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ABSTRACT 
 

 

THE ROLE OF ORGANIC MATTER CHEMISTRY IN IRON REDOX 

TRANSFORMATIONS, SORPTION TO IRON OXIDES,  

AND WETLAND CARBON STORAGE  

 
 

 Organic carbon comprises a versatile and complex class of compounds that influence water 

quality, soil health, fate and transport of environmental contaminants, biogeochemical cycles, and 

climate change. Key to predicting the responses of these systems and processes to environmental 

change is a molecular-level understanding of how organic carbon reacts with other components of 

soil and water. Yet due to its complexity and that of the systems in which it is found, organic carbon 

dynamics remain poorly understood.  

In both terrestrial and aquatic environments, the reactivity and biological necessity of iron and 

carbon link the biogeochemical cycling of these elements. Complexation of iron by dissolved organic 

carbon molecules alters its solubility and oxidation-reduction behavior and may explain the persistence 

of reduced iron (Fe(II)) in oxic aquatic environments. By examining the coordination environment of 

Fe(II) complexed by dissolved organic matter (DOM) and evaluating the effects of complexation on 

Fe(II) oxidation, I determined that the majority of Fe(II)–DOM complexes were characterized by 

coordination with citrate-like ligands, which were unlikely to inhibit oxidation by molecular oxygen. 

Nonetheless, association with reduced organic matter could extend the lifetime of Fe(II) in oxic 

environments by several hours.  

In soils and sediments, iron minerals act as effective sorbents of organic matter, preserving 

substantial amounts of carbon from microbial decomposition. These interactions have increasingly 

been recognized as important components of carbon sequestration, yet the effects of temperature on 
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sorption behavior remain unknown. Through several batch and continuous flow experiments, I 

demonstrated a positive relationship between temperature and sorption of DOM on iron oxide 

surfaces. The temperature sensitivity of sorption behavior varied among riverine, peat, and soil DOM 

types, with riverine natural organic matter sorbing and desorbing the most at all temperatures. 

Analyses of effluents also revealed preferential sorption of aromatic compounds during the initial 

stages of sorption. 

 In soils, organic matter quantity and composition are determined primarily by the balance 

between plant productivity and microbial decomposition, which are in turn dependent upon climate, 

temperature, hydrology, nutrient availability, and soil composition. Wetlands store disproportionately 

large amounts of carbon, yet the processes controlling storage are poorly understood. I investigated 

how different environments created by the hydrology and geomorphic setting of two wetland types, 

depressional and slope, impacted soil organic carbon storage and composition. Results showed a 

prevalence of aliphatic structures in depressional wetlands, especially in deeper soils, suggestive of 

anaerobic decomposition processes. By comparison, carbon in slope wetlands was dominated by labile 

plant carbohydrates in surface soils and aromatic compounds at depth, a likely indication of less 

anaerobic conditions. These results demonstrate divergent pathways of organic matter processing in 

different hydrogeomorphic environments.  

In total, this work contributes to more mechanistic understandings of important carbon 

dynamics that influence carbon and iron cycling, climate change, and environmental health. 
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CHAPTER 1: INTRODUCTION 
 
 
 

1.1 General background 

Carbon (C) stored on the earth’s surface—in soils and oceans—represents the largest group 

of dynamic C reservoirs (Jobbágy and Jackson, 2000; IPCC, 2007). Aside from human disturbances, 

the amount of C stored in these pools depends on the balance among inputs directly from the 

atmosphere and from photosynthetic organisms and outputs from respiration. All of these processes 

depend on the intimate interactions among C, other nutrients, minerals, and environmental conditions 

such as pH, temperature, and oxidation-reduction potential. Natural organic matter, the major form 

of carbon in soils (Scharlemann et al., 2014), comprises the organic material, in various states of 

decomposition, derived from living organisms. Soil organic matter (SOM) confers numerous benefits 

to soil productivity and stability, such as increasing moisture retention (Hudson, 1994), forming 

aggregates to stabilize soil structure (Tisdall and Oades, 1982), and regulating nutrient supply (Tiessen 

et al., 1994). SOM also impacts cycling of important elements such as nitrogen (N) and iron (Fe) (Van 

Cappellen and Wang, 1996) that are essential to biological productivity, and it regulates the fate and 

transport of heavy metals and anthropogenic compounds (Huang et al., 2003; McBride et al., 2005).  

Understanding the chemical composition of organic matter and its molecular interactions with 

other components of soil and water is essential for accurate carbon cycle modeling and soil health 

management. The formation, structure, and reactivity of natural organic matter are incredibly complex, 

presenting a fascinating analytical challenge in the study of this material. Molecules range from 

identifiable biomolecules to complex degradation products, from small organic acids to large 

biopolymers weighing kilodaltons (Knicker, 2000; Kramer et al., 2001; Kiem and Kögel-Knabner, 

2003; Kallenbach et al., 2016). A large variety of functional groups contribute to variable acidity and 

basicity, hydrophobicity and hydrophilicity, and reduction potentials (Aeschbacher et al., 2011; 
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Brezonik et al., 2015). Analysis of NOM requires careful experimental design and often a variety of 

high resolution instrumental techniques.  

Nuclear magnetic resonance (NMR) experiments such as cross-polarization magic angle 

spinning (CP-MAS), numerous two-dimensional techniques, and traditional 1H, 13C, and 15N NMR 

provide useful bulk chemistry information that can identify relative proportions of functional groups, 

and in some instances, more precise identification of specific compounds (Knicker, 2000; Simpson, 

2002; Simpson and Simpson, 2014). Synchrotron radiation-based X-ray absorption spectroscopy 

analyses of C, N, S, and other elements can also yield clues to functional group distributions as well 

as interactions amongst elements, such as organo-metallic complexes (Karlsson et al., 2006; Prietzel 

et al., 2007; Wan et al., 2007; Karlsson and Persson, 2010). Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR-MS) has become an increasingly popular technique for identifying mass 

distributions and general elemental and chemical characteristics of individual molecules (Koch and 

Dittmar, 2006; Sleighter and Hatcher, 2007; Hertkorn et al., 2008). Continual advances in sample 

preparation and data analysis are also improving data quality and expanding the usefulness of these 

methods (Grinhut et al., 2010; Hao et al., 2016; Tfaily et al., 2017). 

The work presented in this dissertation examines the role of natural organic matter chemistry 

in Fe binding and redox behavior (Chapter 2), temperature controls on dissolved organic carbon 

(DOC) sorption to the iron oxide ferrihydrite (Chapter 3), and carbon storage and processing in two 

hydrologically different subalpine wetlands (Chapter 4). 

 

1.2 Iron-organic matter complexation and iron redox cycling 

 The biogeochemical cycles of C and Fe are closely linked: both are essential for all organisms 

(or nearly all, in the case of Fe), they are frequently co-located in soils, sediments, and waters (Kaiser 

and Guggenberger, 2000; Lalonde et al., 2012; Rasmussen et al., 2018), and each can have profound 
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influence on the activity and solubility of the other. For example, bioavailability of Fe in aquatic 

environments depends on redox reactions that interconvert oxidized Fe(III) and reduced Fe(II) as 

well as complexation of Fe. At pH >5, Fe(II) is several orders of magnitude more soluble than Fe(III) 

(Gayer and Woontner, 1956), but it rapidly oxidizes in the presence of oxygen (k = 3.1 x 10-3 s) to the 

relatively insoluble ferric hydroxide (Rose and Waite, 2003). Generally, Fe(II) is more soluble than 

Fe(III), and both can form complexes with organic matter that increase solubility and therefore Fe 

bioavailability (Gledhill and Buck, 2012; Karlsson and Persson, 2012).  

Several studies have noted the presence of Fe(II) associated with natural organic matter 

(NOM) under conditions favorable for Fe oxidation (Toner et al., 2009; von der Heyden et al., 2012; 

von der Heyden et al., 2014; Sundman et al., 2014), leading to speculation that complexation with 

NOM stabilizes Fe(II) against oxidation. These are significant findings with implications for several 

environmental systems. In the equatorial Pacific, the subarctic Pacific, and the Southern Ocean, Fe is 

the limiting nutrient for primary production and therefore restricts regional carbon sequestration 

(Falkowski, 2005). Primary inputs of dissolved Fe to oceans include DOM-complexed Fe from rivers 

and coastal sediments (Krachler et al., 2005), most of which precipitates upon mixing with saline ocean 

water. Recently, concerning increases in DOC concentrations in streams and rivers have been 

correlated with dissolved Fe concentrations, suggesting an Fe reduction-based mechanism of DOC 

release from soils (Knorr, 2013).  

Despite their importance to C and Fe cycling in rivers and oceans, the thermodynamic impacts 

of Fe(II)-NOM complexation remain relatively uncharacterized, while results from kinetics 

experiments demonstrate variable effects of NOM on Fe oxidation rates (Jobin and Ghosh, 1972; 

Emmenegger et al., 1998; Rose and Waite, 2002; Pullin and Cabaniss, 2003; Rose and Waite, 2003; 

Craig et al., 2009; Bligh and Waite, 2010). Furthermore, few studies have examined the complexation 

of Fe(II) by NOM, and none have directly probed Fe(II)-NOM bonds. These complexes present an 
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analytical challenge due to their weak interactions and the rapid oxidation of Fe(II) under most 

ambient conditions. In collaboration with Dr. Benjamin Gilbert at Lawrence Berkeley National 

Laboratory, I characterized Fe(II)-NOM binding using X-ray absorption spectroscopy and evaluated 

the impacts of Fe(II) complexation with reduced NOM on Fe(II) oxidation. The work from these 

studies is presented in Chapter 2. 

 

1.3 Sorption of organic matter to iron minerals 

 Globally, soils store an estimated 3000 Pg of C, which is more than the amount stored in the 

atmosphere and vegetation combined (Köchy et al., 2015). The quantity of soil organic carbon (SOC) 

stocks depends on the intricate balance among plant inputs, microbial mineralization, and export of 

dissolved organic carbon, and is sensitive to changes in climate. An important constraint on microbial 

respiration is the interaction between organic substrates and mineral surfaces such as those of clays 

and Fe and Al oxides (Chorover and Amistadi, 2001; Mikutta et al., 2006; Saidy et al., 2013). Strong 

physical associations between these groups can sequester as much as 82% of organic carbon (OC) in 

organo-mineral complexes (Kaiser and Guggenberger, 2000; Eusterhues et al., 2003; Basile-Doelsch 

et al., 2007; Lalonde et al., 2012). The presence of short-range order mineral phases correlates with 

higher OC and organic nitrogen content in soils (Wagai and Mayer, 2007; Rasmussen et al., 2018), 

older C (Torn et al., 1997), and lower C mineralization rates (Mikutta and Kaiser, 2011; Eusterhues et 

al., 2014).  

 Despite this apparent protection, mineral-bound OC is vulnerable to environmental changes 

and inputs that disrupt organo-mineral interactions. For example, organic acids from root exudates 

and seasonally reducing conditions may solubilize amorphous Fe oxides, releasing associated organic 

matter (Koretsky et al., 2006; Riedel et al., 2013; Keiluweit et al., 2015). With increasing global 

temperatures, the outstanding question of how temperature affects sorption of organic matter to iron 
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oxides has become a rather important and urgent one. Extensive research efforts have been dedicated 

to understanding the effects of temperature on microbial respiration rates, with results indicating an 

overall increase in respiration with temperatures up to 25 ̊ C (Carey et al., 2016). Yet the role of mineral 

protection in controlling substrate availability as a function of temperature remains poorly 

characterized.  

Sorption of organic matter on mineral surfaces at room temperature has been studied 

extensively, but the difficulty of detangling the chemical complexity of organic matter has led to 

diverse results. While most studies have demonstrated preferential sorption of aromatic and carboxylic 

moieties to clay, Fe, and Al minerals (McKnight et al., 1992; Gu et al., 1994; Gu et al., 1995; Meier et 

al., 1999; Kaiser, 2003; Eusterhues et al., 2011; Galindo and Del Nero, 2014; Chassé et al., 2015; 

Avneri-Katz et al., 2016; Lv et al., 2016; Coward et al., 2018), a few have shown preferential 

interactions between minerals and polysaccharides (Eusterhues et al., 2011; Avneri-Katz et al., 2016) 

and amino acids (McKnight et al., 1992; Chassé et al., 2015). While these results seem somewhat 

contradictory, they may be accounted for in zonal conceptual models of sorption, such as those 

proposed by Kleber et al. (2007) and Wershaw et al. (1996) (Figure 1.1). In these models, polar organic 

groups interact electrostatically or via inner-sphere complexation with the mineral surface in a contact 

zone and attached aliphatic and aromatic groups and other hydrophobic compounds associate more 

loosely in a hydrophobic zone. Hydrophilic groups at the outer edge of this zone come into contact 

with the bulk solution. Kleber also proposes a third “kinetic zone” in which various types of organic 

compounds and cations interact briefly with the mineral-associated compounds. Results from depth-

probing 1H high resolution-magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR) 

experiments with clay-bound organic matter have supported the multi-layer model, identifying 

aliphatic, carbohydrate, and amino acid groups at the solution interface and aromatic groups located 

closer to the clay surface (Genest et al., 2014).  
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Figure 1.1. Types of surface hydroxyl groups on goethite (-FeOOH) (A) and different types of sorption interactions 
between organic molecules and goethite (B). 

While there have been some similarities in sorptive fractionation among different minerals and 

DOM types, mineral surfaces vary sufficiently to participate in different chemical interactions. Iron 

and aluminum oxides have pH-dependent surface charges, while clays can have permanent or pH-

dependent charges, depending on their structure (Essington, 2004). Whether a mineral surface is 

positive, negative or neutral at the soil solution pH can have a profound effect on the dominant 

sorption interactions. For example, at neutral pH, a carboxylate group in DOM may interact with a 

negatively charged clay surface via cation-bridging, but would be more likely to be electrostatically 

attracted to a positively charged hydrous Fe oxide. At low pH, carboxylic groups are more likely to 

participate in direct interactions with Fe oxide surfaces through ligand exchange. These differences in 

sorption interactions among minerals may be expected to result in different responses of sorption 

behavior to temperature changes.  

Very few studies have investigated the effect of temperature on sorption of DOM to soil 

minerals. Baham and Sposito (1994) and Arnarson and Keil (2000) examined the effect of temperature 

on DOM sorption to montmorillonite and kaolinite clays, reporting no dependence on temperature 
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and decreasing sorption with temperature, respectively. Due to the differences in surface reactivity 

between these clays and other soil minerals such as Fe and Al oxides, it is not clear whether the same 

effects of temperature could be expected in those systems.  

Iron oxides are prevalent and important sorbents of DOM in many soils. Ferrihydrite is a 

poorly crystalline hydrous Fe oxide with high surface area relative to other iron oxides (Borggaard, 

1983) and can adsorb large quantities of organic carbon (Kaiser et al., 1997). It has been shown to 

induce more pronounced fractionation of DOM than other, more ordered Fe oxides (Lv et al., 2016), 

and may therefore exhibit more sensitivity in sorption response to temperature. To determine the 

influence of temperature on sorption and desorption of organic matter on ferrihydrite, I performed 

continuous flow and batch sorption experiments with various types of dissolved organic matter at 7, 

25, and 45˚C. The results from this work are presented and discussed in Chapter 3. 

 

1.4 Carbon cycling in wetlands 

 The high moisture content of wetland soils leads to anaerobic conditions that slow the 

processing of organic litter inputs, leading to extensive accumulation of organic material. Saturated 

soil conditions and fine sediment limit oxygen diffusion into wetland soils. With limited or no oxygen 

available, decomposing microorganism communities turn to alternative decomposition and respiration 

pathways. The first step in decomposition, depolymerization, can be rate-limiting in either aerobic or 

anaerobic environments, but occurs more quickly in the presence of oxygen (Freeman et al., 2001; 

Reineke, 2001). It is thought that the reliance of anaerobic depolymerization on mostly hydrolytic 

enzymes results in the accumulation of hydrolysis-resistant compounds such as lipids and lignin 

(Hedges and Keil, 1995). The second step in decomposition involves coupling the oxidation of low 

molecular weight organic molecules with the reduction of a terminal electron acceptor (TEA). Oxygen 

reduction provides the most energy, followed by NO3
-, Mn(III/IV), Fe(III), SO4

2-, and finally CO2. 
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Recent research has demonstrated that the oxidation rate of the organic substrate depends not only 

on the Gibbs free energy of the reduction of the TEA, but also on the free energy of the oxidation of 

the organic substrate (Keiluweit et al., 2016; Boye et al., 2017; Noël et al., 2017). Depending on the 

reduction potential of available TEAs, microbes may be unable to oxidize very reduced compounds, 

such as aliphatic waxes and lipids, quickly. The exact reducing conditions and their impact on organic 

matter chemistry and decomposition rates depends on the availability of NO3
-, SO4

2-, Fe, and Mn in 

the soil and porewater (Keiluweit et al., 2015; Noël et al., 2017).  

Overall, the anaerobic decomposition pathways occur at slower rates than aerobic ones. This 

promotes C stabilization in saturated soils relative to unsaturated soils—wetlands make up 5-8% of 

the land surface but store 20-30% of soil organic carbon (Mitsch and Gosselink, 2007; Lal, 2008). 

Diverging decomposition pathways can also lead to different forms of organic matter: relatively 

reduced aliphatic compounds tend to accumulate more in anaerobic soils (Keiluweit et al., 2015; 

Keiluweit et al., 2016; Boye et al., 2017). 

Hydrologic flow paths linking wetlands with upland landscapes govern their water table 

fluctuations and biogeochemical processes. Differences in hydraulic residence time and flow paths 

may influence the inputs and outputs of C and other nutrients, ultimately regulating the amount and 

type of C stored. With predicted changes in precipitation and snowmelt patterns that could 

dramatically alter wetland hydrology and chemistry (Williams et al., 1996; Lukas et al., 2014), accurate 

carbon accounting and a detailed understanding of the carbon dynamics in these crucial systems is 

vital for effective management of wetlands that store disproportionate amounts of carbon. In the 

Rocky Mountains, subalpine wetlands also serve as headwaters for drinking water consumed by 

millions of people, and biogeochemical processes in these watersheds can affect downstream water 

quality, including the formation of hazardous disinfection byproducts during water treatment (Singer, 

1999; MacDonald and Coe, 2007). To evaluate the effect of hydrogeomorphic conditions on the 
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storage and biogeochemical cycling of carbon in subalpine wetlands, I quantified and characterized 

the soil organic carbon composition in wetlands with short and long hydraulic residence times using 

total organic carbon measurements and solid-state 13C NMR spectroscopy. The findings from this 

work are presented and discussed in Chapter 4. 

 

1.5 Publications  

 Most of this dissertation work is either planned for submission to or already published in peer-

reviewed journals. Chapter 2 (Daugherty et al., 2017a) was recently published in Environmental Science 

& Technology. Chapter 3 (Daugherty and Borch) will be submitted for publication in Organic Geochemistry 

this summer. Chapter 4 (Daugherty et al.) will be submitted for review later this summer. Parts of the 

dissertation have also been presented at several national and international conferences including the 

American Geophysical Union Fall Meeting in December, 2017 (Daugherty et al., 2017b), at the 

American Chemical Society Meeting in March, 2015 (Daugherty and Borch, 2015), and at 

Goldschmidt in June, 2014 (Daugherty et al., 2014). 

 

  



 

10 

REFERENCES 
 
 
 
Aeschbacher M., Vergari D., Schwarzenbach R. P. and Sander M. (2011) Electrochemical analysis of 

proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. 

Technol. 45, 8385–8394. 

Arnarson T. S. and Keil R. G. (2000) Mechanisms of pore water organic matter adsorption to 

montmorillonite. Mar. Chem. 71, 309–320. 

Avneri-Katz S., Young R. B., McKenna A. M., Chen H., Corilo Y. E., Polubesova T., Borch T. and 

Chefetz B. (2016) Adsorptive fractionation of dissolved organic matter (DOM) by mineral 

soil: Macroscale approach and molecular insight. Org. Geochem. Available at: 

http://dx.doi.org/10.1016/j.orggeochem.2016.11.004. 

Baham J. and Sposito G. (1994) Adsorption of Dissolved Organic Carbon Extracted from Sewage 

Sludge on Montmorillonite and Kaolinite in the Presence of Metal Ions. J. Environ. Qual. 23, 

147. 

Basile-Doelsch I., Amundson R., Stone W. E. E., Borschneck D., Bottero J. Y., Moustier S., Masin 

F. and Colin F. (2007) Mineral control of carbon pools in a volcanic soil horizon. Geoderma 

137, 477–489. 

Bligh M. W. and Waite T. D. (2010) Role of heterogeneous precipitation in determining the nature 

of products formed on oxidation of Fe(II) in seawater containing natural organic matter. 

Environ. Sci. Technol. 44, 6667–6673. 

Borggaard O. K. (1983) Effect of Surface Area and Mineralogy of Iron Oxides on Their Surface 

Charge and Anion-Adsorption Properties. Clays Clay Miner. 31, 230–232. 



 

11 

Boye K., Noël V., Tfaily M. M., Bone S. E., Williams K. H., Bargar J. R. and Fendorf S. (2017) 

Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 

415–419. 

Brezonik P. L., Bloom P. R., Sleighter R. L., Cory R. M., Khwaja A. R. and Hatcher P. G. (2015) 

Chemical differences of aquatic humic substances extracted by XAD-8 and DEAE-cellulose. 

J. Environ. Chem. Eng. 3, 2982–2990. 

Carey J. C., Tang J., Templer P. H., Kroeger K. D., Crowther T. W., Burton A. J., Dukes J. S., 

Emmett B., Frey S. D., Heskel M. A., Jiang L., Machmuller M. B., Mohan J., Panetta A. M., 

Reich P. B., Reinsch S., Wang X., Allison S. D., Bamminger C., Bridgham S., Collins S. L., 

De Dato G., Eddy W. C., Enquist B. J., Estiarte M., Harte J., Henderson A., Johnson B. R., 

Larson K. S., Luo Y., Marhan S., Melillo J. M., Peñuelas J., Pfeifer-Meister L., Poll C., 

Rastetter E., Reinmann A. B., Reynolds L. L., Schmidt I. K., Shaver G. R., Strong A. L., 

Suseela V. and Tietema A. (2016) Temperature response of soil respiration largely unaltered 

with experimental warming. Proc. Natl. Acad. Sci. 113, 13797–13802. 

Chassé A. W., Ohno T., Higgins S. R., Amirbahman A., Yildirim N. and Parr T. B. (2015) Chemical 

Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter 

Binding to Iron (oxy)hydroxide Mineral Surfaces. Environ. Sci. Technol. 49, 9733–9741. 

Chorover J. and Amistadi M. K. (2001) Reaction of forest floor organic matter at goethite, birnessite 

and smectite surfaces. Geochim. Cosmochim. Acta 65, 95–109. 

Coward E. K., Ohno T. and Plante A. F. (2018) Adsorption and Molecular Fractionation of 

Dissolved Organic Matter on Iron-Bearing Mineral Matrices of Varying Crystallinity. Environ. 

Sci. Technol. 52, 1036–1044. 



 

12 

Craig P. S., Shaw T. J., Miller P. L., Pellechia P. J. and Ferry J. L. (2009) Use of multiparametric 

techniques to quantify the effects of naturally occurring ligands on the kinetics of Fe(II) 

oxidation. Environ. Sci. Technol. 43, 337–42. 

Daugherty E. E. and Borch T. (2015) Temperature effects on carbon sequestration by iron oxide 

coated mineral surfaces. In American Chemical Society Meeting Spring 2015 Meeting. American 

Chemical Society, Denver, CO. 

Daugherty E. E., Gilbert B., Nico P. and Borch T. (2014) Coordination and redox chemistry of 

aqueous Fe(II) and dissolved organic matter. In Goldschmidt Abstracts Sacramento, CA. p. 501. 

Daugherty E. E., Gilbert B., Nico P. S. and Borch T. (2017a) Complexation and Redox Buffering of 

Iron(II) by Dissolved Organic Matter. Environ. Sci. Technol. 51, 11096–11104. 

Daugherty E. E., Lobo G., Pallud C. E. and Borch T. (2017b) Abstract B21J-07 Temperature and 

chemical composition controls on sorption of DOC to iron hydroxides under dynamic flow 

conditions. In Fall Meeting of the American Geophysical Union 2017 Fall Meeting, AGU. New 

Orleans, LA. 

Emmenegger L., King D. W., Sigg L. and Sulzberger B. (1998) Oxidation Kinetics of Fe(II) in a 

Eutrophic Swiss Lake. Environ. Sci. Technol. 32, 2990–2996. 

Essington M. E. (2004) Soil and Water Chemistry., CRC, New York. 

Eusterhues K., Neidhardt J., Hädrich A., Küsel K. and Totsche K. U. (2014) Biodegradation of 

ferrihydrite-associated organic matter. Biogeochemistry 119, 45–50. 

Eusterhues K., Rennert T., Knicker H., Kögel-Knabner I., Totsche K. U. and Schwertmann U. 

(2011) Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation 

versus adsorption. Environ. Sci. Technol. 45, 527–533. 



 

13 

Eusterhues K., Rumpel C., Kleber M. and Kögel-Knabner I. (2003) Stabilisation of soil organic 

matter by interactions with minerals as revealed by mineral dissolution and oxidative 

degradation. Org. Geochem. 34, 1591–1600. 

Falkowski P. G. (2005) Biogeochemistry of primary production in the sea. In Biogeochemistry (ed. W. 

H. Schlesinger). Elsevier, Boston, MA. p. 206. 

Freeman C., Evans C. D., Monteith D. T., Reynolds B. and Fenner N. (2001) Export of organic 

carbon from peat soils. Nature 412, 785. 

Galindo C. and Del Nero M. (2014) Molecular level description of the sorptive fractionation of a 

fulvic acid on aluminum oxide using electrospray ionization fourier transform mass 

spectrometry. Environ. Sci. Technol. 48, 7401–8. 

Gayer K. H. and Woontner L. (1956) The solubility of ferrous hydroxide and ferric hydroxide in 

acidic and basic media at 25˚. J. Phys. Chem. 60, 1569–1571. 

Genest S. C., Simpson M. J., Simpson A. J., Soong R. and McNally D. J. (2014) Analysis of soil 

organic matter at the solid–water interface by nuclear magnetic resonance spectroscopy. 

Environ. Chem. 11, 472. 

Gledhill M. and Buck K. N. (2012) The organic complexation of iron in the marine environment: A 

review. Front. Microbiol. 3, 1–17. 

Grinhut T., Lansky D., Gaspar A., Hertkorn N., Schmitt-Kopplin P., Hadar Y. and Chen Y. (2010) 

Novel software for data analysis of Fourier transform ion cyclotron resonance mass spectra 

applied to natural organic matter. Rapid Commun. Mass Spectrom. 24, 2831–2837. 

Gu B., Schmitt J., Chen Z., Liang L. and McCarthy J. F. (1995) Adsorption and desorption of 

different organic matter fractions on iron oxide. Geochim. Cosmochim. Acta 59, 219–229. 



 

14 

Gu B., Schmitt J., Chen Z., Liang L. and McCarthy J. F. (1994) Adsorption and desorption of 

natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28, 38–

46. 

Hao J., Liebeke M., Sommer U., Viant M. R., Bundy J. G. and Ebbels T. M. D. (2016) Statistical 

Correlations between NMR Spectroscopy and Direct Infusion FT-ICR Mass Spectrometry 

Aid Annotation of Unknowns in Metabolomics. Anal. Chem. 88, 2583–2589. 

Hedges J. I. and Keil R. G. (1995) Sedimentary organic matter preservation: an assessment and 

speculative synthesis. Mar. Chem. 49, 81–115. 

Hertkorn N., Frommberger M., Witt M., Koch B. P., Schmitt-Kopplin P. and Perdue E. M. (2008) 

Natural organic matter and the event horizon of mass spectrometry. Anal. Chem. 80, 8908–

19. 

von der Heyden B. P., Hauser E. J., Mishra B., Martinez G. A., Bowie A. R., Tyliszczak T., Mtshali 

T. N., Roychoudhury A. N. and Myneni S. C. B. (2014) Ubiquitous Presence of Fe(II) in 

Aquatic Colloids and Its Association with Organic Carbon. Environ. Sci. Technol. Lett. 1, 387–

392. 

von der Heyden B. P., Roychoudhury A. N., Mtshali T. N., Tyliszczak T. and Myneni S. C. B. (2012) 

Chemically and geographically distinct solid-phase iron pools in the Southern Ocean. Science 

338, 1199–201. 

Huang W., Peng P., Yu Z. and Fu J. (2003) Effects of organic matter heterogeneity on sorption and 

desorption of organic contaminants by soils and sediments. Appl. Geochem. 18, 955–972. 

Hudson B. D. (1994) Soil organic matter and available water capacity. J. Soil Water Conserv. 49, 189–

194. 

IPCC (2007) Climate Change 2007: The Physical Science Basis., Cambridge University Press, New York, 

NY. 



 

15 

Jobbágy E. G. and Jackson R. B. (2000) The vertical distribution of soil organic carbon and its 

relation to climate and vegetation. Ecol. Appl. 10, 423–436. 

Jobin R. and Ghosh M. M. (1972) Effect of buffer intensity and organic matter on the oxygenation 

of ferrous iron. J. Am. Water Works Assoc. 64, 590–595. 

Kaiser K. (2003) Sorption of natural organic matter fractions to goethite (alpha-FeOOH): Effect of 

chemical composition as revealed by liquid-state 13C NMR and wet-chemical analysis. Org. 

Geochem. 34, 1569–1579. 

Kaiser K. and Guggenberger G. (2000) The role of DOM sorption to mineral surfaces in the 

preservation of organic matter in soils. Org. Geochem. 31, 711–725. 

Kaiser K., Guggenberger G., Haumaier L. and Zech W. (1997) Dissolved organic matter sorption on 

sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy. Eur. J. Soil Sci. 48, 

301–310. 

Kallenbach C. M., Grandy A. and Frey S. D. (2016) Direct evidence for microbial-derived soil 

organic matter formation and its ecophysiological controls. Nat. Commun., 1–10. 

Karlsson T. and Persson P. (2012) Complexes with aquatic organic matter suppress hydrolysis and 

precipitation of Fe(III). Chem. Geol. 322–323, 19–27. 

Karlsson T. and Persson P. (2010) Coordination chemistry and hydrolysis of Fe(III) in a peat humic 

acid studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 74, 30–40. 

Karlsson T., Persson P. and Skyllberg U. (2006) Complexation of copper(ll) in organic soils and in 

dissolved organic matter--EXAFS evidence for chelate ring structures. Environ. Sci. Technol. 

40, 2623–8. 

Keiluweit M., Bougoure J. J., Nico P. S., Pett-Ridge J., Weber P. K. and Kleber M. (2015) Mineral 

protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595. 



 

16 

Keiluweit M., Nico P. S., Kleber M. and Fendorf S. (2016) Are oxygen limitations under recognized 

regulators of organic carbon turnover in upland soils? Biogeochemistry 127, 157–171. 

Kiem R. and Kögel-Knabner I. (2003) Contribution of lignin and polysaccharides to the refractory 

carbon pool in C-depleted arable soils. Soil Biol. Biochem. 35, 101–118. 

Kleber M., Sollins P. and Sutton R. (2007) A conceptual model of organo-mineral interactions in 

soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. 

Biogeochemistry 85, 9–24. 

Knicker H. (2000) Biogenic nitrogen in soils as revealed by solid-state 13C and 15N nuclear 

magnetic resonance spectroscopy. J. Environ. Qual. 29, 715–723. 

Knorr K. H. (2013) DOC-dynamics in a small headwater catchment as driven by redox fluctuations 

and hydrological flow paths - Are DOC exports mediated by iron reduction/oxidation 

cycles? Biogeosciences 10, 891–904. 

Koch B. P. and Dittmar T. (2006) From mass to structure: An aromaticity index for high-resolution 

mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20, 926–932. 

Köchy M., Hiederer R. and Freibauer A. (2015) Global distribution of soil organic carbon – Part 1: 

Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, 

wetlands, and the world. SOIL 1, 351–365. 

Koretsky C. M., Haas J. R., Ndenga N. T. and Miller D. (2006) Seasonal Variations in Vertical 

Redox Stratification and Potential Influence on Trace Metal Speciation in Minerotrophic 

Peat Sediments. Water. Air. Soil Pollut. 173, 373–403. 

Krachler R., Jirsa F. and Ayromlou S. (2005) Factors influencing the dissolved iron input by river 

water to the open ocean. , 5. 

Kramer R. W., Kujawinski E. B., Zang X., Green-Church K. B., Jones R. B. and Hatcher P. G. 

(2001) Studies of the structure of humic substances by electrosopray ionization coupled to a 



 

17 

quadrupole-time of flight (QQ-TOF) mass spectrometer. In Humic Substances: Structures, 

Models, and Functions pp. 95–107. 

Lal R. (2008) Carbon sequestration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 815–830. 

Lalonde K., Mucci A., Ouellet A. and Gelinas Y. (2012) Preservation of organic matter in sediments 

promoted by iron - SI. Nature 483, 198–200. 

Lukas J., Barsugli N., Rangwala I. and Wolter K. (2014) Climate Change in Colorado, 2nd ed., University 

of Colorado Boulder, Boulder, CO. Available at: 

http://wwa.colorado.edu/climate/co2014report/index.html. 

Lv J., Zhang S., Wang S., Luo L., Cao D. and Christie P. (2016) Molecular-Scale Investigation with 

ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on 

Iron Oxyhydroxides. Environ. Sci. Technol. 50, 2328–2336. 

MacDonald L. H. and Coe D. (2007) Influence of Headwater Streams on Downstream Reaches in 

Forested Areas. For. Sci. 53, 148–168. 

McBride M., Sauve S. and Hendershot W. (2005) Solubility control of Cu, Zn, Cd and Pb in 

contaminated soils. Eur. J. Soil Sci. 48, 337–346. 

McKnight D. M., Bencaia K. E., Zellweger G. W., Aiken G. R., Feder G. L. and Thorn K. A. (1992) 

Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the 

confluence of Deer Creek with the Snake River, Summit County, Colorado. Environ. Sci. 

Technol. 26, 1388–1396. 

Meier M., Namjesnik-Dejanovic K., Maurice P. A., Chin Y. P. and Aiken G. R. (1999) Fractionation 

of aquatic natural organic matter upon sorption to goethite and kaolinite. Chem. Geol. 157, 

275–284. 

Mikutta R. and Kaiser K. (2011) Organic matter bound to mineral surfaces: Resistance to chemical 

and biological oxidation. Soil Biol. Biochem. 43, 1738–1741. 



 

18 

Mikutta R., Kleber M., Torn M. S. and Jahn R. (2006) Stabilization of soil organic matter: 

Association with minerals or chemical recalcitrance? Biogeochemistry 77, 25–56. 

Mitsch W. J. and Gosselink J. G. (2007) Wetlands. 4th ed., Wiley, Hoboken, NJ. Available at: 

https://library.wur.nl/WebQuery/titel/1862523 [Accessed May 21, 2018]. 

Noël V., Boye K., Kukkadapu R. K., Bone S., Lezama Pacheco J. S., Cardarelli E., Janot N., Fendorf 

S., Williams K. H. and Bargar J. R. (2017) Understanding controls on redox processes in 

floodplain sediments of the Upper Colorado River Basin. Sci. Total Environ. 603–604, 663–

675. 

Prietzel J., Thieme J., Salomé M. and Knicker H. (2007) Sulfur K-edge XANES spectroscopy reveals 

differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size 

separates. Soil Biol. Biochem. 39, 877–890. 

Pullin M. J. and Cabaniss S. E. (2003) The effects of pH, ionic strength, and iron–fulvic acid 

interactions on the kinetics of non-photochemical iron transformations. I. Iron(II) oxidation 

and iron(III) colloid formation. Geochim. Cosmochim. Acta 67, 4067–4077. 

Rasmussen C., Heckman K., Wieder W. R., Keiluweit M., Lawrence C. R., Berhe A. A., Blankinship 

J. C., Crow S. E., Druhan J. L., Hicks Pries C. E., Marin-Spiotta E., Plante A. F., Schädel C., 

Schimel J. P., Sierra C. A., Thompson A. and Wagai R. (2018) Beyond clay: towards an 

improved set of variables for predicting soil organic matter content. Biogeochemistry. Available 

at: http://link.springer.com/10.1007/s10533-018-0424-3 [Accessed February 16, 2018]. 

Reineke W. (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In 

Biodegradation and Persistance (ed. Bernd Beek). Springer, Berlin. pp. 1–161. 

Riedel T., Zak D., Biester H. and Dittmar T. (2013) Iron traps terrestrially derived dissolved organic 

matter at redox interfaces. Proc. Natl. Acad. Sci. 110, 10101–10105. 



 

19 

Rose A. L. and Waite T. D. (2002) Kinetic model for Fe(II) oxidation in seawater in the absence and 

presence of natural organic matter. Environ. Sci. Technol. 36, 433–44. 

Rose A. L. and Waite T. D. (2003) Kinetics of iron complexation by dissolved natural organic matter 

in coastal waters. Mar. Chem. 84, 85–103. 

Saidy A. R., Smernik R. J., Baldock J. A., Kaiser K. and Sanderman J. (2013) The sorption of organic 

carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. 

Geoderma 209–210, 15–21. 

Scharlemann J. P., Tanner E. V., Hiederer R. and Kapos V. (2014) Global soil carbon: 

understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91. 

Simpson A. J. (2002) Determining the molecular weight, aggregation, structure, and interactions of 

natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 40, S72–S82. 

Simpson M. J. and Simpson A. J. eds. (2014) NMR Spectroscopy: A Versatile Tool for Environmental 

Research., John Wiley & Sons, Chichester, UK. 

Singer P. C. (1999) Humic substances as precursors for potentially harmful disinfection by-products. 

Water Sci. Technol. 40, 25–30. 

Sleighter R. L. and Hatcher P. G. (2007) The application of electrospray ionization coupled to 

ultrahigh resolution mass spectrometry for the molecular characterization of natural organic 

matter. J. Mass Spectrom. 42, 559–574. 

Sundman A., Karlsson T., Laudon H. and Persson P. (2014) XAS study of iron speciation in soils 

and waters from a boreal catchment. Chem. Geol. 364, 93–102. 

Tfaily M. M., Chu R. K., Toyoda J., Toli N. and Robinson E. W. (2017) Sequential extraction 

protocol for organic matter from soils and sediments using high resolution mass 

spectrometry. Anal. Chim. Acta 972, 54–61. 



 

20 

Tiessen H., Cuevas E. and Chacon P. (1994) The role of soil organic matter in sustaining soil 

fertility. Nature 371, 783–785. 

Tisdall J. M. and Oades J. M. (1982) Organic matter and water‐stable aggregates in soils. J. Soil Sci. 

33, 141–163. 

Toner B. M., Fakra S. C., Manganini S. J., Santelli C. M., Marcus M. A., Moffett J. W., Rouxel O., 

German C. R. and Edwards K. J. (2009) Preservation of iron(II) by carbon-rich matrices in a 

hydrothermal plume. Nat. Geosci. 2, 197–201. 

Torn M. S., Trumbore S. E., Chadwick O. A., Vitousek P. M. and Hendricks D. M. (1997) Mineral 

control of soil organic carbon storage and turnover. Nature 389, 170–173. 

Van Cappellen P. and Wang Y. (1996) Cycling of iron and manganese in surface sediments: A 

general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, 

iron, and manganese. Am. J. Sci. 296, 197–243. 

Wagai R. and Mayer L. M. (2007) Sorptive stabilization of organic matter in soils by hydrous iron 

oxides. Geochim. Cosmochim. Acta 71, 25–35. 

Wan J., Tyliszczak T. and Tokunaga T. K. (2007) Organic carbon distribution, speciation, and 

elemental correlations within soil microaggregates: Applications of STXM and NEXAFS 

spectroscopy. Geochim. Cosmochim. Acta 71, 5439–5449. 

Wershaw R. L., Llaguno E. C. and Leenheer J. A. (1996) Mechanism of formation of humus 

coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost 

leachate on alumina by solid-state 13C NMR. Colloids Surf. A 108, 213–223. 

Williams M. W., Losleben M., Caine N. and Greenland D. (1996) Changes in climate and 

hydrochemical responses in a high-elevation catchment in the Rocky Mountains, USA. 

Limnol. Oceanogr. 41, 939–946. 

 



 

21 

CHAPTER 2: COMPLEXATION AND REDOX BUFFERING OF IRON(II) BY DISSOLVED 

ORGANIC MATTER1 

 

2.1 Introduction  

Iron (Fe) is an essential micronutrient for both photosynthesis and respiration, and the two 

oxidation states of Fe can act as electron donors or acceptors for certain microbial metabolic pathways 

(Weber et al., 2006; Melton et al., 2014). Iron bioavailability can limit primary production in marine 

systems (Boyd et al., 2007) and influence the biogeochemical functioning of soils and sediments. The 

bioavailability of Fe in aquatic environments is strongly affected by redox reactions that cycle Fe 

between +(II) and +(III) oxidation states and by complexation with organic ligands. Although free 

Fe(III) has very low solubility at circumneutral pH, organic complexation greatly increases solubility; 

over 99% of the pool of dissolved oceanic Fe(III) is organically complexed (Rue and Bruland, 1995). 

Fe(II) is far more soluble than Fe(III), and free Fe(II) can reach high concentrations in reducing 

environments. However, Fe(II) is also readily complexed by NOM (Yamamoto et al., 2010), a reaction 

that may influence the redox behavior of Fe(II).  

Both pure Fe(II) and mixed Fe(II)/Fe(III) species have been discovered in association with 

NOM in oxygen-rich aquatic environments. Examples include particles collected from the photic zone 

in the Southern Ocean (von der Heyden et al., 2012), from hydrothermal plumes at the mid-ocean 

ridge East Pacific Rise (pH ~9) (Toner et al., 2009), and from freshwater lakes in New Jersey and 

Puerto Rico, U.S. (von der Heyden et al., 2014). In addition, Sundman et al. identified mixed 

Fe(II)/Fe(III)-NOM complexes in streamwater and soil solutions in a boreal catchment at pH 4.3-5.8 

                                                 

1 Reproduced with permission from Daugherty, E. E.; Gilbert, B.; Nico, P. S.; Borch, T. Complexation and Redox 
Buffering of Iron(II) by Dissolved Organic Matter. Environmental Science & Technology 2017, 51 (19), 11096–11104. 
Copyright 2017, American Chemical Society. 



 

22 

(Sundman et al., 2014). Such observations are contrary to expectations from simple models of Fe(II) 

oxidation rates and equilibrium calculations that show Fe(III) to be favored under oxic conditions at 

pH greater than 4. Several mechanisms have been suggested to explain the persistence of reduced Fe, 

including photochemical reduction (Voelker et al., 1997; Barbeau et al., 2001), microbially mediated 

reduction (Melton et al., 2014), and enhanced stability as a result of binding with organic ligands 

(Millero et al., 1987). 

Laboratory investigations of Fe–NOM oxidation-reduction chemistry have yielded 

contradictory results as to whether complexation of Fe by NOM enhances, inhibits, or has no effect 

upon the rate of Fe(II) oxidation. Such variability likely indicates that the effect of organic association 

on Fe(II) oxidation is dependent on the molecule and the experimental system. Tannic acid, gallic 

acid, and pyrogallol have been shown to inhibit Fe(II) oxidation, while salicylate and citrate enhance 

oxidation (Theis and Singer, 1974; Pham and Waite, 2008), and alanine and glutamic acid have no 

effect (Santana-Casiano et al., 2000). Studies using environmental samples show that NOM from 

different sources has variable effects on Fe(II) oxidation kinetics (Jobin and Ghosh, 1972; Davison 

and Seed, 1983; Emmenegger et al., 1998; Rose and Waite, 2002; Rose and Waite, 2003a; Pullin and 

Cabaniss, 2003; Rose and Waite, 2003b; Craig et al., 2009; Bligh and Waite, 2010). Most studies lack 

an explicit consideration of NOM redox activity (Garg et al., 2015; Jiang et al., 2015) and thorough 

characterization of binding interactions between Fe(II) and the chosen organic molecules. Natural 

organic matter is capable of acting as both an electron donor and acceptor, and can redox cycle 

repeatedly (Klüpfel et al., 2014). Aeschbacher et al. (2011) have shown that reducible moieties in NOM 

cover a wide range of standard reduction potentials, many of which can reduce Fe, and some of which 

may oxidize Fe.  

In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to 

determine the coordination environment of Fe(II) complexed by reduced NOM. Reduced NOM was 
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used because Fe(II) underwent oxidation in the presence of as-received NOM. Recent EXAFS studies 

of the structure of Fe(III)-NOM compounds have shown that Fe(III) forms mononuclear complexes 

with NOM at low pH and Fe concentration and precipitates as Fe(III)-oxyhydroxides at higher pH 

and Fe content (Karlsson et al., 2008). The mononuclear Fe(III) complexes involve chelate ring 

structures with carboxyl, hydroxamate, and hydroxyl groups (Mikutta and Kretzschmar, 2011; 

Karlsson and Persson, 2012). To our knowledge, there are no EXAFS studies of Fe(II) complexation 

by NOM and few works dedicated to elucidating the binding mechanisms in such complexes (Toner 

et al., 2009; Catrouillet et al., 2014; von der Heyden et al., 2014). We also studied the consequences of 

NOM complexation on the rate of Fe(II) oxidation by O2 for the standard Leonardite humic acid in 

order to improve our current understanding of mechanisms controlling the fate and stability of Fe(II) 

in natural oxic waters. 

 

2.2 Materials and Methods 

2.2.1 Preparation of samples and standards 

Samples for X-ray absorption spectroscopy analysis were prepared using dissolved natural 

organic matter (NOM) standards from the International Humic Substance Society (IHSS). These were 

chosen for their range of chemical properties and included Suwannee River fulvic acid (SRFA), humic 

acid (SRHA), and natural organic matter obtained by reverse osmosis (SRNOM); and Leonardite 

humic acid (LHA). Solutions were prepared in an anoxic glovebag by adding as-received NOM to O2-

free water and adjusting the pH to between 6.7 and 7.0 using 4 M NaOH (see Table A.2 for exact pH 

values of NOM solutions).  

As-received NOM was capable of oxidizing Fe(II) even under anoxic conditions. To ensure 

the preservation of ferrous Fe, we used the approach of Ratasuk and Nanny (2007) to reduce some 

NOM samples by hydrogenation prior to addition of Fe. Reduction of 40-50 mg NOM in 2.75 mL of 



 

24 

Millipore water was performed by gently bubbling H2 gas through solution in the presence of 100 mg 

of Pd-Al2O3 catalyst for 24 hours. Solutions were then anoxically transferred to centrifuge tubes and 

centrifuged at 6,000 rpm for 4.0 minutes to pellet out the catalyst. This process did not detectably 

change the solution pH.  

Solutions of Fe(II) in the form of ferrous ammonium sulfate ((NH4)2Fe(SO4)2•6H2O), or 

Fe(III) in the form of ferric chloride (FeCl3) were added to 1 mL of NOM solution to achieve 1-2 

mM concentration and a 10-15 µmol Fe g-1 C ratio. The solution was mixed thoroughly, checked again 

for neutral pH, then lyophilized without exposure to oxygen. Samples were lyophilized in a vacuum 

flask, which was closed after drying and opened to atmospheric pressure in an anoxic glove bag. 

[Reduced samples are indicated with the subscript “red”.] Anoxic preparation and storage effectively prevented 

the oxidation of Fe(II) by oxygen—a control in which Fe(II) was added to anoxic water in the glove 

bag showed no evidence of Fe oxidation.  

Samples of reference organic molecules were prepared in the same way as the as-received 

samples, using sodium citrate, pyrocatechol, 2,2’-bipyridine (2,2’-bipy), ethylenediamine (EDA), 

ethylenediaminetetraacetic acid (EDTA), and mercaptoethanol in place of NOM (Figure A.1). High 

concentrations were used to minimize the Fe:C ratio and encourage Fe-ligand binding (Table A.1). 

The lyophilized samples were ground, if necessary, and packed densely into Teflon sample holders 

inside an anoxic glove bag. They were sealed with Kapton polyimide film and stored under anoxic 

conditions until transferred to the sample mount at the beam line. Preliminary experiments showed 

that lyophilized samples were significantly less susceptible than solution samples to X-ray-induced 

oxidation of Fe(II) (Figure A.2). 
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2.2.2 Data collection and analysis 

2.2.2.1 X-ray absorption spectroscopy  

All Fe K-edge X-ray absorption spectroscopic analyses were conducted at Beamline 11-2 at 

the Stanford Synchrotron Radiation Lightsource (SSRL) in Menlo Park, California, USA. Samples 

were mounted in an N2 (l) cryostat to limit beam damage or oxidation. The Si(220) monochromator 

was detuned 50% to reduce higher order harmonics. Iron X-ray absorption near edge structure 

(XANES) and EXAFS fluorescence spectra were collected with a 100-element Ge detector 

simultaneously with the transmission spectrum of Fe foil, which was used for internal energy 

calibrations. Multiple scans per sample were acquired as necessary to achieve satisfactory data quality. 

A detector deadtime curve was collected for each beam time using a manganese filter.  

 Scans were calibrated by setting the first inflection point of the Fe(0) spectrum to 7112 eV, 

deadtime corrected, and averaged using SixPack software (Webb, 2005). Background removal, 

normalization, and glitch removal at 7250 and 7600 eV were performed in Athena (Ravel and 

Newville, 2005). This program was also used to generate and qualitatively compare XANES, EXAFS, 

and Fourier transform spectra. First-shell fitting of Fourier transforms of the k3-weighted EXAFS 

spectra was performed using IFEFFIT code in Artemis, using ferrihydrite as a standard. Fourier 

transform and k3-weighted chi spectra were also used to create wavelet transforms using the Igor Pro 

wavelet transform script developed by Funke et al. (2005). Wavelet transforms allow for the qualitative 

elemental discrimination of signal contributions from backscattering neighboring atoms. Linear 

combination fitting (LCF) of EXAFS spectra was performed in Artemis. Details of the linear 

combination fitting procedure can be found in Appendix A (see Figure A.6 and Figure A.7). 
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2.2.2.2 Fe(II) oxidation experiments2  

The effect of binding Fe(II) by Leonardite humic acid (LHA) on the rate of Fe(II) oxidation 

by O2 was measured in aqueous solution. The initial solutions were prepared under anoxic conditions 

using O2-purged Millipore water, reduced LHA, and FeCl2. The Fe(II)-LHA sample was prepared with 

2 mg/mL of reduced LHA and 0.79 mM Fe(II). Test samples showed that there was no detectable 

oxidation of Fe in any sample following the overnight incubation.  

To start the experiment, samples were removed from the anoxic glovebag into open air and 1 

mL was added into 30-mL glass beakers containing air-equilibrated solutions of 11 mL of 4.2 mM 

PIPES, a non-complexing buffer (Yu et al., 1997), at pH 7. To test whether PIPES affected the Fe(II) 

oxidation rate, the kinetics of Fe(II) oxidation were determined at 4.1 mM and 41 µM PIPES 

concentrations in the absence of LHA (Figure A.8). Pseudo-first-order rate constants of Fe(II) 

oxidation were consistent with previously published values (Santana-Casiano et al., 2005; Pham and 

Waite, 2008b). While a difference was observed in the Fe(II) oxidation rates between the two solutions, 

it was substantially smaller than the effect of adding reduced organic matter, and was likely a result of 

additions of NaOH required to maintain steady pH. Solutions were kept in the dark and stirred for 

the length of the oxidation experiments. 

 Iron(II) concentration as a function of time was determined by extracting 50-µL aliquots and 

immediately adding them to 150 µL of pH 7 PIPES-buffered, 50-mM solutions of 2,2’-bipyridine 

(2,2’-bipy) (Moss and Mellon, 1942). After 30-60 seconds of reaction time, these solutions were 

analyzed by ultraviolet-visible (UV-vis) absorption spectroscopy. At some points, a duplicate 50-µL 

aliquot was taken, added to the 2,2’-bipy solution, capped, and stored in the dark for >30 minutes. 

                                                 

2 Work completed by project collaborator Dr. Benjamin Gilbert at Lawrence Berkeley National Laboratory.  
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The Fe(II) concentration was determined from the average intensity between 568 and 572 nm using 

a previously measured calibration curve.  

 Dissolved O2 was measured simultaneously using the FOXY fiber optic probe (Ocean Optics). 

There was no detectable difference in the trend in dissolved O2 between experiments with and without 

NOM (data not shown). We sought to quantify the generation of hydrogen peroxide (H2O2) by the 

Amplex red assay (A-22188, Molecular Probes, Invitrogen), but found the response to be significantly 

higher than expected when LHAred was present. Although we were not able to obtain reliable H2O2 

concentrations in the presence of organic matter, the assay confirmed the generation of this species, 

and data are shown in Figure A.9.  

 The oxidizing capacity of as-received LHA was measured by adding Fe(II) to 1 mL of 2 

mg/mL LHA to achieve a final Fe concentration of 1 mM. The reducing capacity of reduced LHA 

was measured by adding Fe(III) to 1 mL of 2 mg/mL LHA to achieve a final Fe concentration of 2 

mM (Figure A.10). All reactions were performed in an anoxic chamber.  The concentration of Fe(II) 

was tracked over eight hours using 2,2’-bipy but all redox reactions were completed within the first 

few minutes.  

 

2.3 Results 

2.3.1 XAS data analysis 

The position of the absorption threshold of the Fe K-edge XANES spectra approximates the 

oxidation state of Fe (Figure 2.1). The Fe absorption edge for citrate + Fe(II) appeared at 7124 eV 

while that of citrate + Fe(III) appeared at a higher energy, 7126 eV. The spectra from all reference 

compounds with Fe(II) show no signs of oxidation. However, the edges of LHA + Fe(II) and SRFA 

+ Fe(II) are very close to those of LHA + Fe(III) and citrate + Fe(III), clearly indicating that as-

received NOM is capable of oxidizing Fe(II). In contrast, the spectra from reduced NOM samples are 
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aligned with citrate + Fe(II), indicating preeminence of reduced Fe. Electron paramagnetic resonance 

(EPR) spectroscopy confirmed Fe(II) added to reduced NOM was not oxidized (Figure A.3). The 

close agreement between the NOM + Fe(III) and the citrate + Fe(III) XANES spectra, as well as the 

EPR spectroscopy, shows that oxidized Fe remains complexed by NOM and does not form 

precipitates.  

 

Figure 2.1 (A) Normalized Fe K-edge XANES spectra and (B) first derivatives of Fe-NOM samples and Fe–organic 
compound references at pH 7 unless indicated otherwise. NOM samples with added Fe have a 10-15 µmol Fe g-1 C 

ratio. Dotted lines show approximate E0 values for citrate + Fe(II) ( 7124 eV) and citrate + Fe(III) ( 7126 eV). The 
E0 value represents the first well-defined peak in the first derivative. 
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First-shell fits of the Fe K-edge EXAFS data using a single-scattering oxygen path from 

ferrihydrite (Figure A.5) provide information about the average coordination number (CN) and bond 

distances of Fe–O paths (Table 2.1). Complexes containing Fe(III) and Fe(II) added to as-received 

NOM have high CN values (≥ 6) compared to Fe(II) complexes with reduced NOM or O-containing 

organic reference ligands (5.0 ≤ CN ≤ 5.7). The bond distances for the Fe(III) complexes analyzed in 

this study range from 1.99 - 2.02 Å, typical values for Fe(III) octahedral coordination with oxygen in 

organic ligands (Saines et al., 2011). The bond distances of the Fe(II) complexes range from 2.06 to 

2.10 Å. Values above 2.08 Å are consistent with octahedrally coordinated Fe(II) (Strouse et al., 1977; 

Lundberg et al., 2007; Yang et al., 2007), although path lengths that are shorter could indicate a mixture 

of Fe(II) and Fe(III) (van Schaik et al., 2008). The longer bond lengths for Fe-O/N complexation in 

reduced NOM-Fe(II) samples relative to Fe(III)-NOM samples indicate less attraction between Fe(II) 

and the coordinating ligand and a weaker coordination environment.  

Table 2.1 Bond distances (R), coordination numbers (CN), and Debye-Waller factors, (2), derived from Fourier 
transform fitting of the Fe–O path in NOM samples and Fe citrate complexes. 

                                   Sample information                                                                       First shell fitting parameters                                   i 

 Dominant Fe oxidation state  

OM type OM redox stateb Added Observeda CN Error R (Å) Error 2 (Å2) Error R-factor 

Citrate as-received 2 2 5.4 0.6 2.10 0.02 0.0052 0.0016 0.0218 

Citrate as-received 3 3 6.4 0.7 2.02 0.01 0.0083 0.0018 0.0192 

Catechol  as-received 2 2 5.6 1.1 2.08 0.02 0.0094 0.0030 0.0493 

LHA reduced -- 2 5.2 0.6 2.08 0.01 0.0073 0.0018 0.0195 

LHA  reduced 2 2 5.0 0.6 2.06 0.01 0.0087 0.0018 0.0175 

LHA  as-received 2 3 6.0 0.6 1.990 0.009 0.0052 0.0012 0.0111 

LHA as-received 3 3 6.1 0.5 1.989 0.008 0.0052 0.0011 0.0108 

SRFA as-received 2 3 6.6 0.8 2.01 0.01 0.0042 0.0017 0.0271 

SRFA reduced 2 2 5.0 0.5 2.07 0.01 0.0073 0.0016 0.0180 

SRHA reduced 2 2 5.5 0.6 2.08 0.01 0.0076 0.0018 0.0262 

SRNOM reduced 2 2 5.6 0.5 2.07 0.009 0.0078 0.0013 0.0111 

SRNOM reduced, pH 4 2 2 5.7 0.5 2.09 0.009 0.0060 0.0012 0.0132 

 
aObserved dominant Fe oxidation state is based on E0 values, visual comparison of XANES spectra, and EPR results. 
bAll samples are at pH 7 unless otherwise indicated.   

 

 Wavelet transform (WT) analysis was employed to investigate the nature of the atoms beyond 

the first coordination shell. WT analysis uses a two-dimensional plot created from the k-weighted 
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EXAFS spectrum and the corresponding Fourier transform to determine the distance and scattering 

strength of atoms. As can be seen in the WT plot for ferrihydrite in Figure 2.2, second shell Fe 

contributes a strong feature at about 7 Å-1 and 2.75 Å. This feature is absent from WT plots for all 

complexes of Fe and NOM, demonstrating there is no significant presence of multinuclear Fe clusters 

or precipitates. Similar observations have been reported for systems containing low concentrations of 

Fe(III) at low to neutral pH (Karlsson et al., 2008; Karlsson and Persson, 2010; Sjöstedt et al., 2013). 

 
Figure 2.2 Wavelet transform moduli displaying the second and third coordination shells (Morlet wavelet parameters:    

η = 9, σ = 1) of Fe-organic complexes and ferrihydrite. LHA is Leonardite humic acid. 

 Linear combination fitting (LCF) of Fe EXAFS organic reference spectra to reduced NOM 

spectra reveals the dominant types of complexes formed (Figure 2.3). The strong contribution from 

the citrate + Fe(II) reference shows 50 – 75% of Fe was bound by carboxyl and possibly hydroxyl 

groups (Strouse et al., 1977). Optimal fits to nearly all sample spectra required small contributions 

from catechol and EDTA. In SRHAred + Fe(II) and SRNOMred + Fe(II) at pH 4, nearly 20% of the Fe 

exists as hydrated Fe(II), which may represent solvation complexes or outer-sphere complexes, as 

these are likely indistinguishable. Fe(III)-organic reference complexes (i.e., citrate + Fe(III) or catechol 

+ Fe(III)) were fit, to varying degrees (5-25%), to every sample except SRNOMred + Fe(II) at pH 4. 

Fe 
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Though nitrogen- and sulfur-containing organic compounds generally have a higher affinity for Fe(II) 

than oxygen-containing groups (Harris, 2005), they represent a small proportion of the NOM types 

studied (0.5 – 2% by weight), and LCF analysis did not reveal any contributions from amine-only or 

thiol ligands (as determined from ethylenediamine + Fe(II) and mercaptoethanol + Fe(II) references). 

Bipyridine-like and EDTA-like functional groups, both of which contain nitrogen, were found to 

complex 5-20% of the Fe (as Fe(II)) in SRFAred + Fe(II), SRNOMred +Fe (II), LHAred + Fe(II), and 

LHAred. Consistent with the WT analyses, LCF results indicate the absence of significant quantities of 

polymeric Fe in the reduced NOM samples. 

 
Figure 2.3 Weights of Fe references in linear combination fits of k3-weighted Fe EXAFS for Fe in reduced NOM 

complexes (pH 7 unless indicated otherwise). Values shown are the averages of the top 10 combinatorial fits, and error 
bars represent the standard deviations or the average of the errors given by the fit, whichever is larger. Percentages 

shown under each legend heading represent the range of that reference present in all the samples. 

2.3.2 Fe(II) oxidation experiments  

To observe the effect of Fe–NOM complexation on iron redox speciation during oxidation 

by O2, we exposed a pH 7 buffered anoxic solution of LHAred + Fe(II) to atmospheric and dissolved 

O2 for over three hours. The extent of Fe(II) oxidation decreased substantially in the presence of 

LHAred compared to a NOM-free control (Figure 2.4). While total oxidation of Fe(II) without LHAred 
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occurred within about 110 minutes, over 50% of the Fe(II) associated with LHAred remained reduced 

after four hours of exposure to O2. Fe(II) assays performed on samples stored in the dark for 30 

minutes had approximately a third higher Fe(II) concentrations than those performed immediately 

following sampling, suggesting that some of the Fe(III) formed through the reaction of Fe(II) and O2 

was re-reduced once open air was excluded via capping. The remaining sample was analyzed for Fe(II) 

the subsequent day, but no residual Fe(II) was detectable at that point.  The exposure of LHAred to O2 

generated hydrogen peroxide (H2O2), indicating O2 directly reacted with redox-active moieties (Figure 

A.9). In the presence of Fe(II), the measured levels of H2O2 were suppressed.  

 
Figure 2.4 Experimental data from Fe(II) oxidation experiments with 67 µM Fe(II), 0.17 mg/mL LHAred, and 4.16 mM 
PIPES and Fe(II) control data (80 µM Fe(II), 4.16 mM PIPES). The “Fe(II) + LHAred, initial” measurements were made 
on aliquots immediately after the addition of a dye (2,2’-bipyridine), a colorimetric assay for iron(II), while the “Fe(II) + 

LHAred, delayed” measurements were made 30 or more minutes after addition of the dye and storage in the dark.  

2.4 Discussion 

Complexation with organic matter has often been proposed to alter the rate of Fe(II) 

oxidation—potentially leading to long-term preservation of Fe(II) in oxic circumneutral 

environments—yet little research has been dedicated to understanding Fe(II)-OM complexation. In 

this study, we investigated Fe(II) complexation with organic matter using Fe K-edge spectroscopy and 

determined the impact of reduced organic matter on Fe(II) oxidation.  
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2.4.1 Oxidation of Fe(II) by as-received LHA 

Due to published observations of humic substances reducing Fe(III) (Chen et al., 2003; Bauer 

and Kappler, 2009) and preserving added Fe(II) (Catrouillet et al., 2014), we expected Fe(II) to remain 

reduced when added to as-received NOM in anoxic water. Instead, we observed overwhelming 

oxidation of Fe(II) when added to LHA at pH 7 (Figure A.3). Based on electrochemical studies 

performed by Aeschbacher et al. (2011), a small proportion (~8%) of the reducible moieties in LHA 

have standard reduction potentials greater than that for the Fe(OH)3/Fe(II) redox couple (0.062 V). 

At the low Fe:LHA ratio present in the samples, these groups outnumber the amount of added Fe(II) 

and are likely responsible for oxidation of added Fe(II). Although the identities of these functional 

groups are unknown, they could include semiquinone radicals, which have been shown to oxidize 

As(III) under anoxic conditions and were proposed to oxidize Fe(II) following irradiation of SRFA 

(Jiang et al., 2009; Garg et al., 2015). As a result of Fe(II) oxidation in the presence of as-received 

NOM, we chose to investigate Fe(II)-NOM complexation using chemically reduced NOM. 

2.4.2 Fe(II)-NOM complexation 

We expected complexation between Fe(II) and N- and S-containing functional groups to 

predominate because some of the strongest Fe(II) ligands contain N or S (Harris, 2005), and moles of 

organic N and S are 1-2 orders of magnitude greater than moles of added Fe(II) in the samples 

(Chemical Properties of IHSS Samples). However, EXAFS fitting results show that these two 

elements have low or no representation in the formed Fe(II)-NOM complexes. Instead, approximately 

75 – 100% of Fe(II) added to reduced organic matter remained reduced and formed mononuclear 

oxygen-containing complexes (Figure 2.2 and Figure 2.3). Citrate, which complexes Fe(II) through 

carboxyl and hydroxyl functional groups (Strouse et al., 1977), better represents the predominant type 

of complexing ligand than any other reference used, as determined from LCF analysis of the Fe K-

edge EXAFS (Figure 2.3). This result generally supports the equilibrium modeling approach used by 
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Catrouillet et al. (2014), which indicated that Fe(II) added to LHA was primarily bound in bidentate 

complexes with carboxyl groups at acidic to neutral pH. Hence, Fe(II) binding to NOM appears largely 

analogous to Fe(III)-NOM complexes, but weaker, as indicated by Fe(II) complexation kinetics 

studies (Rose and Waite, 2003). EXAFS studies of NOM bound to ferric iron indicated mononuclear, 

bidentate coordination of Fe(III) with oxygen or nitrogen and specific coordination with carboxylate 

functional groups (Gustafsson et al., 2007; van Schaik et al., 2008; Karlsson et al., 2008; Karlsson and 

Persson, 2010; Karlsson and Persson, 2012). Since citrate has been shown to accelerate Fe(II) 

oxidation (Theis and Singer, 1974; Pham and Waite, 2008; Jones et al., 2015), this type of complexation 

is unlikely to preserve Fe(II) in oxic environments.  

While our results support the assertion that the majority of Fe(II) is complexed to carboxyl 

groups at neutral pH, this type of interaction does not explain the full complexity and extent of Fe(II)-

NOM interactions (Figure 2.3). Though contributions from the remaining ligands are less definite 

than that of citrate; catechol-, EDTA-, and bipyridine-like complexation may account for up to 30% 

of the Fe in these Fe(II)-NOM mixtures. Catechol and EDTA also form more stable complexes with 

Fe(III) than Fe(II) (Harris, 2005), so complexation with ligands similar to these may be unlikely to 

preserve Fe(II). However, phenols like catechol are potentially redox-active moieties in NOM capable 

of reducing, or preventing the net oxidation of, associated Fe. Phenols and polyphenols may therefore 

contribute to Fe(II) preservation, as has been shown with tannic acid, a polyphenol, which preserved 

Fe(II) for over 100 hours in the presence of oxygen (Theis and Singer, 1974). Complexation with 

pyridinic functional groups as found in 2,2’-bipyridine and 1,10-phenanthroline could potentially 

prevent oxidation of Fe(II) because tris complexes with these ligands thermodynamically stabilize 

Fe(II) over Fe(III) (Rizvi et al., 2011; Rizvi, 2015). Pyridinic nitrogen represents a very low proportion 

of functional groups in NOM—elemental N is only 1% of NOM by weight and only 20-35% of that 

is pyridinic N (Chemical Properties of IHSS Samples; Vairavamurthy and Wang, 2002). Therefore, the 
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likelihood of three pyridinic functional groups coming together to bind with Fe(II) and form a tris 

complex is low.  

It remains unclear why Fe(II) is not bound to high-affinity N and S sites at the expected levels. 

At pH 7, deprotonated carboxyl groups greatly outnumber N, S, and added Fe(II) for the NOM 

investigated, so their relatively high abundance may account for the prevalence of Fe(II)-carboxyl 

complexation (Ritchie and Perdue, 2003). Another possible explanation is that complexation with 

these functional groups occurs at a slower rate, with carboxyl groups complexing Fe(II) more rapidly. 

Over longer periods, Fe(II) may exchange to lower abundance, higher affinity functional groups, such 

as N- or S-containing moieties. Such complexation may promote long-term stabilization of Fe(II). 

Longer-term equilibration studies will be required to determine whether Fe(II) exchanges to lower 

abundance functional groups and if so, whether these complexes inhibit Fe(II) oxidation.  

These results differ from the few published studies that investigated Fe(II)-NOM interactions 

at the molecular level, none of which targeted Fe(II) complexation using Fe K-edge EXAFS 

spectroscopy. Toner et al. (2009) used scanning transmission X-ray microscopy (STXM) to map the 

distribution of Fe(II) and different types of carbon in particles collected from a sulfide-rich 

hydrothermal plume. Based on their results and published stability constant data, the authors 

suggested organo-sulfur compounds were responsible for preserving Fe(II) after exposure to oxygen. 

In contrast, the NOM types used in this study do not come from sulfur-rich environments, and 

therefore have low percentages of sulfur (Chemical Properties of IHSS Samples). Fe(II)-thiol 

complexation was consistently excluded from the samples by linear combination fits based on the use 

of a Fe(II)-mercaptoethanol reference. In another recent study, von der Heyden et al. (2014) concluded 

that Fe(II)-containing particles from marine and lacustrine samples were more likely to have alcohol, 

carboxamide, and/or carbonate C than Fe(III)-containing particles. In contrast to the work presented 

here, both prior studies show only a correlation between the presence of Fe(II) and certain types of 
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organic matter—they do not directly probe the coordination environment of Fe(II)-organic 

complexes.  

Differences in NOM source and type were expected to influence Fe(II) complexation, 

however, the data from this study show that they have small and unpredictable effects. The NOM 

samples chosen for this study exhibit substantial chemical variation. SRFA has a higher oxygen 

content, and is more aliphatic and monosaccharide-rich while LHA is highly aromatic and has a lower 

acidity (Chemical Properties of IHSS Samples; Thorn et al., 1989). Consistent with the higher 

carboxylic and phenolic acidity of SRFA, added Fe(II) forms complexes with more citrate- and 

catechol-like groups in SRFAred than LHAred (Figure 2.3).  This correlation with chemical characteristics 

does not appear to hold true for the native Fe(II) in LHAred, which is complexed by citrate- and 

catechol-like groups in approximately equal proportion to Fe(II) added to SRFAred.  

Since NOM and Fe can be protonated and hydroxylated, respectively, pH has a substantial 

impact on Fe–NOM complexation. LCF analysis of Fe(II) + SRNOMred at pH 4 and 7 demonstrates 

that higher solution acidity promotes the preservation of Fe(II) over Fe(III) but also limits organic 

complexation (Figure 2.3). At low pH, the oxidation of Fe(II) is slower (Millero et al., 1987) and Fe(II) 

is thermodynamically favored at a wider range of Eh values (Hem and Cropper, 1962). At pH 4, more 

carboxyl groups are protonated than at pH 7, so there are fewer available binding sites, leading to a 

higher proportion of hydrated Fe (fit by “aqueous Fe(II)”). These results are consistent with the 

findings of Catrouillet et al. (2014), which showed a decreasing proportion of LHA-bound Fe(II) with 

decreasing pH from 8 to 3.  

2.4.3 Effect of LHAred on Fe(II) oxidation 

During oxidation by O2, reduced NOM maintained a steady-state concentration of Fe(II) over 

the course of several hours through what appears to be a redox buffering mechanism (Figure 2.4). 

During this process, LHAred was oxidized—a reaction likely catalyzed by native Fe or semiquinones 
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(Roginsky and Barsukova, 2000; Jiang et al., 2015)—resulting in the net production of LHAox and 

H2O2 (Figure A.9).  

 LHAred + O2 → LHAox + H2O2   (2.1) 

Along with O2, H2O2 can oxidize Fe(II) in a Fenton-like reaction to form Fe(III)–LHA, OH- 

and OH•. The occurrence of this reaction is supported by the suppression of the H2O2 concentration 

in the Fe(II)-LHAred sample (Figure A.9). 

 O2 + Fe(II)LHA ⇌ O2
•– + Fe(III)LHA   (2.2) 

 H2O2 + Fe(II)LHA → OH- + OH• + Fe(III)LHA  (2.3) 

Delayed Fe(II) measurements showed a ~34% increase in Fe(II) concentration when aliquots 

of the reaction mixture were stored in airtight containers for over 30 minutes prior to Fe(II) 

measurement (Figure 2.4), suggesting LHAred re-reduced newly-formed Fe(III). This explanation is 

supported by the results of Bauer and Kappler (2009), who observed humic substances reducing 

Fe(III), even as they were being oxidized by O2. Superoxide (O2
•–) has been shown to reduce Fe(III)-

NOM complexes (Rose and Waite, 2005) and may also contribute to re-reduction of Fe(III).  

 LHAred + Fe(III)LHA → LHAox + Fe(II)LHA  (2.4)  

This redox buffering process may explain the persistence of 50% of the initial Fe(II) after four 

hours under oxic conditions. Calculations based on measurements of the Fe(III)-reducing capacity of 

LHAred (Figure A.10) demonstrate that LHA in this system can reduce the total concentration of Fe 

about 1.6 times. A proposed scheme in Figure 2.5 summarizes the key reactions supported by my 

findings.  
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Figure 2.5 Simplified proposed reaction scheme showing Fe redox cycling in the presence of reduced organic matter 
and oxygen. 

Though it is evident that reducing groups in LHAred contribute to the prolonged existence of 

Fe(II) under oxic conditions, the identities of these groups—in this system—remain unclear. 

Quinones are responsible for much of the redox behavior of NOM, and our results bear similarities 

to observations of coupled Fe-quinone cycling.  Hydroquinones, which form during reduction via 

hydrogenation (Ratasuk and Nanny, 2007), can rapidly reduce Fe(III) to Fe(II), outcompeting re-

oxidation of Fe(II) to Fe(III) by molecular oxygen or reactive oxygen species (Yuan et al., 2016). 

Natural organic matter itself appears to be even more adept at cycling Fe than individual quinones. 

For instance, results published by Jiang et al. (2015) show SRFA cycling Fe at rates 10-100 times faster 

than 1,4-hydroquinone at pH 4. However, our NOM reduction method using H2-Pd/Al2O3 at pH 7 

is similar to the one used by Ratasuk and Nanny (2007), which they claimed removed quinone groups 

via hydrogenolysis. They concluded that the redox active groups responsible for electron transfer 

under this reduction treatment must be non-quinone moieties, such as thiols and nitrogen functional 

groups. Therefore, further work is necessary to identify the reducing groups active under the 

conditions used in this study. In addition, the extent to which Fe(II) complexation affects the Fe(II) 

oxidation rate and steady-state concentration is not easily discernable and requires further 

investigation. 
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2.5 Environmental Implications 

The findings from this work clarify important roles of NOM in Fe(II) speciation and Fe redox 

cycling. Under circumneutral reducing conditions, NOM readily binds low concentrations of Fe(II), 

primarily forming mononuclear complexes with citrate-like groups. Although additional complexation 

modes are also identified, for these experiments, the distribution of complexing ligands appears to be 

determined mostly by abundance rather than expected affinities. The observed Fe(II)-NOM 

complexes are likely important forms of bioavailable Fe(II) for microorganisms, thereby influencing 

Fe cycling and primary productivity. 

None of the principal ligands observed for Fe(II) are known to thermodynamically stabilize 

the reduced state.  However, the addition of O2 to Fe(II)–NOM mixtures initiates a dynamic redox 

cycle that sustains a steady state concentration of Fe(II) for several hours longer than Fe(II) without 

NOM. Although the redox buffering mechanism does not explain the long-term stabilization of Fe(II), 

it is likely to occur in the surface waters of streams, lakes, and oceans subjected to diurnal photoredox 

cycles and in domains of soils and sediments subjected to cycles in microbial metabolisms capable of 

reducing NOM (Lovley et al., 1996; Voelker et al., 1997; Lovley et al., 1998).  

The experimental conditions used in this study were chosen to facilitate the identification of 

Fe(II)-NOM complexes using XAS spectroscopy and do not represent the full range of possible 

environmental conditions. Competition from other divalent cations, such as Ca2+, a higher Fe:NOM 

ratio in some environments, and the presence of unreduced NOM will limit the iron complexation 

and redox buffering capabilities of NOM. Additional work will be required to confirm that the Fe(II)–

NOM interactions observed in these laboratory studies are reproduced in naturally reduced soils and 

sediments. 
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CHAPTER 3: TEMPERATURE EFFECTS ON SORPTION OF DISSOLVED ORGANIC 

MATTER ON FERRIHYDRITE UNDER DYNAMIC FLOW AND BATCH CONDITIONS 

 
 

3.1 Introduction 

The earth’s soils store almost 3000 Pg of carbon (C), with most in the form of soil organic 

carbon (SOC) (Jobbágy and Jackson, 2000; Amundson, 2001; Scharlemann et al., 2014; Köchy et al., 

2015). Carbon turnover times, ranging from weeks to millennia, depend in part on SOC biochemical 

composition, but also on environmental conditions and interactions with mineral phases (Schimel et 

al., 1994; Torn et al., 1997; Kaiser and Guggenberger, 2000; Mikutta et al., 2006). The complex 

heterogeneity of soil organic matter (SOM), minerals, vegetation, microbial communities, and soil 

solution environments hinder our understanding of the interactions governing C stabilization and the 

impact changing climatic conditions will have on them (Schmidt et al., 2011). A substantial body of 

literature is devoted to answering the question of how SOC responds to warming, yielding conflicting 

results, from increased to unaffected to decreased respiration rates (Carey et al., 2016; Pries et al., 

2017). The confounding results from macroscale experiments have prompted efforts focusing on the 

individual constituents of soil systems to discern mechanisms controlling C preservation. While 

numerous studies have targeted the response of microbial respiration rates to warming (Allison et al., 

2010; Carey et al., 2016; Melillo et al., 2017), the temperature effect on mineral-stabilized SOC remains 

an important outstanding question.  

Though the abiotic response may be small in comparison to the biological response 

(Marschner and Bredow, 2002), respiration rates depend on carbon substrate availability, which in 

turn is determined by multiple temperature-sensitive factors (Conant et al., 2011). In studies of soil 

systems, DOM sorption responses to temperature have varied from weakly positive to negative 

(Jardine et al., 1989; Vance and David, 1992; Kaiser et al., 2001). In such complex and non-sterile 
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systems, isolation of the mechanisms controlling temperature response is extremely difficult. Baham 

and Sposito (1994) and Arnarson and Keil (2000) took greater pains to isolate the abiotic temperature 

response of mineral sorption by filter-sterilizing DOM and using montmorillonite and kaolinite clays. 

They reported no dependence on temperature from 10 to 35 ˚C and decreasing sorption with 

temperature from 3.5 to 21.5 ˚C, respectively. At low pH, sorption of DOM on the crystalline iron 

oxide hematite was found to be highly exothermic (Gu et al., 1994), suggesting an increase in 

temperature would lead to decreased sorption. With high surface area and reactivity, short-range order 

(SRO) hydrous aluminum and iron oxides contribute substantially—likely more than clays—to SOC 

stabilization (Kaiser et al., 2007; Wagai and Mayer, 2007; Trumbore, 2009; Mikutta and Kaiser, 2011; 

Rasmussen et al., 2018). However, to my knowledge, temperature responses of DOM sorption to 

these important minerals remain uncharacterized. 

Hydrous iron oxides such as goethite, lepidocrocite, and ferrihydrite are widely present in soils 

and reactive towards organic materials (Tipping, 1981; Cornell and Schwertmann, 2003; Kaiser and 

Guggenberger, 2007). Generally, iron oxides preferentially sorb aromatic, hydrophobic, and 

carboxylic-rich organic fractions, though some studies also indicate specificity towards aliphatic 

nitrogen-containing compounds (McKnight et al., 1992; Gu et al., 1994; Gu et al., 1995; Kaiser, 2003; 

Eusterhues et al., 2011; Chassé et al., 2015; Lv et al., 2016; Coward et al., 2018). Aromatic moieties 

may associate with the surface via hydrogen bonding of phenolic groups, and with either the surface 

or previously adsorbed organic material through van der Waals interactions or hydrophobic 

partitioning (Means et al., 1980; Filius et al., 2000). Carboxylic groups can exchange with hydroxide 

ligands or associate through cation bridging or electrostatic attraction, depending on solution pH (Gu 

et al., 1994; Filius et al., 2000; Newcomb et al., 2017). Aliphatic N-containing compounds, such as 

amino acids, can also form strong associations via ligand exchange (Newcomb et al., 2017). 
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Each of these interactions is characterized by thermodynamic and kinetic parameters that 

determine the influence of temperature on sorption. Most are exothermic and spontaneous, such that 

sorption should decrease with increasing temperatures (ten Hulscher and Cornelissen, 1996; 

Pignatello, 1999; Moreno-Castilla, 2004; Conant et al., 2011). Ligand exchange interactions are 

particularly strong, corresponding to high heats of adsorption (Gu et al., 1994). Therefore, they should 

be especially sensitive to changes in temperature compared to weaker H-bonding, van der Waals, and 

electrostatic interactions (Conant et al., 2011). Hydrophobic partitioning interactions are likely 

entropically favored because the process requires the hydrophobic molecule to partially or completely 

shed the ordered hydration shell and create disorder at the mineral surface or in the organic matrix 

(ten Hulscher and Cornelissen, 1996; Pignatello, 1999). The greater entropic contribution to these 

interactions may lead to more variable responses to temperature, including increased sorption with 

temperature, as suggested by Jardine et al. (1989).  

Depending on flow conditions near the mineral surface, temperature may also have a 

meaningful influence on sorption kinetics, as has been suggested by Thornley and Cannell (2001). The 

ligand exchange mechanism may include orbital rehybridization and ligand displacement, likely making 

its activation energy quite large (McBride, 1994; Pignatello, 1999). Weaker H-bonding, polar attraction, 

and van der Waals interactions have much lower activation energies associated with the reorganization 

of water molecules around the organic compound and mineral surface (Pignatello, 1999). They may 

be assumed to reach equilibrium rapidly—in less than an hour. In addition to surface interactions, 

small molecules can diffuse into mineral pores or “holes” in the organic matrix, a slow process quite 

sensitive to temperature (Cornelissen et al., 1997). The overall effect of temperature changes on the 

quantity, quality, and stability of mineral-adsorbed organic matter is likely a combination of these 

thermodynamic and kinetic factors, as well as solution conditions such as pH and ionic composition 

and strength. 
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To determine the effect of temperature on organic matter sorption to a hydrous iron oxide, I 

implemented temperature-controlled column and batch studies using ferrihydrite-coated sand as 

sorbent and different types of DOM as sorbates. This study uniquely employed dynamic flow systems, 

which more accurately represented soil conditions but included a higher degree of complexity than 

batch studies. Kinetic batch systems were used to aid interpretation of temperature effects. Through 

these studies, I aimed to gain insight into the mechanisms controlling C stabilization by short-range 

order hydrous iron oxide and the influence of temperature on the quantity and composition of sorbed 

C. 

 

3.2 Materials and Methods 

3.2.1 Preparation of solutions and columns 

A synthetic groundwater medium (SGM) was prepared with the following components: 2.7 

mM KCl, 0.3 mM MgSO4, 0.3 mM CaCl2, 1.5 mM NaN3 as a microbial inhibitor, and 7.9 mM NaCl 

plus the amount needed to achieve 0.015 M ionic strength, which is within the range for natural 

groundwater. 

To prepare dissolved organic matter solutions, 25 mg of freeze-dried dissolved organic matter 

(DOM), purchased from the International Humic Substances Society (www.humicsubstances.org), 

was dissolved in a small volume of 0.5 M NaOH (< 0.5 mL) and SGM (~ 2 mL) prior to addition to 

a stock bottle. To evaluate the effect of DOM type on sorption to iron oxyhydroxide, several sources 

and fractions of DOM were used: the acid-soluble (“fulvic acid” - SRFA) and acid-insoluble (“humic 

acid” - SRHA) fractions and reverse osmosis isolation (SRNOM) of Suwannee River natural organic 

matter, the acid-insoluble fraction of Elliott prairie soil (ESHA), and the acid-soluble (PPFA) and acid-

insoluble (PPHA) fractions of agricultural Pahokee peat soil. After adding 10 mg of KBr as a 

http://www.humicsubstances.org/
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conservative tracer and adjusting pH to 7.45 ± 0.1 using 0.5 M NaOH and 0.5 M HCl, solutions were 

brought to 1 L gravimetrically and filtered through a 5 µm cellulose nitrate filter. 

Glass Econo-Columns (1 cm ID x 10 cm length, BioRad) were packed wet with 10 g of 50% 

(wt/wt) ferrihydrite-coated quartz (FHQ) and uncoated quartz sand between 1 g and 5 g of uncoated 

quartz sand in SGM. Packed columns had a pore volume of about 3.5 mL and a bulk density of 1.09 

g cm3. Ferrihydrite was synthesized by rapid titration of FeCl3 with 0.4 M NaOH to pH 7.5 and coated 

on Iota 6 quartz sand as described in Borch et al. (2007) and Hansel et al. (2003). New batches of 

FHQ were synthesized periodically to avoid aging (Cornell and Schwertmann, 1991; Kaiser et al., 

2007), and the presence and purity of 2-line ferrihydrite was verified using X-ray diffraction (XRD). 

The BET surface area of the FHQ used in all continuous flow experiments at 50 µL min-1 was 4.5158 

m2 g-1 and Fe concentration was 9.5 mg g-1. FHQ used in kinetics batch studies had a BET surface 

area of 3.4828 m2 g-1 and Fe concentration of 7.3 mg g-1. 

3.2.2 Column studies 

 Columns and solutions were stored at experimental temperatures either in an incubator (7, 25, 

and 45 ˚C) or at room temperature (23 ˚C) before and during the experiment. A peristaltic pump was 

used to feed solutions upward through the columns (to prevent preferential flow) at a flow rate of 50 

µL min-1. Columns were first equilibrated with at least 12 bed volumes of SGM, then one DOM 

solution was fed through each column. Fractions of 5-9 mL were collected in glass test tubes using a 

SpectraChrom CF-2 fraction collector, and effluent volume was determined gravimetrically. To 

determine the potential kinetic limitations of the continuous flow system, studies were repeated at 10 

µL min-1 and 250 µL min-1 flow rates. Details for these experiments are provided in Appendix B. 

3.2.3 Analysis of effluent 

DOM concentrations were calculated from UV absorption spectroscopy measurements at 254 

nm. To determine breakthrough of the conservative tracer, Br– concentrations of initial effluent 
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samples were measured with a Dionex ICS-2100 ion chromatograph and AS-19 anion column. The 

Br– tracer reached 100% breakthrough at 6 bed volumes. Total organic carbon (TOC) measurements 

for SRFA, SRHA, SRNOM, and ESHA experiments at 25 ˚C were performed using a Shimano TOC-

L. Specific ultraviolet absorbance (SUVA) values were calculated by dividing the path length-

normalized UV absorbance values (m-1) by TOC values (mg C L-1). 

3.2.4 Kinetics batch study 

 Sorption kinetics of SRNOM and ESHA on FHQ at 7, 23 and 45 ˚C were evaluated in 

triplicate batch systems. 50 mL of DOM solution was added to 1 g ferrihydrite-coated sand in 125 mL 

glass serum bottles. DOM solution consisted of 27 mg/L ESHA or 23 mg/L SRNOM in SGM at pH 

6.9 ± 0.1. Prepared bottles were immediately placed in incubator shakers (7 and 45 ˚C) or on a shaker 

at room temperature (23 ˚C) at 80 rpm, and 725 µL aliquots were removed at 5 min, 10 min, 30 min, 

1 hr, 2 hr, 4 hr, 24 hr, 32 hr, 48 or 50 hr, 78 hr, 144 hr, and 171 hr. Controls of DOM solutions without 

FHQ were also prepared and sampled. DOM concentrations of stock solutions and aliquots were 

calculated from UV absorption spectroscopy measurements at 254 nm. Stock solution and final 

equilibrium DOC concentrations were also measured by TOC analysis. The amount sorbed was 

calculated by subtracting solution concentrations of experimental samples from those in the controls.  

 

3.3 Results and Discussion 

3.3.1 Temperature effects on adsorption of NOM – continuous flow studies 

Breakthrough curves for four types of dissolved organic matter (SRNOM, SRHA, PPHA, and 

ESHA) changed similarly with temperature (Figure 3.1). Between 7 and 25 ˚C, there was little change 

in the retention time or shape of the breakthrough curve, but between 25 and 45 ˚C, retention time 

increased for SRNOM, SRHA, and ESHA, and the shape of the curve changed slightly for all DOM 

types. For the HAs, the top portion of the curve shifted down at higher temperature, while for 
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SRNOM, the slope of the top portion became steeper. These features suggest slightly more DOM 

sorbed at 45˚C than at 7 or 25˚C. In addition, sorption of SRNOM appeared to be more sensitive to 

high temperature than the other types of DOM. These results demonstrate a general trend of increased 

sorption at high temperature for all DOM types, but some variability in the extent of the response 

depending on the type. 

 

Figure 3.1. Breakthrough curves of four types of DOM at three different temperatures—7 ˚C (blue), 25 ˚C (yellow), and 
45 ˚C (red)—in columns containing ferrihydrite-coated sand. Solution conditions: pH 7.4 ± 0.1, and I = 0.015 M, C0 = 

25.3 ± 3.1 mg/L, and flow rate = 50 µL min-1. Complete breakthrough of conservative tracer occurred at 6 pore 
volumes. 

 Experimental conditions may also strongly influence the response of sorption to temperature. 

In experiments conducted with a 10 mg/L ESHA concentration and 100% ferrihydrite-coated quartz 

(FHQ) sand bedding, temperature impacts on sorption differed substantially from experiments 

conducted at 25 mg/L ESHA and 1:1 FHQ and uncoated quartz bedding. With twice the amount of 

FHQ in the column, the number of sorption sites was higher, yielding a greater degree of separation 

among breakthrough curves as a function of temperature. Under these conditions, ESHA sorption 
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increased dramatically with temperature, and the shape of the breakthrough curve changed from 

convex to concave as the steep edge of the curve shifted right (Figure B.1). 

  The differences in DOM concentration may also have contributed to the sensitivity of 

sorption to temperature. It is generally accepted that with increasing DOM concentration, 

hydrophobic groups cluster to reduce free energy, forming macromolecular aggregates. These 

supramolecular clusters are expected to interact differently with mineral surfaces. One hypothesis is 

that larger clusters facilitate non-specific sorption to minerals via interactions with surface-bound 

carboxylic and phenolic compounds, which may bind specifically through ligand exchange or H-

bonding. Results from a recent study by Avneri-Katz et al. (2016) support this hypothesis, showing 

enhanced sorption of oxidized DOM compounds on clay soil at lower DOM concentrations but less 

fractionation at higher concentrations. Temperature may influence clustering and the specific and non-

specific interactions differently, leading to variable effects depending on the DOM type and 

concentration. For example, solubility generally increases with temperature, so there is likely less 

clustering at higher temperatures, and therefore a potential for more sorptive fractionation. This may 

have a greater effect on the higher concentration experiments, in which ESHA would be expected to 

cluster more than at low concentration (Myneni et al., 1999). 

 Variations in flow rate altered DOM sorption behavior, revealing the kinetic limitations of the 

system. I conducted experiments at fast (250 µL min-1) and slow (10 µL min-1) flow rates, monitoring 

the sorption of ESHA and SRNOM solutions at 23 ˚C and 45 ˚C. For both DOM types at both 

temperatures, there was little difference in breakthrough between flow rates at low DOM loading 

(Figure B.2). After about 75 – 85% breakthrough, the results for the two flow rates diverged 

substantially. At low flow, breakthrough rapidly reached 100%, while at high flow, breakthrough 

gradually approached 100% after an additional 80 – 200 bed volumes. The extra volume necessary to 

reach steady state at higher flow suggests molecules in solution lacked sufficient time to react with the 
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stationary phase and reach equilibrium before being pushed through. Interestingly, sorption at low 

DOM loading responded weakly to the change in flow rate. This unexpected behavior may be 

attributable to the heterogeneity of DOM and its interactions with hydrous iron oxide. At low DOM 

loading, specific interactions are more likely (Gu et al., 1994), and these stronger interactions may be 

less impacted by changing flow rate compared to weaker interactions that likely predominate at high 

DOM loading. 

3.3.2 Desorption of organic matter 

Temperature trends for desorption mostly mirrored those for sorption (Figure 3.2). At all 

temperatures investigated, SRNOM had the highest levels of desorption compared to SRHA, PPHA, 

and ESHA, suggesting many of its interactions with the solid phase are reversible. SRHA and PPHA 

desorbed to a similar extent at 7 and 25 ˚C but desorbed more at 45 ˚C, with more SRHA desorbing 

than PPHA at 45 ˚C. ESHA showed almost no trend in desorption with temperature, while SRNOM 

desorption increased slightly with each temperature increase. Among all DOM types tested, SRNOM 

had the greatest amount of both sorption and desorption at all temperatures. This suggests higher 

levels of sorption do not necessarily indicate that the material interacts strongly with the mineral phase. 

The apparent reversibility of PPHA, SRHA, and SRNOM sorption at high temperature also implies 

that at least some of the additional interactions may not be particularly strong.  

The high temperature sensitivity of SRNOM and SRHA corresponds with high aliphatic C 

content (International Humic Substances Society, n.d.). As suggested by Genest et al. (2014) and 

Coward et al. (2018), aliphatic C may exist in a more water-exchangeable region of coated mineral 

surfaces and may easily sorb and desorb relative to other types of molecules. Compared to the peat 

and soil HA fractions, the aquatic DOM types generally comprise smaller molecules more capable of 

diffusing into the organic matrix or mineral pores (Malcolm, 1990; Wagoner et al., 1997). 
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Figure 3.2. Desorption curves of DOM for continuous flow experiments at three temperatures—7 ˚C (blue), 25 ˚C 
(yellow), and 45 ˚C (red)—in columns containing ferrihydrite-coated sand. Solution conditions: pH 7.4 ± 0.1, and I = 

0.015 M, C0 = 25.3 ± 3.1 mg L-1, and 50 µL min-1. Data from before six bed volumes represents flushing of column pore 
space and is not included. 

The diffusion-controlled “slow sorption” process is highly temperature dependent (ten Hulscher and 

Cornelissen, 1996; Pignatello, 1999), with both sorption and desorption rates increasing with 

temperature. This process may account for the temperature sensitivity and high desorption levels of 

the smaller, aliphatic-rich aquatic DOM. 

3.3.3 Kinetic batch experiments 

 Batch experiments were conducted to determine equilibrium and kinetic parameters for 

sorption of SRNOM and ESHA on ferrihydrite-coated sand at different temperatures. ESHA sorption 

reached equilibrium within 78 hours while SRNOM still may not have reached equilibrium by 171 

hours, although the sorption rate had slowed substantially by that point (Figure 3.3A). For all 

conditions, a rapid period of sorption was followed by a much slower approach to equilibrium, 

features characteristic of diffusion-controlled processes (Wu and Gschwend, 1986). However, no 

single modeling approach successfully represents the sorption kinetics of both SRNOM and ESHA 
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at all three temperatures. A possible explanation for the poor fit of models assuming a single sorption 

mechanism may be that different mechanisms dominate as sorption progresses.  

 

Figure 3.3. Results of batch experiment: (A) Amount of DOM adsorbed to ferrihydrite-coated sand by surface area at 
each time point (measured by UV absorption spectroscopy at 254 nm) Points represent medians and error bars represent 
the range of values for triplicates. (B) Final amount of carbon sorbed to ferrihydrite-coated sand normalized by surface 

area (measured by TOC analysis). 50 mL of 27 mg/L ESHA or 23 mg/L SRNOM in SGM at pH 6.9 ± 0.1 added to 1 g 
ferrihydrite-coated sand. 

Although I was unable to model the entire kinetics curve, I could approximate the initial rate 

(as determined from UV absorption spectroscopy measurements) from the amount of DOM sorbed 

in the first 8 hours. This value increased with temperature for both ESHA and SRNOM (Table 3.1), 

with the rate for SRNOM higher than that for ESHA at each temperature. Since equilibrium sorption 

values also increased with temperature and were higher for SRNOM than ESHA, the faster rates may 

not correspond to substantial changes in reaction kinetics, but rather reflect the shift in sorption 

equilibrium. The batch studies showed increasing sorption from 7 to 23 ˚C and 23 to 45 ˚C, while the 
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column studies performed with 25 mg/L DOM showed an increase in sorption only between 25 and 

45 ˚C. These results demonstrate that differences in reaction conditions, such as the solid to solution 

ratio, particle mobility, and solution flow, can play crucial roles in the observed temperature responses. 

However, findings from both experiments are consistent in that they show a trend of increasing 

sorption with temperature. 

Table 3.1. Rate and percent of total DOM sorbed at 8 hours for batch kinetics study at shaker speed of 80 rpm (average 
and standard deviation of n = 3) 

DOM Temperature 
(˚C) 

8-hr rate 
(µg DOM m-2 hr-1) 

% sorbed 
in 8 hours 

Total DOM sorbed 
(µg DOM m-2-) 

ESHA 
7 4.25 ± 0.66 47.4 ± 7.4 71.7 ± 5.7 
23 6.97 ± 0.33 61.4 ± 2.9 90.9 ± 3.0 
45 8.00 ± 1.14 54.5 ± 7.8 117.4 ± 3.8 

     

SRNOM 
7 7.00 ± 0.36 34.1 ± 1.8 164 ± 12 
23 10.36 ± 0.28 43.3 ± 1.2 192 ± 11 
45 13.9 ± 1.3 47.7 ± 4.3 232.6 ± 1.3 

 

A preliminary batch experiment conducted with 0.5 g of ferrihydrite-coated sand and using a 

much faster shaking speed reached equilibrium in 24-48 hours (Figure B.3), compared to the 78-170+ 

hours required for the slower shaking batch. At the high shaking speed, ferrihydrite became dislodged 

from the sand grains during the first few hours, as evidenced by the solution becoming darker and 

cloudy. This process may have increased the surface area and decreased the size of the ferrihydrite 

particles. Although the slower shaking speed experiments used nearly twice the amount of coated sand 

relative to DOM, they took longer to reach equilibrium, suggesting that surface area alone may not 

account for the change in sorption rate. Instead, increased mixing may account for the more rapid 

rate.  

The very gradual approach of SRNOM to a greater equilibrium sorption maximum than 

ESHA is consistent with the column studies and may indicate a greater amount of diffusive or 

partitioning processes involved in its sorption. With a larger proportion of small molecules (or a 

smaller proportion of supramolecular aggregates), more SRNOM particles may be able to diffuse into 
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pores in ferrihydrite or “holes” in the accumulating organic coating. The 30-50% decrease in the 

amount of SRNOM sorbed per unit area in the faster shaker speed experiment (Table B.1) may 

indicate a substantial amount of weak hydrophobic interactions or partitioning may be taking place at 

slower shaking speeds. As evidenced by the removal of the ferrihydrite coating, the fast shaking speed 

increased disturbance among particles relative to the slower shaking speed. This disturbance may have 

also prevented the formation of weak interactions between DOM molecules and the mineral surface 

or with an organic matrix beyond the surface.  

Despite the overall decrease in the amount of SRNOM sorbed for the higher shaker speed 

experiment, there was still an evident temperature effect between 25 and 45 ̊ C. (No experiments were 

conducted at 7 ˚C for this experiment.) Since the positive effect of temperature on sorption was seen 

for both the slow and fast shaker speed experiments, temperature may have promoted an increase in 

relatively strong interactions. From a thermodynamic perspective, this seems counterintuitive—

stronger sorption reactions are more exothermic, so they should be less favorable at higher 

temperatures. Perhaps the impact of temperature on kinetics is responsible—a reaction with high 

activation energy that occurs very slowly at low temperatures may become fast enough to be noticeable 

at higher temperatures. Because they involve orbital rehybridization and ligand displacement, ligand 

exchange mechanisms often have high activation energies (Pignatello, 1999). These may be especially 

high if the organic ligand must overcome charge repulsion to interact directly with the mineral surface, 

as is the case with amine groups and ferrihydrite at near-neutral pH. Once bound, these amine groups 

can be very difficult to remove, due to their strong binding energy (Newcomb et al., 2017). Another 

possibility is that temperature impacts the “slow sorption” process mentioned above. Higher 

temperatures may accelerate diffusion into mineral pores and organic “holes”, which would be 

protected from perturbation even at high shaking speeds. 
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To my knowledge, no published studies have investigated the influence of temperature on 

sorption of DOM on hydrous iron oxides, but several have evaluated the thermodynamics and effects 

of temperature on sorption to soils, clays, and hematite. Vance and David (1992), Kaiser et al. (2001), 

and Jardine et al. (1989) examined the effect of temperature on sorption and desorption of DOM on 

mineral soils. All three studies conducted experiments at lower pH (3.85 – 5.2) than the range used in 

this study (~6 – 8). Significantly all studies used soils that already bore organic carbon, so the results 

do not allow differentiation of the effect of temperature on organic-mineral or organic-organic 

interactions. Jardine et al. noted a slight increase in sorption from 10 to 23 ˚C, which they attributed 

to preferential sorption of hydrophobics, a possibly entropy-driven process. Vance and David 

observed a weak temperature effect between 3 and 21 ˚C, similar to my results from 25 mg/L DOM 

continuous flow experiments. Kaiser et al. reported increasing desorption of DOM with temperature, 

which is consistent with my results for SRNOM, SRHA, and PPHA. The authors also note that the 

effect was least pronounced for the soil horizon containing the least amount of Al and Fe minerals.  

Arnarson and Keil (2000) studied the temperature response of sorption of marine DOM to 

montmorillonite clay under saline and slightly alkaline conditions. Their results showed decreasing 

sorption between 3.5 and 21.5 ˚C. In a study using DOM from sewage, divalent metal cations, and 

montmorillonite and kaolinite clays, Baham and Sposito (1994) observed no temperature dependence 

of DOM sorption between 10, 25, and 35 ̊ C at pH 5.5. Because these clays carry a permanent negative 

charge, they can interact with DOM molecules differently, including cation exchange with positively 

charged organic functional groups and cation bridging. Cation bridging is a less significant mechanism 

of interaction between DOM and hydrous iron oxides, which bear primarily opposite charges from 

pH 5 - 8. 

While no studies report the direct effects of temperature on sorption of DOM to iron oxides, 

Gu et al. (1994) measured the heat of adsorption of pond DOM associated with industrial hematite at 
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pH 3.7. The authors observed a high heat of adsorption, suggesting the dominance of strong, 

exothermic interactions, which would be less thermodynamically favorable at higher temperature 

(Conant et al., 2011). This information alone could not predict the overall impact of temperature on 

sorption, since other interactions may be more favored (or less unfavored) at higher temperature, 

altering the net change in sorption. 

The inconsistency in these reported effects of temperature on DOM sorption to soils and 

minerals is unsurprising given the variety of materials and experimental conditions used. In this study, 

changes in DOM:mineral ratio, DOM type, and physical reaction conditions all impacted the extent 

to which temperature influenced sorption. It may therefore be expected that experiments employing 

a variety of DOC sources, sorbents, and solution conditions would yield highly variable results. The 

fact that some of these findings contrast with those presented in this work is likely due to very different 

experimental parameters. 

3.3.4 Molecular fractionation of organic matter 

Initial breakthrough curve data for continuous flow experiments at 25 ˚C suggest aromatic 

moieties may preferentially adsorb to the FHQ column bedding. ESHA, PPHA, PPFA, and SRHA, 

which contain the highest proportions of aromatic carbon, broke through very little within the first 

25 bed volumes (Error! Reference source not found., inset). SRFA and SRNOM, which are 

chemically quite similar, partially broke through with the conservative tracer. The HAs and PPFA sorb 

more initially (very little breakthrough in the first few pore volumes), but break through to 50% of the 

influent concentration before SRFA and SRNOM (Figure 3.4). 
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Figure 3.4. Breakthrough curves of six types of DOM at 25 ˚C, pH 7.4 ± 0.1, and I = 0.015 M, C0 = 23.8 ± 2.4 mg L-1, 
and 50 µL min-1 flow rate in columns of ferrihydrite-coated sand. Inset shows breakthrough during the first 30 bed 

volumes. Complete breakthrough of conservative tracer occurred at 6 bed volumes. 

In addition, specific ultraviolet absorbance (SUVA) values, which correlate with percent 

aromatic carbon (Weishaar et al., 2003), are lower for initial effluents than for stock solutions and final 

effluents (Error! Reference source not found.). This suggests aromatic moieties preferentially 

adsorb initially, but that later stage 

sorption is less selective for compounds with high aromaticity. This finding is consistent with a 

number of studies that have demonstrated preferential sorption of aromatic moieties at mineral 

surfaces. Using 1H HR-MAS NMR to analyze whole soil, Genest et al. (2014) located aromatic 

structures buried below the OM-water interface, closer to the mineral surfaces. In an investigation of 

organic matter associated with different Fe mineral phases, Coward et al. (2018) observed preferential 

sorption of aromatic and N-aliphatic compounds to short-range order Fe phases, and greater 

proportions of aliphatic and saturated carbohydrate-like compounds in fractions likely representing 

colloidal or co-precipitated OM. The fact that DOM types containing higher proportions of aromatic 

C sorb more completely initially but reach 50% breakthrough at lower bed volumes suggests aromatic 

components facilitate surface sorption but do not preferentially accumulate beyond the mineral 

surface.  
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Figure 3.5. SUVA254 values for effluent from continuous flow experiments conducted at 25 ˚C, pH 7.4 ± 0.1, and I = 
0.015 M, C0 = 25.0 ± 2.4 mg L-1, and 50 µL min-1 flow rate in columns of ferrihydrite-coated sand. Dashed lines 

represent the SUVA of stock solutions. 

My results share some similarities with a recent study targeting sorption of humic acid on 

goethite (Qin et al., 2015). In kinetic batch studies and dynamic flow experiments, the authors 

observed initial (within the first 2 hours for the batch studies and within 13 pore volumes for column 

studies) sorption of highly aromatic compounds (as determined by low SUVA values of effluent),  

followed by either the release of these compounds or preferential sorption of non-aromatic 

compounds (as determined by high SUVA values of effluent).  Indeed, the remaining supernatants at 

the end of my batch experiment had slightly higher or the same or SUVA values as the stocks and 

controls, suggesting there was no overall preferential sorption of aromatic compounds (Table B.2). It 

could be possible that aromatic compounds preferentially adsorb only at the mineral surface, forming 

a layer to which compounds with low aromaticity adsorb, similar to the proposed zonal model (Kleber 

et al., 2007). Such a process could lead to no net difference in final SUVA values, or even an increase 

in SUVA, if more non-aromatic moieties sorb than aromatics. 
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3.4 Summary and Implications/Conclusions 

 This work presents novel evidence of increasing sorption of DOM to a hydrous iron oxide 

with increasing temperature. It also shows a trend of increasing desorption with temperature for 

aquatic and peat DOM types.  

In continuous flow experiments, sorption and desorption of SRNOM (aquatic DOM), 

appeared to be most sensitive to changes in temperature. SRNOM also had the greatest amount of 

sorption and desorption at all temperatures. In contrast, the soil DOM, ESHA, had lower sorption 

rates than SRNOM, but experienced far less and less sensitive desorption. Perhaps it is unsurprising 

that aquatic DOM dissociates more easily from minerals than the soil HA fraction, which was 

extracted from the solid phase. These findings reinforce the importance of considering both quantity 

and chemical composition of sorbed DOM—more sorption does not necessarily equate to more 

protected carbon.  

Though these studies were not designed to provide mechanistic insight into sorption 

processes, there is some indication from SUVA values that aromatic compounds interacted directly 

with the mineral surface. The mode of interaction is unclear, but solution conditions likely favor 

interactions such as H-bonding or van der Waals interactions over ligand exchange. Ligand exchange 

is less favored at more neutral pH (Gu et al., 1995; Persson and Axe, 2005; Norén and Persson, 2007) 

and probably has higher activation energies than weaker interactions (Pignatello, 1999), making it 

kinetically unfavorable, and therefore unlikely to dominate initial sorption. The higher SUVA values 

of later stage effluents and final batch supernatants suggest less-aromatic compounds sorb later on. 

 An important consideration of these studies is the limitation of the solution environments 

investigated. DOM solution concentration and Fe:C ratio modulated the influence of temperature on 

sorption. Other solution conditions such as pH, multi-valent cation concentration, and ionic strength 

are known to influence DOM aggregation and sorption processes and may also impact the ways in 
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which sorption changes with temperature. These effects are worth investigating further, since the 

results from the conditions used in this study may not be scalable to all environments. However, the 

condition-dependent results highlight the need for studies of temperature effects on specific organo-

mineral interactions, since the results from one system may not be applicable to other systems.  

 Despite broad acceptance of the importance of organo-mineral associations in long-term 

carbon storage, few studies have investigated the impact of temperature on these interactions. My 

findings demonstrate there may be some conditions in which increasing temperature contributes to 

the removal of organic substrates from the accessible carbon pool via sorption to hydrous iron oxides. 

Although I observed only a slight increase in sorption with temperature, this could have a profound 

impact on carbon storage when scaled to all applicable systems globally. However, the amount of 

carbon removed by this mechanism needs to be further quantified, especially in comparison to changes 

in DOM mineralization rates due to warming, in order to evaluate its relative impact on soil response 

to climate change. 
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CHAPTER 4: HYDROGEOMORPHIC CONTROLS ON SOIL CARBON QUANTITY AND 

COMPOSITION IN COLORADO SUBALPINE WETLANDS  

 
 

4.1 Introduction 

 Wetlands cover only 5 – 8% of the earth’s land surface but disproportionately store 20 – 30% 

of global soil organic carbon (Mitsch and Gosselink, 2007; Lal, 2008). Frequent or permanently 

saturated conditions create oxygen-depleted soil environments where plant productivity often 

outpaces decomposition rates, favoring accrual of soil organic carbon (SOC). In addition to 

sequestering carbon, the unique biogeochemistry and high carbon content of wetlands can have 

profound influences on water quality. Wetlands can improve or diminish water quality by processing 

nutrients, retaining sediment, altering the mobility of contaminants, and exporting dissolved organic 

matter to drinking water sources (Johnston, 1991; Kalbitz and Wennrich, 1998; Freeman et al., 2001). 

Consequently, understanding C processing in these systems is critical for predicting changes to C 

storage as a result of environmental disturbances and for effectively managing wetlands. 

 The flow paths that link wetlands with surrounding landscapes govern seasonal water table 

fluctuations and redox-related biogeochemical processes. These characteristics vary among wetland 

classes corresponding to different hydrogeomorphic (HGM) settings and can influence 

biogeochemical reaction rates and the supply and processing of C (Segnini et al., 2010; Bernal and 

Mitsch, 2012; Segnini et al., 2013). Furthermore, differences in HGM settings are likely to influence 

the sensitivity of wetland C stocks to changes in climate.  

The effects of water table fluctuations and HGM settings on C processing is not well known 

(Kayranli et al., 2010). Distinct organic matter supply, reaction and removal rates are likely to generate 

both quantitative and qualitative differences in soil C among wetland hydrogeomorphic types. In 

general, wetlands with features promoting anaerobic conditions—a long hydroperiod, minimal flow, 
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thick organic layers—store more C and have a greater proportion of aliphatic C than wetlands that 

are drier, minerotrophic, or have shorter hydraulic residence time (Bernal and Mitsch, 2008; Bernal 

and Mitsch, 2012; Tfaily et al., 2014; Luan et al., 2014; Heller et al., 2015). However, these studies fail 

to capture the variety of possible conditions among all hydrogeomorphic wetland types, especially 

with respect to depth, and leave a substantial gap in knowledge regarding C stability in wetlands of the 

western U.S.  

Although wetlands in the western U.S. store less carbon than those in other regions of the 

country (Nahlik and Fennessy, 2016), many exist in forested headwaters that provide the vast majority 

of water supplies, including drinking water, for millions of people (USDI, BR, 2012). Because 

dissolved organic carbon (DOC) affects the efficiency of water treatment operations and can lead to 

the formation of hazardous disinfection byproducts (Singer, 1999; Lee et al., 2004; Sharp et al., 2004), 

it is important to understand the processes controlling export of DOC from watersheds. Changes in 

precipitation patterns due to climate change could have profound impacts on the hydrology regulating 

wetland C processing, especially in sensitive mountain ecosystems. Therefore, a more detailed 

understanding of carbon storage and cycling in these wetlands is necessary. In the Rocky Mountains 

of Colorado, wetlands located in isolated depressions co-occur with slope wetlands in headwater forest 

watersheds (Carsey et al., 2003) and provide an opportunity to examine how C quantity and 

composition vary among HGM wetland classes. 

Depressional and slope wetlands differ substantially in their dominant hydrodynamics and 

topographic characteristics. Depressional wetlands occur in topographic depressions and are 

characterized by primarily seasonally controlled, vertical fluctuations in the water table (NRCS, 2008). 

Horizontal, downslope flow dominates the hydrodynamics in slope wetlands, which are found on 

sloping land where groundwater breaches the land surface. In the sites examined in this study, this 
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feature produces slope wetlands with longer hydroperiods than depressional wetlands (Figure 4.1), 

which likely influences C storage and decomposition.  

 

 

Figure 4.1. Water table height (in cm) of representative depressional (D2) and slope (S2) wetland classes. 

 To determine the influence of HGM setting on the storage and decomposition of SOC, I 

examined the chemical composition and quantity of SOC in relation to soil properties and hydrology 

in six subalpine wetlands in Colorado. I used several techniques to assess C quantity and quality, 

including total carbon and nitrogen measurements, radiocarbon dating, and solid-state 13C cross-

polarization magic angle spinning (CP-MAS) NMR spectroscopy. Solid NMR spectroscopy has been 

used to provide insight into the chemical composition of soil organic matter and the changes it 

undergoes during decomposition, providing insights into carbon cycling in different environments 

(Knicker and Ludemann, 1995; Baldock et al., 1997; Kögel-Knabner, 1997; Rumpel et al., 2002). I 

hypothesized that longer hydraulic residence times in the depressional wetlands would create 

anaerobic conditions favoring greater accumulation of carbon and a higher percentage of aliphatic 

carbon compared to slope wetlands. 
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4.2 Methods 

4.2.1 Site description3 

 I studied six wetlands in the Fraser Experimental Forest (FEF) (39˚ 34’ N, 105˚ 30’ W), an 

outdoor research laboratory maintained by the U.S. Department of Agriculture (USDA) Forest 

Service. The three slope wetlands (S1, S2, S3) resided on hill sides with 15-20% slope gradients where 

groundwater emerged at the ground surface and passed along near-surface flowpaths in hours to days, 

resulting in short hydraulic residence times. The three depressional wetlands (D1, D2, D3) formed 

within topographic depressions and retained water for months, resulting in long hydraulic residence 

times. In FEF, depressional and slope wetlands occur as 0.1 to 1 ha openings within the subalpine 

conifer forest at comparable elevation (2700-3300 m) and similar climatic conditions. Detailed 

descriptions of the wetland sites and soil samples are available in Appendix D. Soils in the wetlands at 

FEF have developed from Precambrian granite, schist and gneiss bedrock (Retzer, 1962; Kellogg et 

al., 2008) and are classified as Histic Cryaquolls with 20-100 cm of peat accumulation (Alstatt and 

Miles, 1983).  

Vegetation in the depressional wetlands is dominated by the grass and sedge species 

Calamagrostis canadensis, Carex aquatilis, and Carex utriculata. Quaking aspen (Populus tremuloides) grow 

immediately adjacent to the wetlands, with Engelmann spruce (Picea engelmanni), subalpine fir (Abies 

lasiocarpa), and some lodgepole pine (Pinus contorta) located nearby. Slope wetlands are dominated by 

sedge, but support a greater diversity of species than depressional wetlands, including a variety of forbs 

                                                 

3 Soil cores were collected by Gina McKee. Soil texture analyses were performed by Robert Bergstrom. Water samples 

were collected and measurements performed by Kelsey Dean and Gina McKee. Rod Hubbard performed plant biomass 

and soil respiration measurements. NMR analyses and data analyses were performed by Gina McKee and myself. 
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and bryophytes (Carsey et al., 2003; LaPerriere Nelson et al., 2011). Two slope wetland sites have 

scattered Engelmann spruce and subalpine fir, but none have aspen. 

4.2.2 Sample collection and analysis 

 Cores were extracted from two sites in each wetland using a 6-cm diameter steel corer with 

polyethylene terephthalate liners (Giddings Machine Company, CO). In depressional wetlands, sites 

were located in the center, lowest part of the wetland (L) and midway (M) between the center and 

edge. In slope wetlands, site locations were midslope (M) and lower (L). Soil color and evidence of 

redoximorphic features were recorded and organic and mineral layer depths measured on the intact 

soil cores. The cores were then divided into 10-cm increments, weighed, air dried, sieved to <2 mm 

and ground using a ball mill prior to analyses. Soil texture was determined using the hydrometer 

method (Gavlak et al., 2003). Organic and mineral horizons were defined according to Soil Survey 

Staff (1999), assuming all soils were saturated for >30 days of the year. Soil Fe, Al, and Ca 

concentrations were measured using inductively-coupled plasma optical emission spectroscopy (ICP-

OES). Samples were prepared as follows: 1 g of dried sample was digested with 5 mL HNO3 and 5 

mL HClO4 at 125 ˚C until the volume was reduced to 5 mL, then at 200 ˚C for 2 hrs. Samples were 

cooled, then diluted to 50 mL. Analysis was performed on a PerkinElmer Optima 7300 DV and data 

processed in Winlab32 software (PerkinElmer, Inc., Waltham, MA).  Total carbon and nitrogen were 

analyzed by dry combustion on a LECO Tru-Spec CN analyzer (Leco Corp., St. Joseph, MI, USA). 

 Wetland porewater was sampled from May to September of 2012 from groundwater wells 

installed at the middle and lower elevation sites in each wetland. Wells were constructed from slotted 

2.54-cm diameter polyvinyl chloride (PVC) pipe, sealed at the base and inserted to a depth of 100 cm. 

Slots extended from about 50-100 cm depth from the ground surface. The wells were capped to limit 

inputs from surface water and precipitation.  
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Well water sampling was conducted in a similar method to that described in LaPerriere Nelson 

(2011). Briefly, wells were purged with a hand pump and allowed to refill with fresh porewater prior 

to analysis. Dissolved oxygen (DO), reduction oxidation (redox) potential, and temperature 

measurements were taken using a handheld meter immediately after sampling (results shown in Figure 

D.1 and Figure D.2). Samples were collected in clean glass bottles for dissolved organic carbon (DOC) 

analyses and in clean plastic bottles for inorganic ion concentrations and pH. Samples were stored at 

4 ˚C and filtered prior to analysis.  

 Anion concentrations were determined from ion chromatography using a Dionex AS12A 

anion-exchange column, an AG12A guard column, and conductivity detection. DOC was determined 

by high-temperature combustion catalytic oxidation using a Shimadzu TOC-VCPN total organic carbon 

analyzer (Shimadzu Corporation, Columbia, MD).  

Peak herbaceous biomass (annual graminoid and forb growth in August) was clipped from 1 

m2 sample quadrats, dried for 48 hours at 60 oC and weighed. Carbon dioxide flux measurements were 

collected twice a month from May to September, 2012, by Rob Hubbard. 

4.2.3 13C nuclear magnetic resonance (NMR) spectroscopy 

 Soil samples of 0-50 cm depth from the middle site at each wetland were analyzed using solid 

state 13C cross polarization magic angle spinning (CP-MAS) NMR spectroscopy. All samples except 

for those from the S3-M core were simply dried and ground prior to analysis. The samples from the 

S3-M core were treated with hydrofluoric acid (HF) prior to analysis to remove paramagnetic material 

(Schmidt et al., 1997; Smernik and Oades, 2002). These latter samples were prepared and analyzed in 

a separate batch, and due to unforeseen circumstances, the remaining samples could not be treated 

prior to analysis. Though several studies have examined whether HF treatment alters the composition 

of soil organic matter by removal of compound classes that selectively interact with minerals, this issue 

remains the subject of ongoing scientific debate (Hamdan et al., 2012; Sanderman et al., 2017). 
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Integration results from the spectra gathered from HF-treated S3 samples followed the same trends 

as those for the other two slope wetlands, suggesting HF treatment did not cause preferential loss of 

mineral-bound functional groups. 

 HF treatment of the S3 samples was conducted as follows: 50 ml of 10% v/v HF was added 

to 5 g of dry, sieved and ground soil, shaken for 2 hours, and filtered through a 0.2 µm Teflon filter 

twice. The method was repeated using a 5% v/v HF solution. The soil was rinsed with 18.2 M 

deionized water (EMD Millipore) three times and then dried in an oven at 40 ˚C until the mass 

remained constant. Total mass loss was about 15%.  

 Vegetation samples from tree litter and grass and sedge leaves were also dried, ground and 

analyzed using the same instrumental methods as the soil samples. Further details and results are 

described in Appendix D. 

 All soils were analyzed at the Environmental Molecular Sciences Laboratory (EMSL) at the 

Pacific Northwest National Laboratory. 1-D CP-MAS experiments were performed on a 300 MHz 

Varian instrument operating with a 13C resonance of 400 MHz and a 1H resonance of 100 MHz. 

Between 30-90 mg of sample was packed in a 4 mm zirconia rotor and spun at 13 kHz at the magic 

angle (54.78˚). The pulse sequence used a ramped pulse applied to the proton for 4 µs before transfer 

to the 13C nuclei with a contact time of 1 sec. The recycle delay was optimized for each sample between 

1-10 sec. Data acquisition used a time domain of 10,000 data points, followed by processing using the 

Varian vnmrj software, and the application of 1 Hz line broadening of the free induction decay. 

Chemical shifts were calibrated using hexamethyl benzene phasing, and the background was 

subtracted prior to integration. Chemical shift regions were integrated to correspond to broad 

functional group classifications of 0-45 ppm for alkyl C, 45-110 ppm for O-alkyl C, 110-160 ppm for 

aromatic C and 160-190 ppm for carbonyl and amide C (Rumpel et al., 2002; Knicker, 2011) (example 

spectra with integration regions shown in Figure D.3). The ratio of alkyl to O-alkyl C was used to 
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estimate the extent of decomposition within wetland soil profiles (Baldock et al., 1997), where 

vegetation is constant. 

4.2.4 Carbon dating and 13C analysis 

Soil samples were selected from surface, intermediate, and basal depths from two sites within 

a slope wetland (S3-M and S3-L) and one site within a depressional wetland (D2-L) to measure 14C 

age and 13C. Radiocarbon dating was completed at Beta Analytic (Miami, FL) using accelerator mass 

spectrometry (Fifield, 1999). Prior to analysis, samples were air dried and sieved to 2 mm, roots were 

manually removed, and samples were ground using a ball mill. Samples were then pretreated at Beta 

Analytic according to standard protocols and resulting spectra were corrected using tree-ring data 

(Talma and Vogel, 1993). OxCal 4.3 (Bronk Ramsey, C., 2001) was used to calibrate samples with the 

IntCAL13 (Reimer et al., 2013) calibration curve. I report uncalibrated age, 13C/12C ratio, 95.4% 

probability range, mean and median calibrated age, and 1 sigma error on mean calibrated age in yr BP 

for each sample. 

4.2.5 Calculations and statistical analyses 

Bulk density was estimated using the approximate value of 0.224 g cm-3 for organic soil 

horizons and calculated using an estimate for mineral soils according to Rawls (1983) (details in 

Appendix D). Soil organic carbon stocks (g m-2) were calculated for each soil layer based on data for 

~10 cm core samples using the following equation (Gattinger et al., 2012): 

SOCstock = BD x SOC% x D              (1) 

where BD is the bulk density in g m-3, SOC% is in g C per 100 g soil, and D is the thickness of the soil 

layer in m. 

Statistical comparisons via Wilcoxon rank sum tests were performed using the R statistical 

package (R Core Team, 2018). Reported p-values less than 0.01 were considered significant. 
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Table 4.1. Soil texture, soil and water chemistry, and plant biomass values (mean and 1 standard deviation) for sites in 
three of each wetland class 

 Soil texture Metals in soil Aqueous C input 

 Sanda Silta Claya Feb Alb Cab pHc DOCc Plant 
biomassd 

Units % % % g kg-1 g kg -1 g kg-1  mg L-1 g m-2 

Depressional 44.3 
(10.1) 

26.6 
(9.5) 

29.7 
(10.1) 

17.5 
(3.8) 

54.1 
(18.6) 

6.10 (1.1) 6.04 
(0.40) 

44.4 
(20.9) 

514 (165) 

Slope 56.7 
(6.9) 

24.6 
(4.4) 

18.6 (5.2) 20.6 
(5.1) 

36.2 
(15.4) 

11.9 (7.4) 6.71 
(0.44) 

5.58 
(4.48) 

167 (83) 

p-value 0.0003 >0.05 <0.0001 0.0052 <0.0001 0.0003 <0.0001 <<0.0001 <0.0001 
a n = 46 and 32 for depressional and slope wetlands, respectively 
b n = 40 and 39 for depressional and slope wetlands, respectively 
c n = 34 and 23 for depressional and slope wetlands, respectively 
d n = 12 and 12 for depressional and slope wetlands, respectively 
 

4.3 Results 

4.3.1 Soil, water, and site properties 

 Soil texture varied between the two wetland classes, with mineral layers in depressional 

wetlands having significantly more clay (Wilcoxon rank sum test: p < 0.0001) and significantly less 

sand (p < 0.0005) than slope wetlands (Table 4.1). Inorganic soil chemistry also differed, with 

significantly higher Al content in depressional wetlands (p < 0.0001) and substantially higher Fe and 

Ca content in slope wetlands (p < 0.01 and p < 0.0005, respectively).  

The two wetland classes did not differ substantively in mean inorganic aqueous chemistry, and 

values for anoxic indicators (e.g. dissolved oxygen and redox) did not differ substantially between 

wetland classes (Figure D.1 and Figure D.2). In both wetland classes, reduction potentials of well-

water samples collected from 50 – 100 cm depth varied from about -425 to 350 mV. Throughout the 

season, 90% of measurements in depressional wetlands and 100% of measurements in slope wetlands 

were below 300 mV, indicating suboxic and anoxic conditions throughout most of the growing season. 

Dissolved oxygen (DO) varied between 0.69 and 7.85 mg/L without much trend over the course of 

the season in slope wetlands. In the depressional wetlands, it generally decreased down to about 0.5-

2 mg/L, then increased dramatically shortly before the site desiccated. In all wetlands except for S1, 

SO4
2- concentrations remained below 5 mg/L for most of the summer. NO3

- values were very low, 
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often measuring below detection limits in both wetlands. pH values in depressional wetlands were 

slightly but consistently lower than in slope wetlands (pH 6.04 vs. 6.71, p < 0.0001). 

 Vegetation cover differed among wetlands. Grass and sedge species covered most of the area 

in the depressional wetlands, with several aspen growing at the margins (Figure D.4A). Slope wetlands 

hosted greater plant diversity, with substantial bryophyte coverage and numerous forbs mixed in with 

grasses and sedges. Spruce and fir comprised the dominant tree species around the perimeter, and a 

few individuals grew within the wetlands (Figure D.4B) (LaPerriere Nelson et al., 2011). Primary 

productivity also differed substantially between wetlands. On average, the depressional wetlands 

produced about three times as much plant biomass per square meter as the slope wetlands during the 

study period (Table 4.1). In addition to greater aboveground plant productivity and generally higher 

SOC content, the depressional wetlands had substantially higher mean dissolved organic carbon 

concentrations (Table 4.1, p = 3.8 x 10-16). Mean soil respiration rates as measured by CO2 flux were 

comparable for the two wetland classes (Figure D.5). 

4.3.2 Organic carbon quantity 

 Organic carbon content was higher in the depressional wetlands (164 ± 19 g C kg-1) than in 

slope wetlands (98 ± 24 g C kg-1). Surface soil layers of both wetland classes had high soil organic 

carbon (SOC) content, from about 20-40% SOC (Figure 4.2). Generally, carbon content decreased 

with depth, but declined more rapidly and consistently for slope wetlands. By about 50 cm below the 

surface, carbon in the slope wetlands dropped to about 0%. In the depressional wetlands, SOC 

generally remained higher at depth, with as much as 20% SOC at 60-70 cm below the surface. 

However, the SOC trends with depth were less uniform for depressional wetlands; at some sites, SOC 

decreased down to 3% by 50-60 cm. 
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Figure 4.2. Percent soil organic carbon (SOC) means (dots) and ranges (error bars) by depth from both the middle and 

lower sites in three wetlands of each class. 

 Estimates of C stocks yielded only slightly larger quantities for depressional wetlands (27.8 ± 

5.7 kg m-2) than slope wetlands (21.7 ± 8.0) (Table 4.2). Due to the small sample size (three wetlands 

of each type), it is difficult to discern the significance of this difference. However, the data clearly 

show a difference in where the two wetland classes stored carbon. Depressional wetlands stored about 

four times as much carbon in organic horizons than in mineral horizons. Their organic horizons also 

contained about twice as much carbon as those in slope wetlands. Slope wetlands stored approximately 

equal amounts of carbon in mineral and organic horizons, but stored about 70% more carbon in 

mineral horizons than depressional wetlands. Since soil cores were only taken to about 1-meter depths, 

there may be some sites, especially in the depressional wetlands, for which the complete mineral layer 

was not sampled. This may have led to an underestimate of mineral C stocks in depressional wetlands. 

Table 4.2. Carbon stock estimates (mean and 1 standard deviation) by wetland class for n = 3 wetlands 

 Total Organic layer Mineral layer 

Units kg C m-2 kg C m-2 kg C m-2 

Depressional 27.8 (5.7) 24.4 (0.6) 6.0 (4.7) 

Slope 21.7 (8.0) 11.7 (4.5) 10.0 (3.6) 
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4.2.3 Organic carbon quality 

 C:N ratios have been used as a general index of litter quality and degree of decomposition for 

nearly a century (Waksman, 1924). Overall, C:N ratios ranged from about 8 to 24. They varied little 

with depth for both wetland classes, and each class had approximately the same C:N ratio in surface 

and deep soils (Table D.3). Distributions of carbon functional groups (from 13C CP-MAS NMR 

measurements) showed distinct trends with depth (Figure 4.3). In most profiles studied, a marked 

change in carbon chemistry occurred around 20 cm below the ground surface, regardless of 

horizonation. For this reason, results from integration of 13C CP-MAS NMR spectra are displayed as 

averages of “surface” samples (0-20 cm) and “deep” samples (20-50 cm).  

 

Figure 4.3. Integration results of 13C CP-MAS NMR spectra. Values shown are means from surface (0-20 cm) and 
deep (20-50 cm) soil samples from the middle sites in three wetlands of each class. Integration regions are alkyl C (0-45 

ppm), O-alkyl C (45-110 ppm), aromatic C (110-160), and carbonyl C (160-190). 
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In surface soils of both slope and depressional wetlands, O-alkyl C, which includes 

carbohydrate compounds such as cellulose and hemicellulose, dominated (34-39% total C by 

integration). Deeper in the horizon (20-50 cm), alkyl C content decreased and the relative proportion 

of aromatic C increased. Aromatic C groups in soils commonly include lignin and tannins. The switch 

in dominance of O-alkyl C and aromatic C with depth was consistent and obvious for all slope 

wetlands, but the depressional wetlands demonstrated a different trend. Alkyl C constituted a larger 

proportion in both surface and deep layers, and it increased with depth. This group represents 

primarily aliphatic compounds such as cutins and suberins (leaf and root waxes) (Nierop, 1998; 

Simpson et al., 2008), but can also include microbial membrane lipids (Lorenz et al., 2007). Carbonyl 

C, which includes amides and carboxylic groups in organic and amino acids, represented much lower 

proportions (< 15%) of total C and varied little with depth or between wetland classes. 

 

Figure 4.4. Means of alkyl:O-alkyl ratios for surface (0-20 cm) and deep (20-50 cm) soil samples from the middle sites in 
three wetlands of each class. Circles () represent D1 and S1, diamonds () D2 and S2, and stars () D3 and S3. 

The ratio of the relative intensities of the alkyl C and O-alkyl C regions of the 13C NMR spectra 

has been shown to serve as an index of the extent of decomposition of organic matter from soils and 

litter with a constant vegetational background (Baldock et al., 1997). In both slope and depressional 

wetlands, the alkyl : O-alkyl (A:O-A) ratio increased with depth (Figure 4.4). Values were slightly 

higher for surface soil in depressional wetlands, and substantially higher at depth, corresponding with 
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a much greater increase in the A:O-A ratio from surface to deeper soil horizons compared to the slope 

wetlands. 

 

4.4 Discussion 

4.4.1 Organic carbon storage 

 Hydrogeomorphic setting likely influenced the higher C content in the depressional wetlands 

compared to the slope wetlands by regulating C inputs, storage capacity, and processing. Carbon input 

estimates in the form of plant biomass measurements demonstrated that depressional wetlands 

supported about three times more plant growth than slope wetlands (Table 4.1). This finding is 

consistent with the observations of Mitsch et al. (1991), who found higher productivity among 

wetlands with seasonally pulsing hydroperiods compared to those with slowly flowing water. In 

another study, Bernal and Mitsch (2012) noted greater C sequestration in isolated depressional wetland 

communities compared to flow-through riverine wetlands, attributing the difference to primarily 

differences in vegetation. As topographic low points, depressions may receive groundwater, interflow 

and surface runoff carrying nutrients, dissolved organic carbon (DOC), and fine sediment from 

adjacent uplands. Because outflow via groundwater is usually very slow, the deposition of these solutes 

may increase C and nutrient concentrations as well as soil fertility in depressional wetlands. Slope 

wetlands, in contrast, are characterized by primarily downslope water flow, which originates 

dominantly from groundwater and passes across the surface or just below the surface. Flowing water 

can transport DOC downslope, preventing considerable accumulation of DOC (Rosenbloom et al., 

2001). Nutrients may be retained or exported from slope wetlands, depending on soil composition, 

flow, and vegetation (Harms and Ludwig, 2016). Concentrations of the macronutrients N, P, and K 

differed irrespective of wetland type (data not shown), so higher plant productivity in depressional 

wetlands is likely due to factors other than nutrient enrichment, such as hydroperiod. Though import 
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and export of DOC were not measured, average DOC concentrations within depressional wetlands 

were about eight times higher than in slope wetlands, confirming depressional wetlands retain higher 

amounts of dissolved carbon (Table 4.1). In total, these results indicate depressional wetlands receive 

higher C inputs than slope wetlands, which may contribute to their higher C content. 

 Once organic carbon enters a wetland, it can be exported, stored, or processed. Based on the 

hydrogeomorphic characteristics of these wetlands, it can reasonably be assumed that export occurs 

to a greater extent from slope wetlands than from depressional wetlands. Storage is a function of 

physical and chemical stabilization as well as decomposition rates. Clays and Al and Fe oxides have 

high surface areas that can adsorb and occlude organic carbon, protecting it from decomposition 

(Oades, 1988; Schimel et al., 1994; Sposito et al., 1999). The hydrogeomorphic setting of depressional 

wetlands promotes deposition and retention of fine sediments (e.g. clays) transported from upland 

soils (Rosenbloom et al., 2001). Indeed, the soils in depressional wetlands had significantly more clay 

than those in slope wetlands (29.7% vs. 18.6 %, p < 0.0001). This higher clay content could be partially 

responsible for the greater carbon storage observed in depressional wetlands, although it likely does 

not play a substantial role, since much more C was stored in organic layers than mineral layers in these 

wetlands. Erosion of hillslope soils preferentially removes fine particles, which can diminish the 

proportion of adsorptive clay minerals (Rosenbloom et al., 2001). The slope wetlands in this study had 

coarser soil textures compared to the depressional wetlands (56.7% vs. 44.3% sand, p = 0.0003), but 

slightly higher Fe content (20.6 vs. 17.5 g kg-1, p = 0.0052). Iron oxides can contribute to OC 

stabilization, as evidenced by positive correlations between Fe oxide and OC concentrations in soils 

and sediments (Kaiser and Guggenberger, 2000; Lalonde et al., 2012) and negative correlations with 

OC age (Torn et al., 1997; Eusterhues et al., 2003). Although the data do not distinguish among Fe 

oxidation states, mottling in soil cores from slope wetlands was visually observable, indicating the 

presence of Fe oxides. Sorption of OC on these minerals may contribute to the relatively high OC 
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content of some mineral layers in the slope wetlands—up to 11% OC in samples from 10-50 cm deep 

(Figure 4.2).  

Sorption is likely a more important process in slope wetlands, where DOC that is not stabilized 

by minerals can be both decomposed by microbes and removed by downslope water flows. In 

depressional wetlands, outflow is much slower, and DOC has much longer residence time. The 

dominant vertical fluctuations in the water tables of depressional wetlands may also facilitate 

translocation of DOC deeper into the soil column, where it may associate with the mineral layer 

(Kögel-Knabner et al., 2010). 

Table 4.3. 13C/12C ratio, uncalibrated 14C age, 95.4% probability range, mean and median calibrated age, and 
corresponding horizons of soil samples from D2 (central/lower site (L)) and S3 (middle (M) and lower (L) sites) 

Site 
Depth Soil 

Horizon 

13C/12C  Uncalibrated 14C 
age 

95.4% range Mean calibrated 
age (error)b 

Median calibrated 
age 

 (cm)  (‰) (yr BP) (yr BP) (yr BP) (yr BP) 

D2-L 0-10 Organic -27.4 101.8 ± 0.4 pMCa modern modern modern 

 40-50 Organic -26.9 1163 ± 30 1178-983 1087 (56) 1087 

 90-100 Mineral -26.3 2945 ± 30 3207-2998 3100 (51) 3104 

S3-M 10-20 Organic -25.4 105 ± 30 269-13 132 (78) 113 

 40-50 Mineral -24.8 3006 ± 30 3331-3076 3196 (59) 3194 

 110-120 Mineral -24.9 3984 ± 30 4525-4410 4465 (39) 4473 

S3-L 10-20 Organic -26.4 175 ± 30 294-modern 160 (88) 179 

 20-30 Mineral -25.0 1471 ± 30 1406-1306 1357 (30) 1356 

 70-80 Mineral -24.7 3882 ± 30 4417-4193 4322 (58) 4326 
a pMC = percent modern carbon 
b 1 sigma error on mean calibrated age 

 
In many soils, long-term carbon storage occurs in mineral layers, where sorption, co-

precipitation and physical occlusion of organic matter deter microbial decomposition. Radiocarbon 

dates of samples selected from one depressional (D2) and one slope (S3) wetland generally showed 

this to be the case. Calibrated median 14C ages in surface organic layers of 0-10 or 10-20 cm depth 

ranged from modern to 180 years before present (yr BP, Table 4.3), suggesting fresh inputs and rapid 

cycling regulated C located in these layers. Radiocarbon age increased with depth in all profiles tested. 

Samples from mineral layers at intermediate depths (20-30 and 40-50 cm) from two cores in the slope 

wetland were substantially older than in the surface layer, 1356 and 3194 yr BP respectively. In the 
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depressional wetland, the intermediate depth sample was taken from an organic layer, which despite 

its low mineral content, contained quite old carbon (1087 yr BP). This old age is consistent with other 

peat soils, in which saturated and anoxic conditions hinder decomposition and preserve carbon, even 

in organic layers, for hundreds of years (Tfaily et al., 2014). Deep samples from the slope wetland had 

median 14C carbon ages of around 4400 yr BP, while the one taken from the depressional wetland was 

about 1000 years younger.  

A number of factors could contribute to the faster turnover of deep carbon in the depressional 

wetland. One possibility is that the dropping water table over the course of the season allows young 

DOC from upper layers to translocate deeper into the soil column, reducing the median age of the 

deep carbon. In slope wetlands, downhill flow dominates hydrodynamics, potentially limiting vertical 

translocation of DOC and removing any organic carbon that is not protected by minerals. Once the 

organic carbon interacts with minerals, it likely remains protected for long periods of time. This latter 

explanation is consistent with the very small but stable C fraction found at the lower depths of the 

slope wetland (Figure 4.2, Table 4.3). 

 Decomposition rates in wetlands are highly dependent on hydrology, which exerts control on 

oxygen levels. Despite higher plant inputs in depressional wetlands, they maintained approximately 

the same soil respiration rates (Figure D.5), providing further indication that depressional wetlands 

retained more carbon than slope wetlands. In depressional wetlands, the higher clay content likely 

limits oxygen infiltration and promotes water retention, and along with the long hydraulic residence 

time and high organic matter content, should create anaerobic conditions. Bulk redox potential and 

dissolved oxygen (DO) measurements of porewater indicated reducing conditions existed while the 

wetland was saturated (Figure D.1 and Figure D.2). As the water table declined below the sampling 

well, oxygen levels increased, but redox potentials remained low. The lack of correlation between 

redox potential and DO levels under drier conditions may be explained by the presence of anoxic 
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microsites. Bulk DO measurements have been shown to poorly characterize the extent of oxidation 

in upland soils (Keiluweit et al., 2018), demonstrating that high values do not preclude the existence 

of anaerobic activity. Moreover, fine texture and high carbon content, both characteristic of the 

depressional wetland soils, correlate with anoxic volume, reducing conditions, and decreased 

mineralization rates (Keiluweit et al., 2017; Noël et al., 2017; Keiluweit et al., 2018). Plant roots may 

also contribute to anaerobic microsite formation through root respiration (Bidel et al., 2000), 

stimulation of microbial respiration (Keiluweit et al., 2015a), or the release of organic reductants 

(Fimmen et al., 2008). The likely persistence of anoxic microsites under dry conditions may keep 

decomposition rates low, facilitating accumulation of organic carbon in depressional wetlands. 

4.4.2 Processing of organic carbon 

 Carbon composition data from 13C NMR further demonstrates the influence of 

hydrogeomorphic setting on carbon decomposition processes. In both wetland classes, the surface 

layers contained high proportions of O-alkyl C, such as that in the cellulose and hemicellulose present 

in fresh plant litter, and is consistent with previous reports for both wetland and upland soils (Rumpel 

et al., 2002; Jokic et al., 2003; Grover and Baldock, 2010; Grover and Baldock, 2013; Luan et al., 2014). 

These compounds typically decompose relatively quickly (Berg and McClaugherty, 2014; McKee et 

al., 2016), even in anaerobic environments under thermodynamic limitations (Keiluweit et al., 2016). 

Their abundance in the upper soil layers likely indicates frequent input of new plant material relative 

to decomposition rates. The relative contribution of the O-alkyl fraction to the total organic carbon 

pool decreased with depth, suggesting it entered the soil through the upper layers of the profile and 

that most of it decomposed before it had the opportunity to translocate deeper (Kaiser and Kalbitz, 

2012; Cotrufo et al., 2015; Leinemann et al., 2018).  

 In two of the three depressional wetlands, the surface layers also contained large quantities of 

C in the alkyl region, likely representing substantial input from leaf cutins or root suberins (Nierop, 
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1998; Simpson et al., 2008). Greater representation of this fraction in the surface soils of depressional 

wetlands suggests differences in litter chemistry may exist between the two wetland classes. Plant cover 

and diversity at the sites differed noticeably—depressional wetlands hosted almost exclusively grasses 

and sedges, with aspen dominating the tree species at the perimeter, while slope wetlands supported 

a more diverse set of plant species and lacked aspen at their edges. Leaf litter from these deciduous 

trees contains high proportions of alkyl C relative to coniferous fir and spruce litter and leaves from 

grasses and sedges (Figure D.6). Consequently, the presence of aspen around depressional wetlands 

may lead to aliphatic-rich litter compared to the slope wetlands, which are surrounded by primarily 

spruce and fir trees. Vegetation type has been shown to influence soil organic matter chemistry 

(Quideau et al., 2000; Quideau et al., 2001; Ussiri and Johnson, 2003) and decomposition rates 

(Keiluweit et al., 2015b), and this explanation may plausibly account for the differences observed in 

the carbon chemistry of the surface soils. Alternatively, the submersion of surface soils in depressional 

wetlands for substantial portions of the growing season could lead to longer periods of anaerobic 

conditions compared to the surface layers in the slope wetlands, promoting preferential 

decomposition of more oxidized compounds.  

 For all of the depressional wetlands, alkyl C made up an increasing proportion of total carbon 

with depth. This trend is consistent with numerous studies showing persistence of aliphatic 

compounds in saturated subsoils (Tfaily et al., 2014; Heller et al., 2015; Noël et al., 2017). The long 

hydraulic residence time, high SOC content, and high clay content of the subsoils in the depressional 

wetlands likely lead to more reducing conditions than in the slope wetlands (Boye et al., 2017; 

Keiluweit et al., 2018). Under anaerobic conditions, the use of highly reduced aliphatic compounds as 

electron donors in microbial respiration becomes thermodynamically unfavorable (Keiluweit et al., 

2016; Boye et al., 2017; Keiluweit et al., 2017). Microbes utilizing Fe(III) or SO4
2- as terminal electron 

acceptors may be unable to couple their reduction with the oxidation of reduced aliphatic substrates, 
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leading to preferential preservation of these compounds. Even as the water table dropped over the 

course of the season, the high organic carbon and clay content of the depressional wetland soils may 

have preserved anaerobic microsites where decomposition of aliphatic compounds remained 

unfavorable. Indeed, one study found that in moist upland soils with even lower clay content than the 

wetland soils examined here, anaerobic microsites composed approximately 14-85% of the total pore 

volume (Keiluweit et al., 2018). Thus, anaerobic decomposition and preferential preservation of 

aliphatic carbon could continue all season in the depressional wetlands. 

 In contrast, alkyl C represented a smaller proportion of total carbon in the surface soils of 

slope wetlands and remained fairly constant with increasing depth (Figure 4.3). This trend has been 

observed in soil samples from a drained peat, where oxygen permeated deeper into the profile (Heller 

et al., 2015). The slope wetlands remained saturated for most of the growing season, but experienced 

frequent oscillations in DO concentrations, which have been shown to accelerate the decomposition 

of refractory compounds relative to prolonged anaerobic or aerobic conditions (Reddy and Patrick, 

1975; Hulthe et al., 1998). These fluctuating DO levels may have enhanced decomposition of aliphatic 

compounds in the slope wetlands compared to the depressional wetlands. 

 The relative proportion of the aryl C region, which includes aromatic compounds such as 

lignins, tannins, and pyrolyzed organic matter, increased with depth in all wetlands but D3 (Figure 

4.3). In general, aromatic compounds take longer to decompose, and their accumulation in deeper 

soils is well documented (Leifeld et al., 2012; Grover and Baldock, 2013; Berg and McClaugherty, 

2014; Tfaily et al., 2014). A possible explanation for their persistence in deeper layers, especially in 

slope wetlands, could be the preferential sorption of aromatics to minerals, which has been broadly 

reported (Kaiser and Guggenberger, 2000; Kramer et al., 2012; Hernes et al., 2013; Galindo and Del 

Nero, 2014; Avneri-Katz et al., 2016; Young et al., 2018). The preferential sorption of carboxylic 
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groups (Gu et al., 1994; Kaiser and Guggenberger, 2000; Kramer et al., 2012) may also explain their 

persistence in the more mineral-rich slope wetlands. 

 The quantitative indexes of decomposition—alkyl C: O-alkyl C (A:O-A) and C:N ratios—

provide divergent results as to the extent of decomposition with depth in the two wetland classes. The 

A:O-A ratio is a well-established method for estimating the extent of decomposition when vegetation 

is constant (Baldock et al., 1997; Leifeld et al., 2012; Incerti et al., 2017). Because vegetation differs 

among wetlands, only values within sites can be compared. In depressional wetlands, the A:O-A ratio 

increased substantially (90-136%) between the surface and deeper layers (Figure 4.4), reflective of both 

the decrease in O-alkyl C and increase in alkyl C with depth (Figure 4.3). Slope wetlands had a much 

smaller increase in this metric, since O-alkyl C decreased but alkyl C remained fairly constant between 

layers. The difference in the magnitude of the increase may indicate less decomposition occurred in 

the slope wetlands, or that its hydrogeomorphic conditions promoted decomposition of different 

compound classes. Carbon isotope measurements generally support the overall trend of increasingly 

decomposed organic material with depth for both wetlands. For the three profiles measured, 13C 

values increased by 0.5–1.7‰ (Table 4.3), suggesting an increase in microbial biomass relative to plant 

biomass between surface and deep soil layers (Taylor et al., 2003; Tfaily et al., 2014). 

 C:N ratios displayed no consistent trend with depth and varied little among wetlands (Table 

D.3). This lack of change contrasts results from some studies of wetlands showing decreasing C:N 

ratio with depth (Vardy et al., 2000; Tfaily et al., 2014). However, others have observed little difference 

in C:N values between surface and basal samples from wetlands (Grover and Baldock, 2010). Indeed, 

the reliability of this metric has been contested, and several studies have found ratios of certain C 

functional groups in litter and decaying OM, such as the A:O-A ratio, to be better indicators of carbon 

quality and decomposition rates (Leifeld et al., 2012; Bonanomi et al., 2013; Incerti et al., 2017). 
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Evidently, the bulk index of C:N poorly conveys trends in decomposition in comparison to the 

compositional measure of A:O-A.  

 

4.5 Conclusions and Implications 

 The findings presented in this work demonstrate subtle yet distinct differences in carbon 

storage and processing in subalpine wetlands from two hydrogeomorphic classes: depressional and 

slope. Though the estimated amount of carbon stored in depressional wetlands was only slightly 

greater than that estimated for slope wetlands, the locations of SOC stocks were quite different. 

Approximately 88% of C stocks in measured soils from depressional wetlands resided in potentially 

younger organic layers, while almost 50% of C stocks in slope wetlands were located in mineral layers. 

This implies that though somewhat larger, C stocks in depressional wetlands likely turn over faster 

than those in slope wetlands and represent a less stable SOC pool. However, a more accurate 

understanding of C stocks and turnover in these wetlands would require a larger set of study sites, 

radiocarbon data, and a better understanding of C protection within microsites. In addition, these 

estimates are limited by the depths to which samples could be taken. Depressional wetland soils in 

particular were very deep and these estimates may not include the full extent of SOC-bearing layers. 

 According to compositional data from 13C NMR analyses, the two wetland classes also process 

carbon differently. The surface layers of slope wetlands were dominated by labile carboxylic 

compounds while those of depressional wetlands also contained large proportions of aliphatic carbon, 

likely due to the differences in vegetation composition between wetlands. In deeper soils, aromatic C 

dominated total C in slope wetlands while aliphatic C increased in proportion in depressional wetlands. 

It seems likely that more extensive anaerobic conditions existed in the depressional wetlands and led 

to the accumulation of aliphatic C, but from my data, it is not possible to discriminate the exact 

mechanisms contributing to these differences. Further investigation of chemical composition of plant 
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inputs, microbial community structure and activity, redox gradients, concentrations of electron 

acceptors, and extent of mineral sorption and physical protection could elucidate the biochemical and 

physical pathways responsible for the differences in SOC chemistry between these wetlands. 

Methods of carbon accounting rarely consider differences in hydrogeomorphic wetland 

classes, assuming substantial similarity in C stocks of wetlands in broad categories (Nahlik and 

Fennessy, 2016). The results presented here suggest it may be necessary to differentiate among 

hydrogeomorphic classes of wetlands, especially when considering C processing and turnover times.  
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CHAPTER 5: SUMMARY 
 
 
 
 The purpose of the work presented in this dissertation is to elucidate the impacts of 

complexation, temperature, and hydrology on the mobility and stability of Fe and natural organic 

matter. The research detailed here examines the key role of organic carbon chemistry in carbon and 

iron cycling by (I) determining the dominant modes of complexation of Fe(II) and dissolved organic 

matter (DOM) and the resulting impacts on Fe(II) redox chemistry (Chapter 2); (II) investigating the 

impact of temperature and DOM type on the sorption of DOM to a hydrous Fe oxide (Chapter 3); 

and (III) examining differences in organic carbon storage and biogeochemical processing in subalpine 

wetlands from two hydrogeomorphic classes (Chapter 4). This chapter summarizes key findings and 

describes implications of the work reported in the preceding three chapters and provides 

recommendations for future research. 

 Iron bioavailability depends upon its solubility and oxidation state, which are strongly 

influenced by complexation with natural organic matter (NOM). Despite observations of Fe(II)–

NOM associations under conditions favorable for Fe oxidation, the molecular mechanisms by which 

NOM influences Fe(II) oxidation remain poorly understood. I characterized the coordination 

environment of Fe(II) associated with DOM using Fe K-edge X-ray absorption spectroscopy and 

evaluated the effect of complexation on Fe redox stability in oxidation experiments. Linear 

combination fitting of extended X-ray absorption fine structure (EXAFS) data using reference organic 

ligands demonstrated that Fe(II) was complexed primarily by carboxyl functional groups in reduced 

NOM. Functional groups more likely to preserve Fe(II), such as bipyridine, represented much smaller 

fractions of NOM-bound Fe(II), and there was no evidence of complexation with sulfur groups. 

Iron(II) added to anoxic solutions of as-received NOM oxidized to Fe(III) and remained organically 

complexed. Iron oxidation experiments revealed that the presence of reduced NOM limited Fe(II) 
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oxidation, with over 50% of initial Fe(II) remaining after four hours.  The findings from this work 

provide crucial insight into Fe cycling in oceans, lakes, streams, and porewaters of soils and sediments. 

In oceans, where low concentrations of bioavailable Fe can limit primary productivity, understanding 

Fe speciation is essential to accurately modeling carbon cycling.   This work contributes to the 

improvement of carbon models by providing a refined understanding of Fe(II) complexation and 

redox transformations in the presence of DOM. Because both organic contaminants and toxic 

metal(loid)s commonly react with Fe and DOM, the findings presented here also enhance our 

understanding of redox processes affecting the fate and transport of environmental contaminants. 

Future research should consider using the Fe K-edge X-ray absorption spectroscopy technique to 

identify Fe(II)–DOM complexes from natural systems and to further investigate the effects of pyridine 

or pyridine-like ligands on Fe redox transformations. Because the model DOM types used in this study 

contained low sulfur fractions compared to some other DOM types (e.g. near deep ocean vents), the 

lack of sulfur binding may not necessarily indicate that Fe(II)–organosulfur complexes are not 

possible. Since such complexes could contribute to Fe(II) stabilization, future work should 

characterize coordination of Fe(II) with sulfur-rich DOM to determine if Fe(II)-organosulfur 

complexes may be more prevalent in different systems. 

 The response of global carbon stocks to warming remains a key uncertainty in climate models. 

While numerous studies have investigated the temperature sensitivity of decomposition and microbial 

carbon use efficiency, the effects of temperature on sorption interactions between organic matter and 

minerals are inadequately characterized. I examined the impacts of temperature (7, 25 and 45 ˚C) and 

DOM type on sorption of DOM to ferrihydrite-coated sand in continuous flow and batch systems at 

circumneutral pH. Findings demonstrated a positive relationship between temperature and sorption, 

especially between 25 and 45 ̊ C. Desorption of aquatic DOM increased appreciably with temperature, 

while desorption of peat and soil DOM was less sensitive. The amount of material that sorbed also 
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depended on DOM type: more aquatic natural OM adsorbed than soil DOM at all temperatures. 

Specific ultraviolet absorbance values (SUVA) of initial column effluents were low, suggesting 

aromatic-rich compounds preferentially adsorbed to the mineral surface. These results indicate that 

some circumstances may favor the accumulation of DOM on iron mineral surfaces as temperature 

increases, potentially removing organic substrates from the accessible dissolved carbon pool. 

However, they also imply that the stability of newly associated material likely depends on its chemical 

characteristics and the conditions under which it sorbed. In total, the results from this novel 

investigation of temperature effects on DOM sorption to an iron oxide indicate that some abiotic 

mechanisms of carbon storage may provide negative feedbacks to climate change. However, given the 

variability among published results as well as those presented in this study, it is clear that the effect of 

temperature on sorption in one system is not scalable to all environments. Mineral type as well as 

solution conditions such as pH, ionic strength, and multivalent cation and DOM concentrations can 

impact dominant sorption mechanisms and therefore temperature sensitivity of organo-mineral 

associations. Further studies identifying sorption temperature sensitivity under varying conditions are 

necessary for broad-scale understanding of abiotic feedback mechanisms in warming soils.  

 Despite the importance of wetlands for water quality and carbon storage, our understanding 

of biogeochemical processes in these systems remains inadequate for effective management of these 

biogeochemical “hotspots”. In particular, the variability in carbon storage and processing among 

different wetland types within the same ecoregion is insufficiently characterized. To determine how 

differences in hydrology and topographic setting (also known as the hydrogeomorphic setting) 

influence organic carbon storage and decomposition processes, I compared carbon content and 

composition between depressional and slope wetlands in the Rocky Mountains. Results of soil organic 

carbon measurements showed that depressional wetlands had slightly larger carbon stocks than slope 

wetlands, and they stored substantially more carbon in organic layers compared to mineral layers. By 
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contrast, slope wetlands stored approximately equal amounts of C in mineral and organic layers. 

Carbon dating suggests that though carbon in deep organic layers was quite old, the carbon stored in 

mineral layers was older than that in organic layers. Analysis of soil organic carbon composition by 

solid-state 13C nuclear magnetic resonance (NMR) demonstrated a higher prevalence of aliphatic 

compounds in depressional wetlands, especially at depth, while carbon content in the subsoils of slope 

wetlands was dominated by aromatic compounds. It is likely that these differences in carbon chemistry 

arise from different decomposition pathways and stabilization mechanisms imposed by different 

hydrologically controlled redox conditions. As a whole, the results from this study illustrate that 

differences in hydrogeomorphic setting can lead to divergent decomposition processes and carbon 

storage mechanisms. Because depressional wetlands disproportionately store carbon in less stable 

organic layers, their carbon stocks may be more sensitive to disturbance than those in slope wetlands. 

The variability in carbon processing and storage between these wetland types also indicates that 

different hydrogeomorphic classes of wetlands should be considered independently when evaluating 

wetland carbon cycling and sequestration on broad scales. Further research to refine our 

understanding of the decomposition and stabilization mechanisms in these wetlands should include 

the examination of the chemical composition of plant inputs and oxidation state of organic matter, 

microbial community structure and activity, redox gradients, diffusion limitations, concentrations of 

electron acceptors, and extent of mineral sorption and physical protection. General carbon accounting 

and compositional analysis of wetland soils for other hydrogeomorphic classes of wetlands could 

extend this comparison beyond the two wetland types evaluated here.  
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 2 - COMPLEXATION AND 

REDOX BUFFERING OF IRON(II) BY DISSOLVED ORGANIC MATTER  

 
 

A.1 Selection of organic references 

Organic ligands were chosen to emulate functional groups found in organic matter. The 

chosen references contained the following functional groups: carboxylic acid, alcohol, phenol, amine, 

thiol, and aromatic heterocyclic amine. While multiple compounds could have been used to represent 

these functional groups, the chosen compounds give a general indication of the type of complexation 

between Fe and organic matter. Structures of the chosen references are shown in Figure A.1. The 

following organic compounds were tested, but were insufficiently soluble or oxidized Fe(II): dodecyl 

sulfate, benzoate, deferrioxamine B (DFO-B), hematin, oxalate, pyrazole, and dibenzothiophene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ethylenediamine (EDA) 

Ethylenediaminetetraacetic acid (EDTA) 

Citrate Catechol 

2,2’-Bipyridine 

Mercaptoethanol 

Figure A.1. Chemical structures of organic standards used in Fe EXAFS experiments. 
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Table A.1 Details of organic reference solutions 

Organic compound Concentration (M) Concentration Fe(II) or Fe(III) (M) pH 

Citrate 1.08 0.002 Fe(II) 6.7-7.0 
Citrate 0.969 0.002 Fe(III) 6.7-7.0 
Pyrocatechol 2.54 0.002 Fe(II) 6.7-7.0 
Pyrocatechol 1.818 0.002 Fe(II), oxidized to Fe(III) 6.7-7.0 

2,2’-bipyridine 0.045 0.015 Fe(II) 6.7-7.0 

Ethylenediamine (EDA) 3.62 0.014 Fe(II) unadjusted 
EDTA 0.96 0.002 Fe(II) 6.7-7.0 
Mercaptoethanol 3.46 0.014 Fe(II) unadjusted 

 
 

 
Table A.2. pH of NOM samples 

Sample pH 

LHAred + Fe(II) 6.7 

LHA + Fe(II) 6.9 

LHA+ Fe(III) 6.9 

LHAred 6.7 – 7.0 

SRFAred + Fe(II) 6.7 – 7.0 

SRFA + Fe(II) 6.9 

SRHAred + Fe(II) 6.8 

SRNOMred + Fe(II) 6.7 

SRNOMred + Fe(II) 4.0 

 

A.2 Beam damage of solution-phase Fe(II) citrate samples 

During X-ray absorption spectroscopy analysis, multiple scans of a solution-phase Fe(II) 

citrate sample showed changes in the shape of the white line over the course of the analysis (Figure 

A.2). Due to these observed changes, I decided to lyophilize the samples and mount them in a liquid 

nitrogen cryostat during analysis to prevent beam-induced changes. The lower energy of the white line 

in the lyophilized sample spectrum also suggests that this sample is more reduced than even the first 

scan of the solution-phase sample. 
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Figure A.2. Normalized Fe K-edge XANES spectra of solution-phase Fe(II) citrate (colored lines) showing reduced 
peak height (beam effects) with subsequent scans, and lyophilized Fe(II) citrate (black line). 

 

A.3 Electron paramagnetic resonance spectroscopy (EPR) 

 To determine the amount and polymerization of Fe(III) present in the Fe-NOM samples, 

continuous wave electron paramagnetic resonance (cw-EPR) spectra were collected. I used a Bruker 

ELEXSYS E 500 spectrometer with Bruker Xepr software for operation and data analysis at the 

Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Lab (PNNL), 

in Richland, WA, USA. Samples were packed in glass tubes in an anaerobic glove box to prevent 

oxidation. Spectra were collected at room temperature and operation parameters were optimized for 

the Fe(III) signal. Modulation frequency was 100 kHz, receiver gain was 60 dB, and modulation 

amplitude was 10 Gauss. The magnetic field was swept from 0 – 6000 G in 83.89 seconds, and 4 scans 

were collected and averaged. The spectrum of an empty glass tube was used for background 

subtraction.  
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 Two prominent signals were identified in the EPR spectra, one at a g-factor of ~2.005, 

corresponding to organic radical species (Paul et al., 2006), and another at ~4.3, typical of 

mononuclear high-spin Fe(III) with low symmetry (Bou-Abdallah and Chasteen, 2008).  

A.4 Oxidation of Fe(II) upon addition to LHA 

Several lines of evidence point to oxidation of Fe(II) upon addition to LHA. First, the Fe K-

edge spectrum for LHA + Fe(II) is nearly identical to that of LHA + Fe(III) (Figure A.3). Wavelet 

transforms of LHA + Fe(II) and LHA + Fe(III) are also nearly identical. The 50-fold increase in signal 

from LHAred + Fe(II) to LHA + Fe(II) at g = 4.28 (1625 Gauss) illustrates the much higher quantity 

of Fe(III) in the as-received samples (Figure A.3, C). Collectively, these analyses demonstrate the 

oxidation of Fe(II) in the presence of LHA and the equivalent, mononuclear complexation of added 

Fe(III) and added Fe(II) with as-received LHA.  

 

Figure A.3. Oxidation of Fe(II) by LHA: Wavelet transforms of (A) LHA + Fe(II) and (B) LHA + Fe(III); (C) Fe K-
edge normalized µ(E) spectrum of LHA + Fe(II) and LHA + Fe(III); and (D) EPR spectra selectively showing the 

Fe(III) signal region for LHAred + Fe(II), LHA + Fe(II), and LHA + Fe(III). 

 

LHA + Fe(II) LHA + Fe(III) 
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Figure A.4. (A) K3-weighted (k) EXAFS spectra and (B) Fourier transform spectra of Fe-NOM samples and Fe–
organic compound references at pH ~7 (unless indicated otherwise). 
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A.5 Linear combination fitting 

 Combinatorial linear combination fitting analyses were performed using Athena software 

(Ravel and Newville, 2005) on k3-weighted Fe EXAFS spectra from 3-11.5 k. Sums were floated and 

all components were limited between 0 and 1. Number of standards was limited to 8 and no minimum 

contribution of standard was required. Representative fits of three samples are shown in Figure A.6. 

Many of the top combinatorial fits were statistically indistinguishable by the Hamilton test (Downward 

et al., 2007), so the top 10 fits for each sample were averaged, and the reported standard deviations 

represent either the average of the standard deviation of the values used to compute the average, or 

the average of the reported errors from the top 10 fits, whichever was larger. The top 10 combinatorial 

fits and their average for LHAred + Fe(II) are shown in Figure A.7.  
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Figure A.5. Examples of first shell fits of the Fourier transforms of Fe EXAFS. The ferrihydrite single-
scattering Fe-O path was used to fit this region. 
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Figure A.6. Examples of linear combination fits of k3-weighted Fe K-edge EXAFS spectra for Fe in reduced 
OM complexes. Fitting range was from 3 - 11.5 k. 



 

119 

 

Figure A.7. Top 10 combinatorial linear combination fits and their average for LHAred + Fe(II). 

 

A.6 Fe(II) oxidation experiments and buffer interference 

Good’s buffers are known to cause interferences in oxidation experiments (Grady et al., 1988; 

Baker et al., 2007). To test whether PIPES affected the Fe(II) oxidation rate, we studied the kinetics 

of Fe(II) oxidation at 4.1 mM and 41 µM PIPES concentrations (i.e., a 100x difference) in the absence 

of LHA. At the lower PIPES concentration, pH could be maintained within 6.8–7.1 by 10-µL 

additions of 1-M NaOH. The solutions were stirred continuously and kept in the dark except when 

aliquots were taken. For 4.1 mM PIPES the pH varied between 6.87–6.99 and the fitted pseudo-first-

order rate constant was 2.2 ± 0.3 x 10-4 s-1, which is consistent with previously published values 

(Santana-Casiano et al., 2005; Pham and Waite, 2008). For 41 µM PIPES the pH varied between 6.80–

7.1 due to manual additions of 0.1M NaOH and the fitted rate constant was 3.7 ± 0.5 x 10-4 s-1 (Figure 

A.8). In each case, the errors are one standard deviation from the fit to a single kinetics measurement.  

As shown in Figure A.8, there is a difference in the oxidation rates at the two PIPES 

concentrations. Although I cannot rule out PIPES participation in the redox reactions, I believe it is 
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likely that the addition of concentrated base is the principal explanation. These additions made it 

possible to maintain the overall pH within 0.3 pH units, each addition caused a transient and localized 

increase in pH until it was mixed into the stirred solution. The faster rate is likely due to the additional 

Fe(II) oxidation at pH > 7 caused by each addition.  The change in reaction rate as a result of increasing 

the concentration of PIPES is also far smaller than the effect of adding reduced organic matter.  

 

Figure A.8. Comparison of Fe(II) oxidation in the presence of 4.1 mM PIPES (red circles) and 41 µM PIPES (blue 
circles) along with corresponding fits (k’ = 2.2 ± 0.3 x 10-4 s-1 (4.1 mM PIPES), and k’ = 3.7 ± 0.5 x 10-4 s-1 (41 µM 

PIPES)). 

 

A.7 Hydrogen peroxide generation 

Generation of hydrogen peroxide (H2O2) during oxidation of 2 mg/mL LHAred with and 

without 0.08 mM Fe(II) was monitored using the Amplex red assay (A-22188, Molecular Probes, 

Invitrogen), which utilizes the Amplex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine) in 

combination with horseradish peroxidase to form resorufin, a colored and red-fluorescent product. 

Linear calibration curves were obtained in water confirming that H2O2 concentrations could be 

measured spectrophotometrically at 560 nm according to manufacturer guidelines. However, the assay 
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response was significantly higher than expected when LHAred was present. As a result, reliable H2O2 

concentrations could not be obtained in the presence of organic matter, but the assay did confirm the 

generation of this species. Although the Amplex red data do not provide reliable quantification of 

H2O2, they do show that this species is generated when LHAred is oxidized by O2, and further 

demonstrate that the presence of iron reduces the amount or lifetime of H2O2 (Figure A.9). 

 

 

Figure A.9. H2O2 production during oxidation of 2 mg/mL LHAred with and without 0.08 mM Fe(II). Addition of 
Fe(II) decreases the amount or lifetime of H2O2 

 

A.8 Fe oxidizing and reducing capacity 

 A third experiment measured the Fe oxidizing capacity of as-received LHA and the Fe 

reducing capacity of chemically reduced LHA (Figure A.10). As-received LHA (2 mg/mL) oxidized 

almost 40% of the 1 mM Fe(II) added. Reduced LHA (2 mg/mL) reduced over 60% of 2 mM Fe(III) 

(as FeCl3) added. 
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Figure A.10. Fe oxidizing and reducing capacity of as-received and reduced DOM (respectively). Fe oxidizing capacity 
measured with mixture of 1 mM of Fe(II) and 2 mg/mL LHA; Fe reducing capacity measured with mixture of 2 mM 

Fe(III) and 2 mg/mL LHAred 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 3 - TEMPERATURE 

EFFECTS ON SORPTION OF DISSOLVED ORGANIC MATTER ON FERRIHYDRITE 

UNDER DYNAMIC FLOW AND BATCH CONDITIONS  

 
 

B.1 Low concentration, low C:Fe continuous flow experiments 

Continuous flow studies were conducted with 10 mg/L ESHA in PIPES-buffered (pH 7.5) 

synthetic groundwater medium and 10 g of ferrihydrite-coated sand at 5, 23, and 45 ˚C and 50 µL  

min-1 flow rate. 

 
Figure B.1. Breakthrough curves of ESHA at three different temperatures—5 ˚C (blue), 23 ˚C (yellow), and 45 ˚C 

(red)—in columns of 10 g ferrihydrite-coated sand. Solution conditions: pH 7.5 (buffered with 1.35 mM PIPES), and I = 
0.015 M, C0 = 10 mg/L, and flow rate = 50 µL min-1. 

 

B.2 Flow rate studies 

Continuous flow studies were performed at 10 µL min-1 and 250 µL min-1 flow rates to 

determine the kinetic limitations of the system. The same materials and methods were used as 

described in the main manuscript except for the following differences. A fresh batch of ferrihydrite-

coated quartz sand (FHQ) was used in the flow rate studies. It had a surface area of 3.7140 m2 g-1 as 

measured by BET. Solutions of SRNOM and ESHA were filtered through 0.22 µm polyethylene 
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sulfone (PES) filters. There was no visual difference in the amount of material trapped by the cellulose 

nitrate and PES filters and no meaningful difference in DOM concentrations after filtration. 

 

 

Figure B.2. Breakthrough curves of SRNOM and ESHA for experiments conducted at 10 µL min-1 and 250 µL min-1 
flow rates and 23 and 45˚C. As measured by UV absorbance spectroscopy at 254 nm. 

 

B.3 Fast shaker speed kinetic batch study 

A preliminary batch experiment was carried out with 45 mL of DOM solution added to 0.5 g 

of FHQ (surface area = 3.714 m2 g-1) and placed on rotary shaker table at 200 rpm. By 1 hr, all sample 

solutions were cloudy from suspended ferrihydrite. To prevent spectroscopic interference of 

ferrihydrite, aliquots were centrifuged and the supernatant extracted prior to analysis by UV 

absorbance spectroscopy at 254 nm. 
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Figure B.3. Results of high shaker speed batch experiment. Amount of DOM adsorbed to ferrihydrite-coated sand by 

surface area at each time point. Points represent medians and error bars represent the range of values for triplicates, 
except for ESHA at 35 ˚C, which is a duplicate. 50 mL of 27 mg/L ESHA or 23 mg/L SRNOM in SGM at pH 6.9 ± 

0.1 added to 1 g ferrihydrite-coated sand. 

 

Table B.1. Mean and standard deviation of DOM adsorbed to ferrihydrite-coated sand in fast (200 rpm) and slow (80 
rpm) shaker speed batch studies studies (n = 3 for all but ESHA at 25 ˚C and 200 rpm, where n = 2). At 80 rpm, 50 mL 
of DOM solution was added to 1g of ferrihydrite-coated sand. At 200 rpm, 45 mL of DOM solution was added to 0.5 g 

of ferrihydrite coated sand. Total amount of DOM adsorbed is normalized to the BET-measured surface area of 
ferrihydrite-coated sand. 

  Total DOM sorbed (µg m-2) 

DOM Temperature (˚C) 80 rpm 200 rpm 

ESHA 
7 71.7 ± 5.7 -- 
23/25 90.9 ± 3.0 76.70 ± 0.09 
45 117.4 ± 3.8 150 ± 21 

    

SRNOM 
7 164 ± 12 -- 
23/25 192 ± 11 93.1 ± 8.8 
45 232.6 ± 1.3 149.0 ± 6.2 

 

Table B.2. SUVA254 values (mean ± standard deviation) for final supernatant in batch studies conducted with 50 mL of 
27 mg/L ESHA or 23 mg/L SRNOM in SGM at pH 6.9 ± 0.1 added to 1 g ferrihydrite-coated sand, at 80 rpm shaker 

speed. 

 

 

 

 

DOM Temperature (˚C) SUVA254 (L mg C-1 m-1) 

ESHA 

Stock 8.86 
7 9.44 ± 0.74 
23 9.49 ± 0.54 
45 9.64 ± 0.56 

   

SRNOM 

Stock 4.72 
7 4.81 ± 0.10 
23 5.56 ± 0.39 
45 4.76 ± 0.39 
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Table B.3. pH values of stock solutions and final samples from batch kinetics experiment. For sample measurements, 
mean and standard deviation of 3 samples are given. 

 Temperature 

Sample 7 ˚C 23 ˚C 45 ˚C 

Stock ESHA 6.80 6.98 6.90 

Sample ESHA 6.17 ± 0.45 6.49 ± 0.03 6.61 ± 0.06 
    

Stock SRNOM 6.68 6.84 6.79 

Sample SRNOM 7.21 ± 0.30 6.82 ± 0.10 6.86 ± 0.01 
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APPENDIX C: CHEMICAL CHARACTERIZATION OF UNSORBED DISSOLVED 

ORGANIC MATTER FRACTIONS 

 
 

A major goal for Chapter 3 was the determination of temperature effects on sorptive 

fractionation of dissolved organic matter (DOM) on ferrihydrite. Understanding what types of 

molecules preferentially sorb at different temperatures could provide insight into favored mechanisms 

of interaction and the relative chemical recalcitrance of microbially accessible and inaccessible organic 

matter pools. Due to the complex nature of DOM and the small sample quantities created from the 

dynamic flow experiments, standard organic analytical techniques could not be used to characterize 

DOM chemistry. I therefore elected to use Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) and nuclear magnetic resonance (NMR) spectroscopy. Despite substantial 

efforts to prepare clean, salt-free samples, I was unable to obtain high enough signal to noise ratios to 

use data collected from either technique. Descriptions of the methods used to produce samples and 

some example data are provided here to document the extensive work done for these analyses. The 

appendix concludes with a summary of the work and recommendations for future work. 

C.1 FT-ICR-MS analysis 

C.1.1 Preparation of samples 

Several effluent samples from continuous flow experiments (described in Chapter 3) were 

selected for chemical characterization via electrospray ionization (ESI) FT-ICR-MS, an ultra-high 

resolution mass spectrometry technique uniquely capable of distinguishing amongst tens of thousands 

of compound molecular weights present in DOM. Samples were collected from the low (early), 

middle, and high portions of the breakthrough curves of the Suwannee River reverse osmosis natural 

organic matter (SRNOM) and Elliott Soil humic acid (ESHA) sorption experiments at 7, 25, and 45 

˚C. Three to five effluent fractions were combined to increase the quantity of DOM for analysis. Solid 
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phase extraction (SPE) using Agilent Bond Elut PPL cartridges was performed on all samples 

according to the method published in Dittmar et al. (2008) to desalinate and concentrate DOM 

solutions. Briefly, combined samples were acidified to pH 2 with trace metal grade HCl solution to 

increase extraction efficiency of carboxylates and phenols. The solid phase was conditioned using 

liquid chromatography mass spectrometry (LCMS)-grade methanol and pH 2 solution. Samples were 

transferred to cartridges and allowed to infiltrate by gravity. The column was then rinsed with pH 2 

solution, dried under N2 gas, and DOM extracted with 500 µL LCMS-grade methanol. Extracts were 

stored at 4 ˚C until analysis. 

ESHA, as a humic acid fraction, becomes less soluble with decreasing pH, so the Dittmar SPE 

method did not work well for samples containing this type of DOM. Not only did some material 

aggregate and pass through the cartridge, some also remained on the cartridge after methanol 

extraction. Several methanol extracts also flocculated when stored for several weeks at 4 ˚C. For these 

reasons, it was nearly impossible to prepare adequate ESHA samples for FT-ICR-MS analysis. 

 SRNOM extracts were analyzed at the High Magnetic Field Laboratory in Tallahassee, FL, 

using a custom-built FT-ICR-MS (Kaiser et al., 2011) equipped with a 9.4 T horizontal 200 mm bore 

diameter superconducting solenoid magnet (Oxford Corp., Oxford Mead, UK) operated at room 

temperature. During analysis the samples clogged the nano-capillary, which made dilution necessary. 

Depending on the data quality, 100-200 scans were collected in negative ion mode, and spectra were 

calibrated internally using a “walking” calibration equation based on highly abundant homologous 

mass series (Savory et al., 2011).  

C.1.2 FT-ICR-MS data 

Sample spectra were dominated by surfactant-like contaminant peaks, which prevented 

accurate calibration and chemical formula assignments (Figure C.1). All sample spectra were 

determined to be of insufficient quality for further analysis. Some continuous flow experiments were 
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repeated with the goal of producing clean samples for FT-ICR-MS. All glassware was combusted at 

400 ˚C for 4+ hours, plastic materials were washed, sonicated, and rinsed with methanol, filters were 

rinsed with 200 mL of MilliQ water prior to filtration, and heat stable reagents were combusted at 400 

˚C. Unfortunately, these efforts still yielded contaminated results. 

 

Figure C.1. Sample mass spectrum for ESHA effluent sample. Most peaks could not be assigned formulas. 

 

C.2 NMR analysis 

C.2.1 Preparation of samples 

Several ESHA and SRNOM effluent and stock samples from continuous flow experiments 

were selected for NMR analysis. As for FT-ICR-MS, concentration of samples was required. 

Lyophilization led to precipitation of large amounts of salts, which prevented redissolution of OM 

into the small volume of D2O necessary for NMR analysis using a microprobe. Therefore, I used the 

SPE method described in Section B.1.1 (with the substitution of methanol-d4 for methanol in the final 

elution step) to desalinate and concentrate the samples. Extracts were then dried down under N2 gas 

and redissolved in 10 µL methanol-d4 and transferred to 1 mm NMR tubes. 
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C.2.2 NMR data 

1H-NMR analyses were performed at the Environmental NMR Laboratory at the University 

of Scarborough, Toronto. Spectral quality suffered from some of the same issues as the mass spectra—

contaminants were apparently concentrated during the SPE process and overshadowed the small 

signals coming from DOM (Figure C.2). Spectra were also characterized by poor resolution and overall 

low signals. Comparison of freeze-dried stock DOM material dissolved in D2O and methanol-d4 also 

revealed problematic solvent effects from the methanol-d4. 

 

Figure C.2. Sample 1H NMR spectrum for SRNOM effluent 

. 

C.3 Conclusions 

Neither analysis method succeeded in producing useful spectra. Sample concentration using 

SPE increased contaminant concentrations, and lyophilization produced high salt concentrations that 

prevented redissolution of DOM. The SPE method commonly used for preparation of DOM samples 

for FT-ICR-MS analysis (Dittmar et al., 2008) performs poorly for ESHA, which aggregates at low 

pH. Based on these observations, I conclude that the effluent samples gathered from the continuous 

flow adsorption experiments were too dilute (for laboratory-prepared samples) to be successfully 

analyzed with high resolution mass spectrometry and NMR. Future experiments could improve 
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sample quality by (a) using higher concentrations of DOM, (b) using minimal salt, and (c) using all 

new, high purity chemicals and meticulously cleaning glass and plastic ware. For ESHA and other soil 

organic matter with low solubility in acidic solutions, an alternative concentration and desalination 

method needs to be employed for FT-ICR-MS sample preparation. 
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APPENDIX D: SUPPORTING INFORMATION FOR CHAPTER 4 - 

HYDROGEOMORPHIC CONTROLS ON SOIL CARBON QUANTITY AND 

COMPOSITION IN COLORADO SUBALPINE WETLANDS 

 
 

D.1 Detailed site description  

In Fraser Experimental Forest (FEF), average temperature ranges from -10 °C to 13 °C, and 

precipitation at headquarters (2725 m) is 58 cm, falling primarily as snow (Alexander et al., 1985). FEF 

is comprised of 8 watersheds; slope wetlands in this study were located in two of these (Retzer, 1962). 

One slope wetland (S1 - N 39˚ 54.133, W 105˚ 54.265) is located in the Dead Horse (DH) watershed. 

The other two slope wetlands (S2 - N 39˚ 52.946, W 105˚ 51.843 and S3 – N 39˚ 53.115 W 105˚ 

51.811) are located in the Fool Creek (FC) watershed. The DH watershed is slightly larger than the 

FC watershed with approximate sizes of 925 and 714 acres, respectively. FC is primarily composed of 

northwest facing slopes, whereas DH is primarily southwest facing. S1 is approximately 53 m long 9 

to 16 m wide at an elevation of 2867 to 2889 m. There are two tributaries connecting S1 to the 

surrounding forest that are located along one side, and through the wetland. There is standing water 

at the top for much of the year (samples from this location were not included in the study). In 1956, 

the wetlands of the FC watershed were mapped; in total there were 122 recorded spring (slope) 

wetlands in this watershed (Retzer, 1962). All wetlands are located at comparable elevation ranges 

(2700 – 3300 m). Of the two FC slope wetlands in this investigation, S2 (~3076-3089 m) is at higher 

elevation than S3 (~3037-3047 m), with both belonging to the same spring system. S2 is about 35 m 

long (up to downslope) and about 6 to 29 m wide. There is one main tributary that is located on the 

northeast side of the wetland that is generally flowing throughout the year. S3 is approximately 37 m 

long, and the width ranges from 31 to 13 m, becoming progressively narrower downslope. S3 is fed 

by two tributaries, one is located on the northeast side that has running water much of the year, and 
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the other smaller tributary is located through the center of the wetland. S3 has a perennial pool 

upslope, samples from which were not included in this study.  

The depressional wetlands are located adjacent to FEF, immediately west of headquarters (39˚ 

54’ N, 105˚ 51’ W). Eleven different depressional wetlands were located within this area, of which 

three were chosen for further study (D1, D2, and D3). D1 contains a large pond in its center which is 

perennially saturated. Immediately following spring run-off, D2 and D3 are saturated with water (May-

June), and slowly dry down during the summer months. At the beginning of fall (August-September), 

the surface soil of D2 and D3 is generally dry and cracked. 

D.2 Bulk density 

Bulk density was estimated for carbon stock calculations. For organic soil depths, I used the 

literature value of 0.224 g/cm3  (Rawls, 1983). For mineral soils, the bulk density of the soil in g/cm3 

was estimated using the equation:  

  Soil bulk density =    100         (1) 
                % organic matter + 100 - % organic matter 
                      0.224       mineral bulk density 
 

Where % organic matter is calculated using: 

    % organic matter = % soil organic carbon x 1.9   (2) 

and mineral bulk density is deduced from charts of texture percents (Rawls, 1983). Results are 

displayed in Table D.1. 
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Table D.1. Bulk density in g cm-1 values of soils from all sites within both types of wetland, depressional (D) and slope 
(S), used for carbon stock calculations. Locations within D wetlands are center/low (L) and mid (M). Locations with 

slope wetlands are midslope (M) and lower (L). 

 Sample 

Depth (cm) D1-L D1-M D2-L D2-M D3-L D3-M S1-M S1-L S2-M S2-L S3-M S3-L 

0-10 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 

10-20 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 1.31 

20-30 0.224 0.88 0.224 0.224 0.84 0.224 0.224 0.96 0.224 0.91 0.224 1.35 

30-40 0.224 0.90 0.224 0.224 0.79 0.224 0.224 1.20 0.224 0.98 0.99 1.49 

40-50 0.224 0.93 0.224 0.224 0.81 0.224 0.79 1.11 0.224 1.46 1.42 1.53 

50-60 0.224  0.224 0.224 1.28 0.224 1.43 1.33 1.14 1.51 1.50 1.53 

60-70 0.224   0.224 1.51 0.224 1.46  1.50    

70-80      0.224 1.48  1.48    

             

 

Table D.2. Horizon delineations and colors for middle (M) and lower (L) sites in each depressional and spring wetland. 

 

 

 

Horizon Depth (cm) Color Horizon Depth (cm) Color Horizon Depth (cm) Color 

Depressional wetlands        
D1-M   D2-M   D3-M   
Oi 0-9   Oi 0-15  Oi 0-10  
Bg1 9-26 GL1 4/5 

GY 

A 15-20 10 YR 3/2 A 10-40 1 YR 3/2 

Bg2 26-43 10 YR 8/1 Bg1 20-30 5 YR 6/1 Bw 40-75 10 YR 4/2 
   Bg2 30-70 2.5 Y 6/1    
         

D1-L   D2-L   D3-L   
Oi 0-6  Oi 0-3  Oi 0-3  
Bg 6-65 10 YR 7/1 Bg1 3-41 10 YR 6/1 BA 3-16 10 YR 6/2 
   Bg2 41-57 GL 1 4/10 Y Bg1 16-37 7.5 YR 7/1 

      Bg2 37-53 GL 1 4/10 Y 
      2C 53-68 10 YR 8/1 
         
Slope wetlands        

S1-M   S2-M   D3-M   
Oi 0-26  Oi 0-26  Oi 0-15  
A 26-47 10 YR 4/2 Bw 26-34 10 YR 4/1 A 15-30 10 YR 3/1 
Cg 47-80 GL 1 5/10 Y Ab 34-50 2.5 Y 3/2 Bg 30-45 GL 1 4/10 

GY 
   Cg 50-80 GL 1 5/10 

GY 
2Cg 45-54 GL 1 7/10 Y 

         

S1-L   S2-L   S3-L   
Oi 0-10  Oi 0-10  Oi 0-8  
A 10-17 10 YR 3/2 Oe 10-22  2Cg1 8-40 GL 1 4/10 Y 
Bg1 17-25 10 YR 6/1 A 22-31 2.5 Y 3/2 2Cg2 40-60 7.5 YR 6/8 

Bg2 25-60 5 Y 6/2 Cg 31-58 GL 1 5/10 
GY 
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Figure D.1. Dissolved oxygen (DO) measurements from wells at middle (red squares) and lower (green triangles) sites 
in each wetland. 
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Figure D.2. Redox measurements from wells at middle (red squares) and lower (green triangles) sites in each wetland. 
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Figure D.3. Example 13-C NMR spectra from S3 showing integration regions (1) 0-45 ppm: alkyl C, (2) 45-110: O-alkyl 
C, (3) 110-160: aromatic C, and (4) 160-190: carbonyl C. 

 

   

Figure D.4. Photographs showing vegetation in D1 and S3. 

D1 S3 
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Figure D.5. Soil respiration rates from representative slope and depressional wetlands, collected from May to 

September, 2012. 

 

Table D.3. C:N ratios for surface (0-20 cm) and deep (>20 cm) soils in each wetland class 

 Depth Median  Mean Standard deviation Range 

Depressional Surface 13.5 13.4 1.8 11.1-16.0 

Depressional Deep 15.5 15.2 2.8 8.2-21.6 

Slope Surface 18.6 18.2 3.8 12.7-24.3 

Slope Deep 15.0 16.7 6.3 8.7-38.1 

 

 

Figure D.6. NMR Integrations for dominant vegetation in and around wetlands, including aspen litter, fir litter, spruce 
litter, pine needles, grass leaves, and sedge leaves. 
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