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ABSTRACT 

CLOUD-TO-GROUND LIGHTNING POLARITY AND ENVIRONMENTAL 

CONDITIONS OVER THE CENTRAL UNITED STATES 

The majority of cloud-to-ground (CG) lightning across the United States lowers 

negative charge to the ground. However, recent studies have documented storms that 

produce an abundance of positive CG lightning. These positive storms have been shown 

to occur in different mesoscale regions on the same days, and in different thermodynamic 

environments. This study uses radar data, and CG lightning data, to identify positive and 

negative storms that occurred in the region between the Rocky Mountains and the 

Mississippi River. The thermodynamic conditions in the environment of these storms are 

derived from the Rapid Update Cycle model analysis, where the point nearest to the 

storm, in the direction of storm motion was used. 

Considerable scatter was present in the final results that limited the extent of the 

trends seen. Out of all the variables used, cloud base height, dew point, 850-500 mb 

lapse rate, and warm cloud depth showed the most difference between the positive and 

negative storms. Positive storms tended to occur with lower cloud base heights, higher 

dew points, smaller 850-500 mb lapse rates, and lower warm cloud depths. Little trend 

was seen for CAPE, CIN, freezing level, lifted index, mean relative humidity, mid level 
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relative humidity, precipitable water0-3 km wind shear, 0-6 km wind shear, storm 

relative helicity, and Se. 

The strength of the differences seen between the positive and negative storms 

varies with the choice of percent positive used. Differences between the positive and 

negative storms tended to decrease when 10% was chosen (as compared to 30%), but 

they increased when 50% was chosen. 
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Chapter 1 

Introduction 

The majority of cloud-to-ground (CG) lightning produced in thunderstorms across 

the United States lowers negative charge to the ground (-CG). However, recent 

observations have documented storms that produce an abundance of CG lightning 

lowering positive charge to the ground (+CG), most often described as the percentage of 

total CG lightning of positive polarity (PPCG). Some of these storms even generate +CG 

flash rates and densities of 2 min-1 (Maier and Krider 1982; Peckham et al. 1984; 

Williams et al. 1989; Carey and Rutledge 1996; Lang et al. 2000) or 0.1to0.5 km-2 h-2 

(Stolzenburg 1990), comparable magnitudes to those typically observed for-CG storms 

(MacGorman and Buress 1994; Stolzenburg 1994; Carey and Rutledge 1998; Lang and 

Rutledge 2002; Carey et al. 2003). 

In particular, storms with anomalously large PPCG have a geographic preference 

to the central and north plains in the United States. Also, past studies have noted that 

severe storms passing through regions that contain similar mesoscale properties on a 

given day exhibit similar CG lightning behavior (Branick and Doswell 1992; 

MacGorman and Burgess 1994; Smith et al. 2000). Both of these findings suggest that 

the occurrence of anomalously high PPCG may be linked to specific mesoscale 

environmental conditions. These specific mesoscale conditions likely play a role in 
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influencing the dynamics and microphysics of the storm, which thereby could influence 

lightning behavior. 

This study seeks to investigate the relationship between the local mesoscale 

environment, and single to multi-cell thunderstorms. These include both positive and 

negative strike dominated storms, and thunderstorms that switch lightning polarity 

throughout their lifetime. Mesoscale convective systems (MCS) are purposely excluded 

from this study. This is because MCS's present a more complicated case, as interactions 

between various components of an MCS make their lightning patterns more complicated. 

For example, several studies have documented bipolar patterns in leading line trailing 

stratiform MCS's (Rutledge and MacGorman 1988; Rutledge et al. 1990; Engholm et al. 

1990; Schuur et al. 1991; Hunter et al. 1992). In these studies, they find positive strikes 

tend to occur in the stratiform region, and negative strikes in the leading convective line. 

It is these interactions and complexities of MCS' s that we wish to avoid. 
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Chapter 2 

Background 

a. Cloud electrification and Charge Structure 

Currently, there are a variety of hypothesized methods that could produce cloud 

electrification, but the most accepted ones involve ice and supercooled liquid water. The 

graupel-ice mechanism appears most capable of producing the magnitude of electric 

fields found in thunderstorms (MacGorman and Rust 1998). In this mechanism, graupel 

pellets grow by riming in a supercooled liquid water environment, and collide with ice 

particles to produce charge transfer. Then, the differential fall speeds of the larger 

graupel versus the smaller ice crystals produce charge separation where the graupel 

would fall to the lower portion of the cloud and the ice particles remain suspended aloft. 

The interested reader is referred to MacGorman and Rust (1998) for a complete listing of 

hypothesized charge transfer mechanisms. 

Several laboratory experiments have investigated the conditions by which 

particles obtain charge during collisions using the non-inductive charge transfer 

mechanism (Takahashi 1978; Saunders et al 1991; Saunders 1994). Although their results 

differ, Takahashi (1978) is most commonly referenced in the literature. His results are 

shown in Figure 2.1. The Takahashi lab experiments indicate that at temperatures 

warmer than -10 °C, the rimed particle (usually graupel) will charge positively for a large 

range of liquid water contents. However, below -10 °C, the sign of the charging depends 
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on liquid water content. At high liquid water contents, and very low liquid water 

contents, the rimed particle will charge positively. Otherwise, it is expected to charge 

negatively. 

In most thunderstorms, the typical electrical structure (Figure 2.2) produced by 

charging is either an ordinary dipole or tripole (Williams, 1989). This consists of a 

dominant lower main negative charge region with a positive charge region above. In the 

tripole, there is also a smaller, more localized, lower positive charge region below the 

main negative region, perhaps due to reverse charging on the graupel at low 

temperatures. However, more recent studies using balloon electric field measurements 

report that outside of the updraft, the electrical structures are more complex, and may 

contain up to six layers of charge (Stolzenburg et. al. 1998). There is also a negative 

screening layer found at the top of many thunderclouds. 

b. Hypothesis for Positive Cloud-to-Ground Lightning 

Since most CG strikes are negative, and originate in the main negative charge 

region of the thundercloud, how then are positive strikes produced? Williams (2001), 

lists a variety of possible mechanisms for positive CG production. The first one is the 

tilted dipole hypothesis (Brook et al 1982). In this mechanism, the upper positive charge 

region is displaced horizontally by vertical wind shear, and therefore, leaves the upper 

positive region exposed to initiate a positive CG. The til ted dipole mechanism is most 

likely to occur in shallow convection, such as found in a post-frontal air mass. The 

precipitation-unshielding hypothesis (Carey and Rutledge 1998) states that precipitation 

carries the lower negative charge out of the storm, which leaves the upper positive charge 

available to initiate a positive flash to the ground. Recent studies, however, favor an 
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inverted dipole/tripole hypothesis, with mid-level positive charge being situated between 

an upper and lower negative charge layer. During the Severe Thunderstorm 

Electrification and Precipitation Study, it was found that in the storms producing mostly 

+CG's, their electrical structure was an inverted dipole (Lang et al 2004; Rust and 

MacGorman 2002; Krehbiel et al 2000; Wiens et al. 2005). 

c. Relationships between Positive CG Lightning and the Local Environment 

Several studies have been performed that examine the local thermodynamic 

environment in contrast to the type of CG lightning produced. Smith et al. 2000 studied 

surface equivalent potential temperature (Se) during three tomadic outbreaks. A 

schematic of their results is shown in Figure 2.3. They found that storms whose CG 

lightning polarity was negative tended to form in regions of weak Se gradients and 

downstream of a Se maximum. However, storms whose CG lightning polarity was 

positive tended to form in regions of strong Se gradients, upstream of a Se ridge. If the 

storm moved adjacent to the Se ridge, then it remained positive, however, if it crossed the 

ridge, then the storm tended to switch polarity and become negative. They theorized that 

the switch in polarity was due to the weakening updrafts and precipitation fallout in the 

region of lower Se. 

Reap and MacGorman (1998) performed a similar study, but using model output 

fields from the National Meteorological Center's Limited-area Fine-mesh model (LFM) 

and the Techniques Development Laboratory's 10-Level Boundary Layer Model (BLM). 

They determined that both positive and negative lightning occurrence showed a good 

correlation with boundary layer fields such as relative vorticity, moisture convergence, 

and vertical velocity. They also showed that the conditional probability of positive 
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lightning was chiefly determined by the dynamics of the low-level circulation and 

moisture flux. However, they found that freezing level height and wind shear were less 

significant than the boundary layer fields. In contrast to this study, Levin et al. (1996) 

found that in Tel Aviv thunderstorms, the fraction of positive strikes was about 10% for 

wind shear values less than 1.0 ms-1 km-1
• However if the wind shear exceeded 4.5 ms-1 

km-1
, the fraction of positive strikes increased to 2: 40%. Also, Rust et al. (1985), in a 

study of positive thunderstorms in Oklahoma and Texas, found that storms with 850-300 

mb wind shear greater than 2 x 10-3 s-1 produced mainly positive flashes. Curran and 

Rust (1992) found in their study of low precipitation and supercell storms, both the 

positive and negative storms contained shear magnitudes greater than the threshold given 

by Rust et al. (1985). Therefore, they suggested that a threshold for the magnitude of the 

vector-averaged shear may be a necessary, but not sufficient condition for the production 

of positive ground flashes. 

In their study of severe storms on 2 June 1995, Gilmore and Wicker (2002) found 

that storms with the tallest 40 dBZ echoes and largest maximum mesocyclone strength 

index (MSI) values remained or became positive strike dominated. Also, when a storm 

was negative, it tended to have relatively smaller maximum MSis and lower (in 

elevation) 40 dBZ maximum echo location. From these analyses, they hypothesized that 

increased updraft strength (as measured by the maximum 40 dBZ echo height) resulted in 

a reduced negative CG rate. If this increase in updraft strength was coupled with a large 

increase in liquid water content, then descending graupel could experience higher riming 

accretion rates below the charge reversal level which could result in a larger positive 

charge region and a predominance of positive CG lightning. However, when the updraft 
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weakens, and liquid water content decreases, a weaker lower positive charge region 

results, which should favor negative CG lightning. 

Finally, Carey and Buffalo (2006) performed a statistical analysis between many 

different thermodynamic parameters and +CG lightning. They found that negative 

storms occurred in environments with more moisture (defined by surface dew point, 

mean mixing ratio in the lowest 100 mb, and precipitable water), higher mid level relative 

humidity, and larger convective inhibition. Positive storms occurred in regions with 

higher lifting condensation levels (a measure of cloud base height), lower freezing levels 

and therefore, shallower warm cloud depths. They also found that mean lapse rates (850-

500 mb and 700-500 mb) were steeper in positive regions, surface temperatures were 

greater, equilibrium level heights were higher (resulting in a larger free convective layer), 

and 0-3 km shear was larger. There was no significant difference in convective available 

potential energy, lifted index, 0-6 km wind shear, and Se. However, CAPE was larger for 

positive storms within the mixed phase region (0-40°C). 

Out of all these variables, Carey and Buffalo found the least overlap between 

positive and negative storms for LCL and warm cloud depth. They suggest that positive 

storms contain specific characteristics. First, higher LCL's and lapse rates indicate 

broader and stronger updrafts, which would allow for less mixing and entrainment 

(Williams et al. 2005). Also, reduced warm cloud depths generate larger supercooled 

water contents by suppression of coalescence, and larger CAPE between 0 and 40°C, 

which would tend to suppress rainout. This would produce higher supercooled water 

contents in the mixed phase region, and therefore positive charging of graupel by the 

non-inductive charging mechanism. They also note that there is variability in many of 
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these parameters, and on certain days, it may be possible for one to compensate for 

another. In addition, Lang and Rutledge (2002) hypothesize that a larger updraft volume 

in combination with an elevated charge mechanism would produce more positive CG 

lightning due to the greater reservoir of positive charge produced. 

d. Climatological Relationships between CG Lightning Polarity and the Environment 

A few studies have examined the relationship between CG lightning polarity and 

the meteorological environment over the entire United States. Before discussing results 

from these studies, the climatology of CG lightning over the United States is first 

reviewed. The largest mean annual flash density across the United States (Figure 2.4) 

peaks in Florida and along the Gulf Coast (Orville and Huffines 2001), in accordance 

with the largest number of thunderstorms (Ahrens 2003). However, the percent of 

positive strikes (Figure 2.5) shows a maximum from Southwest Colorado and Kansas, 

extending up to Minnesota and the Dakotas and into Canada, and along the West Coast of 

the United States (Orville and Huffines 2001). The west coast maximum is undoubtedly 

associated with reduced -CG flash rates and an increase in +CG's during winter storms 

(Ely and Orville 2005). The lowest values occur over Florida and the Gulf Coast. 

Orville and Huffines (2001) also noted that the mean monthly percentage of positive 

flashes is the largest in the winter months, and lowest in the summer. Zajac and Rutledge 

(2001) performed a similar study using data from 1995-1999 that confirmed these results. 

The Zajac and Rutledge study emphasized the role of isolated multi-cell and supercell 

thunderstorms in leading to the upper Great Plains maximum in positive CG lightning. 

Williams et. al. (2005) examined the climatology of cloud base height and wet 

bulb potential temperature (a proxy for instability) across the contiguous United States 
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(Figure 2.6). The studies of ground flash activity over the United States show that the 

region of enhanced positive ground flashes corresponds to the wet bulb potential 

temperature ridge. Williams et al. argue that storms in this region have the unusual 

combination of enhanced instability and high cloud base height. Assuming that these 

positive storms have inverted polarity structures, and that positive charging is produced 

by superlative liquid water contents aloft in the mixed phased region, they give four ways 

in which this could happen. A larger (wider) updraft would allow for less mixing, 

thereby making it stronger. Also, a stronger updraft might suppress precipitation, which 

would allow for higher liquid water contents aloft (Ludlam 1980). A thinning of the 

coalescence zone would allow for less removal of water in this zone, resulting in higher 

supercooled liquid water contents in the mixed phase region. In addition, larger aerosol 

concentrations could suppress collision and coalescence, promoting higher liquid water 

contents in the mixed phase region. The role of aerosol changes as a possible control of 

lightning polarity is discussed later in this chapter. 

Also, Carey et al. (2003) performed a study in which they used 10 years of 

lightning data, and compared this to Se patterns. Their results show that the monthly 

frequency maxima of severe storms were offset with respect to the Se ridge on severe 

outbreak days. Positive storms tended to occur in a region of strong Se gradient to the 

northwest of the Se ridge axis. However, negative storms occurred most often to the 

southeast of the positive storm maximum, closer to the axis of the Se ridge, and in higher 

average Se values. They also note that the relationship is noisy, and so it is likely that the 

relationship is only indirect, or that Se is one of several possible environmental controls. 

In addition, Knapp (1994) found that positive strike dominated storms occurred less 
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frequently in areas where the atmosphere tended to be closer to saturation in the vertical 

(the southern plains and Midwest). 

e. The Role of Aerosols 

Recent studies have indicated that aerosols may have an affect on +CG lightning 

and storm structure. Andreae et al. (2004), Williams et al. (2002), Rosenfeld and 

Woodley (2003), Carey and Buffalo (2006), and Williams et al. (2005) state that an 

increase in aerosols in the boundary layer will lead to a reduction in droplet size, and a 

suppression of coalescence. This will then increase the liquid water content in the mixed 

phase region. Lang and Rutledge (2006) investigated lightning behavior during the 

Hayman fire of 2002. They found that -CG lightning was reduced during the fire, and 

+CG were increased modestly; however the correlations between aerosol optical depth 

and the location of +CG lightning were mixed. Also, Lyons et al. (1998), and Murray et 

al. (2000) reported an increase in +CG lightning over the Southern Plains in a region 

where smoke aerosol was advected northward from fires burning in Mexico and Central 

America respectively. In contrast to these studies, Steiger and Orville (2003) saw a 

decrease in the percentage positive strikes over a petrochemical refinery in Louisiana. 

This same result was also observed over Houston, TX (Steiger et al. 2002) and Brazilian 

urban areas (Naccarato et al. 2003). 

Furthermore, Van Den Reever et al. (2006) found, in a modeling study, that the 

addition of aerosols led to increased updraft and downdraft strength, and a greater 

number of updrafts and downdrafts than in a cleaner atmosphere. In addition, increased 

cloud condensation nuclei (CCN) increase the cloud water content in the early stages of a 

thunderstorm. However, during the mature and dissipating stages, increases in giant 
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cloud condensation nuclei produce more cloud water, while cloud water tends to decrease 

for the CCN case. Furthermore, Van Den Reever and Cotton (2007), show an initial 

suppression of precipitation when CCN are enhanced, but precipitation is increased when 

GCCN or IN are enhanced. All of these changes will affect the microphysics of the 

storm and associated charging. At this current time, the role of aerosols in affecting +CG 

lightning is uncertain, and complex. 

f. Positive CG Lightning and Severe Storms 

In general, while the thermodynamic conditions in which positive strike 

dominated storms occur vary, it is widely agreed upon that many of these storms produce 

severe weather. Carey et al (2003) examined the relationship between storm severity and 

percentage of positive lightning. Carey et al. found a positive trend between percent 

positive strikes and hail size up to 8 cm. Above 8 cm, the trend became flat to slightly 

decreasing with hail size. However, across the United States, regional trends were 

stronger than any trend between storm severity and percent positive lightning. Also, 

Zajac and Rutledge (2001) suggested that predominantly positive CG storms in the 

central and Northern plains were associated with isolated storms or convective lines that 

had not yet fully developed into MCS's. MacGorman and Burgess (1994) found that hail 

tended to occur during the positive CG phase of thunderstorms. Hail is not likely once a 

storm switched from positive to negative. Many other studies (Stolzenburg 1994; Curran 

and Rust 1992; Reap and MacGorman 1989) have also linked positive CG production 

with large hail. This makes sense, as hail size correlates with higher supercooled liquid 

water contents. 
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However, the relationship between tornados and positive CG lightning is less 

clear. Carey et al (2003) examined F scale and mean positive CG. The trend in positive 

lightning percentage is flat from FO to F2, increasing from F2 to F3, and then decreasing 

to F4. There were relatively few F5 tornadoes, as expected, in their sample. In addition, 

Seimon (1993), and MacGorman and Burgess (1994) showed a switch from positive to 

negative CG flashes associated with tornados. Other studies that linked tornadoes to 

+CG's include Reap and MacGorman (1989), Gilmore and Wicker (2002), Perez et al. 

(1997), and Smith et al. (2000). 

While these above studies link positive storms with severe weather, negative 

storms may also be severe. However, the reason why some severe storms produce 

predominantly positive CG's and others don't is still unknown. This study seeks to 

investigate the relationship between +CG lightning and various thermodynamic 

parameters. 
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Figure 2.1. The Electrification of rime from Takahashi (1978). Open circles show 
positive charge, solid circles show negative charge, and crosses represent uncharged 

cases. 
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Figure 2.2. Typical charge structure of a thunderstorm (from Ahrens 2003). 
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Figure 2.3. Schematic diagram of CG lightning polarity as a function of location to the 
surface equivalent potential temperature ridge. Idealized storm tracks are shown by the 

bold arrows. (from Smith et. al. 2000) 
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Figure 2.4. The mean annual flash density for the United States (from Orville and 
Huffines 2001). 
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Figure 2.5 . The mean annual percent positive across the United States (from Orville and 
Huffines 2001 ). 
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Figure 2.6. Climatology for wet bulb potential temperature (top) and cloud base height 
(middle) for noontime in July. The bottom is a summary of locations of clustered 

positive ground flash storms for many different studies, and includes the zone of highest 
Climatological percent positive and IC/CG ratio. (from Williams 2005). 
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Chapter 3 

Data and Methodology 

a. Radar Data 

The radar data used in this study were composite horizontal reflectivity from the 

NEXEAD network, obtained for the entire contiguous United States. Composite 

reflectivity is the maximum base reflectivity value that occurs in a given vertical column. 

This was used to eliminate the problems of storms tracking into and out of different radar 

domains, and coordinates relative to the radar. 

The domain focused on comprised the region between the Rocky Mountains and 

the Mississippi River, and is shown in Figure 3.1. This region was chosen to incorporate 

the many varying conditions that thunderstorms form in across the United States. 

Twenty-five main storms were chosen over five years (1998 - 2002), occurring between 

April and July. Then, storms occurring somewhere within the same time frame as the 

main storm, and in neighboring states were identified and added to the data set. A list of 

the storms included is given in Tables 3.1, 3.2, and 3.3. Ellipses were fit to both the 40 

dBZ region, and the entire storm. To be included in the dataset, storms needed to satisfy 

the following criteria. First, its 40 dBZ region must be larger than 10 km2
, and the storm 

must last for at least forty-five minutes. This is to eliminate clutter in the radar, and the 

presence of air mass thunderstorms, which typically have lifetimes of less than one hour 

(Ahrens, 2003). Second, the major to minor axis ratio must be less than five, as this ratio 
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defines a linear storm system (Rickenbach and Rutledge 1998). Also, a storm must have 

a major axis length (fit to the entire storm) of less than 100 km, unless the presence of an 

anvil was detected. A contiguous precipitation area of 100 km or more in one direction 

defines a MCS (Houze 1993), which we previously stated would be excluded from our 

study. Anvil clouds, when detected, usually have low reflectivities, since they are 

composed of mainly ice, which has a lower dielectric constant than water. Therefore, if a 

cloud signature believed to be an anvil contained reflectivities of less than 20 dBZ 

(Heymsfield and Fulton 1998; Heymsfield et al., 1983), it was considered to be an anvil 

and left in the dataset. If not, the storm was considered to meet MCS criteria, and was 

excluded during that time frame, and the rest of its lifetime. Particular focus was given to 

retaining a variety of storms in different locations, and dates across the five years, so as 

not to bias the results to a particular region or month. 

b. Cloud-to-Ground Lightning Data 

Cloud-to-ground lightning data were obtained from the National Lightning 

Detection Network (NLDN; Cummins et al. 1998). The NLDN measures the time, 

location, peak current, and multiplicity of all detected CG strikes, using either a time of 

arrival method, a magnetic direction finder method, (Krider et al. 1996), or combining 

magnetic direction finder and time of arrival methods. Over most of the domain used, the 

NLDN has a median location accuracy of 0.5 km; however, it increases slightly over the 

northern high plains and south Texas. Also, the detection efficiency for first strokes is 

above 80% for strikes greater than 5 kA over the majority of the domain used, with the 

values dropping to about 70% in the Northern high plains (upper North Dakota and 

Montana), and in Southern Texas. CG strikes with peak currents less than 10 kA were 
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not included in this study since they are likely misidentified intra-cloud flashes 

(Cummins et. al. 1998). 

Since the purpose of this study was to identify the dominant polarity of the cloud 

to ground flashes of a particular storm, only those CG flashes that fell within the ellipse 

fit to the 40 dBZ region of the storm were retained. This is because anvils of severe 

storms often contain a predominance of positive ground flashes, while the region of deep 

convection is usually negative (MacGorman and Burgess 1994). By eliminating these 

strikes from the dataset, we are restricting ourselves to the dominant polarity of the storm, 

and the region likely associated with the charge structure of the updraft. Then, the 

lightning data were clustered to a specific storm, and totaled over every 15-minute period 

throughout the life of the storm. From there, a storm was classified as either positive, 

negative, or a polarity reversal storm. Positive storms are those that had a positive CG 

percentage greater than 30% (after Knapp 1994), throughout the lifetime of the storm, 

whereas negative storms had a positive CG percentage less than 30%. Storms that 

changed polarity followed the same criteria, but the change in positive CG percentage 

must occur over at least an hour's time frame. This restriction was placed because the 

temporal resolution of the thermodynamic data used is one hour. Therefore, changes in 

the environment on shorter time scales than this cannot be accurately resolved. 

c. Thermodynamic Data 

Thermodynamic conditions were obtained from the Rapid Update Cycle (RUC) model 

analysis. The motivation for using the RUC model was the high spatial and temporal 

resolution, which will allow for detailed examination of the atmospheric conditions 

several times during the lifetime of many storms. The model analysis has a 40 km grid 
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spacing for l April 1998 through 15 April 2002. It then switches to a 20 km grid spacing 

from 15 May 2002 through 31July2002. Data were converted to isobaric coordinates 

and are given every hour. The specific data point chosen for each storm was based on the 

storm's midpoint. Then, the nearest point in the direction of motion (as given by the 

location of the midpoint in the next radar frame) of the storm was found. Note that this 

may introduce errors, as some data points represent the inflow, but others are located 

within the precipitation of the storm (Figure 3.2). 

The model computes CAPE and CIN using an averaging of potential temperature 

and water vapor mixing ratio in the lowest seven RUC native levels (approximately 45-

55 mb), and then taking the maximum buoyancy produced between the surface and 

180mb (switched to 300mb on 6 May 1999). Freezing level is output both from the 

bottom up and top down algorithms. The bottom up freezing level algorithm is used in 

this project, defined as the first level in which the temperature drops below freezing. 

Lifted index calculations use a surface parcel, and precipitable water is also calculated 

using a surface based parcel and then summing the product of specific humidity at each 

level multiplied by the mass of each layer (mid points between each level). Prior to 

March 2000, storm relative helicity was computed using the Davies and Johns method in 

which supercell motion is estimated to be thirty degrees to the right and eighty-five 

percent of the mean wind vector for a 850-300 mb mean wind of less than 15 knots, and 

seventy-five percent of the mean wind vector for a 850-500 mb mean wind of greater 

than 15 knots. After March 2000, the Internal Dynamics method (Bunkers et al, 2002) 

was used. 
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Other variables were calculated from model data. Cloud base height/lifting 

condensation level (given in meters) are calculated using the formula from Williams et. 

al., 2005: 

cbh = 67 (T - Td) 

Warm cloud depth (also in meters) is defined as the difference between the freezing level 

and the cloud base height. Mid level relative humidity is defined as the average relative 

humidity between 700 and 500 mb layer, and mean relative humidity is the average 

relative humidity through the depth of the RUC data. The shear values were calculated 

using approximate heights since winds in the RUC model are given on a pressure grid. 

The 0-3 km shear calculation uses the surface wind, and the wind given at the 700 mb 

level. For 0-6 km shear, winds were used also at the surface, and the 450 mb level. 

Wind shear (in m s-1
) that was calculated is speed shear, and is given by the following 

formula. 

3km_ shear= ~(3km_u - surface _u) 2 + (3km_ v- surface_ v) 2 

Also, the heights of the pressure levels and the freezing level had to be converted from 

geopotential to geometric heights. The conversion is given as: 

Z=-H_R_e _ 
GRe-H 

where Re is the radius of the earth at latitude <j>, G is the gravity ratio ( G = ...L ), and His 
8a 

geopotential height. Note that this does not factor in the change in gravity with height. 

The effect of this was addressed by comparing the results of this calculation with a true 

table factoring in the change in gravity with height. At a height of 200 km, the change 

was only 6 km. 
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To assess the ability of the RUC model to accurately represent the thermodynamic 

conditions present, model analysis was compared to thermodynamic soundings for April 

through July of 1998 to 2002. Correlations for the 0000 UTC and 1200 UTC soundings 

were done, as well as an average difference in means, and the standard deviation. These 

were performed first to assess whether the variables varied similarly, and second to 

measure whether the RUC and soundings are close in numeric values. Figure 3.3 shows 

a four-panel plot of the correlations for surface pressure, temperature, dew point, and 

relative humidity for 1998. While all the years are slightly different, they follow the 

trend shown. 

Surface pressure correlations are very high (above 0.95) for most of the United 

States, with the exception of a few locations in the intermountain west. Note that these 

regions are outside of our domain. Surface temperature correlations are also very high 

across the central United States. Over the west, correlations drop off, but the minimum 

of any year is only around 0.839. Surface dew point correlations remain above 0.9 

throughout most of my domain, dropping off to around 0.6 to 0.7 over the intermountain 

west. The relative humidity correlations follow almost the same pattern as the dew point 

correlations. These indicate that at the surface, the RUC model varies closely in 

alignment with the sounding variations over the domain of this project. 

Figure 3.4 shows the average difference value between the reported sounding and 

RUC model for the same surface variables during 1998. The average difference in 

surface pressure is very small (approximately 1-2 hPa) across most of the United States. 

However, over the high plains (including Denver, eastern Wyoming, western Nebraska 

and South Dakota), the difference becomes as large as approximately 15 hPa. The 1998 
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plot also shows a minimum difference over Arizona, but this trend is not present in the 

plot during other years. In addition, there is a local minimum centered over central 

Arkansas (approximately -6 hPa). The mean temperature differences across the United 

States are very small (typically less than 1 °C), with a maximum over the Salt Lake City 

area in all plots except 2002. Also note that in the Southern Mountain regions (near 

Albuquerque, NM), temperature differences increase to above 1 °C. The mean dew point 

difference is very small across the central United States (less than 1 °C), with the 

exception of the intermountain west, where are adjacent maxima and minima appear of 

approximately -2 °C, and 4 °C. Surface relative humidity differences are more variable, 

but all show an increase over the North Dakota, South Dakota, and Wyoming region. 

This increase ranges from 5 to 9% over the five-year period selected for this study. 

Differences across the rest of the central United States are small, with values between 

10%-2%1. These results indicate that the RUC model is very close in correlation and 

specific number values when using the surface temperature data across the five years. 

However, moisture and pressure may be a problem over the northern and high plains. 

The upper air data shows a different pattern. Temperature and relative humidity 

correlations for 1998 are shown in Figure 3.5. The temperature correlations are very 

strong across the entire United States, despite looking like it has many different patterns. 

The minimum over 1998 is 0.998, and the minimum over the four years is 0.977. 

Relative humidity is more variable however. The plot shows decreasing correlations 

toward the western and southern United States. Values across the central United States 

are typically between 0.8 and 0.9. This indicates that the RUC is performing well with 
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upper air temperature values, but moisture is not exactly in correlation with the 

soundings. 

Examining the difference in upper air temperatures and relative humidity, 

between the RUC model and the soundings (Figure 3.6) we notice that the temperature 

difference is very small. Average difference values are less than 1 °C for all of the 

United States. Upper level relative humidity, however, has slightly larger difference 

amounts. Important to notice is the large maximum in differences (about 3%) over the 

Albuquerque, NM region. Also, there is a smaller maximum over the Kansas area, closer 

to 2%. Overall, relative humidity values are off by approximately 1-2% throughout the 

domain of this study. This suggests that while the RUC model appears to do well with 

upper air temperatures, moisture is more uncertain, especially as we move closer to the 

Rocky Mountains (where the correlations dropped off). 

The standard deviation of all these measurements (not shown) shows a different 

pattern. Upper air temperatures, and surface pressure variations are small everywhere 

(generally less than one). However, the standard deviations of surface dew point and 

temperature tend to get larger as we move toward the southern Rocky Mountains. 

Relative humidity measurements contain much variability throughout the region, but in 

general, also show larger standard deviations as we move toward the Rocky Mountains. 

Upper air relative humidity standard deviations are very large (maximum of 10-20%) and 

also show much variability across the United States. This means that whether the RUC 

model is accurate with moisture or not will vary from day to day. On average, it is a 

good representation of the soundings; however, there may be cases in which the RUC 

does not perform well. 
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d. Analysis and Statistics 

Because of the large number of storms, a variety of plots and statistical methods 

were used to determine if there are typical differences between storms dominated by 

+CG's, and those dominated by-CG's. First, histograms of all the data where positive 

and negative (polarity reversal storms were split by their positive and negative times, and 

lumped with the positive and negative data) storm environmental conditions were 

performed in an attempt to locate systematic differences. Then, the data were separated, 

into positive and negative cases, and polarity reversal cases. Single variable plots of the 

positive and negative storm data were performed. Also, due to non-normality in the data, 

a Wilcox-Mann-Whitney rank sum test (Wilks 1995) was used to test whether the 

positive and negative population distributions differed by location at the 95% confidence 

level. For the polarity reversal cases, storm environmental conditions were plotted across 

the length of the storm and then compared to the polarity reversal time and percent 

positive strikes. Finally, sensitivity tests were performed to test the effect of data point 

errors. Also, the percent positive was reduced to 10%, and increased to 50%, to test the 

effects of using a 30% threshold in the study. This second threshold of 10% was chosen 

after Orville and Huffines (2001). They show values typically larger than 10% in the 

positive polarity corridor (Figure 2.5), but less than this value across the rest of the 

domain used in this study. Also, Smith et al. (2000) in their study used 50% as the 

positive polarity indicator. 
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Figure 3.1. A map showing the domain and states included in this study. 
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Figure 3.2. Radar Reflectivity and nearest RUC data point used for 19 May 1998, 1500 
UTC (top) and 8 June 1998, 0030 UTC (bottom). 
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Surface RH Correlation Coetflclent tor 1996 

Figure 3.3. Correlations between the RUC model and environmental soundings for a) 
surface pressure, b) surface temperature, c) surface dew point, and d) surface relative 

humidity. 
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Figure 3.4. The average difference between sounding and RUC model variables for a) 
surface pressure, b) surface temperature, c) surface dew point and d) surface relative 

humidity for 1998. 
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Upper Air RH Correlation Coefficient for 1998 

Figure 3.5. Upper air correlations between the soundings and RUC model for a) 
temperature and b) relative humidity. 
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Sounding and RUC Model Mean Upper Air Temperature Dffference for 1998 
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Figure 3.6. The average difference between sounding and RUC model values for a) 
upper level temperatures, and b) upper level relative humidity for 1998. 
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Ne<1ative Storms 
Oates Times (UTC) Location Severe We;ather 

7-8 May 1998 2245-0400 KS,OK FO tornado, hail ,_ -
2330-0145 AR hail 

6-7 June 1 998 2245-0500 NM, OK, KS hail, wind 

2330-0145 NM, TX hail 
1 0-11 June 1 998 2130-2245 OK no reports 

2215-0030 KS hail, wind 
20-21 May 1999 2000-2300 co no reports 

0030-0145 TX hail 
26-27 June 1999 2230-0045 WY no reports 
1 8-1 9 July 1999 2330-0100 MT hail -- - -

2330-0115 MT hail 
2330-0130 NE no reports 

30 April - 1 May 2000 2100-0130 NM, TX hail, wind 
2000-2145 TX FO and f 1 tornado, hail, wind 

21-22 May 2000 2100-2315 AR no reports 
12 June 2000 1500-1830 IA no reports 
5-6 July 2000 0115-0215 KS,NE no reports 

0045-0345 NE hail 
8 July 2000 0115-0515 MT hail 

0300-0745 MT hail 
14 June 2001 0145-0300 KS FO tornado , hail 

0200-0300 KS hail 

20-21 June 2001 2215-0115 WY hail 
22-23 July 2001 1930-0115 MT,SD hail, wind 

1930-2245 MT no reports 

2015-2245 MT no reports 

2345-0200 WY hail 
23-24 May 2002 2145-0100 TX no reports 
30-31 May 2002 2300-0230 IA hail 

31 July 2002 2100-2330 ND FO tornado, hail 

Table 3.1. A list of the storms producing mostly -CG' s, including the date, time and 
location of the storm, and any severe weather associated with it. 
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Positive Storms I 

Dates Times (UTC) Location Severe Weather 
7-8 May 1998 2200-0030 AR no reports 

6-7 June 1 998 2300-0045 TX hail 

2330-0500 NM, TX FO tornado, hail 
10-11 June 1998 2315-0130 KS no reports 

27 April 1 999 0100-0200 OK hail 
18-19 July 1 999 2200-0100 SD hail, wind 

29July1999 0130-0430 MN hail, wind 
21-22 May 2000 2145-0000 AR hail 

5-6 July 2000 2230-0130 KS,NE hail 
0045-0415 NE,CO F3 tornado, hail, wind 

8 July 2000 0100-0245 MN FO tornado 
29 May 2001 2100-2300 TX no reports 

20-21 June 2001 0000-0200 co FO tornado, hail, wind 
22-23 July 2001 2045-0000 NE hail 
11 -12 April 2002 2145-0100 KS FO tornado, hail, wind 

2345-0200 KS hail, wind 
23-24 May 2002 2145-0030 TX FO tornado, hail 
30-31 May 2002 2315-0030 IA no reports 
3-4 June 2002 1830-0015 co FO tornado, hail 

1945-2115 co hail 

2000-0015 co hail 
31 July 2002 2030-2245 ND wind 

2115-2330 ND hail 

Table 3.2. The same as Table 3.1, except for the +CG storms. 
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Polarity Reversal Storms 
Dates rnmes (UTC) Location Severe Weather Classification 

19May1998 1400-1600 IA,MO hail Positive-Negative 
13-14 July 1998 2200-0245 SD hail Negative - Positive 
20-21 May 1999 2115-0345 TX FO tornado, hail Neg - Pos - Neg 
26-27 June 1999 2100-0100 WY,NE FO tornado , hail Negative - Positive 

0000-0600 NE FO and F1 tornado, hail , wind Positive-Negative 
0015-0530 CO,KS hail, wi d Negative - Positive 

21 -22 May 2000 1800-2345 KS,MO hail Negative - Positive 
2045-0100 MO F1 tornado, hail, wind Negative - Positive 

5-6 July 2000 0000-0315 WY,SD no reports Positive-Negative 
10-11 May 2001 2130-0330 WY,NE hail Neg - Pos - Neg 

Table 3.3. A list of the polarity reversal storms including the date time, and location, 
they occurred, severe weather that the storms produced and a classification of lightning 

behavior. 
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a. All Cases 

Chapter 4 

Results 

Histograms of the environmental conditions for all storm cases are shown in 

Figures 4.1-4.16. Environmental conditions for the positive (negative) storms and the 

positive (negative) portion of the polarity reversal storms are binned together, and hourly 

RUC observations are plotted for each storm. While many of these data show 

considerable scatter (positive and negative storms occurring in similar environmental 

conditions), a few trends are evident. Starting with the moisture variables, the histogram 

of dew point temperature (Figure 4.1) shows low dew point temperatures associated with 

mostly negative (-CG) storms. Positive storms do not begin to occur until dew point 

temperatures are above 8°C. This trend can also be seen in precipitable water (Figure 

4.2), as positive storms do not occur until 1.5 cm. However, there is an additional region 

of large precipitable water values (above 4.5 cm) where we see only +CG storms 

occurring. High moisture values for positive storms are seen in mean relative humidity 

through the depth of the sounding (Figure 4.3), but the lower values (as seen in the 

precipitable water plot) are not evident in mean relative humidity. Mid level relative 

humidity (not shown) does not show a large amount separation between the positive and 

negative storms. Equivalent potential temperature, Se (Figure 4.4), also does not show 

much separation between the positive and negative storms, however, we do notice that 
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the histograms are shifted relative to each other. The positive storms show higher 

frequencies at Se values above 355 K, whereas the negative storms are dominant below 

this. These results are actually opposite those of Carey and Buffalo (2006), and Knapp 

(1994), who found positive (negative) storms occurring in drier (moister) environments. 

However, Carey and Buffalo (2006) focused their study in the Oklahoma, Texas 

Panhandle, and Kansas regions, and Knapp ( 1994) makes a general statement based on 

regional climatology (not on individual storm data). 

Cloud base height (Figure 4.5) also does not show discemable separation between 

the positive and negative storms, but warm cloud depth (Figure 4.6) shows a region of 

only negative storms at relatively shallow warm cloud depths. Positive storms do not 

begin to occur until warm cloud depths reach greater than 2000 m. These results are in 

contrast to Carey and Buffalo (2006) who found higher cloud base heights and lower 

warm cloud depths, and Williams et al. (2005) who hypothesized these same conditions 

for positive CG producing storms. Both CAPE and CIN (Figures 4.7 and 4.8) show little 

separation between the positive and negative storms. However, there are a few positive 

storms that occur at very large CAPE and large negative CIN values. Lapse rates in the 

850-500 layer (Figure 4.9) show negative storms at large lapse rages, but 700-500 mb 

lapse rates (Figure 4.10) show little separation between the positive and negative storms. 

Freezing level height (Figure 4.11) showed no apparent difference between the positive 

and negative storms, similar to Gilmore and Wicker (2002), but in contrast to Carey and 

Buffalo (2006). Lifted index (not shown) also showed little separation. 

Wind shear in the 0-3 km layer (Figure 4.12) shows very little separation between 

the positive and negative storms. This is in contrast to Gilmore and Wicker (2002), 
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Levin et al. (1996), and Carey and Buffalo (2006), but in agreement with Curran and Rust 

(1992), who found wind shear to be a necessary but not sufficient condition for positive 

storms. Deep layer (0-6 km) wind shear (Figure 4.13) also shows little separation 

between the positive and negative storms. Carey and Buffalo (2006) also found no 

significant difference in deep layer shear. Storm relative helicity (Figure 4.14) contains a 

region of only negative storms at large helicity values. 

b. Monthly Results for All Cases 

In an attempt to isolate possible regional biases or seasonal trends, the data were 

separated across the United States. It was broken up by months (April, May, June, July) 

as Hagemeyer (1991) demonstrated changes in synoptic and mesoscale conditions in 

association with different months. Histograms similar to Figures 4.1 to 4.14 were made 

for each thermodynamic variable during each of the four months. Plots in this section are 

omitted, but compared to the previous histograms. 

Similar to the above results, the monthly positive and negative data contained 

much overlap, with a few additional trends. We found the region of low negative dew 

points in all plots, although precipitable water shows no trend except high positive values 

in July above 5.0 cm), and low negative values in April and May. Mean relative 

humidity values are high for positive storms in April, May and June, but not for July. In 

addition, mean relative humidity values are typically larger in June and July (we see 

values as high as 70-80%, whereas in May and April, maximum values are only 55% ). Se 

indicated no trend for April and May (values are low, ranging between 310 and 360 K), 

but shows high values for positive storms (365 Kand above) and lower values for 

negative storms during June and July. 
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Cloud base height reveals little difference between the positive and negative 

storms for May and June, but we see higher negative values for April and July. Also, 

cloud base heights are much lower in May than in any other month (all values tend to be 

below 1700 m, whereas cloud base heights may reach as high as 2700 m for the other 

months). This is to be expected; the northward movement of the polar front jet would 

lead to thunderstorms produced farther north in June and July. These storms have little 

influence from the gulf moisture, so therefore have higher cloud bases. Warm cloud 

depth shows almost no trend across the months, except low values (around 1000 m) 

associated with negative storms in April. There are much lower freezing levels depths 

(between 2900 m and 3600 m) associated with positive storms in April. However, in 

June and July, freezing levels for positive storms start at around 4100 m, and continue to 

larger values. All of these results may be evidence of variables compensating for one 

another to produce the same result, as suggested by Carey and Buffalo (2006). The lower 

freezing level in April and May could help sustain higher liquid water contents aloft by 

making the coalescence zone shallower. However, in June and July, higher moisture 

values could compensate for this effect by producing higher liquid water contents below 

the freezing level and thereby could still produce positive charging. 

Larger 700-500 mb lapse rates are seen with the negative storms in April and 

June, but these lapse rates are smaller in May. However, for 850-500 mb lapse rates, the 

negative storms are associated with larger lapse rates (near and above 8 °C km- 1
) in all 

months except July. CAPE values are low for the negative cases in July, but the positive 

storms show some values above 6000 J kg-1
• In April, the negative CG cases have higher 

CAPE values (near 4000-6000 J kg-1
) than the positive CG storms. For CIN, we see 
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negative storms at larger negative CIN (-150 to -250 J kg-1
) for April and May, but in 

July, these same values (-150 to -200 J kg-1
) are associated with positive storms. During 

June, a few positive storms have large negative CIN, up near -250 to -450 J kg-1
• Lifted 

index shows higher values for negative storms in June, but less so in May. 

Wind shear in the 0-3 km layer shows lower values (between 0 and 5 m s-1
) for 

negative storms in May, but little difference between the positive and negative storms is 

seen across the other months. However, 0-6 km shear shows values between 20 and 30 m 

s-1 for negative storms during April and between 25 and 40 mis for May. Lower values 

are seen in June (10-15 m s-1
). Storm relative helicity shows much lower helicity values 

in April for all cases (less than 300 m2 s-2), but these values sharply increase for the June 

negative CG cases (between 600 and 1000 m2 s-2). 

The histograms for April show the most separation between positive and negative 

CG storms for all data. This may be due to the small April data set (only 5 cases), or to 

the small region where these storms occurred (Oklahoma and Kansas only). Note that 

this region is very similar to the one used by Carey and Buffalo (2006), however, the 

results are not the same, in that we see higher moisture values for the positive storms. 

However, similar to Carey and Buffalo, freezing levels are lower. 

c. Polarity Reversal Cases 

There are a total of ten cases in which the CG lightning switched polarity 

throughout the storm's lifetime (listed in Table 3.3). To determine if the switch 

corresponded to any change in a particular thermodynamic parameter, each variable was 

plotted across the lifetime of the storm, along with the percentage positive. Figure 4.15 

shows a plot of cloud base height for the two polarity reversal storms that occurred in 
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July, 13 July 1998 and 5 July 2000 (note: the polarity reversal storms will be identified 

by the first day in which the storm occurred, with the year omitted since no storms 

overlap). These two storms show opposing trends in cloud base height, with a larger 

cloud base height when the storm is negative for 13 July, but a lower cloud base height 

when the storm was negative on 5 July. Table 4.1 lists the average RUC values for the 16 

variables during each storm's positive and negative phase (shown for simplicity). As can 

be seen for cloud base height (Table 4.1), 7 storms (19 May, 13 July, 20 May, 26 June 

storm 1, 26 June storm 3, 21 May storm 2, and 10 May) showed relatively lower cloud 

base heights when the storm was positive (as opposed to when the storm was in its 

negative phase). However, the other 3 (26 June storm 2, 21 may storm 1, and 5 July) 

showed relatively higher cloud base heights when the storm was positive. 

The moisture variables show contrasting trends across some of the storms. Dew 

point is larger during the positive phase for 8 of the storms, but smaller for 2 of the 

storms. Mean relative humidity and mid level relative humidity shows the exact opposite 

trend, with higher mean relative humidity when the storm is positive for 2 storms, but 

lower values for the other 8 storms. Precipitable water shows no apparent trend, with 5 

storms containing higher precipitable water values when the storm is positive, and 5 

being higher when the storm is negative. Se values are also larger when the storms are 

positive (as compared to the negative phase of each storm) for 7 of the cases, but smaller 

during the negative phase for 3 storms. 

Freezing level depth is higher for 6 of the storms during their positive phase, 

while warm cloud depth is larger for 8 of the storms during their positive phase. CAPE 

follows Se, with 7 storms showing larger values during the positive phase, and 3 larger 
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during the negative phase. CIN shows no apparent difference, with 5 larger CIN values 

and 5 smaller CIN values for the positive storms. 

Lifted index is also split, with 5 storms showing a larger (more negative) lifted 

index during the positive phase and 5 showing larger lifted indices during the negative 

phase. The 850-500 mb lapse rates tend to be larger when the storm is negative (7 

storms), and smaller when it is positive (3 storms). However, 700-500 mb lapse rates 

show no obvious trend, with 5 storms containing steeper lapse rates during their positive 

phase, and 5 storms showing shallower lapse rates during their positive phase. 

As expected, 0-3 km and 0-6 km wind shear show similar trends. However, 8 

storms show higher shear values when they are positive and only 2 lower values for 0-3 

km shear, while only 6 show higher 0-6 km shear values, and 4 show lower values when 

the storm is positive. Storm relative helicity also contains 8 storms that show higher 

helicity values when the storm is positive, but only 2 lower. 

There are only three storms out of this polarity reversal data set that occur on the 

same day as positive and negative storms. The trend with the polarity reversal data in 

comparison to the positive and negative storms is less variability. For example, if cloud 

base height in the polarity reversal storm is lower in its positive phase than the positive 

storms in the area, it tends to stay lower than the negative storms after the switch to the 

negative phase. A few variables do not follow this trend. These include storm relative 

helicity and Se. Otherwise, it is difficult to establish trends due to the low number of 

cases that meet this criterion. 

An additional difficulty with establishing trends for the polarity reversal cases is 

partly due to the fact that all of the numbers are relative. For instance, while dew point 
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may be reduced as a storm is negative, this value may still be larger than another storm 

during its positive phase. An example of this is the 19 May case. The average dew point 

during the negative phase is 21°C. This is larger than the dew point value for all the other 

storms during their positive phase except 19 May (22.35°C), and 26 June storm 1 

(22.1°C). Also, the same storms do not show changes in the same variables. For 

example, while CAPE and Se both show 7 storms with relatively larger values and 3 

storms with relatively lower values during the positive phase; it is not the same 7 storms. 

Furthermore, Table 4.1 shows that the numerical values for the positive versus the 

negative phase are very close, and we don't see a large shift in any one variable. 

To further examine the cases, it is important to note the possibility that variables 

may compensate for one another. This means that a change in different variables could 

lead to the same result thermodynamically. For example, out of the three cases showing 

higher cloud base heights, two of them (26 June storm 2, and 5 July) show reduced warm 

cloud depths. The third, 21 May storm 1 does not. This could indicate the role of 

decreasing the coalescence zone in producing higher liquid water contents aloft, whereas 

the other storms (with low cloud base heights) may just be forming in regions containing 

higher moisture contents. 

d. Positive and Negative Cases with Hourly RUC Observations 

The data were then separated to exclude the polarity reversal cases and examine 

only the positive and negative CG cases. Figure 4.16 is a plot of four moisture variables 

including all hourly RUC data points over the lifetime of each storm. These plots show 

lots of scatter (similar to the histograms from part a), but some trends can be established. 

Dew point values (Figure 4.16a) are similar for positive and negative storms, but there is 
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a relative lack of positive CG storms at very low dew points. This suggests a threshold of 

approximately 5-10°C for positive CG storms to occur. In addition, precipitable water 

also confirms negative storms at lower moisture values as the plot slopes downward 

toward the negative storms, and there are a few stray negative values at low precipitable 

water values (approximately 1.0 cm). A few positive CG storms also occur at very large 

precipitable water values nearing 5.0 cm. Mean and mid level relative humidity (Figure 

4.16 c and d) show almost no difference between the positive and negative storms. 

Figure 4.17 shows plots for cloud base height, warm cloud depth, freezing level 

and Se. Cloud base height (Figure 4.17a) illustrates a large range of values for the 

negative storms, but the number of positive cases at very high cloud base heights is 

reduced. Also, positive storms tend to occur at both high and low freezing level heights 

(Figure 4.17c). Warm cloud depth and Se (Figure 4.17b) show very little separation 

between the positive and negative storms. 

Several instability parameters are shown in Figure 4.18. There is a slight 

lowering of 850-500 mb lapse rate (Figure 4.18a) for the positive storms in respect to the 

negative storms. However, this trend is less apparent in 700-500 mb lapse rates (Figure 

4.18b), and little difference between the positive and negative storms can be discerned. 

CAPE (Figure 4.18c) illustrates the lack of difference between positive and negative 

storms, except the few stray very large values associated with positive storms, and CIN 

(Figure 4.18d) similarly shows little differences. 

Figure 4.19 includes the shear values and lifted index. Wind shear in the 0-3 and 

0-6 km layers are very similar for the positive and negative storms. Both show little 

difference between the positive and negative storms. Also, there is a relative lack of 
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positive storms at very high storm relative helicity values, and lifted index only shows 

negative storms at values above 0 °C. Overall, results are very scattered, with only dew 

point, and to a lesser extent precipitable water showing positive storms at high moisture, 

and negative storms at low moisture. Also, positive storms show less instability, as 

indicated by the lapse rate values. 

e .Positive and Negative Cases with Mean and Median RUC Observations 

In an attempt to reduce scatter in the data, and to be consistent with other studies 

(Carey and Buffalo 2006; Smith et al. 2000), the mean and median RUC value across 

each storm was calculated. Figure 4.20 shows the mean values for Dew point (a), 

precipitable water (b), mean relative humidity (c), and mid level relative humidity (d). 

The plot using median values with these same variables is not shown, because the results 

are almost identical. Dew point values show positive and negative storms occurring in 

similar environments. However, no positive storms occur at dew points lower than 

approximately 12°C. Precipitable water also shows a similar trend with positive storms 

occurring at large precipitable waters values (above 4.0 cm), and negative storms 

occurring at smaller values, around 1.0 cm. Mean relative humidity values illustrates 

almost no trend between positive and negative storms, but mid level relative humidity 

shows negative storms at higher relative humidity (above 70%), and positive storms 

below about 25%. 

Cloud base height, warm cloud depth, freezing level, and Se are shown in Figure 

4.21 a, b, c, and d respectively. Cloud base height now illustrates a trend, with lower 

cloud base heights typically being associated with positive storms, and higher cloud base 

heights being associated with negative storms. Warm cloud depth shows more positive 
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stonns at larger wann cloud depths (above 3500 m), with relatively few negative stonns 

occurring with wann cloud depths greater than 3500 m. Freezing level heights are 

clustered slightly higher for the positive stonns than for the negative stonns, but there are 

also a few positive stonns that occur at very low (around 3500 m) freezing levels. Se 

shows little separation between the positive and negative stonns. The only possible trend 

in Se, (although not very significant), are positive stonns in both very large (above 365 K) 

and very small (below 325 K) Se values. 

Figure 4.22 a, b, c, and d show 850-500 mb lapse rate, 700-500 mb lapse rate, 

CAPE and CIN respectively. Lapse rates in the 850-500 mb layer still illustrate a 

clustering of positive stonns at smaller lapse rates, with larger lapse rates associated with 

negative stonns. The trend is similar for 700-500 mb lapse rates, but less apparent. 

CAPE and CIN both show little differences between the positive and negative stonns. 

Shear, and lifted index are shown in Figure 4.23. Wind shear in the 0-3 km layer 

(Figure 4.23a) is similar for the positive and negative stonns, except for a lack of 

negative stonns above about 18 ms-1• Furthermore, 0-6 km shear (Figure 4.23b) shows 

little separation between the positive and negative stonns. In contrast, stonn relative 

helicity (Figure 4.23c) illustrates a slight clustering of positive stonn values below the 

clustering of negative stonn values, but lifted index (Figure 4.23d) is similar for the 

positive and negative stonns. 

These results were similar to some studies, yet different from others. The lower 

cloud base heights seen with positive stonns was opposite to Carey and Buffalo and 

Williams et al. (2005), who found positive strike dominated stonns occurring with higher 

cloud base heights, and also positive stonns at larger wann cloud depths. We also see 
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positive storms at higher dew points and precipitable water values, opposite to Carey and 

Buffalo, and Knapp (2004). Freezing level and Se are similar to the Carey and Buffalo 

results, with positive storms having lower freezing levels, and no trend in Se (in contrast 

to Smith et al. 2000). However 850-500 mb and 700-500 mb lapse rates show the 

opposite result, with steeper lapse rates for negative storms. Shear values (0-3 km and 0-

6 km) show no difference between the positive and negative storms, in contrast to Carey 

and Buffalo, and Levin et al. (1996), but similarly to Reap and MacGorman (1998) and 

Curran and Rust (1992). 

f Difference in Means Test 

To further establish the significance of the previous plots, a Wilcox-Mann-

Whitney rank sum test (Wilks 1995) was used at the 95% confidence level to determine if 

positive and negative CG storm means differed by location. Tables 4.2, 4.3, and 4.4 

show the results for hourly RUC observations, mean RUC observations, and median 

RUC observations respectively. When hourly data were used, dew point, cloud base 

height, CAPE, CIN, warm cloud depth, 850-500 mb lapse rate, and mid level relative 

humidity come out statistically different at the 95% confidence level. This is similar to 

Carey and Buffalo (2006), who found warm cloud depth, cloud base height, dew point, 

and 850-500 mb lapse rate significant at the 99.9% confidence level. The difference 

between the present results and Carey and Buffalo is in the numerical values. These data 

show lower cloud bases, higher warm cloud depths, higher dew points, lower 850-500 mb 

lapse rates, and lower mid level relative humidity (as given by the number averages) for 

positive CG storms. However, Carey and Buffalo show the exact opposite trend in all of 

these variables. When the mean and median values for all the storms are used, the 
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significant variables change. All of the variables are significant when using mean values 

except lifted index, storm relative helicity and 0-3 km wind shear. When using the 

median values, storm relative helicity, mean relative humidity, and 0-6 km wind shear are 

not significant at the 95% confidence level. 

g. Comparison of 10% as a Positive Polarity Indicator 

To test the choice of 30% as a positive polarity storm indicator, the single variable 

plots were redone using 10% and 50%, with hourly RUC observations, mean RUC values 

for each storm, and median RUC values for each storm. Switching to 10% alters some, 

but not all, of the variables. Precipitable water still shows the high values for positive 

storms, and low values associated with negative storms. Mean relative humidity, mid 

level relative humidity, Se, 0-3 km shear and 0-6 km shear still show no apparent 

difference between positive and negative storms. Also, the little separation between 

positive and negative storms seen with CAPE and CIN values are still evident. 

Figures 4.24 and 4.25 show the variables that change slightly when 10% positive 

is used. Dew point (4.24a) no longer shows a threshold of 5-10°C for positive storms to 

occur. Instead, both positive and negative storms occur at both low and high dew points. 

Also, the reduced number of positive storms at high cloud base heights is no longer 

present. Instead, there is little difference in cloud base height (4.24b) between the 

positive and negative storms. Warm cloud depth (4.24c) still shows a few negative storm 

values at very low warm cloud depths, but there are not as many as the original plot. In 

contrast, the split trend in freezing level (4.24d) is stronger (positive storms at high and 

low freezing levels, with negative values sandwiched in between) than the original plot. 

49 



The plots showing 850-500 mb lapse rate (4.25a) and 700-500 mb lapse rate 

(4.25b) now show little difference between the positive and negative storms. When a 

30% threshold was used, 850-500 mb lapse rates were slightly smaller for the positive 

storms. Storm relative helicity (4.25c) now shows no difference between the positive and 

negative storms. Lifted indices (4.25d) are also similar for the positive and negative 

storms, in contrast to the original plot which only showed negative storm values above 

0°C. 

When using the mean value for each storm, we see similar changes as when using 

hourly RUC observations. Mean relative humidity, mid level relative humidity, Se, CIN, 

0-3 km shear, 0-6 km shear and lifted index all show no difference between the positive 

and negative storms (as was seen when using 30% for the positive polarity indicator). 

Freezing level still shows the original split level trend. 

Dew point, precipitable water, cloud base height, and warm cloud depth are 

shown in Figure 4.26, a, b, c, and d. Dew point again has positive and negative storms in 

similar environments, in contrast to the previously seen threshold for positive storms. 

Precipitable water contains the high precipitable water values for a few positive storms, 

as seen previously, but there are no longer negative storms at low precipitable water 

values. Cloud base height shows no difference between the positive and negative storms, 

when it originally showed positive storms at low cloud base heights, and negative storms 

at high cloud base heights. Warm cloud depth also shows no difference between the 

positive and negative storms, instead of the higher warm cloud depth values for positive 

storms, and lower values for negative storms. 
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Figure 4.27 is a plot of mean 850-500 mb lapse rates (a), 700-500 mb lapse rates 

(b), CAPE (c), and storm relative helicity (d). The plot of 850-500 mb lapse rates now 

confirms no trend instead of smaller lapse rates for positive storms. However, 700-500 

mb lapse rates are larger for positive storms, instead of the original plot, which showed 

similar lapse rates for both positive and negative storms. CAPE shows little separation 

between the positive and negative storms. However, storm relative helicity values are 

large for the positive storms, instead of the negative storms seen at high helicity values in 

the original plot. 

The majority of the median variables show similar trends to the mean plots listed 

in the previous paragraph. The exceptions are cloud base height, and dew point, which 

are shown in Figure 4.28, a and b respectively. Cloud base height follows the original 

30% plot, with positive storms having lower cloud base heights, and negative storms 

higher cloud base heights. This is in contrast to the little separation seen in the plots for 

mean values. Dew point now shows no discemable difference between the positive and 

negative storms. 

h. Comparison of 50% as a Positive Polarity Indicator 

Similarly, using 50% as a positive polarity indicator also only produces slight 

changes in some of the variables. When examining all of the RUC data points for each 

storm, we still see no apparent difference between the negative and positive points for 

mean relative humidity, mid level relative humidity, 700-500 mb lapse rates, 0-3 km 

shear, and 0-6 km shear. CAPE and CIN both show little difference between the positive 

and negative storms, and lifted index still only shows a few negative data points above 

0°C. Lapse rates in the 850-500 mb layer show slightly lower positive values, and 
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freezing level still shows the split trend, but it is a little less pronounced. Precipitable 

water still confirms high values associated with positive storms, and low values with 

negative storms, and storm relative helicity still only contains a few negative values at 

high helicity values. 

Figure 4.29 is a plot of the variables that do alter slightly. The low cloud base 

heights with positive storms, and high cloud base heights with negative storms are more 

pronounced than it was using the 30% positive polarity indicator. Positive storms all but 

stop occurring with cloud base heights above 2000 m. Also, the originally seen threshold 

of 5-10°C dew points for positive storms is more pronounced than originally seen. Se 

shows less positive values at low Se, as the positive storms tend to cluster above 335 K. 

A trend in warm cloud depth is apparent in this plot, with 2000 m as a threshold for 

positive storms. 

When using the mean value across each storm, different trends emerge. CAPE, 

CIN, mean relative humidity, 0-6 km wind shear, storm relative helicity and Se show little 

difference between the positive and negative storms. Lifted index still confirms values 

near 0°C for negative CG storms, and precipitable water still contains a few positive 

storms at high precipitable water, and a few negative storms at low precipitable water. 

Figure 4.30 shows cloud base height (a), dew point (b), freezing level (c), and 

warm cloud depth (d). Compared to the original plot using 30%, positive storms 

occurring in lower cloud base heights, and negative storms in larger cloud base heights is 

more pronounced. The same is true for dew point, where the lack of positive storms at 

low dew points is more apparent. Also, the originally seen threshold for positive storms 

is still evident, located close to 12°C. Freezing level no longer shows the split trend, 
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instead, positive stonns tend to be associated with higher freezing levels than negative 

stonns. The trend for larger wann cloud depths with positive stonns is also more 

pronounced, with only a few positive stonns occurring at wann cloud depths between 

2000 and 3000 m. 

Other variables that now show changes are plotted in Figure 4.31. Lapse rate in 

the 850-500 mb layer (Figure 4.3la) shows smaller lapse rates associated with positive 

stonns. This trend is more pronounced than originally. However, 700-500 mb lapse 

rates (Figure 4.31b) still show no apparent difference between the positive and negative 

stonns. Mid level relative humidity (Figure 4.31c) shows a lack of positive stonns at 

higher relative humidity values. Also, 0-3 km wind shear (Figure 4.31 b) seems to 

indicate a lack of positive stonns at low wind shear values (below 10 m s-1
) . 

The majority of the plots using median RUC values across each stonn are very 

similar to the mean plots discussed previously. The exceptions are 850-500 mb lapse 

rate, and cloud base height, shown in Figure 4.32. Lapse rates in the 850-500 mb layer 

shows a larger scatter associated with the negative CG cases, so the trend in the mean 

plot (shallower lapse rates for positive stonns) is less pronounced in the median plot. The 

same is true for cloud base height. The negative stonns show more scatter, so there is 

less apparent difference between the positive and negative stonns. 

i. Sensitivity Test on Errors in RUC Data Points 

To test the effect of possible errors in the RUC data point used (i.e. some points 

are located in the stonns radar echo, while others are not), only those stonns that did not 

contain any data points located in the precipitation were pulled out, and new single 

variable plots made. Due to the low number of stonns that met this criterion (13), only 
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hourly RUC observations across each storm are shown (instead of taking the mean and 

median values). Figure 4.33 shows the plots for dew point, precipitable water, mean 

relative humidity, and mid level relative humidity (a, b, c, and d respectively). Similar to 

the original dew point plot, the new plot also shows a relative lack of positive storms at 

low dew points. Precipitable water follows this trend, with a relative lack of positive 

storms at low precipitable water values. However, in contrast to the original precipitable 

water plot, there are no positive storms at very large precipitable water values. Mean 

relative humidity in the original plots showed no trend, but following the other moisture 

variables, there is now a clear region of low mean relative humidity with negative storms, 

and high mean relative humidity with positive storms. Mid level relative humidity shows 

mostly positive storms at high values, in contrast to the original plot, which showed no 

trend. 

Cloud base height (Figure 4.34a) still shows slightly larger cloud base heights 

with negative storms and slightly lower cloud base heights with positive storms. 

However, warm cloud depth (Figure 4.34b) shows little difference between the positive 

and negative storms, in contrast to the slightly higher warm cloud depths for positive 

storms shown originally. Freezing level (Figure 4.34c) shows lower values for the 

positive storms, whereas the original plot showed a split trend (some positive storms at 

low freezing levels, and the others at higher freezing levels). Se (Figure 4.34d) shows no 

difference between the positive and negative storms, similar to the original plot. 

The plot of 850-500 mb lapse rate (Figure 4.35a) shows a considerable amount of 

scatter, but there is a clustering of negative storms at large lapse rates, and no clustering 

of positive storms. This is similar to the original 850-500 mb lapse rate plot that shows 
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slightly lower lapse rates for the positive storms. Lapse rates in the 700-500 mb layer 

(Figure 4.35b) show almost no difference between the positive and negative storm. 

CAPE (Figure 4.35c) shows a few stray negative CG storms at high values, and CIN 

(Figure 4.35d), shows little difference between the positive and negative storms. 

Figure 4.36 shows 0-3 km Shear, 0-6 km shear, storm relative helicity, and lifted 

index (a, b, c, and d respectively). We see a slight trend in 0-3 km shear, with only 

negative storms occurring at low shear values, in contrast to the lack of trend seen in the 

original plot. Shear over the 0-6 km layer, storm relative helicity, and lifted index show 

no apparent difference between the positive and negative storms. This is similar to what 

all three of the original plots showed for these variables. 
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Histogram of Dew Point 
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Figure 4.1. Histogram of dew point temperature for all cases, using hourly RUC 
observations, separated by the positive and negative storms. 
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Figure 4.2. The same as Figure 4.1, except for precipitable water. 
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Histogram of Mean Relative Humidity 
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Figure 4.3. The same as Figure 4.1, except for mean relative humidity. 
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Figure 4.4. The same as Figure 4.1 , except for equivalent potential temperature. 
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Histogram of Cloud Base Height 
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Figure 4.5. The same as Figure 4.1 , except for cloud base height. 
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Histogram of Warm Cloud Depth 
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Figure 4.6. The same as Figure 4.1 , except for warm cloud depth. 

61 



Histogram of CAPE 
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Figure 4. 7. The same as Figure 4.1, except for CAPE. 
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Histogram of CIN 
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Figure 4.8. The same as Figure 4.1, except for CIN. 
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Histogram of 850 - 500 mb Lapse Rate 
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Figure 4.9. The same as Figure 4.1, except for 850-500 mb lapse rate. 
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Histogram of 700 - 500 mb Lapse Rate 
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Figure 4.10. The same as Figure 4.1, except for 700-500 mb lapse rate. 
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Histogram of Freezing Level 
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Figure 4.11. The same as Figure 4.1, except for freezing level. 
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Figure 4.12. The same as Figure 4.1 , except for 0-3 km wind shear. 
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Figure 4.13. The same as Figure 4.1, except for 0-6 km wind shear. 
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Histogram of Storm Relative Helicity 
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Figure 4.14. The same as Figure 4.1, except for storm relative helicity. 
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Figure 4.15. A plot of cloud base over time (blue line) with percentage positive strikes 
(red) for a) 13 July 1998 and b) 5 July 2000. The black line indicates the time of the 

polarity switch. 

70 



x )( 

)( 

x 

xx 
)( x 

)( .. 
x 

: 

··. 

100 

Mean Relotlvt Humkihy ror the Fosltlve and Ne<Jattve Storms 

x x x 

X.,l- )( X 

·. 

.. 
• + : 

: 

15C 

I 
x x 

Pr~ipltoble Wotu for the PosltNe and r~agotive S1omu 

. .. 
... 

x 
'Xx x :ic-

100 
Nu,,..,....otDalo P<Mnt. 

Mia Level Relotlv~ Humkftty for the PoslUvti and Negotfv~ Storms 
~ I 

.. 
+ + + + ... 

~x ? < : 

~·. 
x 'I< ... . 

.. 
.. .. 

Figure 4.16. Single variable plot using hourly RUC observations for each of the positive 
and negative storms. The variables are a) dew point, b) precipitable water, c) mean 

relative humidity, and d) mid level relative humidity. 
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Figure 4.17. The same as Figure 4.16, except for a) cloud base height, b) warm cloud 
depth, c) freezing level, and d) Se. 
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Figure 4.18. The same as Figure 4.16, except for a) 850-500 mb lapse rate, b) 700-500 
mb lapse rate, c) CAPE, and d) CIN. 

73 



"' x 

O - ~ km Shtor for tht Posltlve ond Neg.atNe Storm s 

x 
.;'- ··. 

+ + 
+ + .. 

+ •• 

.· 

Storrn Rf11otlve Heticity for the Po91l tv6 and NegotNe Stofr'l'l3 

x x 
x x 

x x 
x x 

>< x x~ x 
.j<x x x 

x x xx 
x 

x 
x ·. 

.. 
·· .... 

: 
~ l 

• + 

• + 
+ : + ... 

c I -200'---'----''----'----'--'-----'---'---'---'---'--"--'--'---'----' 
0 

0 x 

x 
x 

O - 6 lcrn ShEor tor the Positive ond Ntgative Storms 

x 
x x 

xxxx 

:· 
•• + 

+ 
+ + 

+ :+ 

Utt&d Index tor the Po9'tfve and N.!<jol"lve Slormt 

x x x 

X xX 

.. ..... 

+ + 

+ : ""' 

+ + 

.. 
~ x x ... * .. -

x x 

x .,. x 
)( x x xx 

x 
x x 

+ ++ 
+ + it. + 

di -12'---'----''----'----'--'-----'---'---'---'----'--~~-~~~ 

Figure 4.19. The same as Figure 4.16, except for a) 0-3 km wind shear, b) 0-6 km wind 
shear, c) storm relative helicity, and d) lifted index. 
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Figure 4.20. Single variable plot using the mean RUC data for each storm, for a) dew 
point, b) precipitable water, c) mean relative humidity, and d) mid level relative 

humidity. 
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Figure 4.21. The same as Figure 4.20, except for a) cloud base height, b) warm cloud 
depth, c) freezing level , and d) Se. 
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Figure 4.22. The same as Figure 4.20, except for a) 850-500 mb lapse rate, b) 700-500 
mb lapse rate, c) CAPE, and d) CIN. 
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Figure 4.23 . The same as Figure 4.20, except for a) 0-3 km wind shear, b) 0-6 km wind 
shear, c) storm relative helicity, and d) lifted index. 
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Figure 4.24. Single variable plot using all the RUC data across the length of each storm, 
but defining positive storms using 10% positive. The variables are a) dew point, b) cloud 

base height, c) warm cloud depth, and d) freezing level. 
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Figure 4.25. Same as Figure 4.24, except for a) 850-500 mb lapse rate, b) 700-500 mb 
lapse rate, c) storm relative helicity, and d) lifted index. 
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Figure 4.26. Single variable plot using the mean RUC data for each storm, but defining 
positive storms using 10% positive. The variables are a) dew point, b) precipitable water, 

c) cloud base height, and d) warm cloud depth. 
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Figure 4.27. The same as Figure 4.26, except for a) 850-500 mb lapse rate, b) 700-500 
mb lapse rate, c) CAPE and d) storm relative helicity. 
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Figure 4.28. Single variable plot using the median value for each storm, and 10% as a 
positive polarity indicator for a) dew point and b) cloud base height. 

83 



: 

Cloud Bo9t H• lqht for tM Posit tve and Ntgattve Srormt 

xx 

60 

x x 
xx 

H11mber of Do-to Point.. 

... 

Tttetae tor th" Po!Wtlv.e and ~ottve Slorms 

X xX '1< 

x 
~x 

x 

xx 
-1' 

x 

\ xxx 

"' >w .,,, 

: ~ 

·. 
: 

•+• 

.. 

·. 

... ..... 
.· 

x : 
x 

Dew Point for the Potltive aM Negotlv• St«mi 

x y 

x 
x 

: 

.. 
+ + ... ·. 

+>~~w 
• ( 20x:'*-9(e0re .. : 

•+ 

.· 

Wom1 Cloud Oepth for the Posi!Ne and Negative Storms 

x 
x .;< 

xx" 
is. 

x >t( )( )( 

x x ... x x 

+ .. + 

.. · ..... . . 

: .. 

d) 0 L-.J--L-'--'--'---'--'--'--'--'---'--'--'--L-'--'--'---'--'--'--'-_...__~ 
60 

N11rnbci!- of Oot.a Poinlt 

Figure 4.29. Single variable plots using all RUC data for each storm and 50% as a 
positive polarity indicator. The variables are a) cloud base height, b) dew point, c) Se, 

and d) warm cloud depth. 
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Figure 4.30. Single variable plots using the mean RUC value for each storm, and 50% as 
a positive polarity indicator. The variables are a) cloud base height, b) dew point, c) 

freezing level and d) warm cloud depth. 
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Figure 4.31. The same as Figure 4.30, except for a) 850-500 mb lapse rate, b) 700-500 
mb lapse rate, c) mid level relative humidity and d) 0-3 km wind shear. 
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Figure 4.32. Single variable plots using the median RUC value for each storm, and 50% 
as a positive polarity indicator. The variables are a) 850-500 mb lapse rate and b) cloud 

base height. 
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Figure 4.33. Single variable plot using only those storms with RUC data points outside 
the precipitation area for a) dew point, b) precipitable water, c) mean relative humidity, 

and d) mid level relative humidity. 
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Figure 4.34. The same as figure 4.33 , except for a) cloud base height, b) warm cloud 
depth, c) freezing level , and d) Se. 
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Figure 4.35 . The same as Figure 4.33, except for a) 850-500 mb lapse rate, b) 700-500 
mb lapse rate, c) CAPE, and d) CIN. 
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Figure 4.36. The same as Figure 4.33 , except for a) 0-3 km wind shear, b) 0-6 km wind 
shear, c) storm relative helicity, and d) lifted index. 
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Averaqe Value of the RUC Data for the Positive and Neqative Portion of the Polarity Reversal Storms 
Negative Means 

Variable 5/19/1998 7/13/1998 5120/1999 6126/1999 6126/1999 6126/1999 5121/2000 5121/2000 71512000 5/10/2001 
Dew point 21 °C 15.8834 °C 18.0215°C 14.3167 °C 19.7167 °C 14.6 °C 15.95 °C 15.8834 °C 11 .4 °C 5.63336 °C 

Cloud Base Heiqht 657.271 m 2303.46 m 1102.63 m 1386.9 m 538.679 m 1486.4 m 876.361 m 739.68 m 1199.97 m 1503.48 m 
Precipitable Water 3.245 cm 3.19 cm 2.63714 cm 2.01333 cm 4.19 cm 2.1025 cm 2.44 cm 2.41333 cm 1.87 cm 1.43167 cm 

CAPE 1878 J ki:f 1 3203 .33 J kcf 1 2790.57 J kcf 1 1474.67 J ki:f1 3872.67 J ki:f 1 1980 J kQ- 1 1890.67 J kQ- 1 1357.33 J ka·I 2206.5 J kq"1 47 .3333 J ka- 1 

Thetae 349.1 K 351 .567 K 346.086 K 348.867 K 350.967 K 353.45 K 331 .767 K 329.4 K 335.6 K 320.417 K 
Lifted Index -8.4 °C -6.06667 °C -5.58571 °C -7 .03333 °C -4 .73333 °C -5.525 °C -7 .03333 °C -5 .76667 °C -1 °C 0.283333 °C 

CIN -142.5 J kcf1 -25.3333 j kq"1 -32.2857 j kq"1 -42 J kcf 1 -10.3333 J kg"1 -49.5 J kq" 1 -2.66667 J kg" 1 -3 .66667 J kq" 1 -98 J kq"1 -33.6667 j kq"1 

Freezing Level 4298.38 m 4758.8 m 4383.64 m 4534.29 m 4851 .99 m 4951 .68 m 3255.61 m 3202.31 m 4734 .19 m 3546.08 m 
Warm Cloud Depth 3641.11 m 2455.34 m 3281 .01 m 3147 .39 m 4313.31 m 3465.29 m 2379.25 m 2462.63 m 3534.22 m 2042.6 m 

850-500 mb Lapse Rate 7.2708 °C km·1 7.85185 °C km·1 7.03711 °C km·1 8.198 °C km- 1 6.92061 °C km·1 7.90275 °C km·1 6.97491 °C km-1 6.69367 °C km·1 6.95114 °C km-1 7.25814 °C km·1 

700-500 mb Lapse Rate 7.65835 °C km·1 7.65381 °C km-I 7.2036 °C km·1 7.80812 °C km·1 7.44717 °C km·1 8.34274 °C km·1 6.9678 °C km·1 6.81205 °C km·1 18.56099 °C km- 1 7.12343 °C km-1 

Storm Relative Helicity 26 m2 5-2 229.667 m2 5·2 162.857 m2 5·2 342.333 m2 s-2 253.333 m2 s·2 131 .25 m2 5·2 54 .3333 m2 5·2 62 m2 5-2 64.5 m2 s·2 145.667 m2 5·2 

Mid Level Relative Humidity 49.1039% 29.7348% 16.5859% 53.8225% 41 .4817% 34 .3866% 36.0254% 33.9668% 20.4493% 43.2661 % 
MeanRelative Humidity 46.6880% 31 .3109% 31 .8329% 44 .6626% 46.0482% 32.7072% 46.2555% 46.3869% 28.2512% 42.4611 % 

0-3 km Shear 7.83896 m 5·1 13.7506 m s-1 14.7821 m s- 1 8.24049 m s-1 7.60868 m s-1 4.91477 m s-1 11 .0487 m s·1 12.9436 m s·1 5.72453 m s·1 9.20785 m s·1 

0-6 km Shear 12.4926 m s·1 17.4662 m s-1 21 .6842 m s·1 30.1834 m s·1 15.842 m s·1 15.5831 m s-1 16.9468 m s·1 20.3897 m s·1 13.7783 m s·1 24 .1681 m s·1 

Pos itive Means 
Variable 5/19/1998 7/13/1998 5120/1999 6126/1999 6126/1999 6126/1999 512112000 512112000 71512000 5/10/2001 

Dew point 22.35 °C 18.0167 °C 19.15 °C 14.15°C 22.1 °C 17.175 °C 15.2167 °C 17.15°C 16.2167 °C 7.45001 °C 
Cloud Base Height 379.889 m 1555.74 m 1085.4 m 1366.8 m 759.78 m 786.915 m 984.9 m 319.589 m 1226.1 m 1061 .28 m 
Precipitab le Water 3.375 cm 2.65667 cm 2.39 cm 2.30333 cm 3.7675 cm 2.465 cm 2.28667 cm 2.245 cm 2.07 cm 1.51 cm 

CAPE 2907 J kq" 1 2284 J ka·1 2930 J ka·1 2274.33 J ka·1 4610.75 J kq" 1 2987 .5 J ka·1 1529.67 J ka·1 1826 J ka·1 2723.67 J ka·1 OJ ka·1 

Thetae 352.45 K 352.567 K 351 .7 K 347.4 K 364 .275 K 352.875 K 330.367 K 330.4 K 355.333 K 321 .5 K 
Lifted Index -9 .55 °C -5.86667 °C -7.2 °C -6 .03333 °C -9.075 °C -4.6 °C -4.3 °C -5 .1 °C -8.8 °C 0.1 °C 

CIN -57 J ka·I -128.333 j kq- 1 -19 J ka·1 -56.3333 J kcf 1 -29.25 J kq"1 -100.5 j kq" 1 -1 .33333 j kg"1 -36 J kg·I -46.6667 J kQ"1 OJ ka·1 

Freezing Level 4290.55 m 4904 .88 m 4432.96 m 4639.48 m 4851 .44 m 4914.8 m 3390.1 m 3281 .91 m 4670.85 m 3686.37 m 
Warm Cloud Depth 3910.66 m 3349.14 m 3347.56 m 3272.68 m 4091 .66 m 4127 .88 m 2405.2 m 2962.32 m 3444 .75 m 2625.09 m 

850-500 mb Lapse Rate 7.21667 °C km-1 7.67231 °C km- 1 7.18936 °C km·I 7.7468 °C km- 1 7.25743 °C km-I 7.04826 °C km·1 6.48684 °C km·I 16.67625 °C km·1 8.02337 °C km·1 6.88975 °C km-1 

700-500 mb Lapse Rate 7.68586 °C km·1 8.0212 °C km·1 7.06613 °C km·1 7.93634 °C km·1 7.66866 °C km·1 8.3464 °C km·1 6.42277 °C km·1 6 .48803 °C km·1 18.32306 °C km·1 7.01413 °C km·1 

Storm Relative Helicity 41 m2 5·2 268.667 m2 s·2 265 m2 s·2 347 m2 s·2 230.25 m2 s·2 163.5 m2 s·2 90.6667 m2 s·2 244.5 m2 s·2 325.333 m2 s·2 83 m2 s·2 

Mid Level Relative Humidity 51 .0867% 16.6752% 10.2713% 44 .1410% 36.0563% 33.2475% 25.0949% 17.5809% 20.3148% 43.6570% 
MeanRelative Humidity 48.9539% 26.7886% 25.4538% 40.9685% 39.1095% 34.7099% 42.8716% 43.5480% 27.5065% 43.4093% 

0-3 km Shear 6.68952 m s·1 9.83373 m s-1 17.0988 m s-1 9.10628 m s- 1 10.462 m s1 6.51037 m s-1 11 .993 m s- 1 15.6975 m s·1 6.12449 m s·1 13.0969 m s·1 

0-6 km Shear 11.4897 m s·1 9.47122 m s·1 23.8462 m s·1 26.3524 m s·1 16.4144 m s·1 14.9078 m s·1 22.1037 m s·1 22.4868 m s·1 20.1301 m s·1 27.0601 m s·1 

Table 4.1. The average RUC values during the positive and negative phases of the storm for the polarity reversal cases. 
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Confidence Test Usinq Hourly RUC Values 
Variable Positive Mean Negative Mean u 95% 

Dew Point 16.6882 °C 14.6076 °C -3 .004780 TRUE 
Cloud Base Height 1045.15 m 1228.19 m 3.428110 TRUE 
Precipitable Water 2.91124 cm 2.57208 cm -1 .035940 FALSE 

CAPE 2340.44 J kg" 1 1665.78 J kq" 1 -2 .760630 TRUE 
thetae 345.811 K 341 .423 K -1 .674300 FALSE 

Lifted Index -5.12022 °C -4 .74640 °C -0 .095194 FALSE 
CIN -73.2135 J kq" 1 -53 .3187 J kq"1 2.482890 TRUE 

Freezinq Level 4398.32 m 4233.53 m -1 .752690 FALSE 
Warm Cloud Depth 3353.16 m 3005.34 m -3 .177250 TRUE 

850-500 mb Lapse Rate 6.88499 °C km- 1 7.24205 °C km- 1 4.200860 TRUE 
700 - 500 mb Lapse Rate 7.24186 °C km·1 7.32515 °C km- 1 1.889320 FALSE 

Storm Relative Helicity 224 .146 m2 s·2 280.632 m2 s·2 1.450310 FALSE 
Mid Level Relative Humidity 42.6446% 45.8254% 4.389010 TRUE 

Mean Relative humidity 42.8864% 40.9337% -1 .109850 FALSE 
0-3 km Shear 12.3841 m s·1 12.9296 m s·1 -1.038180 FALSE 
0-6 km Shear 22.4028 m s·1 23.5246 m s·1 1.289040 FALSE 

Table 4.2. The average of positive and negative hourly RUC values, and whether the 
data points were significant at the 95% confidence level. 
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Confidence Test Using Mean RUC Values 
Variable Positive Mean Negative Mean u 95% 

Dew Point 17.6016 °C 15.4265 °C -4 .11782 TRUE 
Cloud Base Height 840.286 m 947.552 m 4.41261 TRUE 
Precipitable Water 2.99104 cm 2.61062 cm -4 .39418 TRUE 

CAPE 2327.26 j kg" 1 1990.47 J kg" 1 -2.57018 TRUE 
thetae 346.094 K 342 .915 K -3.32558 TRUE 

Lifted Index -4 .83184 °C -4.81184 °C 0.93043 FALSE 
CIN -84.5230 j kg"1 -40 .8518 J kg" 1 5.83127 TRUE 

Freezing Level 4411 .93 m 4294.38 m -5 .31540 TRUE 
Warm Cloud Depth 3571 .65 m 3346.82 m -4.91006 TRUE 

850-500 mb Lapse Rate 6.64763 °C km·1 6.99502 °C km·1 5.31540 TRUE 
700 - 500 mb Lapse Rate 7.02391 °C km·1 7.28373 °C km·1 5.46279 TRUE 

Storm Relative Helicitv 286 .957 m2 s·2 300.056 m2 s·2 -0 .52509 FALSE 
Mid Level Relative Humidity 37.9008% 43.1629% 4.22836 TRUE 

Mean Relative humidity 43.8704% 44.0979% -3.58352 TRUE 
0-3 km Shear 14.3497 m s·1 13.2380 m s·1 -4.24679 TRUE 
0-6 km Shear 22.4349 m s·1 23.6289 m s·1 -1 .44630 FALSE 

Table 4.3 . The same as Table 4.2, except using the average value for each storm. 
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Confidence Test Usinq Median RUC Values 
Variable Positive Mean Neqative Mean u 95% 

Dew Point 17.7544 °C 15.9276 °C -3.82303 TRUE 
Cloud Base Heiqht 778.132 m 860.003 m 4.41261 TRUE 
Precipitable Water 2.86783 cm 2.63552 cm -4.02570 TRUE 

CAPE 2240.37 J kg" 1 1836.00 J kq"1 -3.80461 TRUE 
thetae 346.413 K 342.457 K -3 .84161 TRUE 

Lifted Index -4 .85652 °C -4 .83621 °C -2.09115 TRUE 
CIN -47.7391 J kq" 1 -29.2241 J kg" 1 5.05746 TRUE 

Freezinq Level 4560.28 m 4301 .19 m -5.13115 TRUE 
Warm Cloud Depth 3628.24 m 3398.55 m -4.70740 TRUE 

850-500 mb Lapse Rate 6.64882 °C km·1 6.95502 °C km·1 5.31540 TRUE 
700 - 500 mb Lapse Rate 7.13066 °C km·1 7.30138 °C km·1 3.91515 TRUE 

Storm Relative Helicity 241 .000 m2 s·2 230.138 m2 s·2 -1.70424 FALSE 
Mid Level Relative Humidity 34 .7918% 45.9351 % 6.01552 TRUE 

Mean Relative humidity 42 .3276% 44.4402% -1.39103 FALSE 
0-3 km Shear 14.5652 m s·1 14.4685 m s·1 -3.01236 TRUE 
0-6 km Shear 24.2286 m s·1 24.3079 m s·1 -0.02764 FALSE 

Table 4.4. The same as Table 4.2, except using median values for each storm. 
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Chapter 5 

Summary and Discussion 

While the data show an abundance of scatter between CG lightning occurrence 

and environmental (thermodynamic) parameters, some trends can be established. The 

most significant variables, in terms of differences between negative and positive CG 

producing storms, are dew point, cloud base height, 850-500 mb lapse rate, and warm 

cloud depth. These variables are among the ones that came out as significant in the 

difference in means test, and also show some differences on the histograms and single 

variable plots. The results illustrate that positive CG storms are typically associated with 

lower cloud base heights, larger warm cloud depths, higher dew points, and smaller 850-

500 mb lapse rates. Also, there appears to be a threshold of approximately 2000 m warm 

cloud depth and 10°C dew points before positive CG storms occur, at least based on our 

data sample. This is in direct contrast to Carey and Buffalo (2006), who found that 

positive storms are associated with higher cloud base heights, lower dew points, 

shallower warm cloud depths, and larger 850-500 mb lapse rates. Also, Williams et al. 

(2005) hypothesized higher cloud base heights and smaller warm cloud depths with 

positive storms. Gilmore and Wicker (2002) also found that positive storms tended to 

occur more often with stronger updrafts, in contrast to the smaller 850-500 mb lapse rates 

observed here with positive storms. However, in agreement with Carey and Buffalo, but 
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in disagreement with Smith et al. (2000), there is little difference in Se between the 

positive and negative storms. 

Furthermore, this study also showed little difference between the positive and 

negative storms for 0-3 km wind shear and 0-6 km wind shear. This is in agreement with 

Reap and MacGorman (1998), and Curran and Rust (1992), who suggested that wind 

shear may be a necessary, but not sufficient condition to identify positive storms. 

However, this finding disagrees with Levin et al. (1996). Also, Carey and Buffalo found 

little difference in 0-6 km wind shear, but the differences in 0-3 km wind shear were 

significant at the 99% confidence level. 

The choice of percent positive (10%, 30%, and 50% were used in this research) 

did affect some of the results, especially those variables that came out as most significant. 

Typically, with the variables such as cloud base height, 850-500 mb lapse rate, and warm 

cloud depth, the differences between positive and negative storms were reduced when 

using 10%, but increased when using 50%. For example, warm cloud depth, cloud base 

height, and 850-500 mb lapse rate showed little differences between the positive and 

negative storms when the 10% threshold was used. However, when using 50%, lower 

cloud base heights, smaller lapse rates, and larger warm cloud depths were clearer than 

when using 30% as a positive polarity indicator. This suggests that the trends that 

emerge are sensitive to the choice in percent positive. Therefore, the choice in percent 

positive may account for some of the scatter observed. 

There are many other reasons that could explain why the data are very scattered. 

The first is that the change in variables may be on a scale that is smaller than the RUC 

model. This means that sub-mesoscale changes within a storm may cause changes in 
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storm microphysics and therefore in charge structure. These changes would not be 

resolved by the RUC model. In addition, it is possible that the RUC model does not have 

enough temporal resolution to resolve these changes. Some of the previous studies, 

including Carey and Buffalo (2007) and Gilmore and Wicker (2002) use sounding data to 

determine atmospheric parameters. Others, such as Reap and MacGorman (1989) use 

model fields, and found similar predictors correlated with both positive and negative CG 

lightning. In any case, different results appear in different studies, and the extent to 

which the chosen model or sounding affects the results is unknown. 

Furthermore, it is possible that in different thermodynamic regions across the 

United States, there are variables more favorable to change. The majority of previous 

studies investigated only a particular region across the United States. Carey and Buffalo 

(2007) focused on the Oklahoma, Kansas region. The storms in Smith et al. (2000) also 

occurred in this same region, and MacGorman and Burgess (1994) focused on storms in 

Oklahoma and Kansas, and one storm in Illinois. The region used in this study is much 

broader than any of the previous studies, so this in itself may contribute to increased 

scatter. It is also possible that variables may compensate for one another. For example, 

it was suggested that a decreased warm cloud depth would lead to higher liquid water 

contents aloft by thinning the coalescence zone. Would this be any different than a storm 

forming or moving into a region where the atmosphere already has higher liquid water 

contents? Or, it is possible that there is more than one way to achieve positive charging 

in a cloud. The various laboratory experiments do not agree solely on exactly what 

temperature the rimer attains positive charge, but most of the studies do show two regions 

at sub-freezing temperatures, one in a high moisture environment, and one in a very low 
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moisture environment. Furthermore, the role of aerosols has not been explored in this 

project, although they likely affect storm and lightning behavior. The effects of changes 

in aerosol contents were discussed in chapter 2. 

Also, an additional issue we did not contend with in this project is the possible 

contamination of narrow bipolar events in the lightning data. Narrow bipolar events 

(NBE"s) are a distinct class of intracloud lightning discharges that produce electric-field 

waveforms with a smooth initial rise to peak, and have VHF radio emjssions stronger 

than those emitted by the first return stroke of a CG flash (Eack 2004). Specifically, they 

are characterized by an isolated short duration bipolar pulse (Le Vine 1980; Smith et al. 

2004), high signal to noise ratio, and with temporal isolation from other lightning-related 

field changes (Wiens and Suszcynsky 2007). This suggests that a different type of 

discharge process may be responsible for these narrow bipolar events (Smith et al. 1997). 

In a recent study of the 22 June 2000 storm during the STEPS project, it was determjned 

that while this storm was classified by the NLDN as being predominantly positive, many 

of these +CG's were actually narrow bipolar events (Tessendorf et al. 2007). In fact, they 

determined that all but two of the coincident events between the NLDN and the Los 

Alamos Sferic Array (LASA) were NBE's as opposed to +CG's. Theses NBE's had peak 

currents above 60 kA, and so would not be filtered out using the typical 10 kA threshold 

for intracloud flashes as suggested by Cummins et al. (1998). 

However, Wiens and Suszcynsky (2007) examined NBE's in relation to total 

LASA events over the Great Plains. They determined that NBE's made up only 0.43% of 

the total lightning events recorded by LASA, with positive NBE's being dominant. 

Furthermore, they found that when NBE's did occur, they tended to cluster in small 
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spatial regions. The majority of the NBE's during this study were produced by only a 

few storms. This suggests that not all storms will contain NBE activity, but some may 

contain an anomalously large amount of NBE' s, which would bias the results. They also 

found that NBE's tend to occur more often in the strongest convection, although the 

specific conditions that produce NBE' s instead of CG flashes are currently unknown. 

The potential contamination of NBE's in the NLDN data was not investigated in this 

study. 
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