U.S. life-

expectancy between 1980 and 2000. Recently, climate change has put the longevity of recent air quality

improvements into question (Dawson et al. 2014). The work in this dissertation is intended to help the

scientific community as well as key stakeholders (e .g . EPA) better understand the links between cli-

mate change and air quality, how they interact, and how they might change in the future. Given the

known impacts PM can have on human health and atmospheric composition, understanding how cli-

mate change will alter PM air quality is critically important in order to prepare for the future.

Dawson et al. (2014) highlighted research opportunities that would contribute to a better under-

standing of how PM concentrations and impacts could change in a changing climate. They identified

four key areas of research that would help policy makers prepare for the future of PM pollution in the

U.S. 1) Improved understanding of the links between climate change and synoptic scale weather phe-

nomena related to PM concentrations (e .g . stagnation days, precipitation). 2) A better understand-

ing of the climate drivers of wildfire activity, how wildfire activity impacts PM, and how these might

change in the future. 3) Improved estimates of how changing climate and CO2 concentrations may
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affect biogenic volatile organic compounds (VOC) emissions and other PM precursors. 4) A better un-

derstanding of the climate drivers of dust emissions and concentrations and how they might change

in the future. This dissertation specifically addresses items 2 and 4, towards a better understanding of

PM emissions and the air quality impacts that result from wildfire and dust activity. This dissertation

focuses on the western U.S, which is home to the largest wildfires and deserts (major dust sources) in

the U.S. Although average fine (diameter less than 2.5 microns) PM concentrations are higher in the

eastern U.S than the west (van Donkelaar et al. 2012; Van Donkelaar et al. 2010), in the western U.S.

extreme fine PM episodes are driven by wildfire smoke (Vedal and Dutton 2006; Ward et al. 2006; Wu

et al. 2006), dust events (Claiborn et al. 2000; Lee et al. 2009; Steenburgh et al. 2012), and stagnation

(Chen et al. 2012; Malek et al. 2006).

1.2 INTRODUCTION TO WESTERN U.S. WILDFIRES

Since Dawson et al. (2014) outlined a list of key research opportunities that will help prepare the

U.S. for an uncertain future, the scientific community has made significant gains in understanding

wildfire activity and the ensuing air quality impacts in the western U.S. McClure and Jaffe (2018b) high-

lighted the continued importance of understanding how wildfire impacts PM air quality; they show

that U.S. PM2.5 concentrations have only continued to fall outside of areas and seasons not heavily

influenced by wildfire smoke. O’Dell et al. (2019) showed that episodic wildfire events impact mean

seasonal PM2.5 concentrations, which are increasing fire-prone regions (though upward trends are not

statistically significant). In the western U.S., the majority of PM2.5 NAAQS exceedances can be attrib-

uted to wildfire smoke (Liu et al. 2016b). Though the west is home to the largest U.S. wildfires, the entire

U.S. airshed is impacted by wildfire smoke. Brey et al. (2018b) showed that western U.S. wildfire smoke

is routinely advected thousands of kilometers downwind and that these smoke plumes can elevate

ground level PM2.5 concentrations. Brey and Fischer (2016) and McClure and Jaffe (2018a) demon-

strated that wildfire smoke likely enhances ozone mixing ratios, a gas-phase criteria pollutant.

Wildfires have adverse impacts aside from air quality. Wildfires that overrun suppression efforts,

cause damage to property, and result in human fatalities occur every year (Tedim et al. 2018). The

2018 Camp Fire in Butte County California resulted in 86 civilian deaths, the destruction of much of

Paradise California, and 16.5 billion USD in total losses, making it the most expensive natural disaster

in 2018 (Almukhtar et al. 2018; McBride 2018; Reyes-Velarde 2019). Stand-replacing wildfires (such

as the Campfire) can alter carbon balance by turning wildlands into a source for atmospheric carbon
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rather than a sink (Kashian et al. 2006). Though this dissertation is focused on understanding how the

air quality impacts of wildfires may change in the future, I am also motivated by these other significant

impacts.

Progress has been made towards understanding the biophysical and human-controls of wildfire

occurrence in the western U.S. Research has shown that western U.S. wildfire activity (e .g . burn area)

is correlated with temperature, vapor pressure deficit (VPD), hot-dry-windy days, soil moisture, rela-

tive humidity, and precipitation (Abatzoglou and Williams 2016; Brey et al. 2018a; Forkel et al. 2017;

Kloster and Lasslop 2017; Littell et al. 2009; Parks et al. 2018; Park Williams et al. 2012, 2017; Pechony

and Shindell 2010; Rothermel 1983; Short 2015; Srock et al. 2018; Westerling et al. 2006, 2014; Yue et al.

2013a). Modeling studies consistently suggest that wildfire activity (e .g . burn area) will continue to

increase over the next century Hurteau et al. (2014); Keywood et al. (2013); Moritz et al. (2012); Scholze

et al. (2006); Yue et al. (2014). Since the 1800s, humans have had a substantial impact on western U.S.

wildfire activity. Wildfire exclusion reduced the amount of fire on the landscape during parts of the

past two centuries and has created a fire deficit (Marlon et al. 2012). Humans alter wildfire abundance

through exclusion, but also through ignitions. Balch et al. (2017) showed that human-ignited wildfires

are expanding when and where wildfires occur.

1.3 INTRODUCTION TO WESTERN U.S. DUST

The sources and impacts of dust PM have also been demonstrated in the scientific literature. Dust

is generated from natural (e .g . wind over a desert) or anthropogenic (e .g . construction or agricultural

tilling) abrasive mechanical processes. Dust is a major component of both fine and coarse aerosols

in the western U.S. (Li et al. 2013; Wells et al. 2007). U.S. natural dust emissions (wind blown dust of

natural non-agriculture lands) are largest in the western U.S., where large deserts and bare ground are

located. In the southwest U.S. (an area encompassing Utah, Colorado, Arizona, and New Mexico), lo-

cal sources of dust include the Mojave, Great Basin, Sonoran, Chihuahuan deserts, and the Southern

Great Plains. Dust emissions from these regions are responsible for the highest wind-blown dust con-

centrations in the U.S. (Prospero 2002). Wind blown desert dust is comprised of mostly silica, which is

known to cause chronic lung inflammation, fibrosis, and lung cancer (Prüss-Ustün et al. 2011; Sing and

Sing 2010; Steenland and Ward 2014). Dust also impacts visibility in the southwest (Achakulwisut et al.

2018). Hand et al. (2016) showed that spring fine dust concentrations have been increasing in recent

years.
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Strides have been made in understanding the environmental drivers of dust emissions and the re-

sulting PM concentrations in the western U.S. The presence of vegetation can greatly reduce soil ero-

sion by wind and can limit dust emissions (Kim et al. 2017; Marticorena and Bergametti 1995; Pu and

Ginoux 2017; Woodward et al. 2005). Wet (heavy) soil is harder to loft than dry soil, making soil moisture

a controlling factor of dust emissions (Fécan et al. 1998). Precipitation can increase soil moisture and

scavenge airborne dust (Ginoux et al. 2001). Pu and Ginoux (2017) showed that variations in precipi-

tation, soil bareness, and surface wind speed can control dust emissions in the U.S. great plains. Evan

et al. (2016) show that in Australia monthly dust emissions are linearly related to mean monthly wind

speed. While observation based analyses reveal key variables that influence dust emissions, process-

based models struggle to reproduce observed variability in dust emissions and concentrations (e .g .

Mahowald et al. (2010); Pu and Ginoux (2018)). Some models in the fifth phase of the Coupled Model

Intercomparison Project (CMIP5) are able to capture global mean dust optical depth (Pu and Ginoux

2017). Pu and Ginoux (2017) found that the CMIP5 models that estimate dust emissions tend to esti-

mate a more dusty future than regression analysis, while failing to capture the observed relationships

between dust optical depth with surface wind speed, bareness, and precipitation.

1.4 OVERVIEW OF DISSERTATION CHAPTERS AND GOALS

This dissertation documents research towards a better understanding of how the environmental

drivers linked to dust and wildfire PM emissions will change in the future and what those changes im-

ply for future emissions and concentrations. My work is a critical step towards preparing for possible

future PM concentrations. The overarching strategy implemented in the work that follows is to 1) de-

velop observed relationships between environmental conditions and PM sources and concentrations

and, to 2) examine how the environmental conditions that drive PM emissions and concentrations

are estimated to change in the future using CMIP5 models. This strategy allows me to estimate possi-

ble “future worlds” as estimated by CMIP5 intermodel spread and climate scenarios. This dissertation

specifically addresses several key science questions that have emerged since 2014.

Chapter 2 is an article published in AGU Earth’s Future (Brey et al. 2018a). Chapter 2 provides a com-

prehensive analysis of how human-ignited wildfires impact when and where wildfires occur, how they

impact air quality, how they might change in the future, and contrasts these findings with lightning-

ignited wildfires. These questions are explored in western U.S. and southeast U.S. ecoregions, the two

4



regions responsible for the majority of recent continental U.S. burn area, fuel loading, and emissions

(Urbanski et al. 2018). Chapter 2 provides an essential foundation for the work presented in Chapter 3.

Chapter 3 is a manuscript submitted to AGU Earth’s Future. Chapter 3 uses historical observations

of western U.S. wildfire burn area and reanalysis data to identify the environmental conditions that best

explain the observed variability in year-to-year summer wildfire burn area in the western U.S. I then

identify how these key environmental variables are estimated to change in the future and how these

changes are likely to influence future burn area. Estimates of future burn area are quantified across

CMIP5 models and two climate forcing scenarios, providing a comprehensive analysis of the spread in

possible future summer wildfire burn area, a quantify proportional to but not perfectly correlated to

total wildfire emissions.

Chapter 4 is a manuscript in preparation for AGU Earth’s Future. Chapter 4 uses historical observa-

tions of southwest U.S. fine dust concentrations from the Interagency Monitoring of PROtected Visual

Environments (IMPROVE) monitoring network as well as reanalysis data to determine what environ-

mental conditions best explain historical year-to-year variability in dust season (March through July)

mean fine dust concentrations. I then use CMIP5 model output to estimate how dust emissions may

change in the future. These estimates are made for all available CMIP5 models across two climate forc-

ing scenarios. I identify variables that change in a way that would increase future dust concentrations

and those that change in ways that would buffer possible increases.

Finally, Chapter 5 summarizes the findings presented throughout the dissertation as well as several

possible avenues for future research.
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CHAPTER 2

ENVIRONMENTAL CONDITIONS, IGNITION TYPE, AND AIR QUALITY IMPACTS OF WILDFIRES IN THE

SOUTHEASTERN AND WESTERN UNITED STATES1

2.1 INTRODUCTION

Understanding the current and potential future abundance of fire in the U.S. is important for many

reasons, but here we approach this issue from an air quality perspective. Recent work has shown that

U.S. wildfires can severely degrade air quality on local to national scales (Baker et al. 2016; Brey et al.

2018b; Brey and Fischer 2016; Ford et al. 2017; Jaffe et al. 2008; Lassman et al. 2017; Saide et al. 2015;

Val Martin et al. 2015; Wiedinmyer et al. 2006). For example, on days that exceed PM2.5 (mass con-

centration of particulate matter with diameters smaller than 2.5 µm) regulatory concentrations in the

western U.S., 71% of the PM2.5 can be attributed to wildfires (Liu et al. 2016b). Brey and Fischer (2016)

show that there are many urban areas that experience increased ozone mixing ratios on days impacted

by wildfire smoke. Given these air quality impacts, understanding what drives U.S. wildfire abundance

and variability is a priority.

Variations in wildfire activity are due to an assortment of influences including, natural climate vari-

ability, human-caused climate change, and the legacy of wildfire suppression (Abatzoglou and Williams

2016; Pechony and Shindell 2010; Short 2015; Westerling et al. 2006, 2014). Both long-term and year-

to-year climate variability can modulate the availability of fuel in fuel-limited locations (whether or

not fuels can survive) and influence fuel flammability in flammability-limited locations (wet fuels do

not readily ignite) (Littell et al. 2009, 2016). A large body of literature has demonstrated relationships

between western U.S. forests wildfire burn area and meteorology (Abatzoglou and Williams 2016; Abat-

zoglou and Kolden 2013; Barbero et al. 2014; Cansler and McKenzie 2014; Gannet Hallar et al. 2017;

Morton et al. 2013; Park Williams et al. 2015; Riley et al. 2013; Westerling et al. 2014; Yoon et al. 2015).

Fewer studies focus on the meteorological drivers of wildfire activity in the southeast U.S., possibly be-

cause the majority of burn area in the southeast is from prescribed wildfires (Mitchell et al. 2014) and

by design, prescribed wildfire burn area extent is not (normally) determined by meteorology. Approx-

imately 70% of all prescribed burn area in the U.S. occurs in the southeast (Melvin 2015); however, the

1This chapter from, Brey, Steven J., Elizabeth A. Barnes, Jeffrey R. Pierce, Christine Wiedinmyer, and Emily V. Fischer.

2018. “Environmental Conditions, Ignition Type, and Air Quality Impacts of Wildfires in the Southeastern and Western U.S.”

Earth’s Future, September. https://doi.org/10.1029/2018EF000972.
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use of prescribed fire may be limited in the future, as severe droughts in this region become more likely

(Mitchell et al. 2014). Unintentional fires occur in this region as well. In a study that focused on Florida

wildfires, Brenner (1991) observed that most wildfires between January and April, months were relative

humidity values between 20 and 30% are common, are primarily caused by humans, while lightning

activity and lightning-ignited wildfire occurrence peaks in July. Given the large number of wildfires in

the southeast, their potential importance for regional air quality, and the susceptibility of the region

to climate-driven changes in wildfire occurrence (e .g . Liu et al. (2013)), this region needs to be under-

stood in order to prepare for the future impacts of U.S. wildfire.

Recently, Short (2014) compiled the Fire Program Analysis Fire Occurrence Data (FPA FOD), one

of the most spatially comprehensive U.S. wildfire-occurrence datasets to date. These data include

information on the ignition source of wildfires. As a result, there has been an uptick in the number

of studies that consider the regionally varying influence and environmental drivers of human-ignited

wildfires (e .g . Abatzoglou et al. (2016); Balch et al. (2017); Fusco et al. (2016); Nagy et al. (2018); Syphard

and Keeley (2015)). The goal of our research is to expand on the findings of these studies by showing

how the environmental conditions, meteorological drivers, and air quality impacts differ for human-

and lightning-ignited wildfires, and to contrast the southeast and western U.S. (outlined in Figure 2.1).

This is an understudied issue essential to understanding what drives wildfire and wildfire-smoke abun-

dance (i .e . air quality impacts) in the two continental U.S. regions with the most wildfire activity (based

on the FPA FOD, the west and southeast account for 89% of total continental U.S. burn area).

We focus on what drives burn area, rather than number of ignitions, from all wildfires throughout

the entire year, including small wildfires. This particular approach is valuable because it reveals several

important, but nuanced, new findings. We show that ignoring small wildfires (< 1000 acres), as is often

done in similar studies, is not likely appropriate for air-quality-relevant studies. We are able to iden-

tify which high-emitting ecoregions are dominated by human-ignited wildfires. Most importantly, we

show that annual wildfire burn area for human- and lightning-ignited wildfires within a given ecore-

gion are correlated with environmental conditions. This implies that changes in burn area that result

from climate change will likely be similar for both ignition types.

This paper describes a wildfire occurrence dataset, human- and lightning-ignited wildfire occur-

rence in the southeast and western US, how these wildfires correlate to each other and environmental

conditions, and an estimate of PM2.5 emissions from wildfires of each ignition type in both regions.

This work is essential in order for us to understand how the U.S. wildfire system works now and how it
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might change in the future. This understanding will help us prepare for wildfire air quality impacts in

the future.

3.3

Δ Air Quality

RH% TemperaturePrecipitation

Lightning-ignited
Human-ignited

Fuel Moisture

3.3

3.1 3.1

3.5 3.5

3.6 3.6

FIG. 2.1. Schematic outlining the components of the U.S. wildfire system explored in this work:

wildfire abundance in the west and southeast and how these abundances are influenced by ig-

nition type, precipitation, relative humidity (RH%), temperature, and fuel-moisture. Finally, we

show the air quality impacts wildfires have in each region and attribute these impacts to different

ignition sources. The numbered circles indicate sections of the paper that correspond to different

components of the diagram. Not all sections of the paper are shown. NOTE: The sections labels

shown in this schematic match the section numbers of the published manuscript, not this disser-

tation.

2.2 DATA AND METHODS

2.2.1 Fire Program Analysis Wildfire Occurrence Data (FPA FOD)

The Fire Program Analysis Fire Occurrence Data (hereafter “FPA FOD”) documents U.S. wildfires

that were extinguished or managed by state, federal, or local agencies between 1992 and 2015 (Short

2014). The database of 1.88 million wildfires merges records from federal, state, and local fire reporting

systems. Each wildfire record includes a discovery date, final fire size, cause, and fire location. The

wildfire location data are provided as latitude longitude coordinates. However, these locations do not

always represent burn scar centroids, ignition locations, nor are they always as precise as the data im-

ply (Short 2014). Sometimes wildfire locations are assigned as a public land survey system (PLSS) sec-

tion centroid (2.6 km2) (Short 2014). The specific cause of wildfires is stated, although 8.9% (including

Hawaii, Alaska, and Puerto Rico) of the wildfires are assigned a cause of "Missing/Undefined". Other

fire causes (i .e . ignition sources) in the data include; "Lightning", "Children", "Campfire", "Debris
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Burning", "Arson", "Miscellaneous", "Equipment Use", "Smoking", "Railroad", "Fireworks", "Power-

line", and "Structure". For this analysis, wildfires with the cause "Missing/Undefined" are discarded or

evaluated separately and causes other than "Lightning" are grouped into a single category of "human-

ignition". The FPA FOD purposely exclude prescribed (Rx) fires with the exception of prescribed fires

that escaped their planned perimeters and turned into wildfires (Short 2014). Fig. A1 in the supple-

mental information shows the abundance of each ignition type by region and season.

Wildfire characteristics vary significantly between the southeast and western U.S. Figure 2.2 shows

the location of Continental U.S. (CONUS) FPA FOD wildfires between 1992 and 2015. In the southeast,

wildfires are widespread. There are overlapping wildfires (e .g . some lightning-ignited wildfires in the

southeast U.S. are hard to see). Figure A2 in the Appendix shows the location of human- and lightning-

ignited wildfires on separate maps.

FIG. 2.2. Location and ignition type of all wildfires documented in the Fire Program Analysis Fire

Occurrence Data (FPA FOD) located within the contiguous United States between 1992 and 2015.

There are 1,880,465 wildfires in the record, 15% ignited by lightning, 77.7% by humans, and 7.3%

fires with an Unknown/Missing ignition type. The plotted wildfires account for 107,508,006 acres

of area burned over the period. The dashed-line box over the western U.S. shows the geographic

extent of the "western U.S." (i .e . "west") region. The dashed-line box over the southeast U.S.

shows the region defined as "southeast U.S." (i .e . "southeast") in this study.

These data are an incomplete record of total wildfire (or any type of fire) activity on the U.S. land-

scape (Short 2014). Many wildfires managed or responded to by local agencies go unreported or do

not result in a "viable" report (Thomas and Butry 2012). The reliability and quality of these data vary
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across states (e .g . spatial pattern and abundance of ignition type "Unknown/Undefined", gray dots in

Figure 2.2). In some areas it is possible that the ignition type designation "Unknown/Undefined" are

wildfires ignited by humans. For example, the Phoenix metropolitan area appears gray in Figure 2.2.

Given the high population density of this urban area it is plausible that these wildfires were started by

humans rather than lightning.

Short (2014) estimates how complete the FPA FOD are by state with respect to United States Forest

Service (USFS) and National Interagency Coordination Center (NICC) wildfire data. These estimates

of completeness are provided on a 10 point scale. The scores for states completely within the western

region shown in Figure 2.2 range between 7.4 (Colorado) and 9.9 (Idaho), with a mean score of 9.2. The

scores for states in the southeast region range between 6.3 (Tennessee) and 9.9 (Georgia), with a mean

score of 8.83 (Short 2014). In the west and southeast, the FPA FOD is considered complete to the extent

that it can be used to characterize patterns of wildfire area burned (Short 2014).

For this work, the 1992-2015 fire occurrence data were downloaded on 01-29-2018 as a Microsoft

Access Database (.accdb) file where the “fires” field was exported. The data are available at the following

URL: https://www.fs.usda.gov/rds/archive/Product/RDS-2013-0009.4/.

2.2.2 North America Level II Ecoregions

We group the fires in the FPA FOD by ecoregion. Ecoregions are geographic areas where the type

of ecosystems are broadly similar. Characteristics considered in making ecosystem classifications in-

clude, geology, soils, vegetation, climate, land use, and hydrology (Omernik 1987, 1995). The ecosys-

tems used to separate wildfires in this work were developed by Omernik (1987). These ecosystems

serve as a geographic framework for research of areas with similar ecosystem components. Some of

the analysis presented in this work is presented on level II ecoregions, a spatial scale useful for sub-

continental analysis, and that aggregates wildfires with similar geographic attributes. In this work, FPA

FOD wildfires were assigned an ecoregion based on the ecosystem shapefile perimeter in which each

fire location fell within, or closest to. The ecoregion shapefile data are available at the following URL:

https://www.epa.gov/eco-research/ecoregions-north-america.

2.2.3 GRIDMet meteorology and fuel moisture information data

This work uses the GRIDMet derived variable 1000-hour dead fuel moisture to assess fuel aridity.

The 1000-hour dead fuel moisture index is determined by ambient environmental conditions and is

critical to determining wildfire potential. GRIDMet is a gridded archive of meteorological data over

the contiguous U.S. with 4 km horizontal grid spacing. The data were developed by Abatzoglou (2013)
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for use in ecological, agriculture, and hydrological models. The data were validated against several

weather station networks, including, RAWS, AgriMet, AgWeatherNet, and USHCN-2. These data, as

well as documentation are available at the following URL: http://www.climatologylab.org/gridmet.htm

2.2.4 ECMWF ERA-Interim Reanalysis Meteorology

We use ECMWF ERA-Interim reanalysis fields (Dee et al. 2011) of temperature, precipitation, and

relative humidity to determine regional meteorology conditions at annual temporal scales and hori-

zontal grid spacing of 0.75◦ x 0.75◦. We compute annual means by taking the averages of 6-hourly (00z,

06z, 12z, and 18z) analysis fields. Estimating total precipitation requires the use of forecast fields. We

combine the 00z and 12z 12-hour total precipitation fields to get total daily accumulated precipita-

tion. The data are available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-

interim

2.2.5 Global Fire Emissions Data (GFEDv4s)

In this work, we compare GFEDv4s estimates of burn area to FPA FOD burn area data (Figure A3

in the Appendix shows burn area total estimates for each side by side). FPA FOD are by design an in-

complete record of fire activity (no prescribed fire, agricultural burning, fires on private lands, missing

reports, e t c .). By comparing FPA FOD to the satellite-based GFEDv4s, we can see where FPA FOD

wildfires do not capture the majority of satellite detected fire activity. We also use the GFEDv4s esti-

mate of dry fuel consumed to translate regional burn area into total emissions. GFEDv4s better rep-

resents the abundance of small fires than previous versions of GFED (e .g . GFEDv4). GFEDv4s burn

area is based on remotely sensed observations of burn scars. Emissions are estimated by multiplying

fire area by an emission factor (emissions per fuel burned) (Giglio et al. 2013; Randerson et al. 2012).

The version of GFEDv4s used for this work is gridded on a 0.25 x 0.25◦ grid. These data are available at

http://www.globalfiredata.org/data.html.

2.2.6 Fire INventory from NCAR (FINN)

In this work, PM2.5 emissions for different regions and individual FPA FOD wildfires are estimated

using the Fire INventory from NCAR (FINN) model framework. FINN produces daily fire emission

estimates at roughly 1 km spatial resolution (Wiedinmyer et al. 2006, 2011). FINN emissions are esti-

mated using satellite observations of active fires, the fuel loadings at fire locations, biomass consumed,

and emission factors for species burned (Wiedinmyer et al. 2006, 2011). Each of these estimated val-

ues have associated uncertainties, when combined this results in a factor of two uncertainty associ-

ated with FINN emissions estimates (Wiedinmyer et al. 2011). In this work, FPA FOD wildfire location
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and year information are used within the FINN model framework instead of MODIS fire detections.

Area burned for each fire was assigned based on the FPA FOD data. Updated emission factors and

annual-specific MODIS land cover type (2002-2012) and vegetation continuous fields products (2002-

2014) were used here to assign land cover and vegetation characteristics. Wildfires where the land

cover data indicated the wildfire occurred over water were reassigned as shrubland. Limitations to

this method include the assignment to a single land cover and fuel density for each fire based on the

latitude and longitude assigned to each fire (not necessarily burn scar centroid). There are uncertain-

ties associated with these emission estimates and it is not clear whether they likely represent over or

under-estimates of total emissions for wildfires documented in the FPA FOD. For example, if a large

wildfire location is classified in shrubs, but most of the large wildfire ended up burning in a forested

area, the emissions would be dramatically underestimated. The opposite could also occur. The emis-

sion estimates associated with FPA FOD wildfires used in this work are available at the following URL:

ftp://ftp.acom.ucar.edu/user/christin/FPAFOD/.

2.2.7 National Environmental Satellite Data, and Information System (NESDIS) Hazard Mapping Sys-

tem (HMS) HYSPLIT Points

To estimate possible air quality impacts of FPA FOD wildfires, we examine how often wildfires docu-

mented in the FPA FOD are co-located with satellite detected fires used to initiate the National Weather

Service (NWS) smoke forecasts. The HMS is an interactive environmental satellite image display sys-

tem where trained satellite analysts identify the geographic locations of fire and smoke in the U.S. (Brey

et al. 2018b; Ruminski et al. 2006). Relying primarily on visible satellite imagery, analysts identify the lo-

cation of fires that they confirm to be producing smoke. These detections are called "HYSPLIT points"

because they are used to initiate NOAA’s HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Tra-

jectory) model, which is used to estimate the movement of smoke in the NWS smoke forecast (Rolph

et al. 2009; Ruminski et al. 2006). The accuracy of the locations assigned to HYSPLIT points is about 2-3

km. The analysis is performed daily. Like many other satellite-based fire-detection methods, smaller

wildfires are harder to detect and are more likely to be undercounted than large fires. Analysts make

no attempt to distinguish between different types of fires (wildfires, prescribed fires, agriculture fires,

etc.). HYSPLIT points with consistent attributes are available from 2007 onward.
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2.3 RESULTS AND DISCUSSION

2.3.1 Human versus lightning-ignited wildfires in the west and southeast

FIG. 2.3. The top row of this figure shows the number of wildfires discovered on a given day of the

year in the west (left) and southeast (right) between 1992 and 2015. The bars are color coded by

wildfire ignition type. The bottom row shows the monthly burn area that results from the wildfire

ignitions shown in the top row. The burn area attributed to a given month is the sum of wild-

fire burn area for wildfires that started in that month. Wildfires with start causes listed as “Miss-

ing/Undefined” have been excluded from this figure. The most common day for ignitions is the

4th of July, an American holiday where the use of fireworks is a common form of celebration.

Previous work has shown that the number of present-day human-ignitions is large, especially in the

southeastern U.S. (e .g . Balch et al. (2017); Nagy et al. (2018); Syphard et al. (2017b)). We focus on the

burn area that results from each ignition type rather than the number of wildfires because burn area is

more closely related to the societal impacts of wildfires (air quality, visibility, cost of suppression, car-

bon cycle, ecological, timber resources, etc.). Between 1992 and 2015, the FPA FOD documents 84 mil-

lion acres of area burned in the west and 12 million in the southeast. In the west, 6% of these acres are
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from wildfires with a cause of "Unknown/Undefined" compared to 8% in the southeast. Both regions

are impacted by many wildfires, but the direct influence humans have on wildfire abundance is very

different between the two regions. In the west, 70% of the area burned is from lightning-ignited wild-

fires (n=217,187) and 30% is from human-ignited wildfires (n=350,412). In the southeast, 27% of the

area burned results from lightning-ignited wildfires (n=37,876) and 73% results from human-ignited

wildfires (n=613,013). The large proportion of southeast burn area attributed to human-ignited wild-

fires suggest that humans are a dominant driver of wildfires activity in this region. Figure A1 shows the

regional ignition counts by specific cause and season; differences between the most common types of

human ignitions between the southeast and west suggest that there is no single cause that could be

jointly eliminated to reduce fires in both regions.

The total number of wildfires during peak wildfire season in the west and southeast are similar (y-

axis of top row in Figure 2.3), but there is an order of magnitude more area burned in the west (y-axis of

bottom row in Figure 2.3). The southeast accumulates less annual burn area compared to the west, but

the burned-area accumulation starts earlier in the year. The southeast wildfire season is bimodal. The

first and larger peak occurs early in the year (January, February, March, April), months where parts of

the southeast experience low fuel moisture and atmospheric relative humidity (Brenner 1991). These

are the months with the largest number of individual wildfires and burn area. These wildfires are al-

most exclusively ignited by human activities (primarily debris burning). The months May through July

account for the majority of lightning-ignited wildfire ignitions and burn area in the southeast. July can

be a wet month in much of the southeast. Chiodi et al. (2018) show that for much of the region the

probability of daily precipitation exceeding 0.25 inches ranges between 10% and >35%, this can limit

the use of prescribed fire. There is a second but smaller peak in the number of human-ignited wildfires

in November.

In the west, nearly the opposite occurs. There is a single peak for the number of wildfires and

accumulation of burn area for human and lightning-ignited wildfires centered around July and Au-

gust. Similar to the southeast, in the west the lightning ignited wildfire burn area, as defined as the

days of the year that bound the 10 and 90th percentile of the accumulated burn area, is shorter than

the human-ignited wildfire season, though there is almost twice the burn area attributed to lightning

started wildfires as there are human started wildfires.
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The opposite wildfires seasons between the southeast and west means that wildfires have the po-

tential to impact air quality year-round in the southeast. In the late winter and early spring, local wild-

fires degrade air quality (explored in more detail later). In the summer, when local wildfire activity is

minimal, the southeast is regularly impacted by smoke plumes originating from western U.S. wildfires

(Brey et al. 2018b). In the fall, when the smoke plumes that originate in the west go away, local human-

ignited wildfire activity picks back up.

2.3.2 Ignition type, wildfire size, total burn area, and approximate emissions

FIG. 2.4. Percent of total wildfire burn area (vertical axis) owed to wildfires less than equal to wild-

fires of a given size (horizontal axis) in the west (left) and southeast (right). The orange and gray

curve represents human- and lightning-ignited wildfires respectively. The black curve represents

the total of the two. The dashed black line shows the percent of wildfire burn area accounted for

by wildfires 1000 acres or smaller (8.54% in the west, 57.25% in the southeast).

The cumulative burn area as a function of wildfire size is presented in Figure 2.4. This demonstrates

that large wildfires (> 1000 acres) account for the vast majority of wildfire area burned in the west and

account for a smaller proportion in the southeast. This illustrates one of the key differences between

wildfires in the southeast and west. The west is home to very large wildfires, and the east is home

to smaller wildfires. Wildfires 1000 acres ( 405 hectares) or smaller account for 8% of the burn area

in the west and 57% in the southeast. In the southeast, small human-started wildfires account for

half of the wildfire burn area in the region (Figure 2.4, orange line). While in the west, ignoring small

wildfires would not significantly change observed patterns of interannual variability, and many studies

do this using a similar cutoff (e .g . Dennison et al. (2014); Westerling et al. (2014)). The differences in

the size of wildfires that contribute to the total burn area for the west and southeast are due to many

factors including fuels, climate, frequency of extreme fire weather, topography, population density,
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road density, and wildfire management priorities. Level II ecoregions provide a scale where some of

these factors are broadly similar, thus the following sections show differences between the west and

southeast at the scale of level II ecoregions.

Figure 2.5 shows the geographic extent, wildfire burn area, and the dry fuel consumed estimate

from GFEDv4s separated by level II ecoregions in the west and southeast. As discussed in the data

and methods section, GFEDv4s is a satellite-derived fire emission inventory that includes all satellite

detected fires (not just wildfires). This makes comparing GFEDv4s emissions and FPA FOD burn area

complicated since there is no assurance that both data sources document the same wildfires. With

that said, the GFEDv4s emissions presented in Figure 2.5 offer context for which ecoregions have the

highest fire emissions. The forested mountains, the highest emitting ecoregion, consumes an order of

magnitude more dry matter than any other ecoregion in the west or southeast (Figure 2.5, bottom row,

difference in y-axis).

FIG. 2.5. The geographic extent of the ecoregions (top row), total wildfire burn area accounted for

by FPA FOD (bars in bottom row, orange and blue represents human-ignited and lightning-ignited

burn area respectively), and the all-lands dry fuel consumed by fire estimate from GFEDv4s (aster-

isk symbol "*" in bottom row) are shown in Figure 5. These totals are shown for level II ecoregions

within the west (left) and southeast (right). This figure includes wildfire data between 1997 and

2015 because these are the years FPA FOD and GFEDv4s overlap. The patterns in FPA FOD burn

area by region, or percent attributed to human ignitions does not significantly change when in-

cluding fires from 1992 to 1996. This map shows level II ecoregions. The ecoregions are; forested

mountains, high deserts, Mediterranean California, Southeastern Plains, Ozarks, Mississippi allu-

vial, and Everglades. Areas of white in the maps in the top row are level II ecoregions with very

small burn area totals.
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In the west, the high desert and forested mountains account for far more burn area than the other

seven ecoregions. The fraction of area burned attributed to human-started wildfires in the Forested

Mountains and High Deserts is small (orange portion of bars in bottom left of Figure 2.5). Mediter-

ranean California is the only ecoregion in the west where the majority of wildfire burn area are due to

human-ignited wildfires. When examining emissions, Figure 2.5 shows that the majority of dry matter

consumed in the western U.S. occurs in the Forested Mountains and that most of these emissions are

due to lightning-started wildfires.

In the southeast, the Mississippi Alluvial, the Ozarks, the Southeastern Plains, and Everglades ac-

count for the majority of the total burn area. The burn area and total emissions within southeast

ecoregions is an order of magnitude less than those in the west, though given the abundance of small

wildfires in the southeast (e .g . Figure 2.4 right panel) and the challenge of detecting small fires with

satellites (Randerson et al. 2012), it is possible GFED fire emission estimates in these ecoregions are

severely underestimated. Additionally, there is more prescribed fire burn area in the southeast than

wildfire burn area (Chiodi et al. 2018; Mitchell et al. 2014), so it is important to keep in mind the large

disconnect between total emissions and wildfire burn area presented in the southeast in Figure 2.5.

2.3.3 Ecoregion-specific relationships between ignition and dead-fuel moisture

The dead-fuel moisture index is a measure of the amount of water in dead vegetation and is widely

used to estimate wildfire potential (NCDC). It is more difficult to ignite fires when fuel moisture levels

are high because energy must be used to evaporate water before combustion can occur (Bradshaw et al.

1984; Fosberg et al. 1971; Rothermel 1972; Stocks et al. 1989). Dead-fuel moisture content changes in

response to environmental conditions (NCDC), i.e. dead-fuel moisture is a quantity with memory of

meteorological conditions that drive local moisture abundance (e .g . precipitation, temperature, evap-

oration, etc.). The 1000-hour dead-fuel moisture is a measure of the amount of water in fuel as a per-

centage of its mass where it is assumed that there is a 1000-hour time lag for fuels 3-8 inches in diameter

to become 2
3 of the way towards equilibrium with the local environment. Fuels with small diameters

(e .g . grass, leaves, twigs) respond to atmospheric moisture levels quickly. FPA FOD wildfires were as-

signed 1000-hour dead fuel moisture percentages based on the value of the GRIDMet (Abatzoglou 2013)

grid cell (4 x 4 km) the wildfire location fell within. For the purpose of assigning fuel moisture values to

wildfires, the discovery date is treated as the ignition date. In reality these two dates are not always the

same and depending on conditions, can be weeks apart.
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FIG. 2.6. The 1000-hour fuel moisture percent assigned to wildfires based on the location and dis-

covery date in the FPA FOD. Wildfire 1000-hour fuel moisture percent values are separated by level

II ecoregions (rows) and ignition type (color). All wildfires (size, month, etc.) were retained for this

plot. The boxes show the 25th, 50th (notched middle), and 75th percentiles of the data. The up-

per whiskers show data that are within 1.5 times the length of the interquartile range (IQR). Data

beyond the whiskers are "outlying" points and are plotted individually. The notches around the

median value extend 1.58 times the width of the IQR divided by the square root of the number

of samples; this gives an approximate way to compare the median values of distributions with

roughly 95% confidence (Mcgill et al. 1978).

Figure 2.6 shows the 1000-hour fuel moisture percent assigned to wildfires based on the location

and the discovery date provided by the FPA FOD. The box and whisker plots show the distribution of

fuel moisture values in the level II ecoregions with the most burn area and emissions for both ignition
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types. The most clear distinction in fuel moisture where wildfires occur is the ecoregion, not the type of

ignition (rows rather than colors in Figure 2.6). On average, wildfires in the southeast (rows 4 through

7) occur at higher fuel moisture percentages than wildfires in the west (rows 1 - 3). However, due to

the abundance of human-ignited wildfires in the southeast and lightning-ignited wildfires in the west,

a continental-wide comparison of the fuel moisture percent of wildfires segregated by ignition type

would reveal that human-ignited wildfires occur at higher fuel-moisture values than lightning-ignited

wildfires. Such a conclusion was made by Balch et al. (2017), who showed that nationally, human-

ignited wildfires occur at higher fuel moisture content values than lightning-ignited wildfires. While

differences in fuel moisture values between ignition types exist, Figure 2.6 shows that this difference

can be largely explained by contrasting ecoregions in the west and southeast.

In the west, the median fuel moisture for wildfires is always higher than for human-ignited wild-

fires. This is likely because human-ignited wildfires in the west start earlier, go later in the year (Figure

2.3), and are on average small (Figure 2.4). In the southeast ecoregions, the differences between the

median fuel-moisture values for each ignition type are generally smaller than the west. In the Ever-

glades and Mississippi Alluvial, the median fuel moisture is higher for lightning-ignited wildfires than

human-ignited wildfires. Some of the differences in fuel moisture at wildfire locations in the southeast

can be explained by the difference in seasonality for wildfires of each ignition type (bi-modal human-

started wildfires season, lightning started wildfire season peaks in the summer). On average, small

wildfires (<1000 acres) occur at higher fuel-moisture values and on more days of the year than large

wildfires (>1000 acres) (Figure A4). Within a given ecoregion, most large wildfires occur in similar,

temperatures, days of the year, and fuel moisture values regardless of ignition type (Figure A4 in the

appendix). There can be large interannual variability in wildfire occurrence and the meteorology that

drives 1000-hour fuel moisture. This will be explored in the next two sections.

2.3.4 Interannual variability in lightning- and human-ignited wildfire burn area

Figure 2.7 shows the Spearman correlation of the interannual variability of lightning and human-

ignited burn area for the three ecoregions in the west and four in the southeast that account for the

majority of Continental U.S. (CONUS) FPA FOD wildfire activity. We used the Spearman correlation

coefficient in Figure 2.7 because we did not want to impose the requirement of a linear relationship be-

tween annual human- and lightning-ignited burn area within an ecoregion. For the majority of ecore-

gions, the interannual variability in burn area between each ignition type are well correlated; however,

19



correlations are generally higher for ecoregions in the west (light blue in Figure 2.7). The two main ex-

ceptions are the Everglades (r= 0.3) and Mediterranean California (r= 0.19). The burn area in Mediter-

ranean California is dominated by human-ignited wildfires while the burn area ignition attribution is

almost evenly split in the Everglades, so it is not clear that low correlations are associated with a par-

ticular dominant ignition type. Wildfire burn area is dominated by human-ignitions in the Ozarks and

Southeastern Plains and the correlation for burn area between ignition types is high in these ecore-

gions (r > 0.5). The correlation in burn area between ignition types suggests that burn-area totals for

both wildfire types are driven by similar factors (e .g . environmental conditions) or that the separate

factors driving each ignition type are also well correlated.

FIG. 2.7. Spearman correlation coefficient (r, mapped as color) for the interannual burn area by

ignition type (human and lightning) in each ecoregion between 1992 and 2015. The west and

southeast regions are shown with the dashed line boxes, only wildfires that occurred within the

plotted ecoregions and boxes were used for the correlation calculations.

2.3.5 Burn area and annual meteorology across human- and lightning-ignited wildfires

An important question is whether the variability in ecoregion area burned for lightning- and human-

ignited wildfires can be explained by the annual-mean state of meteorological variables. The goal

of this section is to determine if the interannual variability of total burn area for human-ignited and

lightning-ignited wildfires (shown in Figure 2.7) have the same relationship with key meteorology vari-

ables that drive aridity and increase wildfire danger rating indices. Under arid conditions, correlated
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indices such as the Palmer drought severity index (PDSI), wildfire energy release component (ERC),

and dead-fuel moisture indices all contribute to heightened fire danger (WFAS). Each of these indices

are at least partially driven by temperature, precipitation, and relative humidity.

FIG. 2.8. The Pearson (linear) correlation coefficients between total year-long area burned vs.

mean annual temperature (T), total precipitation (P), and mean relative humidity percent (RH).

Correlation values are shown for burn area by ignition type (color). Temperature and relative hu-

midity are calculated using the mean of daily mean 2-meter temperature for 0.75 x 0.75◦ ECMWF

reanalysis grid boxes that overlap the specified ecoregions. Total precipitation is the annual sum

of precipitation for grid boxes that overlap each ecoregion. Wildfires of all sizes were included in

the correlation calculations shown in this plot.

Figure 2.8 shows the Pearson correlation coefficient between total summer wildfire burn area and

meteorology variables, segregated by ecoregion (columns) and ignition type (color). Relationships

(sign of correlation) between burn area and meteorological variables are consistent across ecoregions

and ignition types. The exception is temperature in Mediterranean California and the Everglades. In

Mediterranean California, temperature is positively correlated with human-ignited burn area and neg-

atively correlated with lightning-ignited burn area. In the Everglades the opposite is true; however, the

values of these correlations are close to zero. Correlations are generally stronger for lightning-ignited

wildfires, which could suggest that lightning-ignited wildfire burn area is more strongly influenced by

meteorology. There is no obvious difference in the magnitudes of the correlations between ecoregions

in the west and southeast. This is surprising given the contrasts in wildfire size, fuels, topography, and

dominate ignition types between the two regions.

The expectation that total area burned will increase under climate change can be deduced from

first principles of fire behavior. Fires ignite more easily and spread faster in dry wildland environments

(Albini and Stocks 1986; Alexander and Cruz 2006; Rothermel 1972; Schaaf et al. 2007; Wagner 1977,
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1998). All of these ecoregions are located where there is a high degree of confidence that mean surface

temperatures will increase over the coming century (Collins et al. 2006). Based on the positive linear

correlations between temperature and burn area shown in Figure 2.8 (warmer years tend to have more

burn area), it is possible that the future burn area for both ignition types will increase with increasing

temperatures (this is not clear in Mediterranean California or the Everglades). However, this predicted

increase assumes that, 1) the observed relationships between annual burn area and temperature re-

main stationary in the future (an assumption Higuera et al. (2015) have shown may not always be true),

and 2) these relationships hold when the climate departs from the range of temperatures observed be-

tween 1992 and 2015.

Figure 2.8 shows a negative linear relationship between burn area and total annual precipitation in

every region for each ignition type. What this anticorrelation implies for changes to wildfire abundance

under climate change is limited by the same challenges outlined in discussing temperature, with the

added complication that the changes in the quantity and variability of precipitation is not as certain as

temperature (Collins et al. 2013; Pendergrass et al. 2017).

This section does not intend to make predictions of future wildfire abundance based on these cor-

relations, but rather to show that whatever climate-driven changes occur in temperature, total pre-

cipitation, and relative humidity, Figure 2.8 suggest that the impact on human- and lightning-ignited

wildfire burn area may be similar. Syphard et al. (2017a) and Parisien et al. (2016) argue that climate

may be less important for driving wildfire activity in areas where human activities and ignitions are per-

vasive. While humans are responsible for igniting the majority of wildfires in the southeast, our analysis

implies that the annual burn area that results from these wildfires is modulated by environmental con-

ditions and therefore future burn-area totals are unlikely to be independent of climate change. Thus,

a singular focus on human-ignitions as the driver of southeast wildfire occurrence (expanding season,

number of wildfires, fuel moisture where wildfires occur, etc.) and ignoring climate change, is not be

the most productive way to prepare for the future.

2.3.6 PM2.5 emission estimates by region and ignition type

Wildfires emit particulate matter pollution, which can degrade local and regional air quality (Baker

et al. 2016; Brey et al. 2018b; Brey and Fischer 2016; Ford et al. 2017; Jaffe et al. 2008; Lassman et al. 2017;

Saide et al. 2015; Val Martin et al. 2015; Wiedinmyer et al. 2006). In the present study, the potential air

quality impacts of human- and lightning-ignited wildfires are estimated based on the PM2.5 emitted by
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these wildfires. The PM2.5 emissions presented here were estimated for each FPA FOD wildfire between

2002 and 2015 using the FINN model framework, described in detail in section 2.2.6.

FIG. 2.9. The total PM2.5 emissions from FPA FOD wildfires between 2002 and 2015 in the west

and southeast color coded by ignition type. PM2.5 emissions were made using the FINN model

framework. FPA FOD wildfires between 2002 and 2015 and all months were used (n=1,086,712),

these are the years the two data sources overlap. Only FINN emissions derived from FPA FOD

wildfires are shown.

The bars in Figure 2.9 show the total estimated PM2.5 emissions of FPA FOD wildfires within the

west and southeast regions between 2002 and 2015. The blue and orange bars in Figure 2.9 show the

cumulative PM2.5 emissions that result from lightning- and human-ignited wildfires respectively. The

ignition-type that accounts for the most PM2.5 is the same as the ignition type responsible for the ma-

jority of burn area within a given region (Figure 2.4). There is more wildfire PM2.5 emitted in the west

than the southeast between 2002 and 2015. However, there are similar amounts of PM2.5 that are a re-

sult of human-ignited wildfires in both regions. Although southeast emissions are lower than the west,

it is clear that southeast wildfires, although on average smaller, in aggregate emit substantial amounts

of PM2.5 which have the potential to significantly impact air quality. The PM2.5 emissions presented

in this section are an incomplete account of PM2.5 in both regions since prescribed fire, agricultural

burning, and fires on private land are omitted from the FPA FOD.
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2.3.7 Ignition types for wildfires leading to U.S. smoke air quality forecasts

This section examines the air quality impacts of FPA FOD wildfires through a different lens, by in-

vestigating how often FPA FOD wildfires can be linked to NWS smoke forecasts. This provides a second

perspective on the possible air quality impacts of wildfires of different ignition types. We identified the

wildfires that were co-located in space and time with HYSPLIT points (human analyzed wildfires used

to initiate NWS smoke forecast described in section 2.2.7). We consider HYSPLIT points and FPA FOD

wildfires to be co-located, or paired, when two conditions are met. 1) The HYSPLIT point must have

been analyzed on the day before or up to seven days after the wildfire discovery date documented in

the FPA FOD. 2) The distance between the HYSPLIT point and the FPA FOD wildfire location must be

no greater than 10 km. These combined criteria are very strict and most likely underestimate the num-

ber of HYSPLIT point detections paired to large FPA FOD wildfires and overestimate the number of

HYSPLIT point detections paired to small FPA FOD wildfires. FPA FOD data between 2007 and 2015

was used for pairing, as these are the years FPA FOD and HYSPLIT point data overlap. When we adjust

our pairing criteria by changing the distance and time requirements for FPA FOD wildfires and HYS-

PLIT points to be considered co-located, the total number of wildfires paired changes, but the patterns

shown in Figure 10 and presented in the following paragraphs do not change significantly.

The majority of FPA FOD wildfires are not paired with HYSPLIT points. Between 2007 and 2015,

only 5.5% of FPA FOD wildfires (5.2% in the west, 5.8% in the southeast) are co-located with HYSPLIT

points. The low number of FPA FOD wildfires paired to HYSPLIT points is not surprising given the

abundance of very small (<10 acres) wildfires documented in the FPA FOD and the challenge of de-

tecting small wildfires via satellite. The similar percent of wildfires paired in the southeast and west

is surprising, given that wildfires in the west are on average larger than wildfires in the southeast. It

is likely that our methods underestimate the number of co-located HYSPLIT points for very large FPA

FOD wildfires since large wildfires can last longer than the allowable time period for pairing (1 day be-

fore and 7 days after the wildfire discovery date). Additionally, the wildfire locations provided in the

FPA FOD data are not necessary burn scar centroids, and wildfire burn scars are not always circular,

which compromises our method’s ability to pair all appropriate HYSPLIT points to large wildfires.
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FIG. 2.10. Count of FPA FOD wildfires associated with NESDIS HMS analyzed HYSPLIT points

used to initiate the NWS smoke forecast, occurring in the west and southeast regions between 2007

and 2015 (the years these data overlap). The colors indicate the cause of the FPA FOD wildfire. FPA

FOD wildfires that were not co-located with HYSPLIT points have been excluded from this plot.

There are 9,938 wildfires in the West and 12,588 in the Southeast associated with HYSPLIT points.

2.4 CONCLUSIONS

We use the Fire Program Analysis Wildfire Occurrence Data (FPA FOD) to contrast the environ-

mental conditions, meteorological drivers and air quality impacts of human- versus lightning-ignited

wildfires in the southeast and western U.S. We find that the proportion of wildfires that are started by

humans is higher in the southeast U.S. than in the west, though the seasonality of when these wildfires

occur is also different (i .e ., the wildfires in the southeast are bimodal with more occurrences in the

spring and fall months, whereas the majority of wildfires in the west occur during July/August). We

show that there are larger contrasts in 1000-hour fuel-moisture between ecoregions than between ig-

nition types, which implies that both ignition types are similarly constrained by fuel-moisture within

a given ecoregion. Presently, both human- and lightning-ignited wildfire burn area are anti-correlated

with total annual precipitation and will likely react similarly to future changes in precipitation (assum-

ing a stationary relationship between precipitation and burn area). Between 1992 and 2015 humans

were the dominant source of wildfire ignitions in the southeast U.S. However, the annual burn area
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of these wildfires is still linked to environmental conditions that allow fuels to ignite and wildfires to

spread. Thus, climate change, not just human-ignited wildfires, will be an important driver of future

wildfire activity and the resulting air quality impacts in the southeast U.S. The same is true for the west,

where summertime burn area for both ignition types is greater in warmer, drier years. On average, wild-

fires in the southeast are smaller than in the west. However, these small wildfires significantly impact

southeast air quality because 1) there is a large number of southeast wildfires associated with National

Weather Service air quality smoke forecasts, and 2) total PM2.5 emissions from human-ignited wildfires

in the southeast are similar to the total PM2.5 emissions from human-ignited wildfires in the west.
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CHAPTER 3

EXAMINING THE FUTURE SPREAD IN ENVIRONMENTAL CONDITIONS THAT DRIVE WESTERN UNITED

STATES SUMMERTIME WILDFIRE BURN AREA2

3.1 INTRODUCTION

Western United States (U.S.) wildfires can impact atmospheric composition on local, synoptic, and

continental scales (Baker et al. 2016; Brey et al. 2018a; Brey and Fischer 2016; Ford et al. 2017; Lassman

et al. 2017; Saide et al. 2015; Val Martin et al. 2015; Wiedinmyer et al. 2006). The air quality impacts of

Wildfire smoke can be especially pronounced in the western U.S. (McClure and Jaffe 2018c; O’Dell et al.

2019), where the majority of particulate matter with diameters less than 2.5 microns (PM2.5) National

Ambient Air Quality Standards (NAAQS) exceedances can be attributed to wildfire smoke (Liu et al.

2016a). A growing body of research has demonstrated that ozone, a gas phase criteria pollutant in the

U.S., can also be enhanced in the presence of wildfire smoke (Brey and Fischer 2016; Jaffe et al. 2013;

Lu et al. 2016; McClure and Jaffe 2018b). The deteriorated air quality due to wildfire smoke can impact

public health (Rappold et al. 2011; Delfino et al. 2009; Fisk and Chan 2017; Lipner et al. 2019; Gan et al.

2017). Recent work has also begun to identify the impacts of smoke from wildfires on radiation (e .g .

McKendry et al. (2019)) and terrestrial productivity (e .g . Yue and Unger (2018)).

The cost to suppress wildfires has increased in recent years, exceeding 50% of the United States

Forest Service (USFS) annual budget for the first time in 2015. In 1995, fire accounted for only 16% of

the budget (USFS 2015). These increased costs come at the expense of other USFS priorities, including

recreation and restoration. Recent western U.S. wildfires have had large impacts on people, property,

and local economies. The 2018 Camp Fire in Butte county California resulted in 86 civilian deaths, the

destruction of much of Paradise California, and 16.5 billion USD in total losses, making it the most

expensive natural disaster in 2018 (Reyes-Velarde 2019; McBride 2018; Almukhtar et al. 2018). Stand-

replacing wildfires can alter carbon balance by turning wildlands into a source for atmospheric carbon

(Kashian et al. 2006). In the long term, if stands grow back, the net impact on atmospheric carbon

would be close to zero (Kashian et al. 2006), however, as the climate warms, shifts in vegetation types,

such as trees to shrubs/grasslands, become more likely (Parks et al. 2018). Given this suite of impacts,

2Adapted from a manuscript submitted to AGU Earth’s Future, June 2019
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there is a need to understand what drives year-to-year wildfire activity, how those drivers may change

in the future, and how future burn area and total emissions may respond.

Many factors contribute to variations in western U.S. wildfire activity including natural climate

variability, climate change, and land management (Abatzoglou and Williams 2016; Pechony and Shin-

dell 2010; Short 2015; Westerling et al. 2006, 2014). Variability in long-term climate and year-to-year

weather can influence the availability and flammability of fuel (Littell et al. 2009, 2016). Studies have

shown that western U.S. wildfire burn area has increased since the 1980s as the western U.S. has warmed

(e .g . Westerling et al. (2006)).

From an energy perspective, temperature alone is not an ideal measure of wildfire potential. At the

scale of individual wildfires, fire spread is a series of ignitions where heat from the fire raises fuels to

ignition temperature (Rothermel 1983; Simms and Law 1967). Before ignition of additional fuel can oc-

cur, water must be evaporated from the fuel, which comes at the cost of the latent heat of vaporization

(2257 J/g); thus the rate of fire spread depends on fuel-moisture content (Bradshaw et al. 1984; Fos-

berg et al. 1971; Rothermel 1972; Simms and Law 1967; Stocks et al. 1989). Wildfires consume both live

and dead fuels (Jolly and Johnson 2018) and are heavily influenced by fuel moisture content (Rother-

mel 1972; Simms and Law 1967). Living plants can reduce fire spread if they are not water stressed;

as they typically have moisture content values an order of magnitude higher than dead fuels (Cohen

et al. 1990). Thus, environmental variables that modulate moisture available to plants may be more

physically relevant to live fuels flammability than atmospheric temperature. In contrast, dead fuels,

such as litter, passively respond to ambient atmospheric conditions.

Given the myriad of environmental variables that have been identified as possible drivers of west-

ern U.S. wildfires. Statistical models designed to explain observed variance or predict future fire ac-

tivity often leverage correlations between wildfire burn area, temperature, and other environmental

variables influenced by temperature. On seasonal-to-annual timescales, western U.S. wildfire activ-

ity (e .g . burn area) can be highly correlated with temperature, vapor pressure deficit (VPD), hot-dry-

windy days, soil moisture, relative humidity, and precipitation (Abatzoglou and Williams 2016; Brey

et al. 2018a; Forkel et al. 2017; Kloster and Lasslop 2017; Littell et al. 2009; Parks et al. 2018; Park Williams

et al. 2012, 2017; Pechony and Shindell 2010; Rothermel 1983; Short 2015; Srock et al. 2018; Westerling

et al. 2006, 2014; Yue et al. 2013b). Different environmental variables have been shown to be important

in different regions of the western U.S. For example, wildfire burn area in the southwest U.S. has been

shown to be related to drought at varying antecedent timescales (Park Williams et al. 2015). Littell et al.
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(2009) showed that 1916-2003 wildfire burn area in the southwest was driven by fuel availability, the

previous year’s precipitation, and least of all in their analysis, the conditions of the present year. Abat-

zoglou and Williams (2016) show that metrics of aridity (e .g . Vapor Pressure Deficit) are well correlated

with western U.S. forested burn area. Park Williams et al. (2015) also show that VPD is well correlated

with western U.S. wildfire burn area. Holden et al. (2018) show that variability in wildfire season pre-

cipitation (e .g . days with rain> 2.54 mm) control summer burn area and strongly influence VPD. West-

erling (2016) show that warming and the timing of spring snowmelt can modulate burn area. Jensen

et al. (2018) found that in some areas wildfires become more likely following months with high soil

moisture values. Many studies that leverage these observed relationships predict significant increases

in western U.S. wildfire activity under climate change (e .g . Liu et al. (2016b); Flannigan et al. (2009);

McKENZIE et al. (2004); Westerling et al. (2011); Yue et al. (2013b); Spracklen et al. (2009)). Tempera-

ture is physically related to each environmental predictor listed here, however, despite being physically

related, relationships between temperature and other environmental predictors can be non-linear, re-

sulting in differing and less certain future changes than temperature, as simulated by global climate

models.

One of the acknowledged weaknesses associated with statistical model based approaches to pre-

dicting future wildfire activity is the assumption that historical relationships will remain stationary in

the future. Using the Northern Rockies as an example, Higuera et al. (2015) showed that these relation-

ships change over time. In addition, due to internal variability of the climate system and anthropogenic-

caused climate change, the climate of the 21st century will include mean and extreme states of environ-

mental variables that were not observed in the historical period (Collins et al. 2013; Mora et al. 2013).

Further, Parks et al. (2018) showed that there may be a tipping point where vegetation shifts from, e .g .,

forests to shrubland/grasslands as the climate changes, providing evidence that fuels will not remain

the same.

The overarching goal of this work is to understand what environmental factors contribute to the

uncertainty of 21st century western U.S. wildfire activity quantified by burn area, a metric propor-

tional but not perfectly correlated to air quality impacts (Brey et al. (2018a)). While previous studies

have shown there are many factors that contribute to this uncertainty (e .g . emission factors, changing

wildland-urban interface, sources and abundances of ignition sources, changing fuel loads), our work

quantifies the individual environmental conditions contributions to future burn area estimates, and
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compare this spread to scenario and intermodel spread across the mountainous western U.S. ecore-

gions. These ecoregions contain much of the forested mountains of the western U.S., highest car-

bon emission factors, and fuel loading (kg fuel m−2) (Abatzoglou and Rupp 2017; Urbanski et al. 2018;

van der Werf et al. 2010). These ecoregions were the largest emitters of smoke PM2.5 in the western

U.S. between 2003 and 2015 (Urbanski et al. 2018). Thus, we focus on these regions for this analysis.

Our methods do not account for changes in fuel loading, so we continue our analysis motivated by

the assumption that these regions will continue to be characterized by large fuel loading and emission

factors in future decades.

One of the novel contributions of this work is that we employ an objective method for choosing

environmental variables that explain historical wildfire variability, allowing us to build on the relation-

ships observed by previous studies while putting forth a new method for identifying key variables. We

define environmental conditions previously identified to be important for wildfire occurrence as "can-

didate variables". The candidate variables used in this work include seasonal temperature, wind speed,

precipitation, evaporation, relative humidity, and root zone soil moisture. These variables 1) have been

demonstrated to impact wildfire occurrence by other studies and/or 2) are related to or are an indicator

of the moisture budgets that are relevant for fuel availability, flammability, or plant stress, and 3) are

available in both historical reanalysis datasets and CMIP5 future-projection simulation output, which

enables the training of statistical models from historical information and use of these models for for-

ward projections. For a given ecoregion, we objectively select the variables that best explain observed

variability using a custom implementation of Lasso regression. This approach allows for us to learn

from the data rather than confirm a hypothesis of a specific variables importance. Because tempera-

ture is often described as important, and is physically related to all of the candidate variables, our work

examines how estimates of future wildfire change when temperature is and is not used as a predictor

using the following approach.

(1) We use Lasso regression to objectively identify the environmental conditions that best explain

observed variance in interannual summertime (June, July, August) large wildfire (> 1000 acres)

burn area for western U.S. ecoregions. We focus on these months as they have the greatest

burn area in recent decades (Brey et al. 2018a). This is done individually for ecoregions, to

allow for varying relationships to be accounted for.
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(2) We use CMIP5 model output to quantify the mean change and future spread in the environ-

mental variables that best explain historical variance for each fire-prone ecoregion. We con-

trast the trends and spread between models and discuss what the changes may imply for fu-

ture burn area.

(3) Finally, we combine historical relationships between burn area and select candidate variables

with CMIP5 output to examine the spread in future burn area as forecast by the objectively

selected variables and compare this to the spread between RCP 4.5 and 8.5 scenarios. We

contrast how future estimates driven by our statistical model (trend, variability, e t c .) compare

to future estimates driven by changes in temperature alone.

This work shows that the predicted change in burn area is extremely sensitive to what environmen-

tal predictors are chosen to drive burn area.

3.2 DATA AND METHODS

3.2.1 ECMWF ERA-Interim Reanalysis

For historical data on environmental variables, we use European Center for Medium-Range Weather

Forecasts (ECMWF) ERA-Interim monthly reanalysis fields (followed by ERA-Interim specific abbrevi-

ations) (Dee et al. 2011) of temperature (t2m), total precipitation (tp), wind speed (si10), relative hu-

midity (calculated using dew point temperature, surface pressure, and Tetens formula), soil moisture

(mrso), and evaporation (e). All data were downloaded at the native horizontal grid spacing of 0.75◦

x 0.75◦. To make the ERA-Interim output directly comparable to CMIP5 output (described next), vari-

ables were bilinearly re-gridded to a common grid with 2◦x2.5◦ degree grid spacing Schulzweida (2019).

Where necessary accumulation units (e .g . mm day−1) were converted to flux units (e .g . kg m−2 s−1) to

match the units used by CMIP5 models. A total root zone ( 3 meter depth) soil moisture field was

created by converting volumetric soil water in layers 1 through 4 (total depth of 2.89 m) to kg m−2 by

assuming the density of all water content to be 1000 kg m−3.

3.2.2 CMIP5

To estimate the future change and spread in wildfire-relevant environmental predictors, we use

output from the Phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor et al. 2012).

We use the following monthly variables (followed by CMIP5 specific abbreviations): near surface tem-

perature (tas), precipitation (pr), Near-Surface Wind Speed (sfcWind), near-surface relative humidity

(hurs), soil moisture content (mrlsl), and evaporation (evspsbl). Intermodel spread between models is
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quantified using the r1i1p1 ensemble member for each climate model. We are interested in quantify-

ing intermodel spread and scenario spread, which can be accomplished with a single ensemble mem-

ber. Though not as comprehensive as using multiple ensemble members, the use of a single ensemble

member still allows our methods to account for internal variability of the climate system. Scenario

spread is quantified by examining output from Representative Concentration Pathways (RCP) 4.5 and

8.5, scenarios that correspond to different greenhouse gas climate forcing (W m−2) scenarios for the

21st century. RCP 4.5 represents an emission scenario where greenhouse gas emissions begin to slow

in the mid 21st century, RCP 8.5 represents a scenario where emissions continue to grow throughout.

In order to bias-correct CMIP5 data using the reanalysis data, historical (pre-2006) CMIP5 data were

also downloaded. The data from all models were regridded to the GFDL-CM3 2◦x2.5o◦ degree grid

using bilinear-interpolation for atmospheric domain variables and distance-weighted average remap-

ping for land domain variables (Schulzweida 2019). Data for this work was downloaded interactively

from the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip5/).

While accurate soil properties are required to accurately simulate soil-water content and impli-

cations for seasonal drought stress (Peterman et al. 2014) the soil schemes in the CMIP5 models vary

substantially (Berg et al. 2017). For example, the active soil depth varies between 3 and 42 meters.

Soil moisture by layer (mrlsl) in the CMIP5 archives include water in all phases. The different active

soil moisture depths make intermodel comparison of total soil moisture impractical, so instead, we

regrid the soil moisture to include only the top 2.89 meters, which is the part of the soil column most

accessible to ecosystems (root zone soil moisture, regridded down to 2.89 m to match ERA-Interim

soil moisture depth); this has been used to compare models in other studies (e .g . Berg et al. (2017)).

A depth of 2.89 is close to the maximum soil depth of several models, which is at a minimum 3 me-

ters. The hydraulic properties of soils will also vary among models, which will partially contribute to

differences seen between them. The vertical interpolation is required due to the significantly varying

depths and layers output in CMIP5 coupled models. We convert zeros to nans. Due to the different

ways CMIP5 models represent soil moisture processes, integrated water in the top 3 m does not have

the same meaning in terms of drought stress across models.

3.2.3 Monitoring Trends in Burn Severity (MTBS)

This work quantifies interannual variability of wildfire burn area using the wildfires documented

in the Monitoring Trends in Burn Severity database (MTBS). MTBS is a multiagency program with the
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goal of consistently mapping the burn area and severity of large wildfires in the U.S. in order to mon-

itor the effectiveness of the National Fire Plan and Healthy Forests Restoration Act (Eidenshink et al.

2007). These data include wildfire burn area for the western U.S. between 1984 and 2016 for wildfires

larger than 1000 acres (404 ha) (Eidenshink et al. 2007). Wildfires larger than 1000 acres account for

the majority of burn area in the western U.S. (Brey et al. 2018a). MTBS uses the Normalized Burn Ra-

tio (dNBR) from Landsat to detect fire burn scars and severity (Eidenshink et al. 2007). MTBS data are

largely divided into mapping zones based on Bailey’s Ecological Sections (Bailey 1983), but this map-

ping is slightly altered to account for meaningful administrative boundaries (Eidenshink et al. 2007).

Though MTBS assesses the severity of burn area, our work makes no distinction between severities

to create an aggregate burn area. MTBS will generally report less burn area than totals tabulated by

incident reports (Eidenshink et al. 2007). For example, in 2004 MTBS mapped 7,781,049 acres of wild-

fires while statistics compiled by the National Interagency Coordination Center (NICC) documented

8,097,880 acres (Eidenshink et al. 2007). MTBS maps wildfires and prescribed (Rx) fires. Our work aims

to focus on the climate and biophysical controls on fire occurrence, so we exclude Rx fires from our

analysis, and from here forward we refer to the remaining types in MTBS as ‘wildfires’ (similar to Finco

et al. (2012)). One of the fire types in MTBS is “unknown”. There is a possibility that some of these fires

were prescribed; however, MTBS documents only one documented Rx fire in the western U.S. that oc-

curs in the months June, July, or August, the months of interest in this analysis, so we expect prescribed

fires to make up a small amount of the burn area contributed by the unknown fire type category. The

33 years of wildfire data in MTBS provides a longer time period than other incident based datasets that

include additional small wildfires (e .g . FPA FOD developed by Short (2014)), which grants analysis of

trends and variability in wildfire occurrence additional validity. MTBS data were downloaded as Fire

Occurrence Data (point locations rather than burn scar shapes) from https://www.mtbs.gov/direct-

download. These fire data where then assigned to Baileys divisions to create monthly burn area totals

aggregated by areas with similar geographic and ecological characteristics.

3.2.4 Bailey’s Ecoregions

To account for how environmental drivers of wildfires may differ between regions, we aggregate

MTBS burn area data, ERA-Interim reanalysis, and CMIP5 model output by Bailey’s ecoregions, which

map the regional extent of ecosystems in the U.S. Bailey’s ecoregions include four levels, with each

subsequent level containing smaller, more narrowly defined ecosystems. We choose to use the “di-

visions” level, a subset of the “domain” (most coarse) level. These nearly contiguous divisions allow
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us to aggregate wildfires that occur in areas of similar temperature and precipitation. The Temperate

Steppe, Marine, and Mediterranean Regime Mountain divisions (shown in 3.1) contain much of the

forested mountains of the western U.S. (Abatzoglou and Williams 2016), and correspondingly, some

of the largest and most destructive wildfires, as well as the highest PM2.5 emissions between 2003 and

2015 (Urbanski et al. 2018). Thus, our analysis focuses on these three ecoregions.

MTBS data were downloaded as shapefiles from https://www.fs.fed.us/rm/ecoregions/products/map-

ecoregions-united-states/. The divisions (hereafter referred to as “ecoregions” used in this work are

shown in Figure 3.1.

FIG. 3.1. The western U.S. Bailey’s divisions analysed in this work (hereafter referred to as ecore-

gions). The Marine regime mountains in this work excludes portions of that region above 50 de-

grees latitude.

3.2.5 Wildfire predictor identification and regularization with Lasso Regression

We use the Least Absolute Shrinkage and Selection Operator (hereafter Lasso) regression to cre-

ate regularized linear models for each of the three ecoregions in the western US shown in Figure 3.1.

Lasso is a regression method that performs regularization and variable selection (Tibshirani 1996). The
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Lasso was developed to increase the prediction accuracy of ordinary least squares (OLS) regression by

reducing the variance of predicted values (Tibshirani 1996). The Lasso accomplishes high prediction

accuracy and lower variance through a constraint on the sum of the absolute values of the model pa-

rameters, which results in some predictor coefficients being set to exactly zero. When the regularization

term α is zero, the Lasso is the same as OLS. The higher the value of α, the more regularized (simpler

the model is forced to be to avoid overfitting) the regression model becomes, and more predictors co-

efficients are set to exactly zero. Lasso has been demonstrated to make a good compromise between

model complexity and model performance (Loukina et al. 2015). The Lasso can select multiple corre-

lated predictors. For example, if dry spring seasons are correlated to dry summer seasons, and both

are good predictors of wildfires, using both gives the desired insights and variance explained needed

for this work.

1

N

∑

i

(yi −wT X)2+α||w||1 (3.1)

Equation 3.1 shows the Lasso cost function, the value of which is minimized in the Lasso regres-

sion. y is the target function, which in this work is summer burn area. X is a matrix of features where

each column is an environmental predictor. N is the number of examples (rows in X), in our work this

corresponds to 33 years of wildfire data and environmental predictors (1984-2016). w is a vector of

coefficients that corresponds to the columns in X. α determines the degree of regularization for the

model. We find the optimal value of α using leave one-out-cross validation. The L1 norm (|| · ||1) is not

differentiable, so the Lasso does not have an analytical solution and must be solved numerically. We

implement the Lasso using the LassoCV method from scikit-learn (Pedregosa et al. 2011). The opti-

mization for the Lasso is solved with coordinate descent.

We implement the so-called “relaxed Lasso”, where Lasso regression is used twice (Meinshausen

2007). This is done in two steps. First, we use Lasso for variable selection. This is done by leaving out

a year of data (e .g . 1984), fit a Lasso regression using leave-one-out cross validation on the remaining

years (1985-2016) and recording what variables receive a non-zero coefficient. We repeat this process

for each year. We discard the 50% of features that were selected (non-zero coefficient) the least often.

This step helps us identify what proportion of the time a given features is selected, which gives a mea-

sure of how robust that feature is to random chance in the optimization and noise in the yearly data.

Second, we fit the Lasso regression using leave-one-out cross validation using the 50% of the original
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features that were selected most frequently in step 1. This is where the final optimal value of α is se-

lected, which is the value that provides the lowest mean square error on years left out. Because feature

selection has already been performed once, the values of α in the second implementation are smaller

than in the first (i .e . less regularization). This two step process allows us to quantify how robust the

selected features are to noise in the data.

In our use of Lasso, environmental variables from ERA-Interim reanalysis are used as predictor

features. These features include all of the candidate environmental variables listed in the introduction,

where the average value for each feature is taken for the three different seasons. ERA-Interim data are

spatially subset to include only the grid boxes that overlap a given ecoregion’s geographic extent. This

results in larger ecoregions being represented by more grid boxes than smaller ecoregions. We take

the temporal average of overlapping features for three seasons, winter (months 11, 12, 1, 2), spring

(months 3,4,5) and summer (months 6,7,8). This temporal averaging is a necessary step to allow for

relationships between antecedent environmental variables and summer burn area observed in other

studies to be accounted for in this analysis. Between the antecedent seasons and summer temporal

means, and 6 variables, there are a total of 18 features (columns of X) available to explain 33 years of

variance in summer wildfire data (y).

The underlying assumption of this work is that year-to-year variability relationships can be lever-

aged to estimate long-term changes in burn area. Due to the limited quantity of wildfire data, we set

up our regression to explain variance in year-to-year wildfire burn area, rather than the trend in fea-

tures or wildfire burn area. To avoid a spurious model where the target function and predictors are

well correlated because of a shared trend, we detrend the environmental variables and the burn area

time series before fitting the regression. This ensures that the regression predicts year-to-year vari-

ability and that correlations between burned area and features are due to interannual co-variability.

Regressions are performed independently for each ecoregion. Similar to other work (e .g . Littell et al.

(2009); Park Williams et al. (2015)), the summer burned area was log10 transformed to account for the

exponential distribution of annual burned area and to mitigate heteroscedasticity. Heteroscedasticity

results from year-to-year quantities that span orders of magnitude, increasing over time, which results

in variance that is not stationary in time. Without taking the log10 transformation of summer burn

area, some ecoregions exhibited upward trends in model residuals. In addition, we observe better lin-

ear model performance (R2 values) when summer burn area is log10 transformed. Because the log10 of

zero is undefined, we set years with zero acres of burn area to 1. This only occurs in the Marine Regime
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Mountains. In order to make comparing environmental variances with different units easier, we stan-

dardize each feature (µ=0, σ=1) for the historical training period (1984-2016) such that the units of

linear model regression coefficients are the same (log10(burn area)σ−1).

3.2.6 Quantification of Spread In Key Wildfire Predictors

We use CMIP5 model output to show how environmental variables (i .e . features) selected by the

Lasso could change in the future. We examine changes in year-to-year variability as well as changes due

to long term trends. Similar to Park Williams et al. (2012, 2015), we bias-correct CMIP5 modeled histor-

ical and future projections interannual standard deviation and mean value between 1984 and 2016 to

match those estimated by the ERA-Interim reanalysis fields. This was done for each feature predicted

by each CMIP5 model individually using the following procedure. 1) The linear trend is removed from

the 1984-2016 CMIP5 feature times series (e .g . summer precipitation for model ACCESS1-0). 2) The

standard deviation, which after detrending is due entirely to year-to-year variability, is calculated for

the detrended 1984-2016 time series. 2) The detrended 1984-2100 CMIP5 time series is multiplied by

the ratio of the detrended ERA-Interim feature standard deviation over the detrended CMIP5 feature

1984-2016 standard deviation. At the completion of this step, the CMIP5 feature standard deviation for

1984-2016 matches ERA-Interim. 3) The 1984-2016 linear trend is added back to the CMIP5 feature. 4)

To correct the CMIP5 model bias offset, the mean value of the time series from 1984-2016 is replaced

by the ERA-Interim mean for the same years.

Differences in modeled and observed standard deviations and trends suggest that models are not

simulating what is estimated by ERA-Interim. Scaling these data can also inflate confidence in models

as they have been forced to look more similar than the original output. However, we choose to scale

the variance in this work because it eases the interpretation of the changes in environmental predictor

values in the following ways. 1) It allows for a straightforward interpretation of changes observed by

models from the historical period to the simulated future. 2) It gives us the ability to observe how the

spread in a variable changes due to changes in the range of year-to-year values. 3) It ensures the spread

in the estimates of future wildfire activity estimated by CMIP5 output using the regression models is

not artificially narrow due to a small variance in CMIP5 model variables. Finally, bias-corrected CMIP5

features are standardized in the same way as the ERA-Interim features used to train the Lasso, by sub-

tracting the 1984-2016 ERA-Interim mean and dividing by the standard deviation. This adds additional

interpretability to the results. For example, if a CMIP5 model feature value for summer precipitation
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in the year 2019 was zero that would mean that CMIP5 model simulated summer 2019 precipitation to

be the same as the mean historical value.

Because Lasso regression identifies different predictors for different ecoregions, the number of

CMIP5 models with all required variables available varies by ecoregion and type of regression. For

example, fewer CMIP5 models save out near-surface relative humidity than near-surface temperature.

As a result, an ecoregion with only temperature features selected by the relaxed Lasso would have more

CMIP5 models with output available. This makes comparing spread in variables between ecoregions

challenging, as the spread are partially attributed to the different number of CMIP5 models. However,

within an ecoregion, there are always a consistent number of models representing each feature, as we

require a given CMIP5 model to have output for every feature selected by the Lasso in order to be used

to examine spread or project future wildfire burn area.

3.3 RESULTS

3.3.1 Historical relationships between wildfire burn area and predictors

As discussed in the introduction, there are many environmental variables that have been shown

to be correlated with wildfires at different antecedent and concurrent timescales. Our work objec-

tively identifies the environmental variables that offer the best prediction of total summer (June, July

and August) wildfire burn area for mountainous western U.S. ecoregions and compares the variance

explained by the regression fit with access to all candidate variables (hereafter “Lasso-All”) to the re-

gression fit with only temperature (hereafter “Lasso-Temperature”). The candidate variables are listed

in the methods, they include, temperature, wind speed, precipitation, evaporation, relative humid-

ity, and root zone soil moisture, averaged for Winter (11,12,1,2), Spring (3,4,5), and Summer (6,7,8)

months. Figure 3.2 presents the historical variance explained in summertime log10 wildfire burn area

within western U.S. ecoregions for each regression. The Lasso-Temperature regression explains more

than half of the observed variability in the Temperate Steppe Regime Mountains; in this region tem-

perature alone is able to explain a similar amount of variance as the Lasso-All regression. The variance

explained by ordinary least squares would be higher than the values presented in Figure 3.2.
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FIG. 3.2. Historical variance in year-to-year June-August log10 wildfire burn area explained by

Lasso regressions for the presented western U.S. ecoregions using ERA-Interim features as pre-

dictors for the trained regressions. Note, the colorbar scale does not go to 1.0.

There are several results in Figure 3.2 relevant to forward predictions of burn area. The trained re-

gression generally misses the extremes in interannual variability (shown in the Appendix Figures A5

through A5), i .e . summers with very high burn area are under-forecast and summers with very low

burn area are over-forecast (i .e . the burn area forecast lack sharpness). As a result, the year-to-year sig-

nals are captured, but the representation of year-to-year extremes are underestimated, an important

attribute of these regressions to consider when predicting burn area using CMIP5 model out. Figure

3.2 shows that temperature can explain wildfire activity but that linear combinations of other variables

can as well. The variance explained by the left hand panel, the Lasso-All regression, is mostly not tem-

perature (shown next), which indicates that temperature is not required to explain historical variability

in wildfire burn area.
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FIG. 3.3. Coefficients from the Lasso-All regression (access to all candidate variables) (horizontal

axis) for the three western U.S. ecoregions used in this analysis (vertical axis). Only predictors with

a non-zero value in at least one ecoregion are shown along the vertical axis of this plot.

The colors in Figure 3.3 represent the magnitude of coefficients for the Lasso-All regression. The

larger the absolute value of the coefficient, the larger impact that variable has on predictions per unit

change of that predictor. Coefficients can be compared across ecoregions, and many variables have co-

efficients equal to zero, indicating that the linear model with the most skill usually only needs a small

subset of the available predictors. This plot shows that among the mountainous ecoregions, tempera-

ture is selected in the Temperate Steppe (spring and summer) and Mediterranean Regime Mountains

(winter). Summer relative humidity is strongly anti-correlated with burn area in every ecoregion where

it is selected. Most features have the same sign across all ecoregions where they are used, indicating a

consistent relationship between features and burn area across ecoregions. Our results show that sur-

face wind speed is used in all ecoregions though it does not have a large coefficient relative to other

variables. Other studies have also noted weak relationships between wind speed and burn area for

gridded fire and meteorology data (Brey et al. 2018a; Crevoisier et al. 2007; Yue et al. 2013b), it is pos-

sible, that wind speed is acting as a proxy for other wildfire relevant conditions, like the location of

seasonal storm tracks. All of these variables are physically related to temperature, but our methods

account for this. When temperature is not selected as frequently as other variables, it means that it did

not consistently provide as small of an error on unseen data as other variables.

40



3.3.2 Spread In Wildfire Predictors and Influence on Future Fire Projections

This section focuses on how candidate environmental variables are predicted to change as esti-

mated by CMIP5 models. Figure 4 shows the multimodel mean change in the mean value of each

feature from the historical period (1984-2016) to the future period (2070-2099) against the Lasso re-

gression coefficient. The whiskers show the range (min and max) of change estimated by all models.

The horizontal axis of panels in Figure 4 shows the value of the Lasso-All candidate variables regression

coefficients. The further a candidate variable (colored dot and whiskers) is plotted from the dashed ver-

tical line, the bigger impact that feature has on predictions of future burn area per unit change in that

variable (expressed in terms of historical standard deviation). The vertical axis of panels in Figure 4

shows how much a candidate variable is simulated to change from the historical period to the future

period. The further a candidate variable is from the dashed horizontal line the more the variable has

changed between the historical and future time period as estimated by CMIP5 models. The features

in the top right and bottom left quadrants (light red background shading) imply the mean change as

estimated by CMIP5 models will result in increased burn area. The majority of features are plotted

in the red shaded regions for all ecoregions, indicating future conditions will resemble even more ex-

treme conditions than those of high burn area years from the historical period. The multimodel mean

changes in feature values are usually larger for RCP 8.5 than RCP 4.5. Temperature increases in all three

seasons for all three ecoregions (rows). In terms of its own historical variability, temperature increases

more than any other variable type.
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FIG. 3.4. Each panel shows the multimodel mean change in features mean value from 1984-2016

to 2070-2099 (vertical axis) against the Lasso regression coefficient (horizontal axis). The change

in feature value is expressed in units of historicalσ as estimated by detrended ERA-Interim feature

values from 1984-2016. The black whiskers show the total range in changes observed by CMIP5

models. Each row corresponds to an ecoregion and the columns show changes for a given RCP

(4.5 on the left, 8.5 on the right). The lower-left and upper-right portions of the plot are shaded

light red to indicate that symbols that fall into these quadrants imply changes in variables that

correspond to increases in burn area according to the Lasso all regression.
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Figure 3.5 shows how the long-term changes simulated for different features vary between mod-

els and ecoregions (for variables with non-zero Lasso regression coefficients for the Lasso-All regres-

sion). Every CMIP5 model for both RCP scenarios shows an increase in the winter, spring, and summer

temperature for the ecoregions with non-zero regression coefficients from the historical period to the

future period. The spread in temperature is comparable to other features, but it is unique in that the

estimates show only increases, across all models, RCP scenarios, and ecoregions. In contrast, CMIP5

models show both increases and decreases in every other predictor for both RCPs. Summer relative

humidity is anti-correlated with summer burn area in each region where it is selected and Figure 3.5

shows the majority of CMIP5 models predict decreased summer relative humidity, but some also show

increases. Most models show a decrease in summer precipitation in the Marine Regime Mountains,

the variable with the largest coefficient absolute value in that region. Most models estimate decreased

relative humidity in all three seasons for the Mediterranean and Temperate Steppe regime mountains.

There is disagreement on the sign and magnitude of summer evaporation.
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FIG. 3.5. The change in feature mean value (horizontal axis) from 1984-2016 to 2070-2099 shown

for different features (rows) and ecoregions (colors). Each dot shows this change estimated by

a single CMIP5 model for RCP 4.5 (left) and RCP 8.5 (right). The change in feature value is ex-

pressed in units of historical σ as estimated by detrended ERA-Interim feature values from 1984-

2016. Values that fall on the vertical line are features where the multi-decade mean value has not

changed between the two time periods. For a given ecoregion (color) the numbers of CMIP5 mod-

els (dots) is consistent, but can differ between ecoregions. Changes in feature value estimates for

a given ecoregion (color) are shown where the absolute value of the Lasso regression coefficient

(not shown) for that feature was greater than zero.

3.3.3 Projected wildfire burn area using historical relationships

This section compares the spread in future burn area across RCP scenarios and regressions driven

by CMIP5 output. This is done for each CMIP5 model independently, so each CMIP5 model makes an

estimate of summer burn area for all years between 1984 and 2099. This is repeated for both RCPs and

Lasso regressions. Figure 3.6 shows the CMIP5 ensemble mean burn area estimated by each of these

combinations.
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FIG. 3.6. Temperate Steppe Regime Mountains (top), Marine Regime Mountains (middle), and

Mediterranean Regime Mountains (bottom) predicted burn area based on Lasso regressions

trained with all variables (Lasso-all, green) versus just temperature (Lasso-Temperature, orange)

for RCPs 4.5 and 8.5. The line plots show the ensemble mean of individual CMIP5 model burn area

projections for a given regression type and RCP. We choose not to show historical burn area (blue

line) on this figure, as comparing an ensemble mean (plotted curves) against a single realization

(observed burn area) is not straightforward, and prone to confusion, given that there are more

wobbles in a single realization than an ensemble mean. Below the time series, box plots show the

distribution of individual summer burn area estimates from all available CMIP5 models for the

years indicated on the horizontal axis label. These distributions are separated by regression type

(color) as well as RCP (horizontal axis tick labels).
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Due to the large and nearly certain increases in temperature observed across CMIP5 models and

RCPs, regularized regression using only seasonal temperature values predictors produce much larger

future burn area increases than the Lasso-All regression, where temperature is not always chosen. The

variability of these estimates is also low. The difference between the two regressions is smallest in the

Temperate Steppe Regime Mountains, where temperature was objectively identified as a predictor for

the Lasso-All regression. No temperature variables were selected in the Marine Regime Mountains

and without temperature, the burn area estimates have large variance, no clear trend, and very little

difference between RCPs. The boxplots of individual summer burn area estimated for future decades

in the Marine Regime Mountains suggest future summers could have near-zero burn area, or burn

area totals 2 orders of magnitude larger than any summer in the historical period, depending on what

combination of conditions occur. In the Mediterranean Regime Mountains, winter temperature was

selected as an important feature and is responsible for most of the increase in burn area seen for the

Lasso-All regression (shown in Figure A11). Variables that depend on temperature but explicitly track

moisture in the environment (evaporation, soil moisture, precipitation, relative humidity) have much

more uncertain future mean states than temperature (Figure 3.5). This is clearly demonstrated in the

Lasso-All projection for the Marine Regime Mountains, where temperature was not selected. During

the historical period, warm summers were associated with more burn area than cool summers. This

relationship is captured by the Lasso-Temperature regression, but not always essential for predictive

power when other wildfire relevant variables are available.

As discussed previously, the best fit regressions tend to underestimate the largest and overestimate

the smallest summer burn area totals. Even if our regressions had R2 values equal to 1, the spread dis-

played by the boxplots in Figure 3.6 would be an underestimate, because our limited data, covering

only 1984 through 2016, do not sample the full range of possible values (phase space) for environmen-

tal conditions or summer burn area. CMIP5 models offer a more comprehensive sample of the envi-

ronmental phase space. Combined, the CMIP5 models provide many more years of what these data

could look like. This is how the CMIP5 driven burn area distributions can be wider than the observa-

tions distribution while still underestimating total spread. This is shown by the boxplots in Figure 3.6,

which show the distribution of summer burn area for MTBS and CMIP5 driven regression estimates for

the years 1984-2016. The CMIP5 burn area distributions can also be narrower than the observations.

This is most likely when the regression explains a small proportion of the historical variance. Thus,

46



the spread for CMIP5 driven summer burn area for all regressions for the decades 2040-2060 and 2080-

2099 shown in Figure 3.6 are more narrow than would be the case if our historical data covered the full

phase space.

The burn area projections and distributions shown in Figure 3.6 are meant to highlight how es-

timates of future wildfire burn area are sensitive to the environmental conditions, RCPs, and global

climate models used to make the estimate. Though exponential relationships between burn area and

changing environmental conditions have been observed in the recent past, extrapolating these rela-

tionships into the future almost certainty overestimates future wildfire burn area. In the past, western

U.S. forest wildfire activity has been flammability limited (Abatzoglou and Williams 2016), however,

ever increasing burn area would eventually result in limited fuel availability. The limited observational

data record available for the regression analysis does not capture the true scope of the wildfire-climate

relationship. Even if it did, the observed relationships are unlikely to remain unchanged in the fu-

ture. There is evidence that in recent decades changes in land management and the legacy of wildfire

suppression resulted in heightened responses of wildfire burn area to variability in environmental con-

ditions that may not persist into the future (Higuera et al. 2015; Littell et al. 2016). Finally, the relation-

ships presented here are representative of large spatial and temporal scales. The relationships shown

here may not apply to finer scales or individual wildfires. At smaller spatial and temporal scales, the

impact of fire-weather (windy days with low RH%) on wildfire occurrence and spread is reasonably well

understood, but these scales are not resolved by climate models. Future large-wildfire occurrence is

still subject to the co-occurrence of an ignition source, dry fuels, the absence of substantial rainfall,

and high winds, a set of conditions this work does not explicitly estimate.

This work shows that the estimates for how burn area may change in the future is extremely sensi-

tive to what environmental predictors are chosen to drive burn area. We show that increases in burn

area are likely, as changes in temperature, as well as other candidate variables, indicate the future will

likely be drier. CMIP5 models are in agreement that temperature will increase in the 21st century. Tem-

perature is the only variable that increases across all ecoregions, models, and RCPs, thus using temper-

ature as a key predictor of future burn area will likely underestimate uncertainty. Future wildfire burn

area estimates are lower whenever and wherever the importance of temperature is reduced.
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3.4 DISCUSSION

There are limitations to this work, and thus trends in future western U.S. summer burn area could

be significantly different from patterns presented above. Burn area interannual variability may not

scale with climate change the way it has in the historical period. The climate models and regional

scales used in this work are only able to capture changes at large scales; however, there are subsets

within western U.S. ecoregions that may in fact cool in the future as there is a decoupling of scales due

to topography (Daly et al. 2009). This work uses a single CMIP5 ensemble member (r1i1p1) for each

CMIP5 model, which limits the internal climate variability probed by this analysis. This work only

examined changes in summer wildfire burn area. We did not consider how the length of the wildfire

season is likely to increase (Yue et al. 2013b), or how that could impact future burn area. Our work shows

that changes to environmental variables in the RCP 8.5 scenario result in larger wildfire potential than

RCP 4.5. Some work has demonstrated that RCP 4.5 could lead to episodically larger wildfires in the

future as that pathway has conditions conducive to fuel build up (Bachelet et al. 2016). Our methods

do not account for feedbacks like this. Much of the historical emphasis on temperature has come from

its impact of vapor pressure deficit (VPD), since this is a good proxy for moisture demand from dead

fuels, and many wildfires are carried by fine dead fuels (fuels 1
4 inch in diameter or less) (Anderson and

Rothermel 1965), though this does not account for extreme wildfire behavior such as crowning. Thus,

it may not matter how water stressed live fuels may or may not be, VPD, which scales exponentially

with temperature, could accurately account for flammability.

An additional area of weakness for this and other studies that leverage statistical models is their

reliance on stationary relationships to make predictions. Large-scale forest- and land-change distur-

bances are already happening in the west (Murph and Mooney 2019), the fuel available to burn, as well

as wildfire-climate dynamics are likely to change. In some experiments, vegetation models show large

shifts in vegetation towards warmer types (e .g ., temperate to subtropical forest types, warm subtrop-

ical grasslands replacing cool temperate grasslands) as the west warms (Harris et al. 2016). Wildfires

themselves could become a source of disturbance that could shift species towards those that are more

well adapted to the new climate. It is also possible that fuel density could reduce if trees begin to die

off due to temperature stress (Park Williams et al. 2012). Decreases in forest productivity have been ob-

served globally and attributed to water limitation (Allen et al. 2010; Zhao and Running 2010). However,

there is also evidence that plant physiology responses to increased CO2 concentrations may reduce

live fuel stress and flammability. Plants absorb CO2 through stomata in their leaves and lose water to
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the atmosphere through the same pathway (Swann et al. 2016). Some plants lose less water per unit

of carbon gain when CO2 mixing ratios increase because the gradient of CO2 between the leaf and at-

mosphere is reduced (Cowan 1978). However, plant water-use efficiency will only increase if the loss

of water per unit of carbon gained is not offset by an increase in leaf area (Field et al. 1995). Assuming

nearly constant leaf area, plant increased water use efficiency could result in reduced transpiration and

increased soil moisture (Field et al. 1995). Combined, these changes could reduce plant water stress,

even during droughts. Some observations show a decrease in transpiration due to increased water use

efficiency (WUE) with increasing CO2 mixing ratios (Keenan et al. 2013; Peñuelas et al. 2011; van der

Sleen et al. 2014; Warren et al. 2011), though the number of plant species this applies to and limits are

not fully understood (Battipaglia et al. 2013).

Despite these shortcomings, this work offers novel contributions. 1) We objectively select variables

that explain historical year-to-year variability in the western U.S. burn area, allowing the data to speak

for itself rather than confirming an existing hypothesis about one variable being the most important.

This approach shows that temperature is not uniquely suited to give statistical models the most skill.

2) We show how historical relationships between variables and changes to those variables simulated

by CMIP5 may contribute to future burn area for multiple western U.S. ecoregions and RCPs. 3) We

demonstrate that future estimates of wildfire burn area are sensitive to what environmental variables

are chosen to predict it. 4) We show that smaller increases in future wildfire burn area are estimated

whenever and wherever the importance of temperature as a predictor is reduced.
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CHAPTER 4

ESTIMATING THE SPREAD IN FUTURE FINE DUST CONCENTRATIONS IN THE SOUTHWEST UNITED STATES

4.1 INTRODUCTION

Airborne dust can be a major component of western United States (U.S.) particulate matter (PM)

pollution, with larger dust particles impacting PM10 and fine dust influencing PM2.5 (particles with di-

ameters smaller than 10 and 2.5 µm respectively) concentrations. Dust aerosol can impact the Earth’s

radiation budget, heterogeneous chemistry, cloud formation, and human health (Krueger et al. 2004;

Grineski et al. 2011; Miller and Tegen 1998; Rosenfeld and Nirel 1996; DeMott et al. 2003; Bond et al.

2013). U.S. natural dust emissions (wind blown dust of natural non-agriculture lands) are the largest

in the western U.S., where large deserts and bare ground are located. In the southwest U.S. (an area

encompassing Utah, Colorado, Arizona, and New Mexico), local sources of dust include the Mojave,

Great Basin, Sonoran, Chihuahuan deserts, and the Southern Great Plains. Dust emissions from these

regions are responsible for the highest wind-blown dust concentrations in the U.S. (Prospero 2002).

Wind blown desert dust is comprised of mostly silica, which is known to cause chronic lung inflamma-

tion, fibrosis, and lung cancer (Sing and Sing 2010; Prüss-Ustün et al. 2011; Steenland and Ward 2014).

Achakulwisut et al. (2018) estimated that southwest U.S. fine dust concentrations will increase 0.15 -

0.58µg m−3 under representative concentration pathway (RCP) 8.5, resulting in approximately 750 pre-

mature deaths annually. Dust has impacts even after it leaves the atmosphere. When snow is covered

by dust, it absorbs more solar radiation and melts faster because the shortwave absorption coefficients

of dust are much larger than snow (Warren and Brandt 2008); as a result, dust has been shown to play a

more important role than temperature in the timing of snowmelt in the Rocky Mountains (Painter et al.

2018). These changes in snowmelt can influence the timing of water availability in the Colorado river

(Painter et al. 2018). The timing of spring snowmelt in the western U.S. has been linked to increased

wildfire activity (Westerling 2016; Westerling et al. 2006). Dust also impacts visibility in the southwest

(Achakulwisut et al. 2018; Hand et al. 2016).

There are many environmental variables that have been shown to influence dust emissions and

concentrations in the southwestern U.S. and elsewhere. The presence of vegetation can greatly reduce

soil erosion by wind and can limit dust emissions (Marticorena and Bergametti 1995; Woodward et al.

2005; Pu and Ginoux 2017; Kim et al. 2017). Vegetation cover is an important control for dust emissions

and is influenced by precipitation, however, vegetation cover is slow to respond to precipitation (Evan
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et al. 2016). Wet (heavy) soil is harder to loft than dry soil, making soil moisture a controlling factor of

dust emissions (Fécan et al. 1998). Precipitation can increase soil moisture and scavenge airborne dust

(Ginoux et al. 2001).

There are also demonstrated links between dust and the El Nino-Southern Oscillation (ENSO),

and the Pacific Decadal Oscillation (PDO), due to their impact on precipitation and temperature, and

transpacific transport (Achakulwisut et al. 2017, 2018). Pu and Ginoux (2017) show that variations in

precipitation, soil bareness, and surface wind speed control dust emissions. The importance of sur-

face wind and plant cover are also demonstrated by Kim et al. (2017). Evan et al. (2016) show that

monthly dust emissions are linearly related to mean monthly wind speed. However, while observa-

tionally based analyses point out key variables that influence dust emissions, process-based models

struggle to reproduce observed dust emissions and concentration variability (Mahowald et al. 2010; Pu

and Ginoux 2018). Models in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) are able

to capture global mean dust optical depth (Pu and Ginoux 2017). However, not all CMIP5 models use

an interactive dust scheme (Pu and Ginoux 2017), making the use of statistical models necessary to

increase the number of models available to estimate intermodel spread. Pu and Ginoux (2017) found

that the CMIP5 models that do have interactive dust schemes tend to estimate a more dusty future than

regression analysis, while failing to capture the observed relationships between dust optical depth with

surface wind speed, bareness, and precipitation.

Due to high dust concentrations compared to the rest of the U.S., a long record of fine dust obser-

vations, and anticipated population growth, this work focuses on fine dust in the southwestern U.S.

We aim to understand how estimates of future dustiness depend on the choice of environmental pre-

dictors used to make the estimate. The southwest is not the only U.S. region with large dust emissions,

however, other large dust source regions such as the Southern Great Plains are mostly anthropogenic in

origin (Lee et al. 2009, 2012; Bullard et al. 2011) and our work is focused on the biophysical controls of

natural dust emissions. Our study region covers Utah, Colorado, Arinoza, and New Mexico (see Figure

4.1). A regional approach is appropriate for this work because fine dust tends to have regional impacts

relative to the more localized impact of coarse dust (Hand et al. 2016). Further, this work is motivated

by the estimated health impacts of seasonal fine dust concentrations (e .g . Tong et al. (2017); Achakul-

wisut et al. (2019)). Achakulwisut et al. (2018) use seasonal fine dust concentrations as a metric for dust

burden, and estimate health impacts. This work is motivated by these findings and aims to build upon

the discussion and exploration of uncertainty of the environmental conditions that drive seasonal dust
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concentrations. Further, our work aims to understand long-term changes in dust drivers with a large

ensemble of CMIP5 models. We can more easily achieve this goal working with monthly data than daily

data, and these will be more closely related to seasonal PM2.5 concentrations than episodic events (e .g .

dust storms).

The specific goal of this work is to understand how estimates of future dustiness depend on the

choice of environmental predictors used to make the estimate. By doing so, we explore and estimate a

range of possible future dust concentrations. We use CMIP5 models to estimate an intermodel spread

of dust drivers and their influence on future dustiness for Representative Concentration Pathways

(RCPs) 4.5 and 8.5, scenarios that correspond to different greenhouse gas climate forcing (W m−2) sce-

narios for the 21st century. We use environmental variables identified by other studies (hereafter re-

ferred to as “candidate variables”) that drive southwestern U.S. dust emissions and concentrations.

This work measures dustiness based on concentrations rather than emissions due to the availability of

high quality dust concentration measurements and the air quality motivation for this work. Our ap-

proach is designed to comprehensively quantify spread in both the drivers of and concentrations of

future dust. We address the following questions: 1) How do candidate variables change in the future

as estimated by CMIP5 models for RCP 4.5 and 8.5? How does intermodel spread compare to scenario

(RCP) spread? 2) What changes to future dust concentrations do historical linear relationships between

dust and key environmental variables predict, and how do these estimates and their spread compare

between variables? 3) How does a linear combination of candidate variables, objectively subset to in-

clude only those that maximize predictive skill on unseen data, compare to the single variable estimates

of future dust season concentrations?

4.2 DATA AND METHODS

4.2.1 Quantifying dust using IMPROVE measurements of Fe

We quantify fine dust concentrations using the method put forward by Hand et al. (2016), which

assumes fine dust to be 3.5% iron (Fe) based on crustal abundances (Taylor 1985). Hyslop et al. (2015)

demonstrate that Fe concentration measurements have been performed consistently over time. In the

Southwestern U.S., Fe emissions are primarily a result of mineral sources (Wang et al. 2015). Fe con-

centrations are measured by monitors in the IMPROVE (Interagency Monitoring of PROtected Visual

Environments) network (Malm et al. 1994), which collect aerosol samples for 24 hours every third day
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at predominantly rural and remote sites. Mass concentrations are recorded as mass per air volume at

local temperature and pressure.

We use a subset of IMPROVE sites available in the southwest region based on data availability. We

use monitoring sites that have nearly continuous measurements suitable for monthly mean estimates

available in the southwest region between 1995 and 2015. IMPROVE data are available in more recent

years, but we subset the data to match the data range of the Leaf Area Index (LAI) data used in this anal-

ysis (described next). These criteria are met by 15 monitoring site locations (site details in Appendix

A12). We use an additional 2 monitors that have gaps in their data record in order to provide addi-

tional geographic coverage in New Mexico and Northwest Arizona. On average, monitors located fur-

ther south have higher monthly mean concentrations (Appenix A13). We do not attempt to distinguish

between anthropogenic and natural dust sources, or the possible influence of long range transport.

IMPROVE data were downloaded from: http://vista.cira.colostate.edu/improve/Data/.

FIG. 4.1. Summary of the dust data used in this analysis. Topleft: Monthly mean dust concentra-

tions measured by IMPROVE monitors in the southwest U.S. between 1995 and 2015. The dashed

vertical lines show the “dust season” that we focus on for this work, which include March through

July. Topright: Locations of IMPROVE monitors used in this work (purple) and the geographic

centroid of the monitors (blue), as well as the study region (dashed blue border). Bottom: South-

west dust season (March - July) mean fine dust concentration (µg m−3) measured by the IMPROVE

monitors plotted in the upper right panel.

Figure 4.1 shows a summary of the data used to estimate southwest (Figure 4.1, top right panel) fine

dust seasonal concentrations in this analysis. We focus on months March through July (hereafter “dust
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season”), as these months have the highest dust concentrations (Figure 4.1, top left panel). The bot-

tom panel shows the time series for the mean dust season concentration as measured by the monitors

shown in the upper right panel of Figure 4.1.

4.2.2 Leaf Area Index (LAI)

Leaf Area Index (LAI) is a dimensionless metric that expresses the ratio of one sided leaf area per

unit area of ground (m2/m2). LAI influences land-surface conditions, exchanges of water, energy, and

CO2 between land/vegetation and the atmosphere (Brovkin 2002; Mahowald et al. 2016). In North

America, LAI values typically range between 0 (bare ground) and 10 (dense forests). LAI has been

shown to be anticorrelated with dust concentrations in the Southwest U.S. and elsewhere (e .g . Pu and

Ginoux (2017); Hand et al. (2016); Kim et al. (2017)). We use LAI estimates derived from version 4 of the

Climate Data Record (CDR), which are based on surface reflectance observations from the National

Oceanographic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer

(AVHRR) (Claverie, Martin, Eric Vermote, NOAA CDR Program (2014) 2014). These observations are

made from seven NOAA polar orbiting satellites. The data are stored on a grid with 0.5 degree hori-

zontal grid spacing. Data availability varies by location and month, which results in monthly mean

LAI values for the southwest region being composed of differing numbers of daily observations. The

data are available from 1981 to the present; however, at the time of this analysis, 2016 LAI data were

only available as “preliminary data”, so we only use data through 2015. These data are available at the

following URL: https://www.ncei.noaa.gov/data/avhrr-land-leaf-area-index-and-fapar/access/.

We use CMIP5 model output for future LAI estimates. We find that CMIP5 models simulate larger

monthly mean LAI values than are observed by the AVHRR product, and this has been documented by

others. Anav et al. (2013) show that climate models (coupled and non-coupled) overestimate seasonal

average LAI values. We bias correct the mean and year-to-year variance of CMIP5 estimates of LAI to

match the satellite-based observations (described in greater detail below). Several CMIP5 models show

an upward trend in LAI during the historical time period that differs from observed trends.

4.2.3 ECMWF ERA-Interim Reanalysis

For historical estimates of all candidate variables aside from Leaf Area Index, we use the Euro-

pean Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim monthly reanalysis fields

Dee et al. (2011). We use temperature, total precipitation, wind speed, relative humidity (calculated

using dew point temperature, surface pressure, and Tetens formula), and soil moisture. All data were
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downloaded at the native horizontal grid spacing of 0.75◦ x 0.75◦. To make the ERA-Interim output di-

rectly comparable to CMIP5 output (described next), variables were bilinearly re-gridded to a common

grid with 2◦ x 2.5◦ degree grid spacing (Schulzweida 2019). Where necessary, accumulation units (e .g .

m day−1) were converted to flux units (e .g . kg m−2 s−1) to match the units used by CMIP5 models. A

total root zone ( 3 meter depth) soil moisture field was created by converting volumetric soil water in

layers 1 through 4 (total depth of 2.89 m) to kg m−2 by assuming the density of all water content to be

1000 kg m−3.

4.2.4 CMIP5

To estimate how candidate variables change in the future, we use output from the Phase 5 of the

Coupled Model Intercomparison Project (CMIP5) (Taylor et al. 2012). We use the following monthly

variables: near surface temperature, precipitation, near-surface wind speed, near-surface relative hu-

midity, soil moisture content, and LAI. Intermodel spread between models is quantified using the

r1i1p1 ensemble member for each model. We use a single ensemble as our focus is quantifying scenario

and intermodel spread. Scenario spread is quantified using output from representative concentration

pathways (RCP) 4.5 and 8.5, scenarios that correspond to different greenhouse gas climate forcing (W

m−2) scenarios for the 21st century. RCP 4.5 represents an emission scenario where greenhouse gas

emissions begin to slow in the mid 21st century while RCP 8.5 represents a scenario where emissions

continue to grow throughout. In order to bias-correct CMIP5 data using the reanalysis data, historical

(pre-2006) CMIP5 data were also used. The data from all models were regridded to the GFDL-CM3 2◦ x

2.5◦ degree grid using bilinear-interpolation for atmospheric domain variables and distance-weighted

average remapping for land domain variables (Schulzweida 2019). Data are averaged over the south-

west region plotted in Figure 4.1. Data for this work was downloaded from the Earth System Grid Feder-

ation (https://esgf-node.llnl.gov/search/cmip5/). We vertically interpolate and integrate soil moisture

down to the same depth as ERA-Interim.

4.2.5 Linear relationships between candidate variables and dust concentrations

We use the Least Absolute Shrinkage and Selection Operator (hereafter Lasso) regression to cre-

ate regularized linear models to estimate linear relationships between candidate variables and aver-

age southwest fine dust concentrations in the months March through July. The Lasso is a regression

method that performs regularization and variable selection (Tibshirani 1996). It was developed to in-

crease the prediction accuracy of ordinary least squares (OLS) regression by reducing the variance of

predicted values (Tibshirani 1996). This reduction of the variance of predicted values is accomplished
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through a constraint on the sum of the absolute values of the model parameters, which results in some

predictor coefficients being set to exactly zero. The Lasso has been demonstrated to make a good com-

promise between model simplicity and model performance (Loukina et al. 2015). The optimal con-

straint on the sum of model parameters is selected using leave-one-out cross validation, where the

model with the lowest mean square error on left-out data is used for predictions. We implement these

methods using the LassoCV method from scikit-learn Pedregosa et al. (2011). All candidate variables

are standardized (mean 0, unit variance) before regression analysis.

For the multilinear regression component of this work, we implement the so-called “relaxed Lasso”,

where Lasso regression is used twice (Meinshausen 2007). This relaxed Lasso is done in two steps.

First, we use Lasso regression for variable selection. This initial set of regressions is done by leaving out

a year of data, fitting a Lasso regression using leave-one-out cross validation on the remaining years

and recording what variables receive a non-zero coefficient. We repeat this process for each year. We

discard the 50% of variables that were selected (non-zero coefficient) the least often. This step helps us

identify what proportion of the time a given variable is selected, which gives a measure of how robust

that variable is to noise in the yearly data. Second, we fit the Lasso regression using leave-one-out cross

validation using the 50% of the original features that we selected most frequently in step 1.

In our use of Lasso regression, environmental variables from ERA-Interim reanalysis and satellite

observations are used as predictor features. These features include all of the candidate environmental

variables listed in the introduction and others related to aridity (relative humidity and vapor pressure

deficit), where the average value for each feature is taken for the dust season (March through July).

ERA-Interim data are spatially subset to include only the grid boxes that overlap the southwest region,

shown in Figure 4.1. Due to the limited number of years with all required data (1995 to 2015), we set up

our regression analysis to explain variance in year-to-year dust concentrations. One of the underlying

assumptions of this approach is that year-to-year variability relationships can be leveraged to estimate

long-term changes in dust season concentrations. To avoid a spurious model where the target function

and predictors are well correlated because of a shared trend, we detrend the candidate variables and

the dust concentration time series before fitting the regressions. This ensures that the multi-linear re-

gression predicts year-to-year variability and that correlations between concentrations and candidate

variables are due to interannual co-variability.
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We use CMIP5 model output and our Lasso regressions to estimate how dust concentrations may

change in the future. We bias-correct CMIP5 model output such that the year-to-year standard devia-

tion and mean value for the historical period (1995-2015) match those estimated by the ERA-Interim

reanalysis and satellite derived LAI estimates. This was done for each candidate variable predicted by

each CMIP5 model individually using the following procedure. 1) The linear trend is removed from the

1995-2015 CMIP5 variable time series (e .g . summer precipitation for the ACCESS1-0 model). 2) The

standard deviation, which after detrending is due entirely to year-to-year variability, is calculated for

the detrended 1995-2015 time series. 3) The detrended 1995-2100 CMIP5 time series is multiplied by

the ratio of the detrended ERA-Interim variable standard deviation over the detrended CMIP5 variable

1995-2015 standard deviation. At the completion of this step, the CMIP5 variable standard deviation for

1995-2015 matches the historical estimate. 4) The 1995-2100 linear trend is added back to the CMIP5

feature. 5) To correct the CMIP5 model bias offset, the mean value of the time series from 1995-2015 is

replaced by the ERA-Interim mean for the same years. We choose to bias correct CMIP5 output in this

way because it eases the interpretation of how variables are estimated to change in the following ways.

1) It allows for a straightforward interpretation of changes observed by models from the historical pe-

riod to the simulated future. 2) It gives us the ability to observe how the spread in a variable changes

due to changes in the range of year-to-year values. 3) It ensures the spread in the estimates of future

dust concentrations estimated by CMIP5 output using regression models is not artificially narrow due

to a small variance in CMIP5 model variables.

4.3 RESULTS

4.3.1 Simulated changes in candidate variables and future dustiness

As discussed in the introduction, there are many environmental conditions that have been shown

to influence dust emissions and concentrations. This section shows how each candidate variable is

predicted to change from the historical period (1995-2015) to the end of the 21st century (2070-2099)

as estimated by CMIP5 model output for RCP 4.5 and 8.5. This change is estimated for each model

and RCP by taking the mean candidate variable values for all dust seasons (March through July) in the

future period minus the mean value for the historical period. Due to consistent dust data availability

in the southwest, the historical period starts in 1995, and goes through 2015, the last year of LAI data

available. In addition, we estimate the linear relationship between candidate variables and dust season

concentrations for the years 1995 through 2015. Linear relationships are established for each candidate
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variable and dust season concentrations using Lasso regression. Only a single predictor is used in this

section, resulting in only a small amount of regularization, so the linear relationships presented in this

section are nearly identical to those that would be estimated by ordinary least squares regression. A

summary of these regressions variance explained and Pearson correlation coefficients are shown in

table 4.1.

TABLE 4.1. The historical variance explained (R2) and pearson correlation coefficient (r) of the

Lasso regression for single variable relationships between historical data and observed seasonal

fine dust concentrations. Correlation coefficient shows the sign of the correlation.

V a r i a b l e R 2 r

Temperature 0.147 0.383

Precipitation 0.450 -0.673

Wind Speed 0.107 0.327

RH% 0.486 -0.700

VPD 0.355 0.596

Soil Moisture 0.340 -0.585

Leaf Area Index 0.213 -0.462

Table 4.1 and Figures 4.2 and 4.3 present a comprehensive view of how candidate variables are

related to dust in the historical period, simulated to change from the historical period to the future

period (Figure 4.2), and what those changes imply for future dust season concentrations based on the

historical linear relationships between environmental variables and dust concentrations (Figure 4.3).

Simulated changes for variables for RCP 4.5 and 8.5 mostly agree on the sign of the change from the

historical to future period, though changes for RCP 8.5 are usually larger than RCP 4.5 (Figure 4.2).

Temperature and vapor pressure deficit (VPD) are the only variables where every model for both RCP

scenarios simulate increased values. Both are positively correlated with seasonal dust concentrations.

Leaf Area Index (LAI), a quantity anticorrelated with bareness and dust season concentrations, is sim-

ulated by the fewest models, but has the largest intermodel spread of all candidate variables. The large

spread in LAI simulated across models and RCPs is consistent with other studies (e .g . Mahowald et al.

(2016)). The changes in LAI shown in Figure 4.2 have been multiplied by a factor of 1/3 in order to

present changes in other variables on a scale that clearly presents model spread. Only three models

estimate decreased LAI at the end of the 21st century, two for RCP 4.5 and one for RCP 8.5.
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FIG. 4.2. The change in model estimated mean dust-season values from 1995-2015 to 2070-2099.

Each variable is expressed in units of the detrended historical period (1995-2015) year to year stan-

dard deviation (σ). Colors correspond to RCP 4.5 (blue) and 8.5 (orange). Points that fall on the

dashed vertical black line indicate models that simulated no change for the mean of variables for

the dust season between the historical and future period. Changes in Leaf Area Index (LAI) have

been multiplied by 1/3 in order to reduce the size of the horizontal axis.

Precipitation and soil moisture are anticorrelated with dust emissions and concentrations (Table

4.1). Though some models show increases, most simulate less precipitation and soil moisture by the

end of the 21st century, but this drying is particularly pronounced for RCP 8.5. The soil moisture in

this work goes to a depth of nearly three meters, a depth corresponding to the so-called root-zone soil

moisture, which as a whole is less sensitive to surface conditions (e .g . VPD) than soil moisture in the

first few centimeters, as water at depth can generally only be removed through plants. The majority of

CMIP5 models show decreased future soil moisture for both RCP scenarios. Wind is the mechanism
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that lofts dust from the surface and the regression shows this relationship with wind being positively

correlated with dust emissions. The majority of CMIP5 models simulate decreased dust-season wind

speed in the future. Of the candidate variables shown in this work, most relate to dust through their

influence on the dryness and loftability of dust. No matter what the surface conditions are, dust is only

lofted when it is windy, and most models show a reduction in wind speed in the future.

FIG. 4.3. Top row, future dust season (March-July) concentration estimated by single variable

Lasso regression for RCP 4.5 (left) and RCP 8.5 (right). The lines show the ensemble means of

all available models (n) for a given environmental variable. The bottom row shows the distribu-

tion of individual model estimates for individual dust season mean dust concentration in the years

2070-2099 (years indicated in times series with vertical dashed lines for each RCP). For the top and

bottom, the dashed black horizontal line represents the 1995-2015 southwest dust mean concen-

tration. The dust season concentration distribution shown in the bottom panel correspond to the

CMIP5 changes shown in Figure 4.2.

Figure 4.3 shows the CMIP5 model ensemble mean dust concentrations for each candidate vari-

able predicted through our analysis. Estimates of future dust concentration estimates are driven by the
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linear relationships between each individual variable and dust concentrations in the historical period.

None of the linear relationships between candidate variables and dustiness explain more than half of

the historical variance observed in the historical period. Relative humidity explains the most historical

variance (R2=0.49) and wind speed explains the least (R2=0.11). However, despite the low proportion

of variance explained, we can determine the sign of the relationship between the candidate environ-

mental variables and determine what changes these relationships imply for future dust concentrations

as well as how they compare to each other (Table 4.1). For example, the multimodal mean change in

temperature and VPD show the largest increase in future dust concentrations for both RCPs. We know

from Figure 4.2, that every model for both RCP scenarios simulates increases in these variables.

The simulated CMIP5 LAI-driven changes in future dust concentrations show that increasing LAI

(Figure 4.2) results in decreased dust season concentrations (Figure 4.3). We have low confidence in the

CMIP5 LAI-driven projections of dust concentrations for two reasons. 1) LAI is not well correlated with

mean dust season concentrations. 2) The future estimates of LAI values have higher intermodel spread

than any other candidate variable. Though physically important for whether dust emissions can occur

(as indicated by other work) the spread presented by LAI suggests that if it is the critical control on dust

in this region, future dust concentrations are likely to decrease. Mahowald et al. (2016) show that CMIP5

coupled ESMs that simulate LAI values that most closely resemble satellite observations also tend to

be the models that simulate smaller increases in the future, though these results were for the tropics.

By contrast, relative humidity, which is well correlated with temperature, explains roughly half of the

historical year-to-year variance of dust concentrations and most CMIP5 models simulate decreased

relative humidity in the future for both RCP 4.5 and 8.5 (Figure 4.2), which based on historical rela-

tionships, imply increased future dust concentrations (Figure 4.3). The spread in dust concentrations

shown by the boxplots shown in Figure 4.3 are an underrepresentation of future spread for two reasons.

First, due to the limited temporal range of the observational data, the historical data are unlikely to ac-

count for the true variability or range of values for dust season concentrations, or the corresponding

state of candidate variables (i .e ., observations do not sample the full phase space). Second, even if the

historical period did sample the full phase space, none of the single variable regressions explained all

of the observed historical variability (R2<1).
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4.3.2 Relaxed Lasso estimates of future dustiness

Southwest dust emissions and concentrations are influenced by more than a single environmental

variable in isolation. In this section, we use a custom implementation of relaxed-Lasso linear regres-

sion (described in the data and methods section) to objectively select a linear combination of candi-

date variables and estimate future dust-season concentrations. The linear combination of variables

selected by the relaxed-Lasso regression that minimize square error on unseen data are precipitation,

wind speed, relative humidity, and soil moisture. The linear model explains 66% of the observed vari-

ability in mean dust concentrations for the historical period, more than any single variable in the pre-

vious section (max R2 = 0.49). The regression coefficient for each selected variable is shown on the

horizontal axis of Figure 4.4 as well as Table 4.1 (additional regression details are shown in Figures A14

and A15). Expressed in terms of year-to-year standard deviation, changes in precipitation and relative

humidity most strongly influence dust concentrations. Figure 4.4 shows the relaxed-Lasso regression

coefficients against the CMIP5 multimodel mean estimate of how dust season conditions are simulated

to change from the historical period (1995-2015) to the end of the 21st century (2070-2099). The dots

indicate the mean change across individual models and the whiskers show the total range of change

estimated across all of the models for each RCP scenario. Dots in the red shaded areas indicate that in

the context of the relaxed-Lasso regression, the multi-model mean change in that variable will result

in increased dust concentrations, while dots in the white areas will result in decreased dust concen-

trations. Between RCP 4.5 and 8.5, most of the selected variables change in a way that the regression

indicates will lead to higher dust concentrations in the future, though all variables show at least one

model that has the opposite impact (whiskers). On the other hand, reductions in dust season wind

speed works to reduce dust concentrations for both scenarios, but some models show the opposite

impact. The multimodel mean change in RCP 4.5 precipitation shows a slight increase from the his-

torical period, but the mean change for RCP 8.5 shows a larger decrease in future precipitation. The

intermodel spread in estimates of how variables will change is largest for soil moisture.
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FIG. 4.4. Lasso regression coefficients vs. the the mean (dots) and total spread (min and max) of

CMIP5 model changes from the historical to future period.

We use CMIP5 dust-season estimates of selected candidate variables to estimate future dust season

fine dust concentrations using the relaxed-Lasso regression. The number of models available to show

intermodel spread of regression estimated dust concentrations is reduced in this section due to the

requirement that a single CMIP5 model must output all four selected candidate variables in order to

estimate dust-season concentrations using the relaxed-Lasso model. The multimodel ensemble mean

estimate of future dust concentrations, as well as the distribution of individual dust season concentra-

tions estimated by individual CMIP5 models are shown in Figure 4.5. We estimate mean dust season

concentrations to increase by 0.02 and 0.24µg m−3 for RCP 4.5 and 8.5 respectively by 2080-2099. Some

estimates of individual future dust season concentrations are much larger than values observed in the

historical period, showing that although on average long term mean changes are small, dust seasons

with significantly higher concentrations become more likely in the future. The multimodel ensemble-

mean estimate in yearly dust concentrations show large variance in time compared to the single vari-

able regression analysis in the previous section. For RCP 4.5 the range of values for the ensemble mean

estimate is larger than the long-term mean increases. The boxplots in the bottom row show the distri-

bution of single season estimates of dust concentrations for individual CMIP5 models. For the years

2080-2099 RCP 8.5, the majority of future dust season fine dust concentrations exceed the historical

mean value (shown by the horizontal dashed line). Similar to the single variable regressions, changes
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in future dust concentrations are on average larger for RCP 8.5 than 4.5. The range of dust season con-

centrations shown here is an underestimate as the regression fails to explain the observed historical

variability and the historical data are unlikely to represent the true spread in southwest dust season

concentrations.

FIG. 4.5. Top row: Multi-model ensemble mean time series estimates of future dustiness esti-

mated by Lasso regression where CMIP5 estimates of precipitation, wind speed, relative humidity,

and soil moisture are the candidate variables used to drive the estimates. The blue and orange lines

are the multi-model mean of RCP 4.5 and 8.5, respectively. Bottom row: Boxplots show the dis-

tribution of individual dust season concentrations estimated by each model and RCP scenario for

the historical period (1988-2015), mid 21st century (2040-2060), and the end of the 20th century

(2080-2099). The boxes extend from the lower to upper quartiles of the dust season concentration

data, with the line in the middle showing the median value, whiskers extend to 1.5 times the in-

terquartile range of the data. Values outside of this range are plotted as open circles. Note that the

y-axis scale differ for the top and bottom rows. Scenario estimates use 16 and 15 models for RCP

4.5 and 8.5 respectively.

4.4 DISCUSSION

We show that estimates of future fine dust concentrations in the southwest are sensitive to the

choice of environmental variables used to make the estimate, and that the differences in estimates

based on different environmental variables can be larger than the differences observed between RCP

4.5 and 8.5. Of the variables that have been demonstrated to impact southwest dust concentrations,

historical linear relationships show that increased temperature and VPD project the largest increases

while changes in leaf area index suggest the greatest reduction. Changes estimated by a linear com-

bination of candidate variables selected objectively do not use temperature, VPD, or LAI, and show a
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more modest increase in dust concentrations. Our multilinear estimates of increased dust concentra-

tions of 0.24 µg m−3 for RCP 8.5 by the end of the 21st century are similar to other findings. The differ-

ence of the mean from the historical period to the future period is statistically significant for RCP 8.5

(H0: µ1-µ2 = 0, Ha: µ1-µ2 6= 0, p-value<0.001), the change for RCP 4.5 is not (p-value>0.001). Achakul-

wisut et al. (2018) estimate future southwest dust concentrations and estimate increases of 0.49 and

0.55 µg m−3 for March through May and June through August, respectively.

One key limitation of this work is the assumption that relationships between dust concentrations

and environmental drivers will remain unchanged in the future. Another issue is the limited number of

years available for the historical period, which limits our regression analysis approach by not fully cap-

turing the phase space of dust concentrations and environmental condition values. Airborne dust can

influence radiative budgets, and therefore alter temperature, precipitation, and other environmental

variables that can influence dust concentrations. Our methods do not account for these types of feed-

backs. Mean dust-season concentrations are impacted by episodic events. Though our work implies

reduced dust emissions and concentrations with reductions in wind speed, other work has indicated

that these more stagnant conditions may actually trap pollution and increase exposure if dust is present

(Dawson et al. 2014).

In future work, additional historical variability may be explained by regression analysis if candi-

date variables were tailored geographically to the desert source regions, specifically to the Chihuahuan,

Sonoran, and Mojave deserts. This geographic refinement would also help determine what specific

source regions drive the dust concentrations observed over the southwest and help account for vary-

ing dust emission - environmental conditions relationships for different source regions. Another way

to increase the fraction of historical variance explained may be to apply physically relevant transfor-

mations to candidate variables. For example, in this work we use LAI values as a proxy for the bareness

of land. Evans et al. (2016) put forth a more explicit estimate of bareness using LAI, where bareness =

exp(-1 x LAI). This method was used by Pu and Ginoux (2018) to estimate the influence of bareness on

dust optical depth estimates made by CMIP5 models. Our work makes no attempt to estimate how fine

dust concentrations may be influenced by long-range transport, quantifying this influence and how it

may change in the future would make future work more robust. Dust emissions only occur when winds

strong enough to loft dust occur over sufficiently dry dust sources (Fécan et al. 1998). This analysis is

not set up to explicitly capture these events, which occur at submonthly timescales. However, relation-

ships between monthly and daily conditions have been observed (e .g . Evan et al. (2016)) and many of
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the monthly environmental conditions analyzed in this work can influence surface moisture, an im-

portant control on what wind speeds are required to loft dust. Future work could be improved by using

daily data, though this would make robust intermodel comparisons more challenging.
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND IDEAS FOR FUTURE RESEARCH

5.1 SUMMARY

This dissertation presents research towards a better understanding of the historical variability and

possible futures for western U.S. PM emissions and concentrations from wildfires and dust. This work

is separated into three papers. In the first paper (Chapter 2, published in AGU Earth’s Future, Brey et al.

(2018a)) I used the Fire Program Analysis Wildfire Occurrence Data (FPA FOD) to contrast the environ-

mental conditions, meteorological drivers and air quality impacts of human- versus lightning-ignited

wildfires in the southeast and western U.S. In the second paper (Chapter 3, submitted to AGU Earth’s

Future) I identified key environmental variables that best explain historical variability in summer wild-

fire burn area, quantified how these environmental predictors will change in the future, and estimated

how simulated changes will alter future wildfire burn area. The third paper (Chapter 4, in preparation

for AGU Earth’s Future) examined how the spread in future southwest U.S. fine dust concentrations are

sensitive to what environmental variable is used to predict dust concentrations.

5.1.1 Chapter 2 Overview

I found that the proportion of wildfires that are started by humans is higher in the southeast U.S.

than in the west, though the seasonality of when these wildfires occur is also different (i .e ., the wildfires

in the southeast are bimodal with more occurrences in the spring and fall months, whereas the major-

ity of wildfires in the west occur during July/August). We show that there are larger contrasts in 1000-

hour fuel-moisture between ecoregions than between ignition types, which implies that both ignition

types are similarly constrained by fuel-moisture within a given ecoregion. Presently, both human- and

lightning-ignited wildfire burn area are anti-correlated with total annual precipitation and will likely re-

act similarly to future changes in precipitation (assuming a stationary relationship between precipita-

tion and burn area). Between 1992 and 2015 humans were the dominant source of wildfire ignitions in

the southeast U.S. However, the annual burn area of these wildfires is still linked to environmental con-

ditions that allow fuels to ignite and wildfires to spread. Thus, climate change, not just human-ignited

wildfires, will be an important driver of future wildfire activity and the resulting air quality impacts in

the southeast U.S. The same is true for the west, where summertime burn area for both ignition types is

greater in warmer, drier years. On average, wildfires in the southeast are smaller than in the west. How-

ever, these small wildfires significantly impact southeast air quality because 1) there is a large number

67



of southeast wildfires associated with National Weather Service air quality smoke forecasts, and 2) total

PM2.5 emissions from human-ignited wildfires in the southeast are similar to the total PM2.5 emissions

from human-ignited wildfires in the west.

5.1.2 Chapter 3 overview

Since the 1980s, the western U.S. has warmed and wildfire burn area has increased. Warm summers

have been associated with a longer wildfire season and more burn area than cool summers. The Cou-

pled Model Intercomparison Project phase 5 (CMIP5) models agree that western U.S. temperatures will

continue to increase in the 21st century for representative concentration pathways (RCPs) 4.5 and 8.5.

We find that averaged over seasonal and regional scales, other environmental variables demonstrated

to be relevant to flammability, moisture abundances, and aridity such as precipitation, evaporation,

relative humidity, root zone soil moisture, and wind speed can be used to explain observed variance in

wildfire burn area as well or better than temperature. However, the magnitude and sign of the change

of these variables in the 21st century are less certain than temperature. Temperature is the only variable

that increases across all ecoregions, models, and RCPs. Our work demonstrates that when objectively

selecting environmental variables to maximize predictive skill of linear regressions (minimize square

error on unseen data) temperature is not always selected, but that this varies by western U.S. ecoregion.

When temperature is not selected, the sign and magnitude of future changes in burn area become less

certain. Future wildfire burn area estimates are lower whenever and wherever the importance of tem-

perature is reduced in statistical models.

5.1.3 Chapter 4 overview

Chapter 4 examined how environmental conditions that drive fine dust emissions and concen-

trations in the southwestern U.S. change in the future and what these changes imply for future dust

concentrations based on historical relationships. I examined environmental conditions identified by

previous studies to influence dust emissions including, temperature, vapor pressure deficit, relative

humidity, precipitation, soil moisture, wind speed, and leaf area index. My work quantifies fine dust

concentrations in the U.S. southwest using IMPROVE measurements of fine iron as a proxy for dust, a

method put forward by Hand et al. (2016). I averaged dust concentrations in the months March through

July, the months with the highest concentrations, between 1995 and 2015. I showed that the largest

contribution to the spread in future dust concentration estimates comes from the choice of variable

used to explain observed variability in dust concentrations. The spread between variable estimates is

larger than the spread between climate scenarios, or intermodel spread. The majority of models in the
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fifth phase of the Coupled Model Intercomparison Project (CMIP5) that simulate leaf area index (LAI,

a quantity anticorrelated with dust emissions and concentrations) show increasing leaf area index in

the southwest U.S. throughout the 21st century. Based on our linear estimates of dust dependence on

LAI, this LAI increase would result in reduced dust concentrations in the future. However, when I ob-

jectively selectrf environmental predictors of dust concentrations using Lasso regression, LAI was not

selected in favor of other variables. When using a linear combination of the objectively selected envi-

ronmental variables, I estimated that southwest U.S. future mean fine dust concentrations are expected

to increase by 0.24 µg m−3 (12%) by the end of the 21st century for RCP 8.5. This estimated increase

in fine dust concentration is driven by decreases in relative humidity, precipitation, soil moisture, and

buffered by decreased wind speeds.

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

First I present incremental improvements to the work in this dissertation, then I suggest logical

extensions and directions for future work.

5.2.1 Incremental Improvements to the work presented in this dissertation

This section documents steps that could be taken that may provide incremental improvements to

some of the work and findings presented in this dissertation. These suggestions are not profound, they

represent a running tally of work I would like to do if not for the practical confines of limited resources

and time. These improvements primarily apply to Chapter 3, though some are general enough that

they could be applied to any of the work presented in this dissertation. These incremental future steps

are presented as a list.

• Implement new code with an improved model selection routine, which may help explain addi-

tional historical variance of year-to-year wildfire burn area or dust concentrations. This work

uses a grid search technique to find the optimal value for α, the value that sets the amount of

penalty for model complexity in Lasso regression. A similar method could be applied to data

transformations and even the type of model used. For example, I could apply mathematical

transformations to predictive features, perform a grid search across versions of transforma-

tions, and use the transformation that offers the lowest error on unseen data. The same could

be done for the type of statistical model used. For example, we could see if Ridge regression,

Lasso regression, or a non-linear model offers better performance, and analyze that model
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instead. This would also provide an opportunity to make physically relevant combinations of

variables, such as precipitation minus evaporation.

• Chapter 3 and 4 could be strengthened by using a longer time period of overlap between the

European Center for Medium range Weather Forecasting (ECMWF) and CMIP5 output for

bias correcting CMIP5 output. Presently, the overlap periods are 1983-2016 and 1995-2015

for Chapters 3 and 4 respectively.

• Test the sensitivity of the results presented in Chapter 3 and 4 to the grid spacing of the com-

mon grid selected for all gridded data (ECMWF and CMIP5).

• Wildfire burn area could be separated by land cover type and burn severity. Knowing more

about how climate-burn area relationships vary by land cover type would render results in

Chapter 3 more specific to PM concentrations, as burn area typically needs to be multiplied

by a land-cover specific emission factor to calculate emissions.

• Examine additional CMIP5 ensemble members. All of the work presented in Chapters 3 and

4 relied on a single CMIP5 ensemble member (r1i1p1). Because many models were used, in-

ternal variability of the climate system was still accounted for, however, an even more robust

measure of spread could be obtained with additional ensemble members.

• If linear regression is used to estimate future wildfire burn area, it could be improved by incor-

porating a component to the model that accounts for previously burned area. This physically

relevant limitation to what can burn in the future is not accounted for by this work and would

likely reduce the burn area estimated in Chapter 3. Other studies have incorporated a feed-

back like this into their work. Hurteau et al. (2019) show that accounting for fuel availability

as well as flammability decreases projected increases in burn area. Leaf area index could also

be used to estimate fuel availability.

• To help predict future wildfire burn area, this work could be strengthened by adding non-

biophysical predictors that better account for human decisions and values regarding wildfires.

A recent paper by Scheller et al. (2019) shows that changes in human-ignitions and wildfire

suppression activities could significantly alter the amount of wildfire on the landscape in the

future. It seems unlikely that the public will accept ever increasing burn area and increasingly

devastating wildfires. It is possible a tipping point exists, where more funds are allocated for

fuel treatments and suppression activities. A better understanding of historical tipping points

may inform if this could happen again in the future.

70



• I have taken many practical steps towards ensuring the quality of the work presented in this

dissertation. I routinely audit old pieces of code that analysis relies on (fresh eyes really help!)

and track changes in code and figures using version control. However, bugs in code can be

hard to find when the results look the way you expect and when only a single set of eyes are

responsible for thousands of lines of code. Confidence in the work presented in this disser-

tation could be improved if the same care taken to catching typos in drafts of manuscripts

was applied to the code that the writing depends on. Wilson et al. (2014) offer a set of best

practices for scientific computing, some of which would be easy to integrate into a graduate

students work flow. For example, code reviews where students get together to share code, ex-

plain functionality, and ask for suggestions on how code could be improved would help catch

bugs. This could improve code the same way manuscripts are improved by review. Research

shows that code reviews are the most cost effective way of finding bugs (Oram and Wilson

2010). Long term productivity gains could result as well, as an entire research group could co-

alesce towards the best implementations of common tasks, and knowledge would not be lost

when a student or research scientist leaves a lab group. Using paired programming can result

in increased productivity when solving particularly challenging problems (Oram and Wilson

2010). Paired programming is the practice where two people write code together, one person

writes the code, the second provides real time feedback and focuses more on overall design

and consistency issues. Tutorials on how to improve scientific computing workflows can be

found at https://software-carpentry.org/.

Finally, a larger task, that could build upon the methods of Chapter 3, could be to analyze other

seasons wildfire activity and drivers (not just summer). For example, in recent years the largest wild-

fires in California have occurred in Fall and Winter. It would be useful to know how those seasons are

changing under climate change. Recent studies have shown that increases in wildfire burn area are

likely to come from an expanding wildfire season.

5.2.2 Southeast U.S. wildfires

I believe southeast U.S. wildfires and how they may change in a changing climate is currently un-

derstudied. The analysis presented in Chapter 3, where I identify key wildfire predictors and examine

how they change in the future, could be applied to the southeast U.S. Much of the southeast has fuel

loading (gC m−2) on par with or greater than western U.S. ecoregions (Urbanski et al. 2018). Brey et al.

(2018a) showed that the total PM2.5 emissions in the southeast are already large, despite the average
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wildfire being much smaller than in the western U.S. Will climate change create future conditions con-

ducive to so-called megafires occurring in the southeast? Even if the future climate of the southwest

was conducive to the kinds of large wildfires that are observed in the west today, do non-biophysical

controls, such as population density, road networks, use of prescribed fire, and terrain exclude the pos-

sibility of a future where wildfires look more like the west? Chiodi et al. (2018) show that the number of

days with weather conditions that allow safe use of prescribed fire in the southeast will likely decrease

in the future. Will reduced use of prescribed fire result in even greater fuel loads and larger wildfires?

5.2.3 Understudied links between dust and wildfires in the western U.S.

Aside from their relationships with PM pollution, the links between dust and wildfires may not be

immediately obvious. However, these systems may already feedback on each other in such a way that

working on both problems at the same time may be a natural fit for future research. For example, dust

has been shown to play a more important role than temperature in the timing of snowmelt in the Rocky

Mountains (Painter et al. 2018), which has been implicated in modulating western U.S. wildfire occur-

rence (e .g . Westerling (2016); Westerling et al. (2006)). Wildfires may impact dust emissions as well.

The presence of vegetation can greatly reduce soil erosion by wind and can limit dust emissions (Mar-

ticorena and Bergametti 1995; Woodward et al. 2005; Pu and Ginoux 2017; Kim et al. 2017). Wildfires

can reduce, alter, or eliminate vegetation from the landscape, exposing soil previously held in place by

vegetation. In the future, as wildfires continue to occur and the climate warms and dries, it is possible

that when vegetation is burned, the local climate is no longer suitable for the regrowth of that species,

which could result in growth of a new species, or bare ground long term (Parks et al. 2018). An exam-

ple of how wildfires and dust can be linked was recently featured in a story on National Public Radio

(NPR). In Northern Nevada, ash and dust was observed to be blowing off of a field previously covered

by sagebrush, but due to the 2018 Martin Fire, was now bare ground (Ahearn 2019).

5.2.4 Seasonal Smoke forecasting

There is a growing body of evidence that wildfire burn area will continue to grow in the future (e .g .

Chapter 3 and references therein). These estimated increases in burn area will likely translate to some

amount of air quality degradation. A high probability of increased future air quality impacts combined

with a large body of evidence that shows smoke is harmful to human health lead me to believe that

the most practical way to prepare for the future is to develop seasonal and sub-weekly smoke forecast

products. It is time to learn how to live with smoke.
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A smoke forecast with a lead time of several months, that estimates seasonal mean PM2.5 concen-

trations would be beneficial in several key ways. Public health officials could adjust the allocation of

health resources that may be required in greater abundances than normal (e .g . inhaler refills, on-call

nurses). Public officials could encourage people to buy filters capable of reducing indoor PM2.5 con-

centrations for their homes in advance of the smoke season, which may help reduce shortages that

could occur during a smoke event if the forecast verifies. For example, in the event a significant smoke

season is forecast, school districts could make sure that they have working indoor air filtration systems

in place and prepare indoor activities as an alternative to outdoor recess. I developed a prototype of a

seasonal smoke forecast for ATS 681 in the Spring semester of 2018. I used temperature, precipitation,

and relative humidity from February, March, and April to estimate mean PM2.5 concentrations for the

months June through August in the western U.S. mountains (shown in Figure 5.1). The prototype was

able to explain 26% of the observed variability in year-to-year mean PM2.5 concentrations. The work

did not separate smoke PM2.5 from all PM2.5, but instead relied on the fact that year-to-year western

U.S. PM2.5 variability is largely controlled by wildfire smoke (Liu et al. 2016b). The work presented in

Chapter 3 shows that antecedent environmental conditions can explain year-to-year variability in wild-

fire burn area. The same machine learning methods used in that chapter could be adapted to make an

operational seasonal smoke forecasting product.

FIG. 5.1. Forested mountains (green area in map on right) mean June through August PM2.5 con-

centrations (black dots) and linear estimate (blue line). The black dots on the map show the loca-

tions of monitors used to quantify PM2.5. PM2.5 data were downloaded from the U.S. EPA. Envi-

ronmental conditions were quantified using mean Feb, March, April, Temperature, Precipitation,

and Relative Humidity ECMWF ERA-Interim reanalysis.
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There are several ways to try and improve the skill of the seasonal smoke forecast shown in Fig-

ure 5.1. 1) Wildfire activity could be forecast for specific source regions (e .g . Pacific northwest, Al-

berta). Once source specific estimates of wildfire activity are made, the smoke forecast could leverage

the smoke transport climatologies developed by Brey et al. (2018b) to help estimate what downwind

regions are most likely to be affected. Exceptionally vulnerable subregions could be identified by map-

ping low lying terrain vulnerable to smoke build up during inversions (at night), such as low lying val-

leys downslope of wildfire prone mountain ranges. This could be accomplished by identifying smoke

risks on different hydrologic units (HUC) scales.

5.2.5 Daily Smoke forecasts

Estimates of smoke concentrations with lead times of 0 to 3 days could be useful as well. If dis-

seminated to the public, people could change their planned activity in ways that would allow them to

reduce their exposure to smoke. For example, soccer practice could be rescheduled or moved indoors,

outdoor runs could be replaced by going to a gym, bike commutes could be replaced by taking the bus,

etc.. Large audiences could be reached if T.V. meteorologist added a smoke forecast to their evening

weather reports. A prototype of this kind of tool has already been developed by the United States For-

est Service (USFS) AirFire team. They use the BlueSky smoke forecast model to estimate PM2.5 con-

centrations up to 72 hours in the future (https://tools.airfire.org/websky/v1/). A team of researchers

at Colorado State University lead by Dr. Marilee Long are currently combining the smoke forecast pro-

vided by the AirFire team with health impact assessment (HIA) research to build a website that forecast

smoke concentrations as well as the expected health outcomes (e .g . expected number of emergency

department visits due to smoke). Preliminary results for this work show that clearly communicating

smoke forecasts, particularly the uncertainty and health outcomes remains a significant challenge. An

annotated screenshot of this system, which I helped to build, is shown below in Figure 5.2.
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FIG. 5.2. Annotated screenshot of the operational prototype SmokeForecaster. The SmokeFore-

caster combines forecast smoke concentrations from BlueSky with HIA research to estimate the

health burden of wildfire smoke. The screenshot shown above of http://rgan.atmos.colostate.edu

was taken June 3rd 2019. The forecaster shows that smoke from wildfires in Alberta are impacting

ground level PM2.5 across several Midwestern States.

5.2.6 Understanding how plants respond to climate change and how these changes may alter future

wildfire activity

NOTE: Many of the ideas and preliminary findings presented in this section would not be possible

if not for the help of Dr. Abigail Swann. She revealed how plants changing physiology with increasing

CO2 could significantly impact how we estimate future wildfire occurrence. She pointed me to the

idealized CMIP5 experiments required for the suggested future work presented here.

Wildfires primarily consume live and dead plants. Wind-blown dust is mostly emitted from sur-

faces that lack dense vegetation. The future of PM that result from both of these sources could be

significantly altered by changes in the abundances, water use efficiency, or types of plants on the U.S.

landscape in the future. Below is a short exploratory analysis focused on wildfires. I outline the ways

in which plant physiology may impact wildfire occurrence and quantify how plants physiological re-

sponses to increasing CO2 mixing ratios could impact future wildfire occurrence.

The most destructive wildfires consume both live and dead fuels (Jolly and Johnson 2018) and are

influenced by fuel moisture content (Rothermel 1983; Simms and Law 1967). Living plants can reduce

fire spread if they are not water stressed; as they typically have moisture content values an order of

magnitude higher than dead fuels (Cohen et al. 1990). Even with equal fuel moisture content, live fuels
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may be able to resist burning. Cohen et al. (1990) showed that attached (live) branches can absorb 49%

more energy than detached branches, suggesting that plants can supply additional moisture to foliage

when heated. In contrast, dead fuels passively respond to ambient atmospheric conditions. Changes

in plant processes related to increased CO2 mixing ratios could result in more fuels and more wildfire.

Lasslop and Kloster (2015) estimate that since 1850, increased CO2 mixing ratios has increased global

wildfire emissions by 40%, due to increased fuel availability attributable to CO2 fertilization.

Live fuels flammability and biomass are strongly influenced by plant physiology, thus plant physi-

ology should be considered a critical component of the wildland fire system. Of potential importance

to western U.S. wildfire occurrence, are the changes to plant physiology expected as CO2 mixing ratios

increase. These forecasted changes in plant physiology have been shown to impact environmental

conditions correlated with wildfire occurrence (e .g . drought) (Swann et al. 2016). Plants absorb CO2

through stomata in their leaves and lose water to the atmosphere through the same pathway (Swann

et al. 2016). Some plants lose less water per unit of carbon gain when CO2 mixing ratios increase be-

cause the gradient of CO2 between the leaf and atmosphere is reduced (Cowan 1978). However, plant

water use efficiency will only increase if the loss of water per unit of carbon gained is not offset by an

increase in leaf area (Field et al. 1995). Assuming nearly constant leaf area, plant increased water use

efficiency could result in reduced transpiration and increased soil moisture (Field et al. 1995). Com-

bined, these changes could reduce plant water stress, even during droughts, and alter atmospheric

conditions, like relative humidity. Observations show a decrease in transpiration due to increased wa-

ter use efficiency (WUE) with increasing CO2 mixing ratios (Keenan et al. 2013; Peñuelas et al. 2011;

van der Sleen et al. 2014; Warren et al. 2011), though the number of plant species this applies to and

limits are not fully understood (Battipaglia et al. 2013).

Estimates of the impact of increased CO2 mixing ratios on plant physiology and water fluxes are

integrated into the Earth System Models (ESMs) used in CMIP5 (Swann et al. 2016). In principal, some

metrics that have been shown to be correlated with wildfire activity are not as strongly influenced by

these processes as others. For example, potential evapotranspiration (PET) is the rate at which the

atmosphere demands water from well-watered vegetation and is often estimated using the Penman-

Monteith equation, which does not account for changes in plant physiology. Because PET does not

account for how live fuels can regulate how much moisture is lost to the atmosphere differences in PET

and actual transpiration can exist (Swann et al. 2016). These plant physiological processes can signifi-

cantly alter our view of the impacts of climate change on events with severe consequences for humans.
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For example, considering drought metrics that do not account for these plant physiological processes

(e .g . Palmer Drought Severity Index, Standardized Precipitation Index) (Asadi Zarch et al. 2015; Cook

et al. 2014), the prediction of future drought stress is much higher than studies that use metrics that

better account for changes in plant physiological processes (e .g . Precipitation minus evaporation, soil

moisture) (Koirala et al. 2014; Orlowsky and Seneviratne 2012; Roderick et al. 2015; Swann et al. 2016).

Swann et al. (2016) categorizes environmental variables as plant-centric when they explicitly include

the influence of atmospheric CO2 on plant processes and evapotranspiration (e .g . evaporation, runoff,

soil moisture, and relative humidity). Variables that do not account for these processes are considered

to be atmospheric-centric.

The work in Chapter 3 identified the environmental variables that best explain historical year-

to-year variability in wildfire burn area for specific ecoregions. The exploratory work presented next

quantifies the impact of plant physiology on candidate environmental variables using output from

two idealized CMIP5 experiments. In one experiment atmospheric CO2 only influences atmospheric

radiative transfer (CMIP5 experiment name esmFdbk1). In the second experiment the effect of CO2 is

isolated to plant physiology, such that CO2 directly influences only photosynthetic processes (experi-

ment name esmFixClim1). These experiments allow us to estimate the importance of plant physiology

under changing CO2 mixing ratios for variables output by CMIP5 models. The difference between vari-

ables for the mean of 20 years at high CO2 mixing ratios ( 1,140 ppm) minus the mean of 20 years at

low CO2 ( 284 ppm) were estimated for each experiment, δR a d and δP h y s respectively. I estimate the

importance of plant physiology for a given variable with following equation:

Ap h y sa b s =
|δP h y s |

|δP h y s +δR a d |
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FIG. 5.3. Left: Ap h y sa b s as a function of combinations of δP h y s and δR a d values. Right: The

difference between the absolute values of δP h y s minus δR a d .

Aphysa b s is estimated for each grid cell for individual variables amongst models that participated

in the experiments. The minimum possible value is 0, the maximum is 1. When the value of Aphysa b s

is near 1 it indicates that changes to environmental variables for the experiment where only plants

’see’ changing CO2 are much larger than changes observed when only atmospheric radiative budgets

’see’ changing CO2. We interpret values near one as variables where changes are extremely sensitive to

changing plant physiology with increasing CO2. Values near 0 show changes are independent of plant

physiology. The properties of Aphysa b s as a function of δP h y s and δR a d values are shown in Figure

5.3. We take the spatial mean of Aphysa b s over the entire western U.S. for each CMIP5 model, variable,

and season used in Chapter 3. The range of Aphysa b s values across these subsets of data are shown in

Figure 5.4.
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FIG. 5.4. The distribution of Aphysa b s over the western U.S. (3.1) for environmental variables

(Evaporation (spsbl), latent heat flux (hfls), relative humidity (hurs), 3-meter soil moisture

(mrs3m), precipitation (pr), surface wind (sfcWind), and temperature (tas)) averaged over spring

(March, April, May), summer (June, July, August), and winter (November, December, January, Feb-

ruary). Different variables are shown across the horizontal axis, different seasons are different col-

ors, and individual model estimates are shown with dots over the boxplots. The black horizontal

line at 0.5 indicates where the observed change in the experiment where only plants see changing

CO2 is as large as the experiment where only atmospheric radiative transfer responds to increased

CO2.

Figure 5.4 shows that changes in plant physiology due to increased CO2 mixing ratios has a non-

zero impact on all of the candidate variables presented in this analysis, indicating that plant physiology

can alter the environmental conditions related to wildfire activity. Some candidate variables and some

seasons are more strongly impacted than others. The dashed horizontal line in Figure 5.4 marks a

significant boundary; above that line, according to the idealized CMIP5 experiments, plant physiology

is more important for changes in variables than changes in the atmospheric radiative budget (though

this is a very high bar to consider plant physiology important). All variables aside from temperature

have at least one model in one season above that line. Each variable shows some amount of seasonality.

Plant physiology impacts are largest in the summer and spring. Near surface relative humidity (hurs)

is strongly influenced across seasons while near surface temperature (tas) is not. Figure 5.4 shows that
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among the candidate variables chosen for this work, temperature is least affected by changes in plant

physiology relative to changes in the atmospheric radiative budget for a given change in CO2.

FIG. 5.5. The mean values of Aphysa b s averaged across all seasons for each variable is shown in as-

cending order (least influenced by plant physiology to most influenced). The color scale matches

the vertical axis and indicates the amount a variable is influenced by plant physiology. The vertical

line in the center of the plot shows where the category for variables could be made for future work.

Figure 5.4 shows that there are no variables that are not influenced by plant physiology, and that

spread among models and seasons can make ranking the degree of influence messy. Figure 5.5 shows

the multi-season average of Aphysa b s values for each variable. The difference in Aphysa b s for variables

in the middle of Figure 5.5 is small. Future work may gain insights on the impacts of plant-physiology

on wildfire burn area by developing separate statistical models for the variables left and right of the

vertical line shown in Figure 5.5.

Finally, I present changes in δP h y s (changes in candidate variables attributed to plant physiol-

ogy alone) multiplied with the sign of the regression coefficients for selected candidate variables from

Chapter 3. When the sign of the regression coefficient matches the sign of the change from low CO2

to high CO2, the historical linear regressions developed in Chapter 3 suggest that plant physiology in-

duced changes to that environmental variable would act to increase burn area. When the sign of the

change and the regression are not the same, plant-physiology changes the environmental variable in

a way that we would expect reduced burn area.
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FIG. 5.6. The change in candidate variables estimated by individual CMIP5 models with output

from the experiment where only plants saw changing CO2 mixing ratios (esmFixClim1) multiplied

by the sign of the regression coefficient from Chapter 3. Dots (models) right of zero represent

models with changes from from low CO2 to high CO2 that have the same sign as the regression

coefficient determined from the historical relationships between reanalysis data and burn area.

Thus, dots with values greater than zero on the horizontal axis represent models that estimate

changes that increase burn area in the context of the regressions developed in Chapter 3. The

dots are color coded by ecoregion, shown in the inset map on the right. Only the mountainous

ecoregions studied in Chapter 3 are presented here.

Figure 5.6 shows that CMIP5 models do not agree on the influence changing plant physiology will

have on environmental variables shown to explain historical year-to-year variability in wildfire burn

area. The change in variable values from low CO2 to high CO2 multiplied by regression coefficients from

Chapter 3 shown in Figure 5.6 show that some CMIP5 models (dots in 5.6) estimate plant physiology

will enhance future wildfire burn area (dots right of vertical line) while others may buffer increases (dots

left of vertical line). The data presented in Figure 5.6 are preliminary and are only presented here as
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motivation for future work in this area. The data presented in Figure 5.6 rely on δP h y s values averaged

over the entire western U.S. (spatial domain represented by all ecoregions shown in Figure 5.6). The

results may change, if ecoregion specific δP h y s values were multiplied by ecoregion specific regression

coefficients. In future versions of Figure 5.6, it would be useful to better account for the magnitude of

δP h y s , not just the sign. Aphysa b s describes how important plant physiology is relative to changes in

the atmospheric radiative budget, but it does not show the magnitude of the changes in δP h y s or δr a d ,

which will be important to estimating impact of burn area.
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APPENDIX

SUPPLEMENTAL INFORMATION FOR PAPERS

A1 SUPPLEMENTAL INFORMATION FOR CHAPTER 2

FIG. A1. (Top) Shows the count for wildfire ignition types in the west and southeast, the bars are

color coded by the wildfire discovery month. (Bottom) Shows the count for each ignition type vs.

the Day of the year it was discovered in the west and southeast region between 1992 and 2015.
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FIG. A2. (Top) Shows the count for wildfire ignition types in the west and southeast, the bars are

color coded by the wildfire discovery month. (Bottom) Shows the count for each ignition type vs.

the Day of the year it was discovered in the west and southeast region between 1992 and 2015.
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FIG. A3. Total burn area (m2) for GFEDv4s (top) and FPA FOD (bottom) for all months between

2003 and 2013 on a 0.25◦ x 025◦ grid. GFEDv4s is available 2003 onwards, FPA FOD is available from

1992-2015, however, these figures were made before 2014 and 2015 came available. We expect the

patterns to remain similar for 2014 and 2015 data. This figure demonstrates significant differences

in burn area estimates between an all lands satellite-based burn area product (GFEDv4s) and the

FPA FOD, which only accounts for wildfires.

112



FIG. A4. This figure shows the size (dot area proportional to acres burned) and 1000-hour dead fuel

moisture (dot color) of FPA FOD wildfires plotted on a temperature vs. day of year axis. The top row

shows lightning-ignited wildfires, the bottom human-ignited, the columns show the seven west

and southeast ecoregions of interest. For visual clarity, wildfires smaller than 1 acre are excluded

from this figure. The fire size legend reflects the sizes of different wildfire size classes defined by

the National Wildfire Coordination Group (NWCG). For regular non-leap-day years, Julian Day 100

is April 10th, 150 is May 30th, 200 is July 19, 250 is September 7th, and 300 is Oct 27th.
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A2 SUPPLEMENTAL INFORMATION FOR CHAPTER 3

FIG. A5. Summary of the Lasso-All (access to all candidate variables) relaxed-Lasso regression for

the Temperate Steppe Regime Mountains. The regression shown is for the top 50% of candidate

variables. Top left: Monitoring Trends in Burn Severity (MTBS) June through August acres burned

time series for the Temperate Steppe Regime Mountains. Top Middle: The coefficients of the re-

laxed Lasso. Top right: The time series used for regression (blue) and the regression-model esti-

mate (orange). Bottom left: Mean square error across folds (years left out) for each value of alpha

(horizontal axis) tested. The value of alpha with the lowest MSE is what was selected for the final

regression model, this value is indicated with a black vertical dashed line. Bottom middle: Trans-

formed observed burn area values vs. regression estimated value (associated with curves in top

right). Bottom right: relaxed-Lasso regression residuals.
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FIG. A6. The same as Figure A5, except this summary is for the Lasso-Temperature (access to only

temperature) relaxed-Lasso regression for the Temperate Steppe Regime Mountains.
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FIG. A7. Summary of the Lasso-All (access to all candidate variables) relaxed-Lasso regression for

the Marine Regime Mountains. The regression shown is for the top 50% of candidate variables. Top

left: Monitoring Trends in Burn Severity (MTBS) June through August acres burned time series for

the Marine Regime Mountains. Top Middle: The coefficients of the relaxed Lasso. Top right: The

time series used for regression (blue) and the regression-model estimate (orange). Bottom left:

Mean square error across folds (years left out) for each value of alpha (horizontal axis) tested. The

value of alpha with the lowest MSE is what was selected for the final regression model, this value

is indicated with a black vertical dashed line. Bottom middle: Transformed observed burn area

values vs. regression estimated value (associated with curves in top right). Bottom right: relaxed-

Lasso regression residuals.
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FIG. A8. The same as Figure A7, except this summary is for the Lasso-Temperature (access to only

temperature) relaxed-Lasso regression for the Marine Regime Mountains.
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FIG. A9. Summary of the Lasso-All (access to all candidate variables) relaxed-Lasso regression for

the Mediterranean Regime Mountains. The regression shown is for the top 50% of candidate vari-

ables. Top left: Monitoring Trends in Burn Severity (MTBS) June through August acres burned time

series for the Mediterranean Regime Mountains. Top Middle: The coefficients of the relaxed Lasso.

Top right: The time series used for regression (blue) and the regression-model estimate (orange).

Bottom left: Mean square error across folds (years left out) for each value of alpha (horizontal axis)

tested. The value of alpha with the lowest MSE is what was selected for the final regression model,

this value is indicated with a black vertical dashed line. Bottom middle: Transformed observed

burn area values vs. regression estimated value (associated with curves in top right). Bottom right:

relaxed-Lasso regression residuals.
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FIG. A10. The same as Figure A9, except this summary is for the Lasso-Temperature (access to only

temperature) relaxed-Lasso regression for the Mediterranean Regime Mountains.
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FIG. A11. Change in burn area estimated using regression coefficient and model estimated change

in that value by 2070-2099 for RCP 4.5 and 8.5. The horizontal axis shows the expected change in

burn area, each dot is a single models estimate, based on the amount a variable changes from the

historical period.
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A3 SUPPLEMENTAL INFORMATION FOR CHAPTER 4

FIG. A12. Summary of IMPROVE sites used in this analysis. Saguaro NM (sitecode SAGU1), miss-

ing measurements between 1995 and 1999 and Meadview Arizona (sitecode MEAD1), missing data

between 1995 and 2003.
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FIG. A13. Monthly mean dust concentration (µg m−3) values values for monitors used in this anal-

ysis. The plotted monthly means for each monitor was calculated using all data available between

1995 and 2015. Monitors further south tend to measure higher dust concentrations.
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FIG. A14. Figure S3: Overview of Relaxed-Lasso variable selection output. Topleft: The distribu-

tion of the number of times a variable was selected in the year loop (variable selection part of

relaxo). Top middle: The number of times candidate variables were selected in the variable se-

lection loop. The horizontal red lines shows the threshold that must be exceeded in order for the

variable to be selected for the final Lasso fit. Topright: The relationship between the number of

times a variable was selected against the mean coefficient value for selected variables. Bottom-

left: The blue bars show the distribution of the α values for the external variable selection loop,

the vertical purple line shows the α value for the lasso fit after the variable selection loop. Bottom

middle: The regression coefficient value for the variables for the years left out variable selection

loop.
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FIG. A15. Overview of the final step of the Relaxed-Lasso regression, performing Lasso regression

using the variables selected in the variable selection step (shown in Figure AA14). Top Left: South-

west dust season (March through July) concentration time series. Top Middle: The regression co-

efficients for the fit Relaxed-Lasso. Top Right: The zero-centered detrended target function (dust

concentration) and regression fit. The R2 value for the fit is 0.6581. Bottom Left: The mean square

error (MSE) for a given value of α. The dashed vertical line shows the final value of α selected

for the regression. Bottom Middle: The value predicted by the regression vs. the target function.

Bottom Right: The residuals for the regression.
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