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ABSTRACT 

 

IMPLICATIONS FOR AUTOMATION ASSISTANCE IN UNMANNED AERIAL 

SYSTEM OPERATOR TRAINING 

 

The integration of automated modules into unmanned systems control has had a 

positive impact on operational effectiveness across a variety of challenging domains from 

battlefields and disaster areas to the National Airspace and distant planets. Despite the 

generally positive nature of such technological progress, however, concerns for 

complacency and other automation-induced detriments have been established in a 

growing body of empirical literature derived from both laboratory research and 

operational reviews. Given the military’s demand for new Unmanned Aerial System 

(UAS) operators, there is a need to explore how such concerns might extend from the 

operational realm of experienced professionals into the novice training environment.  

An experiment was conducted to investigate the influence of automation on 

training efficiency using a Predator UAS simulator developed by the Air Force Research 

Laboratory (AFRL) in a modified replication of previous research. Participants were 

trained in a series of basic maneuvers, with half receiving automated support only on a 

subset of maneuvers. A subsequent novel landing test showed poorer performance for the 

group that received assistance from automation during training. Implications of these 

findings are discussed.  
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CHAPTER 1: INTRODUCTION 

The ubiquitous arrival of computer based education in today’s society dictates a 

prominent role for automation in the development of future training programs. The bloom 

(if not explosion) of internet connectivity at the turn of the century has given rise to a 

new field of Instructional Systems Design (ISD) which presents the potential for 

enormous cost savings in the form of self paced and personally tailored training in both 

interactive and automation enhanced simulation environments (Paquette, 2001). The 

escalation of automation enhanced training is also of enormous interest to the U.S. 

military and other government agencies that have to come to appreciate the value of 

unmanned system technology for a broad range of surveillance and reconnaissance 

activities. The Army for example has fielded thousands of tactical robots with 

tremendous variability in capability and Operator Control Unit (OCU) design that calls 

for extensive training transfer across platforms (Antal, 2009). The Air Force is striving  to 

keep up with training demands for its most prominent Unmanned Aerial System (UAS), 

the Predator (Gramm & Papp, 2009). There is clearly a need to improve the effectiveness 

and efficiency with which unmanned systems operators are trained – leaving the door 

wide open for automation to be considered as an enabling mechanism.  

 The operational need for autonomous activity has been well established across a 

number of application domains (Canning, 2008; Carey & Markoff, 2010; Kurzweil, 2005; 

Sheridan, 2000; Singer, 2009b). As humanity endeavors to explore distant planets like 
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Mars, for example, control of robots and supervision of humans from earth will suffer 

extensive communications delays which prohibit the direct tele-operation modes that are 

common in the remote control (RC) hobbyist and entertainment communities (Sheridan, 

1993; Sheridan & Verplank, 1978). Human fatigue and attention constraints also present 

strong motivation for remote surveillance and reconnaissance by autonomous robots in 

the context of lunar and Martian exploration(Crawford & Weisbin, 2005).  

The case for automation in the application of mobile robot technology to the 

domestic emergency response domain is equally well established (Blitch & Maurer, 

1996). Not only does the supervision of multiple robots combing an large search area 

imply that enormous value be placed on autonomous waypoint following, but the chaotic 

distribution of rubble makes radio controlled robots inherently vulnerable to 

communication interruption and failure. Such situations dictate the need for autonomous 

route planning of some sort to reestablish contact with human supervisors in pursuit of 

basic system reliability (Baker, Casey, Keyes, & Yanco, 2004; Micire, Drury, Keyes, & 

Yanco, 2009) .   

Similar concerns regarding control loop latency and enemy jamming activities on 

the battlefield have inspired the military to develop unmanned systems with a high degree 

of autonomy (Antal, 2009; Hennigan, 2012; Singer, 2009a). The Army in particular has 

sought to invert the many-to-one ratio of unmanned systems currently operated by 

soldiers to a much more distributed paradigm where a single individual controls or 

supervises a number of platforms (Wickens, Dixon, & Ambinder, 2006). The U.S. Air 

Force apparently considers autonomous operation to be sufficiently important to the 

development of future battlefield robots that it will require full autonomous capability in 
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its unmanned aerial systems to be implemented by 2047 (USAF, 2009). Such trends 

imply that the military will become increasingly reliant on recruitment and training of 

new UAS operators. One indicator of this change in the nature of UAS training is that the 

USAF has accepted non-rated pilots into its operator training program for the first time 

since initially fielding the Predator drone in the mid 1990s (Gramm & Papp, 2009).  

 In this context, the exploration of potential training shortcuts and enhancements 

gained through automated assistance presents a number of prominent advantages. Not 

only does automation reduce the cost and personnel assignment load associated with a 

large unmanned system instructional faculty, but it may also increase the intensity and 

density of training as students are allowed to practice critical skills on their own without 

dependence on instructor schedules and related resource allocation limitations associated 

with maintenance and operational requirements imposed by operational aircraft. 

Improvement in the nature of the training itself may also be realized through the use of 

automation to reduce counterproductive frustration levels associated with complex 

training tasks by allowing students to focus on enabling skills first before introducing 

them to more challenging integration tasks.  

Operational automation concerns  

Despite the prominent trend toward increased dependence on autonomy for 

unmanned systems control, however, there are a number of issues that provide ample 

cause for concern. These are evident on both an empirical and theoretical basis, 

particularly in high risk domains such as aviation safety and process control reliability 

which of course has dangerous consequences of its own in the context of nuclear power 

generation and other risk intensive activities.   
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Automation induced complacency. 

Given recent events involving air traffic controllers who were fired for falling 

asleep on duty, perhaps the most salient concern at hand is the apparent complacency 

induced by automated systems which performed malfunction monitoring tasks too well. 

In two flight simulator experiments, for example, humans who were assisted with 

consistent malfunction alerts performed their overall vigilance tasks with significantly 

more error than those assisted with occasionally inconsistent reliability (Parasuraman, 

Molloy, & Singh, 1993). The apparent “cry wolf” nature of this effect has been replicated 

across a number of related tasks, indicating a robust yet deleterious impact that the 

aviation community in particular remains concerned about (Parasuraman, Sheridan, & 

Wickens, 2008; Wickens, 2009) in the form of increased safety violations and accidents 

due to ignored alarms.  

Situational awareness loss – the “human out of the loop” problem. 

Even in training situations where humans do not appear to commit an excessive 

number of errors during learning, any decrement in comprehensive understanding of 

current conditions and trends affecting the future (typically referred to as Situational 

Awareness or SA) cast in the shadow of automated assistance can have a potentially 

catastrophic impact on performance – particularly during emergency response activities 

that must be taken promptly and aggressively to prevent disasters (Endsley, 1997). In a 

sequence of prominent simulation studies validated with actual air traffic controllers on 

duty, Endsley and colleagues established a compelling case for the “human out of the 

loop” effect in which humans who have lost SA due to a reliance on automation may 
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experience increased latencies in both problem detection & response (Endsley, 1997; 

Endsley & Kiris, 1995; Kaber, Onal, & Endsley, 1999; Kaber, Onal, & Endsley, 2000).  

Because this loss of awareness does not always manifest in an immediate 

degradation of current performance, it can act as a kind of ticking time bomb which 

percolates just beneath a façade of safe operation, only to impede rapid response and 

resilience in the face of catastrophic consequences that might otherwise be avoided. In 

the most drastic cases, the response to urgent or dangerous situations is delayed or 

perhaps even obstructed until it is too late to avoid a crash or other disastrous situation 

(Endsley, 1997; Endsley & Kaber, 1999).  For additional reviews regarding other forms 

of automation induced complacency see (Lee, 2006; Parasuraman & Riley, 1997; 

Sheridan, 1997; Wickens & Colcombe, 2007). 

 Automation influence on training. 

Despite the abundance of empirical evidence regarding the potential for negative 

consequences of operational autonomy (Bailey & Scerbo, 2007; Bainbridge, 1983; 

Endsley & Kaber, 1999; Endsley & Kiris, 1995; Kaber, et al., 2000; Parasuraman & 

Riley, 1997; Parasuraman & Wickens, 2008; Smith, 2011), few have dealt with the 

autonomy decrement issue from a learning perspective other than through explorations of 

trust (Lee & Moray, 1992; Madhavan & Wiegmann, 2007; Sheridan & Parasuraman, 

2000; Wickens, et al., 2006). Automation taxonomies emerging from a growing body of 

empirical evidence have established various Levels of Automation (LOA) following 

distinctions between failure detection (Sheridan & Parasuraman, 2000), functionality 

(Parasuraman & Wickens, 2008), and comprehensive perspectives which span the gamut 

of human machine interaction paradigms (Endsley & Kaber, 1999). 
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 Since many of these studies have been conducted in professional environments 

involving air/ground traffic management and other high risk mission sets that preclude 

novice control due to safety concerns, the taxonomies on which they are based involve 

generally proceed on the important assumption that the humans involved have reached an 

appreciable degree of competence in the tasks at hand before automation is introduced. 

Although there is peripheral consideration given to autonomy influence on skill 

maintenance and refresher training, particularly in the closing years of the 20th century 

(Bainbridge, 1983; Moray, 1986; Parasuraman, Mouloua, & Molloy, 1996; Wiener, 

1988), less consideration has been given to the impact of automation on the acquisition of 

skill itself.  

It is with this relative paucity of literature dealing with the impact of automation 

on training that Clegg and colleagues launched their research into the influence of 

automation in the context of process control (Clegg, B.A., Heggestad, E.D., & Blalock, 

L.D., 2010). This effort explored the nature of autonomous assistance provided to novice 

operators who were trying to learn how to efficiently manage a moderately complex 

control process involved in the pasteurization of orange juice. Performance was measured 

on how much juice was successfully pasteurized in a given amount of time under full 

manual control and different levels of autonomous assistance made available under 

various conditions.  

The results of this first experiment indicated an initial advantage presented by 

assistive autonomy. As training progressed and operators attained higher levels of 

proficiency, however, this advantage diminished to an insignificant level. A second 

objective of the study endeavored to explore any potential dependence that trainees might 
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develop for the automation assistance. Removing automation during the final test phase 

impacted performance but only in the case where automation was automatically 

introduced during training.  

By gradually decreasing the level of autonomy during training and randomly 

varying the specific control inputs managed by automation, a second experiment in this 

study sought to examine potential mitigation strategies which might be used to protect 

against autonomy induced learning decrements or perhaps even reverse them. The data, 

however, failed to support either approach. Not only was a performance decrement 

observed when the specific juice pasteurization subtasks were switched between manual 

and autonomous control on a random basis, but the automation removal effect persisted 

even when autonomy was gradually reduced over the course of instruction (Clegg & 

Heggestad, 2010).  

By comparison, manual control performance during this study presented the 

strongest learning efficiency curve of all (on a performance increase over time basis), 

suggesting that while autonomy may present an initial advantage by projecting superior 

performance at the start of training (which may actually be quite important for novice 

trainee motivation levels), it appears to have a detrimental impact on training efficiency 

overall. While this might seem to be obvious in 20/20 hindsight and applied autonomy 

literature, the result at the time seemed quite counterintuitive from the perspective of 

novice trainees who appear to be overwhelmed by complex training tasks and might thus 

be expected to seek assistance from automated modules.  

Maintaining a desirable level of difficulty in training has often been shown to 

keep such overconfidence tendencies in check while requiring a increased depth of 
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processing (Bjork & Allen, 1970; Haider & Frensch, 2002; Healy et al., 2002; Healy et 

al., 2005) . Although increased difficulty does not always result in superior performance 

during learning (it often does quite the opposite), it has been shown time and again to 

enhance long term retention of acquired skill – which arguably constitutes the paramount 

goal of training in the first place (Bjork, 1994; Bjork & Bjork, 2006; Healy, Wohldmann, 

& Bourne, 2005).  

Additional support for this notion can be found in the metacognition literature via 

the so called “testing effect” that shows time and again how simply reviewing 

information in a self study mode has been shown to be far inferior to testing one’s 

knowledge in a more effortful yet fruitful (from a retention standpoint) retrieval paradigm 

(Carpenter & DeLosh, 2006; Kornell & Bjork, 2008). This begs the question as to 

whether autonomy may actually be helping too much in reducing the training task below 

a desirable level of difficulty that is necessary to form a comprehensive mental model of 

the task to be performed (Norman, D., 1990). Employees who have learned to rely on 

incomplete or inaccurate mental models developed during training may perform 

inadequately when it comes to overriding errant process control procedures – often with a 

disastrous consequence. Unfortunately, the impact of such a training deficit is destined to 

increase as the demand for innovative human problem solving is required at higher levels 

of complexity – a situation that has often been referred to “the irony of 

automation”(Bainbridge, 1983).  

Despite these findings, it remains unclear what portion (if any) of automation 

influence on training observed in the process control regime would transfer into 

unmanned systems operator training. The taxonomy discussion put forth by Moray & 
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Inagaki suggests that these two task domains be considered differently (Moray & Inagaki, 

1999). Observations of participants learning air combat management tasks during the 

advent of computer enhanced cockpits also suggest that these two task domains be 

considered differently. Ballas and colleagues observed that participants in a flight 

simulator performed combat management (a rough analog to what is considered “process 

control”) tasks differently (i.e. with occasionally better performance via text selection) 

during flight operations than tactical maneuvers performed via direct manipulation of an 

aircraft’s control surfaces via joystick (Ballas, Heitmeyer, & Pérez-Quiñones, 1992). 

 The goal of the experiment that follows was to replicate the automation effects 

observed by Clegg and colleagues (Clegg, Benjamin A., Heggestad, Eric D., & Blalock, 

Lisa Durrance, 2010) in the context of unmanned systems control. Although this previous 

work established automation induced decrements in the training regime, it remains 

unclear whether those effects were specific to the process control domain or not. If the 

distinction between manual dexterity and cognitive skill that Bainbridge notes in 

describing process control oscillation can be mapped to the tactical cockpit as Ballas and 

colleagues suggest, then the manner and intensity with which automation influences these 

two different skill sets may vary accordingly (Bainbridge, 1983; Ballas, et al., 1992).  

In any case, the intent here is not only to examine the consistency of the 

automation withdrawal effect in a context with relevance to unmanned systems operating 

in a military setting, but to do so in a domain that is exciting and challenging enough to 

avoid the potential apathy and boredom induced by a typical keyboard/mouse input 

paradigm (Gee, 2003). By adding a complex motor control challenge applied to an 

unfamiliar (and notoriously difficult) aircraft flight task, participants were expected to 
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welcome assistance from the autopilot much more warmly than a vigilance dominated 

process control task.  

Since this flight simulator emulated some of the typical video games in today’s 

entertainment market, this experimental design endeavored to minimize the role that 

motivation plays in training as explored in previous research (Barab et al., 2009). 

Because the gaming paradigm presents a more entertaining task set than the 

pasteurization process, a relatively constant level of engagement was anticipated across 

the autonomy and manual groups and thereby emphasizing a task difficulty manipulation 

while holding motivation relatively constant in deference to previous research 

(Broadhurst, 1959).  

Another factor leading to the current design was the intent to invoke a 

standardized comprehensive task training procedure in lieu of the trial and error style of 

learning used by Clegg et al (2010). This more structured approach was expected to avoid 

inconsistent oscillations from extraneous factors occasionally observed in the trial and 

error process which might otherwise have allowed automation to fundamentally shift the 

level of task understanding being developed for the entire system. The standardized 

process, by comparison, was expected to limit the impact of automation to only influence 

the experiential portion of learning rather than all possible aspects of the trial and error 

process.  

The design used here also included more a common experience between the two 

control groups since automation was only introduced in a middle training block 

sandwiched between two manual control blocks. By starting and ending with a common 

training mode, any negative consequence of automation withdrawal (such as motivation 
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or attentional anomalies) that did not have direct learning implications for the task at 

hand were reduced. This consistency factor is of particular importance in considering that 

the final test, landing the aircraft, represented a culminating yet novel challenge which 

required trainees to integrate the skills they learned during the three component sub tasks 

in a new way.  

This approach allowed us to examine how automation influenced the trainees’ 

understanding of the underlying principles of unmanned systems control rather than just 

the physical relationships associated with routine flight characteristics. In combat 

environments where anomalous activity and situational dynamics demand that emergency 

procedures be invoked well beyond what routine relationships might otherwise handle, a 

comprehensive understanding of the entire systems control realm is crucial to successful 

recovery from otherwise disastrous circumstances whether they are induced and/or 

exacerbated by automation, enemy activity, or any number of other factor combinations.  

By utilizing the U.S. Air Force simulation based training paradigm for novice 

Predator operators, these issues were addressed enroute to the primary objective of the 

research – to examine the hypothesis that automation induced deficits previously 

observed in the process control regime extend into the realm of unmanned systems 

control, and thereby warrant research and development of mitigating strategies to counter 

their negative influence.  

CHAPTER 2: EXPERIMENT 

The following study was conducted in order to assess the potential for autonomy 

assisted training to increase or decrease the learning efficiency of novice trainees 

struggling to learn a highly complex task in a militarily relevant domain. The primary 
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goal was to test the autonomy removal hypothesis that predicts a drop in overall 

performance when trainees who have used assistive autonomy are subsequently required 

to perform a complex task without it. By requiring one group to train manually while 

providing another group access to assistive autonomy (in the form of a selective auto-

pilot function in Predator UAS simulator) during the middle of three training blocks, the 

current experiment aspired to compare performance levels in a manner similar to the 

orange juice process pasteurizer process used by Clegg et al. (20102), but in a more 

complicated task where autonomy might provide a welcome relief from overwhelming 

complexity. 

Method 

Participants 

20 Colorado State University (CSU) undergraduates participated in this study for 

optional, partial, or introductory psychology course credit. Participants were randomly 

assigned to one of two groups: one requiring manual control during the entire training 

and test process, and another that was provided with autonomy assistance during one 

phase of their training.  

Materials  

This experiment was conducted using the Predator STE (Synthetic Training 

Environment) simulation software provided by the Air Force Research Laboratory 

(AFRL) installed on a Dell Pentium 4 desktop computer with a Hands On Throttle And 

Stick (HOTAS) joystick assembly and secondary monitor (USAF/AFRL, 2002). Input 

stimuli of interest were provided by the Predator STE simulator as described by Martin 

and colleagues in their report on development of synthetic task for human factors 
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development (Martin, Lyon, Schreiber, & Martin, 1998).  A pictorial representation of 

this basic setup is included in Figure 1.  

 

Figure 1.  Predator Synthetic Training Environment (STE) basic setup 

Procedures 

This experiment used a between subjects design with a manual (M) group and 

autonomy assisted (AA) group. Participation in this experiment was conducted in four 

sessions each lasting approximately one hour in duration. Prior to initiating hands on 

training blocks, participants were asked to review a 25 minute tutorial on the Basic 

Maneuver (BM) characteristics of the Predator UAS. This tutorial was comprised of a 

typical slide show type presentation with animated video clips to provide moving 

representations of the more complex aspects of aerodynamic flight and aircraft control 

surfaces. 



14 
 

The first hands on training block (TB1) commenced with the participant reading 

over a one page scenario description of the STE’s basic maneuver scenario one. This TB1 

task required them to reduce airspeed from 67 knots down to 62 knots while holding 

heading and altitude constant. The participant was given five minutes to read the page 

and ask for clarifications.  

The participant then performed 20 training trials on TB1, each lasting one minute 

in length. Performance for each trial was automatically recorded and displayed for the 

participant at the end of each trial in the form of their Root Mean Square Error (RMSE) 

compared to optimal flight control inputs as indicated by the feedback panel in Figure 2. 

Participants were typically required to take a brief (approximately one minute) break after 

every 5 trials in order to mitigate fatigue effects. This break was also used as an 

opportunity for experimenters to check data recordings for consistency and accuracy.   

In order to avoid instructional bias, experimenters offered no coaching or advice 

of any sort. Questions from participants regarding functionality of any sort were 

answered with an offer to conduct a brief review the previously shown tutorial as a 

refresher. Subsequent questions following that procedure were simply answered with 

“please just do the best you can.”  Sessions were scheduled on four consecutive days 

starting on Monday and ending on Thursday whenever possible to maintain a 

standardized training profile. This process also ensured a consistent opportunity for sleep 
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enhanced memory consolidation between training blocks. 

 

Figure 2.  Example of performance feedback during Basic Maneuver training   

Training block 2 (TB2) began by having participants read a single page 

description of the Predator STE’s basic maneuver scenario two. This TB2 task required 

participants to execute a 180 degree turn while holding altitude and airspeed constant. 

Participants who had been randomly assigned to the manual group were provided with 

scenario description TB2M (for Manual control) which contained standard instructions 

for maintaining altitude and airspeed during the turn. Those who had been randomly 

assigned to the autonomy group were provided with the scenario description of TB2A 

(for Automation assistance) which explains that both the throttle and pitch inputs during 



16 
 

this turning scenario would be handled by the aircraft’s autopilot. Thus the sole manual 

input for the automation assisted group was along the roll axis, controlled via the 

joystick. These participants were therefore instructed to ignore the performance feedback 

for altitude and airspeed and focus on heading instead. Participants were once again 

allowed a brief stretch break after every five of their twenty trials.  

At the beginning of Training block 3 (TB3) participants were provided with a one 

page description for the STE’s  basic maneuver scenario five which requires a straight 

line descent (reduction of airspeed and altitude while holding heading constant) under full 

manual control.1 The final test was focused exclusively on a descent to land paradigm 

and involved no climbing activity of any sort.  

 The final session of the experiment constituted the test block and began with each 

participant completing the Predator STE’s Landing Task (LT) tutorial in the same fashion 

as the basic maneuver tutorial. Once the LT tutorial was been completed, each participant 

was provided with a single page scenario description for the Land Task Test (LTT) which 

required them to perform two 90 degree descending turns while on approach to the 

runway, and then land the aircraft.  They performed this task five times, and reviewed 

their performance data after each trial with the feedback indicated in Figure 3.  

LTT trials typically lasted from three to four minutes depending on the approach 

and landing path taken. After all five landing trials were completed the participant was 

asked to fill out a short (five minute) spatial experience survey which allowed 

experimenters to distinguish between true novice trainees and those with actual flight 

                                                            
1 It should be noted that the climbing and aircraft ascent tasks included in basic maneuver scenarios three 
and four were omitted since they fell outside the scope of the transfer test ‐ landing the aircraft.  
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experience or other exceptional experience that might result in anomalous training 

effects. This survey verified the novice status of all participants in the study.   

 

Figure 3.  Example of performance feedback during the Landing Task Test    

Measures  

The Predator STE simulator records individual performance for every trial.  In 

this experiment, the data collected during basic maneuver sessions was considered to be 

training, while landing task records were considered to be test data. 

Performance metrics during training. 
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The Predator STE simulator recorded performance during training in the form of 

error metrics which represented the aircraft’s response to the primary control inputs that 

are required for an operator to successfully maneuver and ultimately land the Predator 

aircraft. These automatically calculated by the simulator’s path projection modules in a 

Root Mean Square Error (RMSE) fashion captured in the 3 following metrics:  

Altitude error was measured as a y axis vertical displacement from the optimal 

path that a trainee should have taken on each trial as indicated by instructions given at the 

introduction for each task. In the first basic maneuver task (TB1), for example, the trainee 

was required to reduce airspeed while holding altitude constant at 15,000 feet. Altitude 

error during this task was measured as the absolute value above or below 15,000 that the 

trainee allowed the aircraft to climb or descend over the course of each trial.   

Heading error was measured as a bearing difference in degrees measured from 

the optimal direction that a trainee should have maintained in relation to the path 

specified in each task scenario. In the second basic maneuver task (TB2), for example, 

the trainee was required to execute a smooth 180 degree turn at an optimal rate of three 

degrees per second.  Heading error during this task was measured in degrees from the 

dynamically adjusted direction required to maintain a smooth 180 degree arc over course 

of each trial.  

Airspeed error was measured as the difference from the optimal Indicated Air 

Speed (IAS) required to accomplish the task at hand. During TB2, for example, the 

trainee is required to perform a 180 degree turn while maintaining airspeed at constant of 

62 knots.  Indicated Air Speed (IAS) error during this task was measured as the 
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difference above or below that constant airspeed of 62 knots that the trainee allowed the 

aircraft to achieve during each trial.  

Criterion Pass/Fail: In addition to the error metrics listed above, the number of 

times a participant reached a criterion performance level (automatically established by 

the simulator and indicated to the trainee during post trial feedback) was also recorded as 

an indicator of how much learning was accomplished by each participant.   

Although these error measures are related to the ground track and glide slope 

metrics later considered under the general rubric of the Landing Task Test, they do not 

constitute a direct mapping to landing proficiency or even control inputs themselves. In 

many cases, the specific error they endeavor to capture reflects a summation of multiple 

control inputs. Failure to maintain a specified altitude, for example, can result from 

having the aircraft pitched up or down too much through overly aggressive manipulation 

of the joystick and/or simultaneously applying too much or too little throttle input to the 

engine - perhaps while struggling to maintain the appropriate bank angle required to 

execute a smooth turn.  

Maintaining a proper balance between the three primary control inputs: pitch, roll, 

and throttle (yaw/rudder control was fully automated by the simulator’s default settings), 

represents the essence of the control challenge for those learning to land the aircraft.  If 

the trainee was able to maintain a balance of control inputs which kept the aircraft within 

an acceptable performance criterion envelope for each metric during an entire trial, then 

simulator would automatically record a “pass” rating for that particular task/scenario 

(TB1 for example) and the participant would be started on the next successive 

task/scenario (TB2).  
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In order to ensure that trial by trial training time for each participant was held 

constant, trainees were restarted on the same scenario for all 20 trials regardless of 

whether or not they passed criterion on that particular run. Thus all participants 

completed all 20 trials of each training block regardless of the level of competence they 

ultimately attained.  

Performance metrics at test.  

Final performance in this experiment was automatically calculated by the 

simulator in the RMSE fashion indicated above and captured in 3 separate metrics as 

described below:  

Approach Ground Track error was measured as an x/y horizontal displacement 

from the optimal approach path that a pilot candidate should have pursued in relation to 

various terrain features in the vicinity of the airport while turning the aircraft through 

three waypoints enroute to their final landing activity. 

Final Ground Track error was measured as an x/y horizontal displacement from 

the optimal approach path that a trainee should have taken in relation to the runway once 

they had made their final turn toward the airport and were on the final leg of their 

landing.  

Glide Slope error was measured as a +/- vertical displacement along the z axis of 

an optimal descent slope that the trainee should have pursued through each LTT trial 

from start to finish (touchdown). 

Criterion Pass/Fail: In addition to the error metrics listed above, the number of 

times a participant reached criterion was also recorded as an indicator of how much 

learning was accomplished by each participant. This is the only performance metric that 
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was common to both the basic maneuver training phase and the landing task test phase, 

although it was calculated differently for each.   
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CHAPTER 3: RESULTS 

 

Performance results at test  

In order to answer our research question regarding the influence of automation on 

learning, performance on the Landing Task Test (LTT) was initially investigated as the 

primary indicator of training efficiency since hands on duration, or “stick time” was held 

constant for all participants. This analysis was focused on mean performance measured 

across the three primary landing task metrics indicated above. 

In order to explore test performance beyond the potential influence of first trial 

nervousness, a value of average error across all five trials was compiled for each test 

metric and subjected to an independent samples t-test. This resulted in a statistically 

significant difference in glide slope error indicating that the Automation Assisted (AA) 

group (M=186, SD=60) performed worse that the Manual (M) group (M=124, SD=65) in 

handling altitude and airspeed while landing the aircraft t(18)= 2.24, p<.05. These data 

presented a relatively large effect size (Cohen’s d =0.91) as depicted in Figure 4.  

No group difference was found in the Approach Ground Track metric (AA group 

M=123, SD=59, M group M=103, SD=34), t(18)= 0.92, p>.05, nor the Final Ground 

Track metric (AA group M=100, SD=65, M group M=85, SD=67),t(18)= 0.51, p>.05). 

But importantly, neither showed a trend towards an advantage of automation in training – 

suggesting that no benefits were derived from allowing the AA group to focus on only 

one portion of the control requirement when automation was present.   
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Figure 4. Average performance across all five Landing Task Test trials for groups 

that were previously assisted with automation or trained solely with manual control 

After this initial difference in average Glide slope error was found, an inspection 

of means from the first Landing Task Test (LTT) trial was conducted, showing that while 

a moderately larger amount of error appeared in the data graphs for the Automation 

Assisted (AA) group (M=283, SD=142) compared with the Manual (M) group (M=195, 

SD 101) in Figure 5, this trend failed to reach statistical significance t(18)= 1.59, p>.05., 

Cohen’s d =0.69.        

No significant difference in first LTT trial error was found in the Approach 

Ground Track metric (AA group M=138, SD=125, M group M=160, SD=128), t(18)= 

0.39, p>.05, nor the Final Ground Track metric (AA group M=146, SD=214, M group 

M=124, SD=186), t(18)= 0.24, p>.05.   
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Figure 5. Average performance results from Landing Task Test across all 5 trials  

An identical analysis of the data collected on the last LTT trial failed to show a 

statistically significant difference between groups (t(18)= 0.63, p>.05, Cohen’s d=0.28) 

suggesting that the AA group (M=132, SD=64) was able to reduce their relative deficit in 

Glide Slope control during landing compared to the manual group (M=111, SD=80) as 

indicated in Figure 6. No difference in last LTT trial error was found in the Approach 

Ground Track metric (AA group M=89, SD=41, M group M=78, SD=43), t(18)= 0.58, 

p>.05, nor the Final Ground Track metric (AA group M=71, SD=75, M group M=74, 

SD=64), t(18)= 0.07, p>.05).   
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Figure 6. Performance results from final Landing Task Test trial 

In order examine the notion that the AA group might have been able to recover 

from their initial performance deficit at the start of the Landing Task Test, a repeated 

measures Analysis of Variance (ANOVA) was conducted across all five landing attempts 

on trial by trial basis.   

Analysis of the Glide slope data was found to violate Maunchly’s test for 

sphericity (Χ2(9) = 25.727, p<.05), so the Greenhouse-Geisser correction (Є = .720) was 

used.  After this correction was made, a main effect for trial (F(2.882, 4)= 4.428, p<.05, 

ηp= 0.174),  showed that performance was changing across LTT trials. A significant test 

of linear contrast (F(1)=10.888, p<.05, ηp= 0.341), indicated that performance showed 

consistent changes across trials. A main effect for group was also found (F(2)=5.054, 

p<.05, ηp= 0.325) but there was no evidence of an interaction of group with trial 

(F(5.764, 8)= 0.438, p>.05) as portrayed in figure 7.  

Taken together, these analyses indicate that although both sets of participants 

were able to steadily reduce their error over time, the automation assisted group 
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consistently performed worse in controlling glide slope during landing than the manual 

group. While a comparison of effect size suggests that the automation assisted group was 

able to reduce the relative impact of their glide slope control deficit over time, the lack of 

an interaction between group and trial discourages any claim of slope convergence that 

might otherwise suggest that the AA group was essentially able to catch up to the M 

group due to continued learning during the test phase. Further examination of this 

convergence potential is left as motivation for future research.  

 

Figure 7.  Trial by trial Glide slope error for Landing Task Test  

 Approach Ground Track data was also found to violate Maunchly’s test for 

sphericity (Χ2(9) = 35.13, p<.05), so the Greenhouse-Geisser correction (Є = .504) was 

again used to correct degrees of freedom.  After this correction was made, a main effect 

for trial (F(2.014, 4)= 4.153, p<.05, ηp= 0.165) showed that performance was changing 

across LTT trials. A significant test of linear contrast (F(1)=7.218, p<.05, ηp= 0.189), 

again indicated that performance showed consistent changes over the course of the test 

block. No main effect was found for group in the Approach Ground Track metric, 
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however (F(2)= 2.454, p>.05, ηp= 0.189), nor was there any interaction observed between 

trial and group (F(4.028, 8)= 0.814, p>.05, ηp= 0.072). This analysis suggests that both 

groups managed to decrease their Approach Ground Track error steadily with each 

additional trial as indicated in Figure 8. 

 

 

Figure 8. Trial by trial Approach Ground Track error for Landing Task Test 

Final Ground Track error was analyzed in an identical manner to the other 

performance metrics above. Mauchly’s test for sphericity was again violated (Χ2(9) = 

53.37, p<.05), so a Greenhouse-Geisser correction (Є = .459) was again used to correct 

degrees of freedom.  After this correction was made, no main effect was observed for 

trial (F(1.837, 4)= 1.513, p>.05, ηp= 0.067) or group (F(2)= 0.884, p>.05, ηp= 0.078), nor 

was there any evidence of an interaction between the two (F(3.674, 8)= 0.870, p>.05, ηp= 

0.077) as illustrated in figure 9. This data presents no evidence that learning occurred on 

this control variable across these particular trials, perhaps due to a floor/ceiling effect or 

other influence that is too gradual to detect.  
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Figure 9.  Trial by trial Final Ground Track error for Landing Task Test  

It should be noted here that no participant ever reached criterion on the Landing 

Task Test. Not only does this show how difficult the Predator aircraft is to land 

effectively, but it also indicates how early these trainees are being assessed in what might 

otherwise be a professionally mandated training cycle. Exploration of extended training 

efforts that might allow participants to reach landing task criterion remains an issue to 

address with future research.  

Performance results during training   

While the skills transfer test from basic maneuvering to landing offer the best 

examination of the hypotheses at hand, questions remain about the impact that 

automation had on the nature of skill acquisition itself. In order to comprehensively 

assess the impact of automation on training, it makes sense to expand analysis beyond 

test data and examine whatever learning indicators might exist within the training data 

itself. With this objective in mind, a secondary analysis was launched which sought to 

take advantage of the automatic error recording features available in the Predator STE 
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simulator. This analysis followed the same general rubric as the test analysis, but with a 

more direct focus on control inputs indicated by the training performance metrics: 

altitude, heading and airspeed error. The number of times each participant was able to 

meet criterion was also considered on a pass/fail basis over the total of 20 trials per 

training block.   

 

Figure 10. Average error summary for Training Block 1 

Although the functional distinction between the Automation Assisted (AA) group 

and the odd numbered Manual (M) group was not made until the autopilot function was 

actually introduced during training block 2 (TB2), data from training block 1 (TB1) was 

still evaluated to determine whether or not the assumption of randomly assigned 

participants (via even and odd numbered enrollment numbers respectively) was valid. As 

expected, a series of independent sample t-tests conducted on average error data from 

TB1 revealed no significant difference between groups in altitude error AA (M=66, 

SD=38), Manual (M=48, SD=25), t(18)=1.26, p>.05, airspeed error AA(M=4.0, SD=1.5), 
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M(M=2.8, SD=1.2), t(18)=1.86, p>.05, or heading error AA(M=0.34, SD=0.80), 

M(M=0.52, SD=0.80), t(18)=0.52, p>.05 as indicated in Figure 10.  

The data for criterion achieved during TB1 failed Levene’s test for equality of 

variances. After a correction to the degrees of freedom was made, the two tailed 

independent samples t-test (t(11.2, 18)=2.15, p>.05) revealed no difference in pass/fail 

criteria between the Automation Assisted group (M=1.3, SD=2.2) and the Manual group 

(M=5.7, SD 6.1) also indicated in Figure 10.  

 

Figure 11. Trial by trial altitude error during Training Block 1 

Following the precedent set on above for the landing task, a trial by trial analysis 

for TB1 was conducted via repeated measures ANOVA for each of the training error 

metrics. Mauchly’s test of sphericity was consistently violated during this analysis, so a 

Greenhouse-Geisser correction was applied throughout. A main effect and linear fit for 

TB1 trials was found for altitude (Є = .293), (F(5.570, 19)= 3.836, p<.05, ηp= 0.176), 

(F(1)=10.659, p<.05, ηp= 0.372) and airspeed, (Є = .201), (F(3.816, 19)= 6.816, p<.05, 

ηp= 0.275), (F(1)=12.432, p<.05, ηp= 0.409) indicating that accumulated error was 
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changing significantly and consistently during training on these two metrics, but not for 

heading (Є = .122), (F(2.318, 19)= 0.857, p>.05) as portrayed in Figures 11-13. These 

data suggest that participants were learning how to reduce their control error in altitude 

and airspeed but not heading, which is consistent with the apparent objective of this 

particular training block.  

 

Figure 12. Trial by trial airspeed error during Training Block 1 

Given the TB1 scenario requirement to hold heading and altitude constant while 

reducing airspeed, these data make sense because the amount of heading error incurred 

via side pressure on the stick while participants endeavored to compensate for slower 

speed with increased pitch was negligible. There was, in essence, no significant source of 

heading error to be reduced in this training scenario. 
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Figure 13. Trial by trial heading error during Training Block 1 

Importantly, there was no main effect for group or interaction between trial and 

group evident during TB1 for altitude F(1)= 1.714, p>.05), (Є = .293), (F(5.570, 19)= 

0.755, p>.05, airspeed F(1)= 3.328, p>.05), (Є = .201), (F(3.816, 19)=1.796, p>.05) or 

heading F(1)= 0.449, p>.05), (Є = .122), (F(2.318, 19)= 1.203, p>.05), which suggests 

that all participants started out with equivalent performance before automation was 

introduced.  

When considered collectively, these data illustrate that both groups of participants 

were able to steadily decrease their altitude and airspeed error in a linear fashion over the 

20 trials in the first training block, which suggests that an appreciable amount of learning 

took place without any significant difference between groups. This notion was further 

supported by the average number of times (M=3.50, SD=4.99) that all participants were 

able to reach criterion in TB1 no matter which group they were assigned to.   

An analysis of training performance during the second training block (TB2) could 

only be compared via the heading error metric since airspeed and altitude were controlled 
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by the autopilot for half of the participants. No difference was found between groups in a 

t-test comparison of average heading error AA(M=29.5, SD=14.6), M(M=24.8, 

SD=12.7), t(18)=0.769, p>.05, as illustrated in Figure 14. 

 

Figure 14. Average heading error during Training Block 2 

 Although participants under full manual control were able to achieve criterion on 

an average of 1.1 of their 20 trials in TB2, it would be inappropriate compare that number 

against a zero value for the AA group since the imperfect nature of the STE autopilot 

prevented participants receiving automation assistance from reaching criterion on any 

trial. 

A sequential analysis of TB2 heading data revealed a main effect for trial 

(F(5.409, 19)=11.979, p<.05, ηp=0.400, with a significant linear contrast F(1)=39.178, 

p<.05, ηp=0.685 after a Greenhouse-Geisser correction (Є = .285) for sphericity violation 

was applied. There was no main effect found for group F(1)=0.591, p>.05, and no 

interaction of group with trial (F(5.409, 19)=1.083, p>.05) as indicated in Figure 16.  
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Figure 15. Trial by trial heading error during Training Block 2 

 These data were surprising in several respects. While the linear reduction of error 

during TB2 was generally expected commensurate with the power law of practice 

(Newell & Rosenbloom, 1981), the lack of a significant error difference between groups  

was not. Given that two of the three control inputs required during the TB2 turning task 

were handled by the autopilot for the participants in the AA group, it was expected that 

the M group would incur far more heading error since they had to augment their efforts to 

control the aircraft’s roll axis with management of throttle and pitch input as well. These 

data failed to meet that expectation. The one to three control input ratio was also expected 

to result in a steeper learning slope for the M group, which also failed to occur as 

indicated by the lack of any group-trial interaction (F(5.409, 19)=1.083, p>.05, and the 

nearly equivalent linear fit slopes indicated in figure 15. Not only do these data support 

an observed trend towards better learning without automation, but the meager effect size 

associated with them suggest that an increased sample size would have little influence on 

the results.  
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Since the basic maneuver scenario for the final training block (TB3) required both 

groups to execute a descent in full manual mode without turning, all three performance 

metrics were again evaluated. Although removal of any turning requirement supported 

the assumption that heading change would be of negligible impact during this task 

AA(M=0.336, SD=0.797), M(M=0.521, SD=0.802),t(18)=0.516, p>.05, it was expected 

that the removal of autonomy from the AA group would result in a significant difference 

in performance across all of the dependent variables in a manner similar to that observed 

by Clegg & colleagues (Clegg, B.A., et al., 2010). No difference  between groups was 

observed, however, in the number of trials meeting criterion AA(M=1.30, SD=2.163), 

M(M=5.70, SD=6.093),t(11.23, (18)=0.516, p>.05, or average error incurred across either 

the altitude AA(M=65.81, SD=37.99), M(M=47.70, SD=24.88),t(18)=1.261, p>.05, or 

airspeed AA(M=3.949, SD=1.449), M(M=2.847, SD=1.184),t(18)=1.862, p>.05, metrics 

as indicated in Figure 16. 

 

Figure 16. Average error during Training Block 3 
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A repeated measures ANOVA conducted on a trial by trial analysis also failed to 

reveal any main effects for group or trial, or any interaction between them for altitude  

F(1)= 2.650, p>.05), (Є = .201), (F(3.816, 19)= 1.576, p>.05, (F(3.816, 19)= 0.906, 

p>.05 airspeed F(1)= 0.431 p>.05, (Є = 0.194), F(3.678, 19)=1.970, p>.05, F(3.678, 

19)=0.493,  p>.05, or heading F(1)=3.492, p>.05, Є = .119, F(2.263, 19)= 0.930, p>.05, 

F(2.263, 19)= 0.856, p>.05, despite intermittent indications of such in graphic plots of 

the data shown in figures 17, 18, and 19. As such, these data present no direct evidence of 

consistent error reduction that would otherwise support the claim that significant learning 

had taken place during TB3.  

 

 

Figure 17. Trial by trial altitude error during Training Block 3 
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Figure 18.  trial by trial airspeed error during training block 3 

Even though there was no group difference observed in the average number of 

times participants were able to reach criterion during their twenty trials, the fact that this 

occurred approximately thirty percent of the time (M= 6.45, SD=6.94 for both groups 

combined) provides indirect evidence that learning actually did occur during TB3 

regardless of whether the trainee had received automation assistance during TB2 or not.  

 

Figure 19.  trial by trial heading error during training block 3 
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Given that criterion achievement is the only performance measure which actually 

captures how well trainees can integrate the three control inputs simultaneously by 

accepting error tradeoffs between individual metrics, it is perhaps the best learning 

indicator available.  It is also worth noting that the 30% criterion observation made in 

TB3 reflects an appreciable increase over the 15% criterion passed by all participants in 

TB1, suggesting that learning may be taking place between training blocks as well as 

within them – particularly since the TB1 and TB3 tasks were of similar difficulty – both 

requiring a tradeoff between throttle and pitch while holding heading constant.  
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CHAPTER 4: GENERAL DISCUSSION 

Automation influence at test  

The magnitude of glide slope error incurred by participants from the automation 

assisted group compared to those who trained with full manual control presents 

compelling evidence that learning detriments associated with the automation removal 

effect reported by Clegg and colleagues (Clegg, Benjamin A., et al., 2010) are not 

necessarily limited to the domain of process control, and may (based on effect size) 

degrade training efficiency for unmanned system operators even more severely. 

Considering the nature of the phrase automation “assistance”, the results from these 

studies may initially seem a bit counter intuitive. The popular divide and conquer 

approach to learning complexity, after all, has played a prominent role in learning theory 

since the advent of cognitive psychology in the 1950s and 1960s (Anderson & Lebiere, 

1998, pp. 1-3; Bshouty, 1996; Fu, Lee, Chiang, & Pao, 2001).  

From a meta-cognitive standpoint, however, these findings are not all that 

surprising, particularly in light of more recent literature which has established that 

humans are notoriously overconfident in many aspects of their learning endeavors 

(Joseph, 2009; Koriat & Bjork, 2005; Koriat, Bjork, Sheffer, & Bar, 2004; Koriat, 

Ma'ayan, Sheffer, & Bjork, 2006). Trainees who over estimate their level of capability, 

after all, may be inclined to remove themselves from voluntary training programs 

prematurely, thus denying themselves higher performance and retention levels than might 

otherwise be achieved.  

With overconfidence considered in the context of unmanned systems, automation 

assisted trainees may have only engaged themselves to a minimal extent while 
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maintaining an overly optimistic expectation that they were learning as much as possible. 

Others may have simply offloaded responsibility for the control error they incurred to 

imperfect nature of the automation that was supposed to be assisting them in the first 

place – thereby depriving themselves of sensitivity to subtle yet critical relationships 

between control inputs that those who struggled with multi-modal control in the manual 

condition developed a better appreciation for.  

When examining the impact of autonomy on training, however, it is important to 

not only consider the magnitude of its influence on performance, but also nature of how 

that impact manifests itself in light of manipulated variables. While the performance 

decrement observed in the autonomy assisted group was expected commensurate with 

previous findings, it was initially surprising to see the autonomy removal effect achieve 

statistical significance in only one of the three test performance metrics as opposed to 

both of the dependent variables measured by Clegg and colleagues – units of good juice 

produced, and units of spoiled juice produced.  

On closer inspection, however, it is interesting to note which performance 

measures were most influenced by the introduction of automation into the training 

sequence and the nature of that automation itself. When the autopilot was introduced 

during TB2, it consisted of functionality applied only to the control inputs (pitch and 

throttle) which primarily influenced the vertical aspect (or glide slope) of the aircraft’s 

flight path. As such, the autopilot presented a negligible impact on aircraft heading 

during training which most closely relates to the ground track metrics during test.  

The data suggest that by allowing the automation assisted group to focus 

exclusively on the roll axis during TB2, participants were somehow able to avoid 
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excessive error observed in glide slope, and perform on par with the manual group in 

both the approach and final ground track metrics. This equivalent proficiency between 

groups in turning the aircraft, however, appeared to come at a cost in transfer of glide 

slope control to the landing task test. If automation were not to blame for additional error 

in the vertical component of flight control, it is doubtful that such a direct mapping of 

inputs with test data would be evident.  

The LTT trial by trial data indicate that the excess error initially incurred by the   

autonomy assisted group and the beginning of the test phase was reined in a bit over the 

next four trials. Although it is unclear whether the AA participants were able to 

completely catch up to the M group in comprehensive performance, the time it took for 

the AA group to rein in its excess error was comprised of 15-20 minutes of hands on 

control, or “stick time” spread across four or five LTT trials. This “rein in” period 

represents approximately 25% - 30% of the 60 x 1 minute basic maneuver training trials 

– a period which corresponds almost exactly to the length of time that autonomy was 

involved in TB2. This temporal correlation perhaps lends additional (albeit indirect) 

support for the link between automation and performance decrements.  

The specific reason(s) why this effect persists across both the process control and 

unmanned aircraft domain at test remains unclear. With an aircraft as complicated to fly 

as the Predator, one might expect that providing novice trainees with automated 

assistance would bring an exceptionally challenging performance goal within reach. 

Instead, it seems to have pushed it further away, at least as far as glide slope management 

is concerned. 
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Automation influence during training 

While the detrimental impact of autonomy removal appears to be well established 

at test, its influence during training is less clear. Despite the rigor with which “stick time” 

was maintained at a constant level, the lack of any significant group differences 

throughout all three basic maneuver training blocks raises a number of questions about 

how direct and/or immediate the influence of autonomy is manifested. If, for example, 

automation influence was tied directly to motivation or various feedback mechanisms, 

one would logically expect to see an immediate (or nearly so) training performance 

decrement revealed between groups somewhere in the 40 trials that took place just after 

autonomy was introduced. Yet the results show no appreciable difference between groups 

during this period despite concurrent evidence that learning took place during the 

injection of automation into TB2 and after it was removed.  

Automation as a part task training agent   

Considered in isolation, the training data do not provide direct evidence of an 

autonomy removal effect.  If participants had become complacent or overly dependent 

upon autonomy for altitude and airspeed control during TB2, they should have performed 

significantly worse in TB3 when those responsibilities were suddenly handed back to 

them. The data simply fail to show such a difference. What is quite clear, however, is that 

a relative deficiency did manifest itself in a closely related component of the landing task 

as evidenced later by significant differences in glide slope error.  One explanation for this 

perplexing state of affairs can be found in the context of efficiency tradeoffs made 

between Part Task Training (PTT) decomposition and the integration requirements 

imposed by Whole Task Training (WTT).  
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The Part Task Training approach follows a general divide and conquer rubric, 

handling complex learning challenges by breaking them down into component subtasks 

that can be practiced in relative isolation. This allows trainees to develop proficiency in a 

number of basic subtasks before facing the additional (and arguably more complicated) 

challenge of combining and balancing tradeoffs between them in pursuit of higher goals 

(Naylor & Briggs, 1963). The Whole Task Training (WTT) paradigm, by comparison, 

requires trainees to struggle with multiple subtasks simultaneously despite the 

challenging tradeoffs required between subtasks while simultaneously trying to develop 

enabling skills themselves (Naylor & Briggs, 1963; Stammers, 1982; Wightman, 1983; 

Wightman & Lintern, 1985).    

Upon closer review of experimental procedures conducted above, it becomes 

clear that the AA group was never required to integrate all three control inputs in a 

fashion championed by the Whole Task Training (WTT) realm until they entered the 

final training/test phase – landing the aircraft.  The trial by trial LTT data show that once 

the AA participants were given the opportunity to attempt this, they were eventually able 

to rein their excess Glide Slope error when compared to manual participants who were 

required to integrate all three control inputs (throttle, pitch, & roll) during TB2. In this 

sense, automation acted as a separation / isolation agent which enabled PTT to be 

conducted enroute to a WTT objective.  

It is important to make a key distinction here between the process control 

paradigm used by Clegg and colleagues, and PTT/WTT structure used here with the 

Predator STE. In both cases automation was introduced into the training phase of the 

experiment and the removed before test. In the process control experiment, however, the 
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evaluation conditions and performance measures remained consistent between the 

training and test phase. In the composite task used at test in the current experiment, 

trainees were not only faced with a new scenario that required component skills to be 

balanced and integrated in a novel (though arguably familiar) way, but their performance 

was evaluated by different metrics as well.   

 This subtle yet significant difference in experimental design may provide some 

insight as to why the autonomy removal effect was so prominent in the process control 

experiment’s training phase but not here. The trainees in the process control arrangement 

were oriented on an aggregate task that may have induced a relative dependency on 

autonomy which caused an obvious and immediate drop in training performance when 

suddenly removed. The Predator STE experiment, by comparison, was oriented on a 

highly organized integration task at test which required trainees to not only combine their 

newly acquired skills, but balance them with overlapping performance tradeoff 

considerations developed during their previous three training blocks.  

The automation assisted group was spared the requirement to make such tradeoffs 

during TB2 creating a situation which presented no observable decrement in performance 

at the time, but appeared to result in an impoverished mental model of the relationship 

between component skills compared with the manual group. This created a performance 

deficit at test that was surprisingly strong and persistent across multiple trials. The 

durability of this effect essentially kicked the integration can down the road at an 

alarming cost in overall training efficiency. While the participants exposed to automation 

were eventually able to reduce their error rate to one roughly approximating that of the 
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manual group, it took them 4 additional trials to do so – a cost that any evaluator or 

training manager would be reluctant to accept.   

This delayed onset of this performance degradation also raises concerns regarding 

the potential for automation to mask deep deficits in conceptual understanding during 

component training activities. The sudden appearance of these deficits during more 

complex endeavors with higher task organization is of particular concern for trainers 

trying to prepare operators for future duties in high risk environments where even 

moderate performance decrements can result in the catastrophic loss of innocent lives 

(Massood & Shah, 2011; Mazetti & Schmitt, 2011; Smith, 2011).  

Automation and workload 

Given the part task / whole task implications discussed above, the question 

remains whether underlying principles can be identified for autonomy induced learning 

deficits. Previous work suggests that the injection of an automated module into our 

training regimen may have pulled the AA group out of a desirable difficulty sweet spot 

that is required to develop comprehensive mental models via deep encoding during 

learning (Bainbridge, 1983; Endsley & Kiris, 1995; Moray, 1986). 

The notion of desirable difficulty has been considered an important aspect of 

training research and skill acquisition at least as far back as 1956, when it was discovered 

that more skill was often transferred between tasks when a more difficult version was 

presented first rather than the other way around (Day, 1956). The positive influence of 

difficulty was also noted in the recall accuracy of material presented before and after an 

intervening task was injected into a typical study / test process. Participants who were 

required to perform a difficult task in between material presentations recalled more 
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information at test than those afforded an easier intervening task (Bjork & Allen, 1970; 

Carpenter & DeLosh, 2006; Schmidt & Bjork, 1992).  

A general consensus in the literature considers difficult yet attainable tasks to 

often yield the most efficient learning (Locke, Shaw, Saari, & Latham, 1981), albeit  

subject to influence and compatibility with established goals (Huber, 1985). Consistent 

improvements in test performance and delayed retention have also been associated with 

the introduction of difficulty during training in both motor and verbal task domains even 

when doing so appears to lower performance during training (Bjork & Bjork, 2006; 

Schmidt & Bjork, 1992).  

Considered in the context of this research foundation and the framework 

presented here, the results suggest that the introduction of automation imposed a 

performance deficit at test by 1) making the training during TB2 too easy for even novice 

participants to develop a comprehensive mental model of aircraft response to various 

control input combinations, and by 2) denying them the experience of managing those 

inputs under challenging conditions that would allow them to perform as well as the 

manual group during landing.  

Alternative explanations 

Motivational issues are often postulated as a cause and/or consequence of automation 

induced complacency, especially in monitoring or process control tasks, which may drive 

systems design toward redesign of feedback as an appropriate mitigation strategy (Moray, 

1986; Norman, D. A., 1990). It has been suggested, for example, that a trainee’s 

perceived shift in locus of control (to the autopilot in this case) may influence their 

motivation to learn, especially in regard to feedback (Noe, 1986). Since trainees in this 
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experiment received feedback on each and every trial they performed, these issues are 

particularly important to consider as influential factors.  

Given the 75 times that participants received end of trial performance feedback, for 

example, it is quite possible that those who perceived an improvement in their 

performance might have become apathetic when unrequested (and perhaps even 

unwanted) “assistance” from the autopilot was thrust upon them in TB2. Given that they 

were specifically told to ignore trial by trial feedback on the two performance 

components that the autopilot was supposed to perform for them (altitude and airspeed 

hold) this indifference prediction seems likely. If particularly perceptive participants 

ignored instructions and monitored the autopilot’s performance anyway, they might have 

even begun to realize that the autopilot actually performed these functions in an imperfect 

fashion. Upon realizing that the autopilot’s assistance might prevent them from ever 

reaching criterion during this training block (which was the case, but participants were 

not explicitly told this) the AA group would have been understandably justified in 

adopting an apathetic attitude and simply giving up on the task.   

Similar arguments have been made in discussion of automation induced complacency 

and other influential factors that may reduce situational awareness of the aircraft 

operator, creating a dreaded “out of the loop” performance decrement in the process 

(Endsley & Kiris, 1995; Kaber, et al., 2000). Since we did not explicitly measure 

personal attitude, motivation, or situational awareness we had no direct empirical way to 

test this apathy or “out of the loop hypotheses. Indirect analysis of the performance data 

that was collected, however, does not support it.  
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The fact that there no group performance differences were observed after automation 

was introduced in TB2 or after it was removed in TB3 drains any support for the notion 

that a significant change in motivation occurred. Since the number of trials in which 

participants reached criterion in TB3 actually increased compared to previous training 

blocks, it is highly unlikely that motivation to learn decreased after automation was 

introduced or subsequently removed. These results also suggest that the automation 

assisted participants remained aware enough of their situation to keep up with the 

learning rate achieved by the manual group. It follows from the increase in trials reaching 

criterion for both groups during TB3 that motivation and awareness remained intact or 

perhaps even increased slightly after automation was invoked. Anecdotal evidence for 

this was provided via research logs on which experimenters were required to record any 

apparent signs of duress, distraction, or motivational deficits during each trial they 

observed. No behavioral indicators of motivation deficits were noted for either group.  

With regard to relationships that may exist between the autopilot’s influence on 

motivational factors and locus of control, it might have been interesting to examine 

whether user invoked automation could result in different learning patterns than full 

manual control or automatically applied automation as Clegg and colleagues did in the 

orange juice pasteurizer study. The inherent software limitations of the Predator STE 

preclude this type of experimental design, however, because the auto pilot has to be setup 

prior to the beginning of each trial and cannot be adjusted or even turned off until the trial 

ends. Thus, the participants in this experiment had no capacity to toggle the autopilot on 

or off once a trial had started, or even change which control inputs they would be allowed 
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to manage, so the influence of variable activation remains unexplored here and left to 

future research with different simulators.   

There are attentional switching and focus issues to be explored here however, 

particularly as they pertain to the two computer monitors which participants used for 

awareness of the aircraft’s status as indicated in Figure1. Such concerns are of prominent 

relevance under conditions with multiple task loads and variable control requirements 

that are often competing for attentional resources (Parasuraman & Manzey, 2010; 

Wickens, et al., 2006). 

During TB1, the left monitor contained all the instrumentation needed to hold the 

aircraft’s heading and altitude steady while reducing airspeed from 67 down to 62 knots. 

This instrumentation consisted of the artificial horizon, current airspeed, attitude 

indicator, vertical speed indicator, and current altitude display as indicated by the red 

dashed arrows in Figure 20. Since heading was supposed to be held constant there was no 

information displayed on the right monitor that contributed directly to this task. During 

training it was often observed that participants would focus almost exclusively on the left 

monitor for the entire trial, switching their focus to the right monitor only at the end to 

receive feedback.  
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Figure 20: Typical left monitor display at the beginning of TB1 trials 

Because performance data was always displayed on the right monitor at the 

completion of each training or landing trial, it is quite possible (if not probable) that 

participants became conditioned during TB1 to focus on the left monitor during simulated 

flight and only use the right monitor at the end of each trial for feedback. The turning 

requirement initiated in TB2, however, presented an advantage of switching attention to 

the right monitor from time to time.  As participants transitioned into this turning 

scenario, they needed to expand their attentional resources to include additional 

instrumentation displayed on the monitor in the form of the numerical heading and rate of 

turn indicators highlighted by red circles in Figure 21. Although the left monitor provided 

trainees with sufficient information to create a gross representation of the aircraft’s 

posture during a turn, the right monitor presented additional information with the 

potential for a refined posture to be ascertained in pursuit of the critical error reduction 

necessary to reach criterion.  
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Figure 21: Typical left monitor display during TB2 trials 

   On the left monitor heading is represented numerically while bank angle and turn 

rate are represented graphically in the form of the tilted yellow artificial horizon and thick 

orange slider bar at the bottom of the screen. The right monitor reverses this arrangement 

by adding a numerical component for bank angle and a compass ring for heading as 

indicated in Figure 22. What is so important about this aspect of turn co-ordination is the 

relationship between bank angle and turn rate. Trainees typically struggle to establish and 

maintain the proper turn rate during this task as evidenced by substantial oscillations in 

bank angle, especially when having to control for altitude and airspeed drift at the same 

time. Only those trainees who are able to rapidly but smoothly establish and maintain the 

standard rate of turn (3 degrees per second) throughout the majority of the trial are able to 

reach criterion in this task.  
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Figure 22: Typical right monitor display during TB2 trials 

Since there is no numerical representation of turn rate anywhere in STE’s display, 

trainees are forced to estimate it graphically via extension of the thick yellow bar at the 

bottom of the screen – which provides only a coarse estimation at best. The next best 

input for turn rate estimation is bank angle, but that representation on the left monitor is 

presented in a coarse analog graphic as well. The right monitor, however, presents bank 

angle in a crisp numerical fashion that requires little interpretation. It also presents a 

macro view of heading in a natural graphic that most people are familiar with regardless 

of their aviation experience – the compass rose.  

It has been well established in the perceptual and attention literature that increases in 

task difficulty typically result in a more narrow perceptual focus, while decreased 

difficulty is associated with greater generality of transfer between tasks (Ahissar & 

Hochstein, 1997, 2000; Wickens & Andre, 1990).  Given this background, it is doubtful 
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that the manual group was inclined to glance over to the right monitor for additional 

information while struggling to control pitch, throttle and bank angle control inputs while 

simultaneously monitoring all of the other display items available during TB2.  

The automation assisted group, on the other hand, only needed to monitor those 

display features directly related to the single axis of control (roll/bank angle) for which 

they were responsible. The freedom from multi-task control could have provided the AA 

group with the opportunity to view the additional information available on the right 

monitor and thus enjoy a corresponding reduction in their heading error during TB2. This 

is precisely the kind of automation induced mechanism that has been shown to actually 

increase situational awareness in the performance of complex tasks (Endsley & Kaber, 

1999; Wickens, 2008). It also suggests that some participants in AA group may actually 

have been learning different cues and indirectly practicing different task variations than 

the manual group under Sheridan’s notion of automation influence (Sheridan & 

Parasuraman, 2000; Sheridan & Parasuraman, 2005). 

The problem with these hypotheses, however, is that the data simply fail to support 

them. If the AA group had suffered an out of the loop effect, then their heading error 

during TB2 should have been significantly larger than that found for the manual group. If 

they had been able to capitalize on the reduced demand for their attentional resources and 

exploit the additional information on the right monitor, then they should have performed 

significantly better than the manual group in TB2. The fact that no performance 

differences were found between groups during TB2 or TB3 denies support for either of 

these situations. The lack of attentional / situational awareness measurements via eye 

tracking or other devices also precludes the development of any direct empirical 
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determination regarding the bearing of these factors on the results obtained, and serves as 

additional motivation for future research.   

Conclusion and implications 

Taken collectively, the results reported above support the hypothesis that 

autonomy removal effects observed in the process control domain do in fact transfer to 

the motor control arena exemplified by the Predator STE unmanned systems simulator. 

They also exposed a troubling feature of automation induced training deficiency in that 

its deleterious influence was apparently masked during training itself. The most 

parsimonious account of this finding resides in the notion that automation served as a part 

task training agent which interfered with the development of a comprehensive mental 

model during learning that did not manifest itself until the integration of component skills 

was required at test. Additional support for this interpretation comes from a tank gunnery 

study in which automation was invoked in a similar manner to moderate part/whole 

training effects (Marmie & Healy, 1995), albeit in an extended retention format that lies 

beyond the scope of this experiment.  

A theoretical basis for the poor mental model formulation evident at test, but not 

during training, may be examined in terms of the distinction between intrinsic, germane, 

and extraneous cognitive load offered by proponents of Cognitive Load Theory (CLT). 

This theory, fashioned loosely on a brain function analogy that emulates a generator style 

load management paradigm, presents intrinsic load as a basic component of learning 

which differs significantly depending upon the interactivity between various knowledge 

elements (Paas, 1992). Tasks with low interactivity between elements tend to be learned 

serially in a rote memory fashion, while those with high interactivity can actually be 
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understood at a high level, and recorded in the form of various schemas which can be 

processed with varying degrees of automaticity by the learner (Sweller, van Merrienboer, 

& Paas, 1998). Schema construction, which lies at the heart of the theory, benefits most 

from germane load in which understanding of interactivity between elements is 

maximized, and least from extraneous load which generally serves to divert the learner’s 

attention away from it.  

This appreciation for interactivity between training elements fits well with the 

discussion of sensitivity to control mode interaction presented above. It follows from that 

discussion that automation somehow interfered with the understanding that should have 

been derived from direct interactivity experience between control mode “elements” in the 

manual group. This in turn may have deprived the automation group of sufficiently well 

developed schemas that they would need to transfer into a new conceptual model during 

the novel landing task presented at test. Unfortunately, the innovative and logical scaffold 

beneath CLT is still lacking empirical support from dissociations between and direct 

measures of cognitive load variants during training (Paas, Tuovinen, Tabbers, & Van 

Gerven, 2003). It is hoped that the findings presented here may provide a modicum of 

such support in future evolution of the theory.  

These findings also introduce some important implications for trainers of the 

future – especially those hoping to increase efficiency by providing automated assistance 

to novice trainees in the form of complex task decomposition. Not only was evidence of 

any automation advantage absent during the entire four hour procedure followed here, but 

the substantially detrimental effect observed in the opposite direction was not revealed 

until the very last test phase of training. This not only provides evidence that automation 
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can indeed mask learning deficits in the unmanned systems control regime on par with 

those previously observed in the process control and decision support domains 

(Bainbridge, 1983; Moray, 1986) – it begs the question as to whether similar effects may 

remain hidden in other learning endeavors as well.   

Perhaps the most dangerous aspect of all, however, is the implication that some 

trainees tend to offload responsibility for the error they incur as an artifact of imperfect 

automation, even when it is activated at a minimal level as observed here during the 20 

TB2 trials. Such an effect could transfer detrimental influences beyond component skill 

acquisition into higher forms of integrated reasoning, such as those required for ethical 

and moral decision making. The appalling nature of people’s obedience to authority 

observed in Stanley Milgram’s infamous shock experiments, for example, is widely 

considered to represent a human tendency to offload responsibility for undesirable 

consequence to others (Blass, 2004). Perhaps this tendency would be evident (if not 

amplified) in unmanned system operators involved in situations where autonomous 

agents of some sort were “wearing” the lab coat instead of humans. Despite Hollywood 

hype that surrounds various movies projecting robots and automated systems that have 

somehow evolved to acquire lethal capabilities, additional caution may be in order 

regarding just how much of accountability we allow ourselves to offload to machines. 

With a heavy caveat that these studies only present undergraduate student data from a 

single university, these findings support a warning flag with a least a modicum of 

visibility be waved in military circles.   
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Future work: toward a neuro-adaptive training workload sweet spot 

Despite the negative connotation of the findings described above, the tremendous 

potential for automation to improve both the efficiency and effectiveness of learning is 

indisputable. From the very advent of computer science, Ed Feigenbaum proved that an 

expert system comprised of rule base extracted from multiple doctors’ diagnostic 

experience could consistently outperform junior physicians and occasionally even those 

with the most impressive track record and profession background (Russell, Norvig, & 

Artificial Intelligence, 1995, pp. 23-24). For those learning how to diagnose symptoms 

associate complex problems, this notion of encapsulated experience cannot escape 

consideration as a powerful pedagogical tool. Even those exposing serious concerns for 

automation’s impact on transportation safety cannot help but provide a balanced 

perspective on its value (Endsley & Kaber, 1999; Parasuraman & Wickens, 2008). From 

an applied tactical/rescue research perspective, automation is not only an important factor 

for unmanned systems design – it represents a critical component of its very essence as a 

reliable extension of human capability.  

Some in the human factors realm have defined automation as “the execution by a 

machine agent (usually a computer) of a function that was previously carried out by a 

human  (Parasuraman & Riley, 1997, p. 231). Blitch, however, rejected this limited, 

anthro-centric perspective in a vigorous plea for leaders within the military, emergency 

services, and space exploration communities to embrace the powerful potential of 

mechanical design freedom in pursuit of advanced robotic capabilities that could not only 

replicate human performance, but actually exceed it (Blitch & Maurer, 1996; Krotkov & 

Blitch, 1999; Weisbin et al., 1999). This work originally championed the deployment of 



58 
 

“micro” robots (loosely defined as having a cross section well below a human form 

factor) for penetration of denied areas on the battlefield, in narrow space habitat conduits 

and rock fissures potentially hiding UV-phobic microbes on Mars, and twisted void 

spaces in collapsed rubble. Later efforts, however, focused on development of Adaptive 

Robotic Manipulators (A.R.Ms) that might combine the amazing extension capacity of 

cephalopod tentacles and other muscular hydrostats with the hyper redundant nature of 

elephant trunks to create a family of robot appendages with a wrapping capability for 

compliant object manipulation, dynamic target capture, and other tasks of interest to 

those working in these challenging operational domains. Unlike the cockpit derivations of 

Fitts’ list that focused on the liberation of cognitive resources from tedium in pursuit of 

greater efficiency and human convenience, the evolution of imperatives for Tactical 

Mobile Robot (TMR) control anticipated automation as a critical technology which 

actually enabled control of complicated systems such as a multi-limbed collection of 

squid tentacles that evolutionary models of human cognition were incapable of (Blitch, 

2000).  

Considering such “inhuman factors” in a training environment where robot 

operators must learn how to control hyper-redundant, multi-limbed manipulators that 

exceed human capacities derived from anthropomorphic evolution, the injection of 

automation into training is unavoidable. This inevitability and the alternative hypotheses 

discussed heretofore dictate the need for continued research into identification and 

mitigation strategies for whatever deleterious influence automation may occasionally 

exert on trainees in this challenging and important arena. In addition to the pursuit of 

higher statistical power, extensive workload measurement must be conducted enroute to a 



59 
 

more comprehensive understanding of the underlying principles involved. Given the well 

established tradeoff between immediate skill acquisition and retention durability (Healy, 

Ericsson, & Bourne Jr, 1999; Healy, Wohldmann, Parker, & Bourne, 2005), retention of 

the skills acquired here should also be assessed over various duration intervals.   

Returning to the notion of desirable difficulty and cognitive load, it seems that the 

most compelling issue to address at this point is how to promote the formulation of 

accurate schemas integrate them into comprehensive cognitive models while avoiding 

automation induced pitfalls enroute to more skill and expertise. Although Ericsson’s 

seminal work on expertise acquisition is often cited for its numerical threshold 

concerning ten thousand hours of practice, few recognize the emphasis placed on 

deliberate focus attached to that practice (Ericsson, Krampe, & Tesch-Römer, 1993). 

Fewer still demonstrate an appreciation for the nature of what sort of practice can be 

considered “deliberate” in the first place (Gladwell, 2008).  In pursuit of the sweet spot of 

desirable difficulty described early, it seems logical that automation introduced to 

trainees for pedagogical purposes will need to adapt to the student’s workload level in 

order to pursue optimal learning(Van Merriënboer, Kester, & Paas, 2006).   

The need for adaptive automation has been well established and examined across 

a number of environmental settings, including the process control (Moray, Inagaki, & 

Itoh, 2000) and aviation (Parasuraman, 1992) domains which were of particular concern 

here. Literature regarding adaptive automation involved in novice training activity is 

scarce, however, and often deals more with resource allocation activities than direct 

control of unmanned platforms (Kaber & Endsley, 2004).  
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Given that automation induced learning deficits that are masked during training 

can manifest in potentially dangerous ways downstream, adaptive modules for enhanced 

learning will most likely need to monitor inputs other than those based on performance in 

order to promote efficient schema formulation without negative side effects. Recent 

development of neuro-imaging techniques suitable for monitoring workload in addition to 

task performance can provide an appreciable degree of optimism in addressing this 

challenging objective (Berka et al., 2004; Berka et al., 2007; Freeman, Mikulka, Prinzel, 

& Scerbo, 1999). In any case, there is ample evidence here for caution to be applied when 

automation is injected into the learning environment. In a world where the mystical 

nature of artificial intelligence has enticed some to turn over classrooms to robot teachers 

(Agostini, Celaya Llover, Torras, & Wörgötter, 2008; Carey & Markoff, 2010), the stakes 

could not be higher for our children’s children.  
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