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ABSTRACT 

 

 

 

NOVEL METHODS TO QUANTIFY ALEATORY AND EPISTEMIC UNCERTAINTY IN 

HIGH SPEED NETWORKS 

 

 

With the sustained miniaturization of integrated circuits to sub-45 nm regime and the increasing 

packaging density, random process variations have been found to result in unpredictability in 

circuit performance. In existing literature, this unpredictability has been modeled by creating 

polynomial expansions of random variables. But the existing methods prove inefficient because 

as the number of random variables within a system increase, the time and computational cost 

increases in a near-polynomial fashion. In order to mitigate this poor scalability of conventional 

approaches, several techniques are presented, in this dissertation, to sparsify the polynomial 

expansion. The sparser polynomial expansion is created, by identifying the contribution of each 

random variable on the total response of the system. This sparsification is performed primarily 

using two different methods. It translates to immense savings, in the time required, and the 

memory cost of computing the expansion. One of the two methods presented is applied to 

aleatory variability problems while the second method is applied to problems involving 

epistemic uncertainty. The accuracy of the proposed approaches is validated through multiple 

numerical examples. 
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CHAPTER 1: INTRODUCTION 

 

As the technology we use advances, there is an ever-growing need to get high performance in 

electronic devices and to make it compact at the same time. One of the ways to achieve high 

performance is to put increasingly higher number of transistors on the chip. To put more number 

of transistors on a chip that has a smaller area constraint, as compared to the previous generation 

of the same technology, the transistors themselves need to be made smaller. As of today, 

transistors of the 10nm technology node are being processed. But with this level of 

miniaturization, new challenges are raised which motivates new areas of research. This work 

aims at addressing to resolve some of these challenges. 

1.1 Problem statement  

With the sustained miniaturization of integrated circuits to sub-45 nm regime and the increasing 

packaging density, random process variations have been found to result in unpredictability in the 

performance of high-speed circuits. As a result, contemporary computer aided design (CAD) 

tools need to be flexible enough to be able to predict the impact of parametric uncertainty on 

general circuit responses. This unpredictability has been traditionally modeled using brute-force 

Monte Carlo (MC) method, where a large set of inputs are generated based on the PDFs of the 

random variables and each input is simulated through some commercial circuit solver such as 

SPICE [1]-[6]. The results of these simulations are then collected and any statistical information 

required about the response of the circuit is acquired from these set of results. Although the 

method is simplistic, the slow convergence of this approach requires an increasingly large 

number of deterministic simulations of the network model to achieve accurate statistical results, 

as the number of dimensions in the system go on increasing. This method is particularly 
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inefficient when a single simulation of the network is computationally expensive and time 

consuming. This makes the MC approach computationally infeasible for analyzing large 

networks [7]. 

To address the slow convergence of the MC approach, new robust uncertainty quantification 

techniques have been introduced based on the generalized polynomial chaos (PC) theory, that 

model the uncertainty in the network response as an expansion of predefined orthogonal 

polynomial basis functions of the input random variables [7]-[48]. The coefficients of the PC 

expansion form the new unknowns of the system and are evaluated through either intrusive [7]-

[22] or non-intrusive approaches [23]-[42]. 

Among intrusive approaches, the Stochastic Galerkin (SG) approach is extensively used, since 

this approach is highly accurate and it only requires the simulation of a single augmented 

coupled deterministic network model to determine the PC coefficients [8]-[22]. The problem 

with this method though is that the computation cost of the creation of a coupled deterministic 

network model grows near-exponentially with the number of random variables in the circuit. The 

problem is further exacerbated for non-linear networks where the non-linearity in the network 

has to be further augmented in the network model using additional dependent voltage / current 

sources. While recent  works  such as the  decoupled  PC  algorithm  [17]  and  the  stochastic  

testing  method [43] can mitigate the time and memory costs of the standard SG approach, both 

approaches require the development of intrusive codes that preclude the direct exploitation of 

SPICE-like legacy circuit simulators. These bottlenecks have limited the applicability of the SG 

approach to problems featuring only low-dimensional random spaces [49], [50].  

Among non-intrusive approaches, the pseudo-spectral collocation method [24], the linear 

regression approach [23], [26], [27] and the non-intrusive stochastic collocation approach [25] 
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are some of the most widely used methods for VLSI and EM problems. These methods are not as 

accurate as the intrusive methods, but they can make use of commercial circuit-solvers such as 

SPICE. Since these approaches create a meta-model of the original system, any value of the 

random variable located within the original random space can be probed into the PC expansion 

generated and any statistical result of the network response can be generated, with minimal loss 

in accuracy. An added benefit is that since the network is treated as if it was a decoupled 

network, the individual simulations can be parallelized. 

Irrespective of what approach is used, they scale poorly as the number of random dimensions in 

the network increase [49], [50]. Thus, any of these approaches become computationally 

expensive for problems involving higher numbers of random variables. 

1.2 Goals of the thesis  

Among non-intrusive approaches, the linear regression approach is one of the most widely used 

approaches [26], [31], [32], [33], [50]. This approach probes the PC expansion of the network 

responses at an oversampled set of multi-dimensional nodes located within the random space, 

thereby leading to the formulation of an overdetermined set of linear algebraic equations. These 

equations can be solved in a linear least-squares sense to directly evaluate the PC coefficients of 

the network responses [50]. The multi-dimensional set of nodes is typically a subset of the set of 

the tensor product of the unidimensional quadrature nodes [32], [33]. This small subset of nodes 

is referred to as the design of experiments (DoE). However, blindly choosing the DoE can lead to 

inaccurate results as is demonstrated in the work of [31]. Conventionally, the linear regression 

approach has not identified any particular formal method to identify or optimize the DoE [32], 

[33]. Although the stochastic testing approach does have a reliable method where the number of 

DoE is equal to the number of unknown PC coefficients [43], [44], this technique does not 
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choose DoE based on any optimality criterion and hence does not guarantee the maximum 

possible accuracy of results. This work chooses a random set of DoE to begin with, and then uses 

the D-optimality criterion to optimize the chosen set of DoE [51], [52]. This work also uses the 

sparse linear regression (SPLINER) approach of [27] to further reduce the time required and the 

cost of computing the PC coefficients. Even then, the linear regression approach scales in a near-

quadratic manner as the number of random dimensions increases.  

This work attempts at further reducing the scalability issues of the above mentioned approaches. 

To do so, it uses the high dimensional model representation (HDMR) formulation of [53] to 

quantify the impact of each random dimension acting alone on the response of the network. This 

information is obtained by generating 1-D PC expansions for each random dimension and then 

analyzing the impact of each dimension by computing sensitivity indices based on the variance 

of these 1-D expansions. Once the sensitivity indices for each random dimension are obtained, 

this information can be used to intelligently prune some of the higher order terms of the PC 

expansion [29]. This results in a smaller set of coefficients in the resultant PC expansion, and 

thus reduces the time and memory cost of computing the PC coefficients. The way the terms are 

pruned is by computing the sensitivity index, for each dimension, in increasing orders of 

expansion. Once the enrichment in the sensitivity index for a particular dimension, from a lower 

order of expansion to the higher order of expansion, falls below a certain threshold, the previous 

order of expansion is ascribed to that random dimension. This creates an anisotropic expansion 

as opposed to an isotropic expansion discussed so far. The accuracy of this method and the 

speedup it provides is demonstrated using multiple numerical examples. Finally, the proposed 

method is combined with the method of [28] to extract an even sparser PC expansion [42]. 
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The above mentioned methods can be applied effectively to problems where the PDF of the 

random variables is known or there is sufficient information about the probability distribution of 

the random variables. But for a large number of real-life problems, there is insufficient 

information about the probability distribution of the random variables and that, more information 

is acquired as more simulations of the system are carried out. This is classified as epistemic 

uncertainty. This work proposes a novel method to reduce the computation cost of generating a 

PC expansion for problems involving epistemic uncertainty, which uses the HDMR formulation 

[53] to analyze the impact of each epistemic random dimension. Since there is insufficient 

information about the random dimensions themselves, the impact of each random dimension 

cannot be quantified using the variance based method mentioned earlier [23], [47]. Instead, this 

work creates a new method to quantify this epistemic uncertainty and thus creates a set of 

sensitivity indices using this method. By using the information of the sensitivity indices, this 

work then eliminates all those random dimensions whose value of sensitivity index lies below a 

certain pre-determined threshold. By eliminating the random dimensions with the lowest impact 

on the response of the network, a reduced dimensional PC expansion is created that requires only 

a fraction of the time and memory cost it requires to compute the full dimensional PC expansion. 

Further this generated PC expansion can be probed to obtain the statistical results of any range of 

values of random dimensions that lie within the original random space. 

1.3 Organization of the thesis  

This  thesis  attempts at being  self-explanatory  for  the  reader without   a  major  need  for any  

prior  knowledge  in uncertainty  quantification.  Most of the state of the art PC approaches are 

reviewed.  Exploited  techniques  are explained  in  detail,  and  novel  ideas are  supported  with  

extensive  numerical  examples  and  discussions.  The rest of the text is organized as follows. 
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Chapter 2 provides a review of basics of the generalized PC (gPC) theory and describes the 

general intrusive and non-intrusive approaches used to create a gPC expansion. Since the thesis 

primarily uses the linear regression approach, this particular non-intrusive technique is explained 

in greater detail. It also discusses the methods used to select the best set of design of experiments 

(DoE), including the D-optimality criterion and the Fedorov search algorithm. Chapter 3 deals 

with the improvements made to the conventional linear regression approach using the HDMR 

principles. It primarily talks about a novel method developed to reduce the number of terms in 

the PC expansion. Numerical examples are provided to demonstrate the accuracy of the proposed 

approach against conventional linear regression approach. Chapter 4 uses an HDMR formulation 

to formulate sensitivity indices which enable the truncation of a high dimensional PC model to a 

reduced model. Since the problems involve random variables of an epistemic nature, the 

formulation of sensitivity indices is done in a separate manner as compared to the one in Chapter 

3. To evaluate the accuracy of the proposed method, this work compares the results of the 

proposed method against the results obtained from Monte Carlo simulations. The reason for 

choosing MC simulations is that since we are using high dimensional problems, generating full-

blown PC expansions can prove to be more computationally expensive than MC simulations. 
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CHAPTER 2: KNOWN UNCERTAINTY QUANTIFICATION METHODS 

 

This chapter is aimed at familiarizing the reader with some of the existing methods used to 

address the problem of uncertainty quantification. It also provides the information necessary to 

further help the reader understand the focus of this thesis. First, the basis of this entire research, 

the generalized polynomial chaos (gPC) theory is introduced. Next, a brief overview of the 

uncertainty quantification techniques involving various intrusive and non-intrusive approaches is 

presented. Since the thesis uses the linear regression technique extensively, this technique is 

elaborated in greater detail.  Next, a few methods used to identify and remove statistically 

insignificant terms in the gPC expansion are discussed. These methods serve as the basis for 

future chapters in this thesis.  

2.1 Generalized Polynomial Chaos (gPC) theory 

Polynomial chaos, originally known as the Wiener chaos expansion, was introduced by Dr. 

Norbert Wiener [55], [56], where Hermite polynomials were used to model stochastic processes 

with Gaussian random variables. Although it was originally applied to only Gaussian 

distributions of random variables, a generalized framework was soon developed that was 

subsequently used for all kinds of distributions of random parameters, both known (Normal, 

Uniform, Beta, Gamma, etc.) [54], and unknown. This generalized framework was later termed 

as the generalized polynomial chaos theory. Today, the gPC theory is widely used in several 

engineering fields such as VLSI design, fluid dynamics and space research to name a few. 

2.1.1 Basics of the gPC theory 

If the uncertainty in a system can be modeled using one random variable λ, then the output of 

that system can be modeled as an expansion of orthogonal polynomials weighted by the 
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polynomial chaos (PC) coefficients. Mathematically, the system response X(t, λ) can be 

represented as  

𝑋(𝑡, 𝜆) =  ∑𝑐𝑘(𝑡)𝛷𝑘(𝜆)

∞

𝑘=0

(2.1) 

where 𝑐𝑘(t) is the kth time dependent PC coefficient and 𝛷𝑘(𝜆) is a unidimensional polynomial 

basis term orthogonal with respect to the probability density function (PDF) of λ. Notice that 

(2.1) can potentially have an infinite number of terms in it, but for all practical purposes, the 

expansion is truncated to m+1 terms. 

𝑋(𝑡, 𝜆) =  ∑𝑐𝑘(𝑡)𝛷𝑘(𝜆)

𝑚

𝑘=0

(2.2) 

where m is the maximum degree of expansion of the polynomial basis terms. It is necessary for 

the polynomials to be orthogonal with respect to the PDF of the random variable, because the 

inner product of two orthogonal basis terms exhibits an interesting property which simplifies the 

calculation of the PC coefficients. The inner product of two polynomial basis terms can be 

mathematically expressed as 

< 𝛷𝑖(𝜆)𝛷𝑗(𝜆) > =  ∫ 𝛷𝑖(𝜆)𝛷𝑗(𝜆)

Ω

𝜌(𝜆)𝑑𝜆 =  𝛼𝑖
2𝛿𝑖𝑗 (2.3) 

where <,> is the inner product notation, Ω denotes the space of the random variable, ρ represents 

the PDF of λ, 𝛼𝑖
2 is a constant and 𝛿𝑖𝑗 denotes the Kronecker’s delta function. The interesting 

property mentioned earlier is that 𝛿𝑖𝑗 = 0 for i ≠ j and 𝛿𝑖𝑗 = 1 for i = j. This translates to the inner 

product of two orthogonal basis terms to be zero, for i ≠ j, and 𝛼𝑖
2, for i = j. Typically the 

orthogonal basis terms are normalized with the value of 𝛼𝑖 and thus, the rest of this thesis uses 
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the term orthonormal and orthogonal interchangeably. The choice of the polynomial function is 

made based on the Wiener-Askey scheme [54], which states that there is a one-to-one 

correspondence between the class of the orthogonal polynomials and the distribution of λ. Table 

2.1 shows the choice for the class of orthogonal polynomials, made for the corresponding 

standard distributions of λ. Although it is possible to use a different polynomial basis instead of 

the one mentioned in Table 2.1, it has been established that the Wiener-Askey scheme yields the 

optimal convergence for the PC expansion. In case of arbitrary unknown distributions, the 

orthogonal polynomials can still be theoretically constructed. 

Table 2.1: Wiener-Askey Scheme for gPC 

Distribution of λ Class of orthogonal polynomials Support Ω 

Gaussian Hermite (-∞,+∞) 

Uniform Legendre [-1,1] 

Beta Jacobi [-1,1] 

Gamma Laguerre [0, ∞) 

 

2.1.2 Generation of one-dimensional orthonormal polynomials 

For a Gaussian random variable, the PDF 𝜌(𝜆) is mathematically expressed as  

𝜌(𝜆) =  
1

√2𝜆
𝑒
−𝜆2

2 (2.4) 

Referring to the Wiener-Askey scheme, the Hermite polynomials are chosen to form the basis of 

the PC expansion since they are orthogonal to the Gaussian distribution. The Hermite 

polynomials can be computed, either using an analytic formula [54] 

𝛷𝑘(𝜆) =  (−1)
𝑘𝑒

𝜆2

2
𝑑𝑘

𝑑𝜆𝑘
𝑒
−𝜆2

2 (2.5) 

or alternatively, using a three-term recurrence relation 
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𝛷𝑘+1(𝜆) =  𝜆𝛷𝑘(𝜆) − 𝑘𝛷𝑘−1(𝜆) (2.6) 

where 𝜙0 = 1 and 𝜙1 = 𝜆. The normalizing factor 𝛼𝑖
2 for Hermite polynomials can be found as  

𝛼𝑖
2 = < 𝛷𝑖(𝜆), 𝛷𝑖(𝜆) > = 𝑖! (2.7) 

Similarly, for a uniform random variable, the PDF 𝜌(𝜆) is mathematically expressed as 

𝜌(𝜆) =  {
0.5,            − 1 ≤  𝜆 ≤ 1
0,                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.8) 

Now the Legendre polynomials are chosen since they are orthogonal with respect to the PDF of 

λ. To compute the polynomials analytically, the following formula is used [54]. 

𝛷𝑘(𝜆) =  
1

2𝑘𝑘!

𝑑𝑘

𝑑𝜆𝑘
(𝜆2 − 1)𝑘 (2.9) 

Alternatively, one can also use the three-term recurrence relation. 

𝛷𝑘+1(𝜆) =  
2𝑘 + 1

𝑘 + 1
𝜆𝛷𝑘(𝜆) − 

𝑘

𝑘 + 1
𝛷𝑘−1(𝜆) (2.10) 

where 𝜙0 = 1 and 𝜙1 =  𝜆. The normalizing factor 𝛼𝑖
2 for Legendre polynomials can be found as 

𝛼𝑖
2 = < 𝛷𝑖(𝜆), 𝛷𝑖(𝜆) > =  

1

2𝑖 + 1
(2.11) 
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For illustration purposes, the first six unidimensional Hermite and Legendre polynomials are 

listed in Table 2.2. 

2.1.3 Generation of multi-dimensional orthonormal polynomials 

In most practical applications, there are multiple random variables in a stochastic network. In 

these networks, it is necessary to account the effects of the random parameters, acting together, 

on the total response of the system. To do so, a multi-dimensional PC expansion is constructed, 

where each random variable is represented by its own unique dimension. In case of multi-

dimensional PC, λ represents a vector of n random variables 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑛]
𝑇. The vector 

of random variables is designated with a transpose sign (T) to represent n mutually uncorrelated 

random variables. Similar to (2.2), a multidimensional PC expansion is written as 

Table 2.2: First six unidimensional Hermite and Legendre polynomials 

 

Bases Orthonormal Hermite polynomial Orthonormal Legendre polynomial 

𝛷0(𝜆) 1 1 

𝛷1(𝜆) 𝜆 √3 𝜆 

𝛷2(𝜆) (𝜆2 − 1)/ √2 √5 (
3

2
 𝜆2 − 

1

2
) 

𝛷3(𝜆) (𝜆3 − 3 𝜆)/ √6 √7 (
5

2
 𝜆3 − 

3

2
 𝜆) 

𝛷4(𝜆) (𝜆4 − 6 𝜆2 + 3)/ (2√6) 3 (
35

8
 𝜆4 − 

30

8
 𝜆2 + 

3

8
) 

𝛷5(𝜆) (𝜆5 − 10 𝜆3 + 15 𝜆)/ (2√30) √7 (
63

8
 𝜆5 − 

70

8
 𝜆3 + 

15

8
 𝜆) 
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𝑋(𝑡, 𝜆) =  ∑𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑃

𝑘=0

(2.12) 

 

where 𝜙𝑘(𝜆)  represents a multi-dimensional orthonormal basis term and the expansion is 

truncated to P terms such that  

𝑃 + 1 = (
𝑚 + 𝑛

𝑚
) =  

(𝑚 + 𝑛)!

𝑚! 𝑛!
(2.13) 

The multi-dimensional basis terms 𝜙𝑘(𝜆) are the product of the unidimensional polynomial basis 

term across each dimension. 

𝜙𝑘(𝜆) =  ∏𝛷𝑘𝑖(𝜆𝑖)

𝑛

𝑖 =1

 𝑤ℎ𝑒𝑟𝑒 ∑𝑘𝑖 ≤ 𝑚

𝑛

𝑖=1

(2.14) 

In case of multi-dimensional polynomial bases, it is possible that different random variables 

within a network have different distributions. In this case, the unidimensional basis for each 

random variable is independently chosen according to the Wiener-Askey scheme and then 

multiplied to form the multidimensional bases. These multidimensional polynomials are now 

orthonormal to the joint PDF of the input random variables. Since the variables are mutually 

uncorrelated, their joint PDF can be expressed as the product of their individual PDFs. 

< 𝜙𝑖(𝜆)𝜙𝑗(𝜆) > =  ∫ 𝜙𝑖(𝜆)𝜙𝑗(𝜆)

Ω

𝜌(𝜆)𝑑𝜆 = 𝛿𝑖𝑗 (2.15) 

Since the unidimensional polynomials were normalized, the inner product of two multi-

dimensional orthonormal polynomials is equal to one, for i = j, and zero, for i ≠ j. 
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For illustration purposes, the P+1 multi-dimensional polynomial bases for a 2 dimensional, 

fourth order PC expansion are listed below. 

The total degree across all dimensions remains constant in each row and is incremented row by 

row [54]. 

2.1.4 Generation of statistical moments using PC coefficients 

The main advantage of generating a PC expansion to model the uncertainty in a system is that 

the statistical moments for that system can be generated by using the PC metamodel. The mean 

and standard deviation of the output can be obtained as a function of the coefficients by 

integrating over the random space Ω𝑛. The PDF and other higher order statistical moments can 

be generated by probing the PC metamodel at a large number of Monte Carlo (MC) samples. 

Note that it is not necessary to simulate the network at the MC samples, but rather the output can 

be computed analytically using the PC metamodel. 

2.1.4.1 Calculation of the arithmetic mean 

The arithmetic mean is the first order statistical moment. The mean shows the value of the 

response when no parametric uncertainty acts on the network. Mathematically, the expected 

value or the mean of the output 𝑋(𝜆) is expressed as 

 

𝛷0(𝜆1)𝛷0(𝜆2) 

𝛷1(𝜆1)𝛷0(𝜆2)    𝛷0(𝜆1)𝛷1(𝜆2) 

𝛷2(𝜆1)𝛷0(𝜆2)    𝛷1(𝜆1)𝛷1(𝜆2)    𝛷0(𝜆1)𝛷2(𝜆2) 

𝛷3(𝜆1)𝛷0(𝜆2)    𝛷2(𝜆1)𝛷1(𝜆2)     𝛷1(𝜆1)𝛷2(𝜆2)    𝛷0(𝜆1)𝛷3(𝜆2) 

𝛷4(𝜆1)𝛷0(𝜆2)    𝛷3(𝜆1)𝛷1(𝜆2)    𝛷2(𝜆1)𝛷2(𝜆2)    𝛷1(𝜆1)𝛷3(𝜆2)    𝛷0(𝜆1)𝛷4(𝜆2) 

 



 

14 

𝐸(𝑋(𝜆)) =  ∫ 𝑋(𝜆)𝜌(𝜆)𝑑𝜆 

Ω𝑛

(2.16) 

By replacing (2.12) in (2.16), we get  

𝐸(𝑋(𝜆)) =  ∑ ∫ 𝑐𝑘𝜙0(𝜆)𝜙𝑘(𝜆)𝜌(𝜆)𝑑𝜆 

Ω𝑛

𝑃

𝑘=0

(2.17) 

𝜙0(𝜆) is always one for all orthonormal polynomials. 𝜙0(𝜆) is introduced in (2.17) to simplify 

the equation further. 

𝐸(𝑋(𝜆)) =  ∑ ∫ 𝑐𝑘 < 𝜙0(𝜆), 𝜙𝑘(𝜆) > 

Ω𝑛

𝑃

𝑘=0

= 𝑐0 (2.18) 

In (2.18), all the terms in the expansion are equal to zero, except when k = 0. Hence, the mean 

of the network response is represented by the zeroth order PC coefficient.  

2.1.4.2 Calculation of the Variance 

 The variance is the second order statistical moment. It shows the maximum possible 

deviation of the response from the mean value, given that the parametric uncertainty is maximum 

in the network. The variance of the output 𝑋(𝜆) is calculated as 

𝑉𝑎𝑟(𝑋(𝜆)) = 𝐸(𝑋(𝜆) − 𝐸(𝑋(𝜆)))2 

= ∫(∑𝑐𝑘𝜙𝑘(𝜆) − 𝑐0𝜙0(𝜆))
2

𝑃

𝑖=0

𝜌(𝜆)𝑑𝜆

Ω𝑛

 

= ∑∑𝑐𝑘𝑐𝑗

𝑃

𝑗=0

𝑃

𝑘=0

∫ 𝜙𝑖(𝜆)𝜙𝑗(𝜆)

Ω𝑛

𝜌(𝜆)𝑑𝜆 − 𝑐0
2 
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= ∑𝑐𝑘
2 − 𝑐0

2

𝑃

𝑘=0

= ∑𝑐𝑘
2

𝑃

𝑘=1

(2.19) 

Hence the variance is the sum of squares of all the coefficients in the expansion, except the 

zeroth order PC coefficient. The standard deviation is another popular statistical measurement 

tool. Standard deviation or 𝜎 is the square root of the variance. Standard deviation is typically 

used for assessment since it is directly comparable to the mean of the response. 

𝜎 =  √∑𝑐𝑘
2

𝑃

𝑘=1

(2.20) 

2.1.4.3 Higher order moments and PDF 

 Higher order moments are not typically used, but they provide more information about 

the random behavior of the response of a network. The general formula for an M𝑡ℎ  order moment 

is [57] 

𝜇𝑀(𝑋(𝜆)) = 𝐸(𝑋(𝜆) − 𝐸(𝑋(𝜆)))
𝑀 

= ∫(𝑋(𝜆) − 𝐸(𝑋(𝜆)))𝑀𝜌(𝜆)𝑑𝜆

Ω𝑛

(2.21) 

 

                     Fig. 2.1: Illustration of a skew. Image used from [58]. 
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The third order moment is known as skewness. Skewness is the measure of the asymmetry of the 

probability distribution of the response about its mean value. Consider the two distributions 

shown in Fig. 2.1. 

The right side of the distribution tapers differently from the left side. These tapering sides are 

called the tails. One can observe the distribution of the response to identify whether the response 

has a positive, negative or no skew at all [58]. 

The fourth order moment is called the kurtosis. This statistical moment gives information about 

the shape of the tails of the probability distribution of the response [59].  

In case of statistical moments having an order greater than two, the inner product approach 

cannot be implemented since the integral now involves third degree polynomials. However, an 

easier method to generate higher order statistical moments is to generate a large number of MC 

samples according to the random variable distribution. The PC metamodel can then be used to 

generate the responses of the network at each of these samples, with a very small amount of loss 

of accuracy. The values of the responses can then be substituted in (2.21) to easily obtain any 

higher order statistical moment. 

Lastly, the PDF is one of the most important statistical moments as it holds the information of all 

the statistical moments discussed so far. It is sometimes called the zeroth order statistical 

moment. To generate a PDF from a PC expansion, we simply start with a large random set of 

MC samples and probe the PC metamodel to generate the responses at each sample node. Then a 

histogram of all the responses is created to acquire the PDF of the response at any given 

time/frequency point. Conversely, one can perform network simulations at each of those sample 

nodes to get the responses. Although it has to be noted that running large number of simulations 

may require a lot of time, especially when one simulation itself takes a while to complete. 



 

17 

2.2 Intrusive and non-intrusive approaches 

So far, we have established that finding the PC coefficients are the key to performing uncertainty 

quantification using gPC. The logical step then is to evaluate the PC coefficients. There are 

several methods used to achieve this goal. They are primarily divided into intrusive and non-

intrusive methods.  

2.2.1 Intrusive methods 

Intrusive methods are methods which require intrusive coding and cannot be done in a black box 

manner [7]-[22]. These methods typically require the development of a new circuit solver. These 

methods exhibit a higher accuracy compared to the non-intrusive methods. The Stochastic 

Galerkin (SG) projection is one of the widely used intrusive methods. This method creates an 

augmented and coupled deterministic network, based on the equations governing the system. The 

unknown PC coefficients can then be obtained from a single simulation of this augmented 

coupled system. The higher accuracy of this system allows SG to choose lower orders of 

expansion. But even then, since the augmentation is of P+1 terms, the time and computation 

costs required for this approach scale in a near exponential manner, as the number of random 

variables increase. Further non-linear elements are modeled using lumped dependent sources and 

this further adds to the augmentation [15]. Thus, the SG approach is typically good for smaller 

circuits with a fewer number of random variables. 

The shortcomings of the SG approach are addressed by the intrusive Stochastic Testing (ST) 

formulation [43], [44]. The ST approach solves the coupled system of equations of the 

augmented circuit, but in a decoupled manner at each time point. The coupled equations are 

solved at P+1 sampling nodes, but the choice of nodes affects the accuracy of the approach. A 

poor selection of nodes results in ill conditioned matrices, which in turn makes the solution 
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inaccurate or even impossible to obtain. Hence, a node selection algorithm is used to obtain the 

optimum set of sampling nodes. The node selection algorithm works by first creating a tensor 

product of (𝑚 + 1)𝑛 nodes, based on the Wiener-Askey scheme of polynomials. The first node 

is selected, from this tensor product, which has the highest quadrature weight among all the 

nodes. The other P nodes are also selected based on their quadrature weights but with an 

additional condition that the node needs to have a large enough orthogonal component to the 

already generated set of nodes. Since the node selection algorithm uses the quadrature weights as 

a basis for evaluation, the algorithm does not guarantee the best selection of nodes, especially for 

higher dimensional problems. Also, since ST is an intrusive formulation, it cannot make use of 

commercial circuit solvers like SPICE. The advantage of ST approach over SG is that it can be 

solved in a decoupled manner and thus, the P+1 simulations required, can be executed in a 

parallelized manner. 

 2.2.2 Non-intrusive methods 

The main advantages of non-intrusive methods over intrusive methods is that existing 

deterministic solvers, such as SPICE, can be used to determine the network response at the 

selected nodes. The simulations themselves can also be parallelized as they are independent from 

each other, leading to an even higher speedup as compared to intrusive methods like SG. 

2.2.2.1 Pseudo spectral PC approach 

Pseudo spectral PC approach is the most basic and yet the most accurate of all the non-intrusive 

approaches [24]. Being non-intrusive, this approach does not require the knowledge of the 

internal equations governing the circuit and it eliminates the need to design a deterministic 

circuit solver. In the pseudo spectral PC approach, the output response is expressed as an 

expansion of a series of orthogonal polynomials, as in (2.12), to generate a PC meta-model, 
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where the PC coefficients are the new unknowns of the system. The PC coefficients are 

determined using numerical integration techniques. Gaussian quadrature techniques are 

numerical integration tools, used to approximate the integral of a function 𝐹(𝜆) as a weighted 

sum of function values computed at predetermined sample points. 

 ∫ 𝐹(𝜆)𝜌(𝜆)𝑑𝜆 

Ω𝑛

= ∑𝐹(𝜆𝑖
𝑄

𝑖=1

)𝑤(𝜆𝑖)#(2.22) 

where Q is the number of simulation nodes, 𝜆𝑖 = [𝜆1
  (𝑖), 𝜆2

  (𝑖), … , 𝜆𝑛
  (𝑖)
] is a simulation node in the 

random space Ω𝑛, 𝑤(𝜆𝑖) is the corresponding quadrature weight to the node 𝜆𝑖 and 𝐹(𝜆𝑖) is the 

output of the function 𝐹(𝜆)  at 𝜆𝑖 . 𝜆𝑖  for a unidimensional problem are the roots of the 

polynomials generated according to the Wiener-Askey scheme. The number of unidimensional 

roots thus generated, are (m + 1), m being the maximum order of expansion. For a multi-

dimensional problem, Q nodes are generated by creating the tensor product of all the 

unidimensional nodes. Therefore 𝑄 = (𝑚 + 1)𝑛 . Similarly, 𝑤(𝜆𝑖)  is the product of all the 

weights corresponding to those unidimensional nodes which are a part of 𝜆𝑖. 

Unidimensional nodes can be generated from the roots of polynomials. An alternative way of 

generating the nodes and their corresponding weights is by solving an eigenvalue problem, 

which is known as the Golub-Welsch algorithm [60]. The method to generate nodes and weights, 

using the Golub-Welsch algorithm, for Hermite and Legendre polynomials is described below. 

In case of Hermite polynomials, first a matrix A is constructed in the following manner. 

𝐴(𝑖, 𝑗)(𝑞+1)∗(𝑞+1) = {
√𝑖        𝑗 = 𝑖 − 1

√𝑗        𝑖 = 𝑗 − 1

  0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.23) 



 

20 

Now, if an eigenvalue decomposition is performed on A, such that 𝐴 = 𝑊𝛬𝑊𝑇, where W is a 

unitary matrix, then the nodes will coincide with the eigenvalues of A, i.e. 𝜆𝑖 =  𝛬(𝑖, 𝑖) and the 

corresponding weights are the squares of the first element of each eigenvector. i.e. 𝑤(𝜆𝑖) =  𝑊1𝑖
2 . 

In case of Legendre polynomials, the matrix A is constructed as  

𝐴(𝑖, 𝑗)(𝑞+1)∗(𝑞+1) = 

{
 
 
 
 

 
 
 
 

0.5

√1 −
1

(2(𝑗 − 1))
2

        𝑗 = 𝑖 − 1

0.5

√1 −
1

(2(𝑖 − 1))
2

       𝑖 = 𝑗 − 1

                   0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.24) 

Similar to the case of Hermite polynomials, if an eigenvalue decomposition is performed such 

that 𝐴 = 𝑊𝛬𝑊𝑇, then the nodes will coincide with the eigenvalues of A, i.e. 𝜆𝑖 =  𝛬(𝑖, 𝑖) and 

the corresponding weights are the squares of the first element of each eigenvector. i.e. 𝑤(𝜆𝑖) =

 𝑊1𝑖
2 . 

The unknown PC coefficients 𝑐𝑘 can be calculated, using the orthogonal projection technique, 

which involves the calculation of the inner product of a function and a polynomial 

𝑐𝑘 = < 𝑋,𝜙𝑘 > =  ∫ 𝑋(𝑡, 𝜆)

Ω𝑛

𝜙𝑘(𝜆)𝜌𝜆𝑑𝜆 =  ∑𝑋(𝑡, 𝜆𝑖)𝜙𝑘(𝜆
𝑖)𝑤(𝜆𝑖)

𝑄

𝑘=1

(2.25) 

As the number of simulations required in the pseudo-spectral approach is (𝑚 + 1)𝑛 , this 

approach is good for solving problems involving lower number of dimensions. For a high 

dimensional problem though, the number of terms in the PC expansion and subsequently, the 

number of simulations required to calculate the coefficients scales in a near exponential manner 
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and thus, this method does not provide any significant advantages over using MC method for 

high dimensional problems. 

 2.2.2.2 Conventional linear regression approach 

Conventional linear regression approach is a non-intrusive approach that starts with a randomly 

selected, smaller  2(𝑃 + 1) subset of nodes from a larger (𝑚 + 1)𝑛 tensor product of nodes, and 

uses the linear least squares technique to optimize the subset of nodes [61]. Since the thesis relies 

heavily on the linear regression approach, this particular approach is explained in greater detail 

in this section. 

i. Linear least squares technique 

As stated in (2.12), a response of a network can be modeled using the gPC theory as 

𝑋(𝑡, 𝜆) =  ∑𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑀

𝑘=0

(2.26) 

where M, in the case of linear regression, is an over-sampled set of nodes located within the 

random space Ω𝑛 and 𝑀 = 2(𝑃 + 1). The above equation can be expressed, for M nodes, in the 

matrix form as  

𝐴𝑐 +  휀 = 𝑋 (2.27) 
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where 

𝐴 = [
𝜙0(𝜆

(1)) ⋯ 𝜙𝑁(𝜆
(1))

⋮ ⋱ ⋮
𝜙0(𝜆

(𝑀)) ⋯ 𝜙𝑁(𝜆
(𝑀))

] ; 𝑐 =  [

𝑐0
⋮
𝑐𝑁
] ;  𝑋 = [

𝑋(1)

⋮
𝑋(𝑀)

] ;  휀 =  [

휀1
⋮
휀𝑀
] (2.28) 

휀 is the random truncation error. Ideally, 휀 should be zero but practically, there exists some small 

non-zero error. Next, the linear least squares technique models the data in such a way that the 

maximum number of nodes are approximated to fit the model. Once this model is generated, the 

model can then be probed to generate a response for any input belonging to the random space 

Ω𝑛. For illustration purposes, refer to Fig. 2.2 where a linear model is created from a discrete set 

of points, in such a way that the error of approximation is minimized. 

The linear least squares algorithm does not provide a unique answer to the given problem and the 

final selection of nodes is partly based on the initial random selection of nodes, but it is designed 

 

Fig 2.2: Illustration of curve fitting done by linear least squares approach 
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to ensure that the most optimum model is created, by minimizing the sum of squares of errors 

term. 

�̃� =  𝑎𝑟𝑔𝑐𝑚𝑖𝑛𝑆(𝑐) (2.29) 

where 

𝑆(𝑐) = ||𝑋 − 𝐴𝑐||
2
= ∑𝑟𝑘

2

𝑀

𝑘=1

=∑(|𝑦(𝑘) −∑𝑐𝑗𝜙𝑗(𝜆
(𝑘)

𝑁

𝑗=1

)|)

2
𝑀

𝑘=1

(2.30) 

Here, we assume an ideal case where 휀 is zero. (2.30) is minimum when the gradient of that 

equation is zero, since it is a convex function. Hence 

𝛿𝑆

𝛿𝑐𝑗
= 2∑𝑟𝑘

𝑀

𝑘=1

𝛿𝑟𝑖
𝛿𝑐𝑗

= 2∑(𝑦(𝑘) −∑𝑐𝑗𝜙𝑗(𝜆
(𝑘)

𝑁

𝑗=1

))(−𝜙𝑗(𝜆
(𝑖)))

𝑀

𝑘=1

=  0 (2.31) 

The simplified form of (2.31) would be 

∑∑�̃�𝑗𝜙𝑗(𝜆
(𝑘))𝜙𝑘(𝜆

(𝑘))

𝑁

𝑗=1

𝑀

𝑘=1

= ∑𝜙𝑘(𝜆
(𝑘))𝑋𝑘

𝑀

𝑘=1

(2.32) 

which can be further written in the matrix form as 

                                                                        (𝐴𝑇𝐴)�̃� =  𝐴𝑇𝑋                                                               (2.33) 

(2.33) can only have a solution when 𝐴𝑇 is full column rank which makes 𝐴𝑇𝐴 positive definite. 

Hence 

�̃� =  (𝐴𝑇𝐴)−1𝐴𝑇𝑋 (2.34) 

This is the vector of coefficients from (2.28). Solving the above equation yields the PC 

coefficients. Any statistical moments’ information can be calculated from the PC coefficients. It 
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is important to note that in the above equation, the term (𝐴𝑇𝐴)  is known as the Fisher 

information matrix or simply information matrix. 

ii. Benefits and shortcomings 

The major advantages of linear regression approach are that any commercial circuit solver can be 

used to generate the values of the responses required in (2.34). Moreover, since the simulation of 

each node is independent of the other, the required simulations can be parallelized. The number 

of simulations too scale, with the number of random numbers 𝑀 = 2(𝑃 + 1), in a polynomial 

fashion. It should also be noted that the matrix A can be stored and used for the same or any 

other problem, with the same number of random variables and maximum order of expansion. All 

these factors amount to a substantial speedup over any intrusive approach or the MC approach. It 

is also important to point out that by oversampling the initial set of nodes, it is ensured that this 

approach also provides results with acceptable accuracy. 

On the other hand, the linear regression approach so far has been imperfect, in the sense that it 

does not provide a way of optimizing the subset of nodes selected. Randomly choosing M nodes, 

and not optimizing them, may or may not yield good results depending on the choice of nodes. 

Hence, there are several methods used in addition to the linear regression approach that work on 

optimizing some attribute of the (2.34).  

iii. D-optimality criterion 

There are several methods used to optimize the subset of regression nodes. One of the most 

popular techniques used to optimize the selection of the M regression nodes is the D-optimality 

criterion [51], [52]. The basis of this optimization technique is to minimize the (𝐴𝑇𝐴)−1 
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component of the (2.34), and thus, essentially maximizing the determinant of the Information 

matrix.  

As discussed in (2.27), the linear regression approach tries to solve the following system of 

algebraic equation. 

𝐴𝑐 +  휀 = 𝑋 (2.35) 

The importance of the D-optimal criterion to the accuracy of the evaluated PC coefficients of 

(2.34) is revealed using the following Lemma. 

 Lemma: Assuming that the truncation error 휀𝑗 , 1 ≤ 𝑗 ≤ 𝑀 at all M design of experiments (DoE) 

of (2.28) are independent of each other and exhibit a normal distribution of zero mean and same 

variance 𝜎2, then in order to achieve the maximum accuracy of the PC coefficients, the DoE 

must be chosen such that the determinant of the Information matrix 𝐴𝑇𝐴 is maximized. 

Proof: Based on the PC expansion of the network responses of (2.35), it is understood that the 

presence of the random truncation error 휀  makes the PC coefficients themselves random 

variables. The variance of the evaluated PC of (2.34) can be computed as 

𝑉𝑎𝑟(�̃�) = 𝑉𝑎𝑟((𝐴𝑇𝐴)−1𝐴𝑇𝑋) =  (𝐴𝑇𝐴)−1𝐴𝑇𝑉𝑎𝑟(𝑋)((𝐴𝑇𝐴)−1𝐴𝑇)𝑇 (2.36) 

Knowing that the truncation error for each DoE is independent (휀𝑗) and has a constant variance 

𝜎2, 𝑉𝑎𝑟(𝑋) =  𝜎2𝐼, I being the identity matrix. Replacing this is (2.36), the variance of the PC 

coefficients can be compactly expressed as 

𝑉𝑎𝑟(�̃�) =  (𝐴𝑇𝐴)−1𝜎2 (2.37) 

It is understood that to ensure the maximum accuracy of the PC coefficients, it is necessary to 

reduce the uncertainty in the solution �̃�  (i.e. the variance of �̃� ). Since the variance of �̃�  is 
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inversely proportional to the determinant of the information matrix 𝐴𝑇𝐴 , a simple way to 

minimize the variance of �̃� is to maximize the determinant. Therefore the M DoE for the linear 

regression of (2.34) must be chosen such that the determinant of the information matrix is 

maximized. This criterion is referred to as the D-optimal criterion. Other types of optimality 

criteria do exist, but the D-optimal criterion has been deemed the most effective and popular to 

date. The next challenge is to develop a search algorithm that can efficiently identify the D-

optimal nodes from the tensor product space of nodes. 

iv. Fedorov search algorithm 

The selection of the D-optimal nodes is commonly performed using the Classical Fedorov search 

algorithm, which is a greedy search algorithm [61], [62]. This greedy search algorithm is 

commonly used in the field of estimation theory and data analysis. This algorithm begins by 

considering a set of 𝑀 = 2(𝑃 + 1)  starting DoE selected from the tensor product grid of 

(𝑚 + 1)𝑛  multi-dimensional quadrature nodes and creating the corresponding information 

matrix 𝐴𝑇𝐴. Thereafter, each DoE in the starting set is replaced by the best possible substitute 

DoE taken from the remaining (𝑚 + 1)𝑛  − 𝑀  quadrature nodes such that the determinant of the 

information matrix increases by the maximum amount in the process. This step-by-step 

refinement of the starting DoE continues till all the initial set of nodes has been replaced [26], 

[31]. 

As per the above description, at the r𝑡ℎ  step, it is assumed that the first 𝑟 − 1 nodes have been 

replaced by their best possible substitutes. Now if the r𝑡ℎ DoE of the starting set is removed from 

A, then the new determinant of the information matrix can be expressed as 

det(𝐴𝑇𝐴)𝑛𝑒𝑤 = det ((𝐴
𝑇𝐴) − 𝑅(𝜆(𝑟))𝑅′(𝜆(𝑟))) 
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= det(𝐴𝑇𝐴) (1 − 𝑅(𝜆(𝑟))(𝐴𝑇𝐴)−1𝑅′(𝜆(𝑟))) (2.38) 

where 𝑅(𝜆(𝑟)) is the row vector contributed by the 𝑟𝑡ℎ DoE in  𝐴. Similarly, if any arbitrary 𝑘𝑡ℎ 

DoE from the remaining (𝑚 + 1)𝑛  − 𝑀  quadrature nodes is included into A, the new 

determinant of the information matrix can be expressed as 

det(𝐴𝑇𝐴)𝑛𝑒𝑤 = det ((𝐴
𝑇𝐴) + 𝑅(𝜆(𝑟))𝑅𝑇(𝜆(𝑟))) 

= det(𝐴𝑇𝐴) (1 + 𝑅(𝜆(𝑟))(𝐴𝑇𝐴)−1𝑅′(𝜆(𝑟))) (2.39) 

Combining the results of (2.38) and (2.39), after exchanging the 𝑟𝑡ℎ DoE of the starting set with 

any arbitrary 𝑘𝑡ℎ  DoE from the remaining (𝑚 + 1)𝑛  − 𝑀  quadrature nodes, the new 

determinant of the new information matrix can be mathematically expressed as the recursive 

function 

det(𝐴𝑇𝐴)𝑛𝑒𝑤 = 𝑑𝑒𝑡(𝐴
𝑇𝐴)(1 + 𝑑𝑘𝑘 − 𝑑𝑟𝑟 + 𝑑𝑘𝑟

2 − 𝑑𝑘𝑘𝑑𝑟) 

𝑑𝑘𝑟 = 𝑅(𝜆
(𝑘))𝛹(𝑟−1)𝑅𝑇(𝜆(𝑟)) (2.40) 

where 𝛹(𝑟−1) represents the inverse of the information matrix obtained after the previous (i.e., 

(𝑟 − 1)𝑡ℎ) exchange. From (2.40), it is understood that in to order to achieve D-optimality, the 

𝑘𝑡ℎ node 𝜆(𝑘) needs to be chosen to satisfy the optimization criterion 

max(𝑑𝑘𝑘 − 𝑑𝑟𝑟 + 𝑑𝑘𝑟
2 − 𝑑𝑘𝑘𝑑𝑟) (2.41) 

Once the best possible node 𝜆(𝑘) has been found to satisfy (2.41) and the relevant exchange has 

been made, the new determinant can be directly updated using (2.40) and the substitution process 

moves on to the (𝑟 + 1)𝑡ℎ node. Once all M starting DoE have been replaced, the new set of 
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DoE will represent the D-optimal selection. In the next subsection, the computational cost 

associated with the node selection has been derived. 

v. Computational cost 

It is noted that the total computational cost of the search algorithm is due to two main factors. 

Firstly, identifying the D-optimal DoE requires searching through (𝑚 + 1)𝑛  − 𝑀  quadrature 

nodes for each DoE in the starting set – in other words, a total of 𝑀((𝑚 + 1)𝑛  − 𝑀) searches. 

The associated CPU cost  can be expressed as 

𝐶𝑎 =  2(𝑃 + 1)((𝑚 + 1)𝑛  − 2(𝑃 + 1))𝐶1 ≈ 2(𝑃 + 1)(𝑚 + 1)𝑛𝐶1#(2.42) 

where 𝐶1 is the CPU cost of computing the terms in the parenthesis of (2.42), assuming that the 

inverse 𝛹(𝑟−1) is known. It is noted that based on (2.40) and (2.42), 𝐶1 can be expressed as 

𝐶1 = 3𝑘((𝑃 + 1)
2  + (𝑃 + 1)) (2.43) 

where the first term is the cost of the matrix-vector multiplication 𝛹(𝑟−1)𝑅𝑇(𝜆(𝑟)), the second 

term is the cost of the vector-vector multiplication of 𝑅(𝜆(𝑟)) with 𝛹(𝑟−1)𝑅𝑇(𝜆(𝑟)), and the 

factor 3 is due to the fact that the above operations need to be performed for 3 scalars 𝑑𝑟𝑟, 𝑑𝑘𝑘 

and 𝑑𝑘𝑟 of (2.41). k is assumed to be the cost of each floating point operation. Combining (2.40) 

and (2.41), it can be concluded that the overall search cost (𝐶𝑎) scales in an exponential manner 

with the number of random dimensions (𝑛), quantified as  

𝑂((𝑃 + 1)3(𝑚 + 1)𝑛) ≈ 𝑂(𝑛3𝑚(𝑚 + 1)𝑛) (2.42) 

The other source of computational effort arises from the fact that for each substitution, the 

information matrix changes and the inverse 𝛹(𝑟−1)  has to be reevaluated. This CPU cost is 

expressed as  
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𝐶𝑏 = 2(𝑃 + 1)𝐶2 (2.43) 

where 𝐶2 is the CPU cost of each matrix inversion. It is noted that for direct inversion methods, 

𝐶2 scales as 𝑂((𝑃 + 1)3) thereby ensuring that the cumulative cost of the matrix inversions (𝐶𝑏) 

scales as 𝑂((𝑃 + 1)4) ≈ 𝑂(𝑛4𝑚) with respect to the number of random dimensions (𝑛). Given 

that for typical PC problems, 2 ≤ 𝑚 ≤ 5, and this suggests a near exponential scaling of the 

associated CPU costs. 

  



 

30 

CHAPTER 3: ANISOTROPIC POLYNOMIAL CHAOS 

 

The previous chapter discussed several intrusive and non-intrusive methods to generate the PC 

expansion, and these methods were compared against each other, in terms of their individual 

benefits and shortcomings. It was evident from the last chapter that the linear regression 

approach is one of the most robust and fairly accurate method for solving uncertainty 

quantification problems. To recap a few advantages of this approach, it can be constructed in a 

black box manner, can be parallelized and can make use of commercial circuit solvers such as 

SPICE. But, even with all the speedup advantages that the approach demonstrates, the approach 

still suffers from the fact that the time and memory costs of computing the PC coefficients scales 

in a near exponential manner with the number of random variables in the system and the 

maximum degree of the gPC expansion. To address this issue, the original PC expansion was 

scrutinized in greater detail. It was observed that there was a lot of redundancy in the terms of 

the PC expansion, and that some of the terms in the expansion provided a significantly lower 

amount of statistical information as compared to some of the other terms in the expansion. To 

scrutinize the PC expansion in a greater detail, it is formulated with an alternate representation 

known as the high dimensional model representation (HDMR) [53]. HDMR quantifies the 

relative effect of each random dimension on the network response surface. A certain parameter, 

known as the sensitivity index, is then computed based on the contribution of each random 

dimension to the total response of the system [29]. A sensitivity index is always a value between 

zero and one. The closer the value of an index is to zero, the lower is the statistical information 

provided by the corresponding random dimension. The values of these sensitivity indices are 

used to identify and prune the statistically insignificant terms from the original PC expansion. 

Removal of these statistically insignificant terms further sparsifies the expansion and thus leads 
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to reduction in the time and memory costs required for computation of the corresponding PC 

coefficients. This reduction, in turn, leads to an even higher speedup as compared to any of the 

traditional intrusive and non-intrusive approaches. In the subsequent sections, the proposed 

method is described in greater detail. The validity of the proposed method is demonstrated using 

multiple numerical examples.  

3.1 Proposed anisotropic polynomial chaos (APC) formulation 

In this section, we first examine the HDMR formulation and we elaborate on the anisotropic 

truncation scheme. Next, we explain the method to generate the sensitivity indices and the 

application of the indices to create the sparse Anisotropic PC formulation. Finally, we prove the 

effectiveness of the proposed method using a few examples. 

3.1.1 High dimensional model representation (HDMR) formulation 

To recap, the traditional PC expansion is expressed mathematically as [53] 

𝑋(𝑡, 𝜆) = ∑ 𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑃

𝑘=0

    𝑤ℎ𝑒𝑟𝑒    𝑃 + 1 = (
𝑚 + 𝑛

𝑚
) =  

(𝑚 + 𝑛)!

𝑚! 𝑛!
(3.1) 

The HDMR of any output 𝑋(𝑡, 𝜆)  of the network is expressed as a hierarchical sum of 

component functions as follows. 

𝑋(𝑡, 𝜆) =  𝑋0(𝑡) + ∑𝑋𝑖(𝑡, 𝜆𝑖)

𝑁

𝑖=1

+ ∑ 𝑋𝑖𝑗(𝑡, 𝜆𝑖 , 𝜆𝑗)

1≤𝑖,𝑗≤𝑁

+⋯+ 𝑋12…𝑁(𝑡, 𝜆1, … , 𝜆𝑁) (3.2) 

In the above equation, 𝑋0(𝑡) represents the mean value of 𝑋(𝑡, 𝜆). In other words, it is the value 

of 𝑋(𝑡, 𝜆) when all the random variables are set to zero. 𝑋𝑖(𝑡, 𝜆𝑖) represents the contribution of 

each 𝜆𝑖 acting alone on the total response of the network. 𝑋𝑖𝑗(𝑡, 𝜆𝑖 , 𝜆𝑗) represents the contribution 

of two random variables 𝜆𝑖 and 𝜆𝑗 acting together on the response of the system. This gives us 
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information about the effects of interactions of two random variables acting simultaneously on a 

system. Each subsequent term in the HDMR expansion of (3.2) represents the interactions, of 

increasing numbers of dimensions acting simultaneously, on the total response of the system. 

Thus, we can see that there are 𝑁 + 1 terms in the expansion, with each term, except the mean 

and the final term, being a combination of several terms themselves. The number of terms in the 

expansion can be significantly reduced by using the Sparsity-of-effects principle. This principle 

states that the response of a statistical system is usually dominated by the mean and lower order 

interaction terms. In other words, the majority of statistical information is contained within the 

zeroth and the first order component function of (3.2) and the amount of information supplied by 

each subsequent higher order component function significantly decreases from the previous 

order function [23]. The zeroth and the first order functions from (3.2) are represented as 

𝑋0(𝑡) =  𝑋(𝑡, 𝜆
(0))    𝑎𝑛𝑑    𝑋𝑖(𝑡, 𝜆𝑖) =  𝑋(𝑡, 𝜆)|𝜆(0)\𝜆𝑖 − 𝑋0

(𝑡)    𝑓𝑜𝑟    1 ≤ 𝑖 ≤ 𝑁 (3.3) 

where the notation 𝜆(0) denotes the case where the value of each random variable is set to zero, 

and the notation 𝜆(0)\𝜆𝑖 denotes the case where each random variable except 𝜆𝑖 is set to zero. 

Each first order interaction term can be approximated, as a unidimensional PC expansion as 

𝑋𝑖(𝑡, 𝜆𝑖) ≈  ∑𝑐𝑖
(𝑘)(𝑡)

𝑚

𝑘=1

𝛷𝑘(𝜆𝑖)    𝑓𝑜𝑟    1 ≤ 𝑖 ≤ 𝑁 (3.4) 

The 1-D coefficients can be computed by using the inner product operation as 

𝑐𝑖
(𝑘)(𝑡) = < 𝑋𝑖(𝑡, 𝜆𝑖) , 𝛷𝑘(𝜆𝑖) > =  ∫ (𝑋(𝑡, 𝜆)|𝜆(0)\𝜆𝑖 − 𝑋0

(𝑡))𝛷𝑘(𝜆𝑖)𝜌(𝜆𝑖)𝑑𝜆𝑖
Ω𝑁

(3.5) 



 

33 

where 𝜌(𝜆𝑖) represents the marginal PDF of the random dimension 𝜆𝑖. The PC coefficients from 

the integral in (3.5) are thus evaluated using Gaussian quadrature rules as 

𝑐𝑖
(𝑘)(𝑡)  ≈  ∑𝑤𝑗

𝑚

𝑗=0

𝑋𝑖(𝑡, 𝜆𝑖)𝛷𝑘 (𝜆𝑖
(𝑗)
) (3.6) 

𝑤𝑗 represents the 𝑗-th Gaussian quadrature weight corresponding to the 𝑗-th quadrature node 𝜆𝑖
(𝑗)

. 

Although we need 𝑚 + 1  simulations to compute the 1-D coefficients for each 𝑖𝑡ℎ  random 

variable, the zeroth order simulation has already been performed to calculate 𝑋0(𝑡) and this 

simulation can be reused while computing 𝑐𝑖
(𝑘)(𝑡) . Thus, in total, 𝑚𝑁 + 1  simulations are 

carried out to compute the 1-D coefficients in the HDMR expansion of (3.2). 

3.1.2 Anisotropic truncation scheme 

In case of the traditional isotropic PC expansion, the maximum degree of expansion along all 

random dimensions is set to the same value 𝑚, where 𝑚 is the optimal degree required for the 𝑁-

dimensional problem. Hence, this work calls it the isotropic PC expansion. This means that all 

multi-dimensional PC bases satisfy the following constraint, from (2.14) 

1

𝑚
||𝐾||

1
= 

1

𝑚
 (∑𝑘𝑖

𝑁

𝑖=1

) ≤ 1 (3.7) 

where 𝐾 = [𝑘1, 𝑘2, … , 𝑘𝑁] is the vector of the 1-D PC degrees of expansion. However, a close 

inspection of the unidimensional PC expansion reveals that the amount of statistical information 

provided by each random variable varies significantly from one random dimension to the other. 

Essentially, the uncertainty provided by each random parameter is computed using the same 

degree of accuracy, irrespective of the amount of statistical information provided by that random 

parameter. 
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To correct this, the anisotropic truncation scheme is introduced. This scheme requires the 

maximum degree of expansion, along the 𝑖𝑡ℎ  random dimension to be set to 𝑚𝑖 , where 𝑚𝑖  is 

independent of the maximum degree of expansion along the other random dimensions. The 

maximum degree of the polynomials used in a PC expansion directly translates to the accuracy 

of the PC expansion. The higher the degree of the PC expansion, the greater is the accuracy of 

results. By assigning a different degree of expansion to each random variable, we ensure that the 

random dimensions that provide statistically significant information are computed with a higher 

degree of expansion, and the contributions of the statistically insignificant terms are computed 

with a lower degree of expansion, without significantly affecting the accuracy of the total 

response of the system. Thus, the basis terms in an anisotropic PC expansion are a subset of the 

𝑃 + 1 terms of (2.14) with the additional constraint of  

𝑘1 ≤ 𝑚1, 𝑘2 ≤ 𝑚2, … , 𝑘𝑁 ≤ 𝑚𝑁 (3.8) 

This ensures that only those multi-dimensional terms are included in the PC expansion whose 

degree of each 1D basis is below the corresponding maximum 𝑚𝑖; 1 ≤ 𝑖 ≤ 𝑁. In other words, 

the number of bases in an anisotropic PC expansion will always be less than or equal to 𝑃 + 1. 

However, since the contribution of each 𝑖𝑡ℎ random dimension has been adequately captured by 

the expansion of the degree 𝑚𝑖, the loss in anisotropic expansion is minimal. 

3.1.3 Evaluation of sensitivity indices 

In order to determine an optimal value of 𝑚𝑖, an adaptive approach is employed [29]. In this 

approach, the value of 𝑚𝑖 is initially set to one and the coefficients of eq. (3.4) are evaluated 

using the pseudo-spectral collocation method. Once the initial coefficients are obtained, then the 

value of 𝑚𝑖 is iteratively increased in increments of one. In each iteration, the new coefficients of 



 

35 

eq. (3.4) are evaluated using pseudo-spectral collocation method [24]. After the computation of 

the coefficients, the enrichment in the variance, predicted using the 1-D expansion, arising from 

the increment in the degree of expansion is evaluated as  

𝑆𝑖(𝑟𝑖 , 𝑡) =  |
∑ (𝑐𝑖

(𝑗,𝑟𝑖))
2
− ∑ (𝑐𝑖

(𝑗,𝑟𝑖−1))
2

𝑟+1
𝑗=1

𝑟+1
𝑗=1

∑ (𝑐𝑖
(𝑗,𝑟𝑖))

2
𝑟+1
𝑗=1

| (3.9) 

where 𝑐𝑖
(𝑗,𝑟𝑖) refers to 𝑗𝑡ℎ coefficient computed during the 𝑟𝑖

𝑡ℎ (i.e. current) iteration. The term 

∑ (𝑐𝑖
(𝑗,𝑟𝑖))

2
𝑟+1
𝑗=1  is the variance computed from those PC coefficients. It is also noted that since the 

PC coefficients of eq. (3.4) are dynamic quantities, so is the enrichment of eq. (3.8). Note that 

the sensitivity indices thus generated are time-dependent quantities. Essentially the sensitivity 

index is a vector for any random variable. For a more objective assessment of the sensitivity 

index, the normalized integral of eq. (3.8) will be computed as 

𝐿𝑖 = 
1

𝑡2 − 𝑡1
∫ 𝑆𝑖(𝑡)

𝑡2

𝑡1

𝑑𝑡 (3.10) 

where 𝑡2 − 𝑡1 represents the time window of simulation and the above integral can be performed 

using any numerical technique. This work evaluates the integral using the trapezoidal rule. For 

PC expansions, the numerator approximation of eq. (3.4) converges in an 𝐿2  sense with 

increasing degree of expansion [49], [54]. This convergence will be manifested in the 

progressive decay of the value of 𝐿𝑖. Once the integral of eq. (3.10) falls below a prescribed 

tolerance 휀, the iterations are halted and the maximum degree of expansion is set to 𝑚𝑖 = 𝑟𝑖 − 1. 

As expected, the tolerance 휀 is problem dependent. It is noted that the total number of SPICE 

simulations required to determine the optimal 𝑟𝑖  for the 𝑖𝑡ℎ dimension using the adaptive 
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approach is (𝑟𝑖
2 + 𝑟𝑖 + 2)/2. The total number of SPICE simulations for repeating this process 

for n dimensions is 

𝑁0 = 1 + ∑(
(𝑟𝑖
2 + 𝑟𝑖 + 2)

2
− 1)

𝑛

𝑖=1

(3.11) 

If multiple network responses need to be probed, then the maximum degree of expansion 𝑚𝑖 for 

the 𝑖𝑡ℎ dimension needs to be computed for all network responses separately using this approach. 

Then, for each dimension, the degree of expansion chosen for any random dimension 𝜆𝑖 is the 

one that has the maximum value among all the 𝑚𝑖 generated for each network response. 

3.1.4 Recovery of multi-dimensional PC coefficients 

Once the degree of expansion along all random dimensions is known using the above 

methodology, an anisotropic PC expansion of the network response 𝑋(𝑡, 𝜆) can be computed as  

𝑋(𝑡, 𝜆) ≈  ∑𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑄

𝑘=0

(3.12) 

where the multi-dimensional basis 𝜙𝑘(𝜆) is a product of the unidimensional basis as 

𝜙𝑘(𝜆) =  ∏𝛷𝑘𝑖(𝜆𝑖)

𝑁

𝑖 =1

 𝑤ℎ𝑒𝑟𝑒 ∑𝑘𝑖 ≤ 𝑚𝑖

𝑁

𝑖=1

(3.13) 

It is noted that the total number of coefficients in the anisotropic expansion of (3.12) 𝑄  is 

significantly smaller than that of the conventional isotropic PC expansion from (2.12) i.e. 𝑃. The 

order of the conventional isotropic expansion for the same problem would be 

𝑚 = max(𝑚1, 𝑚2, … ,𝑚𝑁) (3.14) 
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Next, in order to intelligently evaluate the coefficients of (3.12), instead of directly adopting the 

linear regression approach, first the expansion of (3.12) is separated into the mean term, the 1-D 

terms and the multi-dimensional interaction terms. 

𝑋(𝑡, 𝜆) =  𝑋0(𝑡) + ∑𝑋𝑖(𝑡, 𝜆𝑖)

𝑁

𝑖=1

+ ∑ 𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑄−𝑅

𝑘=1

(3.15) 

where 

𝑅 =  ∑𝑚𝑖

𝑁

𝑖=1

≤ 𝑚𝑁 (3.16) 

The mean is already known from (3.3) while the 1-D terms are also known from the 1-D PC 

expansions of (3.4), thereby leaving only the multi-dimensional terms to be represented as  

∑𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑄−𝑅

𝑘=1

=  𝑋(𝑡, 𝜆) − 𝑋0(𝑡) − ∑𝑋𝑖(𝑡, 𝜆𝑖)

𝑁

𝑖=1

(3.17) 

The coefficients of the multi-dimensional terms of (3.17) can now be computed using the linear 

regression approach. In this way, the proposed approach would require evaluation of only 𝑄 − 𝑅 

coefficients, instead of the 𝑄 + 1 coefficients of (3.12), thereby achieving a further reduction of 

𝑅 + 1 simulations above and beyond that already achieved due to the anisotropic feature. This 

reduction stems from the reuse of the 1-D expansions of (3.4) in (3.12). Thus, the total number of 

SPICE simulations required for the anisotropic approach is (𝑄 − 𝑅) + 𝑁0. 

It is remarked that the proposed approach has two main sources of computational expense. One 

is the search algorithm used to generate the M multidimensional regression nodes from the tensor 

product grid of 1-D quadrature nodes [27], [32], [33]. The other is the costs incurred during the 
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SPICE simulations done to evaluate the 1-D coefficients [27], [41]. The major efficiency in the 

proposed approach over the conventional isotropic PC approach is largely due to the reduction in 

the time required for SPICE simulations. This numerical efficiency can be expressed as  

𝜂 =  
(𝑃 + 1)

(𝑄 − 𝑅) + 𝑁0
= 1 + 

∆

(𝑄 − 𝑅) + 𝑁0
(3.18) 

where ∆ refers to additional number of bases included in the isotropic PC expansion over the 

APC expansion. It is always true that ∆ ≥ 0 where the actual value of ∆ is always problem 

dependent. This makes the proposed anisotropic PC expansion more efficient than all the works 

on conventional isotropic PC expansion. Furthermore, since this approach supplements other 

sparse PC approaches like [23], [46]-[48], it can still be incorporated into these formulations to 

further enhance their numerical efficiency. 

3.1.5 Advantages and disadvantages of the proposed approach 

Since the proposed approach itself relies on a non-intrusive approach, all the advantages of non-

intrusive methods apply to the proposed method. In addition, the proposed method does not scale 

in a near-polynomial fashion like the conventional PC expansion and thus mitigates the 

shortcomings of the isotropic approach to some extent. 

The proposed approach does not help for problems involving lower numbers of random 

dimensions. The reason for this is that for lower numbers of dimensions, the speedup achieved 

by an anisotropic expansion is not substantial over an isotropic expansion, but at the same time, a 

lot of simulations are needed to compute the 1-D coefficients, which in turn increase the time 

and memory costs beyond that required to generate an isotropic expansion. This will be 

demonstrated by example 3 in the numerical examples section that follows. The proposed 

approach also does not provide a substantial speedup over an isotropic approach, if for a 
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particular example, it is observed that a higher number of random dimensions within a network 

affect the network response significantly. The proposed approach works best a significant 

gradient is observed between the values of 𝑚𝑖  for different random dimensions within the 

network, which is the case with a huge number of examples we find in the world but not all. 

3.2 Numerical examples 

In this section, three examples are presented to compare the accuracy and scalability of the 

proposed APC approach against the conventional isotropic PC approach. All relevant PC 

computations are performed using Matlab 2013b while the deterministic transient simulations are 

performed using HSPICE [63]. In particular, for example 2 and 3, the transmission line networks 

are modeled using W-element transmission line model provided by HSPICE which can 

automatically consider frequency-dependent per-unit-length parameters. The above simulations 

are run on a workstation with 8 GB RAM, 500 GB memory and an Intel i5 processor with 3.4 

GHz clock speed. 

3.2.1 Example 1: BJT low noise amplifier 

 In this example, the low noise amplifier (LNA) network of Fig. 3.1 is considered. This LNA 

utilizes an NXP BFG425W wideband BJT, which is represented as level-1 (Gummel-Poon) 

SPICE model. The RF input to the network is a sinusoidal wave with amplitude of 1V and a 

frequency of 1 GHz. The uncertainty in the network is introduced via 𝑁 = 10 normal random 

variables whose characteristics are listed in Table 3.1. 
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In order to evaluate the accuracy of the proposed approach, the mean and standard deviation of 

the steady-state response at the output node 𝑁1 of Fig. 3.1 is computed using two Hermite PC 

expansions – the proposed anisotropic approach and the conventional isotropic expansion. For 

both expansions, the sparse linear regression algorithm(SPLINER) is used to determine the 

regression nodes [27]. For this example, the decay in the integral of eq. (3.9) with increasing 

degrees of expansion for each random dimension is noted in Table 3.2. For an enrichment 

tolerance of 휀 = 0.002, the maximum degrees of expansion along each dimension is provided in 

 

Fig. 3.1: BJT LNA network used in example 1 

Table 3.1: Characteristics of Random Variables used in Example 1 

No. Random Variable Mean % Relative SD 

1 W1 (Width of TL1) 0.2 mm 10 

2 W2 (Width of TL2) 0.25 mm 20 

3 W3 (Width of TL3) 0.3 mm 10 

4 W4 (Width of TL4) 0.7 mm 20 

5 W5 (Width of TL5) 0.9 mm 20 

6 Bf (BJT Current Gain) 145 30 

7 Cjs (Substrate capacitance) 667.5 fF 10 

8 Rl (Load resistance) 50 Ω 10 

9 Cl (Load capacitance) 2.7 pF 20 

10 Cs (Source capacitance) 4.7 pF 20 
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Table 3.2. The comparison of the Mean ± 3𝜎 results are shown in Fig 3.2 where the proposed 

APC expansion is found to exhibit good agreement with the conventional isotropic expansion. 

Next, in order to test the accuracy for the higher order statistical moments, the probability 

distribution function of the steady state response at node 𝑁1  evaluated at the time point of 

maximum standard deviation (𝑡 = 0.99 ns) is computed using the above two approaches and the 

results are displayed in Fig 3.3. As expected, the probability distribution results for the APC 

expansion exhibit good agreement with that of the conventional isotropic expansion. 

 

Fig 3.2: Comparison of the mean and statistical corners at node 𝑁1 

Table 3.2: Decay of integral Example 1 

Random 

Variable 

Value of integral of (3.10) for different values of ‘r’ Degree of 

expansion r=2 r=3 r=4 r=5 

1 0.0038 9.32e-6 - - 2 

2 0.0016 - - - 1 

3 0.0122 0.0019  - - 2 

4 0.0010 - - - 1 

5 1.10e-4 - - - 1 

6 6.25e-4 - - - 1 

7 0.0123 0.0024 1.28e-4 - 3 

8 0.0011 - - - 1 

9 0.0255 0.0040 0.0025 1.61e-4 4 

10 0.0018 - - - 1 
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Finally, it is noted that the anisotropic expansion requires 1933.42 seconds for the 661 SPICE 

simulations. This includes 𝑁0  = 83 simulations and 𝑄 − 𝑅 = 579 SPICE simulations. On the 

other hand, the isotropic expansion requires 2927.93 seconds to perform the necessary 𝑃 + 1 = 

1001 SPICE simulations. This amounts to a reduction of ∆ = 340 SPICE simulations for this 

example.  

The current example only consisted of 10 random variables. The beauty of the proposed method 

is that, as the complexity of the problem increases in terms of number of random variables and 

the order of expansion required, we see that the savings in terms of time and computation costs 

also increases. This is demonstrated by the next example. 

3.2.2 Example 2: Multi-conductor transmission line 

 In this example, the proposed approach and the conventional approach are compared for a large 

distributed network. For this purpose the 16 multi-conductor transmission line (MTL) network 

loaded with SPICE level-49 CMOS inverters, as shown in Fig 3.4 is considered. The layout of 

the stripline network is also illustrated in Fig 3.4. The input to the network is a trapezoidal 

 

Fig 3.3: PDF of transient response at node 𝑁1 at the time point of maximum standard deviation 
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waveform with rise/fall time 𝑇𝑟= 0.1 ns, pulse width 𝑇𝑤 = 0.5 ns and amplitude equal to 1V. The 

uncertainty in the network is introduced via N = 13 normal random variables whose 

characteristics are listed in Table 3.3. 

For this example, the decay in the integral of eq. (3.9) with increasing degrees of expansion for 

nodes 𝑁1  and 𝑁2  is noted in Table 3.4 and Table 3.5 respectively. In order to establish the 

accuracy of the proposed approach, the mean and standard deviation of the steady-state response 

at the output node of Fig. 3.4 is computed using two Hermite PC expansions – the proposed 

anisotropic approach and the conventional isotropic expansion. As before, the SPLINER 

algorithm is used to identify the regression nodes for both expansions [27]. The comparison of 

the statistical results using the two approaches is shown in Fig 3.5 where the proposed APC 

approach is found to exhibit good agreement with the conventional isotropic APC approach. 

Furthermore, to test the accuracy for higher order statistical moments, the probability distribution 

function of the transient response at node 𝑁1 and 𝑁2 evaluated at the time point of maximum 

standard deviation (𝑡 = 5.58 ns and 𝑡 = 1.44 ns respectively) is computed using the above two 

approaches and 30,000 MC samples. The corresponding results are displayed in Fig. 3.6. As 

expected, the probability distribution results for the APC expansion exhibit good agreement with 

that of the conventional isotropic expansion. 

It is appreciated that the proposed APC approach requires 14781.62 seconds for performing the 

1627 SPICE simulations. This includes 𝑁0  = 112 simulations and 𝑄 − 𝑅  = 1515 SPICE 

simulations. On the other hand, the isotropic expansion requires 21622.78 seconds to perform the 

necessary 𝑃 + 1 = 2380 SPICE simulations. This amounts to a reduction of ∆ = 753 SPICE 

simulations for this example. 
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Fig 3.4: Multi-conductor Transmission Line Network used in Example 1 and 2 
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3.2.3 Example 3: Test of scalability 

In this example, the same MTL network of example 2 is considered. The objective of this 

example is to demonstrate the superior scalability of the proposed APC approach over the 

conventional isotropic PC approach as the number of random dimensions increases.  

To demonstrate the numerical efficiency offered by the proposed APC approach, the number of 

random dimensions is progressively increased from 3 to 13 as shown in Table 3.6. For each test 

case, the proposed APC expansion and the isotropic PC expansion are implemented and the 

Table 3.3: Characteristics of random variables of transmission line network 

No. Random Variable Mean % Relative SD 

1 W(Line Width) 0.15 mm 10 

2 HT(Line Height) 0.03 mm 10 

3 T (Height of dielectric) 0.45 mm 10 

4 D (Separation between lines) 0.15 mm 10 

5 휀r (Relative Permittivity) 4.1 15 

6 L (Length of line) 6 cm 15 

7 G (Conductance of line) 5.8e+7 S/m 10 

8 PL (Channel length PMOS) 0.1 μm 10 

9 PW (Channel Width PMOS) 10 μm 10 

10 NL (Channel length NMOS) 0.1 μm 10 

11 NW (Channel width NMOS) 10 μm 10 

12 Rl (Load resistance) 1.5 kΩ 5 

13 Cl (Load capacitance) 1pF 5 

 

Table 3.4: Decay of integral of (3.10) with increasing degrees for node 𝑁1 of example 2 

Random 

Variable 

Value of integral of (3.10) for different values of ‘r’ Degree of 

expansion r=2 r=3 r=4 r=5 

1 0.0380 0.0072 0.0113 0.0069 4 

2 8.56e-4 - - - 1 

3 1.66e-4 - - - 1 

4 0.0228 0.0039 - - 2 

5 0.0264 0.0363 0.0048 - 3 

6 0.0883 0.0315 0.0118 0.0043 4 

7 8.84e-4 - - - 1 

8 0.0044 - - - 1 

9 0.0039 - - - 1 

10 0.0041 - - - 1 

11 0.0035 - - - 1 

12 6.7e-7 - - - 1 

13 0.0105 0.0021 - - 2 
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incurred time cost is noted in Table 3.6. These incurred costs include both the cost to extract the 

regression nodes using non-intrusive stochastic testing as well as the cost to perform the required 

SPICE simulations. The scaling of the CPU costs from Table 3.6 is illustrated in Fig. 3.7 and 

demonstrates the savings in CPU time achieved by the proposed approach. This improvement in 

scalability with increasing number of random dimensions is what is theoretically expected. 

Table 3.5: Decay of integral of (3.10) with increasing degrees for node 𝑁2 of example 2 

Random 

Variable 

Value of integral of (3.10) for different values of ‘r’ Degree of 

expansion r=2 r=3 r=4 r=5 

1 0.0376 0.0080 0.0108 0.0068 4 

2 2.35e-4 - - - 1 

3 3.79e-4 - - - 1 

4 0.0349 0.0026 - - 2 

5 0.0128 0.0377 0.0073 - 3 

6 0.0877 0.0378 0.0125 0.0049 4 

7 2.66e-4 - - - 1 

8 0.0041 - - - 1 

9 0.0028 - - - 1 

10 0.0020 - - - 1 

11 0.0025 - - - 1 

12 5.08e-8 - - - 1 

13 0.0140 0.0025 - - 2 

 

 
(a) 

 
(b) 

Fig. 3.5(a): Comparison of the mean and statistical corners at node 𝑁1. 

(b): Comparison of the mean and statistical corners at node 𝑁2. 
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3.3 Anisotropic hyperbolic PC formulation 

In this section, the anisotropic truncation scheme is combined with a hyperbolic truncation 

scheme to create a hybrid which results in an even sparser PC expansion and thus provides 

additional speedup over each of the individual methods. The basis of the hyperbolic polynomial 

chaos truncation scheme is explained and the approach is then combined with the anisotropic PC 

approach. Finally, we evaluate the accuracy of the hybrid approach with a numerical example. 

 
(a) 

 
(b) 

Fig. 3.6(a): PDF of the transient response at node 𝑁1. 

(b): PDF of the transient response at node 𝑁2. 

 Table 3.6: Scaling of CPU time costs using proposed APC and conventional isotropic PC approach 

Random 

Variable 

Isotropic Proposed 

Number of 

simulations 

Cost of simulations 

(secs) 

Number of 

simulations 

Cost of simulations 

(secs) 

3 35 317.98 77 699.56 

5 126 1144.74 170 1544.48 

7 330 2998.12 306 2780.07 

9 715 6495.92 553 5024.12 

11 1365 12401.3 968 8794.47 

13 2380 21622.78 1627 14781.62 
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3.3.1 Basis of hyperbolic polynomial chaos (HPC) formulation 

Recalling the sparsity-of-effects principle, it states that in a stochastic network the main effect 

and the lower order interactions primarily impact the response of a network and that most of the 

higher order interactions provide relatively insignificant impact to the total response of a 

network. Here, the primary change caused in the response by the individual change in a random 

variable is called a 𝑚𝑎𝑖𝑛 𝑒𝑓𝑓𝑒𝑐𝑡, and the variation caused in impact of a random variable by 

changes in other variables is called an 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 . This phenomenon is validated through 

several examples in the literature [23], [45]. 

In a conventional isotropic PC expansion, there are (𝑚 + 1)𝑛 possible combination of terms but 

the PC expansion is truncated to 𝑃 + 1 terms. Using the HDMR principle, the 𝑃 + 1 term PC 

expansion is further truncated by selecting a lower degree of expansion for the statistically 

insignificant random dimensions. Now, using the sparsity-of-effects principle, it is possible to 

prune more polynomial bases without a major loss in accuracy. In order to reduce number of 

polynomial bases with loss of accuracy, the works of [23] and [45] suggest considering the rank 

 

Fig 3.7: Scaling of overall CPU time costs for the proposed approach and conventional isotropic 

approach in Example 3 with increasing number of random dimensions 
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of the polynomials, where rank is defined as the number of dimensions in a polynomial basis, for 

example 𝜙[1,1,1](𝜆) =  𝛷1(𝜆1)𝛷1(𝜆2)𝛷1(𝜆3)  is a rank 3 polynomial base while 𝜙[2,0,0](𝜆) =

 𝛷2(𝜆1) is a rank 1 polynomial base. 

The understanding of ranks and sparsity-of-effects is helpful to note that the lower rank bases 

always contribute the most significant amount of information. Further, within the higher rank 

terms themselves, the terms which use a lower degree of unidimensional polynomial bases used 

still contributes more information than the terms which use a higher degree of unidimensional 

polynomial bases. Using this knowledge, it is possible to intelligently select and prune those 

terms from a PC expansion which have a higher rank and a lower statistical contribution to the 

response of a network. This is the basis of HPC truncation scheme. 

If degrees of the expansion of the unidimensional polynomial bases that make up a PC expansion 

are denoted by 𝑑1, 𝑑2, … , 𝑑𝑛, then we know that a conventional isotropic expansion is guided by 

the constraint that 

𝑑1 + 𝑑2 + …+ 𝑑𝑛 ≤ 𝑚 (3.19) 

where 𝑚 is the maximum degree of the PC expansion. In other words, the constraint is on an 𝐿1 

norm. In HPC, the constraint is put on the 𝐿𝑢
 𝑡ℎ norm of the indices vector 𝑑 = [𝑑1, 𝑑2, … , 𝑑𝑛], 

where 𝑢 ≤ 1 and the 𝐿𝑢
 𝑡ℎ norm is defined as 

||𝑑||
𝑢
= ( 𝑑1

𝑢 + 𝑑2
𝑢 + …+ 𝑑𝑛

𝑢)
1
𝑢 ≤ 𝑚 (3.20) 

𝑢  is called the hyperbolic factor. When 𝑢  = 1, then the HPC expansion is identical to the 

conventional isotropic PC expansion. Different values of the factor 𝑢 result in different number 

of polynomial bases being selected. For illustration purposes, an example with 𝑁 = 5 and 𝑚 = 4 
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is considered and Fig. 3.8a depicts the case of an isotropic expansion where Fig. 3.8b and 3.8c 

depict the case of an HPC expansion for two different values of 𝑢. A larger value of 𝑢 results in 

an expansion having greater accuracy but also requires a higher computational time and memory 

cost. A smaller value of 𝑢 trades off accuracy for a smaller expansion requiring comparatively 

lower computation time and memory cost. Typically, we find that a value of 𝑢 which is close to 

0.6 or 0.7 finds a good balance between the loss in accuracy and the amount of speedup 

achieved. 

3.3.2 Adding anisotropicity 

In our case though, since we add anisotropicity to the expansion, there would be an additional 

constraint on the indices that 

𝑑1 ≤ 𝑚1, 𝑑2 ≤ 𝑚2, … , 𝑑𝑁 ≤ 𝑚𝑁 (3.21) 

It is emphasized that since the different degrees of eq. (3.20) have been deemed adequate to 

capture the impact of the corresponding random dimension acting alone, the loss in accuracy due 

to the extra anisotropic feature is marginal [42]. The overall sparse PC expansion arising from 

the anisotropic HPCE can be formulated as  

 
(a) 

 
(b) 

 
(c) 

Fig 3.8: Graphical representation of the hyperbolic truncation scheme using a 2D example (𝑁=2, 

𝑚=5) showing (a) the traditional isotropic truncation scheme and (b,c) the effect of decreasing the 

hyperbolic factor on the proposed approach, from left to right. Image used from [64]. 
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𝑋(𝑡, 𝜆) =  ∑𝑐𝑘(𝑡)𝜙𝑘(𝜆)

𝑄

𝑘=0

(3.22) 

where 𝑄 ≪ 𝑃. The sparse coefficients of eq. (3.22) can be computed using any intrusive or non-

intrusive approach, although this work relies on either a non- intrusive linear regression approach 

or a non-intrusive stochastic testing approach. 

3.3.3 Advantages and disadvantages of anisotropic HPCE 

Anisotropic HPCE shares all the advantages of the anisotropic method mentioned earlier. The 

advantage of the hybrid method is that it provides an even greater reduction in terms of number 

of coefficients to be computed, with only a minimal loss of accuracy.  

The disadvantage of the hybrid method or the HPCE method in particular is that, for high 

dimensional problems, the HPCE method sometimes ends up pruning out a lot of information 

that is still significant to the response of the network. This is because in the case of high-

dimensional problems, the number of terms between two separate values of u goes on increasing  

rapidly. That leads to a high amount of pruning that can compromise the accuracy of the 

generated PC expansion beyond a certain level of tolerance.  

3.3.4 Example 4: BJT LNA   

In order to validate the proposed approach, the LNA network of Fig. 3.1 is considered. The input 

signal is a sinusoid with an amplitude of 1V and frequency of 2 GHz. The uncertainty in the 

network is introduced via 𝑁 = 10 normally distributed random variables described in Table 3.2. 

The lengths of the transmission lines 𝑇𝐿1, 𝑇𝐿2, 𝑇𝐿3, 𝑇𝐿4, 𝑎𝑛𝑑 𝑇𝐿5 in Fig. 3.1 are 8.9 mm, 3.9 

mm, 6.6 mm, 3.0 mm, and 3.0 mm respectively. The transmission lines are copper microstrip 

traces with thickness 2 𝜇m located on top of a dielectric plate of thickness 0.5 mm and relative 

permittivity of 4.6 [42]. 
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For this example, both the full-blown PC expansion and the anisotropic HPCE approaches are 

implemented. The maximum degree of expansion required is 𝑚  = 4. For the full-blown PC 

approach, a total of 𝑃 + 1 = 1001 basis terms, or in other words a total of 1001 full model SPICE 

simulations of the network of Fig 3.1 are required. On the other hand, the proposed anisotropic 

HPCE approach, used 𝑢 = 0.79 with the anisotropic degrees of expansion listed in Table 3.2. 

Overall, the hybrid approach required only 284 SPICE simulations. Thus, for this example, the 

proposed approach achieves a CPU speedup of roughly 3.5 times over the full-blown approach. 

As expected, the accuracy of the proposed approach with that of the full-blown approach is 

exhibited as shown in Fig. 3.9. 

Comparing with the anisotropic results generated for the same example earlier in section 3.2.1, 

we can see that the anisotropic approach required 661 SPICE simulations while the hybrid 

approach required only 284 SPICE simulations which translates to a speedup of a little over 2. 

  

 
(a) 

 
(b) 

 

Fig 3.9: Statistics of the LNA network of Fig. 3.1 evaluated using conventional isotropic method and 

the proposed anisotropic HPCE method (a) Statistical analysis of the transient response at node 𝑁1. 

(b) PDF of transient response at node 𝑁1 at the time point of maximum standard deviation. [42] 
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CHAPTER 4: ANALYSIS OF EPISTEMIC UNCERTAINTY 

 

So far, this work has talked about intrusive and non-intrusive approaches to model parametric 

uncertainty. The linear regression approach was primarily chosen to do so and this work also 

elaborated on methods to reduce the time and memory costs of the computation necessary to 

create the PC metamodels. But so far, the random variables are themselves assumed to be known 

and that their distribution is assumed to be one of the standard distributions. When the 

information about the parameters is entirely known and the uncertainty in the problem reduces to 

only the randomness in the values of the parameters themselves, it is known as an aleatory 

variability problem. But this is not the only kind of uncertainty that exists. This chapter 

elaborates on a separate kind of uncertainty known as the epistemic uncertainty, and how this 

kind differs from the aleatory kind of uncertainty [65]-[67], which has been discussed 

extensively so far. Traditionally the Monte Carlo approach has been used to model epistemic 

uncertainty. This chapter briefly presents some of the existing techniques used to analyze 

epistemic uncertainty and then talks about the proposed method used to do the same. The chapter 

then develops a hybrid method based on the application of a dimension reduction technique to 

the proposed method to get a huge amount of reduction to the time and memory costs of 

computation of the PC expansion. Finally the accuracy, of the proposed method, including the 

hybrid method, is evaluated using a few examples. 

4.1 Types of uncertainty 

Predominantly, there are two kinds of uncertainties. To understand these uncertainties better, let 

us consider an example of rolling a dice [65]. Assuming that no information about the dice is 

given, one can assume the dice to be either a fair dice or a loaded dice. Next, let’s say the dice is 
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rolled four times and the numbers that come up are 2, 3, 3 and 4. Now, if asked to model the 

dice, one can approach the problem in two ways. As one approach to modelling the dice, the 

previous observations can be disregarded and the dice can be modeled using a uniform 

distribution between 1 and 6, where the number only holds an integer value. The second 

approach to developing a model can be purely empirical. Given the four observations are only 

between two and four, one can also start with an assumption that this is a loaded die where the 

number 3 occurs more often, 2 and 4 a little less so, and the rest of the numbers have the lowest 

probability of occurrence. As more and more rolls of the dice are placed, we gain more 

information about the outcomes of the dice and thus, can even more accurately predict the 

probabilities of the outcomes of the six faces of the dice. 

The first approach treats the problem as an aleatory uncertainty problem. The term aleatory 

comes from the Latin word 𝐴𝑙𝑒𝑎  meaning a dice [66]. Aleatory random variables are those 

variables whose probability distribution functions are known. Generating more samples of 

aleatory random variables do not add to the information provided by these samples. Essentially, 

modeling aleatory random variables is a based on a frequentist approach to solving uncertainty 

problems. A frequentist approach states that given an infinite number of samples, the value of the 

random variable results in a limited set of outcomes which is guided by a probability distribution 

function [67]. 

The second approach treats the problem as an epistemic uncertainty problem. The term epistemic 

comes from the Greek word 𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑒 [66], which means knowledge. Epistemic uncertainty is 

the scientific uncertainty which arises due to limited data and knowledge. The PDF of an 

epistemic variable is not completely known. Instead of being modeled by probabilities in the 

frequentist sense, epistemic variables are modeled by what is called confidence intervals. 
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Confidence intervals are probabilities as well, but as opposed to probabilities of aleatory random 

variables which are frequentist in nature, the probabilities of epistemic variables are Bayesian 

probabilities [67]. In Bayesian statistics, the probability of a proposition simply represents a 

degree of belief in the truth to that proposition. This degree of belief is nothing but the 

confidence interval mentioned earlier, which can be updated as more and more information is 

added to the model created. 

Of the two, aleatory uncertainty can be modeled with ease while epistemic uncertainty cannot. 

So, a good way to model epistemic uncertainty is to convert the epistemic uncertainty into an 

aleatory uncertainty and then analyze it. While traditionally, the brute force MC method has been 

used to model epistemic uncertainty, it is severely time and computationally expensive. The 

following sections elaborate more on the methods used to tackle epistemic uncertainty. 

4.2 Methods to deal with epistemic uncertainty 

In case of epistemic uncertainty, statistical assessment of the network response is not directly 

possible since there is limited information regarding the PDFs of the epistemic dimensions. To 

address this problem, the worst-case bounds of the network response is extracted to understand 

the spread of uncertainty in the network response. The methodologies to propagate parametric 

uncertainty for worst case analysis can be broken into two forms – the probabilistic approaches 

and the interval analysis approaches. The probabilistic approaches ascribe a uniform PDF to the 

input parameter so that selecting any value of the parameter can be done without any penalty. 

Thereafter, methods such as Monte Carlo or surrogate models such as PC metamodels [7]-[42], 

Gaussian process models [68], and radial basis function models [69] are used to propagate the 

parametric uncertainty to the network responses. By generating a large number of samples of the 

input parameter space, these approaches can be used to generate an ensemble of the response. 
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From this ensemble of responses, the maximum and minimum bounds of the response can be 

determined.  

On the other hand, interval methods, as the name suggests, use the knowledge of the maximum 

and minimum bounds of the input parameter to evaluate the induced bounds of the response 

surface without the need of assuming a uniform PDF [70]. Among the interval methods, interval 

arithmetic and affine arithmetic are the common approaches for propagating parametric 

uncertainty for worst case analysis [71]-[73]. More recently, the Taylor models have also been 

developed for worst case analysis [74], [75]. This thesis however, uses the Fuzzy logic approach 

of [76], [77] to quantify epistemic uncertainty. The fuzzy logic approach is explained in greater 

detail in the following sections. 

4.3 Fuzzy logic approach 

Each epistemic dimension is described as a pure interval of possible values.  However, for many 

problems, additional information such as the likelihood of a dimension to assume values in a 

particular sub-interval within the larger interval of support may be elicited from expert or prior 

knowledge regarding the model. One way to embed this likelihood information into the problem 

is via a fuzzy logic framework. Specifically, a fuzzy logic framework attempts to denote the sub-

intervals of support corresponding to a particular confidence level as an alpha cut (𝛼-cut) made 

to the membership function of the dimension. Thereafter, the subinterval of support at each 𝛼-cut 

needs to be propagated to the response surface – in other words, the worst case analysis of the 

network needs to be performed at each α-cut. Once the induced subinterval of support of a 

network response are known at each α-cut, this information will be collated to describe the 

membership function of the same response. This response membership function reveals the 
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confidence of the response surface to assume values within a specific subinterval – information 

that is not available in traditional worst case analysis. 

Unfortunately, both conventional probabilistic and intervals methods are unsuitable for 

performing worst case analysis using fuzzy frameworks. This is because for probabilistic 

methods, the number of SPICE simulations required to evaluate the PC or other metamodels 

scale in a near-exponential manner with the number of epistemic dimensions and the number of 

𝛼 -cuts. Moreover, while sparse and reduced dimensional representations of PC has been 

developed for purely aleatory problems, they are not viable for epistemic UQ [23], [48]. This is 

because the reported methods of [23], [48] utilize the statistical information of the network 

response to decide which bases/dimensions to remove. However, due to lack of knowledge 

regarding the PDFs of epistemic dimensions, no statistics of the response surface can be 

mathematically defined. As a result, probabilistic methods are not applicable for high-

dimensional problems. For interval analysis methods, because the subinterval of support changes 

for each α-cut, these analyses have to be performed for each α-cut anew. This again leads to very 

slow worst case analysis for large number of α-cuts. 

In this paper, a reduced dimensional PC based probabilistic approach for the efficient worst case 

analysis for very high-dimensional networks have been developed. The key feature of this 

approach is the ability to utilize the HDMR formulation to directly quantify the impact of each 

epistemic dimension on the maximum and minimum bounds of the response surface. This impact 

factor or the sensitivity of the network response on each epistemic dimension is mathematically 

described as the shrinkage in the area enclosed by the maximum and minimum bounds of the 

response surface as each dimension is rendered inactive. Such sensitivity indices are applicable 

for only epistemic problems since they do not involve the computation of statistical moments 
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such as variance/covariance/PDFs of the response as suggested in the previous chapter. Similar 

to the previous chapter, an appropriate threshold is selected and those dimensions which have a 

sensitivity index below the threshold can be safely discarded, without significant loss in 

accuracy. Performing the PC expansion on the resultant low-dimensional random subspace will 

lead to the recovery of a very sparse set of coefficients with negligible loss of accuracy. 

Evaluating these sparse set of coefficients will scale much more favorably than conventional 

full-blown PC expansions. The above methodology can be easily adapted when considering 

multiple responses of interest. 

To solve a problem involving epistemic uncertainty using fuzzy logic approach, it is first 

necessary to develop the PC techniques for the worst case analysis of the problem’s simulations 

and then to develop a fuzzy framework based on the worst case analysis. 

4.3.1 Worst case analysis 

Consider a general interconnect network where the epistemic parameters are described as 

𝑒𝑚𝑖𝑛,𝑖 ≤ 𝑒𝑖 ≤ 𝑒𝑚𝑎𝑥,𝑖 (4.1) 

where [𝑒𝑚𝑖𝑛,𝑖, 𝑒𝑚𝑎𝑥,𝑖] represent the closed interval of possible values the epistemic parameter ei 

can assume. For a probabilistic representation, each epistemic parameter of (4.1) is modeled as a 

random parameter with a uniform PDF as 

𝑒𝑖 = 
(𝑒𝑚𝑎𝑥,𝑖 + 𝑒𝑚𝑖𝑛,𝑖)

2
+ 
(𝑒𝑚𝑎𝑥,𝑖 − 𝑒𝑚𝑖𝑛,𝑖)

2
𝜆𝑖 (4.2) 

where 𝜆𝑖 ∈ [−1,1]. The set of random variables 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑁] located within the hypercube 

[−1, 1]𝑁 represents the entire epistemic uncertainty of the problem. The behavior of the overall 

network can be characterized by the stochastic modified nodal analysis (MNA) equations as 
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𝐺(𝜆)𝑋(𝑡, 𝜆) + 𝐶(𝜆)
𝑑𝑋(𝑡, 𝜆)

𝑑𝑡
+ 𝐹(𝑋(𝑡, 𝜆)) + ∑(𝑇𝑖𝑌𝑖(𝑡, 𝜆)𝑇𝑖

𝑇) ∗ 𝑋(𝑡, 𝜆)

𝑁𝑡

𝑖=1

= 𝐵(𝑡) (4.3) 

where 𝐺, 𝐶  matrices contain the stamp of all the memoryless and memory lumped circuit 

elements respectively, 𝑋  is the vector of stochastic voltage/current responses, 𝐹  contains the 

stamp of nonlinear circuit elements, 𝑇𝑖 is the selector matrix mapping the vector of port currents 

𝑖𝑖(𝑡) for the 𝑖𝑡ℎ distributed network into the nodal space of the circuit, 𝑌𝑖 is the corresponding 

time-domain 𝑌-parameter macro-model of the 𝑖𝑡ℎ  distributed network, 𝐵  represents the input 

vector of independent voltage and current sources, and ‘∗’ denotes the temporal convolution 

which is performed in a recursive manner in SPICE. 

The goal of worst case analysis is to evaluate the maximum and minimum bounds of the 

response described as  

𝑥𝑚𝑖𝑛,𝑗(𝑡) ≤  𝑥𝑗(𝑡, 𝜆) ≤  𝑥𝑚𝑎𝑥,𝑗(𝑡) (4.4) 

where [𝑥𝑚𝑖𝑛,𝑗(𝑡), 𝑥𝑚𝑎𝑥,𝑗(𝑡)] represent the dynamic bounds enclosing the possible variations of 

the 𝑗𝑡ℎ  response 𝑥𝑗(𝑡, 𝜆) . In order to do so, the response 𝑥𝑗(𝑡, 𝜆)  is first expressed as a PC 

expansion as 

𝑥𝑗(𝑡, 𝜆) =  ∑𝑐𝑗,𝑘(𝑡)𝜙𝑘(𝜆)

𝑃

𝑘=0

(4.5) 

 

where 𝜙𝑘(𝜆) is the 𝑘𝑡ℎ degree Legendre polynomial, 𝑐𝑗,𝑘(𝑡) is the corresponding coefficient, and 

the number of terms in the expansion of (4.5) is truncated to 𝑃 + 1 = (𝑛 +𝑚)!/(𝑛!𝑚!), 𝑚 

being the maximum degree of the expansion. The coefficients of (4.5) can be evaluated using 
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intrusive or non-intrusive approaches. Once the coefficients are known, the metamodel of (4.5) 

becomes a closed form surrogate of the network response. By choosing an exhaustive set of 

Monte Carlo samples 𝜆𝑘 = [𝜆1
(𝑘), 𝜆2

(𝑘), … , 𝜆𝑁
(𝑘)], 1 ≤ 𝑘 ≤ 𝑀  and replacing them in the 

metamodel of (4.5) will yield a large ensemble of the network response. Provided the 𝑀 set of 

points provide a dense coverage over the hypercube space [−1, 1]𝑁, the maximum and minimum 

bounds [𝑥𝑚𝑖𝑛,𝑗(𝑡), 𝑥𝑚𝑎𝑥,𝑗(𝑡)] can be extracted from this ensemble of the response. 

4.3.2 Fuzzy framework for worst case analysis 

In the above subsection, no additional information regarding the likelihood of the epistemic 

parameter 𝑒𝑖  assuming values in different subintervals within the interval of support [𝑒𝑚𝑖𝑛,𝑖 , 

𝑒𝑚𝑎𝑥,𝑖] has been considered. However, if known, then it is necessary to include this likelihood or 

confidence information in the UQ as it will reduce the subjectivity of the worst case analysis. 

One methodology to include this information is by using a fuzzy logic framework.  

In a fuzzy framework, the confidence that the epistemic parameter 𝑒𝑖  assumes values in any 

subinterval within the support [𝑒𝑚𝑖𝑛,𝑖, 𝑒𝑚𝑎𝑥,𝑖] is described using a membership function as shown 

in Fig. 4.1. The shape and characteristics of the membership function is often elicited using 

either expert knowledge of the network or from additional experiments/simulations. In Fig. 1, the 

parameter is shown to exhibit a triangular membership function although other shapes such as 

trapezoidal, Gaussian, or nonlinear triangular shapes are also possible. 
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Once the membership function is known, in order to assign different confidence levels to 𝑒𝑖, the 

membership function is next cut at different horizontal levels (or 𝛼-cut levels) as shown in Fig. 

4.1. For any general 𝑗𝑡ℎ  𝛼 -cut level 𝛼𝑗 , the corresponding subinterval of support is 𝐶𝑗
(𝑖)

 as 

indicated in Fig. 1. This range 𝐶𝑗
(𝑖)

, also known as the confidence interval, encloses the set of 

possible fuzzy values 𝑒𝑖  can assume with a confidence of 1 − 𝛼𝑗  [76]. For a general 

multidimensional problem, the 𝑗𝑡ℎ confidence interval will be the hyperrectangle 𝐶𝑗
(1) x 𝐶𝑗

(2)
… x 

𝐶𝑗
(𝑁)

. Now, the worst-case analysis has to be performed for each 𝛼 -cut separately and the 

corresponding induced confidence level of the network response evaluated. By stitching 

together, the knowledge of the response confidence level for each 𝛼 -cut, the membership 

function of the network response can be determined. This membership function can be used to 

determine the worst-case response for any given value of the 𝛼-cut or confidence level. It is 

noted that the more number of 𝛼-cuts there are, greater will be the resolution of the response 

membership function.   

 

Fig 4.1: Typical Input Membership Function 
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It is observed that whether using probabilistic or interval methods for propagating the confidence 

levels, they have to be performed anew for each 𝛼 -cut. A more efficient approach for 

probabilistic methods have been reported [78]. In these works, rather than laboriously 

constructing a new PC metamodel for each 𝛼 -cut, it is posited that a solitary global PC 

metamodel be constructed for the overall interval of support (i.e., for 𝛼 = 0) [78]. This is 

because from Fig. 1 it is clear that the confidence interval for any epistemic parameter and any 

𝛼-cut will always fall within the overall interval of support. Thus, the metamodel for 𝛼 = 0 can 

be directly reused for all the higher 𝛼-cuts. Nevertheless, the main drawback of such an approach 

is the fact that as the number of epistemic dimensions increases (i.e., N increases), the number of 

SPICE simulations required to non-intrusively evaluate the PC coefficients for 𝛼 = 0  still 

increases in a near exponential manner. Furthermore, as explained in the previous section, the 

well-known sparse or reduced dimensional PC representations developed for purely aleatory 

problems cannot be used for purely epistemic problems. This is because all of these works 

depend on statistical information, usually the variance information of the network response, to 

objectively determine which bases or dimensions are least important and can be removed. 

However, by definition, purely epistemic problems do not involve the knowledge of the PDF and 

hence statistical information to guide the recovery of a sparse PC metamodel is unavailable. To 

address this poor scalability with respect to the number of epistemic dimensions, a non-statistical 

approach based on global sensitivity analysis is developed in this paper. 

4.4 Proposed reduced dimensional PC approach 

Since the sensitivity indices cannot be developed in the same manner as those developed for 

aleatory random variables, due to the lack of information about the PDF of the random variables, 

a new methodology is needed to analyze the sensitivity indices of the epistemic random 



 

63 

variables. However, there are two major challenges to achieving this objective. First, a forward 

model needs to be identified which can be used to determine the relative impact of each 

epistemic dimension on the response. This forward model must be efficient enough to limit the 

overhead costs in performing the global sensitivity analysis yet accurate enough to accurately 

capture the relative impact of each dimension. Second, the impact factors (or sensitivity indices) 

must be global in the sense that they should capture the impact of the dimension over the entire [-

1, 1] interval of support rather than being based on derivative information which captures only 

the local impact of the dimension at any point. These challenges will be addressed in the next 

few subsections. 

4.4.1 Forward model for global sensitivity analysis 

In the previous chapter, it has been shown that considering only the isolated effects of the 

aleatory dimensions is sufficient for accurately computing the relative sensitivity indices in high-

speed interconnect networks. This claim is supported by two reasons. First, the sparsity of effects 

principle claims that the lower order interactions between the random dimensions are richer in 

their information content than the higher order interactions. This means that considering the 

isolated effects of the uncertain dimensions (i.e., the first order terms) can still yield an accurate 

relative measure of the impact of each dimension if not the accurate total impact. Second, since 

at this stage only the relative impact of the uncertain dimensions is required as opposed to their 

accurate absolute vales, neglecting the higher order interactions between the dimensions does not 

bias the identification of the unimportant dimensions. 

Based on the above reasoning, in this method too, the forward model to be used for global 

sensitivity analysis consists of only the isolated effects of the epistemic dimensions, 

mathematically expressed as 
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𝑥(𝑡, 𝜆) =  𝑥0(𝑡) + ∑𝑥𝑖(𝑡, 𝜆𝑖)

𝑁

𝑖=1

(4.6) 

where 

𝑥0(𝑡) =  𝑥(𝑡, 𝜆
(0))    𝑎𝑛𝑑    𝑥𝑖(𝑡, 𝜆𝑖) =  𝑥(𝑡, 𝜆)|𝜆(0)\𝜆𝑖 − 𝑥0

(𝑡)    𝑓𝑜𝑟    1 ≤ 𝑖 ≤ 𝑁 (4.7) 

where the notation 𝜆(0) denotes the case where the value of each random variable is set to zero, 

and the notation 𝜆(0)\𝜆𝑖 denotes the case where each random variable except 𝜆𝑖 is set to zero. 

The first function of (4.6) represents the response in absence of all epistemic dimensions while 

the second function of (4.6) represents the contribution of each epistemic dimension on the 

network response acting alone. These contributions are then described using one dimensional 

(1D) PC expansions as 

𝑥𝑖(𝑡, 𝜆𝑖) ≈  ∑𝑐𝑖
(𝑘)(𝑡)

𝑚

𝑘=1

𝛷𝑘(𝜆𝑖)    𝑓𝑜𝑟    1 ≤ 𝑖 ≤ 𝑁 (4.8) 

The coefficients of (4.8) satisfies the inner product operation 

𝑐𝑖
(𝑘)(𝑡) = < 𝑥𝑖(𝑡, 𝜆𝑖) , 𝛷𝑘(𝜆𝑖) > =  ∫ (𝑥(𝑡, 𝜆)|𝜆(0)\𝜆𝑖 − 𝑥0

(𝑡))𝛷𝑘(𝜆𝑖)𝜌(𝜆𝑖)𝑑𝜆𝑖
Ω𝑁

(4.9) 

where 𝜌(𝜆𝑖) represents the marginal uniform probability density function of 𝜆𝑖. The integral of 

(4.9) is thereafter approximated using Gaussian quadrature rules as 

𝑐𝑖
(𝑘)(𝑡)  ≈  ∑𝑤𝑗

𝑚

𝑗=0

𝑥𝑖(𝑡, 𝜆𝑖)𝛷𝑘 (𝜆𝑖
(𝑗)
) (4.10) 
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where 𝑤𝑗 represents the 𝑗𝑡ℎ 1D Gaussian quadrature weight corresponding to the 𝑗𝑡ℎ quadrature 

node 𝜆𝑖
(𝑗)

. From (4.9) and (4.10) it is noted that only (𝑚 + 1)𝑁 deterministic SPICE simulations 

are required to find the PC coefficients of (4.8), thereby ensuring that the forward model can be 

constructed very efficiently even for high-dimensional problems. 

4.4.2 Global sensitivity analysis in epistemic problems 

In purely epistemic problems, the imprecision in the network responses can be well represented 

by finding the maximum and minimum bounds [𝑥𝑚𝑖𝑛,𝑗(𝑡), 𝑥𝑚𝑎𝑥,𝑗(𝑡)] of (4.4). Thus, in this 

paper, the impact of each dimension is measured on the response bounds as opposed to the 

response variance computed in the earlier chapter.  

For this purpose, let us assume 𝛼 = 0 and the PC representation of the forward model of (4.6) is 

known. Now, let an exhaustive set of Monte Carlo samples, 𝜆𝑘 = [𝜆1
(𝑘), 𝜆2

(𝑘), … , 𝜆𝑁
(𝑘)], 1 ≤

𝑘 ≤ 𝑀 be chosen and replaced in (4.6). Thereafter, at any time point, the dynamic bounds of the 

network response can be evaluated as  

𝑈𝑚𝑖𝑛,0(𝑡) =  min
1≤𝑘≤𝑀

(𝑥(𝑡, 𝜆𝑘)) ;    𝑈𝑚𝑎𝑥,0(𝑡) =  max
1≤𝑘≤𝑀

(𝑥(𝑡, 𝜆𝑘)) (4.11) 

It is noted that in order to be accurate, the number of samples M much be large enough to cover 

the multidimensional epistemic space [−1, 1]𝑁 in fine grained manner. However, since for each 

sample point only a single analytic solution of (4.6) is required, choosing a pessimistic value of 

𝑀 does not incur significant computational costs. The dynamic bounds [𝑈𝑚𝑖𝑛,𝑗(𝑡), 𝑈𝑚𝑎𝑥,𝑗(𝑡)] 

are known as the unconditional response bounds. Next, the same exercise is repeated for the 

same set of MC samples with the additional condition that 𝜆1
(𝑘) = 0 . This will yield the 

unconditional response bounds [𝑈𝑚𝑖𝑛,1(𝑡), 𝑈𝑚𝑎𝑥,1(𝑡)] where  
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𝑈𝑚𝑖𝑛,1(𝑡) =  min
1≤𝑘≤𝑀,𝜆1

(𝑘)=0
(𝑥(𝑡, 𝜆𝑘)) ;    𝑈𝑚𝑎𝑥,1(𝑡) =  max

1≤𝑘≤𝑀,𝜆1
(𝑘)=0

(𝑥(𝑡, 𝜆𝑘)) (4.12) 

From the knowledge of the unconditional and conditional dynamic response bounds, the raw 

sensitivity of the response of the dimension 𝜆1 is denoted as the average difference between the 

maximum and minimum bounds using the unconditional and conditional results   

𝑆𝑖(𝑡) =  
(𝑈𝑚𝑎𝑥(𝑡) − 𝑈𝑚𝑎𝑥,1(𝑡)) + (𝑈𝑚𝑖𝑛,1(𝑡)  −  𝑈𝑚𝑖𝑛(𝑡))

2
(4.13) 

It is important to note that the above raw sensitivity index being time dependent, the true 

sensitivity index is the integral described as 

𝑠𝑖(𝑡) =  
1

2
∫(𝑈𝑚𝑎𝑥(𝑡) − 𝑈𝑚𝑎𝑥,1(𝑡)) 𝑑𝑡 + 

1

2
 ∫ (𝑈𝑚𝑖𝑛,1(𝑡)  − 𝑈𝑚𝑖𝑛(𝑡)) 𝑑𝑡 (4.14) 

The integral of (4.14) is nothing other than the average area enclosed between the maximum 

bounds and minimum bounds of the unconditional and conditional results. This integral can 

always be evaluated using numerical integration rules such as the trapezoidal rule [80]. Once the 

true sensitivity indices for all N dimensions have been evaluated, the relative sensitivity indices 

can be measured as 

𝑟𝑖(𝑡) =  
𝑠𝑖

∑ 𝑠𝑖
𝑁
𝑖=1

(4.15) 

The relative sensitivity indices serve as problem dependent impact factors used to rank the 

random dimensions in decreasing order of their effect on the network bounds. Those dimensions 

with the relative sensitivity index of (4.15) falling below a prescribed tolerance 휀 are considered 

to be non-impactful and will be pruned from the original 𝑁-dimensional epistemic space to 
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contract it into a 𝑛-dimensional subspace Ω𝑛 where 𝑛 < 𝑁. Thus, the original set of epistemic 

dimensions will be replaced by a new set of the most impactful 𝑛 dimensions. 

The above methodology can also be easily adapted to multiple, say 𝐾 network responses. In such 

scenarios, the relative sensitivity indices of each dimension has to be measured with respect to 

dynamic bounds of each of the 𝐾  network responses. Let the set of important epistemic 

dimensions for any 𝑖𝑡ℎ network response be give as 𝜆𝑖. In that case, the overall set of important 

dimensions are those that occur in the union set 𝜆 =  𝜆1 ∪ 𝜆2 ∪ … ∪ 𝜆𝑁 . Finally, the 

construction of the 𝑛-dimensional reduced PC metamodel and recovery of the PC coefficients of 

that metamodel can proceed using the well-known non-intrusive linear regression approach of 

[7]-[22]. 

4.5 Numerical examples 

In this section, three examples are presented to demonstrate the accuracy and efficiency of the 

proposed reduced dimensional PC approach. For comparison of the maximum and minimum 

values of the response at each 𝛼-cut, the network of the example presented has been simulated at 

each 𝛼-cut for a certain number of random MC samples. The reason for using MC technique is 

that the number of simulations required for each 𝛼-cut reduces as the value of 𝛼 increases from 

zero to one. All relevant PC computations are performed using MATLAB 2013b while the 

deterministic transient simulations are performed using HSPICE. In particular, for example 1 and 

2, the transmission line networks are modeled using W-element transmission line model 

provided by HSPICE [63] which can automatically consider frequency-dependent per-unit-

length parameters. The above simulations are run on a workstation with 8 GB RAM, 500 GB 

memory and an Intel i5 processor with 3.4 GHz clock speed. 
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4.5.1 Example 1: Multi-conductor transmission line 

In this example, the proposed approach and the conventional MC approach is compared for a 

large distributed network. For this purpose the 16 multi-conductor transmission line (MTL) 

network loaded with SPICE level-49 CMOS inverters, as shown in Fig 4.2 is considered. The 

layout of the strip-line network is also illustrated in Fig 4.2. The input to the network is a 

trapezoidal waveform with rise/fall time 𝑇𝑟= 0.1 ns, pulse width 𝑇𝑤 = 0.5 ns and amplitude equal 

to 5V. The uncertainty in the network is introduced via N = 22 normal random variables whose 

characteristics are listed in Table 4.1. 

In order to establish the accuracy of the proposed approach, the maximum and minimum of the 

steady-state response of the output node 𝑁1 and 𝑁2 of Fig. 4.2 is computed using the proposed 

reduced dimensional approach and the conventional brute force MC simulations. This is done for 

each 𝛼-cut. The membership function of the inputs is designed as follows. Random variables 1 

through 8 have a negative 10% skew, meaning that for a random variable with a value 𝑥 at 𝛼 =

0, will have a value 1.1𝑥 at 𝛼 = 1. The value of the corresponding random variable at all other 𝛼 

– cuts is computed by using a triangular function as shown in Fig. 4.1. Random variables 1 

through 12 have a negative 5% skew, while random variables 13 through 22 have a positive 10% 

skew. As before, the SPLINER algorithm is used to identify the regression nodes for both 

expansions. Considering the voltage at node 𝑁1 and node 𝑁2 to be the two network responses of 

interest, the average of the sensitivity indices of the random dimensions with respect to this 

response is computed using the methodology of section 4.4.2 and listed in Table 4.2. Considering 

a tolerance of 휀  = [0.005] for the output of node 𝑁1  and node 𝑁2 , the original (𝑁 =  32 ) 

dimensional space is truncated to an (𝑛 = 5 ) dimensional subspace where the dimensions 

retained are W, T, d, 휀𝑟 and L (RVs 1, 3, 4, 5 and 6). The maximum and minimum values of the 
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response at node 𝑁1 and node 𝑁2 are then computed using the above two methods and the results 

for a few 𝛼 -cuts are compared in Fig. 4.3. The accuracy of the proposed approach is 

demonstrated by generating the membership function of the response at node 𝑁1 and node 𝑁2 

 

 

Fig 4.2: Transmission Line Network used in Example 1 and 2 
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and this is demonstrated in Fig. 4.4. To generate the membership function of the output, the time 

point selected is the time point where the response of node 𝑁1 and node 𝑁2 has the maximum 

value at 𝛼 = 1 (𝑡 =  1.125 ns for node 𝑁1  and 𝑡 = 1.08 ns for node 𝑁2). The figures shown 

Table 4.1: Characteristics of random variables of transmission line (TL) network of Example 1 and 2. 

No. Random Variable Mean % Relative SD 

1 W (TL width) 0.15 mm 20 

2 ht (TL height) 0.03 mm 20 

3 T (Dielectric height) 0.45 mm 20 

4 d (TL separation) 0.15 mm 20 

5 휀𝑟 (Dielectric permittivity) 4.1 20 

6 L (TL length) 6 cm 20 

7 g (TL conductance) 5.8e+7 S/m 20 

8 PL (Channel length PMOS) 0.1 μm 10 

9 PW (Width PMOS) 10 μm 10 

10 NL (Channel length NMOS) 0.1 μm 10 

11 NW (Width NMOS) 10 μm 10 

12-17 RL1 – RL6 (Load Resistances) 1.5 kΩ 20 

18-22 CL1 – CL5 (Load Capacitances) 1pF 20 

 
Table 4.2: Sensitivity indices computed as per (4.15) for Example 1 and 2. 

Random Variable Sensitivity index at node N1 Sensitivity index at node N2 

1 0.0103 0.0107 

2 8.11e-4 0.0015 

3 0.0052 0.0038 

4 0.0027 0.0353 

5 0.2343 0.1942 

6 0.7461 0.7942 

7 3.3e-4 3.33e-4 

8 2.6e-7 3.43e-7 

9 2.13e-6 3.18e-6 

10 2.53e-7 3.17e-7 

11 3.32e-6 4.33e-6 

12 1.12e-8 6.09e-7 

13 6.7e-11 1.34e-9 

14 3.6e-11 9.53e-10 

15 3.2e-11 8.98e-10 

16 3.2e-11 8.34e-10 

17 3.3e-12 5.42e-11 

18 8.3e-7 4.69e-7 

19 2.1e-4 0.0040 

20 5.4e-5 0.0010 

21 5.4e-9 8.75e-8 

22 5.5e-6 7.68e-5 
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demonstrate that the reduced dimensional PC approach shows good agreement with the Monte 

Carlo approach. This not only demonstrates the accuracy of the reduced dimensional PC 

approach but also validates the use of only the first order terms of HDMR to identify the non-

impactful dimensions in Table 4.2. For generating the PC coefficients, the SPLINER method is 

used and it takes 155 seconds to locate the regression nodes, which is a fraction of the time 

required for 615 SPICE simulations, which is 5096.2 seconds. The time needed for simulations 

 
(a) 𝛼 = 0.2, Node 𝑁1 

 
(a) 𝛼 = 0.2, Node 𝑁2 

 

 
(a) 𝛼 = 0.4, Node 𝑁1 

 
(a) 𝛼 = 0.4, Node 𝑁2 

 

 
(a) 𝛼 = 0.6, Node 𝑁1 

 
(a) 𝛼 = 0.6, Node 𝑁2 

 

Fig 4.3: Maximum and Minimum values of the response at 𝛼-cuts 0.2, 0.4 and 0.6 for nodes 𝑁1, 𝑁2 

for Example 1. 
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includes the 111 simulations needed to perform dimension reduction. On the other hand, the 

number of MC simulations carried out at each 𝛼-cut are described in Table 4.3. In total, the time 

required to carry out all the MC simulations of all the 𝛼-cuts combined is 821,708.3 seconds. 

This translates to a speedup of about 161x. This is as expected from the discussion made in the 

previous section. 

4.5.2 Example 2: Multi-conductor transmission line with irregular input membership 

functions 

In the previous example, the membership functions considered for the inputs were triangular, 

 
(a) Node 𝑁1 

 
(b) Node 𝑁2 

Fig 4.4: Membership function of the output at nodes 𝑁1 and 𝑁2. 

Table 4.3: Number of MC simulations carried out at each 𝛼-cut for example 1,2. 

Alpha cut Number of MC Simulations 

0 20k 

0.1 15k 

0.2 12k 

0.3 12k 

0.4 10k 

0.5 10k 

0.6 8k 

0.7 5k 

0.8 4k 

0.9 3k 

1 1 

Total 99,001 
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which has a certain regularity to it. To prove the efficacy of the proposed approach for any kind 

of 𝛼-cut boundaries, we perform the experiment by considering parabolic input membership 

functions. For the second example, we use a parabolic input membership function the shape of 

which is described below. The percentage skew for each of the random variables is kept the same 

as the first example. For random variables 1 through 8, the left tail and the right tail of the input 

membership function are defined by the equations 

𝐿𝑒𝑓𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (1.0909 − 0.04545 ∗ 𝛼𝑖 − 0.04545 ∗ 𝛼𝑖
2)] 

𝑅𝑖𝑔ℎ𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (0.7273 + 0.2727 ∗ 𝛼𝑖
2)] (4.16) 

where 𝛼𝑖 takes a value from zero to one and corresponds to the 𝛼-cut under inspection. Similarly, 

for random variables 9 through 12 

𝐿𝑒𝑓𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (1.0476 − 0.0238 ∗ 𝛼𝑖 − 0.0238 ∗ 𝛼𝑖
2)] 

𝑅𝑖𝑔ℎ𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (0.8572 + 0.1428 ∗ 𝛼𝑖
2)] (4.17) 

Lastly, for random variables 13 through 22 

𝐿𝑒𝑓𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (1.3333 − 0.6333 ∗ 𝛼𝑖 + 0.3 ∗ 𝛼𝑖
2)] 

𝑅𝑖𝑔ℎ𝑡 𝑡𝑎𝑖𝑙 ∶  [(𝑀𝑒𝑎𝑛 𝑎𝑡 𝛼1) ∗ (0.8889 + 0.2211 ∗ 𝛼𝑖 − 0.11 ∗ 𝛼𝑖
2)] (4.18) 

Since the example’s 𝛼-cut zero values do not change from example 1, the same zeroth 𝛼-cut 

reduced dimensional PC expansion involving five random dimensions can be used for this 

example. The maximum and minimum values of the response at node 𝑁1 and node 𝑁2 are then 

computed using the above two methods and the results for a few 𝛼-cuts are compared in Fig. 4.5. 

The accuracy of the proposed approach is demonstrated by generating the membership function 

of the response at node 𝑁1 and node 𝑁2 and this is demonstrated in Fig. 4.6. The time point 
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selected to generate the output membership function is the same as the previous example. The 

number of simulations required to generate the MC samples at each 𝛼-cut is the same as example 

1 and is depicted in Table 4.3. And thus, the speedup mentioned is also the same as example 1. 

The objective of doing this particular example, is to show, that if a reduced dimensional PC 

expansion is generated at the zeroth 𝛼-cut, then the results for any other 𝛼-cut can be generated 

irrespective of what the confidence intervals are for that 𝛼-cut; provided the boundary of values 

 
(a) 𝛼 = 0.2, Node 𝑁1 

 
(a) 𝛼 = 0.2, Node 𝑁2 

 

 
(a) 𝛼 = 0.4, Node 𝑁1 

 
(a) 𝛼 = 0.4, Node 𝑁2 

 

 
(a) 𝛼 = 0.6, Node 𝑁1 

 
(a) 𝛼 = 0.6, Node 𝑁2 

 

 

Fig 4.5: Maximum and Minimum values of the response at 𝛼-cuts 0.2, 0.4 and 0.6 for nodes 𝑁1, 𝑁2 

for Example 2. 
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for every random variable lies within the boundary of values of the respective random variables 

at the zeroth 𝛼-cut.  

4.5.3 Single conductor transmission line network 

So far the examples we have accounted for, have all considered random variables whose 𝛼 = 1 

values have been a single value rather than being a range of values. In this example, we consider 

a set of random variables, to have a range of values, even at 𝛼 = 1. The example considers the 

transmission line network of Fig. 4.7. The characteristics of the random variables are listed in 

Table 4.4. The voltage source is a trapezoidal pulse with an amplitude of 5V, rise/fall times of 

200 ps and a width of 2.6 ns. The models used for the inverters in the network are SPICE level-

49 CMOS inverters. 

There are three kinds of membership functions of the inputs. Random variables 1 through 7 and 

random variables 15 through 21 have a negative 10% skew, while all the other random variables 

have a negative 5% skew. Variables 1 through 14 have a triangular distribution for their 

membership functions, much like example 1. Variables 15 through 21 have a parabolic 

distribution the shape of which is guided by equations of (4.16). Variables 22 through 28 also 

 
(a) Node 𝑁1 

 
(b) Node 𝑁2 

Fig 4.6: Membership function of the output at nodes 𝑁1 and 𝑁2 for Example 2. 
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have a parabolic distribution, but guided by the equations (4.17). Variables 29 through 32 have a 

trapezoidal distribution, which means that unlike the other variables discussed so far, these set of 

variables has a range of values at 𝛼 = 1. At 𝛼 = 1, these variables hold values that would have 

been the values of these variables if these variables had a triangular distribution and 𝛼 was equal 

to 0.9. The values of the sensitivity indices for 𝑁1 and 𝑁2 is presented in Table 4.5. Considering 

a tolerance of 휀  = [0.015] for the output of node 𝑁1  and node 𝑁2 , the original (𝑁 =  32 ) 

dimensional space is truncated to an (𝑛 = 12) dimensional subspace where the dimensions 

retained are 휀𝑟1 − 휀𝑟5, 𝑤1, 𝐻1, 𝐻3, LP, LN, WP and WN. For generating the PC coefficients, the 

SPLINER method is used and it takes 114,108 seconds to locate the regression nodes, and it 

takes 8800.2 seconds for 4889 SPICE simulations. The time needed for simulations includes the 

 
Fig 4.7: Schematic of the network used for Example 3 

Table 4.4: Characteristics of random variables of Example 3 network 

No. Random Variable Mean % Relative SD 

1-7 휀𝑟1 − 휀𝑟7 (Dielectric relative permittivity) 4.1 20 

8-14 𝑤1 −𝑤7 (TL width) 150µ 10 

15-21 ℎ𝑡1 − ℎ𝑡7 (TL height) 20µ 20 

22-28 𝐻1 − 𝐻7(Dielectric height) 100µ 10 

29 LP (Channel length PMOS) 1µ 20 

30 LN (Channel length NMOS) 2.5µ 20 

31 WP (Width PMOS) 20µ 20 

32 WN (Width NMOS) 20µ 20 
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129 simulations needed to perform dimension reduction. The comparison of the maximum and 

minimum results of the output response at 𝑁1  is presented in Fig. 4.8. The number of MC 

simulations performed for example 3 is listed in Table 4.6. To prove the accuracy of the 

proposed approach against MC simulations, the membership function of the response at 𝑁1 and 

𝑁2  is also presented in Fig. 4.9. The time point selected to generate the output membership 

function is the time point where the 𝛼 = 1 results have maxima. In total, the time required to 

carry out all the MC simulations of all the 𝛼-cuts combined is 180,000 seconds. The speedup 

achieved for this problem is about 20.5x. 

4.6 Advantages and disadvantages of the hybrid approach 

With the use of dimension reduction techniques using HDMR principles, the size of the PC 

expansion can be greatly diminished than the actual full-blown PC expansion with very little loss 

in accuracy as is evident from the examples. The strength of the proposed method also lies in the 

fact that no matter what confidence interval gets chosen as more and more information about the 

random variables becomes available to the user, the user can simply probe the new values into 

the PC expansion and go about creating the PDF of the epistemic variable, so long as the new 

confidence interval lies within the interval of 𝛼 = 0. This saves a huge amount of computation 

and simulation cost for the user. 

On the other hand, this method fails to generate any kinds of savings if the new information that 

the user receives about the random variables happens to be outside the confidence interval of 𝛼 = 

0. In that case, the method actually fails to deliver as much benefit as expected. Since a full PC 

using reduced number of dimensions is created, the number of terms in the PC expansion can go 

on increasing significantly if more and more random variables contribute significantly. Although 

rarely, but it is possible that a higher number of simulations, can be needed to generate a reduced 
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order PC expansion, than simply running MC simulations at each alpha cut. The other problem 

with this method is that, the choice of the threshold for sensitivity index becomes subjective in 

some cases and an intelligent judgement has to be made. 

 

 

Table 4.5: Sensitivity indices computed as per (4.15) for Example 3 

Random Variable Sensitivity index at node N1 Sensitivity index at node N2 

1 0.3697 0.5116 

2 0.0376 0.1449 

3 0.1110 0.0426 

4 0.0033 0.1246 

5 0.0052 0.0439 

6 3.56e-5 1.82e-4 

7 9.52e-7 2.35e-6 

8 0.0264 0.0388 

9 0.0106 0.0058 

10 0.0035 0.0026 

11 0.0024 0.0036 

12 0.0055 0.0087 

13 4.58e-6 1.67e-5 

14 1.57e-6 1.23e-5 

15 5.17e-4 0.0020 

16 3.42e-4 7.04e-4 

17 1.53e-4 3.69e-5 

18 1.15e-4 0.0012 

19 6.04e-4 0.0010 

20 3.08e-6 8.11e-6 

21 3.90e-7 1.88e-6 

22 0.0320 0.0444 

23 0.0037 0.0071 

24 0.0150 0.0039 

25 0.0029 0.0026 

26 0.0059 0.0087 

27 3.36e-6 2.70e-5 

28 1.29e-5 3.14e-6 

29 0.1465 1.07e-4 

30 0.0983 2.13e-4 

31 0.0455 1.51e-4 

32 0.0733 2.90e-4 
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(a) 𝛼 = 0.3, Node 𝑁1 

 
(b) 𝛼 = 0.7, Node 𝑁1 

Fig 4.8: Maximum and Minimum values of the response at 𝛼-cuts 0.3 and 0.7 for node 𝑁1 for 

Example 3. 

Table 4.6: Number of MC simulations carried out at each 𝛼-cut for example 3 

Alpha cut Number of MC Simulations 

0 30k 

0.1 30k 

0.2 25k 

0.3 20k 

0.4 20k 

0.5 15k 

0.6 12k 

0.7 10k 

0.8 8k 

0.9 5k 

1 1k 

Total 176k 

 

 
(a) Node 𝑁1 

 
(b) Node 𝑁2 

 

Fig 4.8: Membership function of the output at nodes 𝑁1 and 𝑁2 for Example 3. 
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CONCLUSION 

 

In this thesis, the need to introduce novel methods to quantify aleatory and epistemic parametric 

uncertainty was discussed. The work presented a brief overview of the traditional and 

contemporary methods to analyze parametric uncertainty. It presented the pros and cons of using 

each method and stated why the linear regression approach was chosen to solve for the gPC 

coefficients. The work discussed some of the shortcomings of the traditional linear regression 

approach. Once some of the sources for the shortcomings were identified, new methods were 

developed to remove the redundancies in the PC expansion. By removing these redundancies, the 

number of the terms in the expansion were reduced, thereby reducing the time and computation 

cost required for both, generating the linear regression nodes and computing the coefficients by 

running MC simulations. It was ensured while removing the redundancies that the accuracy of 

the system was not compromised beyond a certain threshold.  

For aleatory variables, an anisotropic scheme of PC expansion was developed, which relied on 

the HDMR formulation to accurately identify those random dimensions which did not provide as 

much statistical information to the total response of the system as some of the other random 

dimensions. The contribution of each random dimension could be identified by a generated 

scalar value, known as the sensitivity index. By setting a different degree of expansion for each 

random dimension based on the corresponding sensitivity index, the higher degree multi-

dimensional terms, for those random dimensions which provided insignificant statistical 

information, could be eliminated, with minimal loss in accuracy. 

Unlike aleatory random variables, there is insufficient information about the probability 

distribution of epistemic random variables. While there are many approaches to solve epistemic 
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uncertainty, this work is solely focused on the use of fuzzy logic to quantify epistemic 

uncertainty. In the fuzzy logic approach, rather than discussing the probability distribution of the 

random variables, these epistemic random variables were modeled using possibility windows, 

known as confidence intervals. These confidence intervals can be updated as new information 

about the system is obtained. The novel approach of this method is to generate a global PC 

expansion at the largest confidence interval and then to probe this global PC expansion to 

compute the statistical moments at all the other confidence intervals, given the condition that the 

values the random variables take at all the other confidence intervals is a subset of the values 

they hold at the confidence interval where the global PC was generated. Furthermore, since these 

intervals were guided by the maximum and minimum values that a particular random dimension 

holds at that interval, a good way to quantify the impact of these variables was to the study the 

maximum and minimum values of the response at the corresponding 𝛼 – cut. Since complete 

information about the PDF of the random dimensions was not available, a new HDMR based 

formulation scheme was developed to quantify the impact of each epistemic variable on the 

response of the network. Further, a novel way to generate sensitivity indices for this approach 

was also presented. Unlike the previous method which set a lower degree of expansion for 

statistically insignificant terms, this method focuses on eliminating those random dimensions 

altogether. The result was the creation of a reduced dimensional PC expansion that only required 

a fraction of the time and memory cost to compute.  

The accuracy of all the methods presented above was verified using multiple numerical 

examples, by comparing them against conventional quantification methods. As expected, the 

proposed methods displayed huge savings in computation time for minimal loss in accuracy. 
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