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ABSTRACT 

 

CALCIUM SIGNALING GENES IN ASSOCIATION WITH ALTITUDE-INDUCED 

PULMONARY HYPERTENSION IN ANGUS CATTLE 

  

This research used multi-omics technology (i.e., RNA-seq, qPCR for gene expression, SNP 

discovery and validation) to understand the influence of a particular subset genes on altitude-

induced pulmonary hypertension susceptibility in Angus cattle. Three research aims were 

established to test the hypothesis that calcium-related genes may be associated with pulmonary 

hypertension in beef cattle. Data and samples utilized for the research came from the Colorado 

State University Beef Improvement Center Angus herd managed at 2,150 m of altitude.  

Transcriptome data from 6 tissues and 14 hypertensive and normotensive Angus steers 

were utilized for differential expression and pathway analyses. The objectives of the first aim were 

to: 1) to estimate and identify differentially expressed genes from RNA-Seq and pathway analyses, 

and 2) select putative candidate genes to analyze with qPCR (gene expression level). The largest 

number of DE genes was revealed in aorta (n = 631) and right ventricle (n = 2,183) samples. Top 

canonical pathways related to calcium signaling or utilization included: synaptic long-term 

depression, signaling by Rho family GTPases, and oxidative phosphorylation. Genes regulating 

calcium availability and utilization were expressed differently (log2 fold change > 0.589, < -0.589; 

P < 0.05) in Angus cattle with and without pulmonary hypertension. 

Isolated RNA from cardiac muscle (n = 9) and control muscle (n = 2) tissues from 

hypertensive and normotensive Angus steers were utilized to estimate gene expression using 

quantitative reverse transcription PCR in the candidate genes from Chapter 3. The objectives of 
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this chapter were: 1) to establish the most appropriate reference genes in cardiac muscle tissues, 

and 2) to estimate and validated relative gene expression of calcium-related genes in cardiac 

muscle tissues using qPCR methods. Differences (P < 0.0055) among hypertensive and 

normotensive steers were estimated for right papillary muscle and right cardiac ventricle tissues 

(top, middle, and bottom) in candidate genes: ASIC2, EDN1, NOX4, PLA2G4A, RCAN1, and 

THBS4. Results of the current study validate the expression differences previously established of 

genes that regulate the availability and utilization of calcium with PH status in Angus steers at 

high altitude. 

Variant detection and association analyses were completed with 2 sets of available -omics 

data to identify opportunities for development of selection tools for reduced susceptibility to PH. 

The objectives of the third aim were to: 1) detect single nucleotide polymorphisms (SNP) in the 

transcriptome of 6 tissues, and 2) identify functional consequences of those variants associated 

with validated candidate genes from qPCR analyses. Pooled Angus sample analysis revealed 68 

SNP in the 6 candidate genes: ASIC2, EDN1, NOX4, PLA2G4A, RCAN1, and THBS4. Thirty-eight 

SNP were revealed in the hypertensive group and 8 SNP in the normotensive steer group. Ten of 

the 68 identified SNP are utilized on large density commercially available bovine SNP chips 

(Illumina BovineHD BeadChip; GeneSeek Genomic Profiler HD; GeneSeek Genomic Profiler HDv2; 

Affymetrix Axiom Bovine). Analysis of transcriptome data identified SNP within genes regulating 

calcium availability and utilization, enhancing our understanding of sequence polymorphisms that 

may be involved in regulating pulmonary hypertension in Angus cattle raised at high altitude. 

These SNP are available for additional validation and potential use in genetic improvement 

programs.  
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CHAPTER 1 

INTRODUCTION 

 

A disease of importance in high altitude beef production systems is pulmonary 

hypertension (PH) and heart failure. At high altitude, risk of heart failure as a consequence of 

pulmonary hypertension is defined by abnormal pulmonary arterial pressures (PAP; > 41 mmHg). 

Pulmonary hypertension develops through remodeling of the vasculature of the heart and lung and 

an inability of the animal to overcome the necessary force to eject the blood through the pulmonary 

artery. This remodeling leads to hypertrophy of the right ventricle, and eventually heart failure 

(Neary et al., 2015; Pugliese et al., 2015; Ryan et al., 2015). In cattle, PH has been widely 

recognized and referred to as high mountain disease (HMD) or brisket disease. The term HMD 

was established due to the reaction of some cattle to changes in elevation, usually > 1,500 m 

(Pauling et al., 2018; Thomas et al., 2018). 

Calcium is a mediator of the physiology of the heart, including myocardial function 

(Hasenfuss and Pieske, 2002; Stanfield, 2011). Rhodes (2005) suggested a role of Ca2+ 

sensitization in myocytes in hypoxic PH to distinguish hypertensive from normotensive cattle. 

Evidence revealed that altered Ca2+ homeostasis was of importance for the pathophysiology of 

myocardial dysfunction and heart failure (Hasenfuss and Pieske, 2002). Unintentionally, previous 

omics approaches (i.e., GWAS and RNA-sequencing) with cattle determined quantitative trail loci 

(QTL) windows and differentially expressed genes related to calcium homeostasis and metabolism 

(Newman et al., 2011; Newman et al., 2015; Zeng, 2016). However, there have been no research 

studies designed to specifically address the influence of calcium on genetic susceptibility of cattle 

to PH. Therefore, we hypothesized that genes regulating intracellular availability and utilization 

of calcium would be of importance to differentiate beef cattle with pulmonary hypertension. 
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CHAPTER 2 

REVIEW OF LITERATURE 

SECTION 1: PULMONARY HYPERTENSION 

Pulmonary arterial pressures (PAP) define pulmonary hypertension (PH) status in beef 

cattle and pressures greater than 41 mmHg at high altitude signify risk of heart failure. Pulmonary 

hypertension has been classified in many different ways over the last 50 years, many of which are 

from World Health Organization symposiums (Tuder et al., 2009). More recently, PH has been 

classified into groups based on etiology: 1) Pulmonary arterial hypertension (PAH), 1’) Pulmonary 

veno-occlusive disease and/or pulmonary capillary haemangiomatosis, 2) Pulmonary hypertension 

due to left heart diseases, 3) Pulmonary hypertension due to lung diseases and/or hypoxemia, 4) 

Chronic thromboembolic pulmonary hypertension, and 5) PH with unclear multifactorial 

mechanisms (Simonneau et al., 2013). Typically, cattle fall within Group 3, associated with 

chronic exposure to high altitudes and alveolar hypoventilation disorders, amongst others (Krafsur 

et al., 2016). 

In cattle, PH has been widely recognized and referred to as high mountain disease (HMD) 

or brisket disease. The term HMD was established due to the reaction of some cattle to changes in 

elevation, usually > 1,500 m. High mountain disease has been observed in cattle at high altitude 

since the early 1900s (Glover and Newsom, 1914; Glover and Newsom, 1917). The term brisket 

disease was derived from the pronounced appearance of edematous fluid in the dependent tissues 

covering the parasternal muscles, known as the brisket. Ranchers have used the terms brisket 

disease and HMD synonymously since the early 1900s.  
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1.1 PATHOPHYSIOLOGY & EPIDEMIOLOGY 

Pulmonary hypertension develops through remodeling of the vasculature of the heart and 

lung and an inability of the animal to overcome the necessary force to eject the blood through the 

pulmonary artery, leading to hypertrophy of the right ventricle, and eventually heart failure (Neary 

et al., 2015b; Pugliese et al., 2015; Ryan et al., 2015). 

In most cases of PH, the hallmark signs are sustained vasoconstriction and vascular 

remodeling (Shimoda and Laurie, 2013). This vascular remodeling includes thickening of the 

intimal, medial, and adventitial layer of muscular vessels, and the appearance of muscle-like cells 

in the walls of arteries (Stenmark et al., 2009). These effects can get progressively worse with 

time, resulting in lesions that obstruct pulmonary arteries and arterioles, limiting the blood flow 

through the pulmonary arteries (Stenmark et al., 2009). 

Vascular remodeling from PH can result in increased artery stiffening, which leads to 

increased distal resistance of those arteries. The increased resistance has an effect on blood 

pressure and flow as the resistance creates more difficulty for blood to move. The heart must 

compensate for this increase in resistance, and must increase afterload, to overcome the force 

opposing the myocardial contraction and necessary to eject the blood. The edema build up in the 

dependent tissues covering the parasternal muscles is a result of increased hydrostatic pressure and 

subsequent loss of fluid in the extravascular spaces (Louis and Fernandes, 2002). Symptomatic 

and physical changes in animals suffering from PH include: intrathoracic edema, pulmonary 

edema, plural effusions, passive linear congestion, intraabdominal and mesenteric edema, and 

ascites (T. N. Holt, personal communication). The muscles of the right ventricle of the heart 

enlarge to compensate, and as the impedance increases, the heart could eventually fail. Right heart 
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failure (RHF) is the resulting action that can take place in cattle with PH, if the heart succumbs to 

these pathophysiological changes (Voelkel et al., 2006). 

The cardiac cycle can be summed up in 4 main phases: 1) inflow, 2) isovolumetric 

contraction, 3) outflow, and 4) isovolumetric relaxation. The processes of systole and diastole are 

encompassed within these phases (Figure 1-1). Each phase can be explained from the perspective 

of physiology of the right side of the heart leading into the pulmonary artery and lungs. The left 

side of the heart has the same mechanisms, however different valves are involved.  

Systole begins at the second phase, isovolumetric contraction. During this stage, the 

tricuspid valve is closed, in which there is no flow of blood in or out of the heart. During this time 

the ventricular pressure is increasing. Systole continues into phase 3, the outflow phase (also 

known as the ejection phase), where the pulmonary semilunar valve opens, while the tricuspid 

valve remains closed. Upon contraction and opening of the pulmonary semilunar valve, blood is 

then ejected from the right ventricle into the pulmonary artery and to the lungs (Boron and 

Boulpaep, 2012).  

Diastole begins in the fourth phase of isovolumetric relaxation. Like isovolumetric 

contraction, the tricuspid valve is closed creating no blood flow in or out. The ventricular pressure 

begins to decrease. Diastole continues with the first phase, inflow phase, in which the tricuspid 

valve opens, the pulmonary semilunar valve is closed, and blood then flows into the ventricle 

(Boron and Boulpaep, 2012).
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Figure 1-1. Cardiac cycle. Systole and diastole as blood is pumped from the systemic and pulmonary systems through the atria and 

ventricles of the heart. 
https://www.austincc.edu/apreview/PhysText/Cardiac.html
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1.2 INCIDENCE 

Historically, heart failure as a result of PH most commonly occurred in herds at high 

altitude (> 1,500 m), with incidence rates of 3 to 5% in cattle native to high altitude (Holt and 

Callan, 2007). Hohenboken et al. (2005) stated that the adaptation of animals to a specific 

environment declines when outside or non-native animals are used for breeding purposes. The use 

of non-native cattle in high altitudes has the potential to increase incidence rates to 10 to 40% (Will 

and Alexander, 1970). However, despite selection procedures that have been implemented, 

incidence of PH and death resulting from RHF has not appeared to decrease over the years. 

Additionally, a similar phenomenon is becoming more prevalent at lower altitudes and in late fed 

cattle in the feedlot (Neary et al., 2015; Krafsur et al., 2016; Neary et al., 2016a). Approximately 

15 cases of PH appeared in every 10,000 cattle, with highest incidences in feedlots at high altitudes 

(Neary et al., 2016a). Exact incidence rates are currently unknown and many cases could be 

mistaken for respiratory disease or vice versa (Malherbe et al., 2012; Neary et al., 2013). 

1.3 MEASURING PH 

The pathophysiological condition of PH is defined by a mPAP above a certain level (i.e., 

humans mPAP ≥ 25 mmHg at rest; Badesch et al., 2009). In yearling cattle, risk of PH and potential 

RHF was previously categorized as low (< 41 mmHg), moderate (41 to 49 mmHg), or high (> 49 

mmHg; Holt and Callan, 2007). The true phenotype we seek to understand is death due to PH or 

at least a reduction in performance, however PAP measures are currently our best indicator of 

susceptibility. 

Systolic, diastolic, and mean arterial pressures (sPAP, dPAP, mPAP, respectively) can be 

measured through different regions of the heart. Figure 1-2A outlines the process necessary to 

receive these pressures, where a catheter navigates the different sections of the heart and pressures 
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are measured with a transducer on the end of the catheter. Figure 1-2B illustrates the systolic 

(sPAP; top), diastolic (dPAP; bottom), and mean pressures (mPAP; calculated average) based 

upon waveform.  
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Figure 1-2. Visual representation of the process involved with measuring arterial pressures. (A) 
A catheter (yellow) if fed through the compartments of the heart (right atrium, right ventricle, 
pulmonary artery) via jugular venous puncture. Waveforms depict changes in amplitude and 
frequency of blood pressure in the different compartments. (B) Illustration of systolic (sPAP; top), 
diastolic (dPAP; bottom), and mean pressures (mPAP; calculated average) based upon wave form 
(Overall image created by author).  
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Afterload represents the force opposing the myocardial contraction and the necessary force 

to eject the blood. Systole (contraction and outflow) is an indicator of afterload (Norton, 2001). 

These pressures indicate dynamic resistance and are characterized by ventricular blood ejection 

and proximal arterial stiffness (Neary et al., 2016b). The right ventricle is attempting to overcome 

the resistance, therefore creating more afterload and increased pressures. Lower sPAP suggests 

that the contraction and outflow of blood from the right ventricle is sufficient and the heart is 

working effectively. 

Diastole can represent the sufficient or insufficient mechanism of the heart as well. 

Increased dPAP can be a reflection of the insufficient workings of the left heart during the passive 

and active ventricular filling phase (phase 1) through the mitral valve. Either the mitral valve has 

a dysfunction (i.e., doesn't open completely), or the left atrium is not being active (contracting) 

sufficiently during the active phase of filling. This increase in dPAP is observed in the pulmonary 

artery prior to entering the lung. This is due to backpressure from blood not progressing forward 

into systemic circulation. Likewise, insufficient left ventricle function can create residual blood in 

the pulmonary vein (Lee et al., 1989). Measuring a wedge pressure is a method to measure this 

“back-pressure” of the blood. If the pressure in the pulmonary vein is high, then there is a necessity 

for the pressure on the right side to equal or exceed that back-pressure at all times. If not, this 

would create negative pressure and blood would be drawn back into the ventricles. Therefore, 

dPAP and sPAP must to be higher than the wedge pressure at all times to prevent backflow of 

blood (F. Garry, personal communication).  
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Mean PAP represents the average of sPAP and dPAP measures. This measure is not a direct 

average of the 2 other measures, but a calculated mean of the sPAP and dPAP measures, produced 

by the pressure transducer. Traditionally, mPAP has been calculated as:  

!"#" = 1
3 '"#" +	

2
3 +"#" 

However, research by Razminia et al. (2004) developed a more accurate calculation of mPAP 

through the incorporation of heart rate (HR):  

!"#" = +"#" + ,-. + (01 ∗ 0.0012)6 ∗ ('"#" − +"#"). 

Mean PAP is determined by static resistance that can be attributed to distal pulmonary arterial 

stiffness (Neary et al., 2016b). We have utilized mPAP measures for selection decisions on herds 

at high altitude because it has been thought to be an accurate reflection of the occurrence of PH in 

cattle. However as discussed previously, the incidence of death due to RHF has not decreased, 

therefore there is opportunity to better understand the impact sPAP and dPAP measures have on 

incidence of PH and subsequent RHF in cattle. 

A genome-wide association study (GWAS) by Zeng (2016) utilized estimated breeding 

values (EBV) from mPAP phenotypes (raw and transformed continuous, and 2 or 3 trait 

categorical) as the response variables. The research found limited re-ranking of animals when the 

different mPAP phenotypes were compared, and therefore the raw continuous mPAP phenotype 

was determined to be the best choice for further analysis, given the ease of estimation and 

interpretation as compared to the other mPAP phenotypes. 

Collecting PAP measure is an invasive and expensive procedure. Ahola et al. (2006) 

studied potential alternative methods to predict PAP scores in cattle. Three blood parameters 

packed cell volume (r = 0.31), hemoglobin concentration (r = 0.33), and red cell distribution width 
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(r = -0.36) were moderately correlated with PAP. The results suggested that PAP measuring was 

still the best indicator of PH in cattle. 

1.4 INFLUENTIAL FACTORS 

1.4.1 Hypoxia Exposure & Adaptation 

Hypoxia is deprivation of adequate oxygen supply to the body or specific parts, which can 

elicit unfavorable responses of the pulmonary system. Multiple studies determined that the 

incidence of PH is lower in cattle born at high altitudes (native) than cattle born at lower altitudes 

(non-native) and moved to higher altitudes later in life (Will and Alexander, 1970; Weir et al., 

1974; Holt and Callan, 2007). Will et al. (1975) found that PAP increased with increasing altitudes 

of residence and the magnitude of changes in PAP was much less in native cattle than in cattle 

originating from low altitude production systems. Therefore, it may not be advantageous to test 

cattle that are not native to high altitude without an acclimation period (Tucker and Rhodes, 2001). 

Neary et al. (2015a) confirmed this result in more recent research findings and observed that calves 

born at high altitudes had the greatest increase in mPAP with age. 

Altitude and decreased oxygen availability has been the main factor discussed in the 

occurrence of PH, specifically in cattle (Alexander et al., 1960; Will et al., 1962). It is important 

to recognize how this decrease in oxygen is affecting cattle. The primary risk factor for PH and 

pulmonary vascular remodeling is alveolar hypoxia and cattle exposed to hypobaric hypoxia have 

a greater baseline risk of alveolar hypoxia (Neary et al., 2016a). There is a response of pulmonary 

arterial constriction to hypoxemia, which results in increased vascular resistance. As discussed 

prior, vessel narrowing increases the resistance to blood flow and increases mPAP (Neary et al., 

2016a). The increased vascular resistance will direct blood flow away from the hypoxic region to 

maintain the ventilation-perfusion balance (Kuriyama and Wagner, 1981). This would imply that 



 12 

some cattle did not have an erythrocytic response to hypoxia, which could infer a survival 

adaptation to those predisposed to hypoxia-induced PH by preventing an increase in arterial 

resistance. 

Neary (2013) administered supplemental oxygen to calves suffering from PH, however 

oxygen-diffusing capacity of the lung did not improve, suggesting the issue to be low ventilation 

to perfusion mismatch. Results from a study by Gulick et al. (2016) found that calves adapted to 

high-altitude hypoxia by increasing their alveolar ventilation rate, as indicated by a decrease in 

partial pressure of carbon dioxide in the arterial blood (paCO2). Additionally, impairment of fluid 

clearance from the alveoli may be involved in the pathophysiology of high-altitude PH. Under 

normal conditions, reabsorption of sodium through sodium channels and exchangers generates an 

osmotic gradient within the lung, allowing the reabsorption of water. Hypoxia inhibits the activity 

of sodium exchangers, which decreases transport of sodium, ultimately reducing fluid reabsorption 

in the lung (Bärtsch et al., 2003).  

Both cattle and pigs lack collateral ventilation, meaning that ventilation of alveolar 

structures through passages or channels that bypass the normal airways does not exist in these 

species. It has been proposed that if hypoxia occurs in different parts of the lung due to the lack of 

collateral ventilation, then vasoconstriction in response to the hypoxia would lead to hypertrophy 

of the vascular smooth muscle (Kuriyama and Wagner, 1981). This hypertrophy of the vascular 

smooth muscle would justify why cattle have thick-walled pulmonary arteries both at low and high 

altitudes (Kuriyama and Wagner, 1981; Tucker and Rhodes, 2001). It was suggested that animals 

with more vascular smooth muscle (i.e., thicker arteries) would respond more vigorously to 

chronic exposure to hypoxic conditions, thus their PAP would be higher. Results of a study by 

Tucker et al. (1975) confirmed this thought when positive correlations were found between medial 
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thickness and the degree of PH (r = 0.88) and right ventricular hypertrophy (r = 0.97). Calves 

exhibited the greatest medial thickness of small pulmonary arteries and also exhibited medial 

thickening in response to altitude exposure (Naeye, 1965; Tucker et al., 1975). Increased medial 

thickness ultimately increases the resistance of blood flow and pulmonary pressures above normal. 

Research has shown that there is re-ranking of cattle for mPAP measures as cattle transition 

between low and high altitudes, suggesting a genotype by environment interaction (Pauling, 2017). 

Additionally, there are many other environmental factors, such as microclimate, season, weed or 

vegetation exposure, and management, that influence the onset of the HMD in cattle (Busch et al., 

1985; Panter et al., 1988; Holt and Callan, 2007). 

1.4.2 Age 

Incidence of HMD was estimated based upon age and the majority of cases (approximately 

75%) occurred between birth and 2 years of age (Pierson and Jensen, 1956; Blake, 1968). Incidence 

was estimated to decrease to 3% or less in cattle between 2 to 5 years of age, and increase up to 

20% in cattle over 5 years of age (Rhodes, 2005). Evidence of this statement can be found in a 

Utah Agriculture Experiment Station circular, where 397 cases of HMD were reported, of which 

269 (approximately 68%) were in calves (Blake, 1968). No explanation has been presented to 

explain the higher susceptibility in calves as opposed to adult cattle.  

Pressures (specifically mPAP) have been shown to change over time. Age was estimated 

as a significant factor in predicting mPAP (P < 0.02) and mPAP increased with increasing age (b 

= 0.0387 mmHg⋅d-1; Enns et al., 1992). In a more recent study, mPAP was regressed on yearling 

age yielding an estimate of 0.03 ± 0.01, indicating that with each day increase of yearling age, a 

0.03 mmHg increase in mPAP was expected (P < 0.001; Crawford, 2015). In a study of cattle over 

an extended time frame, sPAP and pulmonary arterial pulse pressure increased more uniformly 
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with age (Neary et al., 2015a). Dr. Timothy Holt explained that age of the animal should always 

be considered when PAP testing and the accuracy of a PAP measure is dependent upon the age at 

which it is measured. Typically, PAP measures are less accurate and more variable with cattle 

younger than 12 months of age, whereas cattle 16 months and older have PAP measures that are 

more consistent and accurate (Holt and Callan, 2007). Other than the study by Neary et al. (2015a), 

research examining PAP changes over time via repeated records on individual animals over 

multiple time points throughout their lives is lacking. 

The most abundantly recorded PAP measures are from weaning and yearling age in cattle. 

This lends minimal insight into how PAP changes over time, as well as how weaning PAP is 

correlated to yearling PAP measures. However, research by Zeng et al. (2015) analyzed the 

correlation between weaning mPAP and yearling mPAP measures and found the relationship to be 

0.67 ± 0.18, suggesting that the two traits are different. These results reiterated the conclusions of 

Holt and Callan (2007) that pressures measured at ages prior to one year old are different from 

those measured at older ages. In cattle, overt signs of the progression of PH to RHF are not easily 

observed. The vascular remodeling discussed previously occurs over a longer period of time, 

therefore the animal won’t exhibit these signs until later. The time necessary to observe overt signs 

is dependent upon many of the factors listed in this section. This may explain why we see 

increasing PAP measures with age and disease incidence later in life.  

1.4.3 Genetics 

Due to its moderate heritability (0.26 to 0.34), genetic selection has been conducted using 

mPAP phenotypes and breeding values on cattle at high elevations (> 1,500 m; Shirley et al., 2008; 

Crawford et al., 2016). Pauling (2017) estimated two separate heritabilities for mPAP by splitting 

the phenotype into high elevation mPAP (0.34 ± 0.03; >1,620 m) and moderate elevation mPAP 
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(0.29 ± 0.09; ≤1,620 m). Estimated progeny differences (EPDs) for mPAP have been developed 

and implemented into selection procedures for cattle at high altitude. A low percentage of cattle 

succumb to PH and RHF, therefore making it difficult to understand the effectiveness of genetic 

selection with mPAP EPDs. Pauling (2017) additionally estimated Spearman rank correlations of 

sire estimate breeding values (EBVs) and observed re-ranking of sires across low and high 

elevation, suggesting an influence of genetics at the different altitudes. 

Research by Crawford et al. (2017) estimated breed differences in mPAP in bulls from the 

San Juan Basin Research Center 4-Corners Bull Tests from 1983 to 2005. Angus-Gelbvieh crossed 

bulls were estimated to have the lowest mPAP, whereas Simmental bulls were estimated to have 

the highest mPAP, adjusting for a fixed effect of pen and birth year contemporary group. Holt and 

Callan (2007) reported high mPAP measures in all breeds of cattle, therefore suggesting no breed 

has resistance to altitude-associated PH. However, not all cattle will die due to RHF. Increased 

knowledge of why genetically some cattle tolerate and why others do not tolerate high altitudes is 

necessary. This is important because of those cattle that do not tolerate high altitudes, some cattle 

with hypertension do not exhibit physiological changes, while others with hypertension and 

succumb to RHF (Krafsur et al., 2015).  

1.4.4 Sex 

Research by (Chu et al., 2005) outline differences in cardiac performance and pathology 

attributed to sex differences from multiple studies. Differences include: increased difficulty to 

induce cardiac hypertrophy and failure in females, slower progression of heart failure in females, 

increased likelihood of females to develop impaired relaxation, and a survival advantage of 

females with heart failure. Research by Zeng (2016) estimated the genetic correlation between 

performance traits and yearling mPAP phenotypes in different sex categories (i.e. bull, heifer and 
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steer). The results suggested that, other than sex, different management environments may 

contribute to the genetic differences observed between the yearling mPAP measures. Heritabilities 

were also estimated as 0.19 ± 0.03, 0.37 ± 0.07, and 0.33 ± 0.06 for heifers, bulls, and steers, 

respectively. Likewise, Cockrum et al. (2014) estimated the heritability of mPAP in yearling 

Angus cattle as 0.21 ± 0.04, 0.38 ± 0.08, and 0.20 ± 0.15 for heifers, bulls, and steers, respectively. 

Shirley et al. (2008) estimated mPAP increased 0.022 ± 0.008 mmHg per day increase in age for 

females and decreased 0.004 ± 0.01 mmHg per day increase in age for males. Results suggested 

sex is an important source of variation when investigating PH and RHF susceptibility. Results of 

these studies are logical as heifers, steers, and bulls are managed different from each other. Heifers 

are fed and managed in general to maximize reproduction traits. For the males, steers produce 

lower amounts of testosterone because of castration, which in turn favors more fat thickness 

compared with bulls (Owens et al., 1993). Nutrient requirements for overall maintenance differs 

between sexes (National Research Council, 2000). 

1.4.5 Predisposing Conditions 

There are many infectious and noninfectious agents of respiratory diseases that can 

predispose cattle to PH (Holt and Callan, 2007). Gram-negative sepsis can also cause elevation in 

mPAP measures and affect an animal’s susceptibility to PH (Tikoff et al., 1966; Reeves et al., 

1972; Reeves et al., 1973). Research by Neary et al. (2016a) suggested that cattle treated for bovine 

respiratory disease (BRD) were approximately 3 times more likely to die from RHF than those 

that were not treated. However, the causal relationship between BRD incidence and RHF incidence 

is still unknown. 

There are many plausible reasons that research has found to explain how PH could be 

caused by obesity. Neary et al. (2016a) speculated that PH could be a result of reduced effective 
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alveolar ventilation due to compression of the lungs of cattle after eating. Neary et al. (2015b) 

estimated a positive association between sPAP and pulmonary pulse pressure with age and high 

pulmonary arterial wedge pressures in steers at 18 months of age. He attributed this to the body fat 

accumulation during the feeding period. This study also found significant increases in mPAP, 

sPAP, and pulse pressures across time points in cattle 4 months to 18 months of age as they were 

growing. 

Pulmonary hypertension is present in a high percentage of morbidly obese individuals, 

estimated as high as 80% in a single study (Valencia-Flores et al., 2004). And a positive association 

was made between body mass index and systolic PAP, which may be attributed to increased 

cardiac output (McQuillan et al., 2001). Alpert et al. (2014) reported increases in cardiac output 

due to stroke volume (and stoke rate) from obese patients as a result of a reduction in peripheral 

vascular resistance. Cardiac output increases in concordance with oxygen demand; consequently, 

increasing PAP in calves with a high oxygen demand will likely have negative effects on cardiac 

workload, creating greater risk for RHF (Neary et al., 2016b). Little changes in cardiac output are 

observed due to heart rate differences. Likewise, increases in central blood volume in obese 

patients can augment the venous return to the right heart and increase left ventricular preload (at 

the end of the filling; Alpert et al., 2014). De Divitiis et al. (1981) discovered that ventricular 

function, more specifically the contractile response of the ventricle, is impaired in obese patients. 

This research found that despite the increased ventricular filling pressure and volume, contractile 

response of the left ventricle did not allow adequate systolic work. As a result, patients with left 

ventricular dysfunctions have a high likelihood (up to 70%) to have PH (Galiè et al., 2009a). 
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1.5 PULMONARY HYPERTENSION: OTHER SPECIES 

As alluded to above, PH occurs in many species, not solely in cattle at high altitudes. 

Within the poultry industry, a PH-related phenomenon has been observed and called sudden death 

syndrome (SDS), also known as flip-over or ascites (Wideman et al., 2013; Afolayan et al., 2016). 

High mortality occurs in turkeys due to ruptured aortas, spontaneous cardiomyopathy (i.e., round 

hearts), resulting in sudden death. What was believed to be mediating these occurrences was rapid 

growth and with that, the metabolic imbalances that can be induced from the high nutrient intakes 

of these birds (Julian, 1998). Through measuring systolic blood pressure, peak incidence of SDS 

has been shown to occur at the end of the growing period and has been observed in fast growing 

birds (Varmaghany et al., 2015).  

Humans exhibit many different classifications of disorders that cause PH, as briefly defined 

in the introduction (Simonneau et al., 2013). PH in humans is defined as a mPAP > 25 mmHg. 

Prevalence of pulmonary arterial hypertension (Group 1) is 15 cases per one million people 

(Humbert et al., 2006).  

1.6 TREATMENT 

Despite genetic selection procedures for reduced incidence of PH utilizing mPAP 

measures, researchers have examined the use of pharmaceutical agents to combat PH in cattle, 

humans, and other species. These agents include: beta-blockers, diuretics, angiotensin-converting 

enzyme inhibitors, and calcium-channel blockers, amongst others. Each is uniquely utilized to 

interact or interrupt functionality of the heart or other organs influential to PH susceptibility. 

Additionally, transporting cattle from high altitude to a lower altitude of residence can be an 

effective way of reducing incidence of PH by eliminating the stress decreased atmospheric oxygen. 
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However, in U.S. beef production systems, transporting cattle from one location to another is not 

always feasible.  

According to Dr. Timothy Holt, a treatment protocol of PH in cattle could involve: 

diuretics, limits of water and salt intake, antibiotic therapy (minimize bacterial infection), external 

environmental control, oxygen therapy/move to lower elevation/hyperbaric chamber use, or 

thorocentesis. The thorocentesis is utilized to remove excess fluid from the pleural space to ease 

breathing (T. N. Holt, PAP Seminar). 

1.6.1 Pharmaceutical agents 

Angiotensin-converting enzyme (i.e., ACE-1) enhances the proliferation and migration of 

pulmonary artery smooth muscle cells, which contributes to the pathogenesis of hypoxic PH, and 

hypoxia has been found to up-regulate ACE expression (Zhang et al., 2009). ACE inhibitors are 

used for local cleavage of the vasoconstrictor octapeptide Ang II from its inactive decapeptide 

precursor, Ang I. At the same time, ACE inhibitor inactivates the vasodilator bradykinin generated 

in peripheral tissues. As a result, bradykinin is almost completely removed in a single pass through 

the lung, eliminating its vasodilation properties. ACE-1 is found in most tissues but the highest 

concentrations are found in the kidney and lung (Izzo Jr and Weir, 2011). However, the renin-

angiotensin system is highly species-specific, in which some opposing results in the effectiveness 

of ACE inhibitors have been observed in animals and humans (Izzo Jr and Weir, 2011). These 

ACE inhibitors are most notably used for patients with left heart failure, as opposed to RHF. 

Beta-blockers or beta-adrenergic blockers are another form of treatment widely used to 

support the treatment PH, more specific in humans. Beta-adrenergic receptors are found in the 

heart, blood vessels, and the lungs. These receptors can be stimulated by catecholamine binding to 

increase the activity of cells in the body. Beta-adrenergic receptor stimulation causes an increase 
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in heart rate, heart muscle contraction, blood pressure, and relaxation of smooth muscle in the 

bronchial tubes in the lung (Frishman, 2003). However, beta-blockers are used as a vasodilator to 

slow the heart rate and lowers blood pressure by blocking receptor site for adrenaline and 

noradrenaline. Like ACE inhibitors, beta-blockers are most notably used for patients with left heart 

failure, as opposed to RHF. 

Calcium-channel blockers (CCB) were introduced for use in PH patients in the 1980’s as 

a class of antihypertensive/vasodilator agent. The major control mechanism of calcium influx are 

long-lasting calcium (Ca2+) channels in the cell membrane, which can be modulated by CCB 

(Medarov and Judson, 2015). They act by preventing calcium entry into cells through voltage gated 

calcium channels (L-type) that would result in relaxation of vascular smooth muscle (Kanno et al., 

2015). Treatment using CCB is recommended only for patients with idiopathic pulmonary arterial 

hypertension (IPAH), heritable pulmonary arterial hypertension (HPAH) or drug-induced PH, all 

of which fall under the Group 1 classification of PH (Simonneau et al., 2013; Galiè et al., 2015). 

Patients are classified as “responders” and “non-responders” if they do or do not show a significant 

immediate hemodynamic response to this pulmonary vasodilator. 

Treatments such as the use of diuretics and digoxin have been used as supportive therapies 

for PH and heart failure. Diuretics have been found to be effective when fluid retention begins to 

occur in decompensated RHF. Digoxin has been shown to improve cardiac output and slow 

ventricular rate. Additionally, other specific drug therapies include: endothelin-1 receptor 

antagonists, phosphodiestherase-5 inhibitors, and prostacyclin-derivatives (Galiè et al., 2009b). 
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SECTION 2: IMPORTANCE OF CALCIUM IN PH AND CARDIAC FUNCTION 

Calcium (Ca2+) is an intracellular messenger and regulator of cell function, and essential 

for actions such as: excitation–contraction coupling in muscle, neurotransmission, cell division, 

hormonal release, and phagocytosis. Calcium also regulates processes such as digestive enzyme 

activation, cytokine release, inhibition of ATP synthesis, and vasoconstriction (Marik, 2010). As 

stated above, calcium is a mediator of the physiology of the heart, including myocardial function 

(Hasenfuss and Pieske, 2002; Stanfield, 2011). Rhodes (2005) suggested a role of Ca2+ 

sensitization in myocytes in hypoxic PH to distinguish hypertensive and normotensive cattle; 

however, this statement was made from inference from studies conducted on mice/rat models. 

Hasenfuss and Pieske (2002) outlined predisposing factors or the potential for modifier genes to 

have a role in the manifestation and progression of RHF. Evidence revealed that altered Ca2+ 

homeostasis was of importance for the pathophysiology of myocardial dysfunction and heart 

failure. Additionally, Hasenfuss and Pieske (2002) also stated that, “altered calcium handling 

becomes apparent as altered systolic and/or diastolic myocardial function and triggered 

arrhythmias and is most obvious at high heart rates”. 

2.1 INTRACELLULAR VS. EXTRACELLULAR CALCIUM 

 Intracellular calcium refers to calcium found specifically within cells and cellular 

organelles. Extracellular calcium refers to calcium found in the blood, bone, and extracellular 

space. Additionally, calcium in the blood can be bound to proteins, free (also known as ionized), 

or chelated, which restricts its use by tissues (Marik, 2010). There are many different ways to 

assess elements such as calcium, intracellularly, extracellularly, and on a total basis. Total or serum 

calcium [Ca2+]t represents all calcium in the blood that is bound to proteins, calcium in the 

cytoplasm, as well as calcium in cellular organelles. One method, inductively coupled plasma mass 
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spectrometry (ICP), can be utilized to determine elements (i.e., total calcium) in samples such as 

tissue. Other methods such as total reflection X-ray fluorescence spectrometry can be utilized to 

determine more specifically intracellular elements (Klockenkämper and Von Bohlen, 2014). 

Approximately half of plasma Ca2+ is bound, mostly to blood proteins/ligands such as albumin 

(Bronner, 2001). Intracellular ionized or free calcium concentration [Ca2+]i is typically between 50 

and 100 nM, about 104 times lower than the ionic calcium concentration outside the cell 

membrane, indicating mechanisms to keep Ca2+ out of the cell. These mechanisms include 

calcium-sensing receptors that modulate cell function via its response to extracellular calcium 

(Bronner, 2001). This becomes important as we understand hypo- vs. hypercalcemic status of an 

individual. Hypocalcemia is the state of abnormally low [Ca2+]i, whereas hypercalcemia is defined 

as an increase in serum or total calcium [Ca2+]t above a normal range (Marik, 2010). Calcium-

sensing receptors and calciotropic hormones (discussed in a later section) are key regulators of 

calcium availability. It is important to distinguish between intracellular and extracellular calcium 

as it will be regulated differently depending upon where it is located and if it was free or bound.  

2.1.1 Intracellular Calcium and PH 

Increased intracellular calcium in pulmonary arterial smooth muscle cells (PASMC) is a 

primary and necessary element for hypoxia induced pulmonary vasoconstriction and associated 

PH (Wang et al., 2007; Shimoda and Laurie, 2013). Intracellular Ca2+ release, extracellular Ca2+ 

influx, and pulmonary vascular tone are all associated with the activity and inhibition of potassium 

channels (Yuan et al., 1998; Wang et al., 2007). Additionally, endothelin, a vasoconstrictor that 

not only affects vascular tone but also promotes vascular remodeling, was reported to lead to a 

rapid increase in intracellular Ca2+ (Humbert et al., 2004). Voltage-gated calcium channels 

(VGCC), that regulate the influx and efflux of Ca2+ to a cell, can be activated by agonists and may 
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participate in the remodeling process in PH, particularly in the presence of excessive growth 

factors (Shimoda and Laurie, 2013). Results have suggested that elevated basal PASMC [Ca2+]i 

occurs primarily via the upregulation of canonical transient receptor potential (TRPC) proteins, 

which comprises Ca2+-permeable non-selective cation channels (NSCC). Unlike VGCC, NSCCs 

are not activated by depolarization (discussed in a section below) but can be controlled by other 

actions such as phosphorylation, receptor activation, or storage depletion. Increased abundance of 

TRPC proteins was observed in PASMCs derived from rats subjected to chronic hypoxia and in 

PH patients. Decreasing the activity of NSCCs, either pharmacologically or by RNA silencing, 

was reported to reduce [Ca2+]i and proliferation in PH (Lin et al., 2004; Wang et al., 2006). 

Figure 1-3. Intracellular calcium metabolism in hypoxia-induced pulmonary vasoconstriction and 

their potential signaling pathways. Abbreviations: DAG, diacylglycerol; cADPR, cyclic ADP 

ribose; depol, depolarization; KV, voltage-gated K+ channels; L-type, voltage-gated Ca2+ 

channels; NCX, Na+–Ca2+ exchanger; RyR, ryanodine receptors; SOC, store-operated channels 

(Ward and McMurtry, 2009). 
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2.1.2 Extracellular calcium and PH 

A biochemical blood analysis was used to analyze specific substances and underlying 

chemical reactions for Angus calves with PH (n = 10) and normotensive calves (n = 10). 

Hypertensive calves had significantly lower [Ca2+]t (2.36 ± 0.06 mmol/l; P < 0.01) circulating in 

their blood than normotensive, healthy calves (Neary et al., 2013). Additional work by Neary in 

2014 (results unpublished) examined [Ca2+]i in blood in 18-month old Angus cattle during 

fattening. Comparing [Ca2+]i in these cattle based on PH risk categories (low < 41 mmHg, 

moderate 41-49 mmHg, high > 49 mmHg) revealed no differences (P > 0.05) in blood [Ca2+]i 

between groups.  

A study by Olanrewaju et al. (2014) utilized venous blood samples and a blood gas 

electrolyte analyzer to determine specific lines of broiler chickens that had significantly different 

blood [Ca2+]i when compared to other lines. Normal blood values could be established for 

commercial broilers grown to heavy weights. These results also suggest a potential genetic 

predisposition of certain genetic lines to be more or less susceptible to differing blood [Ca2+]i and 

development of PH. Olanrewaju et al. (2014) reported that increasing partial pressure of CO2, 

resulted in acidosis (lowered blood pH), which decreased Ca2+ binding to albumin, and 

subsequently could increase blood [Ca2+]i. 

Within the poultry industry, a PH-related phenomenon has been observed and called 

sudden death syndrome, also known as flip-over or ascites (Wideman et al., 2013; Afolayan et al., 

2016). High mortality occurs in turkeys due to ruptured aortas, spontaneous cardiomyopathy (i.e., 

round hearts), and sudden death. Research by Scheideler et al. (1995) examined dietary calcium 

and phosphorus based upon National Research Council (NRC) recommendations in certain strains 

of broiler chickens. Results suggested that slight deviations in dietary calcium and phosphorus 

both above (40%) and below (15%) NRC recommendations created a metabolic imbalance in 
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certain strains of broilers, specifically Ross x Ross, which possibly increased susceptibility to 

sudden death syndrome. To our knowledge, no research has been conducted assessing the 

relationship between dietary calcium levels and PH in cattle. These studies in poultry lend to the 

idea of potential opportunities to mitigate PH in beef cattle through dietary calcium regulation. 

However, selection for large breast size in poultry may be an extreme example not applicable to 

cattle. 

2.2 CALCIOTROPIC HORMONES 

Parathyroid hormone and vitamin D primarily maintain [Ca2+]i (Marik, 2010). In addition 

to parathyroid hormone, other hormones involved in the maintenance of circulating calcium are 

said to be calciotropic and include parathyroid hormone-related protein and calcitonin. Each 

calciotropic hormone has a specific biochemistry and functional properties that make them similar, 

but also different from one another. These properties involve synthesis, secretion, metabolism, 

target cell activation, and cellular actions, that can have an effect on the cardiovascular system and 

hypertension (Crass III and Avioli, 1994). 

2.2.1 Parathyroid Hormone 

Parathyroid hormone (PTH) is produced by the parathyroid glands and its primary 

responsibility is the maintenance of circulating Ca2+ levels and inorganic phosphate (Crass III and 

Avioli, 1994). The primary action of PTH is on bone and kidney to maintain extracellular Ca2+ 

levels. The hormone is circulated in the blood (serum), and is secreted in response to low 

extracellular Ca2+ or elevated extracellular phosphate (Gensure et al., 2005). 

The earliest study of PTH by Collip and Clark (1925) revealed its ability to lower systemic 

blood pressure in dogs. The effects of the administration of PTH as a hypotensive or vasodilator, 

and its influence on cardiac function, have thoroughly been described (Mok et al., 1989). Result 
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of research by Akmal et al. (1995) revealed that excess PTH during renal failure in dogs adversely 

affects both the left and right ventricles of the heart. Additionally, a correlation was reported 

between blood levels of PTH and left ventricular hypertrophy in patients with hypertension and 

normal renal function (Bauwens et al., 1991). Schlüter and Piper (1998) determined the PTH had 

high effects on Ca2+ currents and Ca2+ influx on cardiomyoctyes, amongst others.  

2.2.2 Parathyroid Hormone-related Protein 

Parathyroid hormone-related protein (PTHrP) is biologically similar to PTH, but is 

abundantly produced by tumors and released into circulating blood (Clemens et al., 2001). The 

two hormones (PTH and PTHrP) bind to the same receptor in bone and kidney target cells (Jüppner 

et al., 1988). This protein was expressed in cardiomyoctyes in the atria and to a small extent in the 

ventricles, and its expression pattern resembles that of atrial natriuretic peptide (Burton et al., 1994; 

Stanfield, 2011). Although they are biologically similar and affect the same receptors, the cardiac 

effects of PTHrP are distinctly different from PTH (Clemens et al., 2001). 

In a comparison of the cardiovascular actions of PTH to PTHrP, Schlüter and Piper (1998) 

found PTHrP had a very high effect on vasodilation. This may be due to its interaction and 

inhibition of endothelin-1, a known vasodilator (Jiang et al., 1996). The protein has also been 

found to be a positive stimulus on heart rate, and indirect positive stimulus on speed or contraction 

of cardiac muscle (Ogino et al., 1995; Strewler, 2000). 

2.2.3 Calcitonin 

Calcitonin is a hormone synthesized by the thyroid gland and is secreted in response to 

elevated circulating [Ca2+]i (Crass III and Avioli, 1994). It is classified as a vasoactive hormone, 

where its effects (i.e., inhibit or stimulate) seem to depend upon the distribution of Ca2+ between 

intracellular and extracellular spaces and the specific tissue membrane potential (Crass III and 
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Avioli, 1994). Calcitonin alters calcium uptake distribution and release in certain tissues, as it can 

block some calcium channel blockers such as verapamil in the liver (Yamaguchi and Yoshida, 

1985). 

A gene and specific protein have been identified for calcitonin, called calcitonin gene-

related peptide. A deletion or inhibition of this gene results in increased vulnerability of the heart 

to hypertension-induced organ damage (Supowit et al., 2005). These results are echoed in multiple 

species, as the vasodilator mechanism of calcitonin can be altered (Gangula et al., 2000; Márquez-

Rodas et al., 2006). 

2.3 CONTRACTION & RELAXATION MECHANISMS OF THE HEART 

From a physiological standpoint, the mechanisms affecting the performance of the heart 

include: heart rate, preload, afterload, and contractility (Varon and Fromm Jr, 2014). Both 

excitation and relaxation of the heart are managed by the electrical activity (action potentials) of 

pacemaker and cardiac contractile cells through the regulation of specific ions (Figure 1-4B). 

Influx and efflux of calcium (Ca2+), potassium (K+), and sodium (Na+) ions are essential to the 

pacemaker of the heart (Faber and Rudy, 2000). Permeability of each of ions into the cell creates 

the pacemaker action potential through depolarization and repolarization, which regulates the 

firing rate of the cell, the main determinant of heart rate.  
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Figure 1-4. Electrical activity of cells regulating depolarization and repolarization, where 
permeability of the ions drives the firing rate of the cell, determining heart rate. A) Pacemaker 
cells, with a slow depolarization (no ‘resting’). B) Ventricular muscle cells, with a stable resting 
potential stage . K+ = potassium, Na+ = sodium, Ca2+ = calcium 
http://droualb.faculty.mjc.edu/Course%20Materials/Physiology%20101/Chapter%20Notes/Fall%202011/chapter_13
%20Fall%202011.htm  
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Depolarization is defined as a shift in the electrical charge within a cell, in which there is 

a less negative (more positive) charge within the cell. Repolarization involves establishing a 

negative resting potential of the cell through electrical charge manipulation. Hyperpolarization is 

the opposite of depolarization, in which the charge within the cell is more negative (Nerbonne and 

Kass, 2005). 

Influx of calcium triggers depolarization of the cell and moves the membrane potential 

towards equilibrium. There are two types of calcium channels that permit this to occur: T-type 

(transient) and L-type (long-lasting). The T-type calcium channels open, allowing for quick 

depolarization of the sinoatrial and atrioventricular nodes of the heart, and additionally triggers L-

type channels to open. The L-type channels stay open longer, resulting in a rapid depolarization 

phase. This influx of Ca2+ induces Ca2+ release from the sarcoplasmic reticulum. This 

depolarization allows muscle contraction through binding of the released Ca2+ to troponin. The 

membrane is then allowed to repolarize and muscle fibers relax when the Ca2+ channels close and 

K+ permeability increases (Stanfield, 2011).  
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Figure 1-5. Signaling and utilization of calcium in contractile cells. 
2011 Pearson Education, Inc. 

2.4 CALCIUM SIGNALING GENES AND THEIR AFFECT ON PH SUSCEPTIBILITY 

There are multiple studies that have surveyed genes related to PH in various species 

(Amberg et al., 2010; Newman et al., 2011; Zeng, 2016). However, none of those studies have 

intentionally examined calcium-associated genes in cattle. The results of these studies provide 

evidence of genes as significant predictors of PH susceptibility. There is potential for the use of 

genomic selection procedures based on the candidate genes and SNP discovered in those studies 

given differences in gene expression. 
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A previous GWAS was conducted by Zeng (2016) using SNP referenced to the UMD3.1.1 

bovine assembly. Genotyped animals were born from 1997 to 2015 and genotypes were completed 

in three groups (i.e. 2013-50K chip, 2013-HD chip, and 2015-50K chip) and from two labs (Zoetis 

and GeneSeek). In addition, 65 Angus cattle in this herd were genotyped in 2013 using Illumina 

Bovine HD chip through the lab work of GeneSeek. From the GWAS, SNP windows from PAP 

phenotypes were aligned to the Bos taurus genome (UMD3.1.1) to identify the genes within these 

windows using Ensembl. The study yielded 22 quantitative trait loci (QTL) windows detected from 

nearly 36,000 SNP markers. Within these windows, genes such as ADGRVI (GRP98), ROCK2, 

MYH6 and MYH7, and BMPR2 were identified as either lead-genes or genes with high model 

frequencies associated with yearling mPAP. Many of these genes were associated with calcium 

regulation. A pitfall of that study was the use of an outdated bovine genome assembly (UMD3.1.1). 

Due to the recent debut of the ARS-UCDv1.2 bovine assembly, we now know of a significant 

number of gaps in the bovine genome UMD3.1.1 will be resolved through the scaffolding of the 

new assembly. Therefore, the results of Zeng (2016) likely contain errors which is exacerbated 

with animal ID and genotype errors in her data. A re-analysis of these data will improve 

interpretation of the GWAS results and could imply an association of genes regulating or regulated 

by calcium to PH. 

Research by Newman et al. (2011) described the top 15 up-expressed genes (+1.77 to 

+4.93) and bottom 15 down-expressed genes (-0.65 to -2.03) in peripheral blood mononuclear cells 

from cattle at high altitude based upon fold change. Of these genes, 6 had functions within cells 

related to calcium. A subsequent paper by Newman et al. (2015) examined genetic differences in 

cattle related to PH and uncovered 3 additional calcium-associated genes differentiating cattle that 

likely had PH and those that did not. The 9 genes in total included: AFAP1, CD8A, CLGN, DNER, 
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EMR1, FLVCR2, RYR1, S100A4, and TGM3. Combining the ideas and efforts of the latest 

research regarding PH in cattle, there is still a large gap in knowledge of the role calcium 

availability and utilization may have in bovine PH. This alludes to the necessity of hypothesis-

based research to understand this association, if one does exist.  
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SECTION 3: ‘OMIC’ TECHNOLOGIES FOR DISEASE SUSCEPTIBILITY 

The suffix of –omics has been used to describe many biological fields, including but not 

limited to genomics, transcriptomics, proteomics, metabolomics, and lipidomics (Barh et al., 2013; 

Hasin et al., 2017). Each of which are a comprehensive or global assessment of a particular 

discipline (i.e., genetics, transcripts, proteins). Emerging omic technologies (i.e., RNA-seq, 

GWAS, whole genome sequencing, candidate gene identification, and SNP discovery) are tools 

that could help the beef industry reduce disease susceptibility through their utilization in breeding 

value estimations. Disease traits are typically a hard to measure traits, in addition to typically have 

low heritabilities, making genetic selection difficult. However, the field of omics has the ability 

increase our accuracy of selection through the identification and use of causal variants in selection 

methodology, while decreasing the generation interval of our animals, ultimately leading to genetic 

progress, specifically in disease traits of interest. 

Determining gene expression allows one to begin to understand associations between 

physiological states (i.e., sickness, behavior changes) and the potential genes regulating those 

states. One can measure whether particular genes are expressed or not, as well as the relative 

amount of expression that exists as compared to a standard or reference. Knowing the gene 

transcript abundance in various tissues, developmental stages, and under various conditions is 

important. Although messenger RNA (mRNA) is not the ultimate product of a gene, transcription 

is the first step in gene regulation, and information about the transcript levels is needed for 

understanding gene regulatory networks. Nevertheless, the correlation between the mRNA and 

protein abundance in the cell are often variable and difficult to assess (Brazma and Vilo, 2000). 
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3.1 WHAT IS RNA? 

Ribonucleic acid (RNA) is one form of nucleic acid that carries genetic information that 

can be inherited from one generation to the next. This single strand structure is transcribed from 

the DNA sequence of individuals through transcription. Transcription utilizes enzymes and 

proteins to read the DNA genetic code that will be translated into proteins to serve a physiologic 

function in the body. Processing RNA involves capping, splicing, polyadenylation, editing, export, 

localization, translation, and turnover. Each of these steps is necessary and can have an effect on 

how genes are expressed. Typical methods to extract RNA utilize samples such as: blood (i.e., 

white blood cells), cultured cells, plants, but most widely used is tissue (i.e., heart, lung, muscle). 

3.2 TRANSCRIPT REGULATION 

Determining differentially expressed genes as well as transcript abundance is dependent 

upon transcript length (Oshlack and Wakefield, 2009). As discussed above, there are many 

intracellular processes that effect transcript abundance. Many of the challenges that limit the 

effectiveness of determining gene expression include: purity (sample contamination), quantity, 

quality (degradation), abundance and expression level, and alternative splicing (Ozsolak and 

Milos, 2011). We can identify single nucleotide polymorphisms or mutations, alternative splicing, 

and post-transcription modifications with RNA-seq. Understanding each of these in greater detail 

will require a certain level of sequencing depth, as well as knowledge regarding RNA processing. 

The purity (level of contamination) and integrity of a sample will affect RNA sequencing 

results by introducing ambiguity of the RNA present (Fleige and Pfaffl, 2006). This means that 

the isolated RNA must be free of impurities or inhibitors, such as proteins, DNA, ribosomal RNA 

(rRNA; most abundant RNA), or transfer RNA (tRNA). Quantity and quality of the RNA relate to 

the amount or extent of degradation. Ideally, we want completely intact, non-degraded RNA. The 
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RNA isolation method will play a role in its quantity and quality. Abundance of RNA will limit 

the determination of expression level of genes. If RNA for a gene of interest is more abundant than 

another gene, then sequencing of the more abundant gene will allow for the expression of the gene 

to be better captured by the reads. 

Splicing is a major regulatory factor in gene expression by promoting mRNA 3’-end 

formation, nuclear export, and translation to stimulate expression. As an overview, splicing 

removes non-coding sequence regions (introns) and ligates the neighboring coding sequencing 

(exons; Figure 1-6). This mechanism occurs by 2 transesterfication reactions: cis- and trans-

splicing (Lewin, 1990). Three or more exons together have some form of alternative splicing that 

occurs. The process of alternative splicing involves the removal of different exons and introns for 

a specific pre-mRNA, which could result in different isoforms of a protein. Many genes have more 

than 2 splicing patterns. Likewise, alternative splicing can vary within a cell, be developmentally 

controlled, vary between cells or tissues, vary in response to external stimuli, and can vary with 

the speed of RNA polymerase II elongation (Heyd and Lynch, 2011).  
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Figure 1-6. Diagram of RNA splicing. Creation of a mature messenger RNA, through splicing out 
intron sequences, resulting in only exons.  
http://oregonstate.edu/instruction/bi314/fall11/geneexpression.html 

 

When comparing RNA-seq expression to mass spectrometry results, the abundance of 

RNA does not accurately reflect the abundance of proteins in cells. The production and 

maintenance of proteins is dependent upon processes of: transcription, processing and degradation 

of mRNA, translation, localization, modification, and programmed destruction of the proteins 

(Vogel and Marcotte, 2012). Within each of these processes, a number of additional factors will 

regulate transcript and protein abundances (i.e., re-initiation, ribosome shunting, leaky scanning 

in translation). The resulting abundance of protein reflects the balance among these processes. 

Given rise in knowledge and capabilities of mass spectrometry, we are now able to use this 

technology to understand more about proteomics. In concordance with qPCR, RNA-sequencing, 

or other Next Generation Sequencing (NGS) techniques, we can begin to understand protein-
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expression regulation. It is essential to understand each of the limitations listed above, amongst 

others influencing expression when sequencing RNA for transcript abundance, differential 

expression analysis, and alternative transcript usage. Standardizations and quality control 

measures are necessary during RNA-seq and qPCR analyses, as well as differential expression 

analysis to understand how these factors more clearly to determine or explain the gene expression 

differences observed between samples. 

3.3 METHODS OF MEASURING GENE EXPRESSION 

The most appropriate method of measuring gene expression is dependent upon many 

factors. These factors include the number of genes evaluated, accuracy of the method, sensitivity 

to detection, discovery, data interpretation, and cost. Brazma and Vilo (2000) outlined some 

important questions to answer through expression studies. These include: 1) what are the 

functional roles of different genes and in what cellular processes do they participate; 2) how are 

genes regulated; 3) how do genes and gene products interact; 4) what are these interaction 

networks; 5) how does gene expression level differ in various cell types and states; 6) how is gene 

expression changed by various diseases or compound treatments. Methods to detect expression 

differences amongst samples include: northern blots, microarrays, RNA-sequencing, and 

quantitative real-time polymerase chain reaction. 

3.3.1 Northern Blots 

 Northern blots are a method to measure gene expression from RNA of a particular tissue 

or cell type. Its name was coined from the similarities of the technique to Southern blots, which 

are used to identify DNA sequences. A Northern blot reveals both the abundance of the gene 

transcript, as well as the size of the mRNA gene product. In brief, the process of creating Northern 

blots involves: 1) collect RNA from tissue (or other sample type), 2) electrophorese the RNA to a 
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gel and blot to a suitable support, 3) hybridize the blot to a labeled cDNA probe, 4) detect and 

measure labeled band with x-ray film (Weaver, 2011).  

An advantage of the use of Northern blots for gene expression is the procedure is relatively 

fast, low-tech, and inexpensive. Additionally, conclusions can be drawn from a single experiment, 

as blotting provides a direct relative comparison of RNA abundance between samples (Scientific). 

There are major limitations to the use of Northern blots for gene expression studies. One limitation 

is its sensitivity of detection as compared to other methods. Northern blots need approximately 

100,000 copies of DNA or RNA sequence for detection by blot hybridization. In contrast, 

techniques such as qPCR (discussed in a later section) can amplify single copies of DNA or RNA 

to readily detectable levels. Another limitation of the use of Northern blots for gene expression is 

abundance of RNA is determined in each sample. Abundance is determined by quantifying the 

darkness of the labeled band, and this is done through measuring the amount of light it absorbs in 

a densitometer or quantifying the amount of label in the band directly by phosphorimaging. These 

measurements will reveal the relative amounts of specific RNA in each sample (Weaver, 2011). 

Northern blots can only measure steady state mRNA accumulation levels; therefore, the technique 

fails to measure transcription rates or RNA stability, making other methods more applicable. 

Lastly, Northern blots of inferior to other gene expression methods in that it only can only measure 

expression of a single gene at a time. This method consequently increasing both the time and the 

workload as compared to other methods. 

3.3.2 Microarrays 

Microarray methodology allows for the identification of genes that are expressed or not, 

this is based upon if mRNA is present. This technology was the first tool available for 

transcriptomic studies. Microarrays can be used to 1) investigate a single change in gene 
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expression that may be significant in understanding the phenotypic variation that may exist (i.e., 

local approach), and 2) to look at the overall patterns of gene expression in order to understand the 

architecture of genetic networks that regulate gene transcription (i.e., global approach; Schulze & 

Downward, 2001). The two most commonly used systems according to array material are: 

complementary DNA (cDNA) and oligonucleotide microarrays (Schulze & Downward, 2001). 

The array materials utilized in microarrays are probes, which is equivalent to that of northern blots, 

albeit a northern blot is used for a single gene.  Limitation  

A strength of the use of microarrays is that thousands of transcripts (genes) can be detected 

and quantified simultaneously (Schulze & Downward, 2001). Therefore, microarrays can be useful 

if the genes you desire to analyze are unknown. This technology will allow for freedom in 

determining gene expression. Microarrays are also most cost effective on a small-scale (sample) 

basis than RNA-seq for gene expression.  

Despite the positive aspects of microarrays, there are also limitations to the utilization of 

this technology. Microarrays do not account for post-transcriptional and post-translational 

modifications. These modifications can limit our understanding of the diverse RNA molecules and 

expression differences that may exist from genomes (Ozsolak and Milos, 2011). In addition, the 

amount of data received with microarrays in the form of spot intensities and intensity rations 

creates a challenge to sieve through the data to find meaningful results (Schulze & Downward, 

2001). Significant variability also exists in microarray results; which is especially true for genes 

with low expression levels. Replication or validation is therefore necessary to instill confidence in 

results (Schulze & Downward, 2001). This semi-quantitative methodology would then require 

qPCR as a means of verification of results. Another limitation of microarrays is the necessity of 

having a minimum of 25 to 100 μg of total RNA. This can be an issue in the experimental process 
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to be able to receive this minimum amount of total RNA from all samples tested. Lastly, short 

oligonucleotides that are utilized for microarray gene expression may result in less specific 

hybridization and reduced sensitivity. Cross-hybridization (i.e., formation of double-stranded 

DNA, RNA, or DNA/RNA hybrids) is possible if certain DNA elements on the array to fail to 

detect the correct transcript species (Malone and Oliver, 2011). 

3.3.3 RNA-sequencing 

Since 2008, NGS through sequencing RNA (RNA-seq) has provided knowledge in the 

areas of both quantitative and qualitative aspects of the transcriptome (Ozsolak and Milos, 2011). 

The methodology involves the reverse transcription of cDNA from mRNA and sequencing of the 

cDNA. Millions of sequence reads can be identified through RNA-seq to reveal both if, and how 

much, of a transcript is present (Chu and Corey, 2012). As discussed previously, challenges can 

arise and limit the effectiveness of RNA-seq. Processing RNA involves capping, splicing, 

polyadenylation, editing, export, localization, translation, and turnover. Each of which will have a 

downstream effect on the results and application of RNA-seq. Kumar et al. (2012) provides an 

extensive overview of sequencing applications. 

3.3.3.1 Advantages and Limitations 

The use of RNA-seq to determine gene expression differences has an advantage in that 

RNA-seq provides absolute values (i.e., RPKM, total counts), as opposed the relative values that 

are received from other gene expression methods (i.e., on vs. off signals). As compared to 

microarrays, RNA-seq is a more efficient and therefore less costly method to determine gene 

expression (Wilhelm and Landry, 2009). Additionally, an advantage of RNA-seq is the ability to 

explore both known and novel transcripts. There is not a requirement of a priori knowledge of 
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transcribed regions to survey the entire transcriptome, allowing for more opportunities for research 

exploration (Wilhelm and Landry, 2009).  

A limitation to RNA sequencing data is sequencing depth. Determining differentially 

expressed genes as well as transcript abundance is dependent upon transcript length. For SNP 

discovery purposes, larger sequencing depth is necessary to understand the differences or observe 

the genetic mutations between samples. To discover novel transcribed elements (i.e., related to 

calcium utilization), it would be necessary to increase sequence depth to a deeper (higher) level 

(i.e., 31 million reads to 200 million reads). One can use homology between species in more robust 

assemblies to help determine any newly transcribed elements. As mentioned, it is important to 

understand the abundance levels of the genes of interest. More highly abundant transcripts will 

need less sequencing depth, whereas or lowly abundant transcripts will need a higher sequencing 

depth to be effective at quantifying expression and determining differentially expressed genes. If 

the transcripts of interest are lowly abundant, a lower sequencing depth will not be sufficient. 

3.3.3.2 Importance of Sequencing Depth 

Sequencing depth is largely dependent upon the question or goals of a study, as well as the 

characteristics of the sample. From a quantitative standpoint, one can assess the amount of 

expression present, if the expression of one product is produced more than another. From a 

qualitative standpoint, gene expression studies can be used to reveal different variants of a 

particular transcript. If we are trying to understand gene expression differences, sequencing depth 

may not need to be as deep and may not have a great impact on the assessment of the gene 

expression. If the goal is to identify specific mutations (i.e., SNP discovery), a greater sequencing 

depth will be necessary to understand those differences. Coverage of the genome is dependent 

upon the size of the genome, where smaller genomes require less sequencing depth. Transcripts 
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that are low in abundance will need greater sequencing depth since more abundantly expressed 

genes may consume the majority of the reads being sequenced. Likewise, short RNAs will also 

need more sequencing depth. Both the goal of the study as well as the available funds for the 

research will drive the depth of sequencing.  

A study by Tarazona et al. (2011) examined the trade-offs of sequencing depth for gene 

expression data. Their research revealed that for investigating the regulation of rare transcripts, 

although deep sequencing effectively enhances understanding on the diversity of the 

transcriptome, the identification of true differential expression at a low count range is more 

difficult to achieve. The study also estimated that more reads implied the detection of more genes, 

but would subsequently result in noisier data, making differential expression increasingly difficult 

(Tarazona et al., 2011). If the goal is to detect similarities between transcriptional profiles, a 

modest depth (i.e., 30 million paired end reads, > 30 nucleotides, with 20 to 25 million reads 

mapped to the genome/transcriptome) is sufficient. If the goal were to discover novel transcribed 

elements in a tissue sample with strong quantification to known isoforms, a more extensive 

sequencing depth (i.e., minimum 100 to 200 million reads of 2x 76 base pairs or longer) would be 

necessary (ENCODE-Consortium, 2011).  

3.3.4 Quantitative Reverse-Transcription Polymerase Chain Reaction 

Reverse Transcription (RT)-quantitative Polymerase Chain Reaction (qPCR) has become 

a versatile technique used to examine expression changes of one or more genes of interest in 

various pathological states. Reverse-transcription PCR is used for absolute and relative 

quantifications of DNA and RNA template molecules and for genotyping in a variety of 

applications. It can be used to determine viral loads, gene expression, titers of germs and 

contaminations, allele imbalances and the degrees of amplification and deletion of genes (Jacob et 
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al., 2013). The technique is applied for the analysis of age-dependent diseases, cytokine and tissue-

specific expression, forensic samples, epigenetic factors like DNA methylation and for food 

monitoring (Jacob et al., 2013). 

Real-time PCR was invented in 1996, and the number of research publications utilizing 

this technology has increased exponentially since then, with over 163,000 publications (PubMed). 

Due to its specificity, sensitivity, simplicity, costs and high-throughput, RT-qPCR offers a broad 

range of advantages over standard methods such as Northern blot and semi-quantitative PCR 

(Jacob et al., 2013). Real-time PCR compared with other methods has its advantages for the 

quantifying nucleic acids, which include having a wide dynamic range and significantly higher 

reliability of the results compared with conventional PCR. This is because with RT-qPCR, the 

whole amplification profile is known. RT-qPCR is more precise than end-point determinations, 

and reactions deviating in their amplification efficiency can be identified easily (Jacob et al., 2013). 

There are many different formats to detect and measure gene expression, including: SYBR 

Green, hybridization probes, hydrolysis probes (i.e., TaqMan), molecular beacons, sunrise 

primers, scorpion primers, and light-up probes (Wilhelm and Pingoud, 2003). The PCR product 

amplification is observed through the fluorescence of dsDNA-specific dyes (i.e., SYBR Green I) 

or sequence-specific probes. Each curve consists of three distinct phases: 1) an initial lag phase, 

2) an exponential phase, and 3) a plateau phase (Wilhelm and Pingoud, 2003). 

3.3.4.1 Necessities of qPCR 

To perform a qPCR assay, the required elements include: primers (Oligo(dT)s, random 

hexamer, sequence specific), template (mRNA), reverse transcriptase, DNA polymerase, buffer & 

dNTPs, and controls (No R.T. control, no template control, endogenous control). 
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Figure 1-7. Elements needed to conduct qPCR for gene expression 
https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-

resource-library/basic-principles-rt-qpcr.html 
 

There are 3 types of primers can be utilized for qPCR research: Oligo(dT)s, random 

hexamer, or sequence specific primers (Figure 1-7). These primers anneal to the template mRNA 

strand and provide reverse transcriptase enzymes a starting point for synthesis. There are 

advantages and disadvantages to the use of each of the types of primers (ThermoFisher Scientific, 

2017). Template, in the form of RNA for gene expression studies, will be utilized for reverse 

transcription. The reverse transcriptase enzyme is utilized to create cDNA from our RNA template. 

Upon completing the reverse transcription step, cDNA will then be available and utilized for the 

qPCR for gene expression step.  

Standardizations and quality control measures must be put in place both during RNA 

sequencing analysis, as well as differential expression analysis to understand how these factors 

more clearly to determine or explain the gene expression differences observed in our samples. One 

form of standardization is endogenous controls. Endogenous control genes (a.k.a. housekeeping 

genes) can be utilized to analyze the quality of the transcript with qPCR. These genes can be 

applied as a normalization factor for the amount of template used. Also, the level of expression of 

endogenous control genes should not change between samples. Therefore, a truly highly expressed 

gene should correlate to a highly expressed endogenous control. Non-template controls (NTCs) 
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are necessary in detecting the presence of contaminating DNA. Additionally, non-reverse 

transcription controls (-RTC) are used to assure the absence of contaminating genomic DNA for 

qPCR-based gene expression analysis (D’haene and Hellemans, 2010).  

Figure 1-8. Different types of primers to use for qPCR for gene expression 
https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-

resource-library/basic-principles-rt-qpcr.html 
 

Primers are essential to ensure specific and efficient amplification of the products. Therefore 

a critical step in a PCR is the annealing of the primers to their target sequences, while preventing 

nonspecific annealing and primer–dimer formation (Taylor et al., 2010). The design of primers 

involves utilizing FASTA files that can be retrieved from the National Center for Biotechnology 

Information (NCBI) gene database, which are available for each of the genes of interest. The files 

contain the sequence information for the gene. These FASTA files can then be uploaded to UCSC 

Genome Browser to check alignment from cDNA. Next, the FASTA files can be uploaded to 

Primer BLAST software through NCBI GenBank, setting primer specifications. Some of the most 
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important specifications include: the primers must span an exon-exon junction, forward and 

reverse primers must not be in an intron region, the primer product must be < 200 bp, and near the 

3’ end (Figure 1-9). This primer design software will provide multiple primer options to choose. 

These primers usually cost between $3 to $5 each and can be used for multiple samples. This is a 

critical aspect for qPCR analysis. The primers are what will allow us to capture specific sequences 

to replicate. If the primer is not specific or accurate enough, this could result in poor amplification 

and expression of the gene of interest. 

Additionally, there is the option to use previously designed primers from literature. Each 

primer is assigned a unique GeneBank Accession Number, which can to adopted and utilized in 

additional studies. A benefit of utilizing previously designed primers is having the knowledge that 

the primers were successful at amplifying the gene product and in determining expression 

differences. Therefore, this could help to eliminate a step in the process by having confidence in 

the chosen primers and eliminating the potential of having to redesign primers. 

 
Figure 1-9. Examples of designing specific primers. 
https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-
resource-library/basic-principles-rt-qpcr.html 
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3.3.4.2 Primer Efficiency Testing 

Testing primer efficiency is important as it provides an indication of the effectiveness of 

primers you have designed in amplifying your product of interest. The consistency in PCR 

efficiency is determined by examination of each sample standard curve (Hui and Feng, 2013). 

Serial dilutions are routinely utilized to determine linearity and amplification efficiency based 

upon the template material. Serial dilutions of nucleic acids are used to demonstrate that observed 

decreases in quantification cycle (McQuillan et al.) or copy numbers are consistent with the 

anticipated result (Bustin et al., 2009). 

A standard curve can be generated to plot the results of testing primer efficiency (Figure 

1-10). This entails plotting the log of the starting concentration of the genetic material against the 

cycle threshold (Ct) values generated from the PCR reaction. If the quantity of genetic material is 

unknown, plotting the Ct value against the log of the dilution factor is an option. Testing the 

samples in triplicate is necessary when generating these curves to ensure reproducibility (Maddock 

and Jenkins, 2017). The major benefit of the dilution-replicate design strategy is that it yields data 

that simultaneously measures both PCR efficiency and DNA quantity for all samples (Hui and 

Feng, 2013).  

Figure 1-10. Standard curve for testing primer efficiency 
http://www.sabiosciences.com/pathwaymagazine/pathways7/designing-validating-real-time-pcr-primers.php 
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Once the standard curve is generated, estimating the r-value (Pearson’s correlation 

coefficient) or the R2 value (coefficient of determination) will give an indication of the linearity of 

the data. If you have a low value (for either r of R2), it indicates that you have variability across 

the dilutions you prepared, suggesting that the amount of starting material is affecting the 

amplification (Maddock and Jenkins, 2017). 

Determining PCR amplification efficiency can be estimating utilizing the slop of the 

standard curve line. It is normally expressed as a percentage and indicates the rate at which your 

PCR product is generated. Ideally, the product should double with each round of amplification, 

reflected in an efficiency value of 100%. The closer to 100% efficiency you can get the more 

robust your PCR will be but generally any figure between 90% and 105% is considered acceptable 

(Maddock and Jenkins, 2017). Amplification efficiency outside of this range may indicate: badly 

designed primers, contamination, or pipetting dilutions inaccurately. 

Additionally, it is important to check the specificity of the reaction by analyzing the PCR 

product. A melting curve analysis, performed at the end of the PCR cycles, can be used to confirm 

the specificity of primer annealing to the template (Taylor et al., 2010). 

3.3.4.3 Considerations for Differential Expression Analysis 

A few considerations must be made when determining which genes are differentially 

expressed: fold change, p-value, and false discovery rate. A statistical analysis (t-test) is conducted 

for each gene for the different conditions (i.e., sick vs. healthy), and therefore the problem of 

multiple testing arises in which p-values become more significant than they are in actuality. 

Therefore, a corrected p-value should be estimated accounting for multiple testing via multiple 

statistical methods (i.e., Benjamini-Hochberg). Additionally, a fold change greater that 2.0 and a 
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false discovery rate of 5% are parameters that will help to narrow down the list of candidate genes 

to be used in additional bioinformatic research (i.e., qPCR). 

As explained in the calculations above, fold change is based upon expression of the 

specified gene as compared to the expression of the endogenous control genes (i.e., ACTB, B2M, 

GAPDH, HPRTI, HMBS, RPLP0, 18S rRNA). The expression results for each of the samples and 

each of the chosen genes can then be analyzed using pairwise comparisons of means. Pairwise 

comparisons can be conducted with statistical analyses such as, Tukey or the Bonferroni methods. 

Tukey is typically better than Bonferroni methods because it controls for maximum experiment-

wise error rates and has better power. Additionally, Bonferroni adjustments tend to be too 

conservative. A problem that arises from analyzing multiple SNP genotype data is multiple 

comparisons. 

A common goal in these studies is to identify genes that are differentially expressed among 

the biological conditions, which involves performing a hypothesis tests on each gene (Storey, 

2011). False discovery rate (FDR) was coined by Benjamini and Hochberg (1995) as a means of 

controlling for the expected proportion of errors among rejected hypotheses (i.e., Type I errors or 

false positives). Real-time qPCR can be utilized to identify genes that are differentially expressed 

among the biological conditions. This involves performing a hypothesis tests on each gene. This 

could result in incurring false positives, but also failing to identify truly differentially expressed 

genes (Storey, 2011).  
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SECTION 4: SNP DISCOVERY & GENETIC IMPROVEMENT 

4.1 WHAT ARE SNP? 

Single nucleotide polymorphisms or SNP can be defined as single base pair positions in 

genomic DNA, where different sequence alternatives or alleles exist in individuals in a population. 

The frequency of the least abundant or recessive allele is 1% or greater (Brookes, 1999). About 

90% of naturally occurring sequence variations are SNP (Collins et al., 1998). There are bi- tri- 

and tetra-allelic SNP, with the majority being bi-allelic. 

There are many different applications of SNP technologies, including gene discovery, 

genetic mapping of QTL, GWAS, diagnostics and risk profiling, physiological genomics (i.e., gene 

function), use of SNP in EBV calculations, and marker-assisted selection (Schork et al., 2000; 

Kumar et al., 2012). Additionally, SNP can help decipher pedigree relationships, identify genomic 

divergence of species for the purposes of elucidating speciation and evolution, and associate 

genomic variations to phenotypic traits (McNally et al., 2009).  

The goal of these different applications is to understand the unique aspects of SNP and the 

advantages and disadvantages of SNP to population-based analyses. Some of the advantages of 

SNP over other types polymorphisms for understanding the genetics of complex traits and diseases 

include: abundance, position, origins and haplotypic patterns, ease of genotyping, allele frequency 

drift, less mutable, and recombination oddities (Schork et al., 2000). Single nucleotide 

polymorphisms: occur in high frequency, are found throughout the genome (i.e., in exons, introns, 

intergenic regions), can be in linkage disequilibrium (LD) with other alleles creating haplotypic 

diversity, have a simple structure to genotype, and are more stable than other polymorphisms. 

The functional consequences of SNP include synonymous and non-synonymous SNP. 

Synonymous SNP are those that are ‘silent’, as the allele polymorphisms do not change the 
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associated codon sequence and encoded amino acids. Non-synonymous SNP do change the 

encoded amino acid and can be further classified into missense and nonsense SNP (Hunt et al., 

2009). Missense mutations result in an amino acid change, whereas nonsense mutations enact a 

stop codon resulting in a truncated amino acid change. Additionally, SNP can reside both within 

and outside of coding regions. Those residing outside of coding sequences can occur within 

intergenic regions, 5’- or 3’-untranslated regions, intronic regions, and other non-coding regions 

such as promoter and transcription factor binding sites. Although synonymous SNP result in the 

no change of amino acid, the previous belief of these ‘silent’ or trivial SNP is flawed due to factors 

such as mRNA splicing, mRNA stability, mRNA structure, protein translation and co-translation 

protein folding (Hunt et al., 2009). 

It is important to understand, not only the functional consequence of SNP, but also what 

can phenotypically result from these polymorphisms. In understanding the functional consequence 

of the SNP, one can make inferences on the regulation or control of that gene. SNP may be 

responsible for the phenotypic diversity among individuals, genome evolution, common familial 

traits, complex and common diseases (i.e., hypertension; Hunt et al., 2009). Therefore, the 

identification of gene variation and their effects may lend greater understanding of their impact on 

gene function and health of an individual. Ultimately, know of these SNP provide opportunities to 

develop new SNP markers tests for traits such as disease susceptibility. 

4.2 SNP DISCOVERY & VALIDATION PROCESS 

The aim of SNP discovery (a.k.a. SNP calling or variant calling) is to determine the 

positions where polymorphisms exist, or where at least one base differs from the reference 

sequence (Nielsen et al., 2011). There are many software options available to perform SNP calling: 

CLC Genomics Workbench, GenomeStudio Software, Samtools, SNVer, and SOAPsnp, amongst 
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others (Nielsen et al., 2011; Kumar et al., 2012; Quail et al., 2012). Both RNA-seq and SNP 

discovery are dependent upon the assembled and mapped reads to a reference genome (Kumar et 

al., 2012). The new bovine reference genome is an improvement over the previous versions 

(UMD3.1.1 and Btau5.0.1), which contain large gaps between scaffolds (> 2,800) and 75,618 

contigs and 42,267 contigs, respectively. The new assembly (ARS-UCDv1.2) has only 460 gaps, 

with just over 2,800 contigs (NCBI). Therefore, the new assembly is a better representation of the 

bovine genome. The results from previously conducted analyses utilizing these insufficient 

reference assemblies should warrant reanalysis, to more accurately identify genomic regions of 

interest in relation to PH susceptibility.  

As mentioned above, determination of the functional consequences of SNP allows one to 

make inferences on the regulation or control of a gene. The discovery process includes determining 

functional consequences of SNP as a means of understanding of their impact on gene function.  

Validation of discovered SNP is necessary to distinguish true SNP and eliminate false 

positive SNP regulating the trait of interest (Kumar et al., 2012). The process of validation can 

also serve as means to adjust and optimize the SNP filtering criteria. This optimization improves 

variant calling accuracy by identifying repetitive fractions leading to misalignment and erroneous 

homoeologous read mapping (Kumar et al., 2012). A biparental segregating population or a diverse 

panel of genotypes can be utilized to accomplish SNP validation (Kumar et al., 2012). In addition, 

the most important factor determining the variation in validation is sequencing accuracies. 

Accuracies vary by the NGS platform, at 71%, 85.4%, and 88.2% for Roche 454, Illumina, SOLiD 

platforms, respectively (You et al., 2011). 
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4.3 SELECTION AND GENETIC IMPROVEMENT 

The ultimate goal of any operation in the beef industry is to make genetic improvement in 

traits of interest. Historically, breeding strategies focused on breeding for appearance; however, 

these strategies have since shifted to breeding based upon performance (Harris and Newman, 

1994). The traits that are most desirous to improvement are dependent upon the breeding objectives 

and goals of the operation. Genetic improvement is important as it allows for the increase in 

performance for specific traits in a herd or within an operation. Genetic improvement is dependent 

upon many factors, but in addition to these factors, the amount or level of genetic control on the 

trait(s) influences genetic improvement. How heritable a trait is will affect the amount of genetic 

improvement that can be made. The higher the heritability, the more genetics influences overall 

phenotype. 

4.3.1 Influential Factors 

There are 4 factors that influence genetic progress in a particular trait. These four factors 

include: accuracy of selection, selection intensity, genetic variation, and generation interval. For 

simplicity purposes, the trait weaning weight (WW) can be utilized to define these terms in greater 

detail. Accuracy of selection defines how accurate we are at deciding which animals in our herd 

are ‘best’ for making genetic progress in our trait of interest WW. The more accurate we are in our 

selection of these animals, the more genetic progress will be made (i.e., increased accuracy = 

increased genetic progress). Accuracy is a measure of the correlation between the true values for 

WW and our estimates (index) values for WW. Heritability can range from 0 to 1 and the closer 

our estimates are the true values, the higher the accuracy. 

A second factor in determining genetic progress for WW is selection intensity of animals 

for the trait of interest. This encompasses our selection for both males and females. Females are 
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chosen as replacements to maintain the size of the herd when culling is implemented. The 

proportion of animals saved will equate to a given selection intensity value. Typically, if you are 

utilizing superior or prominent sires for WW for your breeding program, culling more cows and 

keeping more replacements would be ideal for increasing genetic progress.  

Genetic variability defines the amount of variation in genetics of our herd for WW. As we 

have a more diverse population of animals, the rate of genetic progress will increase. Heritability 

tells us how much of the variation we observe in WW performance can be attributed to variation 

in breeding values (genetics) of that population. As described by Bulmer (1971), change in genetic 

variance is due to the correlation between the pairs of loci, of which is induced by selection. With 

increasing loci, the magnitude of change is decreased, and with increased selection, a limit is 

reached in which genetic variance ceases to decrease (Gomez-Raya and Burnside, 1990). 

Lastly, the fourth factor that contributes to genetic progress is generation interval. The 

factor defines the average age of males and females in the herd used for production. Typically, the 

most prominent sires (AI or herd sires) are used in the breeding program. Therefore, the typical 

age ranges for males in between 2 and 5 years old. Dependent upon many factors (i.e., cow 

longevity, heifer pregnancy rates, cow productivity), the age of females in the herd typically ranges 

from 2 to 12 years old. As I alluded to above for selection intensity, introduction of the newest 

genetics by increasing culling of older cows and keeping more replacements will increase selection 

intensity. In this case, the generation interval will go down, as a larger number of 2 year olds will 

enter production. Ideally for increasing rate of genetic progress, generation interval should go 

down, as we want to exploit the newest genetics for WW in our herd (i.e., decreased generation 

interval = increased genetic progress). 
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There are trade-offs amongst each of these factors. One trade-off involves selection 

intensity and generation interval. We desire to be more selective in choosing the best animals (best 

genetics) for WW, while also decreasing our average age of males and females in the herd. 

However, if the females in our herd produce superior calves for WW, it may be advantageous to 

be more selective with the particular sires and replacements used for your operation while retaining 

more old females. In this scenario, generation interval may increase while selection intensity also 

increases, meaning less genetic progress may be made. Another trade-off involves selection 

intensity and accuracy of selection. To increase rate of genetic progress, both intensity and 

accuracy should increase. Accuracy of selection should increase as your selection intensity 

increases for a trait of interest. However, if too much focus is on a that trait, the accuracy of 

selection could be hindered in other traits. A third trade-off involves accuracy of selection and 

generation interval. We desire to be most accurate in our choice of best animals to utilize, while 

keeping our population young with the newest genetics. There is risk associated with utilizing 

younger or the newest genetics. If knowledge of performance of these animals for WW is limited 

and the resulting performance is poor, then we didn't accurately choose the best animals for that 

trait. Subsequently generation interval decreased as well as accuracy. The last trade-off is between 

selection intensity and risk. Risk is not one of the 4 factors mentioned above but is important for 

us to understand what can result from our decision to be more or less selective with the animals in 

our herd. The less selective we are with which sires to use our intensity decreases and the risk in 

selection is lessened. The risk of selection in females is less than that of males because typically 

more females are retained as replacements in the herd. 
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4.3.2 Use of SNP for Genetic Improvement and Selection 

The increased awareness and understanding by beef cattle producers of the field of 

genomics will perpetuate the desire and need for tools to improve selection. Genomics utilizes 

DNA based technology (i.e., northern blots, microarrays, SNP chips) to map the genome of an 

animal. The newest and currently most widely used of these are SNP chips, which can map 54,000 

to 800,000 SNP in the bovine genome (Matukumalli et al., 2009). As the technology advances, the 

use of this technology will be more affordable and implementation of genomics in the beef industry 

will increase.  

Another benefit of the application of genomic technologies for genetic improvement is 

increasing our understanding of the underlying genetic influence of performance, therefore 

understanding more of the genetic variability of the population. The genetic model can be 

explained through the equation: P = G + E; where P is our phenotype or performance of a trait, G 

is the genetics of an animal for that trait, and E is the external (non-genetic) environmental 

influence or residual effects imposed on that trait (Bourdon, 1999). Genomic technologies have 

the ability to help with lowly heritable traits, such as fertility and survivability. The use of 

genomics can aid in supplying causal information. Understanding of the underlying genetics of a 

population allows for an increase in selection intensity. This means that we can be more decisive 

and selective about the genetics that we introduce into the herd.  

4.3.2.1 Marker Assisted and Genomic Selection 

An application of SNP data to the genetic improvement of beef cattle is through the use of 

marker-assisted selection (MAS) techniques. Molecular breeding values (MBV), represent the sum 

of the effects of all significant SNP for a specific phenotype. The identification and incorporation 

of SNP data into traditional estimated breeding values (EBV) or expected progeny differences 

(EPD) on animals produces genomically-enhanced EBV (geEBV) or EPD (geEPD; Van 
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Eenennaam et al., 2014). Three approaches can be taken to incorporate the MBV information: 1) 

augment with a genomic relationship matrix as opposed to the pedigree-based relationship matrix, 

2) fit the MBV as a correlated trait in the model, 3) a blending of EBV and MBV after estimation, 

or 4) a hybrid model of the above (Kachman, 2008; Legarra et al., 2009; Spangler, 2012).  

The incorporation of genetic information into genetic evaluations provides opportunity to 

increase the accuracy of selecting the best performing animals for a trait of interest through 

increasing the accuracy of the current EBV/EPD. The generation interval of the herd can also be 

reduced through the use of SNP to estimate the genetic value of animals at a younger age, thereby 

increasing our rate of genetic improvement (Meuwissen and Goddard, 1996; Goddard and Hayes, 

2009). Genome-wide association studies can be utilized to reveal the specific genomic regions that 

contribute to the genetic variation in our phenotypes of interest (Matukumalli et al., 2009).  
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CHAPTER 3 

STUDY ANIMALS AND USE 

 

 This chapter describes the animals and samples utilized in all of the following chapters. 

Data and samples were derived from the same cohort of animals. Refer to the individual chapters 

for methodology differences being experiments.  

Animals & Selection Criteria 

The 2012 calf-crop from Colorado State University Beef Improvement Center (CSU-BIC; 

Encampment, WY, elevation 2,170m) Angus herd were utilized in this experiment. Yearling (12 

to 15 months of age) calf-fed steers were selected based upon specific criteria. Selected steers came 

from a diverse pedigree, as the CSU-BIC conducts a progeny testing program through the use of 

new sires into the herd each year via artificial insemination. A total of 19 sires were represented 

in the 2012 calf-crop. Steer calves were fed a bull-development ration (target gain of 1.5 kg/d) 

with the desire to understand the potential application of the results to yearling bull performance. 

Steers were also selected based upon their mean pulmonary arterial pressures (PAP). In yearling 

cattle, pulmonary hypertension (PH), represented by PAP measures, was previously categorized 

as low (< 41 mmHg), moderate (41 to 49 mmHg), or high (> 49 mmHg; Holt and Callan, 2007). 

Figure 3-1 provides the entire herd distribution of PAP (n = 6,606; years 1993 to 2016), as well as 

the distribution of PAP for the 2012 calf-crop (n = 370). Selected steers of the 2012 calf crop came 

from the tail ends of the distribution and were categorized as either normotensive or hypertensive 

and 13 different sires were presented in the selected animals.
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A B  

Figure 3-1. Distribution of mean pulmonary arterial pressures (PAP; mmHg) for the Colorado State University Beef Improvement 

Center (CSU-BIC) Angus herd. A) Entire herd distribution (n = 6,606; years 1993 to 2016); B) 2012 calf-crop distribution (n = 370). 

Steers came from diverse sires represented in the 2012 calf-crop distribution tails.
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Pulmonary arterial pressures were measured over 3 time points. Figure 3-2 provides plots 

of normotensive (n = 10) and hypertensive (n = 10) selected steers. Three of the 10 selected 

hypertensive steers were confirmed or symptomatic for heart failure (IDs: 2108, 2162, 2355). 

Antemortem and postmortem symptoms of potential heart failure in cattle included: lethargy, 

jugular vein distension, tachypnea, brisket edema or ascites, exophthalmia, and an enlarged, dilated 

right heart. It is also important to note that the PAP of 3 steers categorized as normotensive (IDs: 

2156, 2299, 2407), transitioned to hypertensive at the second and third measure dates. These steers 

are shown in blue in Figure 3-2. Additional information on sample and data utilization by chapter 

is provided below.
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Figure 3-2. Graphical representation of normotensive and hypertensive mean pulmonary arterial pressures (PAP) for across 3 time 

points on steers from the Colorado State University Beef Improvement Center Angus herd. Normotensive (n = 7; excluding 3 steers in 

blue), average 39.9 ± 5.6 mmHg; Hypertensive (n = 10), average 76.0 ± 21.9 mmHg. Red lines represent samples with transcriptome 

data available (IDs: 2045, 2107, 2108, 2151, 2162, 2222, 2300, 2342, 2352, 2355, 2385, 2392, 2403, 2410). Blue lines represent steers 

excluded due to non-normotensive status at second and third measured PAP (IDs: 2156, 2299, 2407). Dashed lines represent steers 

confirmed or symptomatic for heart failure (IDs: 2108, 2162, 2355).
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Tissues samples 

Following finishing, the fed steers were harvested at the University of Wyoming Meat 

Laboratory. Upon harvest, performance data on the steers was collected (Table 3-1). 

Table 3-1. Performance data of the calf-fed steers (n = 20) utilized for study.  

Trait1 Mean 

Standard 

deviation Minimum Maximum 

Pulmonary arterial pressure (mmHg)2 68.3 28.2 36.0 115.0 

Live weight (kg) 399.9 25.4 332.9 437.7 

Hot carcass weight (kg) 234.8 24.0 172.8 269.4 

Rib eye area (cm2) 62.6 9.0 35.5 72.9 

Yield grade3 2.4 0.5 1.6 3.7 

Quality grade3 High select - Low select Low choice 
1Performance data available for all but one steer (ID #2108) due to early harvest, therefore no 

carcass data was available for this animal.  
2Values included both hypertensive and normotensive steers across all three measured PAP.  

3Categorically assigned based upon specific parameters; No units 

 

Thirty-two tissues and blood were collected as previously designed by Canovas et al. in 

2016 (Table 3-2). Samples were snap frozen in liquid nitrogen and stored over nitrogen vapor (-

140°C to -180°C) at the U.S.D.A. National Animal Germplasm Preservation unit until further 

processing. 

Chapters 4 & 6 

A subset of tissues (n = 6) was utilized for sequencing, as these were most appropriate 

relative to the objectives of the larger study. These tissues included: aorta, left ventricle (middle), 

longissimus dorsi, main pulmonary artery, right lung (main lobe), and right ventricle (middle). Of 

the 20 total steers, only 14 steers were selected to be sequenced. These steers included: #2045, 

#2107, #2108, #2151, #2162, #2222, #2300, #2342, #2352, #2355, #2385, #2392, #2403, and 

#2410. Seven of the 14 were normotensive and 7 were hypertensive (Figure 3-2). Chapters 4 and 

6 of this dissertation utilized the transcriptome data generated with these 6 tissues and 14 steers. 
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Table 3-2. List of tissues (n = 32) and blood collected in the 2012 High Altitude Steer Project. 

Organ Tissue Location 

Blood   

 Whole Blood Jugular 
 Serum Jugular 

Brain   

 Hypothalamus  

 Medulla Caudal 
 Medulla Rostral (4th ventricle) 
 Pituitary  

 Pons  

Diaphragm   

 Diaphragm  

Heart   

 Aorta  

 Apex  
 Left ventricle Bottom 
 Left ventricle Middle 
 Left ventricle Top 
 Moderator band  

 Right papillary muscle  

 Right ventricle Bottom 
 Right ventricle Middle 
 Right ventricle Top 

Kidney   

 Fat Left 
 Kidney Left (middle) 

Liver   

 Caudate  

Lung   

 Left Lung Bottom lobe 

 Right lung Lower lobe (bottom) 

 Right lung Lower lobe (top) 
 Right lung Middle lobe 
 Right lung Upper lobe 
 Left pulmonary artery  

 Main pulmonary artery  

 Right pulmonary artery  

Muscle   

 Brisket  

 Longissimus dorsi  

Spleen   

 Spleen  
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 Transcriptome data were provided for all 14 steers for right ventricle and lung tissues, 

whereas less sequence data was provided on the remaining 4 tissues (Table 3-3). Sequence 

information was limited on the other tissues because of poor nucleic acid isolation of the samples 

resulting in insufficient sequence quality. Sequence quality of transcriptome analyses was 

identified as low in two aorta tissue samples (APPENDIX A). One of the two samples was re-

sequenced, and the transcriptome data was included in further analyses. A limitation with 

determining differentially expressed genes with RNA-seq is the biasedness associated with length 

of the transcript. The ability to detect differentially expressed genes is dependent upon the length 

of the transcript and such be adjusted or accounted for through methodology (Oshlack and 

Wakefield., 2009). 

Table 3-3. Sequence information available for 

transcriptomic analyses by tissue and separated by 

pulmonary hypertension status.  

Tissue n (Total) n (HT)1 n (NT)1 

Aorta2 9 5 4 

Left ventricle 13 7 6 

Longissimus dorsi 10 5 5 

Lung 14 7 7 

Pulmonary artery 8 5 3 

Right ventricle 14 7 7 

Total 68 36 32 
1HT = Hypertensive, 76.0 ± 21.9 mmHg; NT = 

Normotensive, 39.9 ± 5.6 mmHg) 
2Failed quality control for two samples (one for each PH 

group) 

 

Figure 3-3 displays the distribution of PAP measures for the 14 steers with transcriptome 

data. The distributed values are of the second measured PAP on March 8, 2013. This measure date 

was chosen as steers normotensive and hypertensive steers were clearly differentiated at this 

timepoint (Figure 3-2). As expected, the measures are non-normally distributed. Remedial 
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procedures were taken in an attempt to correct for normality in further analyses. These procedures 

are described in more depth in Chapter 6. 

 
Figure 3-3. Transcriptome data from calf-fed yearling Angus steers (n = 14). Distribution of 

pulmonary arterial pressure (PAP) measures from the second timepoint measure on 3/8/13 (Figure 

3-2).  
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Chapter 5 

From the 32 available tissues (Table 3-2), a subset of muscle tissues were utilized, as these 

were most appropriate relative to the hypothesis of the study. Cardiac muscle tissues included: 

apex, left ventricle, moderator band, right papillary muscle, and right ventricle. Three sections of 

the ventricles (top, middle, bottom) were collected and analyzed separately to identify if 

differences existed in gene expression in the different locations of the muscles. In addition, muscle 

tissues Longissimus dorsi and brisket were utilized as control tissues. The selected muscle tissues 

from all of the harvested steers (n = 20) were utilized in the qPCR gene expression analyses in 

Chapter 5. The qPCR analyses in Chapter 5 were performed both with and without the three steers 

that transitioned form normotensive to hypertensive (Figure 3-2). Any changes in the results upon 

exclusion of theses steers was discussed within the chapter. Figure 3-4 displays the distribution of 

second measured PAP on March 8, 2013 for all of the selected steers (n = 20). This measure date 

was chosen as steers normotensive and hypertensive steers were clearly differentiated at this 

timepoint (Figure 3-2).   
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Figure 3-4. Distribution of pulmonary arterial pressure (PAP) measures of all selected steers (n = 

20) from the second timepoint measure on 3/8/13 (Figure 3-2). 
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CHAPTER 4 

IDENTIFICATION OF CANDIDATE GENES FROM RNA-SEQ AND INGENUITY 

PATHWAY ANALYSIS 

 

SUMMARY 

Pulmonary hypertension (PH) in cattle raised at an altitude above 1,800 m is defined by 

increased pulmonary arterial pressures (PAP), develops because of hypoxia-induced remodeling 

of the vasculature of the heart and lung leading to hypertrophy of the right ventricle, and eventually 

heart failure. Calcium is a mediator of the physiology of the heart, including myocardial function. 

We hypothesized that genes regulating the availability and utilization of calcium would be of 

significant importance and can be utilized to differentiate beef cattle with, and without, PH. The 

objectives of this research were: 1) to estimate and identify differentially expressed genes from 

RNA-Seq and pathway analyses, and 2) select putative candidate genes to analyze with qPCR 

(gene expression level). Transcriptome data provides opportunity to understand differences in gene 

expression in disease related traits such as pulmonary hypertension. Differential expression (DE) 

and pathway analyses were utilized to perform a hypothesis-based selection of candidate genes (n 

= 10) for subsequent expression validation. Transcriptome data of 6 different tissue samples (aorta, 

left ventricle, longissimus dorsi, lung, pulmonary artery, and right ventricle) from yearling Angus 

steers (n = 14) were utilized in the experiment. Samples were separated into groups, hypertensive 

(n = 7) and normotensive (n = 7) based upon their mean pulmonary arterial pressures (PAP). 

Differential expression was estimated with DESeq2 in R statistical software, and resulting DE 

genes were inputted and filtered into an Ingenuity Pathway Analysis to reveal influential genes 

within the context of biological systems. The largest number of DE genes was revealed in aorta (n 
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= 631) and right ventricle (n = 2,183) samples. Top canonical pathways (P < 0.0001) related to 

calcium signaling or utilization included: synaptic long-term depression, signaling by Rho family 

GTPases, and oxidative phosphorylation. The number of DE genes was reduced by relevance to 

the study hypothesis and previous literature, and in close proximity (upstream and downstream 

regulation) to calcium responsive elements to narrow the focus on influential genes on PH. Genes 

regulating calcium availability and utilization were expressed differently in Angus cattle with and 

without pulmonary hypertension. Candidate genes included: ASIC2, EDN1, FBN1, KCNMA1, 

P2RY6, NOX4, PLA2G4A, RCAN1, TGS4, and THBS4. 

INTRODUCTION 

Bovine pulmonary hypertension (PH) is defined by abnormal pulmonary arterial pressures 

(PAP; > 41 mmHg), and develops through remodeling of the vasculature of the heart and lung and 

an inability of the animal to overcome the necessary force to eject the blood through the pulmonary 

artery, leading to hypertrophy of the right ventricle, and eventually heart failure (Neary et al., 2015; 

Pugliese et al., 2015; Ryan et al., 2015). Calcium is a mediator of the physiology and mechanisms 

of the cardiac muscle, including myocardial function, through the utilization of Ca2+ ions intra- 

and extracellularly (Hasenfuss and Pieske, 2002; Stanfield, 2011). Rhodes (2005) suggested a role 

of Ca2+ sensitization in myocytes in hypoxic PH to distinguish hypertensive cattle from 

normotensive. Evidence revealed that altered Ca2+ homeostasis was of importance for the 

pathophysiology of myocardial dysfunction and heart failure (Hasenfuss and Pieske, 2002). We 

hypothesized that genes regulating the availability and utilization of calcium would be of 

significant importance and can be utilized to differentiate beef cattle with pulmonary hypertension. 

The objectives of this research were: 1) to estimate and identify differentially expressed genes 

from RNA-Seq and pathway analyses, and 2) select putative candidate genes to analyze with qPCR 
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(gene expression level). Results of this study will provide a focused approach to validating 

expression of calcium-associated genes and pulmonary hypertension status.  

MATERIALS AND METHODS 

Animal Care and Use Committee approval was not obtained because data were acquired 

from an existing sample database (Protocol # 13-4111). Figure 4-1 is a flow chart of the 

methodology for this chapter from sample retrieval to candidate gene selection.  
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Figure 4-1. Flowchart of analytical steps from sample retrieval to candidate gene selection. HT = 

Hypertensive, 76.0 ± 21.9 mmHg; NT = Normotensive, 39.9 ± 5.6 mmHg); Healthy (HTH) and 

symptomatic (HTS) are physiological status.  

Tissues/Samples 

Chapter 3 of this dissertation outlines the animal population and samples utilized in this 

study. In short, 20 Angus steers from the Colorado State University Beef Improvement Center 

(CSU-BIC) were harvested in a controlled study. These steers were categorized chosen based 

upon their mean PAP measures (Figure 3-2). 
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RNA-sequencing 

The subset of available tissues from 14 steers were utilized for RNA-sequencing (Table 3-

2 & 3-3). These tissues included: aorta, middle left ventricle, longissimus dorsi, lung, pulmonary 

artery, and middle right ventricle. Three portions of the ventricles were retrieved, top, middle and 

bottom; however, the middle portions were chosen for transcriptome analyses. The Illumina HiSeq 

analyzer (Illumina, San Diego, CA) yielded 100 bp single read sequences. Sequence reads from 

approximately 19,500 genes were further analyzed using CLC Genomics Workbench software 

(CLC Bio, Aarhus, Denmark) with the new bovine reference genome ARS-UCD1.2. Quality 

control procedures were conducted to determine the quality of the sequence reads provided. 

Total count expression data was generated per sample. Count data was compared for steers 

based upon their PAP (normotensive/hypertensive) and physiological status 

(healthy/symptomatic). The three groupings were as follows: normal or normotensive (NT), 

hypertensive healthy (HTH), hypertensive symptomatic (HTS), or hypertensive (HT; both healthy 

and sick). Comparison groups included: 1) NT vs. HT, 2) NT vs. HTH, 3) NT vs. HTS, and 4) 

HTH vs. HTS. Groups provided identification of expression differences from one group to the 

other. A principle component analysis (PCA) was conducted with the total count data to determine 

if tissue-specific and/or animal-specific clustering existed. 

Differential expression analysis 

Differential expression (DE) analysis was conducted to determine which genes were 

differentially expressed when comparing a treatment versus a control. In our study, samples from 

normotensive steers were categorized as controls, while hypertensive steers were categorized as 

treatments. In the case of comparison between HTH and HTS steers, HTH steers were utilized as 

controls.  
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Some of the most appropriate DE analysis methods are edgeR, DESeq, and NBPSeq. These 

methods have been found to be most appropriate for small sample sizes (2 samples per condition; 

Soneson and Delorenzi, 2013). DESeq2 was implemented in R statistical software for the DE 

analysis. Data was filtered by the number of features present in each group, where at least 2 

samples per group had to have count data. After filtering, an average of 18,509 ± 1,529 genes were 

utilized to determine differential expression. A significance value was estimated for every gene 

using a Wald t-test, where the p-value indicated the probability that the difference between 

treatment and control is observed, even though there was no true treatment effect. 

A p-value, fold change, and false discovery rate are parameters that can be utilized to 

narrow down the list of putative candidate genes to be used in additional bioinformatic research. 

The Wald t-test was conducted for each gene (n = 9) for the different conditions (treatment vs. 

control). Therefore, p-values are inflated or become more significant than in actuality due to the 

parallel or multiple testing. A corrected p-value was estimated using a Benjamini-Hochberg 

method to control or decrease for false discovery rate (Type 1 errors).  

Ingenuity Pathway Analysis 

Differentially expressed genes within each tissue was entered to Ingenuity Pathway 

Analysis (IPA). Gene IDs were mapped to multiple common references, including human and 

mouse. Specification of the bovine reference genome was not available. Data filtering criteria 

included: log2 fold change > 0.589 and < -0.589, significance (p-value) < 0.05. Not all 

differentially expressed genes were mapped, as they could have corresponded to several loci or 

more than one gene. These identifiers were left unmapped due to the ambiguity of their identity 

(Qiagen). Core expression analyses were implemented to calculate z-scores (directionality of 

regulation; up- and down-regulated expression) of each of the mapped genes. Pathway analyses 
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were completed in collaboration with the Hansen laboratory (Colorado State University, 

Department of Biomedical Sciences).  

Putative Candidate Gene Selection 

 The selection of putative candidate genes for additional gene expression studies 

encompassed a review of previous literature, results of the DE analysis and IPA, in addition to 

searches through the National Center for Biotechnology Information (NCBI) gene database and 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Ten genes were 

chosen for the additional gene expression studies. 

RESULTS AND DISCUSSION 

 Principle component analysis of the transcriptome data revealed tissue-specific 

differentiation (Figure 4-3). Left ventricle, right ventricle, and longissimus dorsi muscle tissues 

tended to cluster together. Blood vessels (pulmonary artery and aorta) clustered together, and the 

lung was differentiated by itself. This separation of transcriptome data by tissue was expected as 

each has a distinct function within the body. Tissue-specific gene regulation is well understood 

and must be considered in -omics based analyses (GTEx Consortium, 2015; Barbeira et al., 2018). 

Further the principle component analyses revealed some differentiation of hypertensive and 

normotensive steer groups (APPENDIX B).  
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Figure 4-2. Principle component analysis (PCA) plot representing the gene level expression. 

Tissues are distinguished by color. Physiological state of the animal is differentiated by the plot 

point. HPAP = Hypertensive; LPAP = Normotensive 

Differentially expressed genes 

 As described above, 4 comparison experiments were conducted within each tissue. Figure 

4-4 is a histogram displaying the number of differentially expressed genes in each group and within 

each tissue. Aorta and right ventricle had the most differentially expressed genes, more specifically 

in the all experiments except HTH vs. HTS. These results suggested that the genetic regulation of 

PH is more evident between normotensive steers to hypertensive steers, as fewer gene differences 

existed in the HTH vs. HTS comparison. 
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Figure 4-3. Bar plot of the number of differentially expressed genes in each of the 6 tissues and 

across comparison groups. HT = Hypertensive, 76.0 ± 21.9 mmHg; NT = Normotensive, 39.9 ± 

5.6 mmHg; HTH = hypertensive healthy; HTS = hypertensive symptomatic, confirmed or 

symptomatic for heart failure. Normotensive steers used a control, hypertensive steers used as the 

treatment group. Between HTH v. HTS, HTH group utilized as the control group. 

  

The major function of the aorta is the carry and distribute oxygen rich blood to all arteries, 

which then can be distributed to various regions of the body. Aortic diseases, including aortic 

aneurysm or aortic dissection, may limit the function of the aorta and result from issues including 

high blood pressure (London and Guerin, 1999; Forsdahl et al., 2009). The majority of identified 

DE genes were between NT and other groups, with the most between NT and HTH steers (Figure 
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4-3). A single uncharacterized gene overlapped between the 4 experiments: LOC783730 (a.k.a. 

Retrotransposon Gag-like protein 8). Although the function of this gene is uncharacterized, 

retrotransposons’ function is to self-amplify in a genome, increasing their copy numbers and 

ultimately genome size. This can potentially induce mutations by inserting themselves near or 

within genes (Wang et al., 2006; Cordaux and Batzer, 2009). Further research is needed to 

elucidate the exact genetic functions of this gene and its potential role in PH and heart failure.  

These results suggest the potential role of key regulators in the aorta in association to PH and heart 

failure.   

Typical high-altitude induced PH has been associated with right ventricle morphology, 

more specifically hypertrophy of the muscle (Pugliese et al., 2015; Ryan et al., 2015). Therefore, 

estimating a large number of differentially expression in this muscle was anticipated. Another 

interesting aspect of this research was to examine the number of DE genes overlapping in the right 

ventricle between the experiments. This is provided in the Venn diagram in Figure 4-5F. Between 

all analytical comparisons, no genes overlapped. Excluding the HTH v HTS analysis, 1,099 genes 

overlapped in the other three experiments. This suggested the majority of the gene expressions 

differences observed is due to PH, and less attributed to heart failure status. Most important to an 

objective of this study was to determine the differentially expressed genes in the experiment of NT 

versus HTS group. A total of 650 unique genes were differentially expressed between these groups 

of steers. These genes could provide the information needed to distinguish those animals that 

develop heart failure as a result of increased mPAP. A Venn diagram depicting these comparisons 

was created using Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 
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A) Aorta     B) Left Ventricle 

 
C) Longissimus dorsi    D) Lung 

 
E) Pulmonary artery    F) Right Ventricle 

Figure 4-4. Venn diagrams of the number of genes overlapping between the four different 

experimental groups in 6 tissues. HT = Hypertensive, 76.0 ± 21.9 mmHg; NT = Normotensive, 

39.9 ± 5.6 mmHg; HTH = hypertensive healthy; HTS = hypertensive symptomatic, confirmed or 

symptomatic for heart failure. Normotensive steers used a control, hypertensive steers used as the 

treatment group. Between HTH v. HTS, HTH group utilized as the control group. Created using 

Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 



 92 

Ingenuity pathway analyses 

Ingenuity Pathway Analysis has the ability to reveal influential genes from RNA-Seq data 

within the context of biological systems. These tools allowed for a strategic search of genes with 

particular functions or disease pathways of interest. Table 4-3 provides an overview of the inputted 

expression data to IPA, in addition to the top canonical pathways for each tissue. In general, 

canonical pathways refer to the idealized or generalized pathways that represent common 

properties of a particular signaling molecule or pathway. In contrast, non-canonical pathways are 

those that deviate from or derive from alternative biogenesis pathways.  

Important to note is the number of differentially expressed genes mapped in IPA is less 

than that identified with the differential expression analysis. This was due to the mapping. 

Ingenuity Pathway Analysis utilizes the most commonly used and annotated references (i.e., 

human and mouse) to map the genes. Therefore, genes with more than one identifier, or a gene ID 

not common to these references will not map, resulting in less utilized genes for the analysis. It is 

important to note that a minimum number of differentially expressed genes (n = 500 to 600) is 

needed for a proper pathway analysis to be conducted. Results suggested aorta and right ventricle 

pathways analyses have a sufficient number of genes (Table 4-2).   
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Table 4-1. Expression overview of differentially expressed (DE) genes inputted to Ingenuity 

Pathway Analysis for each tissue. 

Tissue 
Total DE 

genes1 

Down 

regulated2 

Up 

regulated2 
Top canonical pathway 

Aorta 631 287 344 Synaptic long-term depression 

Left ventricle 65 27 38 
Hepatic fibrosis/hepatic stellate cell 

activation 

Lung 10 4 6 Iron homeostasis signaling pathway 

Longissimus dorsi 25 7 18 Death receptor signaling 

Pulmonary artery 120 67 53 Signaling by Rho family GTPases 

Right ventricle 2,183 863 1,320 Oxidative phosphorylation 

1Corresponding to only mapped gene IDs 

2Regulation based upon expression differences from controls to treatments. Normotensive 

steers were used as controls and hypertensive steers used as treatments. Down regulated 

corresponds to genes downregulated in the hypertensive population. 

 

 Although calcium signaling is one of many canonical pathways, none of the top canonical 

pathways in any of the tissues were related to calcium signaling. Of the 6 tissues, calcium was 

recognized as a canonical pathway in aorta, longissimus dorsi, and right ventricle tissues. Calcium 

signaling is an important function of muscle contraction and relaxation, therefore it was not 

surprising to find this pathway in the longissimus dorsi and right ventricle muscles. This signaling 

pathway in the aorta may warrant further study to elucidate important aspects to PH status.  

 The top canonical pathway in the aorta was synaptic long-term depression. In brief, 

synaptic long-term depression is a process involving a decrease in the synaptic strength between 

parallel fiber and Purkinje cells induced by activation of parallel fibers and climbing fibers. 

Activation of these fibers opens voltage-gated calcium channels and causes a generalized influx 

of calcium (Hoxha et al., 2016). Therefore, this canonical pathway may be relative to our suggested 

hypothesis. 
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 Hepatic fibrosis, the top canonical pathway for the left ventricle, is characterized by 

changes in the subendothelial space as fibrosis develops in response to liver injury. These changes 

include alterations in both cellular responses and extracellular matrix composition (Friedman, 

2000). Left ventricular fibrosis in cattle is a current focus of study in obesity-associated PH in beef 

cattle (Krafsur et al., 2019). However, cattle in that study were late-fed steers, differentiated from 

the steers in our current study by both age and weight of finishing. This canonical pathway appears 

to be of influence on PH status and warrants continued exploration. 

Iron homeostasis signaling pathway was the top canonical pathway identified for the lung 

tissue samples. Research by Cotroneo et al., (2015) revealed pulmonary vascular remodeling 

associated with raised pulmonary arterial pressure and right ventricular hypertrophy in iron 

deficient mice. This remodeling was reversed with iron treatment, suggesting the role of iron in 

pulmonary vascular homeostasis. In a review by Robinson et al., (2014), research on the role of 

iron in processes pertaining to pulmonary arterial hypertension are explored in depth. 

The top canonical pathway of differentially expressed genes in longissimus dorsi muscle 

samples was death receptor signaling. In general, death receptor signaling (a.k.a. apoptosis, or 

programmed cell death) is modulated by a number of different factors and is characterized by 

approximately 8 different members (Lavrik et al., 2005). In the mammalian model, caspase 

activation not only controls cell death signaling, but additional vital processes such as cell 

differentiation, immunity, learning and memory (Fuchs and Steller, 2011). Preliminarily, it does 

not appear that the death receptor signaling pathway has significant correlation to either calcium 

regulation or pulmonary hypertension status.   

 Signaling by Rho family GTPases was the top canonical pathway identified in the 

pulmonary artery differentially expressed genes. Rho family GTPases regulate many important 
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processes including organization of the actin cytoskeleton, gene transcription, cell cycle 

progression, and membrane trafficking (Kjøller and Hall, 1999). The includes the movement of 

calcium across the cell membrane. The availability and signaling of calcium can have downstream 

regulation on Rho family GTPase activity (Saneyoshi and Hayashi, 2012) 

The top canonical pathway identified for the right ventricle was oxidative phosphorylation. 

The process involving the formation of ATP as a result of the transfer of electrons, oxidative 

phosphorylation is interrupted during times of oxidative stress. In this, a cascade of events involves 

the influx of calcium into the cell, mitochondria, and nucleus, regulating 

phosphorylation/dephosphorylation of proteins and modulating signal transduction pathways 

(Ermak and Davies, 2002; Clapham, 2007). This canonical pathway appears to influence or be 

influenced by the candidate genes selected through the regulation of calcium availability and 

utilization. 

Candidate gene selection 

 The selection of putative candidate genes for additional gene expression studies 

encompassed a review of previous literature, results of the DE analysis and IPA, in addition to 

searches through the National Center for Biotechnology Information (NCBI) gene database and 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Ten genes were 

chosen as candidates for qPCR (Table 4-4). Bioinformatic analyses can reveal a large number of 

potentially influential genes within the data. This creates difficulty in narrowing to a list of 

approximately 10 genes through the selection criteria methodology outlined in Figure 4-1. A 

literature review yielded multiple studies evaluating the influence the 10 candidate genes on both 

pulmonary hypertension as well as calcium signaling and regulation (Table 4-5). A more in-depth 

evaluation of these studies is provided in Chapter 5 of this dissertation.
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Table 4-2. List of candidate genes for qPCR gene expression validation.  

Gene Name Gene ID Chr1 Location2 
Average 

Log2 FC3 
Function 

ASIC2 
Acid sensing ion 

channel subunit 2 
617930 19 16022575..17228963 -3.5395 

Membrane ion channel; Activator of 

the calcineurin/NFAT signaling 

pathways 

EDN1 Endothelin 1 281137 23 44156440..44163423 1.3272 Vasoconstrictor 

FBN1 Fibrillin 1 281154 10 61654541..61919167 1.0283 Extracellular matrix glycoprotein 

KCNMA1 

Potassium calcium-

activated channel 

subfamily M alpha 1 

282573 28 32610164..33387551 1.5703 Large conductance ion channel 

NOX4 NADPH oxidase 4 378474 29 6120515..6303004 2.2042 
Catalytic subunit the NADPH oxidase 

complex; Acts as an oxygen sensor 

P2RY6 
Pyrimidinergic 

receptor P2Y6 
539703 15 52754742..52790314 -1.1681 

G-protein coupled receptor; Mediates 

inflammatory responses 

PLA2G4A 
Phospholipase A2 

group IVA 
525072 16 67907024..68081280 1.1096 

Catalyzes the hydrolysis of membrane 

phospholipids to release arachidonic 

acid 

RCAN1 
Regulator of 

calcineurin 1 
539640 1 882073..1002231 1.7262 

Calcium/calmodulin-dependent 

phosphatase 

RGS4 
Regulator of G 

protein signaling 4 
617437 3 6290862..6297919 1.8992 

Regulator/inhibitor of G-protein 

signaling 

THBS4 Thrombospondin 4 541281 10 11006321..11060136 2.5556 

Adhesive glycoproteins that mediate 

cell-to-cell and cell-to-matrix 

interactions 
1Bos taurus Chromosome 
2Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream 

3Average log2 fold change estimated from differential expression analysis (hypertensive compared to normotensive) of total counts 

from RNA-sequencing. 
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Table 4-3. Candidate genes utilized in previous research associated with cardiopulmonary 

disease traits.  

Gene References 

ASIC2 de Campos Grifoni et al., 2008; Lu et al., 2009; Abboud, 2015; Zhou et al., 2017 

EDN1 
Schiffrin, 2005; Murphy and Eisner, 2006; Castro et al., 2007; Deacon et al., 

2010; Calabro et al., 2012; Bkaily et al., 2015 

FBN1 Powell et al., 1997; Shen et al., 2011; Jeppesen et al., 2012; Chen et al., 2014 

KCNMA1 
Tomas et al., 2008; Barnes et al., 2016; D. Brown (Beef calf model; results 

unpublished) 

NOX4 
Mittal et al., 2007; Li et al., 2008; Chen et al., 2012; Zhao et al., 2015; He et al., 

2017 

P2RY6 
Hou et al., 1999; Nishida et al., 2008; Tovell et al., 2008; Nishimura et al., 2016; 

Sunggip et al., 2017 

PLA2G4A 
Osanai et al., 1998; Handlogten et al., 2001; Magne et al., 2001; Ait-Mamar et al., 

2005 

RCAN1 
Bush et al., 2004; van Rooij et al., 2004; Canalder et al., 2006; Grammer, et al.  

2006 

RGS4 
Owen et al., 2001; Mittmann et al., 2002; Hyeseon et al., 2003; Gu et al., 2009; 

Opel et al., 2015 

THBS4 Stenina et al., 2005; Gabrielsen et al., 2007; Mustonen et al., 2012 
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Figure 4-5 is a network of the candidate genes and their relation to calcium and each other 

both intracellularly and extracellularly. Gene regulation is depicted by the coloration of the 

molecules, where green is upregulation and red is downregulation. The intensity of the coloration 

defines the extent of regulation, where the darker the color, the more regulated the molecule in our 

data. The figure is a visual representation of both the upstream regulation of calcium availability, 

as well as the downstream utilization of calcium relative to our candidate genes. Important to note 

that is that not all of our candidate genes have a direct connection to calcium but may be channeled 

through additional pathways.  
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Figure 4-5. Network presenting the extracellular and intracellular relationship between calcium 

the candidate genes. Candidate genes include: ASIC2, EDN1, FBN1, KCNMA1, P2RY6, NOX4, 

PLA2G4A, RCAN1, TGS4, and THBS4. Coloration of candidate genes shows degree of regulation 

in hypertensive samples as compared to normotensive samples, where the darker the color the 

higher the regulation; Green = downregulated, Red = upregulated. Black arrows represent the 

relationship or regulation between genes, where solid lines are direct relationships and dotted lines 

are more distant relationships. Red arrows represent the regulation of the gene expression on itself. 

 

 The main objective in identifying putative candidate genes was to reduce the number of 

genes to validate with qPCR methodology. There are key differences between RNA-Seq and qPCR 

results in gene expression data. Typically, qPCR is utilized instead of RNA-Seq for a small set of 

genes with known sequence. These analyses have the widest dynamic range of determining 

expression differences, lowest quantification limits, and leased biased results, as compared to 
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RNA-Seq and microarray analyses (Nonis et al., 2014). Additionally, often qPCR is used to 

confirm the results of RNA-Seq, which is usually only conducted on a small number of animals. 

A limitation to the use of qPCR, as compared to RNA-Seq is the broad dynamic range of 

expression that RNA-Seq provides. RNA-Seq is an analysis of genome-wide expression, but we 

are limited to the candidate genes chosen for qPCR. Quantitative reverse transcription PCR has its 

advantages if the number of genes is low to reduce costs, but for a large number of genes analyzed, 

RNA-Seq is more cost-effective 

CONCLUSIONS 

 Transcriptome data provides opportunity to understand differences in gene expression in 

disease related traits such as pulmonary hypertension. Differential expression and pathway 

analyses can be utilized to narrow the focus on influential genes on these traits. Genes regulating 

calcium availability and utilization were expressed differently in Angus steers fed at high altitude 

with and without pulmonary hypertension. Candidate genes included: ASIC2, EDN1, FBN1, 

KCNMA1, P2RY6, NOX4, PLA2G4A, RCAN1, TGS4, and THBS4. Validation of these candidate 

genes with additional gene expression methods is necessary. 



 101 

REFERENCES 

Abboud, F. M., and C. J. Benson. 2015. ASICs and cardiovascular homeostasis. Neuropharmacol. 

94:87-98. doi:10.1016/j.neuropharm.2014.12.017 

Ait-Mamar, B., M. Cailleret, C. Rucker-Martin, A. Bouabdallah, G. Candiani, C. Adamy, P. 

Duvaldestin, F. Pecker, N. Defer, and C. Pavoine. 2005. The cytosolic phospholipase A2 

pathway, a safeguard of β2-adrenergic cardiac effects in rat. J. Biol. Chem. 280:18881-

18890. doi:10.1074/jbc.M410305200 

Barbeira, A. N., S. P. Dickinson, R. Bonazzola, J. Zheng, H. E. Wheeler, J. M. Torres, E. S. 

Torstenson, K. P. Shah, T. Garcia, and T. L. Edwards. 2018. Exploring the phenotypic 

consequences of tissue specific gene expression variation inferred from GWAS summary 

statistics. Nat. Commun. 9:1825. doi:10.1038/s41467-018-03621-1 

Barnes, E., C. Chen, S. Barnes, F. Kim, L. Lee, C. Alvira, and D. Cornfield. 2016. KCNMB1−/− 

Mice as a Model of Pulmonary Arterial Hypertension. FASEB J. 30:1138-1133.  

Bkaily, G., L. Avedanian, J. Al-Khoury, M. Chamoun, R. Semaan, C. Jubinville-Leblanc, P. 

D’Orléans-Juste, and D. Jacques. 2015. Nuclear membrane R-type calcium channels 

mediate cytosolic ET-1-induced increase of nuclear calcium in human vascular smooth 

muscle cells. Can. J. Physiol. Pharmacol. 93:291-297. doi:10.1139/cjpp-2014.0519 

Bush, E., J. Fielitz, L. Melvin, M. Martinez-Arnold, T. A. McKinsey, R. Plichta, and E. N. Olson. 

2004. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen 

for modifiers of the calcineurin signaling pathway. Proc. Natl. Acad. Sci. 101:2870-2875. 

doi:10.1073pnas.0308723101 

Calabro, P., G. Limongelli, V. Maddaloni, C. D. Vizza, M. D’Alto, R. D’Alessandro, R. Poscia, 

P. Argiento, B. Ziello, and R. Badagliacca. 2012. Analysis of endothelin-1 and endothelin-

1 receptor A gene polymorphisms in patients with pulmonary arterial hypertension. Intern. 

Emerg. Med. 7:425-430. doi:10.1007/s11739-011-0643-2 

Canaider, S., F. Facchin, C. Griffoni, R. Casadei, L. Vitale, L. Lenzi, F. Frabetti, P. D'Addabbo, 

P. Carinci, and M. Zannotti. 2006. Proteins encoded by human Down syndrome critical 

region gene 1-like 2 (DSCR1L2) mRNA and by a novel DSCR1L2 mRNA isoform interact 

with cardiac troponin I (TNNI3). Gene 372:128-136. doi:10.1016/j.gene.2005.12.029 

Castro, M., F. Rodríguez Pascual, N. Magán Marchal, J. Reguero, C. Alonso Montes, C. 

Moris, V. Alvarez, S. Lamas, and E. Coto. 2007. Screening of the endothelin1 gene 

(EDN1) in a cohort of patients with essential left ventricular hypertrophy. Ann. Hum. 

Genet. 71:601-610. doi:10.1111/j.1469-1809.2007.00351.x 

Chen, F., S. Haigh, S. A. Barman, and D. Fulton. 2012. From form to function: the role of Nox4 

in the cardiovascular system. Front. Physiol. 3:412. doi:10.3389/fphys.2012.00412 

Chen, J., S. Yang, X. Zhao, J. Shen, H. Wang, Y. Chen, Y. Ji, W. Wang, W. Zhou, and X. Wang. 

2014. Association study of common variations of FBN1 gene and essential hypertension 

in Han Chinese population. Mol. Biol. Rep. 41:2257-2264. doi:10.1007/s11033-014-3078-

9 



 102 

Cordaux, R., and M. A. Batzer. 2009. The impact of retrotransposons on human genome evolution. 

Nat. Rev. Genet. 10:691. doi:10.1038/nrg2640 

De Campos Grifoni, S., S. E. McKey, and H. A. Drummond. 2008. Hsc70 regulates cell surface 

ASIC2 expression and vascular smooth muscle cell migration. Am. J. Physiol. Heart Circ. 

Physiol. doi:10.1152/ajpheart.01271.2007 

Deacon, K., and A. J. Knox. 2010. Endothelin-1 (ET-1) increases the expression of remodelling 

genes in vascular smooth muscle through linked calcium and cyclic-adenosine mono-

phosphate (CAMP) pathways: role of a phospholipase A2 (cPLA2)/cyclo-oxygenase-2 

(COX-2)/prostacyclin receptor dependent autocrine loop. J. Biol. Chem.:jbc. M110. 

139485. doi:10.1074/jbc.M110.139485 

Forsdahl, S. H., K. Singh, S. Solberg, and B. K. Jacobsen. 2009. Risk factors for abdominal aortic 

aneurysms. Circulation 119:2202-2208. doi:10.1161/CIRCULATIONAHA.108.817619 

Friedman, S. L. 2000. Molecular regulation of hepatic fibrosis, an integrated cellular response to 

tissue injury. J. Biol. Chem. 275:2247-2250. doi:10.1074/jbc.275.4.2247 

Fuchs, Y., and H. Steller. 2011. Programmed cell death in animal development and disease. Cell 

147:742-758. doi:10.1016/j.cell.2011.10.033. 

Gabrielsen, A., P. R. Lawler, W. Yongzhong, D. Steinbrüchel, D. Blagoja, G. Paulsson-Berne, J. 

Kastrup, and G. K. Hansson. 2007. Gene expression signals involved in ischemic injury, 

extracellular matrix composition and fibrosis defined by global mRNA profiling of the 

human left ventricular myocardium. J. Mol. Cell. Cardiol. 42:870-883. 

doi:10.1016/j.yjmcc.2006.12.016 

Grammer, J. B., S. Bleiziffer, F. Monticelli, R. Lange, and R. Bauernschmitt. 2006. Calcineurin 

and matrix protein expression in cardiac hypertrophy. Basic Res. Cardiol. 101:292-300. 

doi:10.1007/s00395-006-0598-z 

GTEx Consortium. 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue 

gene regulation in humans. Science 348:648-660. doi:10.1126/science.1262110 

Gu, Y., C. Zhou, L. Hu, Q. Chen, and W. Zhang. 2010. Effects of calponin-1 gene silencing on the 

biological behavior of uterine smooth muscle cells. J. Southern Medical University 

30:1369-1372.  

Handlogten, M. E., C. Huang, N. Shiraishi, H. Awata, and R. T. Miller. 2001. The Ca2+-sensing 

receptor activates cytosolic phospholipase A2 via a Gqα-dependent ERK-independent 

pathway. J. Biol. Chem. 276:13941-13948. doi:10.1074/jbc.M007306200 

Hasenfuss, G., and B. Pieske. 2002. Calcium cycling in congestive heart failure. J. Mol. Cell. 

Cardiol. 34:951-969. doi:10.1006/jmcc.2002.2037 

He, J., X. Li, H. Luo, T. Li, L. Zhao, Q. Qi, Y. Liu, and Z. Yu. 2017. Galectin-3 mediates the 

pulmonary arterial hypertension–induced right ventricular remodeling through interacting 

with NADPH oxidase 4. J. Am. Soc. Hypertens. 11:275-289. e272. 

doi:10.1016/j.jash.2017.03.008 

Holt, T. N., and R. J. Callan. 2007. Pulmonary arterial pressure testing for high mountain disease 

in cattle. Vet. Clin. North Am. Food Anim. Pract. 23:575-596. 

doi:10.1016/j.cvfa.2007.08.001 



 103 

Hou, M., M. Malmsjö, S. Möller, E. Pantev, A. Bergdahl, X.-H. Zhao, X.-Y. Sun, T. Hedner, L. 

Edvinsson, and D. Erlinge. 1999. Increase in cardiac P2X1-and P2Y2-receptor mRNA 

levels in congestive heart failure. Life Sci. 65:1195-1206.  

Hoxha, E., F. Tempia, P. Lippiello, and M. C. Miniaci. 2016. Modulation, plasticity and 

pathophysiology of the parallel fiber-Purkinje cell synapse. Front. Synaptic Neurosci. 8:35. 

doi:10.3389/fnsyn.2016.00035 

Hyeseon, C., K. Harrison, O. Schwartz, and J. H. Kehrl. 2003. The aorta and heart differentially 

express RGS (regulators of G-protein signalling) proteins that selectively regulate 

sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. Biochem. J. 371:973-

980. doi:10.1042/bj20021769 

Jeppesen, J., N. D. Berg, C. Torp-Pedersen, T. W. Hansen, A. Linneberg, and M. Fenger. 2012. 

Fibrillin-1 genotype and risk of prevalent hypertension: a study in two independent 

populations. Blood Press. 21:273-280. doi:10.3109/0803705.2012.680750 

Kjøller, L., and A. Hall. 1999. Signaling to rho GTPases. Exp. Cell Res. 253:166-179.  

Krafsur, G. M., J. M. Neary, F. Garry, T. Holt, D. H. Gould, G. L. Mason, M. G. Thomas, R. M. 

Enns, R. M. Tuder, and M. P. Heaton. 2019. Cardiopulmonary remodeling in fattened beef 

cattle: a naturally occurring large animal model of obesity-associated pulmonary 

hypertension with left heart disease. Pulm. Circ. 9:1–13. doi:10.1177/2045894018796804 

Lavrik, I., A. Golks, and P. H. Krammer. 2005. Death receptor signaling. J. Cell Sci. 118:265-267. 

doi:10.1242/jcs.01610 

Li, S., S. S. Tabar, V. Malec, B. G. Eul, W. Klepetko, N. Weissmann, F. Grimminger, W. Seeger, 

F. Rose, and J. Hänze. 2008. NOX4 regulates ROS levels under normoxic and hypoxic 

conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial 

fibroblasts. Antioxid. Redox Signal. 10:1687-1698. doi:10.1089/ars.2008.2035 

London, G. M., and A. P. Guerin. 1999. Influence of arterial pulse and reflected waves on blood 

pressure and cardiac function. Am. Heart J. 138:S220-S224. doi:10.1016/S0002-

8703(99)70313-3 

Lu, Y., X. Ma, R. Sabharwal, V. Snitsarev, D. Morgan, K. Rahmouni, H. A. Drummond, C. A. 

Whiteis, V. Costa, and M. Price. 2009. The ion channel ASIC2 is required for baroreceptor 

and autonomic control of the circulation. Neuron 64:885-897. 

doi:10.1016/j.neuron.2009.11.007 

Magne, S., D. Couchie, F. Pecker, and C. Pavoine. 2001. β2-adrenergic receptor agonists increase 

intracellular free Ca2+ concentration cycling in ventricular cardiomyocytes through p38 

and p42/44 MAPK-mediated cytosolic phospholipase A2 activation. J. Biol. Chem. 

276:39539-39548. doi:10.1074/jbc.M100954200 

Mittal, M., M. Roth, P. König, S. Hofmann, E. Dony, P. Goyal, A.-C. Selbitz, R. T. Schermuly, 

H. A. Ghofrani, and G. Kwapiszewska. 2007. Hypoxia-dependent regulation of 

nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circu. Res. 

101:258-267. doi:10.1161/CIRCRESAHA.107.148015 

Mittmann, C., C. H. Chung, G. Höppner, C. Michalek, M. Nose, C. Schüler, A. Schuh, T. 

Eschenhagen, J. Weil, and B. Pieske. 2002. Expression of ten RGS proteins in human 



 104 

myocardium: functional characterization of an upregulation of RGS4 in heart failure. 

Cardiovasc. Res. 55:778-786. doi:10.1016/S0008-6363(02)00459-5 

Murphy, E., and D. A. Eisner. 2006. How does endothelin-1 cause a sustained increase in 

intracellular sodium and calcium which lead to hypertrophy? J. Mol. Cell. Cardiol. 41:782-

784. doi:10.1016/j.yjmcc.2006.08.003 

Mustonen, E., H. Ruskoaho, and J. Rysä. 2012. Thrombospondin-4, tumour necrosis factor-like 

weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix 

modulating factors in cardiac remodelling. Ann. Med. 44:793-804. 

doi:10.3109/07853890.2011.614635 

Neary, J. M., F. B. Garry, T. N. Holt, M. G. Thomas, and R. M. Enns. 2015. Mean pulmonary 

arterial pressures in Angus steers increase from cow–calf to feedlot–finishing phases. J. 

Anim. Sci. 93:3854-3861. doi:10.2527/jas2015-9048 

Newman, J. H., T. N. Holt, J. D. Cogan, B. Womack, J. A. Phillips III, C. Li, Z. Kendall, K. R. 

Stenmark, M. G. Thomas, and R. D. Brown. 2015. Increased prevalence of EPAS1 variant 

in cattle with high-altitude pulmonary hypertension. Nat. Commun. 6:1-5. 

doi:10.1038/ncomms7863 

Newman, J. H., T. N. Holt, L. K. Hedges, B. Womack, S. S. Memon, E. D. Willers, L. Wheeler, 

J. A. Phillips III, and R. Hamid. 2011. High-altitude pulmonary hypertension in cattle 

(brisket disease): Candidate genes and gene expression profiling of peripheral blood 

mononuclear cells. Pulm. Circ. 1:462-469. doi:10.4103/2045-8932.93545 

Nishida, M., Y. Sato, A. Uemura, Y. Narita, H. Tozaki Saitoh, M. Nakaya, T. Ide, K. Suzuki, K. 

Inoue, and T. Nagao. 2008. P2Y6 receptor G 12/13 signalling in cardiomyocytes 

triggers pressure overload induced cardiac fibrosis. EMBO J. 27:3104-3115. 

doi:10.1038/emboj.2008.237 

Nishimura, A., C. Sunggip, H. Tozaki-Saitoh, T. Shimauchi, T. Numaga-Tomita, K. Hirano, T. 

Ide, J.-M. Boeynaems, H. Kurose, and M. Tsuda. 2016. Purinergic P2Y6 receptors 

heterodimerize with angiotensin AT1 receptors to promote angiotensin II–induced 

hypertension. Sci. Signal. 9:ra7-ra7. doi:10.1126/scisignal.aac9187 

Nonis, A., B. De Nardi, and A. Nonis. 2014. Choosing between RT-qPCR and RNA-seq: a back-

of-the-envelope estimate towards the definition of the break-even-point. Anal. Bioanal. 

Chem. 406:3533-3536. doi:10.1007/s00216-014-7687-x 

Opel, A., M. Nobles, D. Montaigne, M. Finlay, N. Anderson, R. Breckenridge, and A. Tinker. 

2015. Absence of the regulator of G-protein signalling, RGS4, predisposes to atrial 

fibrillation and is associated with abnormal calcium handling. J. Biol. Chem.:jbc. M115. 

666719. doi:10.1074/jbc.M115.666719 

Osanai, T., T. Kamada, N. Fujiwara, T. Katoh, K. Takahashi, M. Kimura, K. Satoh, K. Magota, S. 

Kodama, and T. Tanaka. 1998. A novel inhibitory effect on prostacyclin synthesis of 

coupling factor 6 extracted from the heart of spontaneously hypertensive rats. J. Biol. 

Chem. 273:31778-31783.  



 105 

Owen, V., P. Burton, A. Mullen, E. Birks, P. Barton, and M. Yacoub. 2001. Expression of RGS3, 

RGS4 and Gi alpha 2 in acutely failing donor hearts and end-stage heart failure. Eur. Heart 

J. 22:1015-1020. doi:10.1053/euhj.2000.2578 

Powell, J., R. Turner, A. Henney, G. Miller, and S. Humphries. 1997. An association between 

arterial pulse pressure and variation in the fibrillin-1 gene. Heart 78:396-398.  

Pugliese, S. C., M. E. Yeager, and K. R. Stenmark. 2015. Hypoxic Pulmonary Hypertension. In: 

PanVasc. Med. 2nd. Springer Berlin Heidelberg. p. 4169-4209. 

Rhodes, J. 2005. Comparative physiology of hypoxic pulmonary hypertension: historical clues 

from brisket disease. J. Appl. Physiol. 98:1092-1100. 

doi:10.1152/japplphysiol.01017.2004 

Ryan, J. J., J. Huston, S. Kutty, N. D. Hatton, L. Bowman, L. Tian, J. E. Herr, A. M. Johri, and S. 

L. Archer. 2015. Right ventricular adaptation and failure in pulmonary arterial 

hypertension. Can. J. Cardiol. 31:391-406. doi:10.1016/j.cjca.2015.01.023 

Shen, C., X. Lu, L. Wang, S. Chen, Y. Li, X. Liu, J. Li, J. Huang, and D. Gu. 2011. Novel genetic 

variation in exon 28 of FBN1 gene is associated with essential hypertension. Am. J. 

Hypertens. 24:687-693. doi:10.1038/ajh.2011.21 

Soneson, C., and M. Delorenzi. 2013. A comparison of methods for differential expression analysis 

of RNA-seq data. BMC Bioinformatics 14:91. doi:10.1186/1471-2105-14-91 

Stanfield, C. L. 2011. The Cardiovascular System: Cardiac Function. In: Principles of Human 

Physiology. 4th. Pearson/Benjamin Cummings, New York City, NY.  

Stenina, O. I., V. Ustinov, I. Krukovets, T. Marinic, E. J. Topol, and E. F. Plow. 2005. 

Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb 

calcium binding sites. FASEB J. 19:1893-1895. doi:10.1096/fj.05-3712fje 

Sunggip, C., A. Nishimura, K. Shimoda, T. Numaga-Tomita, M. Tsuda, and M. Nishida. 2017. 

Purinergic P2Y6 receptors: A new therapeutic target of age-dependent hypertension. 

Pharmacol. Res. 120:51-59. doi:10.1016/j.phrs.2017.03.013 

Tomas, M., E. Vazquez, J. M. Fernandez-Fernandez, I. Subirana, C. Plata, M. Heras, J. Vila, J. 

Marrugat, M. A. Valverde, and M. Sentí. 2008. Genetic variation in the KCNMA1 

potassium channel α subunit as risk factor for severe essential hypertension and myocardial 

infarction. J. Hyperten. 26:2147-2153. doi:10.1097/HJH.0b013e32831103d8 

Tovell, V. E., and J. Sanderson. 2008. Distinct P2Y receptor subtypes regulate calcium signaling 

in human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 49:350-357. 

doi:10.1167/iovs.07-1040 

van Rooij, E., P. A. Doevendans, H. J. Crijns, S. Heeneman, D. J. Lips, M. van Bilsen, R. S. 

Williams, E. N. Olson, R. Bassel-Duby, and B. A. Rothermel. 2004. MCIP1 

overexpression suppresses left ventricular remodeling and sustains cardiac function after 

myocardial infarction. Circu. Res. 94:e18-e26. doi:10.1161/01.RES.0000118597.54416.00 

Wang, J., L. Song, D. Grover, S. Azrak, M. A. Batzer, and P. Liang. 2006. dbRIP: a highly 

integrated database of retrotransposon insertion polymorphisms in humans. Human 

mutation 27:323-329. doi:10.1002/humu.20307 



 106 

Zeng, X. 2016. Angus Cattle in High Altitude: Pulmonary Arterial Pressure, Estimated Breeding 

Value, and Genome-Wide Association Study. PhD Diss., Colorado State University, Fort 

Collins, CO. 

Zhao, Q. D., S. Viswanadhapalli, P. Williams, Q. Shi, C. Tan, X. Yi, B. Bhandari, and H. E. 

Abboud. 2015. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through 

activating Akt/mTOR and NFκB signaling pathways. Circulation 131:643-655. 

doi:10.1161/CIRCULATIONAHA.114.011079 

Zhou, Z.-h., J.-w. Song, W. Li, X. Liu, L. Cao, L.-m. Wan, Y.-x. Tan, S.-p. Ji, Y.-m. Liang, and 

F. Gong. 2017. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of 

colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J. Exp. Clin. 

Cancer Res. 36:130. doi:10.1186/s13046-017-0599-9  



 107 

CHAPTER 5 

QUANTITATIVE REVERSE-TRANSCRIPTION PCR VALIDATION: EXPRESSION 

DIFFERENCES OF CALCIUM RELATED GENES IN ASSOCIATION WITH PULMONARY 

HYPERTENSION IN ANGUS STEERS RAISED AT HIGH ALTITUDE 

 

SUMMARY 

Disease traits are typically polygenic, and knowledge of the genetic mechanisms regulating 

pulmonary hypertension (PH) in high altitude (> 1,500 m) beef production systems is somewhat 

limited. Pulmonary arterial pressures (PAP) are a measure of PH, where cattle can be categorized 

typically as hypertensive (HT; > 49 mmHg) or normotensive (NT; < 41 mmHg) for their risk of 

heart failure. A large number of genes were differentially expressed in cardiopulmonary tissues of 

steers with and without PH, many of which have biological functions regulating the availability or 

utilization of calcium. It is well documented that myocellular calcium is the primary determinant 

of normal cardiac contractile function. Quantitative real-time PCR (qPCR) was utilized to estimate 

stability of endogenous controls and expression of candidate genes in cardiac muscle tissues (n = 

11) from Angus steers (n = 20). Ten candidate genes were studied: ASIC2, EDN1, FBN1, 

KCNMA1, NOX4, PLA2G4A, RCAN1, RGS4, and THBS4. The most stable endogenous control, 

ACTB, was utilized for expression normalization (Qbase+ stability M = 0.23). Gene expression 

differences (P < 0.0055) between HT and NT steers were estimated for right papillary muscle in 

NOX4, PLA2G4A, RCAN1, and THBS4. Additionally, right cardiac ventricle tissues (top, middle, 

and bottom) exhibited differences (P < 0.0055) with candidate genes ASIC2, EDN1, NOX4, 

PLA2G4A, RCAN1, and THBS4. Directional expression changes in right ventricle middle tissues 

were validated between RNA-seq and qPCR analyses, with less abundant expression in ASIC2, 

and more abundant expression for all other genes in hypertensive steers as compared to steers with 
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normotensive. Results of the current study provide evidence of the dynamics of expression of 

genes that regulate the availability and utilization of calcium with PH status in Angus steers at 

high altitude. The identification and utilization of causative variants in the validated candidate 

genes provides opportunity for selection strategies to reduce susceptible to PH and potential heart 

failure in beef cattle. 

INTRODUCTION 

Pulmonary hypertension (PH) in beef cattle is characterized by abnormal pulmonary 

arterial pressures (PAP; > 41 mmHg) at high elevations. This disease phenotype develops through 

ventricular remodeling of the heart due to an inability to overcome the contractile mechanisms 

needed to pump blood through the pulmonary vasculature to be oxygenated (Neary et al., 2015; 

Pugliese et al., 2015; Ryan et al., 2015). Calcium functions as an intracellular messenger and 

cycling of calcium in muscle cells is important for normal cardiac contraction, with perturbations 

associated with heart dysfunction and disease (Houser et al., 2000; Hasenfuss and Pieske, 2002). 

Previously conducted transcriptome analyses revealed differentially expressed genes between 

hypertensive (76.0 ± 21.9 mmHg) and normotensive (39.9 ± 5.6 mmHg) Angus steers 

(unpublished data; N. Crawford). Many of these genes were in pathways that regulated either the 

availability (upstream) or utilization (downstream) of intracellular calcium. Validation of RNA-

seq results is dependent upon factors such as study design and statistical analyses, where the rigor 

of these, help reveal the need for validation with methods such as qPCR, in addition to answering 

the question of biological reproducibility of the results (Wise et al., 2007). We hypothesized that 

candidate genes (ASIC2, EDN1, FBN1, KCNMA1, NOX4, PLA2G4A, RCAN1, RGS4, and THBS4), 

as determined with preliminary RNA-seq differential expression analyses, will be validated with 

quantitative reverse transcription PCR (qPCR) methods in Angus steers at high altitude. The 
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objectives of this research were: 1) to establish the most appropriate reference genes in cardiac 

muscle tissues, and 2) to estimate and validate relative gene expression of calcium-related genes 

in cardiac muscle tissues using qPCR methods. Results of the current study will help to delineate 

calcium-associated genes involved in PH and heart failure susceptibility in Angus cattle at high 

altitude. 

MATERIALS AND METHODS 

All procedures for animal care, handling, and sampling were approved by the Colorado 

State University Institutional Animal Care and Use Committee (Protocol # 13-4111).  

Tissue/Samples 

Chapter 3 of this dissertation outlines the animal population and tissue samples available 

and utilized in this study. In short, cardiac muscle (n = 9) and muscle control tissues (n = 2) from 

yearling Angus steers (n = 20) were used. 

RNA isolation 

Total RNA was isolated from bovine muscle tissues with TRIzol Reagents and 

methodologies (APPENDIX C). In brief, the steps of the protocol included: homogenization, phase 

separation, RNA precipitation, wash, and solubilization. On average, 90 ± 15 mg (fresh mass) of 

each sample was cut into 3-6 small pieces and added to a 2 mL zirconium bead tube (D1033-30G) 

with 1 mL TRIzol reagent. Samples were homogenized with a Bead Bug Microtube Homogenizer 

(D1030). The DNAse treatment was conducted with a TURBO DNA-free Kit (Ambion; AM1907).  

RNA quantification and purity 

Concentrations and purity were estimated with a NanoDrop™ One Microvolume UV-Vis 

Spectrophotometer (ThermoFisher Scientific). These volumes were estimated both prior to a 

DNAse treatment, and then again after. All samples were normalized to a concentration of 500 
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ng/μL. Total RNA concentrations post DNAse treatment averaged 548 ± 62 ng/μL across the 11 

tissues and 20 animals (Table 5-1). Table 5-1 presents the average RNA concentrations (ng/uL), 

260/280 and 260/230 absorbance for each of the 11 tissues across 20 Angus steers. The ratio of 

absorbance at 260 nm and 280 nm is used to assess the purity of DNA and RNA in a sample. The 

ratio of absorbance at 260 nm and 230 nm is used to assess the purity nucleic acids in a sample 

(ThermoFisher Scientific, 2017). Brisket and Longissimus dorsi muscle tissues had lower average 

260/230 absorbance values, suggesting the presence of contaminants in the samples. This was 

likely because of the fatty and fibrous nature of these muscle tissues, as RNA purity and integrity 

could be affected. Alternative isolation methods could be implemented to increase RNA purity 

and integrity in these types of muscle tissues (Bio-Rad Laboratories, 2019).  
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Table 5-1. Average concentrations, 260/280, and 260/230 absorbance 

of isolated RNA from cardiac and control muscle tissues from 

yearling Angus steers. 

Tissue 

Concentration 

(ng/uL) 

260/280 

Absorbance1 

260/230 

Absorbance2 

Apex 563.64 1.99 1.90 

Brisket3 576.42 2.00 1.67 

Longissimus dorsi3 570.08 2.00 1.62 

Left ventricle, bottom 567.62 2.02 2.02 

Left ventricle, middle 561.81 1.98 2.04 

Left ventricle, top 537.41 1.99 1.88 

Moderator band4 475.77 1.99 1.89 

Right papillary muscle 536.65 2.01 1.98 

Right ventricle, bottom 574.08 1.95 1.94 

Right ventricle, middle 532.56 1.99 1.99 

Right ventricle, top 535.34 1.97 1.79 

Average 548.31 1.99 1.88 

1 Used to assess purity of RNA. A ratio of ~2.0 is generally accepted 

as “pure” for RNA. 
2 Used as a secondary measure of nucleic acid purity. Expected 

260/230 values are commonly in the range of 2.0-2.2. 
3 Utilized as a control muscle 
4 Very low yields (< 270 ng/uL) for two of the samples (#2385, 

#2392) 

 

Reference and candidate genes 

Reference genes, commonly used in study of cattle, were a normalization factor for the 

candidate genes, as the level of expression or stability of endogenous control should change little 

between both animal and tissue. Of those available, 8 reference genes were chosen for the current 

study. Table 5-2 presents all controls, including their name, location in the Bos taurus genome, 

and function.  

Previous research described in Chapter 3 resulted in 10 candidate genes for validation, also 

referred to as putative candidate genes. Table 5-3 lists of the genes chosen for quantitative real-

time PCR gene expression validation, including their name, location in the Bos taurus genome, 
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estimated Log2 fold change from RNA-seq expression analyses, and function. In brief, candidate 

genes were chosen based upon their Log2 fold change (> 1.5, < -1.5) and significance (P < 0.05) 

from RNA-seq, their function as an upstream regulator of calcium availability or downstream 

utilizer of calcium, and their influence on cardiac function and contractility. The 10 candidate 

genes were not an all-encompassing list of those genes that fit within the above criteria. 
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Table 5-2. List of reference genes (endogenous controls) evaluated for qPCR gene expression normalization.  

Gene Name Gene ID Chr1 Location2 Function 

18S rRNA Ribosomal RNA, 18 subunit 493779 27 6224662..6226184 Protein biosynthesis 

ACTB Actin beta 280979 25 38799230..38802643 Cytoskeletal structural protein 

B2M Beta-2-microglobulin 280729 10 103095452..103110775 
Protein binding; Immune 

response/defense 

GAPDH 
Glyceraldehyde-3-phosphate 

dehydrogenase 
281181 5 103870384..103874667 

Oxidoreductase in glucose 

metabolism 

HMBS 
Hydroxymethylbilane 

Synthase 
515614 15 29666771..29674064 

Involved in porphyrin 

metabolism 

HPRT1 
Hypoxanthine guanine 

phosphoribosyl transferase 1 
281229 X 18177361..18208571 

Purine synthesis in salvage 

pathway. 

RPLP0 Ribosomal protein, large, P0 286868 17 62557773..62561795 
Protein biosynthesis; Structural 

constituent of ribosome. 

RPS9 Ribosomal Protein S9 533892 18 63196977..63204297 
Protein biosynthesis; Structural 

constituent of ribosome. 
1 Chromosome 
2Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream 
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Table 5-3. List of candidate genes for qPCR gene expression validation.  

Gene Name Gene ID Chr1 Location2 

Average 

Log2 FC3 Function 

ASIC2 
Acid sensing ion 

channel subunit 2 
617930 19 16022575..17228963 -3.5395 

Membrane ion channel; Activator of 

the calcineurin/NFAT signaling 

pathways 

EDN1 Endothelin 1 281137 23 44156440..44163423 1.3272 Vasoconstrictor 

FBN1 Fibrillin 1 281154 10 61654541..61919167 1.0283 Extracellular matrix glycoprotein 

KCNMA1 

Potassium calcium-

activated channel 

subfamily M alpha 1 

282573 28 32610164..33387551 1.5703 Large conductance ion channel 

NOX4 NADPH oxidase 4 378474 29 6120515..6303004 2.2042 
Catalytic subunit the NADPH oxidase 

complex; Acts as an oxygen sensor 

P2RY6 
Pyrimidinergic receptor 

P2Y6 
539703 15 52754742..52790314 -1.1681 

G-protein coupled receptor; Mediates 

inflammatory responses 

PLA2G4A 
Phospholipase A2 

group IVA 
525072 16 67907024..68081280 1.1096 

Catalyzes the hydrolysis of 

membrane phospholipids to release 

arachidonic acid 

RCAN1 
Regulator of 

calcineurin 1 
539640 1 882073..1002231 1.7262 

Calcium/calmodulin-dependent 

phosphatase 

RGS4 
Regulator of G protein 

signaling 4 
617437 3 6290862..6297919 1.8992 

Regulator/inhibitor of G-protein 

signaling 

THBS4 Thrombospondin 4 541281 10 11006321..11060136 2.5556 

Adhesive glycoproteins that mediate 

cell-to-cell and cell-to-matrix 

interactions 
1Chromosome 
2Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream 

3Average Log2 fold change estimated from differential expression analysis of total counts from RNA-sequencing. 
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Primer design 

Specific primer pairs for reference and candidate genes were designed and selected for Bos 

taurus cattle utilizing the National Center from Biotechnology Information Primer Blast tool 

(https://www.ncbi.nlm.nih.gov). Reference gene primers included: 18S rRNA, ACTB, B2M, 

GAPDH, HMBS, HPRT1, RPLP0, and RPS9 (Table 5-4). Candidate genes included: ASIC2, 

EDN1, FBN1, KCNMA1, NOX4, P2RY6, PLA2G4A, RCAN1, RGS4, and THBS4 (Table 5-5). 

All primers were designed with the following parameters: a minimum amplicon size of 70 bp, a 

maximum amplicon size of 300 bp, and the primer must span an exon-exon junction. The most 

suitable forward and reverse primer pair for each reference and candidate gene was selected based 

upon the amplicon length, the span of 2 or more exons, guanine-cytosine (G-C) content less than 

60% (for melting and annealing stability), a melting temperature 58 to 60°C, with no more than 

3°C difference between the pair, and the lowest self-complementarity values. Primer pairs were 

synthesized by Integrated DNA Technologies, Inc. Primer pair oligos (25 nmole) were 

reconstituted with nuclease free water and aliquoted to 10 μM in 100 μL prior to use.
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Table 5-4. Primer sequences of reference or endogenous control genes used for mRNA expression analysis. 

Gene1 Accession Number Amplicon size Primer Sequence (5'à3') Tm2 (°C) GC%3 

18S rRNA - - Forward GTAACCCGTTGAACCCCATT 55.30 50.00 
   Reverse CCATCCAATCGGTAGTAGCG 55.10 55.00 

ACTB NM_173979.3 282 Forward AGAGCTACGAGCTTCCTGAC 58.90 55.00 
   Reverse GCGCGATGATCTTGATCTTCATT 59.81 43.48 

B2M NM_173893.3 195 Forward AAGTGGGATCGAGACCTGTA 57.47 50.00 
   Reverse ACATGGACATGTAGCACCCA 59.01 50.00 

GAPDH NM_001034034.2 259 Forward AGGTCGGAGTGAACGGATTC 59.47 55.00 
   Reverse CCAGCATCACCCCACTTGAT 60.03 55.00 

HMBS NM_001046207.1 283 Forward CCCGACACCGGAGGACATT 61.66 63.16 
   Reverse ACAGGCTCTTCTCTCCAATCTTAG 59.59 45.83 

HPRT1 NM_001034035.2 131 Forward AGCTACTGTAACGACCAGTCA 58.49 47.62 
   Reverse AGCAAAGTCTGCATTGTCTTCC 59.44 45.45 

RPLP0 NM_001012682.1 276 Forward TCGTGTGAGTGACATCGTCTT 59.39 47.62 
   Reverse CGGGTTGTTTTCCAGATGCC 59.76 55.00 

RPS9 NM_001101152.2 239 Forward CGTTGGCTTAGGCGCAGA 60.43 61.11 

      Reverse GGGTCTTTCTCATCCAGCGT 59.75 55.00 
118S rRNA = Ribosomal RNA 18 subunit; ACTB = Actin beta; B2M = Beta-2-Microglobulin; GAPDH = Glyceraldehyde-3-
Phosphate Dehydrogenase; HMBS = Hydroxymethylbilane Synthase; HPRT1 = Hypoxanthine Phosphoribosyltransferase 1; 

RPLP0 = Ribosomal Protein Lateral Stalk Subunit P0; RPS9 = Ribosomal Protein S9 
2Melting temperature 
3Percentage of nitrogenous bases that were either guanine (G) or cytosine (C) 
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Table 5-5. Primer sequences of candidate genes used for mRNA expression analysis. 

Gene1 
Accession 

Number 
Amplicon size Primer Sequence (5'à3') Tm2 (°C) GC%3 

ASIC2 NM_001076484.1 224 Forward GCGAGACAGAGGAAACGACA 60.04 55.00 
   Reverse ACAGGCGGTGATGCTGTAAA 59.96 50.00 

EDN1 NM_181010.2 289 Forward CCAGAGCACGTTGTTCCGTA 60.32 55.00 
   Reverse TGGCCTCCAACCTTCTTGTTT 60.06 47.62 

FBN1 XM_015473179.2 300 Forward GACAGAGTGCCGAGACATTGA 60.07 52.38 
   Reverse TTCATGCAGATCCCAGGTGT 59.01 50.00 

KCNMA1 NM_174680.2 115 Forward CTAACCTGGAGCTGGAAGCCT 61.52 57.14 
   Reverse GCATCTGCTGACTCTATCTTGACT 60.20 45.83 

NOX4 NM_001304775.1 279 Forward GAGATGCTGGGGCTAGGATTG 60.27 57.14 
   Reverse TTCGACAAAATCCTCGCGGT 60.32 50.00 

P2RY6 NM_001192295.1 239 Forward ACAGGAGGCTGTATGACCATTG 60.09 50.00 
   Reverse CTCGGTAGACGCAGTTGGTG 60.73 60.00 

PLA2G4A XM_024976260.1 261 Forward GGGACGACAACGTTTCCCAT 60.60 55.00 
   Reverse CACAGGCACATCACGTGTAGA 60.34 52.38 

RCAN1 NM_001034679.1 237 Forward GATGCCAGACTCCAGCTACA 59.17 55.00 
   Reverse ATACTTTTCCCCTGGCCCTA 57.70 50.00 

RGS4 NM_001046600.2 210 Forward AGTGGTGATTTGTCAGAGGGTG 60.22 50.00 
   Reverse ATCTTTTTGGCCTTGGGACT 57.30 45.00 

THBS4 NM_001034728.1 245 Forward AGAGGAAGGCACACGACTCT 60.54 55.00 

      Reverse TTCGGCTATGGTGTTTCGCA 60.32 50.00 
1
ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-

Activated Channel Subfamily M Alpha 1; NOX4 = NADPH Oxidase 4; P2RY6 = Pyrimidinergic Receptor P2Y6; PLA2G4A = 

Phospholipase A2 Group IVA; RCAN1 = Regulator Of Calcineurin 1; RGS4 = Regulator Of G Protein Signaling 4; THBS4 = 
Thrombospondin 4 
2 Melting temperature 
3 Percentage of nitrogenous bases that were either guanine (G) or cytosine (C) 
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Synthesis of cDNA 

Reagents for synthesis of cDNA were provided in the ImProm-II Reverse Transcription 

System kit (Promega; PRA3802). To prepare the cDNA, 2 μL total RNA was mixed with 2 μL of 

nuclease free water and 1 μL of primer mix per template. The primer mix comprised equal parts 

of random hexamer (50 ng/μL) and oligo(dT)20 (50 μM) primers. The reaction mix was incubated 

at 70°C for 5 min in a thermocycler and immediately chilled on ice (4°C) for a minimum of 5 min. 

The reverse transcription (RT) master mix was prepared for a 1x reaction as follows: 4 μL ImProm-

II 5x buffer, 2.4 μL MgCl2 (25 mM), 5 μL dNTP, 1 μL RNase Out (40 U/μL), 1 μL R.T, and 1.6 

μL nuclease free water to adjust the volume to 15 μL. The RT master mix was added to 5 μL 

prepared cDNA for a total volume of 20 μL for each template. The reaction was then incubated in 

the thermocycler at 25°C for 5 min, 42°C for 1 hour, 70°C for 15 min, and was then cooled and 

held at 4°C until further processing. All cDNA samples were evaluated through a melt curve 

analysis to ensure a single product was created.  

Primer efficiency 

 Standard dilutions were utilized to estimate and optimize the efficiency of each primer pair. 

Pooled cDNA (n = 22) was utilized for the efficiency testing. Samples were randomly selected 

through a random number generator for the pooled cDNA, where tissues (n = 11) were represented 

twice, and every animal (n = 20) was represented at least once. The pooled cDNA was 1:10 diluted, 

resulting in 6 dilutions: 1x, 0.1x, 0.01x, 0.001x, 0.0001x, and 0.00001x. Standard curves were 

estimated with a 1x PCR master mix of: 10 μL PowerUp™ SYBR™ Green Master Mix (Applied 

Biosystems; A25778), 0.6 μL primer, 7.4 μL nuclease free water, and 2 μL pooled cDNA template. 

Results were visualized and analyzed with QuantStudio™ Design and Analysis Software (version 

5?).  For samples with sub-optimal efficiencies, both 1:5 and 1:2 serial dilutions were conducted. 
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Qbase+ software was utilized to estimate and rank the stability of the reference genes tested through 

the geNorm program (Vandesompele et al., 2002). The most stable reference was utilized to 

estimate gene expression. Appendix D provides additional primer efficiency results.  

Quantitative reverse transcription PCR 

A gene maximization strategy was implemented with reactions on both candidate and 

reference genes. Both reference and candidate genes were repeated across 384-well plates (so-

called inter-run calibrator samples) in order to detect and remove inter-run variation. Hypertensive 

and normotensive groups represented biological replicates in each of the tissues. Technical 

replicates were represented through triplicate of every sample and gene on each plate. Non-

template controls were utilized to monitor contamination and primer-dimer formation that could 

produce false positive results. Appendix E provides an example of the 384-well plate arrangement 

for all samples (n = 20) and genes (n = 12) on a single tissue (i.e., Right ventricle bottom).  

The PCR master mix included a 1x reaction mix of 10 μL PowerUp™ SYBR™ Green 

Master Mix (Applied Biosystems; A25778), 5.6 μL nuclease free water, and 2 μL pooled cDNA 

template. Primers were diluted from 10 μM to 2.5 μM concentrations to increase volume added to 

the plate. Primer was the rate-limiting factor, therefore 2.4 μL of each primer was added to bottom 

of a 96-well plate followed by 17.6 μL of PCR master mix. Triplicate samples were plated in a 

384-well plate at 6 μL each (APPENDIX E). Gene expression was analyzed with a QuantStudio 5 

Real-Time PCR System (Applied Biosystems). Cycling conditions were as follows: 50°C for 2 

minutes, denaturation at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 sec for 

elongation and 60°C for 1 min for annealing. The melt curve analysis was then performed with 

heating to 95°C for 15 sec, 60°C for 1 min, and final 95°C for 15 sec. Estimation of fluorescence 

was complete at the end of each of the 40 cycles and additionally at the end of the melt curve 
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analysis steps. Real-time PCR monitors amplification of the target in real-time via a target-specific 

fluorescent signal emitted during amplification. QuantStudio™ Design and Analysis Software 

(version 5) and Expression Suite software was used to define the crossing threshold (CT) for each 

amplification reaction. Automatic thresholds were set for candidate gene RCAN1 and reference 

gene RPS9. All other candidate and reference genes were adjusted to eliminate background noise 

amplification. Thresholds ranged from 0.045 to 0.104. Results from all tissues and samples were 

exported to Microsoft Excel for further analysis. 

Data analysis 

 There are two widely accepted methods for estimating expression differences from RT-

qPCR results. The Livak method may be used to calculate relative changes in gene expression, 

with the assumption that candidate and reference gene efficiencies were the same (Livak and 

Schmittgen, 2001). The Pfaffl method is also used to calculate relative gene expression while 

correcting for differences in primer efficiencies (Pfaffl, 2001). It is important to differentiate 

among the two methodologies as they have different assumptions, which have an effect on results. 

Both methods have been implemented to understand how the results of these analyses differ. 

However, the methodology and results for the delta delta CT method (Livak and Schmittgen) are 

provided in Appendix F. 

The Pfaffl method (efficiency correction) 

 To calculate the relative gene expression using the Pfaffl method, candidate and reference 

gene efficiencies were accounted for within the analyses. Appendix D provides additional 

information on primer efficiencies of each gene based up serial dilution curves described 

previously (Tables A-1 and A-3). As with the Livak method, estimated CT values were first 

averaged across PCR technical replicates (triplicates). First, establish a calibrator. All CT values 
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for the normotensive steer group in a given gene and within a single tissue were utilized as the 

calibrator and established by estimating their average CT. This is completed for both the reference 

and candidate genes.  

The delta CT values were then calculated as 

∆"# = "#%&'()*&+,* − "#         (1) 

where "# was the crossing threshold value for the either the reference or the candidate gene and 

"#%&'()*&+,*  was the average crossing threshold value for calibrator, or all CT values for the 

normotensive steer group. The ΔCT values were calculated for both the reference and candidate 

genes with their respective calibrators. There were 9 or 10 animals represented in the normotensive 

group for all tissues, therefore the average expression for the control group should not be exactly 

1.0, as classically estimated. Calculations were repeated with any additional reference genes in 

separate analyses. 

To calculate the relative gene expression, primer efficiency percentages were converted 

using the equation 

"./012314	627812	1997:71/:; = <=>?@A>	ABB?C?ADCE	%GHH I + 1  (2) 

where an efficiency of 100% is represented in with value of 2.0. Relative gene expression, 

estimated as a ratio, was then calculated through the equation 

L1/1	1M621NN7./	2O37. = ABB?C?ADCE+&*PQ+
∆RS+&*PQ+

ABB?C?ADCE*QTQ*QU%Q
∆RS*QTQ*QU%Q

       (3) 

where 1997:71/:;VW>XAV  was the converted efficiency for the respective candidate gene from 

equation 2, ∆"#+&*PQ+  was the estimate ΔCT for the candidate gene from equation 1, 

1997:71/:;>ABA>ADCA was the converted efficiency for the reference gene, and ∆"#*QTQ*QU%Q was the 

estimate ΔCT for the reference gene.  



 122 

Mann-Whitney Test (Wilcoxon Rank Sum Test) 

Analyses were between unpaired or independent subjects. A Levene’s test was 

implemented to test for heterogeneity of variance between the two populations (normotensive 

versus hypertensive). The analyses revealed that the two populations had unequal variance. A 

Shapiro-Wilks test was utilized to test for the normality of the CT values for each candidate gene 

in each tissue. The analyses revealed that some of the populations violated normality. A Mann-

Whitney (Wilcoxon Rank Sum) non-parametric test was subsequently utilized to test the 

hypothesis 

YH:	[G = [\      (4) 

Y]:	[G ≠ [\ 

where [G was the average relative gene expression for the first population (normotensive) and [\ 

was the average relative gene expression for the second population (hypertensive). The average of 

the relative gene expression was calculated in equations 3 for the Pfaffl method. Estimations with 

the Livak method were presented in Appendix F. Mann-Whitney U-test defines the statistic U by 

the following formula 

_G =	/G/\ + D`(D`bG)
\ − dG           (5) 

_\ =	/G/\ + De(DebG)
\ − d\             

where dG denoted the sum of the ranks for the first group, d\ denoted the sum of the ranks for the 

second group, /G and /\ were sample sizes for the first and second group, respectively, and where 

_G + _\ =	/G ∗ /\. The Mann-Whitney U-tests were repeated for each gene (n = 9) and across 

each tissue (n =11). Significance was adjusted for multiple comparisons testing to the number of 

genes within a tissue, as comparisons were not conducted between tissues. Therefore, a standard 

significance of 0.05 was divided by 9 to yield a threshold significance of 0.0055.  
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Outlier tests 

A Grubbs’ test was used to detect potential outliers in the gene expression results. The test 

assumes normality of the population; however, as discussed previously the data were non-normally 

distributed. Detection of outliers was dependent upon significance of the test (P < 0.05).  

RESULTS AND DISCUSSION 

RNA quality 

Moderator band produced lower concentrations of RNA compared to all other tissues 

(Table 5-3). The low concentrations may be attributed to numerous factors. The moderator band 

is a fibrous muscle, which can influence RNA purity and integrity. The required amount of tissue 

for sufficient RNA yields was 50 to 100 mg (Appendix C). Collection methodology generated 

small yields of the muscle (< 50 mg), where the quantity of tissue available was completely utilized 

for some samples (i.e., steer #2385 and #2392). These low sample yields will directly influence 

RNA concentrations, and downstream expression results as well.  

In addition, collection, preservation, and storage of tissues will have an effect on RNA 

quality. Right and left ventricle middle samples, as well as moderator band samples were degraded 

in appearance (i.e., brown in color, shriveled). The exact cause is unknown. It was speculated that 

samples were improperly preserved, either through the snap freezing process in liquid nitrogen, in 

their long-term storage over liquid nitrogen vapor, or in transit. These factors were considered 

throughout the research process and in evaluation of research results. 

Relative gene expression 

Minimal differences were observed between the two methods (Livak vs. Pfaffl) for 

estimating gene expression (Table A-4; APPENXID F). The Livak method estimates relative gene 

expression with two assumptions: 1) amplification efficiency between primer sets does not differ 
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more than 5%, and 2) candidate and reference gene efficiencies amplify near 100%, or there is 

optimal doubling of the gene DNA during each PCR cycle. As displayed in Appendix D Tables 

A-1 and A-3, this is not an accurate assumption for our data, which could result in erroneous 

quantification of transcript amounts (Livak and Schmittgen, 2001). The Livak method is typically 

utilized in qPCR analyses involving a large number of genes, as quantifying efficiency of each 

candidate gene may be challenging. Given the small number of genes utilized in this study, the 

most appropriate method to estimate relative expression was the Pfaffl method. Table 5-7 displays 

the average gene expression for the hypertensive and normotensive groups across all candidate 

genes and all tissues utilizing the Pfaffl estimation method with efficiency correction. In addition, 

results are graphically represented in Appendix G.  

Candidate gene validation and differential expression 

Table 5-6 displays the validation of genes between the RNA-seq and qPCR fold change 

results. Fold change was not calculated exactly the same between the two methodologies, as the 

dynamic range or scale of expression differed, therefore we were unable to compare the 

quantitative measures of fold change directly. We in-turn opted to compare the directional (either 

more or less abundant) change of gene expression between hypertensive and normotensive steers. 

All candidate genes except ASIC2, were estimated to be more abundant in the hypertensive steers 

as compared to the control normotensive steers. Several other studies have estimated a correlation 

between RNA-seq and qPCR expression results (Asmann et al., 2009; Griffith et al., 2010; Wu et 

al., 2013; Shi and He, 2014).  
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Table 5-6. Comparison of fold change (FC) directionality from RNA-seq 

and qPCR analyses for right ventricle middle tissues. 

Gene1 RNA-seq FC2 qPCR FC2 

ASIC2 less less 

EDN1 more more 

FBN1 more more 

KCNMA1 more more 

NOX4 more more 

PLA2G4A more more 

RCAN1 more more 

RGS4 more more 

THBS4 more more 
1ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; 

FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel 

Subfamily M Alpha 1; NOX4 = NADPH Oxidase 4; PLA2G4A = 

Phospholipase A2 Group IVA; RCAN1 = Regulator Of Calcineurin 1; 

RGS4 = Regulator Of G Protein Signaling 4; THBS4 = Thrombospondin 4 
2Estimated through comparison of hypertensive to normotensive; less = 

less abundant expression in the hypertensive steers when compared to the 

normotensive steers; more = more abundant expression in the 

hypertensive steers when compared to the normotensive steers 

 

Differences between hypertensive and normotensive groups were observed in several 

tissues; specifically, right papillary muscle, and right ventricle bottom, middle and top (Table 5-

7). An objective of the study was to validate results from RNA-seq for the candidate genes, in 

which all of the genes were differentially expressed in the right ventricle RNA-seq data, and some 

of which were also differentially expressed in left ventricle. Therefore, it was not surprising to 

have those genes validated in the qPCR model for the right ventricle. 

The right ventricle is a highly influential muscle regulating heart function. Pulmonary 

hypertension develops through remodeling of the vasculature of the heart and lung and an inability 

of the animal to overcome the necessary force to eject the blood through the pulmonary artery, 

leading to hypertrophy of the right ventricle (Pugliese et al., 2015; Krafsur et al., 2019).  The 

muscles of the right ventricle of the heart enlarge to compensate, and as the impedance increases, 
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the heart could eventually fail. Heart failure is the resulting action that can take place in cattle with 

PH, if the heart succumbs to these pathophysiological changes (Voelkel et al., 2006). 

In general, the results appear to demonstrate that the majority of the candidate genes 

regulating calcium availability and utilization are upregulated in the hypertensive steers (Figure 4-

5; Table 5-6). This would imply that modifying the regulation of these genes (i.e., downregulation 

as opposed to upregulation) could be an option in altering susceptibility of cattle to PH. Important 

to note however is the polygenic nature of bovine PH, in which the candidate genes are likely just 

a subset of the number of genes controlling PH susceptibility. 
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Table 5-7. Summary of relative gene expression (Mean ± Standard Error) and Wilcoxon rank sum test1 (p-value) for muscle tissues (n = 11) 

and calcium-related candidate genes2 (n = 9) between hypertensive and normotensive3 groups. 

Tissue Group3 

ASIC2 EDN1 FBN1 KCNMA1 

μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 

Apex HT 0.77 ± 0.27 
0.243 

3.29 ± 1.34 
0.133 

1.39 ± 0.16 
1.000 

1.95 ± 0.51 
0.549 

NT 1.15 ± 0.24 1.18 ± 0.24 1.37 ± 0.14 1.60 ± 0.39 

Brisket HT 1.34 ± 0.27 
1.000 

1.28 ± 0.63 
0.905 

0.96 ± 0.20 
0.315 

0.97 ± 0.26 
0.356 

NT 1.37 ± 0.31 1.46 ± 0.45 1.23 ± 0.19 1.12 ± 0.13 

Longissimus dorsi HT 1.32 ± 0.18 
0.447 

1.02 ± 0.15 
0.604 

1.13 ± 0.29 
0.447 

0.97 ± 0.10 
0.315 

NT 1.11 ± 0.15 1.05 ± 0.11 1.31 ± 0.25 1.23 ± 0.17 

Left ventricle, bottom HT 1.82 ± 0.71 
0.684 

2.87 ± 1.25 
0.075 

1.25 ± 0.19 
0.684 

1.60 ± 0.68 
0.631 

NT 1.91 ± 0.94 1.06 ± 0.11 1.08 ± 0.13 1.11 ± 0.19 

Left ventricle, middle HT 1.29 ± 0.42 
0.661 

1.33 ± 0.12 
0.095 

0.6 ± 0.14 
0.780 

0.82 ± 0.16 
0.604 

NT 1.41 ± 0.40 1.07 ± 0.14 0.59 ± 0.13 0.64 ± 0.13 

Left ventricle, top HT 1.01 ± 0.38 
0.190 

2.00 ± 0.72 
0.063 

0.82 ± 0.06 
0.105 

0.93 ± 0.21 
0.353 

NT 1.18 ± 0.22 1.08 ± 0.14 1.03 ± 0.08 1.12 ± 0.17 

Moderator band HT 0.51 ± 0.13 
0.010 

1.09 ± 0.18 
0.661 

1.34 ± 0.27 
0.604 

1.86 ± 0.41 
0.113 

NT 1.22 ± 0.20 1.38 ± 0.46 1.06 ± 0.24 1.20 ± 0.53 

Right papillary muscle HT 0.55 ± 0.15 
0.043 

1.94 ± 0.58 
0.218 

1.65 ± 0.18 
0.023 

4.20 ± 1.13 
0.063 

NT 1.30 ± 0.29 1.10 ± 0.15 1.05 ± 0.11 1.43 ± 0.39 

Right ventricle, bottom HT 0.35 ± 0.21 
0.009 

1.82 ± 0.22 
0.007 

1.23 ± 0.11 
0.247 

2.14 ± 0.61 
0.353 

NT 1.60 ± 0.43 1.23 ± 0.35 1.13 ± 0.20 3.71 ± 2.65 

Right ventricle, middle HT 0.19 ± 0.11 
< 0.001 

2.13 ± 0.78 
0.222 

1.32 ± 0.13 
0.387 

2.66 ± 1.46 
1.000 

NT 1.32 ± 0.34 1.19 ± 0.27 1.08 ± 0.15 1.41 ± 0.42 

Right ventricle, top HT 0.13 ± 0.06 
< 0.001 

2.86 ± 1.01 
0.003 

1.27 ± 0.19 
0.631 

2.22 ± 0.39 
0.015 

NT 1.20 ± 0.24 1.03 ± 0.08 1.02 ± 0.07 1.08 ± 0.14 

1Non-parametric analysis; H0: Population means are equal; HA: Population means are not equal 
2ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel 

Subfamily M Alpha 1; NOX4 = NADPH Oxidase 4; PLA2G4A = Phospholipase A2 Group IVA; RCAN1 = Regulator Of Calcineurin 1; RGS4 

= Regulator Of G Protein Signaling 4; THBS4 = Thrombospondin 4 
3Physiological group based upon pulmonary arterial pressures (PAP); See Figure 3-2. 
4Signifance adjusted for multiple testing; Significance set at P < 0.005555; Bold and italicized p-values met significance threshold 
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Table 5-7. Continued… 

Tissue Group3 

NOX4 PLA2G4A   RCAN1 RGS4 THBS4 

μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 

Apex HT 1.81 ± 0.45 
0.315 

1.89 ± 0.25 
0.028 

2.53 ± 0.59 
0.010 

1.67 ± 0.36 
0.113 

1.23 ± 0.30 
0.842 

NT 1.21 ± 0.22 1.14 ± 0.19 1.20 ± 0.31 1.05 ± 0.10 1.15 ± 0.21 

Brisket HT 1.11 ± 0.21 
0.720 

0.79 ± 0.14 
0.133 

1.05 ± 0.17 
0.720 

2.06 ± 1.24 
0.661 

1.89 ± 0.68 
0.356 

NT 1.04 ± 0.09 1.09 ± 0.15 1.68 ± 0.78 1.26 ± 0.26 1.12 ± 0.19 

Longissimus 

dorsi 
HT 1.56 ± 0.27 

0.243 
1.32 ± 0.18 

0.315 
1.42 ± 0.27 

0.447 
1.18 ± 0.22 

0.780 
1.20 ± 0.14 

0.549 
NT 1.14 ± 0.18 1.02 ± 0.07 1.14 ± 0.19 1.11 ± 0.16 1.03 ± 0.08 

Left ventricle, 

bottom 
HT 1.64 ± 0.59 

0.631 
1.57 ± 0.32 

0.280 
1.98 ± 0.7 

0.190 
1.32 ± 0.34 

0.912 
1.44 ± 0.31 

0.393 
NT 1.12 ± 0.16 1.05 ± 0.10 1.10 ± 0.17 1.08 ± 0.13 1.06 ± 0.13 

Left ventricle, 

middle 
HT 0.89 ± 0.13 

0.447 
1.04 ± 0.14 

1.000 
1.16 ± 0.19 

0.447 
0.87 ± 0.10 

0.497 
0.86 ± 0.13 

0.315 
NT 1.17 ± 0.20 1.13 ± 0.19 1.17 ± 0.28 1.14 ± 0.21 1.07 ± 0.13 

Left ventricle, 

top 
HT 0.87 ± 0.16 

0.190 
0.99 ± 0.08 

0.579 
1.91 ± 0.56 

0.353 
0.61 ± 0.09 

0.043 
0.87 ± 0.10 

0.218 
NT 1.08 ± 0.14 1.03 ± 0.08 1.07 ± 0.13 1.16 ± 0.21 1.06 ± 0.12 

Moderator band HT 3.07 ± 0.91 
0.133 

1.63 ± 0.42 
0.447 

2.08 ± 0.46 
0.133 

1.19 ± 0.21 
0.243 

3.29 ± 0.93 
0.043 

NT 1.27 ± 0.27 1.25 ± 0.36 1.20 ± 0.23 2.47 ± 1.51 1.37 ± 0.41 

Right papillary 

muscle 
HT 5.51 ± 1.52 

< 0.001 
3.04 ± 0.74 

0.002 
3.61 ± 0.79 

0.001 
3.16 ± 0.71 

0.019 
3.34 ± 0.57 

0.005 
NT 1.09 ± 0.15 1.08 ± 0.14 1.12 ± 0.20 1.08 ± 0.14 1.17 ± 0.20 

Right ventricle, 

bottom 
HT 3.02 ± 0.62 

0.002 
1.85 ± 0.38 

0.035 
6.47 ± 1.98 

0.001 
1.75 ± 0.52 

0.190 
3.44 ± 0.89 

0.002 
NT 1.19 ± 0.24 1.40 ± 0.51 1.23 ± 0.29 2.5 ± 1.74 1.20 ± 0.28 

Right ventricle, 

middle 
HT 3.76 ± 1.10 

0.004 
2.63 ± 0.54 

0.001 
3.29 ± 0.87 

0.008 
3.21 ± 0.82 

0.040 
5.13 ± 1.35 

0.001 
NT 1.12 ± 0.19 1.08 ± 0.15 1.14 ± 0.20 1.18 ± 0.23 1.25 ± 0.38 

Right ventricle, 

top 
HT 2.90 ± 0.72 

0.002 
1.70 ± 0.22 

0.002 
3.22 ± 0.53 

0.004 
2.31 ± 0.60 

0.029 
3.54 ± 0.96 

< 0.001 

NT 1.05 ± 0.12 1.03 ± 0.08 1.07 ± 0.14 1.04 ± 0.09 1.06 ± 0.13 

1Non-parametric analysis; H0: Population means are equal; HA: Population means are not equal 
2ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel Subfamily M 

Alpha 1; NOX4 = NADPH Oxidase 4; PLA2G4A = Phospholipase A2 Group IVA; RCAN1 = Regulator Of Calcineurin 1; RGS4 = Regulator Of G Protein 

Signaling 4; THBS4 = Thrombospondin 4 
3Physiological group based upon pulmonary arterial pressures (PAP); See Figure 3-2. 
4Signifance adjusted for multiple testing; Significance set at P < 0.005555; Bolded p-values met significance threshold 
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Right papillary muscle 

Differences between hypertensive and normotensive groups were observed in the right 

papillary muscle tissues (Table 5-7). The contraction of the papillary muscle is important for the 

effectiveness of the atrioventricular valves, separating the atria and ventricles (Semafuko and 

Bowie, 1975). This provides opportunity to relate our results to those of previous research 

examining expression differences in mitral and tricuspid valve function. There are limited reports 

describing gene expression differences within right papillary muscle. However, an increase in 

protein synthesis during hemodynamic overload within the papillary muscle resulted in marked 

hypertrophy of the muscle (Peterson et al., 1972; Cooper et al., 1985; Komuro and Yazaki, 1993). 

Additionally, in pressure-overloaded papillary muscles in cats, a linear relationship was observed 

between increased stiffness and decreased contractile performance (Natarajan et al., 1979). 

Crawford et al. (2010) provided results to support the idea that right papillary muscles may lead to 

premature ventricular contractions and ventricular tachycardia, of which can have an effect on 

cardiac function. The right papillary muscle appears to be influenced by PH status in Angus cattle 

as per the validation of candidate genes examined.  

The NADPH oxidase 4 (NOX4) gene encodes a protein that acts as an oxygen sensor and 

catalyzes the reduction of molecular oxygen to various reactive oxygen species (Bedard and 

Krause, 2007). Expression of both NOX2 and NOX4 isoforms are was identified in cardiomyoctyes 

(Heymes et al., 2003). Overexpression of NOX4 in vascular smooth muscle cells is commonly 

associated with progression of cardiovascular disease (Ellmark et al., 2005; Sturrock et al., 2007; 

Manea et al., 2010). Increased expression of NOX4 was discovered in the pulmonary vasculature 

and lungs of hypoxia-exposed mice and humans with PH (Mittal et al., 2007). NOX4 was 

upregulated by hypoxia in adventitial fibroblasts from patients with idiopathic PH (Li et al., 2008). 



 130 

Expression of NOX4 was upregulated in right papillary muscle of hypertensive steers as compared 

to normotensive steers. Limited research is available on expression of NOX4 in the right papillary 

muscle. 

Phospholipase A2 Group IVA (PLA2G4A) is an enzyme activated by calcium 

concentration and(or) phosphorylation, promotes binding to the membrane, and is a key 

contributor to inflammatory processes (Leslie, 1997; Gilroy et al., 2004; Diouf et al., 2006; 

Linkous and Yazlovitskaya, 2010). This gene is regulated by several mechanisms, and its role is 

dependent upon the species or pathological state being examined (Ait-Mamar et al., 2005).  

Research by Zheng et al. (2009) estimated an upregulation of PLA2G4A in mice with mitral valve 

regurgitation. Mitral valve regurgitation is a condition in which the mitral valve of the heart fails 

to close tightly, forcing blood to flow backward. Contrary, Mahmut et al. (2014) estimated that 

PLA2G4A was significantly down-regulated in stenotic or narrowing valves. There is potential that 

valve changes may be associated with the proper function of the papillary muscle. Expression of 

PLA2G4A was significantly upregulated in hypertensive steers has compared to normotensive 

steers. Additional research is necessary to delineate the function of PLA2G4A in the right papillary 

muscle.  

Regulator of calcineurin 1 (RCAN1; aka calcipressin-1) is a protein activated by increases 

in cytoplasmic calcium, is upregulated by the NFAT signaling pathway, and stimulates genes 

regulating cardiac remodeling (Cavasin et al., 2014; Grabner et al., 2015). RCAN1 functions to 

inhibit calcineurin-dependent transcriptional responses by binding to the catalytic domain of 

calcineurin. Reduced expression of NFATc1, a gene targeting RCAN1 expression and inhibited by 

RCAN1 expression through a negative feedback loop, was associated with pulmonary valve 

homeostasis (Johnson et al., 2003; Chang et al., 2004). This echoed in earlier research by de La 
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Pompa et al. (1998) and Ranger et al. (1998) in which NFATc had a critical role in early 

development of cardiac valves. Downregulation of NFAT downregulates RCAN1 expression, 

resulting in decreased valve homeostasis, potentially reflected in ineffective contraction of the 

papillary muscle. In our study, expression of RCAN1 was upregulated in hypertensive steers as 

compared to normotensive steers in the right papillary muscle. Previous research does not provide 

exact evidence to support nor refute these reports. Pulmonary hypertension in our steers may be 

reflected in a hyper-responsive right papillary muscle to the stress stimuli and upstream regulators 

of RCAN1 expression.   

Thrombospondin 4 (THBS4; aka TSP-4) belongs to a family of adhesive glycoproteins that 

mediate cell-to-cell and cell-to-matrix interactions, where secretion of the protein is suppressed by 

calcium  (Lynch et al., 2012; Duquette et al., 2014). THBS4 expression decreased in pressure 

unloaded left ventricle papillary muscle and compared to normal muscle, leading to tissue growth 

and remodeling (Haggart, 2010; Haggartet al., 2013). Our results indicated an upregulation of 

THBS4 in hypertensive steers as compared to normotensive steers. These results appear to reiterate 

the results presented above from other research efforts. 

Right ventricle 

Acid-sensing ion channels (ASICs) belongs to the degenerin/epithelial Na+ channel family 

and serves many functions. There are four genes in this complex (ASIC1-ASIC4), which encode 

six distinct subunits (Sherwood et al., 2012). Under acidosis, overexpression ASIC2 can activate 

the calcineurin and NFAT signaling pathways (Zhou et al., 2017). Activation of the calcineurin 

and NFAT signaling pathways can increase the hypertrophic response of the tissue leading to 

hypertension, hypertrophy, and remodeling. The ASIC2 gene was downregulated in nodose ganglia 

of hypertensive rates (Abboud and Benson, 2015). Nodose ganglia are responsible in part for 
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sensations in the heart. Gronda et al. (2014) and Lu et al. (2009) studied the development of 

increased blood pressure in association with ASIC2-null mice, through the impairment of arterial 

baroreceptor signaling. Likewise, increased expression of ASIC2 inhibited remodeling and 

decrease blood pressure via vascular smooth muscle cell migration (de Campos Grifoni et al., 

2008). To our knowledge, the ASIC2 gene has not been studied in right ventricle tissue relative to 

PH or HF. Gene expression differences were estimated in both right ventricle middle and top 

tissues, where expression was less abundant in the hypertensive steers as compared to the 

normotensive steers (Table 5-7). With the exception of tissue, the results were consistent with 

reports of other research. This provides new knowledge of our understanding of the influence of 

ASIC2 gene in right ventricle tissue.  

Endothelin 1 (EDN1) is a peptide hormone that is a potent vasoconstrictor, is involved in 

a diverse number of biological actions, and its receptors are therapeutic targets in the treatment of 

PH (Stow et al., 2011). Endothelin-1 is a positive stimulus on heart rate, and indirect positive 

stimulus on contraction of cardiac muscle (Ogino et al., 1995; Strewler, 2000). It functions as a 

downstream regulatory of intracellular calcium availability through transcriptional regulation of 

inositol 1,4,5-trisphosphate (IP3) and nuclear factor of activated T-cells (NFAT) pathways (Rinne 

and Blatter, 2010). Multiple studies have established associations between increased EDN1 

expression and left ventricular hypertrophy and risk of developing hypertension (Arai et al., 1995; 

Tiret et al., 1999; Castro et al., 2007). Research by Elton et al. (1992) estimated a tendency for the 

expression of EDN1 to increase in the right ventricle with increasing time of hypoxia exposure. 

Gene expression differences were observed in right ventricle top tissues in the current study. 

Expression fold change yielded more abundant expression in the hypertensive steers as compared 

to the normotensive steers. These reports corroborate the results of previous research. 
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Basic functions of NOX4 were described previously. In mice, NOX4 expression contributes 

to age-dependent changes in contractility of ventricular myocytes through altered calcium 

utilization (Rueckschloss et al., 2010). Multiple studies have investigated the mechanisms NOX4, 

providing evidence that NOX4 can be targeted to reduce the effect of hypoxia-induced pulmonary 

vascular remodeling and right ventricular dysfunction (Green et al., 2012; Frazziano et al., 2013; 

Li et al., 2014). In addition, NOX4 interacts with other biomarkers regulating right ventricular 

remodeling, where expression of NOX4 was up-regulated in the right ventricle of patients with PH 

(He et al., 2017). Differences were observed in all right ventricle tissues, top, middle, and bottom 

in the current study (Table 5-7). Expression was more abundant in the hypertensive steers as 

compared to the normotensive steers. These results support those of other research studies.  

Description and function of PLA2G4A was described previously. In ventricular 

cardiomyoctyes, there appears to be an association between PLA2G4A expression, beta-adrenergic 

receptors (β1-AR, β2-AR), and arachidonic acid in the reduction of cardiac contractility 

(Madamanchi, 2007; Ait-Mamar et al., 2005). Mice deficient in PLA2G4A had increased right and 

left ventricle hypertrophy (Haq et al., 2003). This could have implications to the hypertrophy 

observed in the right ventricle of cattle suffering from PH. Expression was significantly different 

in right ventricle middle and bottom tissues, in which hypertensive steers had more abundant 

expression then the normotensive steers. These results appeared to be contradictory to the reports 

of other research studies, but concordant with the RNA-seq results. One explanation of the 

differing results may be the tissue examined. The studies described previously, in addition to 

others, utilized a both left and right ventricle tissues or a mix of ventricular muscle cells to estimate 

expression, whereas in the current study we estimated differences strictly in right ventricle middle 

and bottom tissue. Another potential reason for the different expression results is the species 



 134 

examined. Most research has previously been conducted in rodent models, whereas the current 

study was conducted in bovine. Additional research is necessary to delineate if functional 

differences exist for the candidate genes across species.  

Increased expression of RCAN1 (function described previously) was associated with 

decreased RV dysfunction, hypertrophy, and lower risk of heart failure in RV tissues from rats and 

mice with PH (Vega et al., 2003; Cavasin et al., 2014; Wang et al., 2016). Pharmacological drugs 

have been identified to inhibit the activation of the NFAT pathway by RCAN1, which provides 

opportunity for a potential therapeutic target to reduce or mitigate the extent of hypertrophy and 

RV pressure overload in cattle (Molkentin et al., 1998; Kapur et al., 2014). Results of the current 

study were concordant with the reports of previous research outlined previously, as more abundant 

expression was estimated in hypertensive steers as compared to normotensive in right ventricle 

bottom and top tissues.  

Deficiency of the glycoprotein THBS4 increased heart fibrosis in mice with PH, and 

appears to play an important role in myocardial structure, function, and remodeling (Frolova et al., 

2012). Thrombospondin 4 expression rises in response to vascular endoplasmic reticulum stress 

(i.e., hypertension) in the mesenteric arteries of rats (Mustonen et al., 2008; Palao et al., 2015; Sure 

and Katakam, 2016). Expression of THBS4 in left ventricle tissues was highly correlated with 

connective tissue growth factor, which induces pulmonary vascular remodeling and PH 

(Gabrielsen et al., 2007; Chen et al., 2011). Expression fold change yielded significantly more 

abundant expression in the hypertensive steers as compared to normotensive steers in all right 

ventricle tissues (top, middle, bottom). These results directly reflect the findings of research 

described previously for the THBS4 candidate gene. 
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Outlier identification 

 A Grubb’s test was implemented to identify outliers from the gene expression results for 

each gene and within each tissue. Table 5-8 displays the ID numbers of the steer identified as an 

outlier for its gene expression. Non-significant outliers were excluded. It is important to mention 

is the necessity to identify those animals that are more susceptible to developing PH. Therefore, 

expression identified as a significant outlier could be an indicator of that susceptibility. Of 

particular interest was the outliers identified for the candidate gene NOX4. All of the tissues 

identified hypertensive steers with outlying gene expression for NOX4, with 5 out of the 9 outliers 

being steer #2108. Of the 57 identified outliers, 14 were steer #2108, and 3 were steer #2162, both 

of which were confirmed or symptomatic for HF.
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Table 5-8. Steer IDs representing statistically significant outliers identified with a Grubb’s outlier identification test 

from the estimates of gene expression within each gene (n = 9) for each tissue (n = 11). 

Tissue 

Candidate Gene1,2 

ASIC2 EDN1 FBN1 KCNMA1 NOX4 PLA2G4A RCAN1 RGS4 THBS4 

Apex 2299 2108 ns 2113 2108 ns ns 2024 ns 

Brisket ns 2151 ns ns 2342 ns 2156 2342 2342 

Longissimus dorsi ns ns ns ns 2046 2045 ns ns ns 

Left ventricle, bottom 2107 2108 2046 2046 2046 2046 2108 ns 2342 

Left ventricle, middle ns ns 2113 ns ns ns 2156 2352 ns 

Left ventricle, top 2045 2108 ns ns ns ns 2108 2107 ns 

Moderator band ns 2385 2352 2300 2108 ns ns 2385 ns 

Right papillary muscle ns 2108 ns ns 2108 2162 2108 ns ns 

Right ventricle, bottom 2299 ns 2410 2410 2108 2410 2108 2410 2342 

Right ventricle, middle ns 2151 2410 2222 2222 2162 2162 2222 2151 

Right ventricle, top ns 2108 2222 ns 2108 2342 ns 2342 ns 
1ns = no significant outlier 
2Red IDs denote hypertensive steers; those bolded were confirmed or symptomatic for heart failure; black IDs denote 

normotensive steers 
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Typically, outliers are excluded from data to avoid problems with statistical analyses and 

significantly different estimated than the real parameters of the entire population (Osborne and 

Overbay, 2004; Barnett and Lewis, 1974). However, the exclusion of these data would result in 

loss of valuable information for this particular trait. We were limited in sample size, so the 

exclusion of such data would inadvertently decrease our statistical power to detect differences 

between animals, with additional effects on accuracy and error variance (Osborne and Overbay, 

2004). Grubb’s method performs well with and is generally accepted for small sample sizes. 

Exclusion (or acceptance) procedures of outliers are not only dependent upon a statistical basis, 

but also the evaluation of other data criteria and standards (i.e., normality, sample size, study 

design; Barbato et al., 2011). Quality control measures were put in place through the study to limit 

the occurrence of erroneous errors in gene expression. These measures included: 1) a gene 

maximization plate arrangement to limit inter-plate variation, 2) inclusion of endogenous control 

or reference genes across all plates, 3) analyzing samples in triplicate, 4) elimination of erroneous 

sample amplification, and 5) normalization of all expression with the reference gene. We therefore 

believe the inclusion of such data is important to the overall goal of the study.  

CONCLUSION 

 This study demonstrates validated expression differences of calcium-related 6 candidate 

genes (ASIC2, EDN1, NOX4, PLA2G4A, RCAN1, and THBS4) between hypertensive and 

normotensive Angus steers. Right papillary and ventricle muscles appear to be influential tissues 

in PH as differences in PAP groups was estimated. Our data suggested that genes regulating the 

availability and utilization of calcium are associated PH status in Angus cattle. The validation of 

the candidate genes provides opportunity to implement selection strategies, for example through 

the identification of causal variant, for reduced susceptibility to PH and heart failure. 
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CHAPTER 6 

SNP DETECTION: VARIANTS IN CALCIUM-RELATED GENES IN ASSOCIATION WITH 

PULMONARY HYPERTENSION IN ANGUS CATTLE FED AT HIGH ALTITUDE 

 

SUMMARY 

Elucidating the underlying genetic mechanisms regulating pulmonary hypertension in 

cattle is of importance to high altitude beef production systems. Cattle can be categorized by their 

pulmonary arterial pressure measures (PAP) as hypertensive (HT) or normotensive (NT) for 

pulmonary hypertension. Genes regulating the availability and downstream utilization of 

intracellular calcium may be influential to cardiopulmonary maladaptation in animals with 

hypertension. The utilization of transcriptomics concurrently with sequence polymorphism 

detection provides opportunities to understand gene regulation and functional polymorphisms 

within a gene. The objectives of this study were to: 1) detect single nucleotide polymorphisms 

(SNP) in the transcriptome of 6 tissues (aorta, middle left ventricle, longissimus dorsi muscle, 

lung, pulmonary artery, and middle right ventricle), and 2) identify functional consequences of 

those variants within validated candidate genes (ASIC2, EDN1, NOX4, PLA2G4A, RCAN1, 

THBS4). We hypothesized that a minimal number of exonic SNP will be identified in the 6 

candidate genes associated with regulating calcium availability and utilization in RNA-Seq data 

from tissue samples of Angus steers. Transcriptome (RNA-Sequencing) data were available on the 

6 tissues from steers (n = 14) raised at high altitude (2,150 m). Variant detection and annotation 

analyses were conducted with the ARS-UCD1.2 bovine reference in CLC Genomics Workbench 

software (version 11.0.1). Ensembl Variant Effect Predictor was utilized to determine functional 

consequences of detected SNP within candidate genes. In total, 104,949 SNP were previously 

annotated within the 6 candidate genes. Of the 1,445 exonic SNP, 375 synonymous and 1,087 non-
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synonymous SNP were identified in the Angus steers used in this study. The pooled Angus sample 

analysis revealed 68 SNP in the 6 candidate genes, of which 38 SNP were unique in the HT group 

and 8 were unique in the NT group. In the latter, a novel missense variant in EDN1 was identified 

which will alter the amino acid from an alanine to serine. In the HT group, a novel nonsense 

mutation in EDN1 was identified leading to a premature stopped transcript, as well as a missense 

mutation (rs109862098) in NOX4 altered the amino acid from a serine to threonine. Ten of the 68 

identified SNP are utilized on commercially available high-density SNP chips. Analysis of 

transcriptome data identified SNP within genes regulating calcium availability and utilization. 

These analyses enhanced our understanding of sequence polymorphisms that may be involved in 

regulating pulmonary hypertension in Angus cattle raised at high altitude. 

INTRODUCTION 

Pulmonary hypertension (PH), represented by pulmonary arterial pressures (PAP), pose 

problems for the beef industry (Holt and Callan, 2007). These problems arise as some cattle are 

unable to acclimate to altitude and physiological changes of the cardiopulmonary system (Neary 

et al., 2015; Pugliese et al., 2015; Ryan et al., 2015). Calcium is a key mediator of muscle cell 

function, specifically in cardiac contraction and relaxation mechanisms (Hasenfuss and Pieske, 

2002; Stanfield, 2011). Previous studies have identified associations between sequence 

polymorphisms and PH in cattle (Zeng, 2016; Cockrum et al., 2019). However, minimal research 

has been conducted to understand the specific variants within genes regulating calcium availability 

and utilization. There is a lack in knowledge of the potential influence these variants may have on 

PH in Angus steers. 

Increased utilization and implementation of ‘-omics’ technologies has provided increased 

opportunity in livestock research to investigate difficult to measure traits such as disease 
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susceptibility. Detection of single nucleotide polymorphisms and functional consequences of these 

variants with transcriptome (RNA-Seq) data provide insight into translational influence on gene 

function. The objectives of this study were to: 1) detect single nucleotide polymorphisms (SNP) 

in the transcriptome of 6 tissues, and 2) identify functional consequences of those variants 

associated with validated candidate genes from qPCR analyses. We hypothesized that a minimal 

number of exonic SNP will be identified in the 6 candidate genes associated with regulating 

calcium availability and utilization in RNA-Seq data from tissue samples of Angus steers fed at 

high altitude. Results of the current study provide an informative perspective on the utilization of 

RNA-Seq and functional influence of variants calcium-regulated candidate genes.  

MATERIALS AND METHODS 

Animal Care and Use Committee approval was not obtained because data were acquired 

from an existing sample database (Protocol # 13-4111). 

Tissues/Samples 

Chapter 3 of this dissertation outlines the animal population and tissue samples available 

and utilized in this study. In short, cardiac muscle (n = 9) and muscle control tissues (n = 2) from 

yearling Angus steers (n = 20) were used. 

A second set of data, also from the Colorado State University Beef Improvement Center, 

was utilized to determine the association between identified SNP on commercially available chips 

and PAP in a secondary population. The study received approval from the Colorado State 

University Animal Care and Use Committee prior to the sampling or handling of any animals 

(Protocol # 13-4136A). Angus steers (n = 65) were approximately 6 months of age when DNA 

was collected for genotyping. Genotypic data included a panel of 777,962 SNP (BovineHD 

BeadChip, Illumina, San Diego, CA) by GeneSeek (Neogen, Lincoln, NE). A subset of identified 
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SNP in the other data was extracted from the SNP panel for analyses. Additional data information 

can be found in the dissertation of Joseph Neary (2014). 

RNA isolation and sequencing 

 For the collected tissue samples, a Trizol reagent (Invitrogen) protocol was utilized for 

RNA isolation. Total RNA quality was evaluated using the RNA Integrity Number (RIN) value 

with Experion BioRad and was converted to double stranded cDNA. Adapters and indices were 

added to each sample. Sequence libraries were prepared with Illumina TruSeq stranded mRNA 

Sample Preparation kit. Sequencing was performed HiSeq 2000 sequencer analyzer (Illumina, San 

Diego, CA), and generated approximately 30 million single read sequences (100 bp) for each 

sample (Cánovas et al., 2014; Cánovas et al., 2016). Sequence analyses were conducted with CLC 

Genomics Workbench software (version 11.0.1; CLC Bio, Aarhus, Denmark) with the ARS-

UCD1.2 bovine reference and ARS-UCD1.2.95 annotation. Quality control measures were 

implemented, resulting in 68 samples for RNA-Seq. Graphical information on poor quality 

samples is provided in Appendix A. 

Variant detection and annotation 

 Detection analyses were performed by pooling all samples. As described by Piskol et al. 

(2013), pooling of sequence reads during assembly increases the number of available reads to 

increase coverage (i.e., alignment to the reference genome); therefore, increasing the power of 

variant detection. This concept was echoed in research results of Lehne et al. (2011) and Dias et 

al. (2017). A Fixed Ploidy Variant Detection tool in CLC Genomics Workbench software (version 

11.0.1) was implemented as the ploidy of bovine (diploid; 30 chromosomes) was known or fixed. 

The fixed ploidy variant caller was used to detect germline variants, discarding variants assumed 

to be a result of sequencing errors or mapping artifacts (Qiagen Bioinformatics). Parameters for 
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the pooled analyss were set as follows: ploidy: 2, variant probability: 90%, minimum coverage 

(reads): 20, minimum count (reads): 2, minimum variant frequency (%): 5, minimm central 

quality: 20, minimum neighborhood quality: 15, and relative read direction filter (%): 1.  

Variants subject to detection were within validated candidate genes: Acid sensing ion 

channel subunit 2 (ASIC2), Endothelin 1 (EDN1), NADPH oxidase 4 (NOX4), Phospholipase A2 

group IVA (PLA2G4A), Regulator of calcineurin 1 (RCAN1), and Thrombospondin 4 (THBS4; 

Table 6-3). Target genes were estimated as differentially expressed with RNA-Seq in ventricle 

tissues (Chapter 4) and subsequently validated with qPCR methodology (Chapter 5). Annotating 

amino acid changes and predicting the splice site effect of the variants were also determined within 

the CLC Genomics Workbench software.
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Table 6-1. List of validated candidate genes from RNA-Seq and qPCR gene expression studies. 

Gene Name Gene ID Chr1 Location2 Exons3 Function 

ASIC2 
Acid sensing ion 

channel subunit 2 
617930 19 16022575..17228963 11 

Membrane ion channel; Activator of the 

calcineurin/NFAT signaling pathways 

EDN1 Endothelin 1 281137 23 44156440..44163423 5 Vasoconstrictor 

NOX4 NADPH oxidase 4 378474 29 6120515..6303004 18 
Catalytic subunit the NADPH oxidase complex; 
Acts as an oxygen sensor 

PLA2G4A 
Phospholipase A2 

group IVA 
525072 16 67907024..68081280 19 

Catalyzes the hydrolysis of membrane 

phospholipids to release arachidonic acid 

RCAN1 
Regulator of 

calcineurin 1 
539640 1 882073..1002231 5 Calcium/calmodulin-dependent phosphatase 

THBS4 Thrombospondin 4 541281 10 11006321..11060136 22 
Adhesive glycoproteins that mediate cell-to-cell and 

cell-to-matrix interactions 
1
Bos taurus chromosome 

2Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream  
3Number of exons in the gene 
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Prediction of variant effects 

The Variant Effect Predictor (VEP) tool, available on the Ensembl database (release 95), 

was utilized to determine the effect of the identified variants, in addition to identifying novel 

variants (McLaren et al., 2016). Important to note was that more than one functional consequence 

can be assigned to a variant. Therefore, SNP overlapping or concordant between the pooled 

analyses were evaluated to reduced false positive variant identification. A Fisher exact test was 

implemented to identify variants more common in case samples as compared to control samples. 

In our analyses, HT steers were utilized as cases, and NT steers were the controls.  

SNP-chip inclusion 

Detected SNP from the candidate genes were identified within commercially available 

SNP-chips. The goal of this effort was to determine the current utilization of these SNP within the 

beef industry. 

Genotype differences by PAP and tissue specificity 

Kruskal-Wallis analyses, comparing the mean ranks of the groups (i.e., three genotypes of 

a SNP), were completed to determine if differences in PAP of the 10 HT and 10 NT steers existed 

between genotypes of identified SNP. These were completed between a subset of identified SNP 

identified in both the HT and NT groups, those identified solely in the HT group, and solely in the 

NT group. Likewise, tissue specificity was assessed for all identified SNP. 

Significant differences between genotypes were estimated for 5 of the 68 identified SNP 

(Figures 6-3 to 6-7). Utilizing R statistical software, the genotype-to-phenotype associations of 

these 5 SNP were conducted with a linear regression model of: PAP = SNP Genotype. The SNP 

genotypes were fit as a continuous, linear covariate for the number of B alleles (i.e., A/A = 0, A/B 

= 1, B/B = 2). An analysis of variance (ANOVA) test was utilized to determine significant sources 
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of variation of mPAP and the percent variation in PAP phenotypes explained by genotype. 

Heterogeneity of variance was also tested, where a skewed, bimodal distribution was observed 

(APPENDIX H). Violations of assumptions of normality were investigated using a Shapiro-Wilk 

normality test and quantile-quantile plots (APPENDIX H). A Box-Cox analysis was used to 

determine the most appropriate transformation for the data, yielding a power value (l; lambda) of 

-0.060 for PAP (Box and Cox, 1964). The ANOVA was then repeated to determine significant 

sources of variation with the log transformed data. 

The above analyses were repeated on supplementary genomic data available on 65 steers 

from the Colorado State University Beef Improvement Center (APPENDIX I). Genotypes of 

interest were those the 4 identified on the Illumina BovineHD BeadChip (Table 6-6), as this was 

accessible data for our use. Genotype was an insignificant predictor of PAP for all of the SNP of 

interest (P = 0.40 to 0.97). The Box-Cox analysis yielded a power value of -2.97 for PAP (Box 

and Cox, 1964). The ANOVA was then repeated to determine significant sources of variation with 

the transformed data, indicating genotype was still an insignificant predictor of PAP (P = 0.54 to 

0.87). Kruskal-Wallis analyses yielded non-significant PAP differences (P = 0.46 to 0.56) between 

genotypes for all of the 4 SNP on the commercially available chips. Appendix I provides additional 

results for this subset of data. 

RESULTS AND DISCUSSION 

Variant detection 

In the Ensembl SNP database (release 95), 104,949 SNP were previously annotated within 

the 6 candidate genes. Of the 1,445 exonic SNP, 375 synonymous and 1,087 non-synonymous 

SNP were identified. The variant detection analyses of the pooled RNA sequences revealed 68 

SNP in the 6 candidate genes. Figure 6-2 displays the comparison of identified SNP between 
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hypertensive and normotensive steer groups. Of the 68 SNP, 38 were uniquely detected in the HT 

group and 8 were detected in the NT group.  Thirty of the 68 SNP (44.1%) were intronic. Non-

coding variants have the potential to affect phenotype of the individual through alternative 

splicing, as detected SNP using RNA-Sequencing reads are expected to be exonic because of 

intronic splicing from pre-cursor messenger RNA (pre-mRNA; Wang and Cooper, 2007). A 

limitation to the use of RNA-Seq data for SNP discovery is limited knowledge of SNP outside of 

coding regions. Whole genome sequencing can identify SNP in other regions, such as the promoter 

or enhancer regions, which could have a significant effect on regulation and expression of the 

genes of interest.   

Previous RNA-Seq analyses attributed the identification of intronic SNP to accuracy of the 

sequence and annotation of the bovine reference. Discordances were identified between previous 

bovine genome assemblies (UMD 3.1 and Btau 4.6) as compared to the newest bovine assembly 

(ARS-UCD1.2), where the older assemblies were only approximately 60 to 80% accurate in 

annotating genes and their locations (Zhou et al., 2015; Utsunomiya et al., 2016). The newest 

bovine assembly was utilized for sequence and annotation; however, the results allude to the 

potential for improvement of annotated genes and their locations. An additional explanation for 

the large number of intronic SNP may be the efficacy of mRNA extraction. Intron-containing pre-

mRNA may be captured in the isolation of mRNA through certain methods of purifying mRNA 

molecules, resulting in intronic SNP emerging within our variant detection methods (Piskol et al., 

2013; Yousefi et al., 2018).  
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Figure 6-1. Comparison of the single nucleotide polymorphisms discovered using transcriptome 

(RNA-Seq) data from Angus steers using a pooled assembly approach across 6 tissues (right and 

left ventricle, pulmonary artery, aorta, lung, and longissimus dorsi) between hypertensive (HT) 

and normotensive (NT) steer groups. 

Functional consequences 

Twenty-two SNP were concordant between the two groups, where 19 SNP were previously 

identified variants, and 3 SNP were novel variants. Table 6-4 provides additional information on 

the functional consequences of the concordant SNP. The majority of the concordant SNP were 

synonymous (72.7%), in which the result of the nucleotide change was the same amino acid. This 

would imply that the variant was not a causative mutation to differentiating PH susceptibility. 

An important finding in the concordant SNP was that none of the SNP had non-

synonymous functional consequences. Non-synonymous SNP have the potential to influence the 

phenotype of interest through a change in the amino acid and protein structure (Koufariotis et al., 

2014; Iso-Touru et al., 2016). The results allude to the influence of SNP,  not related to differences 

attributed by breed or by PH physiological status, on this subset of steers. Filtering criteria was 

implemented to remove SNP that were the same as the reference allele (i.e., from Dominette, Line 

1 inbred Hereford), making these Angus-specific SNP, and concordant SNP between both 

hypertensive and normotensive Angus steers.  
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A possible explanation for the emergence of concordant SNP in both HT and NT steers 

was the lack of breed diversity of the samples. As discussed in Chapter 3 on the study animal 

population, all samples came from Angus steers of the CSU-BIC, and in addition from the same 

birth year. Statistical modeling and analyses can be utilized to account for the relational ties in the 

data, however this was not implemented in the variant detection methods. As outlined by Bulmer 

(1971) and Gomez-Raya and Burnside (1990), genetic variation and genetic change is highly 

dependent upon the correlation between pairs of loci, where more pairs of loci limits change, in 

which less herd diversity will limit possible genetic change in a trait(s) of interest.
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Table 6-2. Description of single nucleotide polymorphisms (SNP) in calcium-related candidate genes in association with both 
hypertensive and normotensive1 Angus cattle. 

 Gene SNP  
Chr2 Name3 Location4 ID4 Position5 Mutation Allele Functional Consequence 

1 RCAN1
6
 882081..1002223 rs110943703 1001634 T/C C 3' Untranslated 

1 RCAN1
6
 882081..1002223 rs109816298 1001841 C/T T 3' Untranslated 

10 THBS4 11005591..11060139 rs43615529 11032374 T/C C Synonymous 

10 THBS4 11005591..11060139 rs137156180 11032404 A/C C Synonymous 

10 THBS4 11005591..11060139 rs43616140 11036010 A/G G Synonymous 

10 THBS4 11005591..11060139 rs135439748 11036019 C/A A Synonymous 

10 THBS4 11005591..11060139 rs109358835 11037910 G/A A Synonymous 

10 THBS4 11005591..11060139 rs109466013 11052646 A/G G Synonymous 

10 THBS4 11005591..11060139 rs109630324 11052664 T/C C Synonymous 

10 THBS4 11005591..11060139 rs136947208 11052679 T/C C Synonymous 

10 THBS4 11005591..11060139 rs135163910 11052682 T/C C Synonymous 

10 THBS4 11005591..11060139 rs137811570 11052691 C/T T Synonymous 

10 THBS4 11005591..11060139 rs110094046 11052739 C/G G Synonymous 

10 THBS4 11005591..11060139 rs135687688 11052751 C/T T Synonymous 

10 THBS4 11005591..11060139 rs132840500 11052760 G/A A Synonymous 

10 THBS4 11005591..11060139 rs110860537 11053625 C/T T Splice Region; Synonymous 

10 THBS4 11005591..11060139 rs43615501 11060032 C/T T 3' Untranslated 

16 PLA2G4A 67906979..68081283 rs110861016 67907075 C/A A 5' Untranslated 

16 PLA2G4A
6
 67906979..68081283 rs109652349 68046471 G/T T Synonymous 

23 EDN1 44156426..44163955 - 44157399 C/T A 3' Untranslated 

23 EDN1 44156426..44163955 - 44160663 T/C G Intronic 

23 EDN1 44156426..44163955 - 44161460 G/A T Synonymous 
1NT = normotensive, 39.9 ± 5.6 mmHg; HT = hypertensive, 76.0 ± 21.9 mmHg; SNP identified in both groups 
2
Bos taurus Chromosome number 

3
RCAN1 = Regulator of Calcineurin 1, THBS4 = Thrombospondin 4, PLA2G4A = Phospholipase A2 Group IVA, EDN1 = Endothelin 1 

4Reference SNP cluster identification assigned by National Center for Biotechnology Information (NCBI); Missing ID refer to novel SNP 
5Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream 
6Multiple transcripts associated with gene 
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 Table 6-5 displays the 8 unique SNP identified in the pooled normotensive Angus steer 

samples. Variants were classified only in candidate genes EDN1, PLA2G4A, and RCAN1. Two of 

the 8 SNP were existing variants in dbSNP of cattle, while the remaining six SNP were novel 

variants. Of particular importance, was the novel missense variant located within candidate gene 

EDN1, which altered the amino acid from an alanine to serine. The Sorting Tolerant From 

Intolerant (SIFT) score (0.15) predicted the amino acid substitution effect to be tolerable in its 

effect on protein function (Kumar et al., 2009). This scoring technique provided through the 

Ensembl database was developed based upon the evolutionary conservation of amino acids within 

protein families, in which highly conserved regions are more intolerant to amino acid changes, and 

less conserved regions more tolerable to the changes (Kumar et al., 2009). Endothelin-1 (EDN1) 

secretes a potent vasoconstrictor peptide, and expression leads to an increase in intracellular 

calcium and activation of protein kinase C (Humbert et al., 2004). Additionally, EDN1 gene 

receptors are therapeutic targets in the treatment of pulmonary arterial hypertension (Langleben et 

al., 1999; Montani et al., 2007). The identification of this variant in EDN1 suggests a potential 

association of genetic variability of PH in Angus cattle and should be examined further. 
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Table 6-3. Description of single nucleotide polymorphisms (SNP) in calcium-related candidate genes in 
association with normotensive1 Angus cattle. 

 Gene SNP Functional 

Consequence Chr2 Name3 Location4 ID5 Position6 Mutation Allele 

1 RCAN1
7
 882081..1002223 rs110356008 997718 C/G G Intronic 

1 RCAN1
7
 882081..1002223 - 997749 G/A T Intronic 

16 PLA2G4A
7
 67906979..68081283 rs473113169 68026048 G/A A Synonymous 

23 EDN1 44156426..44163955 - 44157526 G/A T 3' UTR 

23 EDN1 44156426..44163955 - 44160822 G/A T Intronic 

23 EDN1 44156426..44163955 - 44161432 G/T A Missense8 

23 EDN1 44156426..44163955 - 44163308 A/G C 5' UTR 

23 EDN1 44156426..44163955 - 44163357 C/T A 5' UTR 
1NT = normotensive, 39.9 ± 5.6 mmHg 
2
Bos taurus Chromosome number 

3
RCAN1 = Regulator of Calcineurin 1, PLA2G4A = Phospholipase A2 Group IVA, EDN1 = Endothelin 1 

4Megabases upstream..downstream 
5Reference SNP cluster identification assigned by National Center for Biotechnology Information (NCBI); 
Missing ID refer to novel SNP 
6Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases 

upstream..downstream 
7Multiple transcripts associated with gene 

8Amino acid change from Alanine to a Serine 
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 Table 6-6 presents the 38 unique SNP detected in the pooled HT Angus steer samples. 

Almost all of the candidate genes, with the exception of PLA2G4A, contained SNP. Twenty 

(73.7%) SNP were previously identified variants and 18 (47.4%) were novel. Sixteen novel 

variants were identified in the EDN1 candidate gene, and 2 in ASIC2. It is thought that the 

identification of this novel SNP may be population dependent. Studies on the functional role of 

these novel variants are warranted to understand the mechanism underlying the development of 

PH in cattle. Additionally, an independent population must to utilized to validate novel SNP. Steps 

can be implemented to identify, validate, and commercialize novel SNP (Barendse, 2005; Van 

Eenennaam et al., 2014). 

Of particular importance, was a novel stop gain or nonsense mutation in EDN1, and a 

missense mutation in NOX4. The nonsense mutation in EDN1 introduced a single base change in 

the codon sequence leading to a premature stop and shortened transcript. Nonsense variants have 

high impact on the resulting gene transcript. As previously discussed, EDN1 has known 

associations with PH. Zero nonsense (i.e., stop gain or stop lost) variants have been previously 

identified in the EDN1 gene of Bos taurus cattle. If validated, the finding has the potential to be of 

great importance to the understanding the genetic mechanisms of PH susceptibility. 

The missense mutation (rs109862098) identified in NOX4 altered that amino acid from a 

serine to threonine. The SIFT score (0.19) predicted the amino acid substitution effect to be 

tolerable in its effect on protein function. Nicotinamide adenine dinucleotide phosphate oxidase 4 

(NOX4) is highly expressed in cardiovascular tissues and has been associated with PH and cardiac 

failure (Chen et al., 2012). Overexpression of NOX4 in vascular smooth muscle cells is commonly 

associated with progression of cardiovascular disease (Ellmark et al., 2005; Sturrock et al., 2007; 

Manea et al., 2010). Additionally, expression of NOX4 was increased in lungs and adventitial 
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fibroblasts of mice and humans with PH (Mittal et al., 2007; Li et al., 2008). Evidence has been 

provided from thirteen difference sources identifying this variant in Bos taurus cattle (Ensembl, 

release 95). 
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Table 6-4. Description of single nucleotide polymorphisms (SNP) in calcium-related candidate genes in association 
with hypertensive1 Angus cattle. 

 Gene SNP Functional 

Consequence Chr2 Name3 Location4 ID4 Position5 Mutation Allele 

1 RCAN1
6
 882081..1002223 rs136779353 997375 G/T T Intronic 

1 RCAN1
6
 882081..1002223 rs133085792 997387 C/T T Intronic 

1 RCAN1
6
 882081..1002223 rs110964656 998301 C/T T Intronic 

1 RCAN1
6
 882081..1002223 rs385707409 999581 C/T T Intronic 

10 THBS4 11005591..11060139 rs379030450 11046640 C/T T Synonymous 

10 THBS4 11005591..11060139 rs209570150 11046709 T/C C Synonymous 

10 THBS4 11005591..11060139 rs209956810 11047169 T/C C Synonymous 

10 THBS4 11005591..11060139 rs209206437 11058108 C/T T Intronic 

10 THBS4 11005591..11060139 rs43615493 11058202 G/A A Intronic 

10 THBS4 11005591..11060139 rs133100564 11058248 G/T T Intronic 

10 THBS4 11005591..11060139 rs133459953 11058484 C/A A Intronic 

10 THBS4 11005591..11060139 rs43615495 11058937 T/C C Intronic 

10 THBS4 11005591..11060139 rs43615496 11059073 A/G G Intronic 

19 ASIC2 16022746..17228096  - 16513323 C/T T Intronic 

19 ASIC2 16022746..17228096  - 16513330 T/C C Intronic 

23 EDN1 44156426..44163955 - 44157052 G/A T 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157199 C/T A 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157327 G/A T 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157334 T/C G 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157445 A/G C 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157461 T/C G 3' Untranslated Region 

23 EDN1 44156426..44163955 - 44157571 G/A T Synonymous 

23 EDN1 44156426..44163955 - 44158325 A/G C Intronic 

23 EDN1 44156426..44163955 - 44159580 C/T A Stop Gain 

23 EDN1 44156426..44163955 - 44160106 T/A T Intronic 

23 EDN1 44156426..44163955 - 44160245 G/A T Intronic 

23 EDN1 44156426..44163955 - 44160497 A/G C Intronic 

23 EDN1 44156426..44163955 - 44160605 A/G C Intronic 
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23 EDN1 44156426..44163955 - 44160647 G/A T Intronic 

23 EDN1 44156426..44163955 - 44161179 G/C G Intronic 

23 EDN1 44156426..44163955 - 44161845 A/G C Intronic 

29 NOX4 6120515..6303004  rs42399155 6196214 T/C C Synonymous 

29 NOX4 6120515..6303004  rs42400583 6275818 G/A A Synonymous 

29 NOX4 6120515..6303004  rs134637460 6283155 G/A A Synonymous 

29 NOX4 6120515..6303004  rs109862098 6300890 T/A A Missense 

29 NOX4 6120515..6303004  rs42401521 6302346 A/T T 3' Untranslated Region 

29 NOX4 6120515..6303004  rs42401520 6302379 G/A A 3' Untranslated Region 

29 NOX4 6120515..6303004  rs457170496 6302890 G/A A 3' Untranslated Region 
1HT = hypertensive, 76.0 ± 21.9 mmHg 
2
Bos taurus Chromosome number 

3
RCAN1 = Regulator of Calcineurin 1, THBS4 = Thrombospondin 4, ASIC2 = Acid Sensing Ion Channel Subunit 2, 

EDN1 = Endothelin 1, NOX4 = NADPH Oxidase 4 
4Reference SNP cluster identification assigned by National Center for Biotechnology Information (NCBI); Missing ID 

refer to novel SNP 
5Position according to Bos taurus ARS-UCD1.2 (Ensembl genome database); Megabases upstream..downstream 
6Multiple transcripts associated with gene 



 165 

 

Availability of commercial SNP-chips 

Ten of the 68 SNP were identified on commercially available SNP chips (Table 6-7). 

Candidate genes represented were NOX4, PLA2G4A, RCAN1, and THBS4. The SNP in NOX4 

(rs42399155, rs42401520, rs134637460) had functional consequences of synonymous, 3’ UTR, 

and synonymous, respectively. The 3-prime untranslated region (3’ UTR) often contains 

regulatory regions that post-transcriptionally influence gene expression (Conne et al., 2000). 

Three-prime mutations have the potential to affect the termination codon, polyadenylation signal, 

and secondary structure in various disease states (Chatterjee and Pal, 2009). These three SNP were 

located on the Affymetrix Axiom Bovine chip, which contains 648,875 SNP probes. Each of these 

three SNP were identified solely in the HT samples.  

Two SNP were identified in RCAN1. An intronic SNP (rs136779353), identified in only 

the HT samples, was utilized on the Illumina BovineHD BeadChip (777,962 SNP), and would in 

theory provide little information to transcript or protein level expression. However, as previously 

discussed, detected SNP using RNA-sequencing reads are expected to be exonic. Therefore, there 

is the potential that this SNP may be more informative to PH susceptibility from a transcript or 

protein level as the introns and exons in these gene may be incorrectly annotated. The second SNP 

(rs110943703) was a 3’ untranslated region mutation identified in both hypertensive and 

normotensive steer samples. This SNP was utilized on 3 commercially available chips: Illumina 

BovineHD BeadChip, GeneSeek Genomic Profiler HD (76,879 SNP), and the GeneSeek Genomic 

Profiler HDv2 (139,480 SNP). Additional genomic data from 65 Angus steers was available for 

use from the Illumina BovineHD BeadChip, in which the 2 RCAN1 SNP were included. Analyses 

were completed to determine if these SNP were associated with PAP utilizing the additional data 

(APPENDIX I). 
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From those analyses, 3 SNP within THBS4 were identified to be within a variety of 

commercially available SNP chips. A synonymous SNP (rs209956810) identified in HT samples 

was present on the Affymetrix HD chip. The intronic SNP (rs43615495), also identified in the HT 

samples, was used on the Illumina BovineHD chip. Important to note is that the majority of SNP 

on most large commercially available chips are not exonic and of functional significance. The 

Affymetrix HD chip was designed from a database of 3 million validated SNP, with the expectation 

of covering genetically diverse populations and receiving reliable results. The SNP on these chips 

were chosen to be uniformly distributed across the entire genome, with an average gap size 

between SNP of 3.43 kilobases, providing excellent SNP density for detection in cattle. (Khatkar 

et al., 2007). Many SNP therefore fall within intronic or intergenic regions. This is a limiting factor 

in the usefulness of SNP information to associations with phenotypes. Sequencing and SNP 

detection strategies provide insight into the transcript (functional) level properties of genes and 

their association to phenotypes of interest. The third SNP identified in both the hypertensive and 

normotensive PAP samples, resided in the 3’ untranslated region of the THBS4 gene (rs43615501). 

The Illumina BovineHD and the GeneSeek Genomic Profiler HDv2 chips both contained this SNP. 

Analyses were completed to determine if these SNP were associated with PAP utilizing the 

additional genomic data on 65 Angus steers (APPENDIX I). 

Two SNP located within the PLA2G4A gene were identified in both the hypertensive and 

normotensive PAP samples on the Affymetrix HD chip. The first (rs110861016) was a 5’ 

untranslated region mutation, and the second (rs109652349) was a synonymous SNP. Five-prime 

untranslated regions (5’ UTR) of messenger RNA influence translation through its length, thermal 

stability (G-C allele content), location of secondary structures, existence of multiple open reading 
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frames and binding sites for proteins that can repress or promote translation. These changes have 

the potential to cause disease under altered conditions (Chatterjee and Pal, 2009). 

The non-synonymous SNP identified in EDN1 and NOX4 candidate genes were not on 

commercially available chips. Genomic (SNP) data is commonly used for genome-wide 

association studies. However, specific gene studies would warrant a more direct approach to 

associated variants to phenotypes. As demonstrated by Crawford et al., (2018), single SNP 

association analyses with a large sample size have the potential to provide information and 

validation to findings other research. It would be of benefit to increase the sample size and re-

evaluate the initial findings of the current research. 

Table 6-5. List of single nucleotide polymorphisms (SNP) represented on commercially available SNP 
chips.  

Gene1 SNP ID2 SNP Name Bovine Chip Name3 

RCAN1 rs136779353 BovineHD0100000104 Illumina HD 

RCAN1 rs110943703 BovineHD0100000106 
Geneseek GPP HD; Geneseek GGP HD v.2; 

Illumina HD 

THBS4 rs209956810 AX-18655848 Affymetrix HD 

THBS4 rs43615495 BovineHD1000003711 Illumina HD 

THBS4 rs43615501 BovineHD1000003713 Geneseek GGP HD v.2; Illumina HD 

PLA2G4A rs110861016 AX-21139196 Affymetrix HD 

PLA2G4A rs109652349 AX-21139735 Affymetrix HD 

NOX4 rs42399155 AX-24696746 Affymetrix HD 

NOX4 rs134637460 AX-24697120 Affymetrix HD 

NOX4 rs42401520 AX-24697199 Affymetrix HD 

1NOX4 = NADPH Oxidase 4, RCAN1 = Regulator of Calcineurin 1, THBS4 = Thrombospondin 4 
2Reference SNP cluster identification assigned by National Center for Biotechnology Information 

(NCBI) 
3Illumina BovineHD BeadChip (777,962 SNP); GeneSeek Genomic Profiler HD (76,879 SNP); 

GeneSeek Genomic Profiler HDv2 (139,480 SNP); Affymetrix Axiom Bovine (648,875 SNP probes)  
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Genotype differences in PAP   

 Of the 22 identified SNP in both the HT (n = 10) and NT (n = 10) groups, the genotypes of 

3 SNP (rs110943703, rs109358835, rs43615501) had differences in their mean PAP. Figures 6-3, 

5-4, and 5-5 plot the distribution of PAP for each genotype of the respective SNP. In identifying 

concordant SNP in the HT and NT samples, this provides opportunity to determine if the mutations 

are diagnostic (i.e., to differentiate samples into PH groups based on their genotype).  

An important aspect to discuss in both Figures 6-4 and 6-5 is the single PAP measurement 

representing the mean for the first genotypes. This genotype was represented in multiple tissue 

samples (i.e., right and left ventricle) but from the same animal (i.e., ID #2352). Therefore, the 

PAP value was the same. Research by Ba et al., (2018) stated that there was a reduction of 

diagnostic power of SNP markers if samples were unrepresented in the data. Therefore, the ability 

to utilize the two SNP in THBS4 (rs109358835, rs43615501) as diagnostic SNP was diminished 

as not all samples were represented. The data additionally suggested these were no tissue specific 

(TS) SNP, as the SNP were present in multiple tissues. This will be discussed further in a following 

section.   
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Figure 6-2. Mean pulmonary arterial pressure (PAP) differences by genotype for concordant SNP 

(rs110943703) in both hypertensive (HT) and normotensive (NT) steer samples. * P ≤ 0.05; ** P 

≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.000; ns Non-significant. 

Figure 6-3. Mean pulmonary arterial pressure (PAP) differences by genotype for concordant SNP 

(rs43615501) in both hypertensive (HT) and normotensive (NT) steer samples. * P ≤ 0.05; ** P ≤ 

0.01; *** P ≤ 0.001; **** P ≤ 0.000; ns Non-significant. 
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Figure 6-4. Mean pulmonary arterial pressure (PAP) differences by genotype for concordant SNP 

(rs109358835) in both hypertensive (HT) and normotensive (NT) steer samples. * P ≤ 0.05; ** P 

≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.000; ns Non-significant. 

 

 Associations were also studied with SNP identified in HT only and NT only samples. 

Although SNP were only identified as a variant in one group or the other, genotypes for all samples 

were collected. This provided opportunity to determine if the SNP were additive, in which 

increased PAP was associated with an increase (or decrease) in the number of a particular allele 

(Lewis, 2002). The additive model was previously used to understand genetic variation and gene 

expression in disease traits (Powell et al., 2013).  

 Differences in PAP were estimated in genotypes for a single SNP (rs209956810) identified 

in HT samples in the THBS4 gene (P < 0.001). Figure 6-6 plotted the distribution of PAP by 

genotype for the SNP. Important to note is there were no samples identified with the C/C genotype 

for this SNP. For all but one of the identified SNP (rs110943703), variants were unable to be 

called. In the fixed ploidy variant detection method, the required variant probability parameter was 
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90%, meaning variants with a probability of 90% or greater would be called. The stringency of the 

parameter reduced the number of variants called and was likely why there were missing genotypes. 

Therefore, comparison of PAP could only be completed between the T/C and T/T genotypes of 

this SNP. These results suggested a trend of high PAP associated with the C allele of the SNP. 

However, additional data and study are necessary to establish if the SNP has an additive affect.   

Of the other 37 identified SNP in the HT samples, no significant differences were estimated 

in PAP across genotypes of the 14 steers. Twenty-seven of the 38 SNP had a significant number 

of missing genotypes (> 55) out of the 68 available samples. As suggested, this was likely due to 

the high variant probability parameter, which hindered our ability to compare PAP differences 

across genotypes as sample size was reduced. 

Figure 6-5. Mean pulmonary arterial pressure (PAP) differences by genotype for SNP 

(rs209956810) identified in hypertensive (HT) steer samples. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 

0.001; **** P ≤ 0.000; ns Non-significant  
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Of the 8 identified SNP in the NT samples, differences in PAP between genotypes was 

estimated in a single SNP (rs473113169; P < 0.05). Figure 6-7 plotted the distribution of PAP by 

genotype for the SNP. Similar to the results discussed previously, no samples had the A/A 

genotype for this SNP, and therefore PAP could only be compared between the G/A and G/G 

genotypes. These results suggested a trend of low PAP associated with the A allele of the SNP. 

However, additional data and study are necessary to establish if the SNP has an additive effect. Of 

the 8 identified SNP in the NT group, missing genotypes (> 50) for 6 SNP in the 68 samples limited 

our ability to estimate if associations existed with PAP in thee Angus steers. 

Figure 6-6. Mean pulmonary arterial pressure (PAP) differences by genotype for SNP 

(rs473113169) identified in normotensive (NT) steer samples. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 

0.001; **** P ≤ 0.000; ns Non-significant  
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Tissue-specific SNP 

 Venn diagrams were used to visualize tissue-specificity of the identified SNP. Figure 6-8 

represents the concordant SNP from both HT and NT samples. Of the 22 concordant SNP, 2 SNP 

were detected in all 6 tissues (rs110943703, rs109816298). This observation would suggest that 

these particular SNP were not tissue specific. On the contrary, a single novel SNP the in EDN1 

candidate gene was identified only in lung tissue. This would suggest that regulation of this 

mutation in EDN1 was dependent upon expression within the lung. Research examining tissue-

specificity has provided insights and opportunity to expand our understanding of regulation of 

genes, but also understanding the phenotypic consequences of these genes (GTEx Consortium, 

2015; Barbeira et al., 2018).   
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Figure 6-7. Venn diagram of the number of SNP identified in both the hypertensive and 

normotensive steer samples for each of the 6 tissues (aorta, left ventricle, longissimus dorsi, lung, 

pulmonary artery, right ventricle).  

CONCLUSIONS 

 Cardiopulmonary transcriptome data identified 68 SNP in the 6 candidate genes. Of the 68 

SNP, 38 were uniquely detected in the HT group and 8 were detected in the NT group. In total, 22 

concordant SNP between Angus steers with PH and those without. The variants were located in 

genes associated with regulating calcium availability and utilization. Non-synonymous SNP were 

identified in candidate genes: EDN1 and NOX4. The comparative analysis (NT vs. HT) enhanced 

our understanding of the sequence polymorphisms regulating pulmonary hypertension in Angus 

steers raised at high altitude. Additional data and analyses are necessary to determine causal SNP 

to enhance selection opportunities. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

The research of this dissertation transcends multiple levels of technology utilization to 

understand genetic regulation of pulmonary hypertension in Angus beef cattle. The use of 

transcriptome data to estimate differential gene expression provided insight into the association of 

calcium-related genes distinguishing normotensive and hypertensive steers and allowed to the 

identification of candidate genes for validation. Quantitative polymerase chain reaction 

methodologies resulted in the validation of a subset of those candidate genes in a larger cohort of 

Angus steers and across additional tissues. Single nucleotide polymorphism detection methods 

gave understanding to genetic variants differentiating normotensive and hypertensive steers. The 

methodology of this research can be utilized as a framework for future studies on how to conduct 

hypothesis-based research, where a focused question is targeted. The results of this research 

elucidate the importance of genes regulating the availability and utilization of calcium can be of 

significance to cardiac function and pulmonary hypertension susceptibility in beef cattle. 

Although this research effort provides valuable insight, additional opportunities exist to 

enhance our understanding of the association of calcium-regulated genes to pulmonary 

hypertension in beef cattle. Three areas of additional study may include: 1) validation of results is 

subsequent populations, 2) longitudinal differences in expression, and 3) selection of candidate 

genes with genomic coverage. It is pertinent to validate the results of the current study in a larger 

population of beef cattle. The current study focused on yearling Angus steers from a single herd. 

However, all breeds and ages of cattle are affected by pulmonary hypertension, therefore a 

validation of the identified candidate genes would prove importance. Secondly, a longitudinal 

study would provide valuable information on how expression of either the candidate genes in the 
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current study, or additional genes of interest change over time. This would help to deteremine if a 

change in disease state or progression can be identified through expression changes. Longitudinal 

studies are difficult to conduct and are limited by the resources (i.e., time, finances, 

animals/samples) available. Lastly, an additional opportunity exists to select candidate genes that 

are known to have multiple SNP located on commercially available SNP chips. This could increase 

the likelihood of identifying variants in candidate genes associated with your phenotype and that 

can ultimately be used in selection strategies to delineate susceptibility to bovine pulmonary 

hypertension and heart failure.
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APPENDIX A 

POOR QUALITY RNA-SEQUENCING READS 

A) B)  

C)   D)  

 

Figure A-1. Graphical output of quality control analyses on poor RNA-Seq reads of 2 samples completed in CLC Genomics 

Workbench software (version 11.0.1). A) Distribution of the read quality; B) Distribution of G-C content; C) Percent of G-C content; 

D) Plot of enriched 5-mers (stings of bases).
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APPENDIX B 

PRINCIPLE COMPONENT PLOTS OF LOG TOTAL COUNTS OF EXPRESSION BY 

TISSUE 

 

A)  B)  

C)  D)  
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E)  F)  

Figure A-2. Principle component plots of transcriptome results (log total counts) of 

normotensive (NT) and hypertensive symptomatic (HTS) steer tissues. A) Aorta B) Left 

ventricle C) Longissimus dorsi D) Lung E) Pulmonary artery F) Right ventricle.  
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APPENDIX C 

RNA ISOLATION PROTOCOL (TRI REAGENT) 

-Homogenization 

1. Homogenize tissue samples in TRI Reagent (1mL/50-100 mg tissue) 

§ 3 times in Bead Bug for 30 seconds 

§ 1 minute in ice in-between 

-Phase Separation 

2. Store the homogenate for 5 minutes at room temperature  

3. Transfer homogenate to new 2mL tube  

4. Add 200 !L chloroform per 1mL TRI Reagent 

5. Vortex 15 seconds 

6. Store at room temperature for 10 minutes  

7. Centrifuge at 12,000 g for 15 minutes at 4oC 

-RNA Precipitation 

8. Transfer top aqueous phase to fresh 2mL tube, save the other phases 

9. Add 500 !L of isopropanol and vortex 

10. Store samples at room temperature for 10 minutes 

§ Put in -20oC if a break is needed 

11. Centrifuge at 12,000 g for 8 minutes at 4-25oC 

-RNA Wash 

12. Remove supernatant, keep the pellet 

13. Add 1mL of 75% ethanol and vortex 

14. Centrifuge at 7,500 g for 5 minutes at 4-25oC 

15. Remove supernatant, keep the pellet 

16. Add 1mL of 75% ethanol and vortex 

17. Centrifuge at 7,500 g for 5 minutes at 4-25oC 

-RNA Solubilization 

18. Remove supernatant 

§ Spin down in mini-spinner to get all residual ethanol removed  

19. Air dry pellet for 3-5 minutes 

20. Add at least 30 !L nuclease-free water 

21. Dissolve pellet  

22. Incubate at 55-60oC for 15 minutes (flick or vortex/spin down 2-3 times at this step) 

-Check concentration/purity with NanoDrop prior to DNAse treatment 

-DNAse Treatment (Ambion) 

23. Add 2 !L 10X DNAse I Buffer 

24. Add 1 !L rDNAse I and vortex/spin down  

25. Incubate for 20 minutes at 37oC 

26. Add 2 !L of DNAse Inactivation Reagent 

27. Be sure everything is re-suspended and mixed by vortexing 

28. Incubate for 2 minutes at room temperature  

29. Centrifuge at 10,000 g for 1.5 minutes 

30. Transfer clear liquid to a new 2mL tube 

-Check concentration/purity with NanoDrop again
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APPENDIX D 

PRIMER EFFICIENCY AMPLIFICATION AND STANDARD CURVES 

Reference genes 

Eight common endogenous control genes were utilized to establish the most stable to utilize 

for the gene expression analysis. All genes have been previously utilized in gene expression studies 

involving bovine (Robinson et al., 2007; Lisowski et al., 2008; Pérezet al., 2008).  Slope of the 

standard curve, R2, and amplification efficiency are provided in Table A-1. In the case where serial 

dilutions were repeated (i.e., 10x, 5x, 2x), the table displays the best values of those repeated 

attempts. Ideally, standard curves for every gene would include a slope of -3.32, an R2 of 1.0, and 

an efficiency of 100%. Reference genes HMBS, HPRT1, and RPLP0 had notable high 

amplification efficiencies. This, in concordance with their amplification and standard curves, 

signified that these control genes were lowly expressed in our tissues of interest (Figures A-8 to 

A-10). We therefore eliminated them as endogenous control options for gene expression. 

Similarly, the amplification efficiency of GAPDH was lower than the desired efficiency of 90 to 

110% and was eliminated as an endogenous control option. One reason for the poor amplification 

of these genes could be attributed to their design. As explained, all primer sets were designed based 

upon a set of criteria. There was the potential to optimize by re-designing the primers; however, 

the objective was to establish the single most stable reference to utilize, and re-design was 

unnecessary.   
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Table A-1. Estimates from primer efficiency testing of reference genes 

(endogenous controls). 

Gene1 
Slope of inhibition 

curve 
R2 

PCR amplification 

efficiency (%) 

18S rRNA -3.424 0.974   95.894 

ACTB -3.119 0.976 109.221 

B2M -3.363 0.975   98.302 

GAPDH -4.034 0.971   76.972 

HMBS2 -2.178 0.969 187.7893 

HPRT12 -1.826 0.951 252.7973 

RPLP02 -1.909 0.998 234.0473 

RPS9 -3.322 0.967   99.980 
1 18S rRNA = Ribosomal RNA 18 subunit; ACTB = Actin Beta; B2M = 

Beta-2-Microglobulin; GAPDH = Glyceraldehyde-3-Phosphate 

Dehydrogenase; HMBS = Hydroxymethylbilane Synthase; HPRT1 = 

Hypoxanthine Phosphoribosyltransferase 1; RPLP0 = Ribosomal 

Protein Lateral Stalk Subunit P0; RPS9 = Ribosomal Protein S9 
2 Gene primer was lowly expressed in all serial dilutions (10x, 5x, 2x), 

and was therefore not used in further analyses. 

3 Gene primer had poor efficiency for all serial dilutions (10x, 5x, 2x). 

Values reflect the best efficiency (serial dilution 5x). 

 

The 18s rRNA gene primer had good overall efficiency values. However, upon examining 

the amplification data for the gene, it amplified too quickly in comparison to the other reference 

genes, as well as the candidate genes. This is problematic as an important aspect in choosing the 

best reference is that the product amplifies near the same time (cycle number) as the candidate 

genes. Therefore, the 18s rRNA reference was eliminated as well. The remaining reference genes 

(ACTB, B2M, and RPS9) were utilized in qPCR and tested for stability across all tissues.  

To estimate gene expression differences in the candidate genes, a single endogenous 

control is typically chosen. The geNorm software by Qbase+ provided stability (M) and coefficient 

of variation (CV) estimates for the three tested reference genes. Table A-2 and Figure A-3 display 

these values, where the gene with the lowest M and CV values was most stable. The reference 
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ACTB was therefore established to be the most stable reference and was subsequently used to 

estimate expression differences in the candidate genes.  

Table A-2. Estimates of the stability (M) 

and coefficient of variation (CV) of three 

reference genes using Qbase+ software. 

Gene1 M CV 

ACTB 0.230 0.062 

B2M 0.307 0.121 

RPS9 0.297 0.149 
1ACTB = Actin beta; B2M = Beta-2-

Microglobulin; RPS9 = Ribosomal Protein S9 

 

Figure A-3. Graph of calculated stability values (M) associated with reference genes ACTB, 

B2M, and RPS9. Good reference genes have an M < 0.5. Most stable reference with the lowest 

M value. 
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Candidate genes 

 Amplification and efficiency of all but one candidate genes were sufficient (Table A-3). 

We were unable to calculate efficiency above the acceptable values for the candidate gene P2RY6. 

The amplification and standard curves present additional concerns regarding expression and 

efficiency. The gene was lowly expressed across the pool of tissues, amplifying at later PCR cycles 

then many of the other candidate genes. Additionally, it was difficult to differentiate expression in 

serial dilations. These issues may be attributed to low quality RNA (cDNA) for the reaction or 

poor primer design (ThermoFisher Scientific, 2015). As mentioned, a gene maximization plate 

arrangement strategy was implemented, where the goal was to maximize the number of genes that 

would fit on a single plate of all samples. We were therefore limited to a total of 12 genes per plate, 

including the three reference genes. This plate arrangement was implemented to remove inter-run 

variation (Appendix E). For these reasons, we chose to eliminate the use of the P2RY6 candidate 

gene from subsequent qPCR analyses.  

 In addition to the P2YR6 gene, candidate gene KCNMA1 also had low expression across 

the pool of tissues, amplifying at later PCR cycles then many of the other genes. This gene was 

previously identified in a genome wide association study as associated with PH (results 

unpublished; D. Brown). Although expression was low, we chose to include the gene to validate 

not only the RNA-seq expression, but also the results of previous association analyses. 
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Table A-3. Estimates from primer efficiency testing of candidate genes 

used for mRNA expression analysis. 

Gene1 
Slope of inhibition 

curve 
R2 

PCR amplification 

efficiency (%) 

ASIC2 -3.141 0.988 108.157 

EDN1 -3.262 0.984 102.585 

FBN1 -3.24 0.962 103.550 

KCNMA1 -3.292 0.990 101.256 

NOX4 3.134 0.986 108.498 

P2RY62 -2.543 0.990 147.307 3 

PLA2G4A -3.348 0.979   98.903 

RCAN1 -3.427 0.970   95.810 

RGS4 -3.203 0.982 105.205 

THBS4 -3.389 0.975   97.271 
1 ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; 

FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel 

Subfamily M Alpha 1; NOX4 = NADPH Oxidase 4; P2RY6 = 

Pyrimidinergic Receptor P2Y6; PLA2G4A = Phospholipase A2 Group 

IVA; RCAN1= Regulator Of Calcineurin 1; RGS4 = Regulator Of G 

Protein Signaling 4; THBS4 = Thrombospondin 4 
2 Gene primer was lowly expressed in all serial dilutions (10x, 5x, 2x), 

and was therefore not used in further analyses. 
3 Gene primer had poor efficiency for all serial dilutions (10x, 5x, 2x). 

Values reflect the best efficiency (serial dilution 5x). 

 

Below are the amplification and standard curve graphs for each of the reference and 

candidate genes. Tables A-1 and A-3 provide a synopsis of the information presented in the graphs. 

The amplification and standard curves for reference genes GAPDH, HMBS, HPRT1, and RPLP0 

(Figures A-7 to A-10). Efficiencies for each of these reference genes were outside acceptable range 

(i.e., < 90 or > 110%). In the case where serial dilutions were repeated (i.e., 10x, 5x, 2x), the table 

displays the best values of those repeated attempts. The amplification and standard curves of the 

candidate genes are also provided (Figures A-12 to A-21). 

Of particular interest was the amplification and standard curves of genes KCNMA1 and 

P2RY6 (Figures A-15 & A-17). Although efficiency and other curve characteristics were 

acceptable, the gene product had very low expression and therefore amplified much later in the 
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qPCR cycle process. This gene was of particular interest as it not only fit within the hypothesis of 

this study but was previously associated with PH in beef cattle (results unpublished; D. Brown). 

We chose to utilize this gene in our expression analyses in hopes to delineate if expression could 

be validated. For the candidate gene P2RY6, all characteristics of the curve (i.e., slope, R2, and 

efficiency) were outside the acceptable ranges. It was additionally difficult to differentiate the 

serial dilutions, as shown in the amplification graph. One reason for the poor amplification could 

be the design of the primer. It is possible that the primer was not specific enough to capture the 

gene product of interest. For these reasons, P2RY6 was not utilized to estimate gene expression. 
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Figure A-4. Reference: 18S rRNA 

Figure A-5. Reference: ACTB 

Figure A-6. Reference: B2M  
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Figure A-7. Reference: GAPDH 

Figure A-8. Reference: HMBS 

Figure A-9. Reference: HPRT1  
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Figure A-10. Reference: RPLP0 

Figure A-11. Reference: RPS9 

Figure A-12. Candidate: ASIC2  
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Figure A-13. Candidate: EDN1 

Figure A-14. Candidate: FBN1 

Figure A-15. Candidate: KCNMA1  
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Figure A-16. Candidate: NOX4 

Figure A-17. Candidate: P2RY6 

Figure A-18. Candidate: PLA2G4A  
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Figure A-19. Candidate: RGS4 

Figure A-20. Candidate: RCAN1 

Figure A-21. Candidate: THBS4  
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APPENDIX E 

384-WELL PLATE ARRANGEMENT FOR QPCR 

 
Figure A-22. Example (i.e., right ventricle bottom) 384-well plate for the qPCR reactions including candidate (n = 9) and reference (n 

= 3) genes. Hypertensive and normotensive steers were randomized on each 384-well plate in alternating order (represented by numbers 

1-20 next to each gene). Each 384-well plate contained 10 steers. 
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APPENDIX F 

LIVAK METHOD (2"∆∆$%) 

 

 The derived 2"∆∆$% estimated amplification based upon the number of target molecules in 

the reaction. However, expression in this experiment was estimated based upon the reference gene 

and is therefore calculated slightly different. For a valid ∆∆&' calculation, the main assumption 

was that candidate and reference efficiencies must be approximately equal. As shown in Tables 5-

6 and 5-8, there is small variation in these efficiencies, which could represent a violation to the 

assumption. The estimated CT values were first averaged across PCR technical replicates 

(triplicates). The delta CT values were calculated as 

∆&' = &')*+,-) − &'+-/-+-01-     (1) 

where &')*+,-)  was the crossing threshold value for the candidate gene and &'+-/-+-01-  was the 

crossing threshold value for the reference gene. Only a single reference gene was utilized, and 

therefore the calculations were repeated with any additional reference genes. Delta delta CT values 

were estimated through the equation 

∆∆&' = ∆&')*+,-) − &234562786    (2) 

where the calibrator represented the average ∆&' of the control samples. The control samples in 

this experiment were all normotensive animals (∆&'9%). Therefore, the amount of candidate gene, 

normalized to a reference and relative to a calibrator, is given by 

2:8;<7	8>	726?@7 = 	2"∆∆$%.    (3) 
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Table A-4. Livak Method (∆∆"#) - Summary of relative gene expression (Mean ± Standard Error) and Wilcoxon rank sum test1 (p-value) for all 
tissues (n = 11) and candidate genes2 (n = 9) between hypertensive and normotensive3 groups. P-values in red represent differences (> 0.1) from 

Pfaffl method results (Table 5-7). 

Tissue Group3 

ASIC2 EDN1 FBN1 KCNMA1 

μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 μ ± SE p-value4 

Apex 
HT 0.76 ± 0.26 

0.243 
3.12 ± 1.23 

0.113 
1.35 ± 0.17 

0.497 
2.12 ± 0.69 

0.278 
NT 1.13 ± 0.22 1.17 ± 0.23 1.14 ± 0.19 1.34 ± 0.38 

Brisket 
HT 1.31 ± 0.25 

0.968 
1.24 ± 0.59 

0.968 
0.77 ± 0.13 

0.211 
0.86 ± 0.20 

0.447 
NT 1.33 ± 0.29 1.42 ± 0.42 1.06 ± 0.12 1.10 ± 0.17 

Longissimus dorsi 
HT 1.30 ± 0.17 

0.447 
1.01 ± 0.14 

0.661 
1.01 ± 0.19 

0.400 
0.98 ± 0.16 

0.356 
NT 1.10 ± 0.14 1.05 ± 0.11 1.04 ± 0.10 1.08 ± 0.14 

Left ventricle, bottom 
HT 1.70 ± 0.64 

0.684 
2.74 ± 1.16 

0.052 
1.23 ± 0.17 

0.684 
1.53 ± 0.62 

0.684 
NT 1.78 ± 0.82 1.05 ± 0.11 1.08 ± 0.13 1.11 ± 0.18 

Left ventricle, middle 
HT 1.25 ± 0.38 

0.661 
1.33 ± 0.12 

0.079 
0.89 ± 0.12 

0.400 
1.36 ± 0.28 

1.000 
NT 1.36 ± 0.36 1.06 ± 0.14 1.11 ± 0.22 1.45 ± 0.36 

Left ventricle, top 
HT 0.98 ± 0.35 

0.190 
1.98 ± 0.70 

0.052 
0.82 ± 0.06 

0.075 
0.93 ± 0.20 

0.353 
NT 1.16 ± 0.21 1.07 ± 0.13 1.02 ± 0.07 1.12 ± 0.17 

Moderator band 
HT 0.52 ± 0.13 

0.010 
1.10 ± 0.17 

0.604 
1.20 ± 0.16 

0.315 
2.06 ± 0.51 

0.780 
NT 1.20 ± 0.19 1.31 ± 0.40 1.05 ± 0.12 1.97 ± 0.67 

Right papillary muscle 
HT 0.56 ± 0.15 

0.043 
1.86 ± 0.54 

0.218 
1.60 ± 0.17 

0.015 
4.01 ± 1.06 

0.052 
NT 1.27 ± 0.27 1.09 ± 0.14 1.05 ± 0.10 1.41 ± 0.38 

Right ventricle, bottom 
HT 0.35 ± 0.20 

0.009 
1.78 ± 0.22 

0.007 
1.21 ± 0.11 

0.280 
2.07 ± 0.58 

0.393 
NT 1.53 ± 0.39 1.21 ± 0.33 1.11 ± 0.19 3.49 ± 2.44 

Right ventricle, middle 
HT 0.17 ± 0.10 

< 0.001 
1.49 ± 0.30 

0.222 
1.17 ± 0.19 

0.387 
2.17 ± 1.05 

1.000 
NT 1.39 ± 0.35 1.14 ± 0.21 1.15 ± 0.21 1.42 ± 0.36 

Right ventricle, top 
HT 0.14 ± 0.06 

< 0.001 
2.78 ± 0.99 

0.003 
1.24 ± 0.18 

0.684 
2.16 ± 0.37 

0.015 
NT 1.18 ± 0.22 1.03 ± 0.08 1.02 ± 0.07 1.08 ± 0.14 

1Non-parametric analysis; H0: Population means are equal; HA: Population means are not equal 
2ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel Subfamily M 

Alpha 1; NOX4 = NADPH Oxidase 4; PLA2G4A = Phospholipase A2 Group IVA; RCAN1 = Regulator of Calcineurin 1; RGS4 = Regulator of G Protein 

Signaling 4; THBS4 = Thrombospondin 4 
3Physiological group based upon pulmonary arterial pressures (PAP); HT = hypertensive, 98 ± 15 mmHg; NT = normotensive, 48 ± 20 mmHg. 
4Signifance adjusted for multiple testing; Significance set at P < 0.005555; Bold and italicized p-values met significance threshold 
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Table A-4. Continued… 

Tissue Group2 

NOX4 PLA2G4A   RCAN1 RGS4 THBS4 

μ ± SE p-value3 μ ± SE p-value3 μ ± SE p-value3 μ ± SE p-value3 μ ± SE p-value3 

Apex HT 1.72 ± 0.40 
0.315 

1.86 ± 0.24 
0.028 

2.54 ± 0.59 
0.013 

1.62 ± 0.33 
0.133 

1.22 ± 0.30 
0.968 

NT 1.18 ± 0.21 1.12 ± 0.18 1.19 ± 0.29 1.05 ± 0.10 1.15 ± 0.20 

Brisket HT 1.10 ± 0.20 
0.720 

0.79 ± 0.13 
0.113 

1.05 ± 0.16 
0.661 

1.92 ± 1.10 
0.661 

1.88 ± 0.66 
0.315 

NT 1.03 ± 0.09 1.09 ± 0.14 1.65 ± 0.75 1.24 ± 0.25 1.12 ± 0.18 

Longissimus 

dorsi 
HT 1.51 ± 0.25 

0.243 
1.30 ± 0.18 

0.315 
1.42 ± 0.28 

0.400 
1.17 ± 0.21 

0.780 
1.20 ± 0.15 

0.447 
NT 1.12 ± 0.16 1.02 ± 0.07 1.16 ± 0.19 1.10 ± 0.16 1.03 ± 0.08 

Left ventricle, 

bottom 
HT 1.55 ± 0.53 

0.631 
1.53 ± 0.29 

0.280 
1.99 ± 0.71 

0.218 
1.28 ± 0.31 

0.912 
1.43 ± 0.31 

0.315 
NT 1.10 ± 0.15 1.05 ± 0.10 1.10 ± 0.16 1.07 ± 0.13 1.06 ± 0.13 

Left ventricle, 

middle 
HT 0.89 ± 0.12 

0.447 
1.05 ± 0.13 

0.968 
1.19 ± 0.20 

0.315 
0.88 ± 0.09 

0.497 
0.87 ± 0.13 

0.356 
NT 1.15 ± 0.19 1.12 ± 0.18 1.18 ± 0.30 1.13 ± 0.20 1.06 ± 0.13 

Left ventricle, 

top 
HT 0.87 ± 0.15 

0.190 
0.99 ± 0.08 

0.631 
1.99 ± 0.62 

0.353 
0.62 ± 0.09 

0.035 
0.87 ± 0.10 

0.190 
NT 1.07 ± 0.13 1.03 ± 0.08 1.07 ± 0.13 1.14 ± 0.20 1.06 ± 0.13 

Moderator band HT 2.84 ± 0.79 
0.133 

1.70 ± 0.46 
0.447 

2.22 ± 0.51 
0.095 

1.19 ± 0.20 
0.278 

3.55 ± 1.04 
0.028 

NT 1.24 ± 0.25 1.19 ± 0.29 1.19 ± 0.24 2.22 ± 1.28 1.37 ± 0.41 

Right papillary 

muscle 
HT 4.92 ± 1.26 

< 0.001 
2.96 ± 0.72 

0.002 
3.59 ± 0.78 

0.002 
2.96 ± 0.64 

0.023 
3.33 ± 0.58 

0.007 
NT 1.08 ± 0.14 1.08 ± 0.13 1.11 ± 0.19 1.07 ± 0.14 1.17 ± 0.20 

Right ventricle, 

bottom 
HT 2.81 ± 0.54 

0.002 
1.82 ± 0.37 

0.052 
6.87 ± 2.23 

0.001 
1.68 ± 0.48 

0.165 
3.44 ± 0.90 

0.002 
NT 1.16 ± 0.22 1.37 ± 0.48 1.25 ± 0.30 2.29 ± 1.52 1.18 ± 0.26 

Right ventricle, 

middle 
HT 2.78 ± 0.65 

0.004 
2.28 ± 0.53 

0.001 
2.72 ± 0.74 

0.006 
2.60 ± 0.60 

0.050 
3.88 ± 0.73 

0.001 
NT 1.19 ± 0.24 1.09 ± 0.15 1.18 ± 0.23 1.18 ± 0.23 1.27 ± 0.36 

Right ventricle, 

top 
HT 2.70 ± 0.62 

0.002 
1.65 ± 0.20 

0.003 
3.26 ± 0.55 

0.004 
2.20 ± 0.55 

0.029 
3.52 ± 0.95 

< 0.001 

NT 1.04 ± 0.11 1.03 ± 0.08 1.06 ± 0.13 1.04 ± 0.09 1.06 ± 0.13 
1Non-parametric analysis; H0: Population means are equal; HA: Population means are not equal 
2ASIC2 = Acid Sensing Ion Channel Subunit 2; EDN1 = Endothelin 1; FBN1 = Fibrillin 1; KCNMA1 = Potassium Calcium-Activated Channel Subfamily M 

Alpha 1; NOX4 = NADPH Oxidase 4; PLA2G4A = Phospholipase A2 Group IVA; RCAN1 = Regulator of Calcineurin 1; RGS4 = Regulator of G Protein 

Signaling 4; THBS4 = Thrombospondin 4 
3Physiological group based upon pulmonary arterial pressures (PAP); HT = hypertensive, 98 ± 15 mmHg; NT = normotensive, 48 ± 20 mmHg. 
4Signifance adjusted for multiple testing; Significance set at P < 0.005555; Bolded p-values met significance threshold 
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APPENDIX G 

GRAPHICAL REPRESENTATION OF GENE EXPRESSION DIFFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-23        Figure A-24  
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Figure A-25        Figure A-26  
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Figure A-27        Figure A-28   
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Figure A-29        Figure A-30  
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Figure A-31        Figure A-32  
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Figure A-33 

 

Figures A-23 through A-33. Histograms of the mean relative quantification (i.e., gene expression) for each gene and within each tissue 

are shown below. These were differentiated by PH status of hypertensive (HT) or normotensive (NT). This is the average expression for 

the PH groups and a standard error of the mean. Differences (P < 0.0055) were represented above the histogram pairs. Significant 

differences were estimated in right papillary muscle and all of the right ventricle tissues for a selected number of candidate genes. 
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APPENDIX H 

TRANSCRIPTOME DATA: HETEROGENEITY OF VARIANCE OF UNTRANSFORMED AND TRANSFORMED PAP 

A. B.  

 

Figure A-34. Transcriptome data from calf-fed yearling Angus steers (n = 14). Distribution of pulmonary arterial pressure (PAP) 

measures untransformed (A) and transformed (log; B). Both estimated as non-normally distributed based up Box-Cox transformation 

method and Shapiro-Wilks normality test (P < 0.001). 
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A.  

B.  
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C.  

D.  
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E.  

Figure A-35. Quantile-quantile plots of the residuals of untransformed pulmonary arterial pressure 

(PAP) measures and log transformed PAP for each of the 5 identified SNP. A. rs110943703; B. 

rs43615501; C. rs109358835; D. rs473113169; E. rs209956810. Transformation estimated by 

Box-Cox method.  
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APPENDIX I 

GENOME DATA: HETEROGENEITY OF VARIANCE OF UNTRANSFORMED AND TRANSFORMED PAP 

A.  B.  

 

Figure A-36. Genome (SNP) data from 6-month Angus steers (n = 65). Distribution of pulmonary arterial pressure (PAP) measures (A) 

untransformed and (B) transformed. Transformation estimated used Box-Cox method. Untransformed PAP estimated as non-normal (P 

< 0.001) and transformed PAP as normally distributed (P = 0.77) using the Shapiro-Wilks normality test.
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A  

B  
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C  

D  

 

Figure A-37. Quantile-quantile plots of the residuals of untransformed pulmonary arterial pressure 

(PAP) measures and log transformed PAP for each of the 4 SNP located on the Illumina BovineHD 

BeadChip (777,962 SNP).  A. BovineHD0100000104; B. BovineHD0100000106; C. 

BovineHD1000003711; D. BovineHD1000003713. Transformation estimated by Box-Cox 

method. 


