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ABSTRACT

UNDERWATER TARGET DETECTION USING MULTIPLE DISPARATE

SONAR PLATFORMS

The detection of underwater objects from sonar imagery presents a difficult

problem due to various factors such as variations in the operating and environmen-

tal conditions, presence of spatially varying clutter, and variations in target shapes,

compositions, and orientation. Additionally, collecting data from multiple platforms

can present more challenging questions such as “how should I collaboratively per-

form detection to achieve optimal performance?”,”how many platforms should be

employed?”, “when do we reach a point of diminishing return when adding plat-

forms?”, or more importantly “when does adding an additional platform not help at

all?”. To perform multi-platform detection and answer these questions we use the co-

herent information among all disparate sources of information and perform detection

on the premise that the amount of coherent information will be greater in situations

where a target is present in a region of interest within an image versus a situation

where our observation strictly consists of background clutter.

To exploit the coherent information among the different sources, we recast the

standard Neyman-Pearson, Gauss-Gauss detector into the Multi-Channel Coherence

Analysis (MCA) framework. The MCA framework allows one to optimally decompose

the multi-channel data into a new appropriate coordinate system in order to analyze
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their linear dependence or coherence in a more meaningful fashion. To do this, new

expressions for the log-likelihood ratio and J-divergence are formulated in this multi-

channel coordinate system. Using the MCA framework, the data of each channel is

first whitened individually, hence removing the second-order information from each

channel. Then, a set of linear mapping matrices are obtained which maximizes the

sum of the cross-correlations among the channels in the mapped domain. To perform

detection in the coordinate system provided by MCA, we first of all construct a

model suited to this multiple sensor platform problem and subsequently represent

observations in their MCA coordinates associated with the H1 hypothesis. Performing

detection in the MCA framework results in a log-likelihood ratio that is written in

terms of the MCA correlations and mapping vectors as well as a local signal-to-noise

ratio matrix. In this coordinate system, the J-divergence, which is a measure of the

difference in means of the likelihood ratio, can effectively be represented in terms of the

multi-channel correlations and mapping vectors. Using this J-divergence expression,

one can get a more clear picture of the amount of discriminatory information available

for detection by analyzing the amount of coherent information present among the

channels.

New analytical and experimental results are also presented to provide better in-

sight on the effects of adding a new piece of data to the multi-channel Gauss-Gauss

detector represented in the MCA framework. To answer questions like those posed

in the first paragraph, one must carefully analyze the amount of discriminatory in-

formation that is brought to the detection process when adding observations from an

additional channel. Rather than attempting to observe the increase (or lack thereof)

from the full detection problem it is advantageous to look at the change incremen-

tally. To accomplish this goal, new updating equations for the likelihood ratio are

derived that involve linearly estimating the new data from the old (already existing)

and updating the likelihood ratio accordingly. In this case, the change in J-divergence
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can be written in terms of error covariance matrices under each hypothesis. We then

derive a change in coordinate system that can be used to perform dimensionality

reduction. This especially becomes useful when the data we wish to add exists in

high-dimensional space. To demonstrate the usefulness of log-likelihood updating,

we conduct two simulation studies. The first simulation corresponds to detecting

the presence of dynamical structure in data we have observed and corresponds to

a temporal updating scheme. The second is concerned with detecting the presence

of a single narrow-band source using multiple linear sensor arrays in which case we

consider a platform (or channel) updating scheme.

A comprehensive study is carried out on the MCA-based detector on three data

sets acquired from the Naval Surface Warfare Center (NSWC) in Panama City, FL.

The first data set consists of one high frequency (HF) and three broadband (BB) side-

looking sonar imagery coregistered over the same region on the sea floor captured from

an Autonomous Underwater Vehicle (AUV) platform. For this data set we consider

three different detection schemes using different combinations of these sonar channels.

The next data set consists of one HF and only one BB beamformed sonar imagery

again coregistered over the same region on the sea floor. This data set consists of

not only target objects but also lobster traps giving us experimental intuition as

how the multi-channel correlations change for different object compositions. The

use of multiple disparate sonar images, e.g., a high frequency, high resolution sonar

with good target definition and a multitude of lower resolution broadband sonar with

good clutter suppression ability significantly improves the detection and false alarm

rates comparing to situations where only single sonar is utilized. Finally, a data

set consisting of synthetically generated images of targets with differing degrees of

disparity such as signal-to-noise ratio (SNR), aspect angle, resolution, etc., is used to

conduct a thorough sensitivity analysis in order to study the effects of different SNR,

target types, and disparateness in aspect angle.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivations

The problem of underwater object detection and classification in sonar imagery has

recently attracted a substantial amount of attention [1]. This problem is complicated

due to various factors such as variations in operating and environmental conditions,

presence of spatially varying clutter, variations in target shapes, compositions and

orientation. Moreover, bottom features such as coral reefs, sand formations, and veg-

etation may totally obscure a target or confuse the detection process. Consequently,

a robust detection system should be able to quantify changes between the returns

from the bottom and any target activity in sonar images, while at the same time

extract useful features for subsequent classification. Thus, a system designed without

the need to perform separate detection and feature extraction is highly desirable.

Normally, a single sensor (sonar, lidar, etc.) is used to detect and classify the ob-

jects based upon observations taken from the environment. From these observations,

the sensor will either make a local decision and transmit it to a central station or

record the entire sonar image for post mission analysis (PMA) at the central station.

The issues faced with detection based upon one sensor is that the detection process

is limited to only one field of view. This makes the detection of weak targets par-

ticularly challenging. Moreover, the structure of targets within an image vary as a

function of aspect, grazing angle, and range from the sonar which makes detection

difficult, especially if the target is in a disadvantaged position in relationship to the

sensor, e.g. partially obscured targets. Therefore, any improvement in the detection

results becomes hindered due the limited amount of data and observations from the
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environment.

Distributed sensor networks offer a solution to overcome the shortcomings of the

single sensor situations. The use of multiple sensors allows for significantly better

capture of the target characteristics due to the fact that the targets are viewed from

different aspects, grazing angles, ranges, frequencies, sensor modalities, etc. In a

surveillance area there could be multiple autonomous underwater vehicles (AUV’s)

each equipped with a wide variety of sensors including different types of sonar, mag-

netics, or electro-optical systems (see Figure 1.1(a)) or a single AUV equipped with

multiple sensors (see Figure 1.1(b)). Preliminary detection, feature extraction, and

object classification can be performed based upon the data collected using every sen-

sory system on one or multiple vehicles. A final decision-making usually takes places

at the central station, either in the standard PMA method or real-time network-

centric sensor analysis (NSA) using some type of decision-level or feature-level fu-

sion. However, decision-making based upon individual sensory data typically leads

to incomplete, degraded or biased local (sensor-level) decisions hence resulting in an

unacceptable final detection and classification performance at the fusion center as the

coherent information shared among the sensory systems is ignored.

To allow collaborative decision-making among multiple sonar platforms, it is essen-

tial to detect and further scrutinize the information bearing parts of the data collected

by the various sensory systems. This involves detecting, isolating, and representing;

in terms of some pertinent attributes, the coherent, or mutual information among one

or multiple data sets. This is an extremely challenging problem due the disparate

nature of the problem and therefore to develop such a solution, new methodologies

are needed to: (a) collaboratively detect and agree on threats occurring within the

field of view of the sensors, (b) perform feature extraction to capture common target

attributes from multiple sensor platforms, (c) perform object classification and iden-

tification, (d) and finally develop a single integrated target assessment picture based
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(a) Multi-Platform, Single-Sensory Fusion

(b) Single-Platform, Multi-Sensory Fusion

Figure 1.1: Two Different Paradigms for Distributed Decision-Making.
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upon the detected, localized and classified targets from one or multiple disparate

sensors.

Performing detection with multiple sources of information from any number of

sensory systems should undoubtedly increase our confidence in the detection deci-

sions we have made but at the same time opens up a new line of questions. Detection

performance can vary depending on disparateness in sensor platform location, target

composition, frequency, resolution, clutter density, aspect angle, etc. Thus, it be-

comes pertinent to analyze the behavior of the detection system to these variables of

disparity. An equally important factor in any multiple sensor platform problem is the

optimal number of sensing systems used to perform detection. Naturally, the number

of sensor platforms used in any practical application directly relates to cost, compu-

tational, as well as bandwidth and latency constraints particularly in network-centric

operations. Therefore, it becomes pertinent to analyze all such trade-offs when adding

an additional sensory system into the decision-making process. Measuring the per-

formance of the detection system with respect to variability in disparateness and the

number of sensor platforms should obviously be stated in terms of probability of de-

tection but a sufficient characterization of the distribution of the test statistic can be

difficult in some situations. Alternatively, one can look at any number of information

measures to get a good picture of the sensitivity of the performance of the detector,

one of them being the J-divergence which simply gives a first-order characterization

of the distribution of the likelihood ratio under both hypotheses. With this, one can

hope to gain insight into what effects disparity and the number of platforms can have

on the multiple platform detection problem in different situations.

In this work we design a coherence-based detector based on the Multi-Channel

Coherence Analysis (MCA) framework [2] - [6] where the coherent information is

found among multiple sensory channels and is used to detect objects from sonar

imagery captured from one or multiple sonar systems with a high degree of confidence.
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Additionally, we take a closer look at what effect adding an additional piece of data

has on the detection statistics and find update equations which can be used to describe

the increase in detection performance solely attributed to the new data.

1.2 Literature Review on Multi-Channel Detec-

tion

Considerable research has been devoted to the development of different detection and

classification methodologies to detect and classify underwater objects from single-

sonar imagery. For a detailed review of such work the reader is referred to [1]. How-

ever, recently multi-sensor detection and classification has been considered for this

problem. One such work that has looked at underwater target classification from mul-

tiple sonar images is given in [7], [8], where three different sonar images with varying

frequency and bandwidth characteristics were used. The classification on each image

is done using a multistage classification approach, which entails a repeated applica-

tion of a classifier. During the training stage, it is determined how many times to

apply the classifier and an optimal subset of features are extracted. Each stage of the

classifier results in a reduction in the number of false alarms. The final classification

decision is made by a fusion of the three classification results from the three different

sonar images. Although this work uses disparate sonar systems (with disparateness

in the operating frequency of the sonar), the classifier of this method processes each

image individually and does not use the information contained in the three images

simultaneously to make classification calls. This type of decision-making, which is

based upon individual sensory data, typically leads to incomplete, degraded or biased

decisions. However, when the information from the individual sensors is used collab-

oratively and simultaneously in the decision-making a more reliable decision about

the observation can be made.
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Multi-channel detection has recently been looked at in [9] - [11]. In [9], a non-

parametric (in the sense that no assumptions on the distribution of the data are

made) approach to multi-channel detection is proposed by defining the generalized

coherence (GC) estimate which measures the linear relationships among N channels

by forming an N -dimensional normalized Grammian matrix from the N vectors of

measurements. This measure can then be used to test whether the multi-channel

data contains independent realizations of noise under H0 versus its complement un-

der H1. Since no explicit a priori assumptions are made about the H1 hypothesis,

the estimate applies to a wide range of different signal models. Then making the

explicit assumption that the measurements from all N channels are white Gaussian

random vectors, the H0 distribution of the Magnitude-Squared Coherence (MSC) es-

timate (the two-channel version of the GC estimate) is derived which can effectively

be used to find thresholds corresponding to a constant false alarm rate. Under the

same assumptions the authors then derive the distribution of the three-channel GC

estimate under H0 which leads to a recursive formulation of the distribution as one

adds an additional channel thus in some sense generalizing the distribution to any

number of channels. The authors note, however, that the GC estimate ignores tem-

porally correlated random processes and so one drawback to the detector is the fact

that propagation delays and doppler shifts must be estimated and accounted for prior

to detection. Multi-channel detection for uncalibrated sensor elements in an array is

considered in [10] by forming a Generalized Likelihood Ratio Test (GLRT). Based on

the assumption that observations from the array are zero-mean, complex Gaussian

distributed random vectors, the authors form a sample covariance matrix estimated

from a window’s worth of data. The GLRT then involves testing whether the sample

covariance matrix has diagonal structure under H0 versus any arbitrary, positive-

definite (PD) covariance structure under H1. Based on this detection problem, the

GLRT test statistic becomes a Hadamard ratio [12] involving the sample covariance
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matrix. Because the diagonal noise structure is not assumed to be known, the authors

note that the GLRT presents an advantageous method for performing detection when

sensor calibration data is absent. This work is then somewhat generalized in [11] by

considering a problem where one is given multiple independent copies of a finite-

length, vector-valued time series. Vectorizing each copy into a larger dimensional,

spatio-temporal random vector and forming a data matrix from all the independent

copies of this vector, the sample covariance matrix is estimated across the indepen-

dent copies. The GLRT then involves testing whether the sample covariance matrix is

block-diagonal under H0 versus any arbitrary, positive-definite (PD) covariance struc-

ture under H1. With these assumptions, the GLRT test statistic is written in terms of

a generalized Hadamard ratio involving the sample covariance matrices or the deter-

minant of the estimated coherence matrix. Making the asymptotic assumption that

both the number of temporal measurements and the number of independent copies

grow large, the test statistic is then written in terms of the log of the Hadamard ratio

involving the estimated power spectral density matrices for each channel, integrated

over the Nyquist band. So even though the analysis begins as a finite-dimensional

result, the authors extend the statistic into infinite dimensions and note that it is

equivalent to integrating the “power cepstrum” to form the test statistic. Properties

of the proposed detection statistic are given, its relationship to mutual information

shown, and a low-correlation regime approximation is then developed.

Recently, Canonical Correlation Analysis (CCA) [13] - [15] has been looked at for

coherent detection and feature extraction. The canonical coordinate decomposition

method not only determines linear dependence [13] or coherence between two data

channels but also extracts, via the canonical coordinates, a subset of the most coherent

features for detection and classification purposes. The CCA method has shown great

promise in underwater target classification problems using sonar backscatter using

data collected by the buried object scanning sonar (BOSS) system [16] - [19]. The
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work in these references presented a multi-ping classification system that extracts

coherence-based features from blocks of range cells of time series associated with two

sonar returns with single ping separation. These coherence patterns were shown to be

different for pairs of pings that contain mine-like objects than those that contain non-

mine-like objects. The canonical correlations that capture the coherence patterns [17]

were shown to have high discriminatory power for both detection and classification.

Another study, [20] extended this coherence analysis to the frequency domain by

measuring coherence between the same frequency band in two sonar pings. Comparing

to the time domain coherence-based features, these features provided substantially

better results on the BOSS data sets as well as the ability to offer a more rigorous

way of generating acoustic-color for possible target identification from multiple sonar

pings. Previous to the work of this thesis [21], [22] - [24], CCA was utilized to form

a dual disparate detector in which detection decisions are based on the amount of

coherent information shared among pairs of coregistered Regions of Interest (ROIs)

from two different sonar images. This dual disparate detector is then applied to a

distributed detection framework [1] and is shown to exhibit high performance with a

low false alarm rate and high probability of detection.

Multi-Channel Coherence Analysis (MCA) [2] - [5] can be seen as a natural exten-

sion of CCA to more than two channels. MCA-based decomposition similarly looks

for sets of one-dimensional mappings that maximize the sum of the cross-correlations

among any number of channels. In [3], [6] an iterative procedure for performing the

MCA decomposition is proposed and applied to data from the BOSS system as a fea-

ture extraction method for classification with the three channels formed from three

sonar returns with different ping separations. In [4], MCA is applied to Landsat im-

agery to quantify the amount of coherent information from multiple spectral bands

and across different images in time. Finally, MCA is cast as a non-linear dynamical

system in [5] and several cost functions for solving the problem are proposed. The
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non-linear dynamical system associated with each cost function is then shown to be

stable via Lyapunov functions and are shown to converge to the true value as time

grows large.

1.3 Research Objectives

The goal of this present work is to develop and test an efficient and robust coherence-

based detection system for multi-platform sonar imagery that maintains good un-

derwater target detection performance in varying operating and environmental con-

ditions. Specifically, we would like to develop and test a detection system that can

be applied to multiple disparate sonar systems using the data provided by the Naval

Surface Warfare Center, Panama City (NSWC-PC). For this system, our detection

hypothesis is that the presence of a target in coregistered ROIs from multiple sonar

images will exhibit higher level of coherence than when those same ROIs contained

only background. The MCA method [2] - [5] provides an excellent framework for

quantifying changes between the returns from the bottom and the returns from a

target by determining the linear dependence (or coherence) between multiple data

channels. It is also the objective of this analysis to study the set of features that nat-

urally arise from MCA, namely the sum of correlations, and analyze their properties

and suitability for target classification.

Based on the detection hypothesis just briefly described above, we construct a

simple multi-channel detection problem which is then solved via MCA and cast into

the standard Gauss-Gauss detection framework. The work presented here will develop

the log-likelihood ratio and J-divergence for the composite multi-channel hypothesis

test in the MCA framework and explore the link to the standard Gauss-Gauss detector

presented in [25]. Test results on three different data sets are presented. The first

data set contains one high frequency (HF) and three broadband (BB) sonar imagery

coregistered over the sea floor. This data set is used to examine different combinations
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of these sonar images, construct three different multi-channel detectors with the HF

image and one more BB images, and compare detection performance as a function

of the number of disparate sonar images used. The second data set consists of only

one HF and one BB sonar imagery, again coregistered over the sea floor. This data

set contains both target and non-target objects (lobster traps) which can give us

some intuition of the discriminatory power of the extracted multi-channel features

for target/non-target classification. Finally, we present sensitivity analysis results on

a data set consisting of simulated target objects in simulated background generated

for various choices of SNR, target aspect angle, image resolution, target shape, etc.

The hope of the sensitivity analysis is to give one some idea of the proposed system’s

response to different variables that can be expected in multiple disparate platform

detection problems.

Finally, we take a closer look at how adding an additional channel’s worth of data

effects the multi-channel Gauss-Gauss detector in terms of the increase in J-divergence

as a consequence of this (time or channel) augmentation. In this case, we find that

adding additional data to the detection problem involves linearly estimating the new

data from the old and updating the old likelihood ratio through simple addition. The

change in J-divergence can then be written in terms of error covariance matrices when

filtering with a smoother that is matched/miss-matched to the given hypothesis. The

change in J-divergence can then be used to decide whether or not to add that channel’s

worth of data or, when given the opportunity, to choose among several channels and

decide which one to add. If it is decided to add that portion of the data to the

detection problem, then a similar argument as in [25] is taken to find a coordinate

system where error vectors can be approximated in a lower dimensional space. This

coordinate system becomes especially useful in applications where the data to be

added is high dimensional which can result in high computation savings without a

significant decrease in the change in J-divergence. To demonstrate situations where
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updating in this fashion may be useful we provide two simulations. The first example

is concerned with detecting the presence of dynamical structure in our observation and

adding data amounts to time updating the likelihood ratio. Because of the special

structure of the problem, this time updating scheme uses a Kalman filter [26] to

propagate the necessary error and error variances required for updating. The second

example is concerned with detecting the presence of a single narrow-band source in the

sensing environment of multiple uniform linear arrays (ULAs). A rank-one detector

is then built for one platform alone where after the likelihood ratio is updated via a

rank-one channel update to successively account for the observations from all other

platforms. In this case, we exhibit how the change in J-divergence can be used as

an information measure in deciding when adding additional sensor platforms reach a

point of diminishing return.

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives a detailed review of classical

Bayesian and Neyman-Pearson detection, the development of the full and reduced-

rank Gauss-Gauss detector, and a review of the Gauss-Gauss detector cast in the

CCA framework. The development of the multi-channel detector is also given in this

chapter. Chapter 4 introduces the three sonar imagery data sets used in this study,

reviews the preprocessing and data description for each, and gives a comprehensive

study of the effectiveness of the proposed detection system by presenting the results

from each data set. Chapter 5 describes the formulations behind Gauss-Gauss likeli-

hood updating when adding more data, presents the low-rank version of the updating,

and provides results from two simulations covering both time and channel updating.

Finally, Chapter 6 concludes the studies carried out in this research and discusses the

goals for future work.
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CHAPTER 2

CLASSICAL BINARY HYPOTHESIS

DETECTION

2.1 Introduction

Detection problems can be simply described as deciding which of a set of models has

most likely generated the realization that we have observed. This is easily cast into the

framework of statistical hypothesis testing the most basic being the binary hypothesis

test where we must decide only among two models. The binary hypothesis test is

described as a decision between either the “true” hypothesis H1, or the alternative

“null” hypothesis H0. In signal processing applications, one typically encounters

tests where observations are assumed to be either a deterministic or stochastic signal

additively corrupted by noise under the alternative hypothesis versus that of noise

alone under H0.

The most fundamental building block for hypothesis testing is the Bayesian frame-

work [27] - [29] where the problem is to minimize the expected Bayesian risk involved

with making a decision. This leads to a solution involving the comparison of a likeli-

hood ratio with a threshold that is dependent on the costs and a priori probabilities.

When these costs and probabilities are available, Bayesian detection is optimal, but

in general it is difficult to ascertain these free parameters and in practical applications

it often comes down to forming educated guesses. The Neyman-Pearson criterion [27]

- [29] offers an alternative to the standard Bayesian framework by formulating the

hypothesis test as a constrained optimization problem where it is our objective to

maximize the probability of detection subject to the constraint that the probability
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of false alarm equals a particular value. Solving the optimization problem leads to a

likelihood ratio test and a threshold that does not depend on the a priori probabili-

ties or costs of the problem. If the assumption is made that under both hypotheses

the data is Gaussian distributed, the likelihood ratio test then becomes the standard

Gauss-Gauss detector [25].

In developing a detection framework for sonar imagery, the a priori probabilities

are impossible to ascertain as this would require knowledge of how densely targets are

spaced on the ocean floor even before sensors are deployed to the field. Additionally,

assigning costs to the detection problem is heuristic and user-dependent. Thus, we

choose to restrict our attention to the Neyman-Pearson detection framework and more

specifically the Gauss-Gauss framework. One thing that must be defined irregardless

of the framework are the conditional probability densities under both hypotheses.

Although it is well-known [30] that the data resulting from coherent beamforming is

not described well with a Gaussian distribution, this assumption for the sonar data

is made here due to the ease in theoretical and computational implementation of the

Neyman-Pearson criterion.

The outline of this chapter is as follows. Section 2.2 starts from the ground up with

a brief review of Bayesian detection and the Neyman-Pearson criterion. Section 2.3

then develops both the full-rank and reduced-rank Gauss-Gauss detector [25] and

presents a review of the Gauss-Gauss detector cast in the coordinate system provided

by two-channel Canonical Correlation Analysis (CCA) [15]. Concluding remarks are

given in Section 2.4.

2.2 Classical Detection Review

2.2.1 Bayesian Detection

Consider the classical detection problem of choosing between two hypotheses [27]

where each hypothesis relates to a point in the observation space denoted as Z.
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Figure 2.1: Classical Detection.

From an abstract point of view, we assume that an unobserved source generates

one of two possible random variables, denoted as H0 and H1, that influences the

observation that we make according to a conditional probability statement. Based on

this measurement we would then like to infer which random variable was generated

by the source to the best of our ability. Figure 2.1 gives a graphical overview of the

classical detection problem. Clearly, each time we conduct the test there are four

possible outcomes. Those are: (a) H0 is true and we choose H0, (b) H0 is true and

we choose H1, (c) H1 is true and we choose H1, and (d) H1 is true but we choose H0.

The first and third outcomes lead to correct decisions while the second and fourth

outcomes lead to erroneous decisions. The Bayes test is based on two assumptions.

First, the two hypotheses, H0 and H1, are generated according to a binary probability

law represented by P0 and P1, respectively. These probabilities represent the prior

observer’s information about the hypotheses before the detection is conducted. The

second assumption is that there is a cost associated with each of the four courses

of action described above. These costs are denoted by, C00, C10, C11, and C01, for

outcomes 1-4, respectively. It is (for obvious reasons) assumed that the cost of a
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wrong decision is higher than the cost of a correct decision, i.e. C10 > C00 and

C01 > C11. The goal of the Bayes test is to design a decision rule so that the expected

cost of a decision is as small as possible, which subsequently leads to minimizing the

Bayesian risk when making the decision. If we denote the expected value of the cost

as the risk R, we can then write [27]

R = C00P0Pr(decide H0|H0)

+ C10P0Pr(decide H1|H0)

+ C11P1Pr(decide H1|H1)

+ C01P1Pr(decide H0|H1) (2.1)

Since the decision rule is binary, i.e. there are only two possible decisions, we can

view the rule as a division of the observation space into two parts Z0 and Z1. In other

words, if the observation is found in the region Z0 the hypothesis H0 is declared true

and if the observation is found in the region Z1 the hypothesis H1 is declared true.

By viewing the problem in this manner we can now express the risk in terms of the

decision regions and probabilities as,

R = C00P0

∫
Z0

pX|H0(x|H0) dx

+ C10P0

∫
Z1

pX|H0(x|H0) dx

+ C11P1

∫
Z1

pX|H1(x|H1) dx

+ C01P1

∫
Z0

pX|H1(x|H1) dx. (2.2)

Because each element of x must be assigned to either the Z0 or Z1 in the observation

space Z, we can say that Z = Z0 ∪ Z1 and Z0 ∩ Z1 = ∅. Noting that integrating the

conditional densities over the entire observation space is defined to be one, we can
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rewrite (2.2) as

R = P0C10 + P1C11

+

∫
Z0

[
P1(C01 − C11)pX|H1(x|H1)− P0(C10 − C00)pX|H0(x|H0)

]
dx (2.3)

The first two terms in (2.3) represent the fixed cost and the integral represents the

cost controlled by the points in the observation space, Z that are assigned to Z0. All

values of x in which the second term in the integral is larger than the first should be

assigned to Z0 as they negatively contribute to the expected cost. Likewise, all values

of x in which the first term is larger than the second should be assigned to Z1 as they

contribute positively to the risk. This statement can alternatively be written as [27]

l(x) =
pX|H1(x|H1)

pX|H0(x|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (2.4)

where l(x) is called the likelihood ratio and the term on the right is simply the thresh-

old of the test which is dependent on the a priori probabilities and costs associated

with the detection problem. Thus, Bayes criterion simply leads to a likelihood ratio

test (LRT).

2.2.2 Neyman-Pearson Criterion

As stated earlier in the introduction, it is impossible to realistically assign costs and

a priori probabilities to our detection problem (as it typically is with any practical

problem) and thus difficult to find a suitable threshold for the Bayesian detector. The

Neyman-Pearson criteria [27], [31] overcomes this by restating the problem in terms of

the two conditional probabilities PD and PF representing the probability of detection

and false alarm, respectively. We would like to make PF as small as possible and

PD as large as possible but these are often times two conflicting statements. Thus,

we constrain the probability of false alarm to be a particular value, PF = α, and

look to maximize PD or alternatively minimize PM = 1 − PD, the probability of
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miss-detection. To solve the problem we construct the Lagrangian

L = PM + λ (PF − α)

=

∫
Z0

pX|H1 (x|H1) dx + λ

(∫
Z1

pX|H0 (x|H0) dx− α
)

which, using a similar argument from before, can be rewritten as

L = λ(1− α) +

∫
Z0

[
pX|H1 (x|H1)− λpX|H0 (x|H0)

]
dx (2.5)

For any positive Lagrangian multiplier, we can see that L is minimized when the term

inside the integral is negative thus resulting in the LRT [27]

l(x) =
pX|H1(x|H1)

pX|H0(x|H0)

H1

≷
H0

λ. (2.6)

Denoting the probability density of the likelihood ratio as pL(l), the threshold of the

LRT is chosen to satisfy the equation

PF =

∫ ∞
λ

pL|H0(l|H0)dl = α (2.7)

which is independent of the costs and a priori probabilities defined before. So even

though the problem is stated in a slightly different manner, we find that both the

Bayesian and Neyman-Pearson criteria involve the use of a likelihood ratio, l(x), to

map observations to a scalar, real-valued statistic which is compared to a threshold

to form our detection decision. The only difference among the two methods is the

threshold that is chosen which ultimately determines how one partitions the observa-

tion space to form decisions.

2.3 Gauss-Gauss Detection

2.3.1 Preliminaries

The next question is how to characterize the conditional densities describing our data

under both hypotheses to facilitate the computation of the likelihood ratio. For cer-

tain classes of distributions, it is possible to obtain closed-form solutions and easily
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compute the likelihood function. An example of such a class is the multivariate Gaus-

sian distribution which serves as a low-level model of what actually exists. It must

be mentioned that one cannot put an extreme amount of faith in their modeling

capabilities as often times creating models with an increasing amount of accuracy

amounts to an increase in the degree of complexity, hence hindering its capability to

be practically implementable. For the detection problem at hand, we assume that

the statistical nature of our problem can be completely characterized by second-order

covariance matrices for each hypothesis. More specifically, we assume that realiza-

tions of our random vector are circular symmetric complex Gaussian distributed [32]

with zero-mean and covariance matrix EH1

[
xxH

]
= R1 under hypothesis H1 versus

EH0

[
xxH

]
= R0 under hypothesis H0. Note that EH1 and EH0 denote conditional ex-

pectation under H1 and H0, respectively, and assuming a circular symmetric complex

Gaussian distribution implies that our observation is proper under both hypotheses

so that EH1

[
xxT

]
= EH0

[
xxT

]
= O. No specific structure is assumed for either

covariance matrix with the only restriction that they be positive-definite (PD) under

both hypotheses. More compactly, we write the detection statement as

H1 : x ∼ CN (0, R1)

H0 : x ∼ CN (0, R0)

With this assumption, we have the following conditional densities

pX|H0 (x|H0) =
1

πn |detR0|
e−xHR−1

0 x

pX|H1 (x|H1) =
1

πn |detR1|
e−xHR−1

1 x

where (·)H denotes the Hermitian transpose and detR is the determinant of the matrix

R. Realizing that the application of any monotonically increasing function of the

likelihood ratio (along with a suitable correction for the threshold) leaves our decision

unchanged and that the likelihood ratio is always positive, it becomes desirable in
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this situation to look at the log of the likelihood ratio (which we will still denote as

l(x))

l(x) = log
|detR0|
|detR1|

+ xH
(
R−1

0 −R−1
1

)
x

Simplifying the log-likelihood ratio (LLR) even further by noting that the first term

in this equation is independent of the observation and can be taken into account by

adjusting the threshold, we obtain the final expression for the LLR

l(x) = xH
(
R−1

0 −R−1
1

)
x (2.8)

This leads to the log-likelihood ratio test (LLRT)

l(x)
H1

≷
H0

λ.

where again the threshold λ is chosen to achieve a desirable false alarm rate.

2.3.2 Full-Rank Gauss-Gauss Detection

With the functional form of the LLR established previously and given the observation

x ∈ Cn, we can rewrite the test statistic in terms of the whitened version of our data

as

l(y) = xHR
−H/2
0

(
I − S−1

)
R
−1/2
0 x = yH

(
I − S−1

)
y

where S = R
−1/2
0 R1R

−H/2
0 is a “signal-to-noise ratio” matrix and the whitened vector

y = R
−1/2
0 x has covariance structure

EH0

[
yyH

]
= I

EH1

[
yyH

]
= S

We then go a step further by taking the eigenvalue decomposition of the matrix S so

that

S = UΛUH

UHU = UUH = I
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and

Λ = diag [λ1, . . . , λn]

Now, we can rewrite the LLR as

l(z) = yHU
(
I − Λ−1

)
UHy = zH

(
I − Λ−1

)
z (2.9)

where the vector z = UHy has covariance structure

EH0

[
zzH

]
= I

EH1

[
zzH

]
= Λ

Measuring the performance of the detector should obviously be portrayed in terms

of probability of detection. However, this requires an accurate characterization of the

distribution of (2.9) under hypothesis H1 which can be difficult to do in general. With

that said, an alternative is to simply characterize the moments of the log-likelihood

ratio. The J-divergence is just that and measures the difference in the means of the

log-likelihood ratio under H1 and H0. Taking advantage of the cyclic property of the

trace operation, we note that the first moment of the LLR can be written as

E[l(x)] = E
[
xH
(
R−1

0 −R−1
1

)
x
]

= tr
((
R−1

0 −R−1
1

)
E
[
xxH

])
and the divergence of the detector in this coordinate system becomes

J = EH1 [l(x)]− EH0 [l(x)]

= tr
(
−2I +R−1

0 R1 +R0R
−1
1

)
= tr

(
−2I + S + S−1

)
= tr

(
−2I + Λ + Λ−1

)
=

n∑
i=1

(
−2 + λi + λ−1

i

)
(2.10)
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Therefore, we find that it is the not necessarily the largest eigenvalues of the S matrix

that are important for detection but rather the term
(
λi + λ−1

i

)
. One might be

quick to note that this analysis shares many things in common to standard Principle

Components Analysis (PCA) where one retains only the largest eigenvalues of the

covariance matrix. However, choosing to retain λj and discard λi because λi < λj

when in fact it is the case that
(
λi + λ−1

i

)
>
(
λj + λ−1

j

)
can unintentionally result in

a drop in detection performance as the smallest eigenvalues can sometimes contribute

more to divergence than those that are larger.

2.3.3 Reduced-Rank Gauss-Gauss Detection

When performing rank-p detection, we sort the eigenvalues of the S matrix in a

descending fashion such that

(
λ1 + λ−1

1

)
> · · · >

(
λn + λ−1

n

)
We then partition the coordinate system according to the following statements

U = [Up Up+1]

Up = [u1 · · · up]

Up+1 = [up+1 · · · un]

Λ =

 Λp O

O Λp+1


Λp = diag [λ1 · · · λp]

Λp+1 = diag [λp+1 · · · λn]

and form the reduced-rank approximation of the observation vector z̃ = UH
p R

−1/2
0 x ∈

Cp. The log-likelihood ratio can then be written as

lp(z̃) = z̃H
(
I − Λ−1

p

)
z̃
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with an associated J-divergence

Jp =

p∑
i=1

(
−2 + λi + λ−1

i

)
There are many possible methods for choosing a suitable value for p. Similar to PCA,

one might be interested in solving the optimization problem

min {q : Jq/J ≥ 1− ε}

where typically ε is very small. In other words, we choose the smallest set of coordi-

nates that retain a large percentage of the J-divergence. Note that in the special case

that R1 = Rs +R0, i.e. a signal-plus-noise model, the matrix S becomes

S = R
−1/2
0 R1R

−H/2
0 = I +R

−1/2
0 RsR

−H/2
0

which will undoubtedly have eigenvalues that are all greater than one. Thus, in

such a situation it becomes optimal to pick the largest eigenvalues when performing

reduced-rank detection as this orthogonally projects the data onto one-dimensional

basis vectors with high per-mode signal-to-noise ratio (SNR).

2.3.4 CCA-Based Detection

The Gauss-Gauss detector in the previous two sections can also be cast in the CCA

framework in which the detection test and detection criterion are formed in terms of

the canonical coordinates and canonical correlations. For a review of CCA the reader

is referred to Appendix A. Canonical correlation analysis offers an ideal framework for

coherent-based detection and feature extraction [13] - [15]. The extracted canonical

correlations for the two data channels provide a coherence (or incoherence) measure

that can be used to determine if a target is present (or absent). Therefore, only the

dominant correlations need to be retained to build a rank-p detector that maximizes

the divergence. In this case, we restrict our attention to a signal-plus-noise model and

consider the message vector or signal of interest x ∈ Cn which is a zero-mean, complex
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Gaussian random vector with covariance matrix Rxx. Given the measurement or

observation y ∈ Cn, we consider the detection problem

H1 : y = x + n

H0 : y = n

where n ∈ Cn is a zero-mean, complex Gaussian random vector with covariance

matrix Rnn = R0 and is uncorrelated with the signal which has covariance matrix

Rxx = Rs. The detection problem is displayed diagrammatically in Figure 2.2. In the

CCA framework posed by this problem, the matrix S can be rewritten as

S = R−1/2
nn (Rxx +Rnn)R−H/2nn (2.11)

and we define the coherence matrix [15]

C = R−1/2
xx RxyR

−H/2
yy = RH/2

xx R−H/2yy = RH/2
xx (Rxx +Rnn)−H/2 (2.12)

With the quadratic detector described earlier, we can then write the log-likelihood

ratio in terms of the squared coherence matrix, CCH , as

l(y) = yHR−H/2nn

(
I − S−1

)
R−1/2
nn y

= yHR−H/2xx

([(
CCH

)−1 − I
]−1

− CCH

)
R−1/2
xx y

We then take the Singular Value Decomposition (SVD) of the coherence matrix so

that C = FKGH with FFH = FHF = GGH = GHG = I and K = diag [k1, . . . , kn].

From here it is easy to show that CCH = FK2FH and FHR
−1/2
xx = K−1GHR

−1/2
yy so

that we may rewrite the log-likelihood ratio as

l(y) = yHR−H/2xx F

([(
K2
)−1 − I

]−1

−K2

)
FHR−1/2

xx y

= yHR−H/2yy G
([
I −K2

]−1 − I
)
GHR−1/2

yy y

=
n∑
i=1

∣∣gHi R−1/2
yy y

∣∣2( k2
i

1− k2
i

)
(2.13)
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Figure 2.2: Signal-Plus-Noise Detection in CCA Coordinates

This is the standard Gauss-Gauss log-likelihood ratio, expressed in the coordinates

GHR
−1/2
yy y which under H1 are the canonical coordinates of y.

It can be shown [15] that the expected value of the log-likelihood ratio under H0

can be written as

EH0 [l(y)] = tr
(
K2
)

=
n∑
i=1

k2
i

and likewise under H1

EH1 [l(y)] = tr
([
I −K2

]−1 − I
)

=
n∑
i=1

k2
i

1− k2
i

Therefore, the J-divergence in the CCA coordinate system can be written as

J = EH1 [l(y)]− EH0 [l(y)] =
n∑
i=1

k4
i

1− k2
i

(2.14)

The function k4
i /(1 − k2

i ) is a monotonically increasing function of ki ∈ (0, 1] and

therefore, if the canonical correlations are sorted in a descending fashion, the diver-

gence is a monotonically decreasing function of the coordinate index i. Consequently,

the rank-p detector that maximizes divergence is the detector that uses those coor-

dinates associated with the largest p canonical correlations where p can be chosen

as described previously. It is noted in [15] that the canonical correlations and the

eigenvalues of the matrix S can be related through the identities

λi =
1

1− k2
i

ki =
√

1− λ−1
i
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We can see that, since ki is bounded between zero and one, all the eigenvalues of the

matrix S must be greater than one confirming an observation we have made previ-

ously. We can also see that the larger the value of λi, the closer ki approaches its upper

bound of one. Thus, representing the data in the coordinate system associated with

the largest canonical correlations can again be interpreted as orthogonally projecting

the data onto one-dimensional basis vectors with high per-mode SNR. This leads us

to conclude that the low-rank detector built in the previous section can alternatively

be built using CCA when the underlying model is a signal-plus-noise model.

2.4 Conclusion

In this chapter, optimum Bayesian detection and the Neyman-Pearson criterion were

reviewed. Bayesian detection is optimal when the decision costs and prior probabilities

are known. However, in general it is difficult to generate these values due to lack of a

priori information about the environment. The Neyman-Pearson criterion provides a

decision rule for testing hypothesis in which the decision costs and prior probabilities

are not required. In the case where data is Gaussian distributed under both the null

and alternative hypotheses, the Gauss-Gauss detector is obtained. In this method

the likelihood ratio and J-divergence can be reformulated in terms of the eigenvalues

and eigenvectors of the “signal-to-noise ratio” matrix, where rank reduction can be

performed by maximizing the divergence with a rank constraint.

This reduced-rank Gauss-Gauss detector is then cast in the CCA framework in

the special case of a signal-plus-noise model. In this case, we form the CCA coherence

matrix between the signal and the observation under H1. Taking the SVD of this

coherence matrix, the data is then filtered into its canonical coordinates under H1

and subsequently applied to a quadratic detector. The J-divergence in this coordinate

system then becomes written in terms of the sum of squared canonical correlations. As

a consequence, it is concluded that low-rank detection can alternatively be performed
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in this coordinate system by retaining the largest canonical correlations which again

maximizes the divergence subject to a rank constraint.
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CHAPTER 3

MULTI-CHANNEL COHERENCE ANALYSIS

(MCA) DETECTION

3.1 Introduction

In this chapter, we begin by reviewing the Multi-Channel Coherence Analysis (MCA)

framework. The two-channel CCA-based detector presented in [1] looks for coherence

among two sonar images. To extend and generalize this idea to multiple sources of

information, one must define a coordinate system that finds the linear relationships

among every pair of sensory data channels. MCA discovers this coherence structure

by whitening the observations from each channel to remove the second-order infor-

mation pertaining to that channel alone. The MCA-based detector then finds sets

of linear mapping functions that maximize the sum of the cross-correlations among

the channels thus “discovering” the coherence structure across the platforms. Solving

this optimization problem boils down to simply performing a generalized eigenvalue

decomposition from which the mapping vectors and multi-channel correlations are

obtained.

Our detection hypothesis for this multi-sonar detection problem is that the pres-

ence of a target in the disparate platform data will lead to a higher level of coherence

versus when our set of observations consist of background clutter arising from re-

turns off the seafloor clutter. Based on this detection hypothesis, we then recast the

standard Gauss-Gauss detector into the MCA coordinate system under hypothesis

H1. Doing so results in new formulations for the log-likelihood ratio which can be
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written as a quadratic term in the MCA variates under H1. The J-divergence then be-

comes decomposed in terms of expressions measuring the coherence shared between

data channels under H1 and the SNR local to each individual channel. With the

assumption of low SNR in each individual data channel, we then approximate the

log-likelihood ratio and J-divergence in terms of a detector that only takes advantage

of coherent information among the channels under H1. We finally consider a simple

example to illuminate the inner workings of the proposed MCA-based detector which

is then compared to the detector presented in [25].

The outline of this chapter is as follows. Section 3.2 reviews MCA and highlights

its properties and relationship to CCA. Section 3.3 presents the MCA-based detection

method. A simple example is then given to illuminate the effectiveness of the MCA-

based detector for multi-channel detection problems. Concluding remarks are then

given in Section 3.4.

3.2 Multi-Channel Coherence Analysis (MCA)

Consider N zero mean random vectors, x1, x2,..., and xN , representing multiple data

channels comprising the composite data channel z = [xH1 xH2 · · ·xHN ]H ∈ Cd×1. For

the sake of simplicity and without loss of generality, we will assume that all random

vectors are zero mean throughout this analysis. Let each channel xj ∈ Cdj×1 be of

dimension dj and we denote d =
∑N

j=1 dj. The d × d dimensional covariance matrix

of the composite data channel z is given by

Rzz = E
[
zzH

]
=



R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RN1 RN2 · · · RNN


, (3.1)

where Rjk = E[xjx
H
k ] is the auto-covariance (j = k) or cross-covariance (j 6= k)

matrices of data channels xj and xk and clearly we have Rjk = RH
kj. No specific
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structure is assumed for Rzz, e.g. a Toeplitz structure resulting from stationary

assumptions, with the only assumption that it be positive definite (PD).

Similar to two-channel CCA [14], [33] the ith multi-channel coordinate of the jth

channel is found by searching for the ith coordinate mapping vector, αi,j, of data

channel xj. This linear transformation produces the ith multi-channel coordinate for

the jth channel,

vi,j = αH
i,jxj. (3.2)

If the ith coordinate mapping vectors are found for all N channels, we obtain the

composite coordinate mapping vector ai =
[
αH
i,1 αH

i,2 · · · αH
i,N

]H
. This is then used

to find the composite coordinate vector vi = [vi,1 vi,2 · · · vi,N ]T which consists of

the ith multi-channel coordinate of every channel. The associated covariance matrix

of vi is given by

Rvivi =


αH
i,1R11αi,1 · · · αH

i,1R1Nαi,N

...
. . .

...

αH
i,NRN1αi,1 · · · αH

i,NRNNαi,N

 . (3.3)

Recall that in the two-channel CCA [14], [33] the correlations between the mapped

coordinates are maximized subject to the constraint that the transformed coordinates

have unit variance. In the multi-channel case, however, the analysis is not as well-

defined as all correlations between all possible pairs of channels must be maximized

simultaneously. To accomplish this, one approach [6] is to maximize the sum of all

correlations subject to the unit trace constraint of matrix Rvivi . Thus, the optimiza-

tion problem for finding the ith composite coordinate mapping vector ai using the

objective function and constraint just described becomes

ai = arg max
ai

N∑
j=1

N∑
k=1

αH
i,jRj,kαi,k

= arg max
ai

N∑
j=1

N∑
k=1

[Rvivi ]j,k
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subject to the constraint

tr (Rvivi) =
N∑
j=1

αH
i,jRjjαi,j =

N∑
j=1

[Rvivi ]j,j = 1,

It is shown [6] that the constrained optimization problem for finding the set of map-

ping vectors for the ith coordinate, αi,j using a Lagrange multiplier method leads to

N∑
k=1

Rjkαi,k = λiRjjαi,j,

or in matrix notation as

Rzzai = λiDai, (3.4)

where D is a block diagonal matrix with diagonal blocks Rjj, ∀ j ∈ [1, N ], i.e.

D = diag [R11, R22, . . . , RNN ]. Simply left-multiplying (3.4) by aHi and recalling that

aHi Dai is constrained to equal 1 yields λi = aHi Rzzai =
∑N

j=1

∑N
k=1E

[
vi,jv

∗
i,k

]
which

implies that each Lagrange multiplier is the sum of the correlations among all mapped

variates.

The result of (3.4) represents a generalized eigenvalue problem for which standard

methods of solution are well-known [34]. We will then consider the simultaneous

solution to the problem by assuming the user to have access to all mapping vectors

ai’s, i ∈ [1, d] and write (3.4) as RzzA = DAΛ where A =

[
a1 a2 · · · ad

]
consists of all d coordinate mapping vectors, and Λ = diag [λ1, λ2, . . . , λd] consists of

all d eigenvalues. Since both Rzz and D represent symmetric covariance matrices and

further D is positive definite (PD), the solution can then be rewritten in terms of a

standard eigenvalue problem

RzzA = D
1
2D

H
2 AΛ

D−
1
2RzzA = D

H
2 AΛ

EP = PΛ

where E = D−
1
2RzzD

−H
2 and P = D

H
2 A. Since E, which we refer to as the coherence
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matrix1, is also symmetric all eigenvalues are guaranteed [34] to be real-valued and P

forms a linearly independent, orthonormal basis of eigenvectors, i.e. PHP = PPH =

I. Clearly, we may then extract the matrix A via A = D−
H
2 P .

Inspection of matrix E shows that it is simply the composite covariance matrix

of the whitened version of z = [ xH1 · · · xHN ]H . That is, if we define this whitened

version of the composite data channel vector by w = [ wH
1 · · · wH

N
]H = D−

1
2 z

where E
[
wjw

H
j

]
= Idj and E

[
wjw

H
k

]
= R

− 1
2

jj RjkR
−H

2
kk , then the whitened com-

posite vector w has correlation matrix E
[
wwH

]
= D−

1
2RzzD

−H
2 = E. Matrix

P is then used to map the whitened channels to their multi-channel coordinates.

In order to find mapping vectors corresponding to the principal coordinates [6], we

only consider the r = minj {dj} coordinates such that λ1 > λ2 > . . . > λr. Thus,

Λ = diag [λ1, λ2, . . . , λr] will become a r × r diagonal matrix composed of the dom-

inant eigenvalues and P will become a d × r matrix composed of the eigenvectors

corresponding to r dominant eigenvalues.

To find the mapped coordinate vector, v, that contains all mapped coordinates

for all N channels, we will first define matrix Ψj (dimension dj × r) to contain those

dominant r eigenvectors pi,j, ∀ i ∈ [1, r] of the mapping matrix P that correspond to

the jth channel

Ψj =

[
p1,j p2,j · · · pr,j

]
, ∀ j ∈ [1, N ] . (3.5)

Clearly, the connection between P and Ψj is evident

P =



Ψ1

Ψ2

...

ΨN


d×r

. (3.6)

All of the mapped coordinates of the jth channel can then be found by

1Note that in the two-channel CCA, the off-diagonal blocks of this matrix become the coherence
matrix [13], [15]
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Figure 3.1: MCA Processing Block Diagram.

µj = ΨH
j R

− 1
2

jj xj, ∀ j ∈ [1, N ], (3.7)

where µj = [ v1,j v2,j · · · vr,j ]T . With this definition in mind, we have the fol-

lowing two properties

N∑
j=1

E
[
µjµ

H
j

]
=

N∑
j=1

ΨH
j Ψj

= PHP = AHDA = Ir
N∑
j=1

N∑
k=1

E
[
µjµ

H
k

]
=

N∑
j=1

N∑
k=1

ΨH
j R

− 1
2

jj RjkR
−H

2
kk Ψk

= PHEP = AHRzzA = Λ. (3.8)

Remark 1 Note the simple property that the sum of all d eigenvalues must equal d

itself, i.e.

d∑
i=1

λi = tr
(
PHEP

)
= tr (E) = tr

(
D−1Rzz

)
=

N∑
j=1

tr
(
Idj
)

=
N∑
j=1

dj = d (3.9)

If we define block diagonal matrix Ψ that contains the Ψj matrices along its diagonal

blocks, i.e. Ψ = diag [Ψ1,Ψ2, . . . ,ΨN ], then we can resolve all N channels into their

multi-channel coordinates using

v =
[
µH

1 µH
2 · · · µH

N

]H
= ΨHw = ΨHD−

1
2 z. (3.10)
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Figure 3.1 displays the process behind the MCA analysis filter. As can be seen, similar

to CCA [14], [33], all channels are whitened in order to remove the auto-correlation

contributions from each individual component thereby allowing one to analyze the

linear dependence shared among one another using matrix Ψ.

3.3 MCA-Based Detection

We now turn our attention to MCA-based detection. For this multi-sonar problem, we

assume that the observations from all N channels consist of uncorrelated realizations

of background noise under H0 verse the hypothesis that our observations contain

correlated signal components corrupted by additive noise. More specifically, for the

jth platform we consider the signal-plus-noise model

H1 : xj = sj + nj

H0 : xj = nj

where nj ∈ Cdj and sj ∈ Cdj are both zero-mean, proper complex Gaussian random

vectors with the following auto and cross-covariance matrices

E
[
njn

H
k

]
= δj−kRnj

E
[
sjs

H
k

]
= Rsjsk

E
[
sjn

H
k

]
= O

for all j, k = 1, . . . , N . Figure 3.2 shows the graphical setup of the problem under

consideration. We then take the observations from all channels and concatenate them

into the composite random vector z =
[
xH1 xH2 · · · xHN

]H ∈ Cd with d =
∑N

j=1 dj.

The composite random vector z then has a composite covariance structure

E
[
zzH

]
= Rzz =



Rx1x1 Rx1x2 · · · Rx1xN

Rx2x1 Rx2x2 · · · Rx2xN

...
...

. . .
...

RxNx1 RxNx2 · · · RxNxN
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and, of course, Rzz exhibits Hermitian symmetry such that Rxjxk = RH
xkxj

.

Figure 3.2: Graphical Representation of the Detection Problem

Because we have assumed realizations of noise to be uncorrelated across different

channels, both composite covariance matrices will become block-diagonal under the

null hypothesis, i.e.

Rzz0 = D0 = diag [Rn1 , Rn2 , . . . , RnN ]

Note that the subscript notation refers to the hypothesis being considered.

Under H1 and using the stated assumptions, the corresponding composite covari-

ance matrices become

Rzz1 =



Rs11 +Rn1 . . . Rs1N

Rs21 . . . Rs2N

. . .

. . .

. . .

RsN1
. . . RsNN +RnN


D1 = diag [Rs11 +Rn1 , . . . , RsNN +RnN ] (3.11)

Recalling (3.4), this leads to the following eigenvalue decomposition for the H1 hy-

pothesis.

Rzz1A1 = D1A1Λ1 (3.12)
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Noting that we can alternatively write the inverse of the covariance matrix under

H1 as

R−1
zz1

= D
−H/2
1 P1Λ

−1
1 PH

1 D
−1/2
1

the log-likelihood ratio can be written as

l(z) = zH
(
R−1

zz0
−R−1

zz1

)
z

= zH
(
D−1

0 −D
−H/2
1 P1Λ

−1
1 PH

1 D
−1/2
1

)
z

We then remove the second-order information associated with the H1 hypothesis from

each individual channel by “whitening” with the filter D
−1/2
1 so that

z → w = D
−1/2
1 z

EH0

[
wwH

]
= D

−1/2
1 D0D

−H/2
1 = Σ−1

EH1

[
wwH

]
= D

−1/2
1 Rzz1D

−H/2
1 = P1Λ1P

H
1

where the matrix Σ is in some sense a local SNR matrix with the jth diagonal block

equal to

Σj =
(
Rsjj +Rnj

)H/2
R−1

nj

(
Rsjj +Rnj

)1/2
The log-likelihood ratio in this new coordinate system then becomes

l(z) = wH
(
Σ− P1Λ

−1
1 PH

1

)
w

Finally, we map our data into the MCA coordinate system (under H1) through the

filter P1 so that

w → v̄ = PH
1 w

EH0

[
v̄v̄H

]
= PH

1 Σ−1P1

EH1

[
v̄v̄H

]
= Λ1

where Λ1 is a matrix with the sum of the correlations among the mapped data under

H1 along its diagonal. We can then rewrite the log-likelihood ratio as

l(z) = v̄H
(
PH

1 ΣP1 − Λ−1
1

)
v̄ (3.13)
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where v̄ =
[∑N

j=1 v1,j · · ·
∑N

j=1 vd,j

]T
is a vector of the sum of the MCA coordi-

nates under H1. Again, this is still the standard Gauss-Gauss log-likelihood ratio,

but in the coordinates PH
1 D

−1/2
1 z. The CCA-based detector reviewed in Section 2.3

looks for coherence among our measurement and the underlying signal that composes

our observation under H1. However, the detector built here searches for coherence

structure among all pairwise combinations of channels under H1. MCA is then used

to “discover” the coherence structure among the channels by solving a generalized

eigenvalue problem. The amount of coherence in each MCA coordinate can then be

interpreted and analyzed through the generalized eigenvalue, λi.

With this, it easy to see that the J-divergence can be written as

J = EH1 [l(z)]− EH0 [l(z)]

= tr
[(
PH

1 ΣP1 − Λ−1
1

)
Λ1 −

(
PH

1 ΣP1 − Λ−1
1

)
PH

1 S
−1P1

]
= tr

(
−2I + Λ1P

H
1 ΣP1 + Λ−1

1 PH
1 Σ−1P1

)
=

d∑
i=1

(
−2 + pHi

[
λiΣ + (λiΣ)−1]pi) (3.14)

Therefore, we find that the divergence in the MCA coordinate system becomes de-

composed in terms of the MCA generalized eigenvalue, λi, and also the two quadratic

terms, pHi Σpi and pHi Σ−1pi. The quadratic term pHi Σpi in some sense gives us a

scalar measurement of the sum of the local signal-to-noise ratios in the one-dimensional

subspace spanned by pi. Thus, it appears that writing the J-divergence in this manner

decomposes the information needed for detection into the coherence shared between

data channels (λi) and the coherent information among the individual channels them-

selves (pHi Σpi).

Note that in a situation where the local signal-to-noise ratios are very small but

the coherence shared between pairs of channels is significant for detection (a situation

we will later motivate), we can approximate the matrix Σ with the identity matrix

(Σ ≈ I). Such a situation arises when the distribution of the data associated with any
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particular channel is similar under both H0 and H1 and yet there exists a sufficient

amount of cross-correlation between data channels under H1 to perform detection. In

such cases, the log-likelihood ratio can be approximated by the equation

l(z) ≈ v̄H
(
I − Λ−1

)
v̄

with an associated J-divergence

J ≈
d∑
i=1

(
−2 + λi + λ−1

i

)
(3.15)

Therefore, in such a situation we disregard the coherent information among each

individual channel and focus our attention around detecting the presence of coherence

among the data channels.

3.3.1 Example

We will conclude by studying a very simple example in which we assume that our ob-

servation consists of two scalars with each scalar representing an independent channel.

To be specific, we consider the detection problem

H1 :

 x1 = s1 + n1

x2 = s2 + n2

H0 :

 x1 = n1

x2 = n2

where E [njnk] = δj−kσ
2
n, E

[
s2
j

]
= σ2

sj
, and E [s1s2] = ρσs1σs2 for j, k = 1, 2. With

these assumptions, it easy to see that the local SNR matrix becomes

Σ = D
H/2
1 D−1

0 D
1/2
1 =

 1 + η1 0

0 1 + η2
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where ηj = σ2
sj
/σ2

n is the SNR for the jth channel. Likewise, the coherence matrix

for the H1 hypothesis becomes

E = D
−1/2
1 Rzz1D

−H/2
1 =

 1
ρσs1σs2q

(σ2
s1

+σ2
n)(σ2

s2
+σ2

n)
ρσs1σs2q

(σ2
s1

+σ2
n)(σ2

s2
+σ2

n)
1

 =

 1 ξ

ξ 1


where ξ represents the cross-correlation among the whitened versions of both channels.

Solving the eigenvalue problem EP1 = Λ1P1 results in the sum of correlations and

mapping matrices

Λ1 =

 1 +
ρσs1σs2q

(σ2
s1

+σ2
n)(σ2

s2
+σ2

n)
0

0 1− ρσs1σs2q
(σ2
s1

+σ2
n)(σ2

s2
+σ2

n)

 =

 1 + ξ 0

0 1− ξ



P1 = [p1 p2] =
1√
2

 1 1

1 −1


The one observed in both eigenvalues is clearly an artifact of the unit-trace constraint

and represents the sum of the auto-correlations for each channel in the mapped do-

main. We can also observe that the mapping matrix P becomes a 2-D, discrete

Haar transform [35] which is used to map the whitened versions of the channels, i.e.

w = D
−1/2
1 z, to their MCA coordinates

v̄ =

 v1,1 + v1,2

v2,1 + v2,2

 = PH
1

 w1

w2


=

 1/
√

2
[(
σ2
s1

+ σ2
n

)−1/2
x1 +

(
σ2
s2

+ σ2
n

)−1/2
x2

]
1/
√

2
[(
σ2
s1

+ σ2
n

)−1/2
x1 −

(
σ2
s2

+ σ2
n

)−1/2
x2

]


Thus, in this simple case, mapping the whitened data into the MCA coordinate system

can be interpreted as implementing a rudimentary analysis filter bank where the first

coordinate represents the low frequency approximation to the data and the second

the high frequency details. This justifies disregarding the sub-dominant coordinates

as we can now see that in doing so, we are simply choosing to perform detection with
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low frequency approximations of the data. As described earlier in Section 3.2, when

performing detection we use the principal r = d1 = 1 coordinate associated with λ1

as λ1 > λ2. Thus, disregarding the second coordinate associated with λ2, we find

that

pH1 Σp1 = 1 + 1/2 (η1 + η2)

which is one plus the average of the SNRs of each channel. The log-likelihood ratio

in (3.13) can then be written as

l (x1, x2) =
(
pH1 Σp1 − λ−1

i

)
(v1,1 + v1,2)

2

=

( 1
4

(η1 + η2) + 1
2
ξ + 1

4
ξ (η1 + η2)

1 + ξ

)[(
σ2
s1

+ σ2
n

)−1/2
x1 +

(
σ2
s2

+ σ2
n

)
x2

]2
Also, the J-divergence in (3.14) becomes

J = −2 + λ1p
H
1 Σp1 + λ−1

1 pH1 Σ−1p1

= −2 + (1 + ξ) +
1

2
(1 + ξ)(η1 + η2) +

1

2

1

(η1 + 1)(1 + ξ)
+

1

2

1

(η2 + 1)(1 + ξ)

Figures 3.3 and 3.4 display plots of the (rank-one) log-likelihood ratio at two different

SNRs for channel 1 namely η1 = 0 and 20 dB, an SNR of η2 = 0 dB for channel 2,

and a correlation coefficient of ρ = 0.8. Note that the lines in each figure denote

equilikelihood contours for different pairs (x1, x2). From the figures we can see that

the more the SNR in the first channel begins to dominate that of the second, the more

the equilikelihood contours of the detector become vertically oriented. Thus, we can

see that the detector begins to disregard the second channel and focus its attention

more to the observations that are brought by channel one.

We next look at the low-rank detector presented in Section 2.3 to gain some

insights into the relationships and differences among the two detectors. Recall that

we begin by forming the “signal-to-noise” ratio matrix

S = R−1/2
zz0

Rzz1R
−H/2
zz0

=

 1 + η1
ρσs1σs2
σ2
n

ρσs1σs2
σ2
n

1 + η2
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Figure 3.3: Log-Likelihood Contours at η1 = η2 = 0 dB.

Solving the eigenvalue problem SU = ΛU results in the per-mode SNR and mapping

matrix

λi = 1 +
1

2
(η1 + η2)±

1

2

√
(η1 − η2)

2 + 4ρ2η1η2 i = 1, 2

U = [u1 u2] =
1√

ρ2η1η2

(λ1−1−η1)2
+ 1

 ρσs1σs2
σ2
n(λ1−1−η1)

1

1 − ρσs1σs2
σ2
n(λ1−1−η1)


Note that in the case where the SNRs of both channels are equal (η1 = η2 = η), we

find the per-mode signal to noise ratio

λi = 1 + η ± ρσs1σs2
σ2
n

and it can be shown that the mapping matrix U again becomes the 2-D Haar basis.

This points out one disadvantage of the MCA-based detector for this example: the
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Figure 3.4: Log-Likelihood Contours at η1 = 20 dB, η2 = 0 dB.

MCA detector always represents the data in the Haar basis regardless of the char-

acteristics of the channels. On the other hand, the detector proposed in [25] takes

advantage of the characteristics of the channel to build a coordinate system more

suited to the problem. The exception to this statement being when the local SNRs

for each channel are equal. Because of the properties of the data mentioned earlier,

we are interested in knowing what happens to either detector when there is low SNR

in both channels but a sufficient amount of coherence among the two channels under

H1. Figure 3.5 displays the J-divergence for both the proposed MCA-based detec-

tor as well as that presented in [25] (denoted simply by SNR) for an equal SNR for

both channels of η1 = η2 = 0 dB. Note that both detectors are rank-one. We see

that the proposed detection system exhibits poorer performance at low correlation

coefficients but overtakes that of the SNR detector at correlation coefficients greater
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Figure 3.5: J-Divergence versus Correlation Coefficient (η1 = η2 = 0 dB).

than approximately 0.65. Thus, we can see that this simple example seems to hint

that the MCA-based detector proposed in this chapter may be better suited to con-

ditions where the SNRs local to each individual channel are low yet there exists a

large amount of coherence among the channels under hypothesis H1.

3.4 Conclusion

In this chapter, we reviewed the MCA framework which can be seen as a natural ex-

tension of CCA to more than two channels. Similar to two-channel CCA, the objective

of MCA is to discover the coherence among N ≥ 2 channels of data by searching for

one-dimensional mapping vectors that simultaneously maximize the cross correlation

among all channels. One solution that has been proposed [4] is to maximize the

sum of the cross-correlations among all pairwise combinations of channels subject
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to the constraint that the sum of the auto-correlations equals one. This leads to

a generalized eigenvalue problem involving the composite covariance matrix. Prop-

erties of the coordinates produced by MCA are then reviewed which share many

similarities to the canonical variates produced by CCA, namely that the sum of the

auto-covariance matrices of the mapped variates equals identity and the double sum

of the cross-covariance matrices of the mapped variates equals a matrix with the MCA

correlations along its diagonal.

The two-channel CCA-based detector presented in [1] looks for coherence among

two sonar images. To extend this idea to multi-sonar detection, one must define a

coordinate system that finds the linear relationships among every pair of sensory data

channels. MCA is suited for this problem as it begins by removing the auto-correlation

contributions from each channel via a whitening procedure and then finds mapping

vectors that discover the coherence structure among the channels. We then presented

a multi-channel signal-plus-noise model that fits well with the problem at hand. The

data is then represented in the MCA coordinate system under the H1 hypothesis and

subsequently applied to a quadratic detector built for this multi-channel coordinate

system. In this case, the log-likelihood ratio involves the sum of the correlations

matrix, Λ1, the orthonormal mapping matrix, P1, and the local signal-to-noise ratio

matrix, Σ, a block-diagonal matrix composed of the SNR matrices for each channel.

The J-divergence for this MCA-based detector again becomes decomposed in terms of

the same matrices. With the representations for the log-likelihood and J-divergence

given, it seems that the detector decomposes the information needed for detection into

the coherence shared between data channels under H1, namely λi in 3.12, and the

SNR information among the individual channels themselves given by pHi Σpi in 3.14.

With the assumption of low SNR in each individual data channel, we approxi-

mated the log-likelihood ratio and J-divergence in terms of a detector that only takes

advantage of the sum of the cross-correlations of the data in the mapped domain
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under the H1 hypothesis. This results in a similar expression as in [25]. We then con-

sidered a simple two-channel detection problem to gain some insight into the inner

workings of both the proposed MCA-based detector and that presented in [25]. In

this simple case, we found that the MCA decomposition boils down to representing

the data in a 2-D Haar basis regardless of the characteristics of the channel. On the

other hand, the SNR detector finds mapping vectors that depend on the SNRs in

each channel and the correlation coefficient among them under H1. However, in sit-

uations where there is low SNR in both channels and yet there exists high coherence

among them under the H1 hypothesis, we showed through this simple example that

the proposed MCA-based detector is better suited, comparing to the detector of [25],

for such situations as it yields higher J-divergence for a sufficiently large correlation

coefficient.
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CHAPTER 4

DATA DESCRIPTION AND EXPERIMENTAL

RESULTS

4.1 Introduction

Detection of underwater objects in sonar imagery is a complicated problem due to

various factors such as variations in operating and environmental conditions, presence

of spatially varying clutter, variations in target shapes, compositions and orientation.

Moreover, bottom features such as coral reefs, sand formations, and vegetation may

obscure a target object. Current detection methods normally use a single sonar image

to detect potential targets [36], [37]. However, detection based off one image can lead

to unacceptable results as the information is limited to the field of view of only

one sonar which could be dependent on the relative position of the sonar platform

to the target. This motivates the use of multiple disparate sonar platforms, where

disparateness could be in frequency, resolution, location, etc., to better capture the

target characteristics. Using multiple disparate sonar types allows one to use a high

resolution sonar with good target definition and the clutter suppressing abilities of a

low resolution sonar co-registered over the same region and build detection systems

that take advantage of all the information available at once to make a detection call.

In this chapter we will begin by describing the preprocessing methods used prior

to the MCA-based detector and then present the results on three different sonar data

sets. In each case, we are given multiple (≥ 2) sonar images that can be disparate in

different ways. We then partition the sonar images into Regions of Interest (ROIs) of

different sizes. Each ROI is then partitioned into blocks and used to form a composite
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ensemble data matrix from which the necessary MCA mapping vectors and sum of

correlation matrices are extracted to build the log-likelihood ratio. Each composite

realization is then applied to the log-likelihood ratio to form a detection decision for

that set of blocks. If a majority of the blocks pass the likelihood ratio test, a call to

the H1 hypothesis is made for that set of ROIs. Our detection hypothesis for this

multiple sonar image detection scheme is that the presence of target structure in all

or a partial subset of the ROIs will result in higher level of coherence versus when

the ROIs contain background clutter alone.

Test results on three different data sets are presented. All data sets were provided

by the Naval Surface Warfare Center (NSWC) - Panama City, Florida. The first

data set contains one high frequency (HF) and three broadband (BB) sonar imagery

coregistered over the sea floor. This data set is used to examine different combina-

tions of these sonar images, construct three different multi-channel detectors with

the HF image and one more BB images, and compare detection performance as a

function of the number of disparate sonar images used. The second data set consists

of only one HF and one BB sonar imagery, again coregistered over the sea floor. This

data set contains both target and non-target objects (lobster traps) which can give

us some intuition of the discriminatory power of the extracted multi-channel features

for target/non-target classification. Finally, we present sensitivity analysis results on

a data set consisting of simulated target objects in simulated background generated

for various choices of SNR, target aspect angle, image resolution, target shape, etc.

The hope of the sensitivity analysis is to give one some idea of the proposed sys-

tem’s response to different variables that can be expected in multiple disparate sonar

detection problems.

The outline of this chapter is as follows. Section 4.2 describes the preprocessing

method used to prepare the data for the MCA-based detector. Sections 4.3 and 4.4

give a detailed description of the properties of the multiple sonar image data sets
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and presents the results of the proposed MCA-based detection system when applied

to each of the two real sonar data sets. Section 4.5 describes the simulated data set

and presents sensitivity results with respect to SNR, target type, and aspect angle

separation. Finally, concluding remarks are made in Section 4.6.

4.2 Sonar Image Description and Pre-Processing

In order to better understand the difficulty of underwater object detection from sonar

imagery it is important to understand the formation of a target signature in a sonar

image. Figure 4.1 shows how the signature of a target is formed in a sonar image. In

this figure, region A-B corresponds to the highlight or a strong sonar return off of the

object, region B-C is known as the dead zone where no sonar return can occur due

to the return being blocked by the object, and region C-D is known as the shadow.

The size of each of these regions greatly depends on the type of target, range from

the sonar, height of the target, aspect, and grazing angle of the sonar with respect

to the object. More specifically, the signature of a particular target can vary greatly

as a function of range from the sonar. If the target is further out in range from

the sonar, the shadow region (C-D) will become longer. Additionally, the overall

signature becomes less defined with less definition between the highlight, dead zone,

and shadow regions. This creates a particular problem for most detection methods

which rely on detecting the specific structure of the target, i.e. matched filter-based

approaches.

The sonar images used in this work are generated at the output of a coherent pro-

cessor, in this case the k-space or wavenumber beamformer [38], [39]. Each impinging

sound wave on the receiver array elements of the sonar is converted to magnitude

and phase. The delay and sum beamforming algorithm [40] attempts to coherently

combine the sound waves in a way that resolves the echo returns into a complex-

valued pixel. More specifically, the k-space or wavenumber algorithm computes
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Figure 4.1: Formation of a Target in a Sonar Image.

the 2-D Fourier transform of the raw or range-compressed sonar data in the delay-

time/aperture domain. This converts the data into the spatial frequency/wavenumber

(ω, k)-domain where it is multiplied by the power spectrum of the transmitted wave-

front. A change of variables is done by Stolt interpolation [41]. This change of

variables maps the frequency/wavenumber (ω, k)-domain into the wavenumber do-

main (kx, ky). The inverse 2-D Fourier transform is then taken of the mapped data

to form the complex image.

When processing the images in the data sets for the MCA-based detector, each

set of N images is first partitioned into coregistered ROIs with 50% overlap in both

the vertical and horizontal directions. ROIs are formed in an overlapping fashion

to ensure that the target will not be split among different ROIs. Thus, if an ROI

contains a target, it will encompass the entirety of the target structure. Based on the

average target size, ROIs pertaining to HF images are chosen to be 72 pixels tall by

112 pixels wide. Because of differences in beamwidth in HF and BB sonar leading to

disparateness in image resolution, the ROIs pertaining to BB images are not the same
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size and are chosen to be 24 pixels tall by 224 pixels tall. This choice of ROI sizes

ensures correspondance among the HF and BB images, i.e. whatever the dimension

of the HF ROI, the BB ROI must be three times smaller in the vertical dimension

and twice as large in the horizontal dimension.

Once the set of N coregistered ROIs has been extracted from each of the N

disparate sonar images, each ROI is partitioned into non-overlapping blocks of size

6 × 4 for HF images and 2 × 8 for BB. Again, the difference in block size for each

sonar type is a byproduct of their disparateness in resolution. Corresponding blocks

in the ROIs are then reshaped into vectors and concatenated to form the compos-

ite observation vector z defined in Section 3.2. This is done until all blocks in the

ROIs have been accounted for. An ensemble set is then formed from all 336 blocks(
72×112

6×4
= 24×224

2×8
= 336

)
in each ROI and is subsequently used to form an estimate

of the composite covariance matrix Rzz. This composite covariance matrix is then

decomposed via MCA and the sum of correlations and MCA mapping matrices, Λ

and A respectively, are extracted using (3.12) to form the log-likelihood ratio test

statistic. Each observation vector from the ensemble set is then applied to the log-

likelihood ratio in (3.13) and compared to a threshold to form a decision for that set

of N blocks. If 50% or more of the blocks within an ROI set pass the log-likelihood

ratio test, it is concluded that that ROI contains a target. Figure 4.2 gives a graph-

ical overview of the processing steps just described. From an implementation point

of view, forming detection decisions on individual blocks of the ROI is desirable in

several aspects. First of all, partitioning the ROI into smaller blocks yields obser-

vation vectors that sit in a low dimensional space. This, in turn facilitates the use

of multiple sonar images as the smaller the block sizes, the more sonar images we

can add to the detection problem without processing an extremely high dimensional

composite observation vector. Second, partitioning the ROI into blocks gives us mul-

tiple independent observations of the information contained in each ROI allowing us
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to make detection decisions with much higher confidence.

Figure 4.2: Mutiple Sonar Detection System.

As previously mentioned at the end of Section 3.3, we can approximate the MCA-

based detector by a quadratic detector that only takes advantage of the sum of cor-

relation, Λ1, and MCA mapping matrices, P1, in situations where the local SNRs of

each channel are very small. To investigate this, we extract both target and back-

ground features from the multiple sonar image data set corresponding to one HF

image and three BB images. The block-diagonal covariance matrices D1 and D0 are

estimated from these features and used to form the matrix Σ = D
H/2
1 D−1

0 D
1/2
1 in

(3.13). Figure 4.3(a) displays an image of this matrix and Figure 4.3(b) displays the

distribution of its eigenvalues. Thus, we conclude that, for all intents and purposes,

the local SNR matrix is diagonal with diagonal elements equal to some small pertur-

bation from unity. As a result, when implementing the MCA detector we approximate

the log-likelihood ratio with the quadratic function

l(z) = zHA
(
I − Λ−1

)
AHz (4.1)

It was previously shown in [42] and [43] that this approximation can effectively be

used when performing detection with multiple sonar images.

The reasons for low SNR could be many. One explanation may be in the structure

of the target. Small highlight and (zero pixel) shadow structures will undoubtedly
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Figure 4.3: Local Signal-to-Noise Ratio Matrix Σ

lead to low signal power causing poor SNR. Another explanation for poor SNR may

be in both the structure of the target and the way the ROIs are processed. Targets are

generally composed of two distinct structures, namely highlight with high variance

and shadow with low variance. Therefore, partitioning the ROI into equally sized

blocks will result in observations with completely different statistical properties. That

is, some with high variance, some with low variance, and others that will obviously

be somewhere in between. We then stochastically average over all these realizations,

blending the information together to form a second-order statistical characterization
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that does not look dissimilar to that associated with background, thus leading to low

SNR.

4.3 Multiple Sonar Detection Results

The MCA-based coherence detector is first applied to a four-sonar data set consisting

of one HF high-resolution side-scan sonar image as well as three BB sonar images.

Each image is complex-valued and is a direct result of the beamforming methods

described earlier in Section 4.2. The image database used in this study contains 59

co-registered sonar images with each image consisting of both port and starboard-side

images. The database contains 53 targets with some images containing more than one

target. Because the HF sonar provides higher spatial resolution and better ability to

capture target details and characteristics while the BB sonar offers much better clutter

suppression ability with lower spatial resolution, detectors were run using HF images

along with one or more of the BB sonars to ensure a high probability of detection with

a low false alarm rate. Three different cases were implemented, a two-channel detector

with the HF sonar along with one of three BB sonar images (referred to as HF-BB1),

a three-channel detector with the HF sonar, the same BB sonar, and another differ-

ent BB sonar (referred to as HF-BB1-BB2), and finally a four-channel with the HF

sonarr and all three BB sonar images (referred to as HF-BB1-BB2-BB3). The goal

of this study is to determine the impact different combinations and numbers of HF

and BB sonar systems have on the detection performance and establish the point of

diminishing returns.

To show the separability of the principal multi-channel correlations between ROIs

that contain targets immersed in background and those that solely contain back-

ground, a test was conducted on the entire set of 53 target ROI’s and a same size

randomly selected set of ROI’s containing only background clutter. Note that as a

result of the 50% overlap in ROI formation, there are essentially 4 ROIs that contain
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Figure 4.4: Statistics of the MCA Correlations for all Detection Systems.

one target leading to a total of 212 target ROIs and 212 randomly selected back-

ground ROIs. Figures 4.4(a)-(c) exhibit plots of the mean and standard deviation

of the dominant 16 multi-channel correlations, λi, i = 1, . . . , 16, of ROIs containing

targets and those containing only background for the HF-BB1, HF-BB1-BB2, and

HF-BB1-BB2-BB3 detectors, respectively. Mean values for each λi are shown by the

solid line whereas the length of the bar denotes its corresponding standard devia-

tion. As can be seen, there is suitable separation among the principal correlation

values pertaining to targets versus those pertaining to background alone as there is

a significant difference in mean values. We can also observe that the more channels
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included for detection the higher the MCA correlation values. However, this does

not necessarily correspond to a subsequent increase in the separability among target

and background MCA correlation values. Next, for the detection process, the log-

likelihood ratio expression in (4.1) was found for each block within an ROI set. A

detection score was then created based on the percent of the log-likelihood measure-

ments within an ROI set that fall above the detection threshold, η. A detection score

of ≥ 50% signifies the presence of a target within that set of ROI’s. Using the entire

set of 212 target ROIs and an equally sized set of background ROIs, an optimum

threshold was experimentally determined to be 10.2 for all three detection cases.

All three detection systems are then implemented on the entire NSWC multi-sonar

imagery data set using the predetermined threshold mentioned above. Table 4.1 lists

the results of all three detectors. As one can see, the two-channel (HF-BB1) detector

performs marginally well with 51 out of 53 targets being detected and less than 8 false

alarms per image. The three (HF-BB1-BB2) and four-channel (HF-BB1-BB2-BB3)

detectors perform better as they both detect all but one of the targets while still

maintaining a low number of false alarms.

Table 4.1: Multi-Platform Detection Results

Detector
Targets Detected

(Out of 53 Targets)
Average False

Detections per Image
HF-BB1 51 7.48

HF-BB1-BB2 52 8.93
HF-BB1-BB2-BB3 52 9.32

The ROC curves for all three detectors are presented in Figure 4.5. Again, we

can see that the three-channel detector provided an increase in performance over

that of the two-channel detector as the two-channel detector exhibits Pd = 96%

and Pfa = 4% at the knee point of the ROC curve (where Pd + Pfa = 1) whereas

that of the three-channel detector gives Pd = 98% and Pfa = 2%. However, the

performance of the four-channel detector actually decreases with Pd = 96% and Pfa =
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Figure 4.5: ROC Curves for all Three Detectors.

4% at the knee point of the ROC curve. This decrease in detection performance

when increasing the number of channels from three to four could possibly suggest

that three sonar images is the point of diminishing return for this data set as the

BB3 sonar did not bring any new pertinent information of the targets and actually

worsened the performance. This could be due to the fact that increasing the number

of BB sonars that essentially contain similar target information smears the overall

coherence as the correlations become less representative and more deficient. However,

because of the small number of targets present within this data set, it is hard to say

with any confidence whether this is the actual underlying response of the detector or

not. Both the HF-BB1-BB2 and HF-BB1-BB2-BB3 detectors missed the same target.

However, the HF-BB1 detector missed two other targets, neither of which are the same

target as that missed by the three and four channel detectors. The targets missed

by these detectors were faint in signature and hard to visually discern in all sonar

images hence leading to low coherence and subsequent misdetection. Overall, all the
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detection systems tested performed extremely well given that the detection threshold

was formed from 212 ROIs corresponding to only 53 targets and 212 background

ROIs.

4.4 Dual-Sonar Detection Results

The MCA-based coherence detector is then applied to a dual-platform sonar data set

consisting of one HF high-resolution side-scan sonar image as well as one BB sonar

image. Each image is real-valued, envelope data which is the result of quantizing the

amplitude (magnitude) of the complex-valued images resulting from the beamforming

methods described earlier in Section 4.2. The image database used in this study

contains over 1200 co-registered sonar images with each image consisting of both port

and starboard-side images. The database contains 99 objects of interest, 49 target and

50 lobster trap objects, with some images containing more than one object. For this

data set, only one case is studied: a two-channel detector with the HF sensor along

with the BB sensor. The difficulties of the data set, compared to that in Section 4.3,

are the inclusion of man-made objects (lobster traps) which can undoubtedly increase

the false alarm rate when interested in detecting target objects alone. However, note

that for this study, we are interested in detecting both targets and lobster traps.

Another difficulty stems from taking the magnitude of the data and the inherent

Gaussian assumptions that are made for the detection methods given in this thesis.

Even if the data were truly Gaussian to begin with, it is a known fact [32] that real and

imaginary iid Gaussian random variables result in a Rayleigh distributed magnitude

leading to a heavy-tailed distribution that deviates from Gaussianity assumptions.

Not to mention, performing detection solely with the magnitude completely disregards

the information carried in the phase of the images.

Again, to show the separability of the principal multi-channel correlations be-

tween ROIs that contain objects of interest immersed in background and those that
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Figure 4.6: Statistics of MCA Correlations for Sample Target/Background Set.

solely contain background, a test was conducted on the entire target and lobster trap

set ROIs and a same size randomly selected set of ROIs containing only background

clutter. Again, because of the 50% overlap in ROI formation, this results in 196 ROIs

corresponding to targets, 200 ROIs corresponding to lobster traps, and a total of 396

ROIs corresponding to background. Figures 4.6(a) and (b) exhibit plots of the mean

(denoted by the solid line in each figure) and standard deviation (denoted by the

length of the bar for each λi) of the dominant 16 multi-channel correlations of ROI’s
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Figure 4.7: ROC Curve of Dual-Sonar “Training” Set

containing targets and lobster traps, respectively, versus those solely containing back-

ground for this dual-image detection problem. We can see that Figure 4.6(a) shares

many similarities to the statistics of the MCA correlations shown in Figure 4.4(a) for

the two-channel detector looked at previously though they correspond to two com-

pletely different data sets. We also see a noticeable difference among the statistics of

the MCA correlations pertaining to targets and lobster traps as the separation among

target and background features seems to be larger than that among lobster trap and

background features. These figures seem to suggest that the MCA correlations may

provide a useful set of features for discriminating among target and man-made ob-

jects for the purposes of classification. However, this is merely an observation and

will not be discussed further in this work. From the entire dual-sonar data set, a par-

tial subset of images containing 50 objects of interest (25 targets, 25 lobster traps)

corresponding to 200 ROIs in total is extracted. This is done to observe the response

of the detection system to a threshold that is determined from one set of objects and
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is then tested on a completely novel set of objects. Using the 50 objects of interest

(200 ROIs) and a same size set of background ROIs, a threshold of η = 0.5212 was

experimentally chosen based on the knee-point of the ROC curve generated from this

“training” set. The ROC curve is displayed in Figure 4.7 and exhibits Pd = 94% and

Pfa = 6% at the knee-point. Also shown in the figure is the ROC curve associated

with the CCA-based detection system proposed in [1] and is generated from the same

set of target, lobster trap, and background ROIs. This detector exhibits Pd = 88%

and Pfa = 12% at the knee-point of the ROC curve.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of False Alarm

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
o

n

 

 

MCA

CCA

Figure 4.8: ROC Curve of Dual-Sonar Detection System.

The dual-sonar detection system is then implemented on the remaining images

containing 49 objects of interest (24 targets, 50 lobster traps) using the predetermined

threshold mentioned above. Recalling that there are 4 ROIs for every object of

interest, there are a total of 196 ROIs corresponding to targets and lobster traps.

This dual-sonar detection system detects all 49 targets with an average of 7 false

alarms per image. Based on all 196 ROIs corresponding to 49 objects of interest and
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a set of 196 randomly selected background ROIs, a ROC curve is generated for this

detection system and is displayed in Figure 4.8. The detector exhibits Pd = 98% and

Pfa = 2% at the knee-point of the ROC curve. Again, also shown in the figure is the

ROC curve of the CCA-based detection method of [1] generated from the same set

of target, lobster trap, and background ROIs. We can see that the proposed MCA-

based detector provides substantial improvement over the CCA-based method which

exhibits Pd = 90% and Pfa = 10% at the knee-point of its ROC curve.

4.5 Sensitivity Analysis Results

In this section, we apply the N -channel coherence-based detection method to a data

set consisting of synthetically generated sonar images (snippets) of both targets and

non-targets of different geometrical shapes embedded in synthetically generated back-

ground. The sonar snippets were generated with different resolutions, SNR values,

range, and aspect angles mimicking different realistic operating conditions. For this

study, two different resolutions, namely 1in and 3in, were considered. Additionally,

SNR ranged from 0dB to 15dB in increments of 3dB, range values spanned from 10m

to 120m in increments of 1m, and aspect angle ranged anywhere from 0◦ to 360◦ in

increments of 1◦. A subset of 1610 snippets corresponding to targets was used to

represent the H1 hypothesis while background snippets were used to represent the H0

hypothesis. Thus, all non-target snippets were excluded. The processing involved for

this data set is the same as that depicted in Figure 4.2 with the exception of ROI par-

titioning of the images. For this data set, there are no images and each sonar snippet

plays the role of an ROI. The subset of target snippets (1610 snippets) was further

partitioned into 3 different parts forming 138 cone-shape targets, 736 cylinder-shape

targets, and 736 trapezoidal-shape targets. When performing detection, each of the

N images is partitioned into blocks of size dependent on the resolution.
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4.5.1 Sensitivity Analysis for Dual Resolution Disparate Detection

In some disparate detection applications, each platform may carry multiple sensing

systems with different spatial and spectral characteristics in order to highlight dif-

ferent attributes of the target. To simulate such a situation, a two-channel detection

problem was constructed where each channel consisted of snippets of targets of the

same type at the same range, aspect angle, and SNR. However, the two channels

differed in resolution, i.e. one snippet-image of high resolution (1in) and the other of

a lower resolution (3in). When performing detection, a 4× 4 block size was used for

the high resolution images and a 2 × 1 block size for those of lower resolution. This

setup was then run for all 1610 images at various ranges and aspect angles and the

results partitioned on the basis of target type and SNR.

Table 4.2: Probability of Detection (%) vs. SNR

Target Type 0dB 3dB 6dB 9dB 12dB 15dB

Cone 91.30 94.93 96.38 89.86 81.16 87.68
Cylinder 83.70 85.19 82.20 85.33 89.67 94.02

Trapezoid 84.24 84.51 84.65 85.73 90.08 93.75

Figures 4.10(a)-(c) display the ROC curves for conical, cylindrical, and trapezoidal

shape targets, respectively, at three different SNR values of 3dB, 9dB, and 15dB.

Figures 4.9(a)-(c), on the other hand, display sensitivity to target types for SNR values

of 0dB, 6dB, and 12dB, respectively. Table 4.2 gives the probability of detection at

the knee point of the ROC for all target types and SNR values. As can be observed

from the results in Table 4.2, it is apparent that for cylindrical and trapezoidal targets

the detection performance generally improves as a function of SNR as one would

expect. However, the performance of the detector for the cone targets does not follow

the same behavior. This may be attributed, in part, to the fact that only a small

number of cone targets were available for this study. Another explanation for this

observation may be due to the fact that the gray-scale resolution (8-bit) of the images
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Figure 4.9: Detector Performance for Different SNR vs. Target Type.

was insufficient to capture the large sonar returns from cone type targets, leading to

saturation and clipping of the highlight.

4.5.2 Sensitivity Analysis for Dual Aspect Angle Separation Disparate
Detection

Another question that may arise in disparate detection problems is that of sensor

locations. That is, for different types of targets how does the detection performance

change as a function of disparities in location of the sensor platforms. This clearly

relates to the target’s aspect/orientation with respect to the sensor platform as well as

the range of the platform from the target. To determine the answer to this question,
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Figure 4.10: Detector Performance for Different Target Types vs. SNR.

a study is carried out where both channels consisted of images of the same resolution

(1in), at ranges within ±1m of one another, and at an identical SNR of 9dB, while

the disparateness was with respect to aspect angle separation. More specifically, the

two channels correspond to sonar snippet-images from the same target at two aspect

angles with separation angle θ such that if φ1 and φ2 represent the aspect angles

associated with their respective image then pairs of images were chosen such that

|φ1 − φ2| ∈ [θ − δ, θ + δ], where δ represents the perturbation from the separation

angle, θ, due to non-uniform motion of the vehicle. Here, the value of δ was chosen

to be 10◦.
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Figure 4.11: Detector Performance vs. Aspect Angle Separation.

The aspect angle separation θ was then varied from 0◦ to 180◦ in increments of

30◦ and its affect on the performance of the detector was studied. Figures 4.11(a)

and (b) display the ROC curves for cylindrical and trapezoidal targets, respectively,

for several values of θ. Note that all images in the database corresponding to cone

targets were generated at an angle of 0◦ and thus excluded from this study. Table 4.3

gives the probability of detection at the knee point of the ROC versus aspect angle

separation, θ, and target type. From both Figures 4.11(a) and (b) and the results in

Table 4.3, it can be concluded that the performance of the detector is fairly robust to
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disparateness in aspect angle separation as the probability of detection at the knee

point of the ROC never falls below 92%.
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Figure 4.12: J-Divergence vs. Aspect Angle Separation.

Table 4.3: Probability of Detection (%) vs. Aspect Angle Separation (θ)

Target Type 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Cylinder 94.40 96.14 97.83 98.33 97.47 96.82 94.92
Trapezoid 92.86 96.29 97.21 97.66 97.57 96.09 93.14

Figure 4.12 displays the plots of empirical J-divergence as a function of aspect

angle separation, θ, for both cylindrical and trapezoidal targets. Both curves were

generated by empirically estimating the difference in means of the log-likelihood ratio

among target (H1) and noise (H0) snippets and averaging over all such pairs of images

that match the criteria explained previously (i.e. same SNR, same resolution, ranges

within 1m, aspect separation within some range of a particular angle). The results in

Figure 4.12 match what was observed in Figures 4.11(a) and (b) as the performance
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of the detector seems to improve as the separation in aspect angle deviates from 0◦

and 180◦ and approaches an aspect angle separation of θ = 90◦. Again we can draw

the same conclusion that the detector is fairly robust to separation in aspect angles as

the difference between maximum and minimum J-divergence never grows larger than

approximately 0.6. Additionally, the J-divergence values for cylindrical targets are

higher than those of trapezoidal targets which may be attributed to the large-pixel

highlight characteristics of cylindrically shaped targets. This result is also evident in

the ROC plots of Figures 4.11(a) and (b).

4.6 Conclusion

In this chapter, the proposed multiple sonar image detection system is applied to two

real data sets consisting of one HF and one to three BB sonar images. The images

in both data sets are the result of the k-space beamforming algorithm. The first

data set consists of complex-valued images and are a direct result of this beamform-

ing algorithm. The second data set consists of real-valued envelope data which the

quantized version of the magnitude of the raw complex-valued images from the beam-

forming algorithm. Comparing the images of the second data set to that of the first,

performing detection with the magnitude of the data presents difficulties as it more

than likely results in a deviation from the Gaussian assumptions made throughout

this work and disregards the phase information present in each of the images. To

take advantage of the high target definition capabilities of HF sonar and the clutter

suppression ability of BB sonar, detection cases were always constructed with one HF

and at least one BB sonar image. A sensitivity analysis is then conducted using a

data set consisting of snippets of simulated target and non-target shapes embedded

in synthetically generated background. Snippets are generated at 8-bit gray-scale res-

olution with different target and non-target types and at various SNR values, image

resolutions, ranges, aspect angles, etc.
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Using the first data set consisting of one HF and three BB sonar images, three

detection systems are designed with the HF image along with different combinations

of the BB images to investigate the detector’s performance with respect to the num-

ber of disparate sonar images. For this study, we considered two (HF-BB1), three

(HF-BB1-BB2), and four (HF-BB1-BB2-BB3) sonar detection systems. Each of the

three detection systems is then tested on the data set using the same threshold of

10.2. The two-sonar detector performs well detecting 51 of 53 targets with 7.48 false

alarms per image. The three-sonar detector improves upon this by detecting 52 tar-

gets with 8.93 false alarms per image. However, the four-sonar detector does not seem

to provide as great an increase in performance as it detects the same 52 targets but

incurs a higher false alarm rate of 9.32 false alarms per image. The ROC curves cor-

responding to all three detection systems convey the same message as the two-sonar

detector exhibits Pd = 96% at the knee-point which is then improved upon when

going to the three-sonar detector with Pd = 98% at the knee-point. However, the

probability of detection for the four-sonar detector falls to Pd = 96%. When going

from the three-channel to the four-channel detector, this lack of significant increase

in performance suggests that the point of diminishing return is a system with one HF

and two BB sonar images.

For the second data set, a two-channel MCA-based detection system was then

implemented consisting of one HF image and one BB sonar image. In this case, the

data set contains two different types of objects, targets and lobster traps. Studying the

multi-channel correlations pertaining to each object, we observed differences among

the features generated from each object exemplifying the power of the multi-channel

correlations for target versus man-made object discrimination. A threshold was then

chosen based on the knee-point of the ROC curve generated from a partial subset

of images and was subsequently tested on the remaining images in this data set.

We found that the detector performed well with all targets detected successfully
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while maintaining 7 false alarms per image on average. A ROC curve generated

from the images used in the test also suggests high performance as the knee-point

exhibits Pd = 98% and Pfa = 2%. We found that the proposed MCA-based detector

outperforms that of the CCA-based detector given in [1] as this detection method

exhibits only Pd = 90% and Pfa = 10% at the knee-point of its ROC curve. This

degradation in performance may be attributed to the fact that it was assumed in [1]

that both channels contain a signal component with the same covariance structure.

However, given the disparateness in HF and BB images, this is more than likely a poor

model of the true statistical nature of the signal components in both of the images.

We found that the proposed MCA-based detector performed well given the fact that

the data lacked any phase information and was more than likely non-Gaussian in

nature resulting from taking the magnitude of the complex-valued data.

Finally, the detection method was applied to data set consisting of simulated target

and non-target shapes embedded in simulated background. The images are generated

with different target types and at various SNR values, image resolutions, ranges,

aspect angles, etc. To mimic detection in multi-sonar situations, we built a two-

channel MCA-based detector where each image contained the same target type at the

same SNR, range, and aspect angle. However, the two images differed in resolution:

one at 1in and the other at 3in resolution. The results were then partitioned on the

basis of target type and SNR and ROC curves were plotted. These results indicated

the robustness of the detection method to different target structures at various SNR

values. Next, to mimic multi-platform, single-sonar situations, we again built a two-

channel MCA-based detector where each image contained the same target type at

the same SNR (9dB), range, and image resolution (1in). However, this time the two

channels differ in aspect angle and pairs of images were chosen such that the difference

in aspect angle was within the range of a particular aspect separation. ROC curves

were then plotted for two different target types at various aspect separations. These
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results demonstrated the detection method’s robustness to aspect separation. Overall,

we found that the detection method developed in Chapter 3 performed extremely well

when given multiple sources of information and remained fairly robust to variables

that are encountered in realistic multi-channel target detection problems.
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CHAPTER 5

GAUSS-GAUSS LIKELIHOOD UPDATING

5.1 Introduction

Next, we will investigate the effects of incrementally adding additional data to the

Gauss-Gauss detector. More specifically, we show that updating the log-likelihood

ratio involves linearly estimating the new data we wish to add from the old data

that we have already measured and adjusting the likelihood ratio accordingly. Up-

dating in this fashion can have many practical applications such as situations where

we would rather build a detector for a small subset of observations and iteratively

update to account for the rest of our measurement. Or there could exist situations

where we have already built a detector to handle an observation and we wish to add

more to our vector of measurements. In either case, log-likelihood ratio updating can

be utilized to solve both problems provided that we correctly estimate new observa-

tions from our previous measurements. For our sonar target detection problem, the

latter corresponds to situations when new platforms join the decision-making, e.g. in

collaborative AUVs, while the former corresponds to adding more data samples, e.g.

pings.

We also look at the increase in J-divergence as a consequence of this incremen-

tal data augmentation. In this case, we find that the change in divergence can be

written in terms of error covariance matrices when filtering with a smoother that

is matched/miss-matched to the given hypothesis. The change in J-divergence in

this framework gives us some insight as to how the performance of the detector in-

crementally changes as we add additional measurements to our observation. When

adding measurements from disparate sources of information, such as multiple sensor
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platforms, the change in J-divergence can also give us some intuition as to which

platform’s observation we should add or when adding observations from platforms

reaches a point of diminishing return. A similar argument as in [25] is taken to find

a coordinate system where error vectors can be approximated in a lower dimensional

space. This coordinate system becomes especially useful in applications where the

data to be added is high dimensional. This can result in high computation savings

without a significant decrease in the change in J-divergence.

We then provide results from two simulations to demonstrate the usefulness of log-

likelihood ratio updating. The first example is concerned with detecting the presence

of dynamical structure in our observation and adding data amounts to temporally

updating the likelihood ratio. The second example is concerned with detecting the

presence of a single narrow-band source in the sensing environment of multiple uni-

form linear arrays (ULAs). A situation is constructed where a detector is built for

one individual platform alone and where after the likelihood ratio is updated via a

channel updating to successively account for the observations from other available

platforms. We finally consider a situation where there are multiple platforms in the

sensing environment of the source but each detector can only take advantage of a

subset of the total number of observations being made. In this case, we show that the

change in J-divergence can be an effective tool for deciding which set of observations

should be added for increased detection performance.

The outline of this chapter is as follows. Section 5.2 presents general and Gauss-

Gauss likelihood ratio updating as well as reduced-rank Gauss-Gauss updating. Sec-

tion 5.3 presents the two simulation studies and gives the results from each. Con-

cluding remarks are then given in Section 5.4.
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5.2 Log-Likelihood Updating

5.2.1 General Log-Likelihood Updating

Consider the observation vector zk ∈ Cm which we assume arises from one of two

possible hypotheses. With this observation vector, we consider the detection problem

H1 : zk ∼ fZk (zk|H1)

H0 : zk ∼ fZk (zk|H0)

where fZk : Cm → [0,∞] is the multivariate marginal density function of our obser-

vation. With this, we construct the log-likelihood ratio

l(zk) = log
fZk (zk|H1)

fZk (zk|H0)

We then add the vector of measurements xk+1 ∈ Cn to the detection problem (with no

effect on the previous observation we have already made) to form the new augmented

observation zk+1 =
[
zHk xHk+1

]H
. Noting the definition of conditional probability

density, namely

fXk+1|Zk (xk+1|zk) =
fZk,Xk+1

(zk,xk+1)

fZk (zk)

we can write the log-likelihood ratio of the augmented observation as [44], [45]

l(zk+1) = log
fZk+1

(zk+1|H1)

fZk+1
(zk+1|H0)

= log
fZk,Xk+1

(zk,xk+1|H1)

fZk,Xk+1
(zk,xk+1|H0)

= log
fZk (zk|H1) fXk+1|Zk (xk+1|zk, H1)

fZk (zk|H0) fXk+1|Zk (xk+1|zk, H0)

= l(zk) + log
fXk+1|Zk (xk+1|zk, H1)

fXk+1|Zk (xk+1|zk, H0)
(5.1)

Thus, in this very general setting, we can see that the log-likelihood ratio can be

updated through simple addition provided that we can accurately characterize the

distribution of our new observation, conditioned upon the old measurement, under

both hypotheses. In general, this updating factor is not a likelihood ratio itself, the
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exception to this statement being situations where the new observation is condition-

ally independent of the old measurement under both hypotheses in which case the

update simply becomes a likelihood ratio for the new data, i.e.

l(zk+1) = l(zk) + log
fXk+1

(xk+1|H1)

fXk+1
(xk+1|H0)

5.2.2 Full-Rank Gauss-Gauss Updating

Recall the framework of the Gauss-Gauss detector described in Section 2.3. From

the previous remarks given above, the ability to update the Gauss-Gauss detector by

simply adding an additional term should come as no surprise. Just as we have done

in the previous section, we begin by making the assumption that we have measured

the (zero-mean) Gaussian random vector zk ∈ Cm and form the likelihood ratio l(zk),

i.e.

l (zk) = zHk

(
R−1

zkzk0
−R−1

zkzk1

)
zk

where

Rzkzk0
= EH0

[
zkz

H
k

]
, Rzkzk1

= EH1

[
zkz

H
k

]
and zk =

[
xH1 · · · xHk

]H
. Note that the binary subscripts (0, 1) denote which hypoth-

esis is being conditioned upon. We then add a new observation vector, xk+1 ∈ Cn,

to the measurements to obtain the augmented observation vector

zk+1 =
[
zHk xHk+1

]H ∈ Cm+n

Thus, the log-likelihood ratio of the augmented observation vector becomes

l (zk+1) = zHk+1

(
R−1

zk+1zk+10
−R−1

zk+1zk+11

)
zk+1

where

Rzk+1zk+10
= EH0

[
zk+1z

H
k+1

]
, Rzk+1zk+11

= EH1

[
zk+1z

H
k+1

]
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Noting the structure that is inherent in the augmented observation we can use a block

matrix inversion identity [26] and write

R−1
zk+1zk+1

=

 R−1
zkzk

O

O O

+

 −WH

I

Q−1 [−W I]

where

W = Rxk+1zkR
−1
zkzk

Q = Rxk+1xk+1
−Rxk+1zkR

−1
zkzk

RH
xk+1zk

It is interesting to note [26] that W is a discrete Wiener smoothing matrix that

estimates the new data from the old and Q is its associated error covariance matrix.

With this in mind, it is easy to observe that the change in the likelihood ratio becomes

∆l (zk+1, zk) = l (zk+1)− l (zk)

=

[
zHk xHk+1

]
 −WH

0

I

Q−1
0 [−W0 I]

−

 −WH
1

I

Q−1
1 [−W1 I]


 zk

xk+1


= eH0 Q

−1
0 e0 − eH1 Q

−1
1 e1 (5.2)

where W0 = Rxk+1zk0
R−1

zkzk0
and W1 = Rxk+1zk1

R−1
zkzk1

are Wiener filters conditioned

upon H0 and H1, respectively, and e0 = xk+1 −W0zk and e1 = xk+1 −W1zk are the

error vectors produced by these smoothing matrices with covariance matrices

Q0 = EH0

[
e0e

H
0

]
= Rxk+1xk+10

−Rxk+1zk0
R−1

zkzk0
RH

xk+1zk0

and

Q1 = EH1

[
e1e

H
1

]
= Rxk+1xk+11

−Rxk+1zk1
R−1

zkzk1
RH

xk+1zk1
,

respectively. Clearly, due to the orthogonality principle [26], we have the following
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(a) LLR Updating Structure.

(b) LLR Update Block.

Figure 5.1: Log-Likelihood Ratio Updating.

properties

EH0

[
e0z

H
k

]
= O

EH1

[
e1z

H
k

]
= O

However, the error vectors produced by these filters do not share the same property

when conditioned upon the wrong hypothesis, i.e.

EH0

[
e1z

H
k

]
6= O

EH1

[
e0z

H
k

]
6= O

Thus, we can perform single-channel updating as depicted in Figures 5.1(a) and 5.1(b)

provided that we have the correct smoothing and error covariance matrices. From a

practical standpoint this figure shows us that we do not have to rebuild structure from
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scratch when we wish to add an additional channel; we simply add an additional piece

that estimates the new from the old and update the likelihood measure accordingly.

Because of the linearity property of expectation, it is easily seen that the change

in J-divergence becomes

∆J (zk+1, zk) = J (zk+1)− J (zk)

= EH1 [∆l (zk+1, zk)]− EH0 [∆l (zk+1, zk)]

= tr
(
−Q−1

0 EH0

[
e0e

H
0

]
−Q−1

1 EH1

[
e1e

H
1

]
+Q−1

0 EH1

[
e0e

H
0

]
+Q−1

1 EH0

[
e1e

H
1

])
= tr

(
−2I +Q−1

0 Q10 +Q−1
1 Q01

)
(5.3)

where

Q10 = EH1

[
e0e

H
0

]
= Rxk+1xk+11

−W0Rzkxk+11
−Rxk+1zk1

WH
0 +W0Rzkzk1

WH
0

Q01 = EH0

[
e1e

H
1

]
= Rxk+1xk+10

−W1Rzkxk+10
−Rxk+1zk0

WH
1 +W1Rzkzk0

WH
1

are cross terms representing the error covariance when using the wrong smoothing

filter. That is, Q10 is the error covariance matrix incurred when filtering with W0

given that it is actually the H1 model that produced the data and vice versa for Q01.

Since we are filtering with a sub-optimal smoother in such situations, we can make

the following two statements

xHQ10x ≥ xHQ1x

xHQ01x ≥ xHQ0x (5.4)

for any x ∈ Cn not equal to the empty vector. These two inequalities will be used

later to lower bound the change in J-divergence.
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5.2.3 Reduced-Rank Gauss-Gauss Updating

In detection applications where the data sits in a high dimensional space, one may

be interested in finding a low-rank approximation of the data to save processing time

and would like to do so without sacrificing a great deal of performance in terms of

detection. Again, we assume the same structure as in the previous section i.e., adding

the new observation xk+1 ∈ Cn to the old observation zk. Along the same lines as

that presented in [25], we begin by removing the contribution from the H0 hypothesis

through a whitening transformation. To be specific, we begin by rewriting the change

in log-likelihood as follows

∆l (zk+1, zk) = eH0 Q
−H/2
0 Q

−1/2
0 e0 − eH1 Q

−H/2
0 Q

H/2
0 Q−1

1 Q
1/2
0 Q

−1/2
0 e1

= wH
0 w0 −wH

1 Γ−1w1 (5.5)

where the vectors w0 = Q
−1/2
0 e0 and w1 = Q

−1/2
0 e1 have the following covariance

structure under their respective hypotheses

EH0

[
w0w

H
0

]
= I

EH1

[
w1w

H
1

]
= Γ

and the matrix Γ = Q
−1/2
0 Q1Q

−H/2
0 is simply a normalized version of Q1. We then use

the eigenvalue decomposition of this normalized error covariance matrix, Γ, so that

Γ = UΣUH

where UHU = UUH = I and Σ = diag [σ1, . . . , σn]. With this, we rewrite (5.5) as

∆l (zk+1, zk) = wH
0 UU

Hw0 −wH
1 UΣ−1UHw1

= yH0 y0 − yH1 Σ−1y1 (5.6)
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where the vectors y0 = UHw0 = UHQ
−1/2
0 e0 and y1 = UHw1 = UHQ

−1/2
0 e1 now have

covariance structure

EH0

[
y0y

H
0

]
= I

EH1

[
y1y

H
1

]
= Σ

To find the corresponding expressions for the change in J-divergence, we define

the following two matrices

Γ10 = EH1

[
Q
− 1

2
0 e0e

H
0 Q

−H
2

0

]
= Q

− 1
2

0 Q10Q
−H

2
0

Γ01 = EH0

[
Q
− 1

2
0 e1e

H
1 Q

−H
2

0

]
= Q

− 1
2

0 Q01Q
−H

2
0

Now, using (5.3) the change in J-divergence can be written as

∆J (zk+1, zk) = tr
(
−2I +Q

− 1
2

0 Q10Q
−H

2
0 +Q

H
2
0 Q

−1
1 Q

1
2
0Q
− 1

2
0 Q01Q

−H
2

0

)
= tr

(
−2I + Γ10 + Γ−1Γ01

)
= tr

(
−2I + UHΓ10U + Σ−1UHΓ01U

)
=

n∑
i=1

−2 + uHi
(
Γ10 + σ−1

i Γ01

)
ui (5.7)

Thus, we find that the change in J-divergence seen when adding an additional obser-

vation becomes decomposed in terms of the eigenvalues of Γ, i.e. σi’s, and the two

quadratic terms uHi Γ10ui and uHi Γ01ui. Now the eigenvalues, σi, give us a canonical

measure of the mean-squared error (due to Q1) incurred when estimating data gen-

erated from the H1 hypothesis with the filter W1 normalized by the mean-squared

error incurred when estimating data generated from the H0 hypothesis with the fil-

ter W0 (due to Q
−1/2
0 ). On the other hand, the quadratic term uHi Γ10ui measures

the mean-squared error incurred when estimating data generated from the H1 hy-

pothesis with the filter W0 in the one-dimensional subspace spanned by the vector

ui, again normalized by Q0. A similar argument can be made about uHi Γ01ui. The

effect of this decomposition on covariance ellipses is shown in Figure 5.2. Therefore,
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Figure 5.2: Error Covariance Decomposition

we first, in some sense, “normalize” the problem by the H0 hypothesis so that, with

high probability, error vectors generated by filtering with W0 under H0 lie somewhere

within a sphere of radius one. The picture is then rotated through U which resolves

the data into a coordinate system associated with the principal axes of the ellipsoid

corresponding to Γ. The square of the radii along these principal axes correspond to

the eigenvalues of Γ and the squared distance from the origin to that line which is

orthogonal to the ith basis vector, ui, but also tangent to the appropriate covariance

ellipse corresponds to the two quadratic terms, uHi Γ10ui and uHi Γ01ui.

Recalling the two inequalities given in (5.4), we can find a lower bound on the
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change in J-divergence via the following sequence of statements

∆J (zk+1, zk) =
n∑
i=1

−2 + uHi Γ10ui + σ−1
i uHi Γ01ui

=
n∑
i=1

−2 + uHi Q
−1/2
0 Q10Q

−H/2
0 ui + σ−1

i uHi Q
−1/2
0 Q01Q

−H/2
0 ui

≥
n∑
i=1

−2 + uHi Q
−1/2
0 Q1Q

−H/2
0 ui + σ−1

i uHi Q
−1/2
0 Q0Q

−H/2
0 ui

=
n∑
i=1

−2 + uHi Γui + σ−1
i uHi Iui

Since ui is orthogonal and diagonalizes matrix Γ, it then follows that

∆J (zk+1, zk) ≥
n∑
i=1

−2 + σi + σ−1
i (5.8)

More importantly, we can then observe that the function −2 + σi + σ−1
i ≥ 0 for

any σi ≥ 0 leading us to the conclusion that ∆J (zk+1, zk) ≥ 0. As stated before,

J-divergence is not a definitive measure of the performance of the detector which

should be truly portrayed in terms of probability of detection. However, strictly from

a first-order moment point-of-view, this inequality seems to suggest that supplying

an additional observation to the detector can never deteriorate its performance.

When performing rank-p updating (p < n), we re-order the coordinates in a

descending fashion so that the pair (u1∗ , σ1∗) satisfies

(u1∗ , σ1∗) = arg max
ui,σi

{
uHi
(
Γ10 + σ−1

i Γ01

)
ui : i ∈ [1, n]

}
Likewise, the pair (u2∗ , σ2∗) satisfies

(u2∗ , σ2∗) = arg max
ui,σi

{
uHi
(
Γ10 + σ−1

i Γ01

)
ui : i ∈ [1, n], i 6= 1∗

}
and so on until all coordinates have been accounted for. We would like to see coordi-

nates where σi is very small and the two quadratic terms, uHi Γ10ui and uHi Γ01ui, very

large. As σi represents the mean-squared error in estimating data generated from

H1 with the right smoothing filter W1, it is natural that we would want small mean-

squared error in such a situation. Small mean-squared error in this situation implies
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a significant amount of cross-correlation information among our new observation and

old measurement under H1 allowing us to accurately estimate the new data from the

old. Asking for large mean-squared error with uHi Γ10ui and uHi Γ01ui is a subtle point

and somewhat counter-intuitive as typically when one speaks of estimation problems,

the smaller the mean-squared error the better. However, if we can generate data

from one hypothesis and accurately estimate it with the smoothing filter from the

other, then that gives us some indication that there is not much difference among the

models of the two hypotheses (or their distributions for that matter). Thus, in such

situations the larger the mean-squared error the better.

With the coordinates suitably ordered, we decompose the coordinate system as

follows

U =

[
Up Up+1

]
where Up =

[
u1∗ · · · up∗

]
and Up+1 =

[
u(p+1)∗ · · · un∗

]
. Also,

Σ =

 Σp O

O Σp+1


where Σp = diag [σ1∗ · · · σp∗ ] and Σp+1 = diag

[
σ(p+1)∗ · · · σn∗

]
. These yield the

low-rank approximations of the error vectors as

ỹ0 = UH
p Q

− 1
2

0 e0 ∈ Cp

ỹ1 = UH
p Q

− 1
2

0 e1 ∈ Cp

Using (5.6), the change in log-likelihood in this reduced-rank subspace becomes

∆lp (zk+1, zk) = ỹH0 ỹ0 − ỹH1 Σ−1
p ỹ1

= eH0 Q
−H

2
0 UpU

H
p Q

− 1
2

0 e0 − eH1 Q
−H

2
0 UpΣ

−1
p UH

p Q
− 1

2
0 e1

The reduced-rank version of the LLR updating block shown in Figure 5.1(b) is now
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Figure 5.3: Reduced-Rank LLR Update Block.

displayed in Figure 5.3 for this reduced-rank update. In each branch, the updat-

ing involves filtering the normalized (by Q
−1/2
0 ) error vectors into a lower-dimensional

vector after which the energy is computed to give the required log-likelihood ratio up-

date. This is not necessarily the same solution one would achieve when implementing

the reduced-rank detectors of [25] for the augmented measurement zk+1. However, in

situations where a detector (full or reduced-rank) has already been built for zk and we

wish to add the new observation xk+1, we do not have to rebuild a low-rank detector

to handle this new observation vector and can simply add a low-rank update.

Using (5.3), the associated change in J-divergence can finally be written as

∆Jp (zk+1, zk) = tr
(
−2I + UH

p Γ10Up + Σ−1
p UH

p Γ01Up
)

=

p∑
i=1

−2 + uHi
(
Γ10 + σ−1

i Γ01

)
ui

5.3 Simulation Studies

To demonstrate situations where log-likelihood updating may be useful, we next con-

sider two simulations. The first simulation example is concerned with detecting the

presence of dynamical structure in data that we have observed. In a situation such

as this, one does not want to perform detection with the entire time series as each

observation (time series) can sit in a high-dimensional space. To get past this com-

putational obstruction, we take advantage of the structure of the hypothesis test and
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implement a Kalman filter [26] which is used to propagate the necessary errors and er-

ror variances needed for log-likelihood ratio updating yielding a detection system that

can be implemented in real-time. The second simulation example is concerned with

detecting the presence of a single, narrow-band source in the sensing environment of

multiple Uniform Linear Arrays (ULAs). Here, we investigate the usefulness of the

incremental change in J-divergence in deciding if/when adding new platforms reaches

a point of diminishing returns and also its usefulness in deciding which platforms to

use for an increase in detection performance.

5.3.1 Detection of Dynamical Structure-Time Updating

Consider the scalar time series, {y[k]}∞k=0, which we assume arises from a white pro-

cess being passed through a known LTI system and corrupted by noise under one

hypothesis versus noise alone under the other. To be specific, we consider the detec-

tion problem

H1 : y[k] =
∞∑
l=0

h[k − l]u[l] + n[k]

H0 : y[k] = n[k]

where h[k] is the impulse response of an arbitrary infinite-impulse response (IIR)

system. We also assume that the discrete-time processes u[k] and n[k] are individually

Gaussian wide-sense stationary (GWSS) and jointly GWSS with auto and cross-

correlation sequences

Ru[l] = E [u[k + l]u[k]] = σ2
uδ[l]

Rn[l] = E [n[k + l]n[k]] = σ2
nδ[l]

Run[l] = E [u[k + l]n[k]] = 0 ∀ l
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If the system is rational, then we may represent the LTI system in terms of a state

space equation and can alternatively write the detection statement as

H1 :

 x[k + 1] = Ax[k] + bu[k]

y[k] = cTx[k] + du[k] + n[k]

H0 : y[k] = n[k]

where x[k] is the state vector and A, b, c, and d are matrices of appropriate di-

mensions [26]. Now, to put this problem in the contexts of this paper, we form the

vector of measurements up to time k, zk = [y[0] y[1] · · · y[k]]T , and we wish to add

a new measurement, y[k + 1]. This example illustrates the time updating process as

described before. We know that incrementally updating the likelihood ratio requires

finding errors from each hypothesis as well as their variances every time instance.

Because of the nature of the time updating problem we are considering, under H1 the

error corresponds to the difference in the observation, y[k+ 1], and the best estimate

of our measurement given observations up to time k, ŷ[k + 1|k], i.e. the innovations

sequence e[k+1] = y[k+1]− ŷ[k+1|k]. So we can run a Kalman filter [26] in parallel

with the log-likelihood ratio updating to provide this information (the innovations

and the innovations variance) for the H1 hypothesis as the Kalman filter reduces to

that of the Wiener filter when steady-state conditions have been reached [26]. Also,

since our observation is white under H0, the best estimate of y[k + 1] given obser-

vations up to time k is zero. Thus, the innovations process in this case amounts

to the observation itself which, under H0, has variance σ2
n. A block diagram of the

time updating problem is shown in Figure 5.4. We assume that there exists an un-

observed white process which is colored through H(z) and corrupted by noise under

H1 versus noise alone under H0. The observation is then applied to a Kalman filter,

which is built from the state equation describing the dynamics of our observations

under H1, and extract the innovations and innovations variance. The innovation and

its variance, as well as the observation itself, are then applied to the log-likelihood
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ratio update to form the test statistic at time instant k. If we denote the variance of

the innovation process by σ2
ek+1

, then the change in the log-likelihood ratio in (5.2)

becomes

∆l (zk+1, zk) = l (zk+1)− l (zk) = σ−2
n y[k + 1]2 − σ−2

ek+1
e[k + 1]2 (5.9)

Figure 5.4: Block Diagram of Time Updating Detection System.

For simulation, we generated an arbitrary 4th-order, proper LTI system by choos-

ing random zero/pole locations with poles that lie inside the unit circle (stable sys-

tem). The magnitude response of this filter is displayed in Figure 5.5(a). With σ2
n set

to unity, Figure 5.5(b) shows the norm of the Kalman gain [26] vector, kk, as function

of time for both the H0 and H1 hypotheses for different choices of σ2
u to achieve SNR

values of -5, 0, and 5 dB. Note that the curve for H1 associated with an SNR of -5

dB cannot be seen as it is identical to that of the H0 hypothesis. From the figure we

can see that the system has a small settling time as the norm of the Kalman gain

vector reaches steady state after 10 iterations. Figure 5.6(a) displays l (zk) versus k

for both H0 and H1 at SNR values of -5, 0, and 5 dB. We see that, even under H0, the

log-likelihood ratio continually increases as time updating progresses. Nonetheless,

the distance between H1 and H0 also increases. This presents somewhat of an incon-

venience from a practical standpoint as it is obvious that to make detection decisions

we must define a threshold that also continually increases over time. Failing to do so

will result in an ever increasing probability of false alarm.

We then generated a finite sequence of data, y[k]; k = 0, . . . , N − 1 with N =

300, from the H0 hypothesis which is run through the system shown in Figure 5.4.
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Figure 5.5: LTI Magnitude Response and Kalman Gain Vector.

When initializing the Kalman filter recursions, a state error covariance matrix of

P0|0 = E
[
(x[0]− x̂[0|0]) (x[0]− x̂[0|0])T

]
= 10I is always used. From this, the initial

innovation variance is easily seen to be

σ2
e0

= EH1

[
(y[0]− ŷ[0|0])2]

= EH1

[(
cT (x[0]− x̂[0|0]) + du[0] + n[0]

)2]
= cTP0|0c + d2σ2

u + σ2
n
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Figure 5.6: Log-Likelihood Values and Probability of Detection.

and therefore, the log-likelihood ratio is initialized at the value

l (z0) =
[
σ−2
n −

(
cTP0|0c + d2σ2

u + σ2
n

)−1
]
y[0]2

This experiment is conducted 1500 times using a Monte Carlo study and a (time-

dependent) threshold is determined corresponding to a fixed false alarm rate of 5%.

Likewise, data is then generated from the H1 hypothesis in a similar fashion and the

probability of detection corresponding to this threshold is measured. The result of

the simulation is shown in Figure 5.6(b). As we expect, the probability of detection
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gets better the longer the system is time updated. We can also see that the smaller

the SNR, the longer the system has to run before we can say with any confidence

that hypothesis H1 is in force. From Figure 5.6(a) this becomes clear as we can see

that the larger the SNR, the faster the log-likelihood ratio grows. Thus, the distance

between H1 and H0 increases at a faster rate leading to better detection performance

at any instance in time.
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Figure 5.7: LLR and PD for Switched Hypothesis Model.

Now, the results of this simulation make the assumption that only one of the two

hypotheses is always in force throughout the course of the experiment. To observe
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what can happen when this assumption falls apart, we construct a similar situation

where we generate data from the H0 hypothesis and find a threshold corresponding

to a false alarm probability of 5%. However, when looking at the H1 hypothesis,

we generate the first 100 samples (out of 300 samples) from the H1 model and then

the system is subsequently “switched” to the H0 model for the next 100 realizations

and finally the system is “switched” back to the H1 model for the last 100 samples.

Figure 5.7(a) displays the likelihood ratio for H0 and H1 at SNR values of -5, 0, and

5 dB. Likewise, Figure 5.7(b) gives PD versus time for this simulation. As we can

see, the plot looks identical to that shown in Figure 5.6(b) in the first 100 samples.

However, for the next 100 samples our confidence in the H1 hypothesis begins to

degrade. Then, for the last 100 samples, our confidence begins to increase once more.

We can also see from the figure that this degradation is relatively large for an SNR

value of 0 dB but smaller for −5 dB and little if any at all degradation occurs at

higher SNRs. Looking at Figure 5.7(a), this becomes clear as switching between

hypotheses has little effect on the likelihood values associated with an SNR of -5

dB. This switching does have a large impact on the likelihood values at an SNR of

5 dB. However, the likelihood values at this SNR are so large after 100 samples of

the time updating under hypothesis H1 that switching the model has little effect on

the difference among the LLR values under H1 and those under H0 thus having little

effect on PD.

5.3.2 Narrow-band, Single Source Detection with Multiple Disparate Lin-
ear Arrays-Channel Updating

Next, we turn our attention to the detection of a single, narrow-band source using

multiple uniform linear arryas (ULAs) that mimic underwater target detection using

multiple sonar platforms. We assume that each platform individually pings the envi-

ronment and collects far-field measurements via an L-element ULA at half-wavelength

spacing. For simulation, we consider a situation where 20 ULAs are oriented in the
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same direction and are all above the seafloor at an elevation of 5m. The platforms are

uniformly spaced across a 40m distance in the cross-track direction and each platform

is located 1m behind the platform to the left. We assume that the source is located

at the origin and all platforms are moving in the same along-track direction with a

speed of 1.5m/s. Figure 5.8 gives a three-dimensional perspective of the problem

being considered. The platform farthest to the left, which is labeled as Platform 1,

is taken to be our reference platform and the element farthest to the left in each

ULA is taken to be the corresponding reference element. The narrow-band frequency

is taken to be 10kHz and the speed of sound 1500m/s leading to an inter-element

sensor spacing of 7.5cm. There are 16 elements in each array which are sampling the

environment at the Nyquist rate of 20kHz.

Figure 5.8: Multi-Platform Simulation Setup.

Assuming that each platform synchronously pings the environment with the same

transmit signal via a global clock and each array knows the location of the others,

then it may be possible in such a situation to account and equalize the effects of

direct path propagation. We assume that such a situation exists and, for the kth

observation from the lth array, consider the detection problem

H1 : yl[k] = h (θl) αT
l s[k] + nl[k]

H0 : yl[k] = nl[k]
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where nl[k] ∈ CL is a zero-mean complex Gaussian random vector with covariance

structure E
[
nl[k]ni[k]H

]
= δl−iσ

2
nI and

h (θl) =



1

e−jπ cos(θl)

e−j2π cos(θl)

...

e−j(L−1)π cos(θl)


∈ CL

is the steering vector of the ULA at DOA θl and at half-wavelength spacing (d = λ/2).

Assuming that there are N platforms in the sensing environment, the vector αl ∈ RN

is given to be

αl =



(||rl||+ ||r1||)−1

(||rl||+ ||r2||)−1

...

(||rl||+ ||rN ||)−1


where each element is an attenuation (or fading) weighting for the signal emanated

from the source and received by the lth platform and ri, i = 1, . . . , N , is a three-

dimensional vector describing the platform’s location with respect to the source. We

assume for this simulation that all temporal delays are negligible. Finally, the vector

s[k] ∈ RN is a zero-mean Gaussian random vector containing the source-signals from

each platform at the kth observation and has covariance matrix Rs = E
[
s[k]s[k]T

]
given by

Rs = σ2
s



1 ρ(φ1 − φ2) · · · ρ(φ1 − φN)

ρ(φ2 − φ1) 1 · · · ρ(φ2 − φN)

...
...

. . .
...

ρ(φN − φ1) ρ(φN − φ2) · · · 1


where φl is the aspect angle among the source and the lth platform and ρ(·) is a
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correlation coefficient assumed to be a Gaussian function of the form

ρ(φl − φi) = e−
(φl−φi)

2

Ω

where Ω is a parameter loosely describing the target structure. For example, if the

target is spherical in nature and measurements are relatively invariant to aspect then

one might choose a large value for the parameter Ω to reflect this. The geometrical

setup of the model under H1 is shown in Figure 5.9 for one platform.

Figure 5.9: Geometry of Multi-Platform Model.

To perform channel updating as described in this chapter, we measure the obser-

vations from m arrays and form the composite observation

zm[k] =
[
y1[k]T y2[k]T · · · ym[k]T

]T
. We then wish to update the test statistic using

the observation ym+1[k]. If we let H denote the matrix

H =
[
α1h (θ1)

H α2h (θ2)
H · · · αmh (θm)H

]H
then the smoothing filters needed to update the log-likelihood ratio are given to be

W0 = O

W1 = h (θm+1) αT
m+1RsH

(
HRsH

H + σ2
nI
)−1

The error covariance matrices associated with these smoothing filters are then given

to be

Q0 = σ2
nI

Q1 = σ2
nI + h (θm+1) αT

m+1

(
Rs −RsH

H
(
HRsH

H + σ2
nI
)−1

HRs

)
αm+1h (θm+1)

H
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With this, the change in log-likelihood in (5.2) as a result of adding a new platform

m+ 1 becomes

∆l (zm+1, zm) =
(
1/σ2

n

)
yHm+1ym+1 − (ym+1 −W1zm)H Q−1

1 (ym+1 −W1zm)

Likewise, the error covariance matrices associated with filtering with a smoother that

is mismatched to the given hypothesis are given to be

Q10 = σ2
nI + h (θm+1) αT

m+1Rsαm+1h (θm+1)

Q01 = σ2
nI + σ2

nh (θm+1) αT
m+1RsH

H
(
HRsH

H + σ2
nI
)−2

HRsαm+1h (θm+1)
H

The corresponding change in J-divergence given in (5.3) is then

∆J (zm+1, zm) = tr
(
−2I +Q−1

0 Q10 +Q−1
1 Q01

)
Assuming that our knowledge of the signal and noise power and the structure of

the target (Ω) are known a priori, updating the likelihood ratio requires estimation

of the direction of arrival DOA (θl), the aspect angle (φl), and the range (||rl||)

from each platform to the target (see Figure 5.9). For this simulation example, the

DOA is estimated across a 750-observation window using the conventional MUSIC

algorithm [46] with a spectral resolution of 0.0628rad. We do not explicitly perform

target localization for this simulation but instead model the estimate of the range as

a random perturbation from its true value. More specifically, if ||r̂l|| is the estimate

of the range and θ̂l is the DOA estimate from MUSIC, then ||r̂l|| = ||rl|| + ε where

ε ∼ N

(
0, ||rl||

(
θl − θ̂l

)2
)

. Thus, the farther the array is from the source and the

more error in the DOA estimate, the more the average error in the estimate of the

range. Once the range from the source is estimated and assuming each platform

knows its elevation from the seafloor, which we will denote as l, simple trigonometry

and close inspection of Figure 5.9 shows that the aspect angle can then be found via

the equation

φ̂i = sin−1


√
||r̂i||2 sin2 θ̂i − l2√
||r̂i||2 − l2
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It is clear that these parameters will not remain unchanged over the 750-observation

window used to estimate them. However, with the far-field condition along with

a high sampling rate and low vehicle velocity, it is justifiable to assume that these

parameters essentially remain the same over 750 measurements. Finally, the SNR

value for this simulation example is taken to be σ2
s/σ

2
n.

5.3.2.1 Systematic Channel Updating

We begin by considering a simulation where we build a detector to handle data from

Platform 1 and subsequently perform updating to account for the addition of the

data from Platform 2 and so on until the data from all 20 arrays have been taken

into account. Figures 5.10(a) and 5.11(a) display ∆J and PD corresponding to a

false alarm rate of 5% at an SNR value of -5 dB when Platform 1 is located at -20,

-10, 0, and 10 m in the along-track direction. For these figures, 7500 Monte Carlo

simulations were performed with different realizations of s[k] and nl[k], l = 1, . . . , 20.

Recall that all platforms are traveling in the same direction with the same speed and

so are always one meter behind the platform to the left as displayed in Figure 5.8.

Figures 5.10(b) and 5.11(b) as well as Figures 5.10(c) and 5.11(c) likewise display

the same for SNR values of 0 and 5 dB, respectively. As can be observed, the perfor-

mance of the detector always increases the closer the platforms approach the target

irrespective of SNR. Additionally, at higher SNR values the gap between PD plots at

different along-track locations diminishes, especially as the number of platforms gets

large. The change in J-divergence (i.e. discrimination ability) also always increases

the closer we approach the target and at higher SNR values but does not always in-

crease with the number of platforms. The point at which the change in J-divergence

reaches its maximum value (denoted by a black dot in Figures 5.10(a)-(c) and Fig-

ures 5.11(a)-(c)) signifies the point of diminishing return as it is after this point that

the J-divergence increases but at a decreasing rate. Comparing change in divergence
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Figure 5.10: Change in J-Divergence versus Number of Platforms.

and PD plots, one can see that the point at which the change in J-divergence is maxi-

mum generally correlates with the point where the increase in detection performance

(i.e. PD) begins to slow down. Comparing the plots in Figures 5.10(a) and 5.11(a)

at -20 and -10 m to that shown in Figures 5.10(c) and 5.11(c) at 10 m, one can also

observe that the faster the change in J-divergence diminishes, the faster the increase

in probability of detection slows down. Therefore, when adding channels (platforms),

we can see that the change in J-divergence gives us an effective measure for recog-

nizing when adding an additional platform would not bring tangible improvement in

detection performance and hence deciding when “enough is enough”.
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Figure 5.11: Probability of Detection versus Number of Platforms.

5.3.2.2 Selective Channel Updating

The previous simulation assumed that we can do detection with every platform in the

operating environment of the source. Suppose now that we are not granted this luxury

and can only use a subset of the total number of platforms available. However, we are

given the opportunity to choose which platforms to use when performing detection.

To decide which set of platforms to use, one could simply recursively search through

all the platforms and choose to add that set of observations that yields the largest

increase in J-divergence.

To simulate this situation, we consider the same setup shown in Figure 5.8 and
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focus our attention on the detection system associated with Platform 1. Our as-

sumption is that the system can only handle observations from 10 platforms, the

observation from the platform itself and nine others. Again, the system is initialized

by building a detector to handle data from Platform 1. We then search through all

the other 19 platforms, measuring the increase in J-divergence that would be seen if

we were to add the observation from that platform. We then choose the one that gives

the largest increase in divergence. Then, the likelihood ratio is channel updated ac-

cordingly by augmenting that observation to the observation of Platform 1. We then

search through all the remaining 18 platforms and measure the increase in divergence

that would be seen if we were to add the observation from that platform given the new

augmented measurement. Again, we choose the one that gives the largest increase

in J-divergence, incrementally update the likelihood ratio, and stack the observation

from that platform with the augmented measurement from the previous iteration.

This is continued until we have added the observations from nine other platforms. So

the recursive nature of the problem is still the same as the previous simulation but,

rather than channel update the likelihood ratio by adding the observation from the

platform to the immediate right, we are now selectively choosing which observations

are to be added. This selective platform-allocation scheme is compared to a scheme

where platforms are chosen at random, i.e. we simply select 9 integers ranging from 2

to 20 which are uniformly sampled at random without replacement. We only consider

the SNR = 5 dB case for this simulation.

Figures 5.12(a)-(d) display the results of this simulation in terms of PD and ∆J

versus the number of platforms when Platform 1 is located at -20, -10, 0, and 10 m

in the along-track direction, respectively. Again the results shown in the figures are

the average of 7500 Monte Carlo simulations where, again, different realizations of

s[k] and nl[k] are taken but also the choice of platforms when choosing at random also

changes from simulation to simulation. We can see that, when selectively (according
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Figure 5.12: ∆J and PD versus Number of Platforms - Different Platform 1 loca-
tions in along-track.

to ∆J) adding platforms, the change in J-divergence starts out large and subsequently

decreases at a faster rate compared to that when we choose at random which begins at

a lower change in J-divergence and remains fairly constant throughout. The constancy

of the change in J-divergence for random platform selection is clearly the result of

averaging over all Monte Carlo simulations and gives us an idea of what we can expect

when choosing platforms in a random fashion. We can observe in Figure 5.12(a) that

it makes little difference whether platforms are chosen selectively or at random when

the platforms are far from the source. As the platforms approach the source in
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Figures 5.12(b)-(d), we can see that the performance of the detector associated with

selective allocation always exceeds that of random platform selection. We can also see

that the difference in PD among selective and random platform allocation diminishes

as the number of platforms grows large. Thus, if we can only take advantage of a small

number of platforms, the selective allocation scheme can give a significant increase in

detection performance compared to a situation where platforms are arbitrarily chosen,

i.e. at random. For a given PD, we can also see that selectively choosing platforms

generally requires a smaller number of platforms than when we choose at random.

For example, at an along-track location of -10 m, Figure 5.12(b) shows us that we

only require 7 platforms to achieve PD = 80% whereas we need 9 when choosing

platforms at random. Therefore, we again see that the recursive framework of log-

likelihood time and channel updating and the corresponding change in J-divergence

can be effective tools for deciding which platforms we wish to use when performing

detection in such a framework.

5.4 Conclusion

In this chapter, we first reviewed a well known property of the log-likelihood ratio

when adding data in the detection process. This led to an updating process in which

the old likelihood ratio is incremented by adding an additional term involving prob-

ability densities conditioned upon past measurements. Noting this property, we then

investigated what this updating term looks like for the Gauss-Gauss detector and

found that it involves linearly estimating the new data from the old and forming

quadratic terms in the error of the estimates under both hypotheses. Updating the

likelihood ratio in this fashion opens up a wide range of practical possibilities, two of

which are temporal and channel updating schemes. In temporal updating, we incre-

mentally form the likelihood ratio as time progresses, forgoing the hassles of finding

the test statistic for the time series in its entirety, and can systematically propagate
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the errors and error covariances needed for the incremental update. In channel updat-

ing, we build a detector to handle observations from one channel and incrementally

update the likelihood ratio with the observations from all the other channels. The

change in J-divergence seen when adding new data can then be written in terms of er-

ror covariance matrices when filtering with a smoother that is matched/miss-matched

to the given hypothesis. A reduced-rank version of the log-likelihood ratio update

is then developed which can be of great advantage when the data we wish to add

lies in a high dimensional space and it is desirable to perform updating with a lower-

dimensional approximation without sacrificing performance. In this new coordinate

system built for low-rank updating, we found that the change in J-divergence becomes

decomposed in terms of a scalar term representing the per-mode mean-squared error

under H1 when using the right smoothing filter and two quadratic terms representing

the mean-squared errors in that coordinate under both the H1 and H0 hypotheses

when using the wrong smoothing filter. Taking advantage of the J-divergence in

this coordinate system and a pair of inequalities resulting from sub-optimal filtering

statements, we found a lower bound for the change in J-divergence which allows us

to conclude that adding data can never cause a decrease in J-divergence.

To give a situation where the time log-likelihood ratio updating may be useful,

we presented an example involving the detection of an underlying dynamical system

in our measurements. Because of the structure of the problem, we take advantage of

the Kalman filter recursions for propagating the necessary innovation and innovation

variance needed for this time updating under hypothesis H1 as the Kalman filter

reduces to that of the Wiener filter when steady-state conditions have been reached.

Thus, we do not have to find the necessary smoothing filters and error covariances at

each instance in time as the Kalman filter produces them at each iteration and hence

the detection system can easily be implemented in real-time. We then generated an

arbitrary LTI system and provided simulations for three different SNRs. We observed
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that, at lower SNR values it takes longer to achieve a desired PD at a given false alarm

rate. We then constructed a situation where the model is switched between the H1

and H0 hypothesis and showed what can happen to the performance of the detector

when one model does not exclusively generate the measurements that we have used.

We next looked at another simulation for the channel updating of the log-likelihood

ratio where we are interested in detecting the presence of a single narrow-band source

in the sensing environment of multiple ULAs. We then presented the physical model

which generated our measurements and formed our multi-platform detection hypoth-

esis. For the simulation, we built a detector for one platform and subsequently per-

formed channel updating to successively account for the observations from all the

existing platforms. It was observed that adding platforms in this fashion results in

a change in J-divergence which at first increases but then begins to decrease. This

exemplifies the power of this information measure as an effective tool for helping us

decide when to stop employing additional platforms to aid the detector. We next

considered a case where we can perform detection based only on the observations

from a subset of the total number of platforms. We again built a detector for one

platform but then performed the channel updating by finding the platform whose

observation gives the largest increase in J-divergence after data augmentation. This

is compared to an alternative scenario where platforms are chosen at random. In this

case, we observed that, for a small number of platforms at close range to the source,

selectively choosing which platforms to use outperforms that of choosing at random.

For a given PD, we also found that selectively choosing platforms generally requires

a smaller number of platforms than when we choose at random. This simulation

again exemplifies the effectiveness of the change in J-divergence for allocating sensing

resources when performing detection with multiple disparate platforms.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

6.1 Conclusions and Discussions

The problem of multi-sensory underwater object detection is complicated due to var-

ious factors such as variations in operating and environmental conditions, presence of

spatially varying clutter, variations in target shapes, compositions and orientation.

To allow decision-making among multiple sonar platforms, it is essential to detect

and further scrutinize the information bearing parts of the data collected by the

various sensory systems. This work introduced a solution to this problem by propos-

ing a new multi-channel, multi-sensory binary hypothesis detection system using the

Multi-Channel Coherence Analysis (MCA) framework which is a natural extension of

Canonical Correlation Analysis (CCA) to more than two channels. Similar to two-

channel CCA, the objective of MCA is to discover the coherence among N channels

of data by searching for one-dimensional mapping vectors that maximizes the sum

of the cross correlations among every pairwise combination of channels. Solving the

optimization problem proposed by MCA leads to a generalized eigenvalue problem

involving the composite covariance matrix of the N channels and its corresponding

block-diagonal matrix.

We then presented a multi-channel signal-plus-noise model that fits well with the

problem at hand. The standard Gauss-Gauss detector of Section 2.3 is then recast into

the MCA framework by representing the data in the MCA coordinate system under

the H1 hypothesis. The MCA-based detector led to a new log-likelihood function
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involving the sum of the correlations matrix, Λ1, the MCA orthonormal mapping

matrix, P1, and the local signal-to-noise ratio matrix, Σ, a block-diagonal matrix

composed of the SNR matrices for each channel. The J-divergence for this MCA-

based detector again becomes decomposed in terms of the same matrices. In the MCA

coordinate system, it seems that the detector decomposes the information needed for

detection into the coherence shared between data channels under H1 and the SNR

information among the individual channels themselves.

With the assumption of poor SNR among each individual data channel, which is

found to be valid using actual data from multiple sonar, we implemented a detector

that only takes advantage of the sum of the cross-correlations of the data in the

mapped domain under the H1 hypothesis. This detector is then applied to two real

data sets consisting of one high frequency (HF) and one to three broadband (BB)

sonar images and a data set consisting of simulated target and non-target shapes

embedded in simulated background.

For the multiple sonar image data set consisting of one HF and three BB sonar

images, three detection systems are configured with the HF image along with differ-

ent combinations of the BB images to take advantage of the high target definition

capabilities of HF sonar and the clutter suppression ability of BB sonar. The two-

sonar detection system performs well detecting 51 out of 53 total targets with a false

alarm rate of 7.48 false detections per image. The three-sonar detector improves upon

this result, detecting 52 of the targets while maintaining 8.93 false alarms per image.

The four-sonar detection system likewise detects 52 of the 53 targets but exhibits a

higher false alarm rate of 9.32 false alarms per image. This lack of tangible increase

in detection performance when going from three to four sonar images suggested that

the point of diminishing return is a system with one HF image along with two BB

images as the addition of the third BB observation did not bring any new information

to the detector.
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For the dual sonar image data set, a two-channel MCA-based detection system

was configured with one HF image along with one BB image. This data set consists

of both target and man-made (lobster trap) non-target objects. A test conducted on

all the target and non-target objects, as well as an equally sized set of background

data, showed promise for using the multi-channel correlations for the purposes of

classifying target from non-target. Based on the target and non-target objects as well

as background features from a partial subset of images, a suitable detection threshold

is determined and used on the remaining data set. The detection threshold led to

detecting all 49 target and non-target objects in the tested data set while maintaining

7 false alarms per image, which is an excellent detection performance given the fact

that the data lacked phase information and was more than likely non-Gaussian in

nature.

Finally, the detection method is applied to a simulated data set to study the

MCA-based detector’s sensitivity to variables that are encountered in multi-channel

target detection problems. The images are generated with different target types

and at various SNR values, image resolutions, ranges, aspect angles, etc. To mimic

detection in single-platform, multi-sonar situations, we built a two-channel detector

where each image contains the same target type at the same SNR, range, and aspect

angle. However, the two images differed in resolution: one at 1in and the other at

3in resolution. The results were then partitioned on the basis of target type and

SNR and ROC curves were plotted. The results indicated robustness of the detection

method to different target structures at various SNR values. Next, to mimic multi-

platform, single-sonar situations, we again built a two-channel detector where each

image consisted of the same target type at the same SNR (9dB), range, and image

resolution (1in). However, this time the two channels differed in aspect angle and

pairs of images were chosen such that the difference in aspect angle was within the

range of a particular aspect separation. ROC curves and the empirical J-divergence
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were then plotted for two different target types at various aspect separations. The

results again demonstrated the detection method’s robustness to aspect separation.

Finally, we investigated how adding an additional observation to the Gauss-Gauss

detector changes the log-likelihood ratio and found that the likelihood function can

be updated by adding a term involving linearly estimating the new data from the

old and forming quadratic terms in the error of the estimates under both hypothe-

ses. Updating the likelihood ratio in this fashion opens up a wide range of practical

possibilities, two of which are temporal and channel updating schemes. The change

in J-divergence seen when adding new data can then be written in terms of error

covariance matrices when filtering with a smoother that is matched/miss-matched to

the given hypothesis. A reduced-rank version of the log-likelihood ratio update is

then developed which can be of great advantage when the data we wish to add lies

in a high dimensional space and it is desirable to perform updating with a lower-

dimensional approximation without sacrificing performance. In this new coordinate

system built for low-rank updating, we found that the change in J-divergence becomes

decomposed in terms of a scalar term representing the per-mode mean-squared error

under H1 when using the right smoothing filter and two quadratic terms representing

the mean-squared errors in that coordinate under both the H1 and H0 hypotheses

when using the wrong smoothing filter. Taking advantage of the J-divergence in this

coordinate system and a pair of inequalities resulting from sub-optimal filtering state-

ments, we found a lower bound for the change in J-divergence which led us to the

conclusion that adding data can never cause a decrease in J-divergence.

We then provided two simulations to exhibit situations where log-likelihood ratio

updating may be useful. The first simulation involved the detection of an underly-

ing dynamical system in our measurements and exhibited a time updating scenario.

Knowing that the Kalman filter reduces to that of the Wiener filter at steady state,
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we took advantage of the Kalman filter recursions for propagating the necessary in-

novation and innovation variance needed for time updating under hypothesis H1.

We then generated an arbitrary LTI system for the simulation and observed that,

at lower SNR values, it takes longer to achieve a desired PD at a given false alarm

rate. We then constructed a situation where the model is switched between the H1

and H0 hypotheses and showed what can happen to the performance of the detector

when one model does not exclusively generate the measurements that we have used.

The second simulation is interested in detecting the presence of a single narrow-band

source in the sensing environment of multiple Uniform Linear Arrays (ULAs) and

exhibited a channel updating scenario. We then built a detector for one platform and

recursively updated the likelihood ratio with the observation from the platform to

the immediate right until the observations from all the existing platforms had been

taken into account. It was observed that adding platforms in this fashion results in

a change in J-divergence which at first increases but then begins to decrease. This

exemplifies the power of this information measure as an effective tool for helping us

decide when to stop employing additional platforms to aid the detector. We then con-

sidered a case where we could perform detection based only on the observations from

a subset of the total number of platforms. We again built a detector for one platform

but then performed the channel updating by finding the platform whose observation

gave the largest increase in J-divergence after data augmentation. This was compared

to an alternative scenario where platforms were chosen at random. In this case, we

observed that, for a small number of platforms, selectively choosing which platforms

to use outperformed that of choosing at random, especially at close ranges from the

source. For a given PD, we also found that selectively choosing platforms generally

required a smaller number of platforms than when we choose at random. This simu-

lation again exemplified the effectiveness of the change in J-divergence for allocating

sensing resources when performing detection with multiple disparate platforms.
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6.2 Future Work

Although, the MCA-based detector proposed in this thesis offers a powerful tool for

detection of underwater targets from multiple disparate sonar platforms, there are

several important areas and extensions that can be pursued in the future. These

include, but are not limited to:

• The data used in this study was limited to only a few runs and types of un-

derwater targets. Ideally, the next step in the development of the MCA-based

detector would be to test the performance on more data to prove the usefulness

of the detection systems developed in this thesis. The testing on more difficult

data sets provided by the NSWC as well those including more man-made non-

targets will be done in the future. More specifically, a study on the effect of

different bottom types, target orientations, sonar aspect, resolution, and SNR

on the probability of detection and false alarm rate would be insightful and help

to illustrate the real effectiveness of the detector for realistic underwater target

detection problems.

• The main development of this thesis was focused on the detection of under-

water targets from sonar imagery. Although it was observed that there may

be suitable discriminatory information in the multi-channel correlation features

among targets and non-targets (in this case lobster traps), no specific study on

this observation was conducted. Another potential extension of this research

would be to study the use of multi-channel correlation features for classification

of targets and non-targets. If successful, this will allow us to carry out simul-

taneous detection and classification using only the extracted MCA coordinates

and sum of correlations without requiring a separate feature extraction system.

• The MCA-based detector developed in this thesis is applicable not only to

sonar image detection, but could be used on other disparate sensory systems,
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i.e. magnetic, infrared, and optical. A study of its usefulness on these types

of sensing modalities would be highly valuable. By finding the coherence infor-

mation between more than one type of sensors, the detection and classification

performance could be improved.

• Extension of the coherence-based detection method to account for the multi-

hypothesis testing in the disparate sensor detection problem. For the multi-

platform detection problem, additional hypotheses must be added in the for-

mulations to detect the targets that don’t appear very well in either the high-

frequency or broadband sonar images. This requires extending the Gauss-Gauss

detector to M-hypothesis testing [47] problem and relating the corresponding J-

divergence detectability measure to the multi-channel correlations of the sonar

imagery data.

• Similar to that presented in [1], investigate distributed detection systems which

include collaboration between local decision makers to yield global detection

decisions with higher confidence. More specifically, develop a new collaborative

distributed detection methodology that takes into account (a) limited commu-

nication bandwidth for relaying essential target information among multiple

disparate AUVs and the mother ship; (b) computational limitations of the pro-

cessing systems on each AUV platform; (c) real-time decision requirements; (d)

practically feasible, versatile, and robust implementation of the of MCA-bsed

detection method developed in this thesis.

• More investigation is needed for the application of updating the log-likelihood

ratio specifically for temporal and channel updating procedures. For the time

updating problem, the validity of using the Kalman filter as a means of propa-

gating the necessary information needed for updating must be proven. If it is not

the case, methods for properly and efficiently propagating the necessary Wiener
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smoothing and error covariance matrices must be developed to yield a recursive

system that can be implemented in real-time. For the channel updating prob-

lem, a more in-depth study on the change in J-divergence seen when adding

sonar images with varying degrees of disparity must be conducted. Orthogonal

projection updating [48] for both temporal and channel updating procedures

should also be investigated as a means of effectively incrementing the likelihood

ratio in both situations.

• An extension of the Generalized Likelihood Ratio Test (GLRT) detector pro-

posed in [11] to multi-variate Gaussian time series should be investigated to

generalize the idea for multiple sonar array applications. The test statistic

should then be extended to the frequency domain involving a composite matrix

composed of the auto and cross power spectral density matrices associated with

allN channels and its properties explored. Accordingly, an in-depth study of the

response of this GLRT to varying degrees of disparity must also be conducted.
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APPENDIX A

CANONICAL CORRELATION ANALYSIS

(CCA) REVIEW

In this section, we provide a review of the CCA method in which a set of basis

vectors is found for two sets of multidimensional variables such that correlations

between the projections onto these basis vectors are mutually maximized. CCA was

proposed by Hotelling [14] for the analysis of linear dependence between two data

channels. CCA decomposes the linear dependence between the original channels into

the linear dependence between the canonical coordinates of the channels, where this

linear dependence is easily determined by the corresponding canonical correlations.

Consider the composite data vector z consisting of two random vectors x ∈ Rm

and y ∈ Rn, i.e.

z =

 x

y

 ∈ R(m+n). (A-1)

For the remainder of the derivations, it is assumed that m ≥ n, also the notation (·)H

represents the Hermitian operation. Assume that x and y have zero means and share

the composite covariance matrix

Rzz = E[z zH ] = E


 x

y

 (
xH yH

)  =

 Rxx Rxy

Ryx Ryy

 . (A-2)

If x and y are now replaced by their corresponding whitened vectors, then the

composite vector ξ is

ξ =

 ζ

ν

 =

 R
−1/2
xx 0

0 R
−1/2
yy


 x

y

 , (A-3)
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where R
1/2
xx is a square-root of Rxx with R

1/2
xx R

H/2
xx = Rxx and R

−1/2
xx RxxR

−H/2
xx = I.

The covariance matrix of ξ may be written as

Rξξ = E[ξ ξH ] = E


 ζ

ν

 (
ζT νH

)  =

 Rζζ Rζν

Rνζ Rνν

 =

 I C

CH I

 ,
(A-4)

where

C = E[ζνT ] = E[(R−1/2
xx x)(R−1/2

yy y)H ] = R−1/2
xx RxyR

−H/2
yy (A-5)

is called the coherence matrix of x and y [13], [49]. Therefore, the coherence matrix

C is the cross-covariance matrix between the whitened versions of x and y. Cor-

respondingly, the coordinates ζ and ν are called the coherence coordinates. Now it

is possible to determine the singular value decomposition (SVD) of the coherence

matrix, namely

C = R
−1/2
xx RxyR

−H/2
yy = FKGH and

FHCG = FHR
−1/2
xx RxyR

−T/2
yy G = K,

(A-6)

where F ∈ Rm×m and G ∈ Rn×n are orthogonal matrices [34], i.e.

FHF = FFH = I(m) and GHG = GGH = I(n), (A-7)

and

K =

 K(n)

0

 ∈ Rm×n (A-8)

is a diagonal singular value matrix, with K(n) = diag[k1, k2, . . . , kn] and 1 ≥ k1 ≥

k2 ≥ . . . ≥ kn > 0.

We then use the orthogonal matrices F and G to transform the whitened composite

vector ξ into the canonical composite vector w,

w =

 u

v

 =

 FH 0

0 GH


 ζ

ν

 =

 FH 0

0 GH


 R

−1/2
xx 0

0 R
−1/2
yy


 x

y

 .
(A-9)
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Then, the covariance matrix for the canonical composite vector w is obtained as

Rww = E[wwH ] = E


 u

v

 ( uH vH )

 =

 Ruu Ruv

Rvu Rvv

 =

 I K

KH I

 .
(A-10)

The elements of u = [ui]
m
i=1 ∈ Rm are referred to as the canonical coordinates of x

and the elements of v = [vi]
n
i=1 ∈ Rn are the canonical coordinates of y. The diagonal

cross-correlation matrix K,

K = E[uvH ] = E[(FHR−1/2
xx x)(GHR−1/2

yy y)H ] = FHCG (A-11)

is called the canonical correlation matrix of canonical correlations ki, with 1 ≥ k1 ≥

k2 ≥ · · · ≥ kn > 0. Thus, the canonical correlations measure the correlations between

pairs of corresponding canonical coordinates. That is, E[uivj] = kiδij; i ∈ [1, n],

j ∈ [1,m], with δij being the Kronecker delta. The canonical correlations ki are also

the singular values of the coherence matrix C. Correspondingly, KKH is the squared

canonical correlation matrix of the squared canonical correlations k2
i . Since F and G

are orthogonal matrices, we may write the squared coherence matrix CCH as

CCH = R
−1/2
xx RxyR

−1
yy RyxR

−H/2
xx

= FKGHGKHFH = FKKHFH .

(A-12)

This shows that the squared canonical correlations k2
i are the eigenvalues of the

squared coherence matrix CCH , or equivalently, of the matrix R
−H/2
xx CCHR

H/2
xx =

R−1
xxRxyR

−1
yy Ryx. It is interesting to note that these eigenvalues are invariant to the

choice of a square-root for Rxx.

Figure A-1 illustrates the transformation from standard coordinates x and y to

coherence coordinates ζ and ν and then to canonical coordinates u and v. It can

be noted that the transformation from standard coordinates x and y to canonical

coordinates u and v can be represented by u = WHx and v = DHy where WH =

FHR
−1/2
xx and DH = GHR

−1/2
yy . In this case, W and D are known as the canonical

mapping matrices.
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Figure A-1: Transformation from standard coordinates x and y to canonical coordi-
nates u and v.

The canonical correlations ki are invariant to block-diagonal transformations of

Rzz of form

TRzzT
H =

 T1 0

0 T2


 Rxx Rxy

Ryx Ryy


 TH

1 0

0 TH
2

 , (A-13)

where T1 ∈ Rm×m and T2 ∈ Rn×n are nonsingular matrices [29]. This may easily be

proved by showing that the coherence matrix of the transformed data T1x and T2y

is the same as that of x and y.

In fact, the canonical correlations ki form a complete or maximal set of invari-

ants [29] for the composite covariance matrix Rzz = E[zzT ], under the linear trans-

formation group

T =

T =

 T1 0

0 T2

 , det{T} 6= 0

 , (A-14)

with group action Rzz → TRzzT
T [29]. That is, any function of Rzz that is invariant

under the transformation group T is a function of K. This is the reason that the

correlations ki and coordinates u = [ui]
m
i=1 and v = [vi]

n
i=1 are called canonical [13].

A.1 Linear Dependence and Coherence

The standard measure of linear dependence for the composite data vector

z = [xH yH ]H is the Hadamard ratio, inside the inequality

0 ≤ det{Rzz}∏m+n
i=1 [Rzz]ii

≤ 1, (A-15)
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where [Rzz]ii’s, i ∈ [1,m + n] are the diagonal elements of Rzz. This ratio takes the

value 0 iff there is linear dependence among elements of z; it takes the value 1 iff the

elements of z are mutually uncorrelated.

By introducing a block Cholesky factorization [13,34] for Rzz of the form

Rzz =

 Rxx Rxy

Ryx Ryy

 =

 I RxyR
−1
yy

0 I


 Qxx 0

0 Ryy


 I 0

R−1
yy Ryx I

 , (A-16)

where Qxx = Rxx − RxyR
−1
yy Ryx and is known as the error covariance matrix. It is

then possible to write det{Rzz} as

det{Rzz} = det{Qxx} det{Ryy}

= det{Rxx}det{Qxx}
det{Rxx} det{Ryy},

(A-17)

yielding the following decomposition of the Hadamard ratio:

det{Rzz}∏m+n
i=1 [Rzz]ii

=
det{Rxx}∏m
i=1[Rxx]ii

det{I−KKH} det{Ryy}∏n
i=1[Ryy]ii

. (A-18)

The first and third terms on the right hand side of (A-18) measure the linear depen-

dence among the elements of x and y, respectively, while the middle term,

L = det(I−KKH) =
n∏
i=1

(1− k2
i ); 0 ≤ L ≤ 1, (A-19)

measures the linear dependence between the elements of x and y. The measure L

takes the value 0 iff there is perfect linear dependence between elements of x and

y; it takes the value 1 iff the elements of x and y are independent. The ith term

of the product on the right hand side of (A-19), i.e. (1 − k2
i ), measures the linear

dependence between the ith canonical coordinate of x and the ith canonical coordinate

of y. This implies that the linear dependence between x and y is decomposed into

the linear dependence between their canonical coordinates, and is measured only by

their canonical correlations or principal cosines.
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Correspondingly, we may define the coherence measure between the elements of

x and y as

H = 1− L = 1− det(I−KKH) = 1−
n∏
i=1

(1− k2
i ); 0 ≤ H ≤ 1. (A-20)

The elements of x and y are perfectly coherent iff H = 1; and non-coherent iff H = 0.
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