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ABSTRACT 

 
 
 

EFFICACY OF SULFURIC ACID SODIUM SULFATE ON INOCULATED POPULATIONS 

OF SALMONELLA SPP. AND CAMPYLOBACTER SPP. ON PORK SUBPRIMALS, AND 

ITS EFFECTS ON NATURAL SPOILAGE MICROFLORA, LEAN DISCOLORATION AND 

OFF-ODORS 

 
 
 

Salmonella and Campylobacter are pathogens commonly associated with foodborne 

illness.  As these pathogens are often found in fresh pork, efforts to reduce or eliminate them is 

imperative to the pork industry.  Additionally, fresh pork is highly perishable and maintenance of 

desirable attributes is imperative.  So, extending shelf life of fresh pork is important to maintain 

profitability and desirability of product.  Although a variety of attributes can determine pork 

shelf-life, reducing spoilage microflora is an important quality control point.  Therefore, this 

study was conducted to determine efficacy of applying sulfuric acid sodium sulfate (SA) to 

reduce inoculated populations of Salmonella spp. and Campylobacter spp. on pork subprimals.  

Additionally, this study aimed to determine efficacy of SA application against inoculated 

populations of non-pathogenic Escherichia coli that could then serve as surrogates for 

Salmonella spp. and Campylobacter spp. on pork in in-plant trials (Experiment 1).  This study 

also was conducted to determine effects of a SA spray on the natural spoilage microflora, off 

odor characteristics, and discoloration properties of pork subprimals during vacuum storage and 

simulated retail display (Experiment 2).  And, SA was evaluated in a commercial pork in-plant 

system against the natural microflora and inoculated populations of a surrogate bacteria 
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(Experiment 3).  For Experiment 1, vacuum packaged pork subprimals were obtained from a 

local retailer less than 10 days postmortem.  Entire subprimals were cut into uniform sample 

pieces and assigned to one of the following treatments: 1.0 pH SA, 1.5 pH SA, water or an 

untreated control.  Samples were inoculated to a target level of 6 logs CFU/g for Salmonella spp. 

and surrogate E. coli, or 5.5 logs CFU/g for Campylobacter spp., with cocktails before treatment.  

Surviving pathogen and non-pathogenic E. coli populations were determined at 5 minutes post-

treatment and at 24 h post-treatment.  For Experiment 2, boneless pork loins and bone-in 

backribs were obtained from a commercial pork processing facility and treated with a topical 

spray of SA at 1.5 pH, 1.0 pH, or an untreated control.  After treatment, all samples were placed 

in dark, refrigerated storage for 14 d or 21 d, after which one half of the samples were removed 

from storage, overwrapped with polyvinyl chloride film, and placed into retail display cases 

maintained at 4°C (±2°C) for up to 96 h.  At 12 h intervals for the duration of simulated retail 

display, trained panelists evaluated percent discoloration.  Additionally, at 0, 48 and 96 h of 

display, trained panelists evaluated intensity of off odors and plated and enumerated populations 

of Psychrotrophic, Pseudomonas, Lactic acid bacteria and yeast and molds.  For Experiment 3, 

60 carcasses were railed off and market strategically with 5 x 10 cm2 areas.  Half the zones were 

inoculated with the surrogate bacteria, the other half remained uninocualted.  Carcasses were 

then treated with the SA using a commercial application spray cabinet.  For Experiment 1, 

application of 1.0 pH SA was the most effective (P < 0.05) at reducing inoculated populations of 

both Salmonella spp, and Campylobacter spp, compared to all other treatments.  However, no 

difference (P > 0.05) was observed for Campylobacter and surrogate bacterial populations 

determined at 5 min versus populations at 24 h.  Additionally, non-pathogenic E. coli strains 

were affected less by treatment than inoculated Salmonella spp. and Campylobacter 
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spp.populations and can, therefore, effectively serve as surrogates for Salmonella spp. and 

Campylobacter spp.  For Experiment 2, after 14 and 21 d of dark storage, both boneless loins and 

backribs sprayed with 1.0 pH SA had lower (P < 0.05) Psychrotrophic, Pseudomonas, Lactic 

acid bacteria and yeast and mold populations than control or 1.5-pH treated samples at 0, 48 and 

96 h of display.  Percent discoloration of boneless loin chops increased over the duration of retail 

display for products stored for 14 and 21 d before simulated retail display.  Boneless loin chops 

treated with 1.0 pH SA had a greater percent discoloration at each simulated retail display test 

time than untreated chops or those sprayed with 1.5 pH SA.  For Experiment 3, SA proved to 

effectively lower (P < 0.05) both inoculated and uninoculated bacterial (TPC, EB, TCC, and 

ECC) populations on pork carcasses.  However, treatment with 1.0 pH SA was more effective 

than treatment with 1.3 pH SA.  
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CHAPTER I 

 
 
 

INTRODUCTION 

 
 
 

Bacterial pathogens are a major concern in fresh pork. Every year, foodborne pathogens 

are a leading source of human illness.  The Centers for Disease Control and Prevention estimate 

that each year, 1 in 6 Americans get sick, 128,000 are hospitalized and 3,000 die because of 

foodborne diseases (Scallan et al., 2011a).  While fresh pork does not have the highest 

association with foodborne illness compared to other meat sources, it is the most consumed meat 

in the world (Delgado et al., 2001).  With the high demand for pork in the world, ensuring that 

pork products are safe is essential to the United States export market.  Traditionally, the major 

pathogens of concern in the pork industry are: Salmonella spp., Campylobacter spp., Trichinella 

spiralis, Toxoplasma gondii, Listeria monocytogenes, and Staphylococcus aureus (Baer et al., 

2013a).  Keeping this in mind, Salmonella spp., Campylobacter spp. and S. aureus are also in the 

top five pathogens causing foodborne illness (Scallan et al., 2011a).  While S. aureus is 

commonly caused further down on the food supply chain, mainly during food preparation; both 

Salmonella spp. and Campylobacter spp. can be reduced early along the food production chain 

(Warriner et al., 2002).  

There are multiple technologies available along the production chain to help control 

bacterial pathogens such as Salmonella spp. and Campylobacter spp. (Bacon et al., 2000).  One 

of the most commonly used pathogen control technologies in fresh meat production is the use of 

antimicrobial agents.  Some of the more widely used antimicrobial agents include organic acids 
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such as lactic acid and citric acid; and chemical antimicrobials such as peroxyacetic.  Other 

common interventions that can be used to reduce pathogens and the microbial load include 

thermal or steam pasteurization.  Using more than one of these technologies throughout the food 

processing system are more effective than just using a single intervention (Bacon et al., 2000; 

Davidson and Harrison, 2002; Baer et al., 2013a).  Pork production facilities are required in their 

regulatory HACCP plan to show validation of a system’s critical control points.  These critical 

control points or interventions must prove though scientific and in-plant validation that they 

reduce or eliminate pathogens classified as reasonably likely to occur.  The purpose of these 

interventions is to reduce the overall burden of foodborne illness and improve public health.  

While ensuring that the safety of fresh pork is at the forefront of pork industries efforts, 

fresh pork also is highly perishable and improving shelf life is also vital for both domestic 

purposes and export trade.  Fresh pork is highly perishable because of its rich nutritional 

composition, pH, and water activity.  Spoilage to an unacceptable level can be indicated by 

offensive off-odors, undesirable color deterioration and excessive microbial growth.  Rate of 

spoilage is affected by numerous intrinsic and extrinsic factors and it is the goal of any 

production facility to control as many as these extrinsic factors as is possible to slow the rate of 

spoilage and extend shelf life.  Large numbers of microorganisms are naturally present in fresh 

meat, but overtime, they grow exponentially and cause reduction in quality, leading to spoilage.  

In vacuum packaged fresh pork, growth of aerobic bacteria is suppressed, allowing anaerobic 

lactic acid bacteria (LAB) to multiply.  However, once fresh pork is exposed to oxygen, growth 

of anaerobic bacteria will slow and growth of aerobic spoilage bacteria such as Pseudomonas 

(PSD) will proliferate.  
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Increased globalization of the world economy has resulted in a greater need to ship fresh 

meat products across the world.  With more fresh meat products being shipped over excessive 

distances in foreign trade, there is a need to extend shelf life of meat and to ensure safety. 

Utilizing new and innovative technologies, such as antimicrobial spray treatments on fresh meat 

products to reduce and control pathogens and spoilage microflora, could extend shelf and storage 

life.  These studies were conducted to determine effects of using sulfuric acid sodium sulfate 

(SA) to (1) validate that inoculants of non-pathogenic E. coli effectively serve as surrogates for 

Salmonella spp. and Campylobacter spp.; (2) compare effectiveness of an acid spray cabinet 

using SA on chilled pork subprimals to reduce inoculated populations of Salmonella spp. and 

Campylobacter spp.; (3) determine effects of SA application on natural spoilage microflora 

populations of Pseudomonas, lactic acid bacteria, and Psychrotrophic bacteria, as well as yeasts 

and molds; 4) determine effects of SA on fresh pork indicators of spoilage including color and 

off odor intensity across simulated retail display; and (5) determine effects of SA on a 

commercial harvest floor in a pork packing facility on hot carcasses. 
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CHAPTER II 

 
 
 

REVIEW OF LITERATURE 

 
 
 

Introduction 

 The pork industry continually strives to improve safety of pork and pork products.  Many 

bacterial pathogens are naturally harbored within the gastrointestinal tract and growing 

environment of live hogs.  Food safety concerns and issues are always changing, but the 

expectation of ensuring safe products has and always will remain important.  Therefore, new 

advances and improvements in food safety technologies must continually be researched and 

sought after to help ensure the wholesomeness of meat.   

 There are multiple points within the pork production system, both pre-harvest and post-

harvest, where safety can be improved.  However, throughout the production chain, Salmonella 

spp. and Campylobacter spp. are two of the major pathogens of concern.  Every pork production 

facility, including harvest, fabrication, case-ready, and further processing, has regulatory food 

safety requirements.  Currently, there are multiple intervention technologies available to control 

bacterial pathogens that are persistent throughout the post-harvest production chain such as 

different antimicrobials and thermal pasteurization.   

 While ensuring food safety is the foremost focus of the meat and pork industry, 

increasing shelf and storage life of products also is of major concern.  The financial success of 

the pork industry is highly dependent on the ability to export.  For pork to be eligible for export, 

certain food safety standards must be achieved and specific quality attributes must be met.  
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Spoilage indicators, such as the level of natural microflora present, off-odor and color, must be 

minimized.  Pork must be as free as possible from bacterial pathogens, maintain an attractive 

reddish-pink color, and minimize any off-odor intensities.  

Foodborne Illness  

 The purpose of the United States Department of Agriculture’s Food Safety Inspection 

Service (USDA-FSIS) is to ensure that meat, poultry, processed egg products and catfish are 

safe, wholesome and correctly labeled to help reducing the burden of adulteration.  Each year, it 

is estimated that 31 different pathogens cause 37.2 million U.S. illnesses, of which 36.4 million 

are acquired domestically (Scallan et al., 2011a).  In 2011, Scallan et al. (2011a) determined that 

of 36.4 million domestically acquired illnesses, 9.4 million were of foodborne origins.  Of these 

foodborne illnesses, 5.5 million (59%) were caused by viruses, 3.6 million (39%) by bacteria and 

0.2 million (2%) by parasites (Scallan et al., 2011a).  Overall, foodborne pathogens causing the 

most U.S. illnesses are norovirus (5.5 million, 58%), nontyphoidal Salmonella spp. (1.0 million, 

11%), C. perfringens (1.0 million, 10%), and Campylobacter spp. (0.8 million, 9%) (Scallan et 

al., 2011a). 

 These 31 different pathogens also cause 228,744 hospitalizations annually and, of these, 

55,961 were caused by contaminated food.  Of the hospitalizations caused by foodborne illness, 

64% were caused by bacteria, 27% by viruses, and 9% by parasites.  Leading causes of 

hospitalization were nontyphoidal Salmonella spp. (35%), norovirus (26%), Campylobacter spp. 

(15%), and T. gondii (8%) (Scallan et al., 2011a).  These 31 pathogens also caused 2,312 deaths, 

of which 1,351 were via contaminated food.  Of all foodborne illness related deaths, 64% were 

caused by bacteria, 25% by parasites, and 12% by viruses; the leading causes of foodborne 
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illness related deaths were nontyphoidal Salmonella spp. (28%), T. gondii (24%), L. 

monocytogenes (19%), and norovirus (11%) (Scallan et al., 2011a). 

 Similar to findings of Scallen et al. (2011a), every year, the Centers for Disease Control 

and Prevention (CDC) estimates that one in six Americans (48 million) get sick from foodborne 

illness each year; 128,000 people are hospitalized and 3,000 people die from consuming 

contaminated food (Center for Disease Control and Prevention, 2016).  There are several 

surveillance systems and networks for monitoring the burden of foodborne illness at the Federal, 

local, state, and regional levels.  Although there are multiple surveillance programs, these 

systems only capture a small portion of U.S. foodborne illnesses due to infected people not 

seeking medical care and lack of reporting to the appropriate networks and authorities (McCabe-

Sellers and Beattie, 2004). 

 Of all of the 9.6 million annual illnesses associated with a study (Painter et al., 2013) 

conducted between 1998 to 2008, approximately 51% were associated with produce or plant 

products, 42% to land animal commodities and 6% to aquatic animal commodities.  Further 

broken down, fruits-nut and vegetables accounted for 46% of illnesses and meat and poultry 

products accounted for 22% of illnesses (Painter et al., 2013).  Of those illnesses associated with 

bacterial contamination, 18% were associated with dairy products, 18% with poultry and 13% 

with beef (Painter et al., 2013).  Of the land-animal commodity group, the highest proportion of 

illnesses were associated with Campylobacter spp., Clostridium perfringens, Listeria spp., 

Salmonella serotypes Enteritidis and Heidelberg, Streptococcus spp. group A, Yersinia 

enterocolitica, and Trichinella spp. (Painter et al., 2013).  

 A study by His et al. (2015) was conducted to determine the average likelihood of 

Salmonella spp and shiga-toxin producing Escherichia coli O157 illnesses that were associated 
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with the amount of beef, lamb, pork and poultry consumed annually.  This study determined that, 

of all of the illnesses associated with Salmonella spp., median number of illnesses caused by 

poultry, beef, lamb, and pork were 208,400, 85,100, 700, 71,600, respectively (His et al., 2015).  

For shiga-toxin producing Escherichia coli O157 illnesses, 400 were associated with poultry, 

15,500 with beef, 100 with lamb and 700 with pork (His et al., 2015). 

The United States Pork Industry 

 According to the National Pork Producers Council (NPPC), there are 68,000 pork 

producers nationwide that market more than 110 million hogs each year (National Pork 

Producers Council, 2016).  An estimated 2.2 million metric tons of pork and pork products are 

exported annually; this is more than 26% of total U.S. production.  These exports, add more than 

$62 to the value of each hog sold and support approximately 110,000 job in the United States 

pork industry (National Pork Producers Council, 2016).  Pork is the most consumed meat in the 

world.  It is estimated that 28 kg per capita of pork are consumed each year in the developed 

world and 10 kg per capita in the developing world (Delgado et al., 2001).  By 2020, total 

consumption of pork is estimated to be at 39 kg per capita (Delgado et al., 2001).  However, 

60.4% of the total US populations reported not consuming pork within a two-day span (Guenther 

et al., 2005).  Within the U.S., Midwest populations reported eating 117.8% pork compared to 

the entire U.5. population (considered 100%) (Guenther et al., 2005).  This same study also 

reported that households ranging in size between 2-3 individuals eat 113.2% of pork compared to 

the entire U.S. population, and Asian, Pacific Islander; American Indian, Alaskan Native, and 

other racial/ethnic groups consumed 179.7% (Guenther et al., 2005).  Lastly, Guenther et al. 

(2005) showed that higher income households eat more pork than lower income households .and 

males eat more pork than females. 
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Food Safety in the Pork Industry 

Pork production is a vertically-integrated industry, consisting of different phases such as 

farrowing, growing and packing.  To effectively improve the safety of pork, understanding the 

nature of pathogens and their prevalence at each phase of pork production is essential (Baer et 

al., 2013b).  Some pathogens of importance to the pork industry are: Salmonella spp., 

Campylobacter spp., Trichinella spiralis, Toxoplasma. gondii, Listeria monocytogenes, and 

Staphylococcus aureus.  Salmonella spp., Campylobacter spp., and Staphylococcus aureus are 

relevant to the pork industry because they can be found throughout pork production systems and 

are among the top five pathogens causing foodborne illness and leading to hospitalization in the 

U.S. (Scallan et al., 2011b).  Recently, concern for Methicillin-resistant Staphylococcus aureus 

(MRSA) has grown and one of the sources under scrutiny is live hogs, and it is important to 

understand its relation to pork production (Baer et al., 2013b). 

Pork Pre-Harvest Food Safety 

 On the farm and in the live animal, Salmonella resides in the intestinal tract and can be 

shed to other animals on the operation.  Pregnant sows have a greater prevalence of Salmonella 

than lactating or young sows (Funk et al., 2001; Jacob et al., 2003; Wilkins et al., 2010).  One 

study determined that 51% of sows tested positive for Salmonella, along with 32% of nursery 

pigs and 38% of grower-finisher hogs tested (Wilkins et al., 2010).  Multiple studies have shown 

that as hogs progress along the market hog supply chain, from nursery or weaned pigs to 

growing and finishing hogs, prevalence of Salmonella increases (Jacob et al., 2003; Dorr et al., 

2009; Wilkins et al., 2010).  However, some studies have shown that Salmonella decreases as the 

market hog supply chain progresses (Kranker et al., 2003).  Floors and equipment inside of the 

hog operation can become contaminated with Salmonella and then spread to other animals (Rajiċ 
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et al., 2005).  Hog feed also has been shown to be contaminated with Salmonella (Jacob et al., 

2003; Davies et al., 2004; Farzan et al., 2006; Wilkins et al., 2010). 

 Pigs can become colonized with Campylobacter less than one week after birth, and sows 

have been shown to be the main source of contamination of piglets (Alter et al., 2005; Baer et al., 

2013b).  Throughout live hog production stages, Campylobacter prevalence generally increases 

(Farzan et al., 2010).  Furthermore, when the hogs reach the finishing stage, most are positive for 

Campylobacter (Schuppers et al., 2005).  Across all production stages of hogs, more 

Campylobacter coli is found than Campylobacter jejuni; more than 90% of hogs that were tested 

and found to be positive for Campylobacter spp. were positive for Campylobacter coli 

(Schuppers et al., 2005; Fosse et al., 2009; Farzan et al., 2010).  The farm environment has 

shown not to contribute to Campylobacter prevalence within swine, but the organism still can 

persist in the environment (Alter et al., 2005). 

 Toxoplasma gondii is a protozoan parasite that forms intracellular cysts in the muscles 

brains and other organs (Guo et al., 2016).  Prevalence of Toxoplasma gondii is highly variable 

along each stage in the hog production chain (Baer et al., 2013b).  However, pork is associated 

with 41% of meatborne Toxoplasma gondii infections (Guo et al., 2016).  The type of swine 

management operation has an effect on Toxoplasma gondii prevalence (Venturini et al., 2004; 

Baer et al., 2013b).  Intensive hog production systems have lower Toxoplasma gondii prevalence 

than organic and free-range systems (van der Giessen et al., 2007; Hill et al., 2010).  This is 

likely due to increased exposure to wildlife and cats that carry the parasite in those production 

systems (Smith et al., 1992; Dubey et al., 2002; Hill et al., 2010; Jiang et al., 2012).  In addition 

to Toxoplasma gondii, another parasite of concern is Trichinella spiralis.  However, prevalence 

of Trichinella spiralis has declined to extremely low levels across all hog production stages in 
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the U.S. (Davies et al., 1998; Gamble and Bush, 1999; van der Giessen et al., 2007) and is now a 

concern for wild game. 

 Pork Post-Harvest Food Safety 

 The USDA-FSIS has regularly tested for Salmonella in slaughter facilities since 1998 

and, in 2010, they found that prevalence in market swine declined from 4.3% to 2.4% (Baer et 

al., 2013b).  While prevalence of Salmonella at slaughter is low, there are a large number of hogs 

slaughtered in the U.S. and, therefore, a lot of product has potential to be contaminated.  A study 

conducted by USDA-FSIS in a commercial slaughter plant found that 91% of pre-scalded 

carcasses tested positive for Salmonella.  Of carcasses that tested positive for Salmonella, 37% 

were contaminated to a level of between 1 – 3.9 log CFU/100cm2 (Schmidt et al., 2012).  

Salmonella has shown to cross-contaminate knives, polished machinery and other equipment 

(Baer et al., 2013b).  Additionally, swine feces and lymph nodes can harbor Salmonella (Fosse et 

al., 2009).  Thus, evisceration and head removal equipment are especially prone to 

contamination.  After slaughter, final rinse, and carcass chilling, Salmonella prevalence was 

3.7% at the harvest facility (Schmidt et al., 2012).  However, up to 69% of Salmonella 

contamination on carcasses occur due to a contaminated slaughter environment (Duggan et al., 

2010).  Pork subjected to more extensive handling and processing have higher microbial 

populations (Duffy et al., 2001).  Both intact and ground products have the potential to be 

contaminated with Salmonella, but ground products have proven to have an even greater risk 

(Duffy et al., 2001; Baer et al., 2013b).  Ground pork was found to have a 12.5% prevalence of 

Salmonella (Duffy et al., 2001).  The type of retail processing facility can also influence 

prevalence of Salmonella, and pork in butcher shops was reported to have a higher prevalence 

than pork in supermarkets (Hansen et al., 2010). 



	 11	

 Prevalence of Campylobacter spp. found on the carcasses during harvest, is similar to the 

level that is found in and on live hogs (Baer et al., 2013b).  However, Campylobacter spp. is 

reduced on the carcasses by scalding, singeing, and polishing (Pearce et al., 2003). Carcasses can 

be contaminated with Campylobacter during the harvest process.  However, any Campylobacter 

on contaminated carcasses are often reduced in number during the chilling process because of 

sensitivity to drying and low temperatures (Pearce et al., 2003; Baer et al., 2013b).  The overall 

prevalence of Campylobacter spp. in retail pork products has been reported to be 1.3% (Duffy et 

al., 2001).  

Pork Bacterial Pathogens of Concern 

 While there are certainly multiple bacterial pathogens of concern in the pork industry, 

two of the most imperative pathogens to understand and control are Salmonella spp. and 

Campylobacter spp. (Baer et al., 2013b).  Both Salmonella and Campylobacter are among the 

top pathogens causing foodborne illness, hospitalizations, and deaths (Scallan et al., 2015).  In 

the U.S., disability-adjusted life years lost because of Salmonella and Campylobacter foodborne 

illness are 32,900 and 22,500, respectively (Scallan et al., 2015).  Both of these pathogens 

persistent throughout the pork supply chain and are needed to be reduced or eliminated to 

decrease risk of foodborne illness. 

Salmonella 

 Salmonella is a Gram-negative bacterium of the Enterobacteriaceae genus; like 

Escherichia, Shigella, Yersinia and many others.  Salmonella spp. can grow between 5 to 45°C 

and a pH range from 4 to 9 (Baer et al., 2013b).  The organism is very resilient and can survive 

for extended periods of time in low moisture foods (Podolak et al., 2010).  There are two species 

of Salmonella: Salmonella enterica and Salmonella bongori (Montville and Matthews, 2008).  
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Of Salmonella enterica, there are six recognized subspecies and the majority of isolates 

associated with foodborne illness are Salmonella enterica subsp. Enterica.  Underneath 

subspecies, strains can be further differentiated by serotyping over 1,400 serovars of Salmonella 

enterica subsp. Enterica.  These serovars of Salmonella enterica subsp. Enterica are considered 

typhoidal or non-typhoidal (Montville and Matthews, 2008).  Typhoidal Salmonella can cause 

symptoms such as fever, diarrhea, and abdominal cramps.  Non-typhoidal Salmonella are by far 

the subtype serovars most common in food and they can affect humans and animals by causing 

gastroenteritis and symptoms such as diarrhea and abdominal pain (Montville and Matthews, 

2008; Baer et al., 2013b).  Severe infection with non-typhoidal Salmonella can cause 

Salmonellosis.  Salmonella causes 1.2 million illnesses and 450 deaths in the U.S. annually 

(Scallan et al., 2011b).  Children under the age of five are at the highest risk for Salmonella 

infection; they have higher rates of infection than any other age group (Scallan et al., 2011b).  

Campylobacter 

 Similar to Salmonella, Campylobacter is a Gram-negative bacterium.  However, it also is 

very different because it requires low levels of oxygen for growth.  Campylobacter grows in the 

narrow temperature range of 30 to 47°C and requires a minimum pH of 5.8 for growth (Bolton 

and Coates, 1983; Doyle and Cliver, 1990; Kaakoush et al., 2007).  Campylobacter lacks the 

enzyme 6-phosphofructokinase, which means it cannot use glucose as an energy source; but 

instead uses fumarate, nitrate or sulfite for energy (Bolton and Coates, 1983).  The pH, 

microaerophilic oxygen levels, temperature and available energy sources make the intestinal 

tracks of mammals the ideal environment for growth of Campylobacter spp. (Anderson et al., 

2009; Baer et al., 2013b).  Additionally, it is possible for hogs to be asymptomatic carriers of 

both Salmonella and Campylobacter (Baer et al., 2013b).  Campylobacter is the leading cause of 
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human gastrointestinal illness from an animal source, and 80% of the illnesses are foodborne 

(Baer et al., 2013b).  Each case of foodborne Campylobacter illness accounts for 9% off all 

foodborne illnesses annually (Scallan et al., 2011b).  Infection with Campylobacter can cause 

gastrointestinal illness with symptoms of diarrhea, bloody diarrhea, vomiting, fever and 

abdominal pain (Stern et al., 1985).  Additionally, infection with Campylobacter can cause 

Guillain-Barre syndrome (Nachamkin et al., 1998).  The majority of foodborne Campylobacter 

infection (campylobacteriosis) is caused by Campylobacter jejuni, which is not as common as 

Campylobacter coli in pork production (Schuppers et al., 2005; Baer et al., 2013b). However, 

Campylobacter coli can also cause illness in humans. 

Pathogen Control Methods 

 Foodborne pathogens persist throughout the entire span of the pork production chain, and 

because of this it is imperative to have multiple pathogen control methods in place to assist in 

reducing or eliminating pathogens of concern.  Use of multiple sequential interventions, also 

known as multiple hurdles technology, is considered the most effective method at reducing and 

controlling risk of pathogens on meat and meat products (Delmore et al., 1998; Stivarius et al., 

2002; Koohmaraie et al., 2005; Scott et al., 2015).  Currently, strategies such as physical and 

chemical interventions are commonly utilized in production facilities (Koohmaraie et al., 2005; 

Scott et al., 2015).  Chemical intervention technologies proven to be effective as pathogen 

control measures include antimicrobial treatments, steam pasteurization, and hot water (Delmore 

et al., 1998; Stivarius et al., 2002; Koohmaraie et al., 2005; Scott et al., 2015).  The USDA-FSIS 

requires proof that pathogen control methods put in place by a packing facility are operating 

effectively; this is called validation.  Pathogens that are classified as ‘reasonably likely to occur’ 
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must have a critical control point in place that is validated to eliminate the pathogen or reduce its 

prevalence to acceptable levels. 

 Pre-Harvest Interventions 

 Salmonella is found and harbored in the intestinal tract of live swine and, therefore, 

intervention technologies can begin on the farm.  Effective management and biosecurity 

practices can help reduce cross-contamination and spreading of pathogens (Baer et al., 2013b).  

Vaccinations, antibiotics and probiotics can be administered to live swine to reduce Salmonella 

prevalence levels (Baer et al., 2013b).  One study showed that a Salmonella Choleraesuis vaccine 

administered to 3 to 16 week old piglets reduced the number of Salmonella-positive lymph nodes 

by 6.6% (Maes et al., 2001).  This vaccination could also perhaps cross-protect live animals 

against other bacteria such as Salmonella Typhimurium (Maes et al., 2001).  Vaccinations, 

administered orally or in water, have been demonstrated to reduce prevalence of Salmonella 

Typhimurium (Maes et al., 2001; Baer et al., 2013b). 

Use of probiotics or prebiotics in the feed also decrease prevalence of Salmonella in live 

hogs.  Probiotics or prebiotics used as a feed additive alters the gut microbiota of the animal 

causing a shift in levels of harmful bacteria (Baer et al., 2013b).  Ferlac-2 and Flavomycin are 

probiotics administered to swine that have been shown to effectively decrease prevalence of 

Salmonella Typhimurium in lymph nodes, but were not effective at reducing shedding of the 

pathogen (Letellier et al., 2000).  A SC54 live attenuated Salmonella choleraesuis vaccine given 

to swine seemed to reduce Salmonella Typhimurium in the gastrointestinal tract and feces of 

hogs.  However, unlike probiotics, no reduction was observed in the lymph nodes because of the 

vaccination.  A combination of probiotics and vaccination will give hogs the greatest possible 
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reduction of Salmonella by reducing prevalence of shedding and the presence in the lymph nodes 

(Letellier et al., 2000; Baer et al., 2013b). 

Carbadox and copper sulfate are additives in feed commonly given to nursery swine as 

growth-promoting agents, and they have been shown to also effectively decrease shedding of 

Campylobacter in feces.  However, at the same time, this combination also increased shedding of 

Enterobacteriaceae such as Salmonella (Wells et al., 2010; Baer et al., 2013b).  Also, use of 

deaminase inhibitors, such as thymol or diphenyliodonium chloride inhibit amino acid 

catabolism and, therefore, decrease survival of Campylobacter (Anderson et al., 2009).  

Inhibition of fermentation with nitro-alcohols has been shown to be effective against 

Campylobacter jejuni.  Campylobacter spp. were reduced by 1.16 log10 and 3.92 log10 with use 

of 2-nitro-1-proponal and nitroethane, respectively (Horrocks et al., 2007). 

Post-Harvest Interventions  

 Eliminating all pathogens in live animals is impossible.  No current pre-harvest method 

has been able to eliminate all pathogens found throughout the pork production chain.  Therefore, 

a combination of both pre-harvest and post-harvest interventions in a multiple hurdles system is 

the best method for reducing and controlling pathogens.  Organic acids are commonly used to 

effectively reduce Salmonella populations on meat products (Delmore et al., 1998; Pohlman et 

al., 2002; Koohmaraie et al., 2005; Baer et al., 2013; Scott et al., 2015).  Weak acids, such as 

organic acids, utilized in food systems are neutrally charged molecules that cross the bacterial 

cell membrane (Brul and Coote, 1999).  This undissociated acid, happens when the pH of the 

meat product is near or lower than the pKa of the organic acid.  Bacterial pH is higher, which 

causes release of a proton from the neutral acid once it has crossed the cell membrane.  The 

released proton can then inhibit growth of the bacteria by either disruption of the membrane, 
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metabolic reactions, or intracellular pH homeostasis (Brul and Coote, 1999; Mani-López et al., 

2012; Baer et al., 2013b).  Organic acids have been used as carcass spray washes to decrease a 

variety of pathogens including Salmonella (Epling et al., 1993a).  Peroxyacetic and lactic acid 

carcass washes reduced Salmonella by 50% and 66% (Baer et al., 2013b).  The combination of 

organic acids and hot water washing was shown to be more effective than just organic acids on 

pork skin (Niebuhr et al., 2002).  Post-harvest interventions are not just applied to carcasses; they 

can also be applied to cuts of pork.  Treatment with acetic acid and lactic acid or salt was 

effective at decreasing the prevalence of Enterobacteriaceae in anaerobically stored pork (Baer 

et al., 2013b).  Use of carbon dioxide and lactic acid also have been shown to decrease 

Salmonella on boneless pork loins (Choi et al., 2009). 

 Typical slaughter procedures are effective at decreasing Campylobacter on pork skin, but 

additional methods should be utilized and explored to ensure Campylobacter reduction (Baer et 

al., 2013b).  A 2% lactic acid spray decreased prevalence of Campylobacter spp. from 2% to 0% 

on the shoulder and from 6% to 1% on the ham (Epling et al., 1993a; Carpenter et al., 2011).  

Carcass chilling in pork production effectively controls Campylobacter (Baer et al., 2013b).  

Blast-chilling also is extremely effective at decreasing prevalence of Campylobacter (Chang et 

al., 2003).  However, thermal treatment is the most common intervention to kill Campylobacter.  

Thermal inactivation occurs at 50°C and such temperatures are possible to apply on the harvest 

floor of packing facilities (Baer et al., 2013b).  On retail pork cuts, antimicrobials are often used 

to reduce the Campylobacter bacterial load.  Oils can be very effective antimicrobials against 

Campylobacter jejuni, including carrot seed, celery seed, marigold, ginger root, gardenia, orange 

bitter, patchouli, cedarwood, mugwort, spikenard, carvacrol, cinnamaldehyde, thymol, geranyl 

acetate, benzaldehyde, perillaldehyde, carvone R, eugenol, citral, and estragole (Friedman et al., 
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2002).  These oils also have been evaluated for effectiveness against other pathogens and 

Campylobacter jejuni was more sensitive to the antimicrobial effects of the oil agents than the 

other pathogens tested (Friedman et al., 2002).  This is most likely due to the specific growth 

conditions of Campylobacter jejuni and its unique structure (Friedman et al., 2002; Baer et al., 

2013b).  Additionally, due to the low oxygen levels required for optimal Campylobacter growth, 

packaging methods can also greatly effect growth on retail cuts (Baer et al., 2013b). 

Pork Spoilage Indicators  

 Meat and pork spoilage rate is a complex phenomenon.  Ultimately spoilage occurs based 

off the meats internal pH as well as state and charge of the myoglobin molecule.  The ferric or 

ferrous state of the iron at the center of the myoglobin molecule will determine the rate and 

extent of lipid oxidation as well as effects other intrinsic factors associated with meat spoilage.  

There are many intrinsic and extrinsic factors that influence pork spoilage rates, including 

microbial quality, pH moisture content, available nutrients and temperature (Casaburi et al., 

2015).  Intrinsic factors are nearly impossible to control, so in order to effectively control 

spoilage throughout the pork production system, the industry must control the extrinsic factors as 

much as possible.  The effect of temperature on meat is one of the most effective and easiest 

ways to control spoilage (Koutsoumanis and Taoukis, 2005; Nychas et al., 2008).  The industry 

should pay special attention to primary and secondary chilling of product.  Primary chilling is the 

cooling of carcasses directly after slaughter from the hot temperature on the harvest floor to 

refrigerated temperatures.  Rapid growth of both pathogenic and spoilage microorganisms can 

occur during primary chilling.  Processing of product after primary chilling can raise the product 

temperature again, so secondary chilling is required (Nychas et al., 2008).  Overall, spoilage is 
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characterized by a combination of multiple different indicators, including microbial quality, 

color or appearance, and off-odor development. 

 Spoilage Bacteria Effecting Pork 

 Microbial spoilage of meat occurs when populations reach 7 to 9 log CFU/g-1 (Gram et 

al., 2002).  Several organisms such as Enterbacteriacea, lactic acid bacteria, Pseudomonas, and 

Brochothrix thermosphacta can contribute to spoilage of aerobically stored meat (Borch et al., 

1996; Lambropoulou et al., 1996; Liu et al., 2006a).  Pseudomonas has been implicated as one of 

the predominant bacteria associated with the spoilage of pork (Liu et al., 2006a).  The 

predominate bacteria affecting vacuum packaged pork in high bacterial populations is 

psychrotrophic and lactic acid bacteria (Holley et al., 2004).  At lower bacterial levels, spoilage 

often is caused by Brochothrix thermosphacta, Shewanella spp. or Aeromonas spp., and/ 

Enterobacteriaceae (Gill and Greer, 1993).  Lower initial counts at the beginning of storage will 

result in a longer storage life (Holley et al., 2004).  A 100-fold reduction in the initial starting 

bacterial counts has resulted in a two week longer storage life for pork when held at between 4 or 

-1°C (Mcmullen and Stiles, 1991).  Lactic acid bacteria gradually grows in anaerobic storage and 

eventually becomes the predominant bacteria (Jiang et al., 2010).  Microflora populations on 

vacuum stored pork has been widely studied and it is accepted that lactic acid bacteria are the 

predominant bacteria in the spoilage microflora (Boers et al., 1994; Jeremiah et al., 1995; Blixt 

and Borch, 2002; Holley et al., 2004). 

Lactic acid has proven to be very effective at reducing psychrotrophic bacteria on pork 

(Gill and Greer, 1993).  Treatment with organic acids can reduce cold tolerant spoilage bacteria 

on pork fat and lean (Greer and Dilts, 1995).  Additionally, both lactic and acetic acid have been 

shown to extend the storage life of pork loins and pork chops (Stringer et al., 1983; Mendonca et 



	 19	

al., 1989).  The combination of temperature and availability of oxygen can also suppress the 

growth of Brochothrix thermosphacta, Enterobacteriaceae and yeasts and molds (Blickstad et 

al., 1983).  Yeasts and molds also have been shown to shorten storage life and contribute to 

spoilage.  Pseudomonas, lactic acid bacteria, psychrotrophic bacteria, as well as yeast and mold 

populations all contribute to spoilage in pork products and, in order to extend storage life, their 

numbers must therefore be controlled. 

 Pork Color Stability 

 Retail shelf-life of meat products, including pork, is greatly limited by color stability and 

development of surface discoloration which can occur before microbial spoilage is reached due 

to mechanisms not associated with surface bacteria numbers.  Spoilage by discoloration begins 

with the pork surface being exposed to oxygen.  Therefore, methods to increase color stability 

and extend shelf-life need to be continually researched.  Use of different packaging technologies 

and antioxidants can help stabilize and fix color to maintain a fresh appearance.  Modified 

atmosphere packaging (MAP) often is used to help maximize meat color stability (Lambert et al., 

1991; Gill, 1996; Luño et al., 2000; Jayasingh et al., 2001).  Meat placed into MAP packaging is 

exposed to an artificial environment created using differing gas mixtures pumped into the 

packages; gases such as oxygen, nitrogen, carbon dioxide and carbon monoxide (Viana et al., 

2005).  Such gases bind to the myoglobin porphyrin ring responsible for the meat’s red color.  

Pork packaged with 100% carbon dioxide has been shown to have improved color fixation or no 

change in color (Jeremiah et al., 1995; Sørheim et al., 1997).  Maintaining a positive and 

attractive color appearance is important because color plays a major role in purchasing decisions 

(Sørheim et al., 1997; Luño et al., 2000; Viana et al., 2005).  Enhanced MAP loin chops with 

higher pH values have greater color stability (Livingston et al., 2004).  Throughout retail display, 
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surface discoloration of meat products occurs and therefore effects consumers purchasing 

decisions (Livingston et al., 2004).  Therefore, it is imperative for the success of the pork 

industry to maximize color stability and minimize surface discoloration. 

 Treatment with antimicrobials that accelerate oxidation reactions associated with the iron 

porphyrin ring of myoglobin cannot only contribute to increased surface discoloration, but can 

also have negative impacts on instrument color measures of CIE L*, a* and b* values (Shrestha 

and Min, 2006).  Lightness to darkness is measured by L*, red to green is measured with a* 

values and blue to yellow is measured using b* values.  Treatment with lactic acid can result in 

decreased a* values on fresh pork (Arganosa and Marriott, 1989; Shrestha and Min, 2006) and 

greater L* values, and the effect is increased as the concentration of lactic acid is increased 

(Huang et al., 2005; Viana et al., 2005; Shrestha and Min, 2006).  However, treatment with 

antioxidants can result in greater redness (a*) values (Sánchez-Escalante et al., 2001; Huang et 

al., 2005; Balentine et al., 2006).  Fresh meat, including pork treated with organic acids such as 

citric or ascorbic acid, also had higher b* values then untreated meat (Huang et al., 2005; Viana 

et al., 2005). 

 Off-odors 

 Throughout extended display or storage, off-odors develop (Lambert et al., 1991; Brooks 

et al., 2008).  Off-odor is often used as an indicator for spoilage.  Even without excessive 

microbial growth and color deterioration, off-odors can still develop (Viana et al., 2005).  

However, when microbial population reach 7 to 8 log CFU/cm2, off-odors have been shown to 

develop (Gill, 1983).  Extensive growth of specific bacterial organisms can affect which off-odor 

is the most intense and detectable (Lambert et al., 1991).  Excessive growth of Brochothrix 
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thermosphacta utilizes glucose for energy and creates acetic acid as a byproduct which causes a 

sweet off-odor (Lambert et al., 1991). 

 Volatile compounds develop over storage and display time and can intensify when 

exposed to different factors.  Combinations of the meat biochemical status and bacterial 

populations can affect the volatile compounds present and ultimately what off-odors are 

detectable (Viana et al., 2005; Brooks et al., 2008).  Off-odors also develop as a result of lipid 

oxidation, and both lipid oxidation and production of volatile compounds are associated with 

meat spoilage (Brooks et al., 2008).  Meat in traditional PVC overwrap packages developed off-

odors faster in storage than MAP packages containing carbon monoxide (Brooks et al., 2008).  

Glucose is often a precursor of many off-odors during storage as it is metabolized to acetate, 

acetoin, diacetyl, acetic acid, iso-butyric acid, iso-valeric acid, 2-methylbutyric acid, 3- 

methylbutanol, 2 methylpropanol and ethanol (Nychas et al., 1988; Nychas and Arkoudelos, 

2007; Casaburi et al., 2015).  These compounds are responsible for off-odors such as rancid, 

putrid and sour. 

Conclusion 

 Pork is a highly valuable protein enjoyed all around the world.  While many consumers 

enjoy pork regularly, the industry must be diligent to ensure safety and quality.  Foodborne 

illness affects thousands of people year in the United States.  It is imperative to reduce or 

eliminate pathogens throughout the supply chain on pork destined for both domestic sale and 

international trade.  Additionally, it is necessary for the industry to reduce and control spoilage 

bacteria and to reduce formation of off-odors and discoloration.  There are multiple stages in 

both pre-harvest and post-harvest production systems where interventions can be put in place to 

help control quality and safety. 
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 Both Salmonella spp. and Campylobacter spp. are two of the bacterial pathogens of 

concern, both causing foodborne illness and found inherently in the pork supply chain.  Use of 

antimicrobial chemicals, such as organic acids, have proven to be effective in controlling 

bacterial pathogens.  Other interventions such as thermal or steam pasteurization have also been 

effective at controlling bacterial pathogens.  These control methods or interventions used during 

the post-harvest stage of the pork production supply chain must be validated to prove they are 

effectively reducing or eliminating pathogens that are classified as reasonably likely to occur in 

their regulatory HACCP plan. 

 In order for the pork industry to maximize profitability, storage and shelf life needs to be 

extended as long as is possible.  Spoilage is a multifactorial, complex phenomenon that can be 

initiated by high microbial counts, off-odor development and surface discoloration caused by 

oxidation of muscle pigments.  There are different technologies available to help control 

different spoilage indicators such as packaging method, antimicrobial treatment and use of 

antioxidants.  Packaging method can reduce certain bacterial populations and help ensure color 

stability.  Antimicrobial treatment can greatly reduce the bacterial populations present, but also 

can negatively impact color stability and discoloration rate.  Antioxidants have shown positively 

impact color and off-odor development. 

 Continued research is needed to determine effects of different antimicrobial interventions 

throughout different post-harvest stages.  Treatment with antimicrobial acids over different 

stages of production should be evaluated to determine their effect on both food safety and 

spoilage indicators to assist in ensuring safety, quality and profitability of the pork industry. 
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CHAPTER III 

 
 
 

EFFICACY OF SULFURIC ACID SODIUM SULFATE ON INOCULATED POPULATIONS 

OF SALMONELLA SPP. AND CAMPYLOBACTER SPP. ON PORK SUBPRIMALS, AND 

ITS EFFECTS ON NATURAL SPOILAGE MICROFLORA, LEAN DISCOLORATION AND 

OFF-ODORS 

 
 
 

Materials and Methods 

Experiment 1: Inoculation and Surrogate Validation  

Effects of sulfuric acid sodium sulfate (SA) on populations of Salmonella spp. and 

Campylobacter spp. inoculated onto chilled pork bone-in Boston-butt shoulders were evaluated, 

and inoculants of non-pathogenic E. coli surrogates for Salmonella spp. and Campylobacter spp 

on subprimals were assessed in an effort to validate their use in commercial plants.  Shoulders 

where obtained from a local wholesale distributor less than 11 days postmortem and delivered to 

the Colorado State University, Center for Meat Safety and Quality’s Meat Science Laboratory.  

Upon arrival to at the laboratory, each shoulder was separated into three equal portions using a 

band saw and then transported to the microbiology laboratory.  The SA used to address 

objectives of this study was Titonä (Zoetis, Florham Park, N. J.).  Each pathogen inoculant 

strain was subjected to four treatments including: 1.0 pH SA, 1.5 pH SA, water or an untreated 

control (CON).  Shoulder portions were then assigned to one of the four treatments under each 

bacterial inoculum type.  A total of 18 shoulder samples or replicates (n = 18) were assigned to 



	 24	

each treatment for each inoculant strain (see Figure 1) over three days (6 subprimal samples 

treated/day, three for 0 hour samples and three for 24 hour samples). 

 As previously stated, this experiment utilized three inoculum cocktails, including:  (i) a 6-

strain mixture of Campylobacter spp, (3-coli and 3-jejini) with C.jejuni B3-55, C.jejuni HS-99-

01-8-100, C.jejuni HS-99-10-11-12, C.coli B3-59, C.coli HS99-01-4-11s and C.coli HS99-01-9-

30, (ii) a 6-strain mixture of Salmonella spp with S. anatum, S. schwartzengrund, S. montevideo, 

S. agona, S. derby and S. Tennessee, and (iii) a 5-strain mixture of non-pathogenic E. coli 

surrogates for Salmonella spp and Campylobacter spp. with TCC BAA-1427, ATCC BAA-1428, 

ATCC BAA-1429, ATCC BAA-1430, and ATCC BAA-1431.  Salmonella and Campylobacter 

strains were obtained from the USDA-ARS and were all of pork origin.  Non-pathogenic E. coli 

strains (surrogates) were grown to be rifampicin-resistant to allow for selection and 

differentiation of the inoculum from natural microflora associated with fresh pork.  Xylose lysine 

deoxycholate (XLD) agar was used for selective enumeration of the Salmonella inoculum.  

Campy-Cefex agar (Becton Dickinson, Sparks, MD) was used for selective enumeration of the 

Campylobacter inoculum.  Strains of Salmonella spp were activated and subcultured (35°C, 24 ± 

2 h) in 10 ml of tryptic soy broth (TSB; Difco, Becton Dickinson, Sparks, MD).  Strains of the 

non-pathogenic E. coli were activated and subcultured (35°C, 24 ± 2 h) in 10 ml of TSB 

supplemented with 50 µg/ml rifampicin (Sigma-Aldrich Inc., St. Louis, MO; for all rifampicin-

resistant E.coli strains).  Strains of Campylobacter spp. were activated and subcultured (42°C, 48 

± 2 h) in boltons broth infused with lysed horse blood (Hardy Diagnostics, Santa Maria, CA).  

Strains of each were individually cultured and subcultured (35°C, 24±2 h) in 10 ml of 

appropriate broths.  Broth cultures (10 ml) of the strains belonging to the same inoculant type 

were combined, cells were harvested by centrifugation (3220 x g, 20 min, 4°C, Eppendorf model 
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5810 R, Brinkman Instruments Inc., Hamburg, Germany), washed with 10 ml phosphate 

buffered saline (PBS, pH 7.4; Sigma), re-centrifuged, and resuspended in PBS to the original 

volume resulting in a concentration of approximately 8 to 9 log CFU/ml for each inoculum type. 

 After each of the bacterial cocktails were centrifuged, washed and re-suspended, the 

shoulder samples were then inoculated.  Pork shoulder samples were spot-inoculated and 

inoculum was then spread across the surface on both the top and bottom sides with 200 µl on 

each side to obtain a target inoculation level of approximately 6 log CFU/g before treatment 

application with water or SA.  Inoculated samples were held for 15 min, after inoculation on 

each side, to allow for bacterial cell attachment before treatment application. 

After samples were inoculated, they were treated using a custom-built spray cabinet 

(Chad Co., Olathe, KS) at the Colorado State University, Center for Meat Safety and Quality’s 

microbiology lab.  The spray cabinet was fitted with 12 flood-jet nozzels, (FloodJet, SS316) 

spraying at 0.14 gpm.  There were four on top, two on each side and four on the bottom.  

Samples were then placed onto the conveyor belt and sprayed for approximately 11 seconds.  

Each treatment, except for the inoculated controls, were sprayed at 20 psi and had beginning and 

ending weights to ensure there was no excessive amount of pick-up (not to exceed 0.5%) after 

spray treatment. 

Half the samples were immediately excised within five-minutes of treatment and the 

other half were aseptically placed in to vacuum bags and stored anaerobically for 24 hours before 

excision and plating.  Samples were aseptically excised by taking 50 grams from each side (50 g 

from top + 50 g from bottom = 100 g total), a volume of 200 ml (1:1 ratio of excised pork and 

broth) of Dey Engley (Difco, Becton Dickinson) neutralizing broth (D/E) was added to a whirl-

pack bag, and each was mechanically pummeled (Masticator, IUL Industries, Barcelona, Spain) 
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for two-minuets.  Pummeled samples plus the D/E mixture were then serially diluted (10-fold) in 

0.1% buffered peptone water (Difco, Becton Dickinson).  Appropriate dilutions were surface-

plated (0.1 ml or 1 ml) onto tryptic soy agar (TSA; Acumedia, Lansing, MI) to determine total 

bacterial populations, TSA with rifampicin (100 µg/ml; TSA + rif) to enumerate rifampicin-

resistant non-pathogenic E. coli or surrogate populations, on XLD agar (Acumedia) for 

Salmonella spp., and on Campy-Cefex (Difco, Becton Dickinson) agar to enumerate 

Campylobacter spp. populations.  Colonies were counted after incubation of plates at 35°C for 

24 h (TSA + rif and XLD agar), 25°C for 72 h (TSA) or 42°C for 48 h (Campy-Cefex agar). 

Experiment 2: Effects of Sulfuric Acid Sodium Sulfate on Spoilage Indicators 

 Bone-in backribs and boneless pork loins were used to determine effects of SA on 

spoilage of chilled pork subprimals.  Backribs and loins were obtained from a commercial 

packing facility and transported to Colorado State University, Center for Meat Safety and 

Quality’s microbiology laboratory.  Subprimals were randomly collected during two-shifts on 

one production day to allow for a range in natural microflora.  During transportation to Colorado 

State University, Center for Meat Safety and Quality’s microbiology laboratory, subprimals were 

maintained at 4°C ± 2.  Upon arrival, subprimals were portioned into approximately 10 x 10 cm2 

pieces based on the top surface and treated using the custom-built spray cabinet (Chad Co., 

Olathe, KS).  The cabinet applied treatments as previously described for Experiment 1 and 

weights were monitored to ensure there was not an excessive amount of pick-up (not to exceed 

0.5%) after spray treatment. 

 Samples were randomly assigned to one of three treatments: 1.0 pH SA, 1.5 pH SA or an 

untreated control (CON).  Samples were then assigned to one of two dark anaerobic storage 

times: 14 days or 21 days.  Following treatment, samples were vacuum packaged and placed into 



	 27	

dark storage (4°C ± 2) for the designated storage period.  After samples were stored for their 

designated dark storage time, they were removed from the vacuum packages and overwrapped 

with polyvinyl chloride (PVC) on black Styrofoam trays (size 2P) and placed into simulated 

retail display (4°C ± 2) for up to 96 hours.  The bulb-type used in the simulated retail display 

were warm fluorescent bulbs with a light intensity that remained between 1,612.5 to 2,152 lux 

and 150 – 200 foot-candles, measured using a light meter placed level with the meat surface.  

Samples from each treatment were also kept in dark anaerobic storage for up to 28 days post-

treatment.  One a week, on day 0, 7, 14, 21 and 28 rib and loin sections were sampled and 

analyzed.  

 After packages were placed into simulated retail display, instrument color CIE L*, a* and 

b* values were measured every 12-hours (0, 12, 24, 36, 48, 60, 72, 84, and 96 hours) using 

MiniScan EZ 4500L Spectrophometer (HunterLab Reston, VA).  Additionally, a set of panelists 

(minimum of 6), previously trained to assess color and discoloration, evaluated the percent 

surface discoloration every 12 hours during retail display (0, 12, 24, 36, 48, 60, 72, 84, and 96 

hours).  Percent surface discoloration was evaluated using an electronic ballot (Qualtrics Provo, 

UT) with an unstructured line scale on touch screens.  The line was anchored with two verbal 

descriptors, far left being 0 percent or no discoloration and far right indicating complete or 100 

percent discoloration.  Trained panelists would drag the curser to the percent of surface 

discoloration for each sample.  Backribs and loin samples were evaluated for the level of natural 

spoilage microflora present and off-odor development every 48 hours of display (0 hour, 48 

hours and 96 hours).  At each sampling time, instrument color, subjective color panel and 

spoilage microflora enumeration, six replicates (n = 6) from each treatment and subprimal type 
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were evaluated (Table 1).  Populations of  of natural yeasts and molds (YM), Psychrotropic 

bacteria (PSY), Pseudomonas spp. (PSD) and Lactic acid bacteria (LAB) were enumerated. 

 Subprimal samples were excised by aseptically removing 50 g from each sample.  After 

aseptic excision, 100-ml of D/E was added (1:2 ratio of excised pork sample to D/E) and 

mechanically pummeled (Masticator, IUL Industries, Barcelona, Spain) for two min.  The 

pummeled sample and D/E mixture was then serially-diluted (10-fold) in 0.1% buffered peptone 

water (Difco, Becton Dickinson).  Appropriate dilutions were surface-plated (0.1 ml or 1 ml) 

onto dichloran rose bengal chloramphenicol (DRBC, Difco, Becton Dickinson) agar for YM 

enumeration, pseudomonas agar supplemented with CFC (Oxoid, Lenexa, KS) for PSD 

enumeration, tryptic soy agar (TSA; Acumedia, Lansing, MI) for PSY enumeration and pour 

plated lactobacilli MRS agar (LAB, Difco, Becton Dickinson) for LAB enumeration.  Plates 

were incubated following the manufactures instructions; PSD and LAB plates for 72 hours at 

25°C ± 2, YM plates for 120 hours at 25°C ± 2 and PSY plates for 240 hours at 7°C ± 2.  As 

samples were opened and excised for spoilage microflora sampling, subprimal samples also were 

evaluated for off-odor intensity by a set of trained panelists (minimum of 6 panelists/panel) using 

an electronic ballot (Qualtrics Provo, UT) with an unstructured line scale as previously 

described.  Small pieces of pork were excised from the cut surface (approximately 1 x 1 cm 

cubes) and placed into glass jars with lids.  Off-odors evaluated included acid/chemical, putrid, 

ranicd/oxidized and sour odor intensity using an unstructured line scale verbally anchored with 

five verbal descriptors equally spaced across the length of the line.  The verbal anchors ranged 

from “not detectable” on the far left, to “mildly detectable,” “slightly intense,” “intense,” and 

“extremely intestine” on the far right.  Panelists were trained to consider off odor intensity 

unacceptable at 50 percent of the way or half way across the unstructured line. 
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Experiment 3: In-plant Validation of Sulfuric Acid Sodium Sulfate on Pork Carcasses 

 Sixty pork carcasses (N = 60) were used to determine effects of SA application on 

carcass surface microbiological levels in a production system of a commercial packing facility.  

Populations of surrogate bacteria and natural microflora were enumerated before and after the 

SA spray intervention treatment, following a snap-chill cycle on hot pork carcasses, and after 15 

hours post SA treatment in the holding coolers.  Surrogate inoculum consisted of the same five-

strain mixture of non-pathogenic E. coli (ATCC BAA-1427, ATCC BAA-1428, ATCC BAA-

1429, ATCC BAA-1430, ATCC BAA-1431) previously assessed as an effective surrogate for 

Salmonella spp. and Campylobacter spp. in Experiment 1.  Inoculant strains were individually 

cultured and subcultured (35°C, 24±2 h) in 10 ml of tryptic soy broth.  Broth cultures (10 ml) of 

all five strains were then combined and cells harvested by centrifugation.  Cell pellets where then 

washed with 10 ml PBS, re-centrifuged, and resuspended into the original volume in PBS to 

obtain a concentration of 8 to 9 log CFU/ml and allow for a target inoculation level of 6 log 

CFU/cm2. 

 All carcasses were railed off to allow for ease of inoculation and to prevent cross-

contamination.  External surfaces of carcass’ skin were marked with eight 5 x 10 cm2 zones 

using carcass crayons (see Figure 2).  Half of the zones were inoculated with the surrogate 

bacterial cocktail, and the other remained uninoculated to determine the effects of SA on both 

surrogate bacterial populations and the natural microflora present on the carcass surface.  

Inoculation was performed by using separate sampling sponges, hydrated with 10 ml of 

inoculum.  Sponges were then used to sample the carcass surface within the marked zones.  

Separate inoculum-hydrated sponges were used for each of the 5 x 10 cm2 zones.  After 
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inoculation, carcasses were left stationary for a minimum of 10 minutes before SA treatment to 

allow for bacterial cell attachment. 

 Carcass sides were then assigned to one of 2 treatments consisting of 1.3 pH SA or 1.0 

pH SA over two sampling days.  Two carcass zones (one inoculated and one not inoculated) 

were then sampled at each intervention time point: 1) before SA spray, 2) after SA spray, 3) after 

SA spray and rapid chill cycle, and 4) after SA spray, rapid chill cycle and 15 hours post SA 

treatment.  Zones were sampled by making 10 vertical and 10 horizontal passes within the 5 × 10 

cm2 area, using a 3M sampling sponge hydrated with 10 ml D/E neutralizing broth, with enough 

force to remove dried blood.  Sample bags were then sealed and placed in a cooler and 

transported back to Food Safety Net Services (Amarillo, TX) to be plated and enumerated.  Upon 

arrival, 15 ml of Butterfields broth was added to all sponge samples for a total of 25 ml of diluent 

(10 ml D/E + 15 ml Butterfields).  Samples were then mechanically pummeled for 2 min and 

serially diluted (10-fold) in 0.1% buffered peptone water.  Appropriate dilutions were plated in 

duplicate to enumerate aerobic plate counts (3M Petrifilm Aerobic Count Plates) and 

Enterobacteriaceae counts (3M Petrifilm Enterobacteriaceae Count Plates).  Colonies on APC 

Petrifilm plates were enumerated following 48 hours incubation at 37°C.  Colonies on EB 

Petrifilm plates were enumerated following 24 hours incubation at 37°C. 

Statistical Analysis 

Experiment 1, inoculation and surrogate validation portion of the study was repeated on 

three separate days (blocks) with three samples analyzed per treatment per hour (0 or 24) on each 

day (i.e., a total of nine samples per treatment level; n = 9 replicates).  This experiment was 

conducted as a completely randomized block 4 x 2 factorial (SA treatment x hour) design with 

day as the block effect.  Bacterial populations were expressed as least squares means for log 
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CFU/g, calculated under an assumption of a log-normal distribution of plate counts.  Data were 

evaluated using the Mixed Procedure of SAS 9.3 (Cary, NC) with independent variables for each 

inoculum type included spray treatment (Untreated control, water, 1.5 pH SA and 1.0 pH SA), 

sampling hour (0 and 24) and the respective interactions.  All differences were reported using a 

significance level of α = 0.05. 

Experiment 2, effects of SA on spoilage indicators had a total of 6 samples (n = 

6/treatment/day or hour) to evaluate the effect of SA on spoilage indicators.  In order to evaluate 

odor characteristics, 2 samples/cut/treatment/day (n = 2) were evaluated on each odor panel.  The 

spoilage microflora enumeration and off-odor development determination for both the loins and 

backribs portion of this experiment was conducted as a 3 x 3 factorial (SA treatment x display 

hour) nested within dark anaerobic storage period.  Instrument color and panel discoloration 

portion of this experiment was conducted as a longitudinal repeated measures comparison across 

time and SA treatment nested within dark anaerobic storage period.  Data were evaluated using 

the Mixed Procedure of SAS 9.3 (Cary, NC) with independent variables within each cut and each 

day of dark storage times (14 days and 21 days) included spray treatment (untreated control, 1.5 

pH SA and 1.0 pH SA), retail display hour and the respective interactions.  For instrument color 

and subjective color panel analysis, time was analyzed as a longitudinal repeated measure.  All 

differences were reported using a significance level of α = 0.05. 

Experiment 3, in-plant validation of SA effects on pork carcasses, had bacterial 

populations expressed as means log CFU/cm2.  This experiment was conducted as a complete 

randomized block design with repeated measure.  Day served as the block effect and sampling 

point served at the repeated measure.  Data were evaluated using the Mixed Procedure of SAS 
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9.3 (Cary, NC) with independent variables of SA treatment.  All differences are reported at a 

significance level of alpha = 0.05. 

Results and Discussion 

Experiment 1: Inoculation and Surrogate Validation  

After pork shoulder samples were surface-plated on each agar and incubated at the 

appropriate time and temperature, colonies were counted and converted to log10 CFU/g.  For 

each inoculum type (Salmonella spp., Campylobacter spp. and Surrogate bacteria) and agar type 

(selective and non-selective for each bacteria type), there were no interactions (P > 0.05) 

between treatment (1.0 pH, 1.5 pH, Water and CON) and sampling time (0 hour and 24 hour), 

excluding Salmonella spp. plated on XLD agar (P = 0.0168) (Table 2).  Table 2 shows the 

sulfuric acid sodium sulfate treatment by sampling time interaction for each bacteria type on 

each agar; shoulder samples inoculated with Salmonella spp. and sampled 24 hours post 

treatment with 1.0 pH SA and plated on XLD agar had the lowest (P < 0.05) log CFU/g than all 

other shoulder samples.  

Table 3 shows the main effect of treatment for each inoculum and agar type across both 

sampling times.  For each inoculum and agar type, samples treated with 1.0 pH SA had lower (P 

< 0.05) bacterial populations and the SA was more effective at reducing inoculated bacterial 

populations on pork shoulder samples, excluding Salmonella spp. populations plated on TSA 

agar.  There was no difference (P < 0.05) between SA treatment levels at 1.5 pH and 1.0 pH on 

inoculated Salmonella spp. populations plated on TSA agar across both 0 and 24 hours sampling 

times.  Additionally, the SA 1.5 pH and 1.0 pH treatments were more (P < 0.05) effective at 

reducing inoculated populations of ˆSalmonella spp. and Campylobacter spp. on pork shoulder 

samples than samples treatment with water.  However, log CFU/g on shoulder samples had the 
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same (P > 0.05) log CFU/g after treatment with water and 1.5 pH SA and plated on both TSA 

and TSA + Rif plates.  Overall, treatment with SA, especially 1.0 pH SA, reduced inoculated 

populations of Salmonella spp., Campylobacter spp., and Surrogate bacteria on pork shoulders 

sampled at both 0 and 24 hours post treatment. 

 The main effect of sampling time (0 hour versus 24 hour) for each agar type (selective 

and non-selective) under each bacteria type (Salmonella spp., Campylobacter spp., and 

Surrogates) are shown in Table 4.  Overall, for each agar type, under each bacteria type, the 0 

hour samples had higher (P < 0.05) log CFU/g than the 24 hour samples, excluding the surrogate 

bacteria on TSA plates.  Therefore, pork shoulders inoculated with Salmonella spp., 

Campylobacter spp., and Surrogate bacteria, treated with SA and then stored in anaerobic 

packages had lower (P < 0.05) log CFU/g counts of Salmonella spp., Campylobacter spp., and 

Surrogate bacteria sampling at 24 hours than at 0 hours. 

 Results from a similar study showed that incidence of Campylobacter jejuni and 

Campylobacter coli to be similar across all retail products and was the least frequent pathogen 

found on retail pork (Duffy et al., 2001).  Many other studies involving inoculation with 

Campylobacter spp. lack consistent results and recovery of the pathogen, probably due to its 

microaerophilic nature, sensitivity to water activity and masking of Campylobacter spp. by other 

organisms (Stern et al., 1985; Genta et al., 1995; Oosterom et al., 2016).  Another study found 

that Campylobacter spp. is a common contaminate on many live hog operations, with 85% 

prevalence amongst piglets (Minveille et al., 2007).  Minveille et al (2007) found that 100% of 

hogs were contaminated with high levels (40,000 CFU/g) of bacteria, 23% of carcasses were 

contaminated with low levels of bacteria before chilling.  Presence of Campylobacter spp. on 

pork products on retail meat products is very low (Stern et al., 1985). 
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 Salmonella spp. has been isolated on pork carcasses at different prevalence rates; 40-

50%, 12.5%, and 5% (Epling et al., 1993b).  While a study found a very low incidence of 

Campylobacter spp. in non-enhanced retail pork, they found a higher incidence (8.3%) of 

Salmonella spp. in samples of non-enhanced retail pork (Duffy et al., 2001).  This same study 

also looked at the incidence of Campylobacter spp. and Salmonella spp. in harvest and 

fabrication facilities; Salmonella spp. was found in 7.5% of the surveyed facilities and no 

Campylobacter spp. was found (Duffy et al., 2001).  These studies prove that there is a 

possibility for pork, specifically pork subprimals, to be contaminated with both Salmonella and 

Campylobacter which this study shows that sulfuric acid sodium sulfate has the ability to 

effectively reduce and control.  

Experiment 2: Effects of Sulfuric Acid Sodium Sulfate on Spoilage Indicators 

 After pork backribs and loins were portioned, treated, and sampled at the assigned times, 

samples were surface plated to enumerate populations of specific spoilage microorganisms, as 

well as, determine the effect of SA on off-odor development, and color.  Table 5 shows the effect 

of SA treatment and display hour on the natural spoilage microflora of PSY, LAB, PSD and YM 

on pork loins after 14 days and 21 days of dark storage.  For each spoilage bacteria, no SA 

treatment by display hour interactions were evident (P > 0.05) on pork loins placed into 

simulated retail display following 14 and 21 days of dark anaerobic storage. 

Table 6 shows the effect of SA treatment and display hour on the natural populations of 

PSY, LAB, PSD and YM on pork backribs placed into simulated retail display following 14 days 

or 21 days of dark storage.  For PSY, LAB and PSD, populations, effect of SA treatment and 

display hour on backribs were not (P > 0.05) dependent on each other, there was no interaction 

after both 14 days or 21 days of dark storage.  However, an interaction existed (P = 0.0173) 
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between the factors of display hour and SA treatment on YM populations for backrib samples 

placed in simulated retail display following 14 days of dark storage.  Populations of YM on 

backrib samples treated with 1.5 pH and 1.0 pH SA and stored for 14 days before simulated 

retail display, were generally higher (P < 0.05) at 48 hours of display than both 0 hours of 

display and 96 hours of display.  Backrib CON samples placed into simulated retail display after 

14 days of dark storage showed YM populations to increase as display hour increased.  

Similarly, backrib samples stored for 21 days in the dark before simulated retail display were 

affected dependently by an interaction (P = 0.0163) between display hour and SA treatment on 

YM populations.  Backrib samples treated with 1.5 pH SA and stored in the dark for 21 days 

before simulated retail display had higher (P < 0.05) YM populations at 48 hours of display than 

both 0 hours and 96 hours. 

 The main effect of SA treatment on PSY, PSD, LAB and YM populations on pork loin 

samples across 96 hours of simulated retail display after 14 and 21 days of dark anaerobic 

storage as well as over 28 days of dark anaerobic or vacuum storage, are shown in Table 7. 

Generally, loin samples treated with SA had lower (P < 0.05) PSY, PSD, LAB and YM 

populations across all 96 hours of simulated retail display after 14 and 21 days of dark anaerobic 

storage as well as over 28 days of vacuum storage compared to CON samples.  However, in most 

cases, SA treatment of loins with 1.0 pH SA was the most (P < 0.05) effective at reducing 

populations of PSY, PSD, LAB and YM across 96 hours of simulated retail display after 14 or 

21 days of dark anaerobic storage as well as over 28 days of vacuum storage. 

 The main effect of SA treatment on PSY, PSD, LAB and YM populations on pork 

backrib samples across 96 hours of simulated retail display after 14 days or 21 days of dark 

anaerobic storage as well as over 28 days of vacuum storage, are shown in Table 8.  Overall, 
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backrib samples treated with SA had lower (P < 0.05) PSY, PSD, LAB, and YM populations 

than CON backrib samples, excluding PSY and PSD samples over 96 hours of dark anaerobic 

storage, which had no difference (P > 0.05). 

The main effect of display hour after both 14 and 21 days of dark anaerobic storage 

across SA treatment, on PSY, PSD, LAB, and YM populations of loin and backrib samples are 

shown in Table 9.  Log CFU/g of PSD, LAB, and YM on loin and backrib samples, as well as, 

PSY on backrib samples are the lowest (P < 0.05) at the beginning of display and grow as 

display continues for both subprimal types placed into simulated retail display after 14 and 21 

days of dark anaerobic storage.; however, populations of PSY after 14 days of dark anaerobic 

storage are an exception.  Dissimilar to populations of the other measured spoilage 

microorganisms, PSY bacteria on loin samples placed into simulated retail display after 14 days 

of dark anaerobic storage were the highest (P < 0.05) at 48 hours, not 96 hours. 

The interaction between vacuum storage day and SA treatment on populations of PSY, 

PSD, LAB and YM on loin and backrib samples are shown in Table 10.  There were no 

interactions (P > 0.05) between vacuum storage day and SA treatment on populations of PSY, 

PSD, LAB, and YM on loins, or on populations of PSY, PSD, and LAB on backribs.  

Conversely, there was an interaction (P = 0.0284) between vacuum storage day and SA treatment 

on populations of YM on backrib samples.  The storage day by SA treatment interaction on 

backrib samples YM populations showed that samples treated with 1.0 pH SA tended grow at a 

slower rate across storage days, and remained lower than samples treated with 1.5 pH SA and 

CON samples until day 28 of vacuum storage, where all treatments were the same (P > 0.05). 

Several microorganisums such as Enterbacteriacea, LAB, PSU, Brochothrix 

thermosphacta, will occur in meat placed into aerobic conditions (Borch et al., 1996; Blixt and 
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Borch, 2002; Liu et al., 2006a).  One study found that Brochothrix thermospacta and coliforms 

to be the most predominant spoilage bacteria associated with pork exposed to the air and pork 

that was kept under artificial conditions (40% CO2/59% N2/1% O2) at -2, 4 and 10°C (Liu et al., 

2006b).  However, the same study found PSD could dominate packages exposed to the air as 

well (Liu et al., 2006b).  Correlations to shelf-life were found to be the highest between the 

initial cell number, of PSY, LAB, coliforms, PSD and Brochothrix thermospacta on microbial 

shelf-life (Liu et al., 2006b).  Another study found PSD and Salmonella spp. were the 

predominant bacteria associated with pork spoilage (Liu et al., 2006a).  As LAB and yeasts grew, 

microbial activity on Coliforms, PSD, Brochothrix thermosphacta, Salmonella spp. slowed.  

Yeasts and LAB grew at similar rates under similar conditions (Liu et al., 2006a).  Yeasts and 

molds can be effectively controlled or suppressed by CO2, however, LAB and PSY growth 

increased (Blickstad et al., 1983).  CO2 also inhibited the growth of total aerobic plate count, 

while allowing LAB to dominate (Enfors et al., 1979; Blickstad et al., 1981; Gill, 1983; 

Lambropoulou et al., 1996). 

 The interaction between display hour and SA treatment on off-odor development of loin 

samples placed into simulated display after 14 days of dark anaerobic storage are shown in Table 

11.  There was no treatment x display hour interaction (P > 0.05) for sour and acid/chemical off-

odor development on loin samples placed into simulated retail display after 14 days of dark 

anaerobic storage.  Table 11 also shows the treatment x display hour interaction (P < 0.05) on 

putrid and oxidized/rancid off-odor development on loin samples placed into simulated retail 

display after 14 days of dark anaerobic storage.  Control loin samples at the beginning of display 

(0 hours) placed into simulated retail display after 14 days of dark anaerobic storage, had the 

highest (P < 0.05) off-odor intensity than all other SA treatments and display hours.  There was 
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no difference (P > 0.05) among SA treatments at 0 and 48 hours of display for oxidized/rancid 

off-odor intensity development of loin samples placed into simulated retail display after 14 days 

of dark anaerobic storage, as well as CON samples at 96 hours of display; however, both 1.5 pH 

and 1.0 pH SA treated samples at 96 hours of display had higher (P < 0.05) oxidized/rancid off-

odor intensities than all other samples at all other display hours. 

 The interaction between display hour and SA treatment on off-odor development of loin 

samples placed into simulated retail display after 21 days of dark anaerobic storage are also 

shown in Table 11.  Acid/chemical and putrid off-odor development on loin samples placed into 

simulated retail display after 21 days of dark anaerobic storage had no interaction (P > 0.05) 

between SA treatment and display hour.  Although there was no interaction (P = 0.3170) 

between display hour and SA treatment for acid/chemical off-odor development on loin samples 

placed into simulated retail display after 21 days of dark anaerobic storage, off-odor intensity 

values from loin samples of all treatments tended to decrease in intensity from 0 hours to 48 

hours of display and then increase by 96 hours of display.  Also, although there was no 

interaction (P = 0.5315) between display hour and treatment for putrid off-odor intensity 

development of loin samples placed into simulated retail display after 21 days of dark storage, 

off-odor intensity values from loin samples of all treatments also generally tended to increase 

from 0 to 96 hours of display. 

 Table 11 also showed the SA treatment by display day interaction (P < 0.05) of sour and 

oxidized/rancid off-odors from loin samples placed into simulated retail display after 21 days of 

dark anaerobic storage.  The SA treatment by display day interaction (P = 0.0004) of sour off-

odor intensities on loin samples placed into simulated retail display after 21 days of dark 

anaerobic storage indicated that CON loin samples off-odor intensities to increase (P < 0.05) 
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over display hour; however, both the 1.5 pH and 1.0 pH SA treated loin samples sour odor 

intensities decreased from 0 to 48 hours of display and then increased by 96 hours of display.  

1.0 pH SA treated loin samples stored for 21 days in dark anaerobic storage prior to simulated 

retail display, had lower (P < 0.05) sour off-odor intensities than 1.5 pH SA and CON samples 

by 96 hours of display.  The display day by SA treatment interaction of oxidized/rancid off-odor 

intensity development of loins placed into simulated retail display after 21 days of dark 

anaerobic storage indicated that CON samples oxidized/rancid off-odor intensity to increase (P < 

0.05) from 0 to 48 hours of display and then decrease (P < 0.05) from 48 to 96 hours of display.  

Table 11 also showed oxidized/rancid off-odor intensity of 1.5 pH and 1.0 pH SA treated loin 

samples placed into simulated retail display after 21 days of dark storage to be similar, from 0 to 

48 hours of display off-odor intensity values decreased (P < 0.05), then from 48 to 96 hours of 

display, values increased and where significantly more intense (P < 0.05) than CON samples at 

96 hours of display. 

 Table 12 shows the interaction between display day and SA treatment on off-odor 

development on backrib samples placed into simulated retail display following 14 days of dark 

anaerobic storage.  There were no teatment x display day interactions (P > 0.05) for sour, 

acid/chemical, putrid, and oxidized/rancid off-odor intensity development on backrib samples 

placed into simulated retail display following 14 days of dark storage.  Additionally, off-odor 

intensity values of backrib samples placed into simulated retail display following 14 days of dark 

storage showed 1.0 pH SA treated samples to be less intense for putrid and oxidized/rancid odors 

than CON and 1.5 pH SA treated backrib samples.  Table 12 also shows the interaction between 

display hour and SA treatment on off-odor intensity development of backribs placed into 

simulated retail display after 21 days of dark anaerobic storage.  There were no (P > 0.05) SA 
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treatment by display hour interactions for acid/chemical and oxidized/rancid off-odor intensities 

on backrib samples placed into simulated retail display following 21 days of dark anaerobic 

storage.   

Additionally, Table 12 shows interactions (P < 0.05) between display hour and SA 

treatment of sour and putrid off-odor intensity values on backrib samples placed into simulated 

retail display following 21 days of dark anaerobic storage.  Sour off-odor intensity of backrib 

samples placed into simulated retail display following 21 days of dark anaerobic storage showed 

an interaction (P = 0.0368) between display hour and SA treatment, generally, backrib samples 

from all treatments were the least intense (P < 0.05) at 0 hours of display and by 96 hours of 

display, CON backrib samples had the most intense (P < 0.05) sour off-odor.  Putrid off-odor 

intensity of backrib samples placed into simulated retail display following 21 days of dark 

anaerobic storage showed an interaction (P < 0.0001) between display hour and SA treatment, 

generally, samples from all treatments were the most intense by 96 hours of display, with 1.5 pH 

SA treated backrib sample putrid off-odor having the most intense off-odor than any other 

treatment, and any display hour at 96 hours. 

Table 13 shows the main effect of SA treatment on off-odor intensity development on 

both loin and backrib samples placed into simulated display after 14 and 21 days of dark 

anaerobic storage.  No difference (P > 0.05) was found in off-odor intensity development 

between treatments on loin samples that were placed into simulated retail display following 14 

days of dark anaerobic storage.  Conversely, CON loin samples placed into simulated retail 

display following 14 days of dark anaerobic storage were more putrid (P = 0.0012) than 1.5 pH 

and 1.0 pH SA treated loin samples.  Dissimilar to putrid odor intensity of loin samples placed 

into simulated retail display following 14 days of dark anaerobic storage, intensity of 
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oxidized/rancid off-odors for CON loin samples were less (P = 0.0269) intense than the 1.0 pH 

SA treated loin samples but the same (P > 0.05) as 1.5 pH SA treated loin samples and the 1.5 

pH SA treated loin samples were the same (P > 0.05) as the 1.0 pH SA treated loin samples. 

Table 13 also showed no difference (P = 0.6514) for oxidized/rancid off-odor intensities 

between SA treatments of loin samples placed into simulated retail display following 21 days of 

dark anaerobic storage.  However, there was a difference (P < 0.05) found in sour, acid/chemical, 

and putrid off-odor intensities between SA treatments on loin samples placed into simulated 

retail display following 21 days of dark anaerobic storage.  Sour off-odor intensity of loin 

samples placed into simulated retail display following 21 days of dark storage indicated that 1.0 

pH SA treated loin samples to be less intense (P = 0.0006) than CON and 1.5 pH SA treated loin 

samples.  Acid/chemical off-odor intensities of loin samples placed into simulated retail display 

following 21 days of dark anaerobic storage showed 1.0 pH SA treated loin samples to be more 

intense (P = 0.0467) than 1.5 pH SA treated loin samples; as well as, CON loin samples to be the 

same as both 1.0 pH and 1.5 pH SA treated loin samples.  Putrid off-odor intensities of loin 

samples placed into simulated retail display following 21 days of dark storage showed 1.5 pH SA 

treated samples to be the same as both CON and 1.0 pH SA treated loin samples; along with, 

CON loin samples being less intense (P = 0.0230) than 1.0 pH SA treated loin samples. 

No difference (P > 0.05) was also found between SA treatments on sour, acid/chemical, 

and oxidized/rancid off-odor intensities on backrib samples placed into simulated retail display 

following 14 days of dark anaerobic storage.  However, there was a difference (P = 0.0316) in 

putrid off-odor intensities of backrib samples placed into simulated retail display after 14 days of 

dark anaerobic storage; 1.0 pH SA treated backrib samples were less intense (P < 0.05) in putrid 

off-odors than both CON and 1.5 pH SA treated backrib samples.  Similar to backrib samples 
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placed into simulated retail display following 14 days of dark anaerobic storage, backrib samples 

placed into simulated retail display after 21 days of dark storage had no difference (P > 0.05) 

between SA treatments for sour, acid/chemical, and oxidized/rancid off-odor intensities.  Also 

similar to backrib samples placed into simulated retail display following 14 days of dark 

anaerobic storage, backrib samples placed into simulated retail display after 21 days of dark 

anaerobic storage had a difference (P = 0.0007) between SA treatments for putrid off-odor 

intensities; 1.0 pH SA treated backrib samples were less (P < 0.05) putrid than both CON and 

1.5 pH SA treated backrib samples. 

Other studies showed off-odors associated with spoilage increased during storage (Liu et 

al., 2006b).  Other studies also show that spoilage can be indicated by development of off-odors; 

when carbohydrate supplies, amino acids are all utilized and there is production of volatile fatty 

acids, off-odors develop (Lambert et al., 1991). Previous research has shown that the formation 

of off-odors is associated with bacteria growth such as PSD after it has reached a certain level 

(Nychas et al., 2008).  Conversely, total plate count, has not been found to be related to off-odor 

development (Blickstad et al., 1983).  Glucose has been found to be a precursor to many off-

odors (Nychas et al., 2008; Casaburi et al., 2015).  Glucose is also the first substrate utilized by 

bacteria during storage or display under any packaging conditions (Gill, 1983; Nychas et al., 

1988; Borch and Agerhem, 1992; Drosinos and Board, 1995; Casaburi et al., 2015). 

 Table 14 shows the interaction between SA treatment and display hour on the percent 

surface discoloration on loin and backrib samples placed into simulated retail display following 

14 and 21 days of dark anaerobic storage.  There was no SA treatment by display hour 

interaction (P > 0.05) on surface discoloration of loin samples placed into simulated retail 

display following 21 days of dark anaerobic storage as well as backrib samples placed into 
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simulated retail display following 14 and 21 days of dark anaerobic storage.  However, there was 

a significant SA treatment by display hour interaction (P < 0.0001) on the surface discoloration 

of loin samples placed into simulated retail display following 14 days of dark storage.  Overall, 

the SA treatment by display hour interaction of loin samples placed into simulated retail display 

following 14 days of dark anaerobic storage showed that at the beginning of display (0 hours) 

loin samples from all treatments (CON, 1.5 pH SA, and 1.0 pH SA) stared off with the same (P > 

0.05) percent surface discoloration; however, loin samples treated with 1.5 pH and 1.0 pH SA 

discolored to a higher (P < 0.05) percent throughout display than CON loin samples.   

 Table 14 also shows that there is no significant SA treatment and display hour interaction 

(P > 0.05) on surface discoloration of loin samples placed into simulated retail display following 

21 days of dark anaerobic storage, LS means of percent discoloration on CON loin samples 

tended to have minimal surface discoloration compared to 1.5 pH and 1.0 pH SA treated loin 

samples which had more extensive surface discoloration throughout all display hours.  

Conversely, backrib samples placed into simulated retail display after both 14 and 21 days of 

dark anaerobic storage showed regardless of SA treatment, all samples discolored at a similar 

rate and to a similar extent.   

 Table 15 shows the main effect of SA treatment on percent surface discoloration of loin 

samples placed into simulated retail display following 21 days of dark storage.  Control loin 

samples placed into simulated retail display after 21 days of dark storage were less (P < 0.0001) 

discolored than 1.5 pH and 1.0 pH SA treated loin samples.  Backrib samples placed into 

simulated retail display following 14 days of dark storage showed 1.5 pH SA treated backrib 

samples to have the same (P > 0.05) percent surface discoloration as both CON and 1.0 pH SA 

treated backrib samples; however, 1.0 pH SA treated backrib samples were more (P < 0.05) 
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discolored than CON backrib samples.  Table 15 also showed no difference (P = 0.7906) 

between percent surface discoloration of SA treatments on backrib samples placed into simulated 

retail display following 21 days of dark storage.  

 Table 16 shows the main effect (P < 0.0001) of display hour on the percent surface 

discoloration of loin samples placed into simulated retail display following 21 days of dark 

storage as well as backrib samples placed into simulated retail display after both 14 and 21 days 

of dark storage.  Surface discoloration of loin samples placed into simulated retail display 

following 21 days of dark storage as well as backrib samples placed into simulated retail display 

after both 14 and 21 days of dark storage, all showed that percent surface discoloration increased 

as display hour increased (P < 0.05).   

 Results from this study showing percent surface discoloration increasing over time are 

consistent with other display and storage studies (Livingston et al., 2004; Huang et al., 2005).  

Surface discoloration on loin samples placed into retail display increase rapidly over 20 days 

(Livingston et al., 2004).  However, in this study treatment with SA caused increased surface 

discoloration on loin samples but not on backrib samples; another study found that treatment 

with lactic acid had no effect on pork carcass surface discoloration compared to control samples 

(Prasai et al., 1992).  Storage of fresh pork under higher oxygen conditions or with exposer to the 

atmosphere showed significant discoloration after three days of storage or display (Sørheim et 

al., 1997; Viana et al., 2005).   

 Table 17 shows the SA treatment by display hour interaction of L*, a* and b* values on 

loin lean samples placed into simulated retail display following14 and 21 days of dark storage.  

There is no treatment by display hour interaction (P > 0.05) on any L*, a* and b* values of loin 

lean samples after both 14 and 21 days of dark storage.  Table 18 shows the interaction between 
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SA treatment and display hour on CIE L*, a* and b* values of pork loin fat samples placed into 

simulated retail display following 14 and 21 days of dark anaerobic storage.  There was no SA 

treatment by display hour interaction (P > 0.05) for L*, a* and b* values on pork loin fat samples 

placed into simulated retail display following 14 and 21 days of dark storage.  Table 19 shows 

the interaction between SA treatment and display hour on L*, a* and b* values of lean on 

backrib samples placed into simulated retail display after 14 and 21 days of dark storage.  There 

is no SA treatment by display hour interaction (P > 0.05) on L*, a* and b* values of pork 

backrib lean samples placed into simulated retail display following 14 and 21 days of dark 

anaerobic storage.  Table 20 shows the interaction between SA treatment and display hour on L*, 

a* and b* values of fat on pork backrib samples placed into simulated retail display following 14 

and 21 days of dark storage.  There is no SA treatment by display hour interaction (P > 0.05) on 

L*, a* and b* values of pork backrib fat samples placed into simulated retail display following 

14 and 21 days of dark storage. 

Table 21 shows the main effect of SA treatment on L*, a*, and b* values of fat and lean 

on both loin and backrib samples treated with SA and then stored for 14 days prior to simulated 

retail display.  There was a difference (P < 0.05) between treatments for L*, a*, and b* values of 

fat and lean on both loin and backrib samples treated with SA and then stored in dark anaerobic 

storage for 14 days prior to simulated retail display, excluding (P > 0.05) L* values of fat on 

backribs and a* values of lean on backribs.  L* values of both lean and fat on loin samples 

indicated that CON samples were lighter (P < 0.05) than both 1.5 pH and 1.0 pH SA treated 

samples placed into simulated retail display following 14 days of dark anaerobic storage.  

Additionally, a* values of lean on CON loin samples were more red (P < 0.05) than both 1.5 pH 

and 1.0 pH SA treated loin lean samples placed into simulated retail display after 14 days of dark 
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anaerobic storage.  Fat on both loin and backrib samples placed into simulated retail display 

following 14 days of dark anaerobic storage had lower (P < 0.05) a* values on samples treated 

with 1.5 pH SA than CON and 1.0 pH SA treated fat backrib and loin samples.  Also, b* values 

of both fat and lean on loin samples indicated that 1.0 pH SA treated samples to be higher (P < 

0.05) than CON and 1.5 pH SA treated lean and fat samples when placed into simulated retail 

display following 14 days of dark anaerobic storage.  Additionally, b* values of lean on backrib 

samples indicated that those treated with 1.0 pH SA to have higher (P < 0.05) b* values than 1.5 

pH SA treated backrib fat samples; while CON treated samples were the same as both 1.0 pH 

and 1.5 pH SA treated samples when placed into simulated retail display following 14 days of 

dark anaerobic storage.  Fat on backrib samples treated with 1.0 pH SA had higher (P < 0.05) b* 

values than both, 1.5 pH SA and CON samples; as well as, 1.5 pH SA samples had lower b* 

values than both 1.0 pH SA and CON samples when placed into simulated retail display 

following 14 days of dark anaerobic storage.   

Table 22 shows the main effect of SA treatment on L*, a*, and b* values of lean and fat 

on loin and backrib samples placed into simulated retail display following 21 days of dark 

storage.  There was a difference (P < 0.05) in SA treatment for L*, a*, and b* values on lean and 

fat of loin and backrib samples treated with SA and then stored for 21 days in dark anaerobic 

storage prior to simulated retail display, excluding (P > 0.05) a* values of loin lean, backrib lean 

and backrib fat; as well as L* values of both lean and fat of backrib samples as well as b* values 

of lean on backrib samples.  Both fat and lean of 1.0 pH SA treated loin samples had lower (P < 

0.05) L* values than 1.5 pH and CON treated loin lean and fat samples; additionally, lean on 

CON samples had higher (P < 0.05) L* values than both 1.5 pH and 1.0 pH SA treated loin lean 

samples placed into simulated retail display following 21 days of dark anaerobic storage.  Fat on 
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loin CON samples stored for 21 days prior to simulated retail display had lower (P > 0.05) a* 

values than 1.5 pH loin fat samples and 1.0 pH SA treated loin fat samples; and 1.0 pH SA 

treated loin fat samples had higher a* values than both CON and 1.5 pH SA treated samples.  

Moreover, b* values of CON loin lean samples placed into simulated retail display following 21 

days of dark anaerobic storage, were lower (P < 0.05) than both 1.5 pH and 1.0 pH SA treated 

loin lean samples.  Fat on loin samples placed into simulated retail display following 21 days of 

dark anaerobic storage indicated that samples treated with 1.0 pH SA had higher (P < 0.05) b* 

values than both CON and 1.5 pH SA treated loin fat samples; additionally, fat on CON loin 

samples had lower (P < 0.05) b* values than 1.5 pH and 1.0 pH SA treated samples.  Fat on 

backrib samples placed into simulated retail display following 21 days of dark anaerobic storage 

indicated that those treated with 1.0 pH SA had higher (P < 0.05) b* values than both 1.5 pH and 

1.0 pH SA treated backrib fat samples.   

Treatment with ascorbic and citric acid in combination with packaging type had an effect 

on objective color measurements (Gill, 1983).  Pork placed in high oxygen MAP packages and 

then placed into simulated display were lighter (higher L* values) than pork placed in PVC 

packages in simulated display (Gill, 1983).  Another study noted a decrease in lightness (lower 

L* values) throughout storage of loins placed into PVC packages (Viana et al., 2005).  Post-

mortem aging time for eight days, in chill improved blooming of loins from both Duroc and 

Landrace pig, causing higher L*, a* and b* values (Lindahl et al., 2006).  Lower metmyoglobin 

concentrations are associated with lower L* values in pork (Lindahl et al., 2001).  The breed of 

the live hog may also have an effect on the color of the loin muscle.  The longissimus dorsi from 

Hampshire breed of hogs are more yellow (higher b* values) and more red (higher a* values) in 

color than Swedish Landrace and Swedish Yorkshire breed (Lindahl et al., 2001).  This same 
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study found, no instrument color differences between gilts and barrows with breeds (Lindahl et 

al., 2001).  Most of the color variation (86-90%) seen in pork considered normal quality can be 

explained by pigment content, myoglobin forms and internal reflectance (Lindahl et al., 2001).  

Increased metmyoglobin content caused a decrease in redness of pork loins. The color of pork 

loins from Duroc hogs were darker (lower L* values) and less yellow (lower b* values) than 

Landrace hogs because of higher pigment content (Lindahl et al., 2006). 

Table 23 shows the main effect of treatment across display hour or storage day for both 

loins and backribs either placed into simulated retail display after both 14 and 21 days of dark 

anaerobic storage or across 28 days of vacuum storage on pH.  Overall, there was a treatment 

effect (P < 0.05) on pH, of both loin and backrib samples placed into simulated retail display 

following both 14 and 21 days of dark anaerobic storage and across 28 days of vacuum storage, 

excluding ribs over 28 days of vacuum storage (P > 0.05).  The pH of 1.0 pH SA treated loin 

samples were lower (P < 0.05) than CON and 1.5 pH SA treated samples placed into simulated 

retail display following 14 days of dark storage and samples held in vacuum storage for 28 days.  

Similarly, 1.5 pH and 1.0 pH SA samples on loin samples stored for 21 days in dark anaerobic 

storage prior to simulated retail display had lower (P < 0.05) pH values than CON loin samples. 

Additionally, backrib samples stored for 21 days in dark anaerobic storage prior to simulated 

retail display indicated that CON backrib samples had higher (P < 0.05) pH values than both 1.5 

pH and 1.0 pH SA treated samples.  Also, backrib samples placed into simulated retail display 

following 14 days of dark anaerobic storage indicated that CON backrib samples had higher (P < 

0.05) pH values than 1.0 pH SA treated backrib samples and 1.5 pH SA treated backrib samples 

to be the same (P > 0.05) as both CON and 1.0 pH SA treated backrib samples.  
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The initial pH of fresh loins ranged from 5.4 to 5.8 pH and it did not show strong 

variation within the population (Viana et al., 2005).  Similar to this study, a previous study found 

that dipping pork in acid (ascorbic and citric) and placing it in PVC overwrap, causes the pH to 

be lower directly after treatment (Huang et al., 2005).  Internal pH of pork, has a large effect on 

color stability.  Enhanced MAP loin chops had higher pH values and therefore had greater color 

stability; but also had greater microbial growth than loins with a lower pH.  Pork loins with a 

lower pH value, had lower microbial growth but discolored quicker over time (Livingston et al., 

2004). 

Experiment 3: In-plant Validation of Sulfuric Acid Sodium Sulfate on Pork Carcasses 

 Table 24 shows the effect of 1.3 pH and 1.0 pH SA on log CFU/cm2 on the natural 

microflora and inoculated populations of surrogate bacteria on hot pork carcasses treated on the 

harvest floor in a commercial packing facility.  Log CFU/cm2 of inoculated and uninoculated 

sponge samples from pork carcasses treated with SA and plated on APC and EB petrifilms 

showed that there was a significant difference (P < 0.0001) across sampling points (before, after, 

after rapid chill and after 15 hours).  There were higher (P < 0.05) log CFU/cm2 on all before 

samples compared to after samples of both 1.3 pH and 1.0 pH SA treatments on both inoculated 

and uninoculated carcass zones.  There were also higher (P < 0.05) reductions in log CFU/cm2 

from both before and after samples compared to after rapid chill cycle samples of both 1.3 pH 

and 1.0 pH SA treatments on both inoculated and uninoculated carcass zones, with the exception 

(P > 0.05) of EB bacteria on 1.0 pH SA uninoculated zones.  There was likely no difference (P > 

0.05) between the after, after rapid chill and after 15 hours sample’s log CFU/cm2 of EB bacteria 

for 1.0 pH SA uninoculated zones because of the high percentage of after, after rapid chill and 

after 15 hour samples that were below detection limit.   
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 Enterobacteriaceae counts from inoculated carcass zones treated with 1.3 pH and 1.0 pH 

SA and sampled after 15 hours were the same (P > 0.05) as zones sampled directly after rapid 

chill.  Similarly, APC counts from inoculated carcass zones treated with 1.3 pH and 1.0 pH SA 

and sampled after 15 hours were the same (P > 0.05) as zones sampled directly after rapid chill.  

However, APC counts from uninoculated carcass zones treated with 1.3 pH and 1.0 pH SA and 

sampled after rapid chill were lower (P < 0.05) than zones samples after 15 hours.  

Enterobacteriaceae counts from uninoculated carcass zones treated with 1.3 pH SA were no 

different (P > 0.05) when sampled after rapid chill and after 15 hours.   

 Another study, similar to the current study, showed that the application of a 2% lactic 

acid spray was effective at reducing populations of Salmonella spp. and Campylobacer spp. on 

pork carcasses at both 5 mins and 24 hours post treatment (Epling et al., 1993a).  Both 

Salmonella spp. and Campylobacter spp. can be found on the harvest floor of multiple pork 

production operations (Baer et al., 2013b).  Treating pork carcasses with steam pasteurization 

and lactic acid are effective methods at reducing surface microbial counts directly after treatment 

and can continue to slow microbial growth throughout storage (Pipek et al., 2006).  Similarly, the 

results from this study agree with the results from the study conducted in 2006; treatment with an 

antimicrobial acid, reduced the total aerobic plate count on the carcass surface (Pipek et al., 

2006).  

Conclusions 

Results of this study show the five-strain mixture of non-pathogenic E. coli are effective 

surrogate bacterial strains for both Salmonella spp. and Campylobacter spp. when sulfuric acid 

sodium sulfate is sprayed on pork products.  The reductions of Salmonella spp. and 

Campylobacter spp inoculated on cold pork subrimals and treated with sulfuric acid sodium 
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sulfate were greater than the reductions seen in inoculated populations of the non-pathogenic E. 

coli strains.  Therefore, if sulfuric acid sodium sulfate can reduce inoculated populations of 

surrogate bacteria, it will be effective against populations of Salmonella spp. and Campylobacter 

spp. which makes it an effective surrogate for both pathogens.   

Additionally, when sulfuric acid sodium sulfate is applied adequately to pork and product 

is receiving full coverage, it can help reduce and control bacterial growth.  The sulfuric acid 

sodium sulfate effectively reduced inoculated populations of Salmonella spp. and Campylobacter 

spp. on cold pork subprimals.  This study showed significant statistical reductions in the bacterial 

pathogen populations when treated with 1.0 pH and 1.5 pH sulfuric acid sodium sulfate.  

Treatment with the 1.0 pH sulfuric acid sodium sulfate solution was more effective at reducing 

the pathogen microbial load than the 1.5 pH concentration; as well as, more effective then 

treatment with water.  Additionally, sulfuric acid sodium sulfate treatment was more effective at 

reducing inoculated populations of Campylobacter spp. than Salmonella spp.  This may be 

partially because Campylobacter spp. is a microaerophilic and serotypes of Salmonella spp. 

ranges from aerobic to facultatively anaerobic; because Campylobacter spp. is a microaerophilic, 

sulfuric acid sodium sulfate may possible be more effective against reducing populations.  

After the non-pathogenic Escherichia coli were proven to be sufficient surrogates for 

both Salmonella spp. and Campylobacter spp. in Experiment 1, these surrogates were utilized in 

Experiment 3.  Sulfuric acid sodium sulfate was shown to be an effective method at reducing 

both the natural microflora (APC) and surrogate bacteria on pork carcasses.  Greater reductions 

were seen on carcasses that were treated with SA and then placed into a rapid chill cycle and 

then held in the cooler for 15 hours.  Additionally, carcasses treated with 1.0 pH SA showed 

greater reductions than those treated with 1.3 pH SA.  Sulfuric acid sodium sulfate is an effective 
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method at reducing natural microflora and inoculated surrogate bacterial populations on pork 

carcasses in a commercial plant setting; especially when a part of a multiple hurdle approach 

with other intervention technologies.  

Overall, sulfuric acid sodium sulfate was effective at controlling some spoilage 

indicators, but was not effective on others.  Sulfuric acid sodium sulfate was effecting and 

helping control spoilage bacterial populations of Pseudomonas, lactic acid bacteria, 

Psychrotrophic as well as yeasts and molds on bone-in and boneless cold pork subprimals.  

When bone-in and boneless cold pork subprimals were treated with 1.0 pH and 1.5 pH sulfuric 

acid sodium sulfate concentrations, they had lower natural populations of the Pseudomonas, 

lactic acid bacteria, Psychrotrophic as well as yeasts and molds microflora.  Although all 

populations of Pseudomonas, lactic acid bacteria, Psychrotrophic as well as yeasts and molds 

microflora were lower when treated with sulfuric acid sodium sulfate, treatment with the 1.0 pH 

concentration was more effective than the 1.5 pH concentration and no sulfuric acid sodium 

sulfate treatment.  Treatment with sulfuric acid sodium sulfate is an effective method at 

controlling natural populations of spoilage microflora such as Pseudomonas, lactic acid bacteria, 

Psychrotrophic as well as yeasts and molds on pork product.   

However, while sulfuric acid sodium sulfate is effective against spoilage microflora, this 

study suggests that more research needs to be done on its effects pork color.  This study suggests 

that boneless loins treated with sulfuric acid sodium sulfate have more extensive percent surface 

discoloration than those that remained untreated.  Boneless loins treated with sulfuric acid 

sodium sulfate that were stored in dark anaerobic storage for 14 days prior to simulated retail 

display initially started off with minimal percent surface discoloration, similar to untreated loins, 

but throughout simulated retail display, became extensively discolored.  Boneless loins treated 
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with sulfuric acid sodium sulfate that were stored in dark anaerobic storage for 21 days prior to 

simulated retail display initially started off with more extensive percent surface discoloration 

than untreated boneless loins.  Conversely, backrib samples treated with sulfuric acid sodium 

sulfate, did not have more extensive percent surface discoloration than untreated backrib 

samples; the sulfuric acid sodium sulfate did not cause discoloration of bone-in pork subprimals.  

This study also showed that more research needs to be conducted on the effects of 

sulfuric acid sodium sulfate on CIE L*, a* and b* values of pork lean and fat on cold pork 

subprimals.  There were no substantial effects of sulfuric acid sodium sulfate on L*, a* and b* 

values of boneless loin lean samples placed into simulated retail display following 14 days of 

dark anaerobic storage.  However, for boneless loin lean samples placed into simulated retail 

display following 21 days of dark storage, L* and b* values of sulfuric acid sodium sulfate 

treated lean on boneless loins were higher than untreated lean on boneless loins.  Additionally, 

fat on boneless loins treated with sulfuric acid sodium sulfate had minimal effect on CIE L*, a* 

and b* values.  Sulfuric acid sodium sulfate treated on fat of boneless loins placed into simulated 

retail display following 14 days of dark anaerobic storage, showed no major effects on L* and a* 

values, however sulfuric acid sodium sulfate at a concentration of 1.0 pH caused fat on boneless 

loins to have higher b* values than 1.5 pH concentration of sulfuric acid sodium sulfate and 

untreated fat on boneless loins.  However, fat on boneless loins treated with sulfuric acid sodium 

sulfate and placed into simulated retail display following 21 days of dark anaerobic storage had 

higher a* and b* values than untreated fat on boneless loins.  Conversely, lean and fat on backrib 

samples treated with sulfuric acid sodium sulfate and placed into simulated retail display 

following 14 and 21 days of dark anaerobic storage showed no effect on CIE L*, a* and b* 
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values.  Overall, the effect of sulfuric acid sodium sulfate on lean and fat of boneless loins and 

backribs CIE L*, a* and b* values was minimal and needs to be studied further.  

Additionally, the effect of sulfuric acid sodium sulfate on off-odor intensities including, 

sour, acid/chemical, putrid, and oxidized/rancid odor development on boneless loins and 

backribs is generally minimal.  Sulfuric acid sodium sulfate treated on boneless loins and bone-in 

backribs placed into simulated retail display following 14 days of dark anaerobic storage, had no 

major effects on off-odor intensity development.  However, sulfuric acid sodium sulfate treated 

on boneless loins and bone-in backribs placed into simulated retail display following 21 days of 

dark anaerobic storage minimized sour, putrid, and oxidized/rancid off-odor intensities. 
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Table 1. Spoilage indicator portion (Experiment 2) design and sample breakdown.   
 Boneless Loins  Backribs 

 Days in Dark Anaerobic Storage 
 14 Days 21 Days  14 Days 21 Days 
Display Hour      
0 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
12 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
24 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
36 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
48 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
60 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
72 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
84 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt* 
96 Hours n = 6/trt* n = 6/trt*  n = 6/trt* n = 6/trt 

*trt = treatments: Total of three treatments – Untreated Control, 1.5 pH SA, and 1.0 pH 
SA 
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Table 2. Effect of sulfuric acid sodium sulfate treatment 
 by sampling hour on Log CFU/g of Campylobacter spp.,  
Salmonella spp., and Surrogate bacteria inoculated on 
 pork Boston butt shoulder samples  
(n = 9/treatment/sampling hour).  

 Campylobacter spp. 

 Cefex
5 

 TSA
2 

 0 Hour 24 Hour  0 Hour 24 Hour 

CON
6
 5.63 5.23  5.44 5.22 

Water 5.18 4.93  5.08 4.79 

1.5 pH SA
7 4.82 4.52  4.77 4.55 

1.0 pH SA
7
 4.51 4.17  4.41 4.16 

SEM 0.10120  0.09427 

P Value 0.9116  0.9629 

      

 Salmonella spp. 

 XLD
4 

 TSA
2 

 0 Hour 24 Hour  0 Hour 24 Hour 

CON
6
 6.46a 6.28b  6.62 6.54 

Water 5.87c 5.51e  6.09 6.37 

1.5 pH SA
7
 5.70d 5.66de  5.92 6.09 

1.0 pH SA
7
 5.60e 5.28f  5.92 6.08 

SEM 0.05356  0.1041 

P Value 0.0168  0.1891 

      

 Surrogate
1 

 TSA + Rif
3 

 TSA
2 

 0 Hour 24 Hour  0 Hour 24 Hour 

CON
6 6.60 6.40  6.65 6.48 

Water 6.07 5.93  6.18 6.24 

1.5 pH SA
7
 6.11 5.92  6.29 6.07 

1.0 pH SA
7
 5.91 5.83  5.96 5.97 

SEM 0.05328  0.08871 

P Value 0.4503  0.0609 
a-eSuperscripts within agar type, within bacteria  
type differ at an alpha level of 0.05  
1Surrogate bacteria includes a 5-strain mixture of 

  non-pathogenic Escherichia coli. 
2TSA = Tryptic Soy Agar, non-selective agar  
3TSA + Rif = Tryptic Soy Agar supplemented with  
Rifampicin, selective for Surrogate inoculum  
4XLD = Xylose lysine deoxycholate agar, selective  
for Salmonella spp. 
5Cefex = Campy Cefex Agar, selective for  
Campylobacter spp.  
6CON = Untreated Control Treatment  
7SA = Sulfuric Acid Sodium Sulfate  
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Table 3. Main effect of sulfuric acid sodium sulfate 
 treatment on Log CFU/g of Campylobacter spp.,  
Salmonella spp., and Surrogate bacteria inoculated  
on pork boston butt shoulder samples across 0 and 48  
hours sampling times (n= 18/trt/agar).  

 Campylobacter 

 Cefex
4
  TSA

2
 

CON
5 5.43a  5.33a 

Water 5.06b  4.93b 

1.5 pH SA
6 4.67c  4.66c 

1.0 pH SA
6
 4.34d  4.28d 

SEM 0.07159  0.07471 

P Value <0.0001  <0.0001 

    

 Salmonella 

   TSA
2
 

CON
5
          6.58a 

Water          6.23b 

1.5 pH SA
6
          6.00c 

1.0 pH SA
6
          6.00c 

SEM   0.08686 

P Value   <0.0001 

    

 Surrogate
1 

 TSA + Rif
3 

 TSA
2 

CON
5
 6.50a  6.56a 

Water 6.00b  6.21b 

1.5 pH SA
6
 6.01b  6.18b 

1.0 pH SA
6
 5.87c  5.97c 

SEM 0.04391  0.07815 

P Value <0.0001  <0.0001 
a-dSuperscripts within agar type, within bacteria  
type differ at an alpha level of 0.05  
1Surrogate bacteria includes a 5-strain mixture  
of non-pathogenic Escherichia coli. 
2TSA = Tryptic Soy Agar, non-selective agar  
3TSA + Rif = Tryptic Soy Agar supplemented  
with Rifampicin, selective for Surrogate inoculum  
4Cefex = Campy Cefex Agar, selective for  
Campylobacter spp.  
5CON = Untreated Control Treatment  
6SA = Sulfuric Acid Sodium Sulfate 
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Table 4. Main effect of sampling hour across sulfuric acid sodium sulfate  
treatment on Log CFU/g of Campylobacter spp., Salmonella spp., and  
Surrogate bacteria inoculated on pork boston but shoulder samples  
(n = 27/sampling hour/agar).  

  0 Hour 24 Hour SEM P Value 

Campylobacter spp.      

 Cefex
4 5.04a 4.71b 0.05062 <0.0001 

 TSA
2 4.92a 4.68b 0.06289 <0.0001 

Salmonella spp.      

 TSA
2 6.14a 6.27b 0.07699 0.0271 

Surrogate
1 

     

 TSA + Rif
3 6.17a 6.02b 0.03838 <0.0001 

 TSA
2 6.27 6.19 0.07230 0.0595 

a,b Superscripts within agar type, within bacteria type differ at an  
alpha level of 0.05  
1Surrogate bacteria includes a 5-strain mixture of non-pathogenic  
Escherichia coli. 
2TSA = Tryptic Soy Agar, non-selective agar  
3TSA + Rif = Tryptic Soy Agar supplemented with Rifampicin,  
selective for Surrogate inoculum  
4Cefex = Campy Cefex Agar, selective for Campylobacter spp.  
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Table 5. Effect of sulfuric acid sodium sulfate treatment by display hour on log CFU/g on the natural microflora of  

Psychrotrophic, Pseudomonas, yeasts and mold, and lactic acid bacteria on pork loin subprimals placed into simulated retail  

display following 14 and 21 days in dark anaerobic storage (n = 6/treatment/sampling hour). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate  

 

 

 14 Days of Dark Anaerobic Storage   21 Days of Dark Anaerobic Storage 

  Treatment      Treatment   

Spoilage Bacteria 

Display 

Hour 

CON
1 

 

1.5 pH 

SA
2 

1.0 pH 

SA
2
 SEM P Value 

 

Spoilage Bacteria 

Display 

Hour 

CON
1 

 

1.5 pH 

SA
2
 

1.0 pH 

SA
2
 SEM P Value 

Psychrotrophic 0 Hour 7.20 6.98 6.55 0.2804 0.0914  Psychrotrophic  
  

   

 48 Hour 8.00 7.84 7.50     48 Hour 7.67 7.23 7.37 0.2794 0.5653 

 96 Hour 7.56 7.32 5.77     96 Hour 8.56 7.67 7.69   

Lactic Acid        Lactic Acid       

Bacteria 0 Hour 6.07 5.99 5.43 0.3292 0.6770  Bacteria 0 Hour 7.64 7.59 7.05 0.2511 0.5856 

 48 Hour 6.60 6.29 5.78     48 Hour 7.91 7.53 7.21   

 96 Hour 7.42 6.55 5.91     96 Hour 8.51 7.67 7.78   

Pseudomonas        Pseudomonas       

 0 Hour 4.50 5.01 3.29 0.4456 0.1507   0 Hour 5.58 5.67 4.70 0.3372 0.4430 

 48 Hour 4.89 4.34 4.43     48 Hour 5.67 5.79 5.60   

 96 Hour 6.24 4.97 4.55     96 Hour 6.85 6.19 5.76   

Yeast and Molds        Yeast and Molds       

 0 Hour 3.05 3.02 1.87 0.2607 0.4203   0 Hour 3.83 3.92 2.64 0.2913 0.4898 

 48 Hour 3.46 2.81 2.36     48 Hour 4.09 4.20 3.75   

 96 Hour 4.82 4.89 4.28     96 Hour 5.48 5.63 5.12   
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Table 6. Effect of sulfuric acid sodium sulfate treatment by display hour on log CFU/g on the natural microflora of Psychrotrophic, 

Pseudomonas, yeasts and mold, and lactic acid bacteria on pork backrib subprimals placed into simulated retail display following 14 

and 21 days in dark anaerobic storage (n = 6/treatment/sampling hour). 

  a-d 
Superscripts within bacteria type, within storage period differ at an alpha level of 0.05 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate  

 

 

 14 Days of Dark Anaerobic Storage   21 Days of Dark Anaerobic Storage 

  Treatment      Treatment   

Spoilage Bacteria 

Display 

Hour 

CON
1 

 

1.5 pH 

SA
2 

1.0 pH  

SA
2
 SEM P Value 

 

Spoilage Bacteria 

Display 

Hour 

CON
1 

 

1.5 pH  

SA
2
 

1.0 pH  

SA
2
 SEM P Value 

Psychrotrophic 0 Hour 5.96 6.02 4.81 0.3055 0.8208  Psychrotrophic 0 Hour      

 48 Hour 6.61 6.27 5.56     48 Hour 8.53 8.36 8.48 0.1748 0.1472 

 96 Hour 8.75 8.84 8.12     96 Hour 8.76 8.85 8.25   

Lactic Acid        Lactic Acid       

Bacteria 0 Hour 7.51 7.19 6.51 0.1708 0.6427  Bacteria 0 Hour 8.28 8.25 8.02 0.1307 0.8704 

 48 Hour 7.95 7.91 7.20     48 Hour 8.66 8.40 8.32   

 96 Hour 8.72 8.85 8.20     96 Hour 8.60 8.61 8.37   

Pseudomonas        Pseudomonas       

 0 Hour 6.59 5.94 5.39 0.3069 0.6519   0 Hour 6.94 6.22 6.41 0.2862 0.3697 

 48 Hour 6.92 6.84 5.98     48 Hour 7.35 7.04 6.77   

 96 Hour 7.24 7.46 6.74     96 Hour 7.31 7.68 6.93   

Yeast and Molds        Yeast and Molds       

 0 Hour 3.89
abc 

3.58
bc 

1.82
e 

0.2553 0.0173   0 Hour 4.29
ab 

4.04
b 

3.12
c 

0.2694 0.0163 

 48 Hour 4.05
ab 

3.71
abc 

3.41
cd 

    48 Hour 4.56
ab 

4.45
ab 

3.16
c 

  

 96 Hour 4.42
a 

3.40
cd 

2.83
d 

    96 Hour 4.93
a 

4.27
ab 

4.81
a 
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Table 7. Main effect of sulfuric acid sodium sulfate treatment on the  

log CFU/g of natural microflora of Psychrotrophic, Pseudomonas,  

yeasts and mold, and lactic acid bacteria on pork loin subprimals  

placed into simulated retail display after 14 and 21 days of dark  

anaerobic storage and loin samples kept in dark anaerobic storage over  

28 days (for samples placed in retail display following storage n =  

18/storage time/treatment and for sample stored over 28 days, n =  

24/treatment). 
 Psychrotrophic 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 28 Days of 

Vacuum Storage 

CON
1 

7.59
a 

 8.12
a 

 5.53
a 

1.5 pH SA
2 

7.38
a 

 7.45
b 

 5.26
ab 

1.0 pH SA
2
 6.61

b 
 7.53

b 
 4.98

b 

SEM 0.1639  0.1976  0.1323 

P Value <0.0001  0.0445  0.0166 

      

 Lactic Acid Bacteria 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 28 Days of 

Vacuum Storage 

CON
1
 6.70

a
 
 

 8.02
a 

 5.85
a 

1.5 pH SA
2
 6.28

b 
 7.60

b 
 5.65

a 

1.0 pH SA
2
 5.71

b 
 7.35

b 
 5.24

b 

SEM 0.1921  0.1450  0.1280 

P Value 0.0026  0.0076  0.0042 

      

 Pseudomonas 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 28 Days of 

Vacuum Storage 

CON
1
 5.21

a 
 6.03

a 
 4.61

a 

1.5 pH SA
2
 4.77

ab 
 5.88

ab 
 4.47

a 

1.0 pH SA
2
 4.09

b 
 5.35

b 
 3.76

b 

SEM 0.2574  0.1947  0.1437 

P Value 0.0123  0.0428  0.0001 

      

 Yeast and Molds 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 28 Days of 

Vacuum Storage 

CON
1 

3.77
a 

 4.47
a 

 3.11
a 

1.5 pH SA
2
 3.57

a 
 4.58

a 
 2.97

a 

1.0 pH SA
2
 2.84

b 
 3.84

b 
 2.46

b 

SEM 0.1505  0.1682  0.1283 

P Value 0.0001  0.0073  0.0016 
a,b

 Superscripts differ between treatments within bacteria type,  

within storage time at an alpha level of 0.05.  
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate  
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Table 8. Main effect of sulfuric acid sodium sulfate treatment on the  

log CFU/g of natural microflora of Psychrotrophic, Pseudomonas,  

yeasts and mold, and lactic acid bacteria on pork backrib subprimals  

placed into simulated retail display after 14 and 21 days of dark  

anaerobic storage and backrib samples kept in dark anerobic storage  

over 28 days (for samples placed in retail display following storage n =  

18/storage time/treatment and for sample stored over 28 days, n =  

24/treatment). 
 Psychrotrophic 

 14 Days of 

Dark Storage 

 21 Days of 

Dark Storage 

 28 Days of 

Vacuum Storage 

CON
1
 7.11

a 
 8.64  5.77

a 

1.5 pH SA
2 

7.04
a 

 8.61  5.76
a 

1.0 pH SA
2
 6.16

b 
 8.37  5.05

b 

SEM 0.1764  0.1236  0.1289 

P Value 0.0005  0.2661  0.0001 

      

 Lactic Acid Bacteria 

 14 Days of 

Dark Storage 

 21 Days of 

Dark Storage 

 28 Days of 

Vacuum Storage 

CON
1
 8.06

a 
 8.51

a 
 6.93

a 

1.5 pH SA
2
 7.98

a 
 8.42

ab 
 6.80

a 

1.0 pH SA
2
 7.30

b 
 8.24

b 
 6.31

b 

SEM 0.0997  0.0763  0.0740 

P Value <0.0001  0.0454  <0.0001 

      

 Pseudomonas 

 14 Days of 

Dark Storage 

 21 Days of 

Dark Storage 

 28 Days of 

Vacuum Storage 

CON
1
 6.92

a 
 7.20

 
 5.59

a 

1.5 pH SA
2
 6.75

a 
 6.98

 
 5.36

a 

1.0 pH SA
2
 6.03

b 
 6.70

 
 4.88

b 

SEM 0.1772  0.1652  0.1084 

P Value 0.0021  0.1133  <0.0001 

      

 Yeast and Molds 

 14 Days of 

Dark Storage 

 21 Days of 

Dark Storage 

 28 Days of 

Vacuum Storage 

CON
1 

4.12
a 

 4.59
a 

 3.49
a 

1.5 pH SA
2
 3.56

b 
 4.25

a 
 3.23

a 

1.0 pH SA
2
 2.69

c 
 3.70

b 
 2.48

b 

SEM 0.1474  0.1556  0.1067 

P Value <0.0001  0.0007  <0.0001 
a-c

 Superscripts differ between treatments within bacteria type,  

within storage time at an alpha level of 0.05.  
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 9. Main effect of display hour on log CFU/g of natural microflora of Psychrotrophic, 

Pseudomonas, yeasts and mold, and lactic acid bacteria on pork loin and backrib subprimal 

samples placed into simulated retail display following 14 and 21 days of dark anaerobic  

storage across treatments (n = 18/bacteria type/subprimal type/storage type/display hour). 
 Psychrotrophic 

 Loins  Backribs 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

Display Hour        

0 Hour 6.91
b 

   5.60
c 

  

48 Hour 7.78
a 

 7.43
b 

 6.14
b 

 8.46 

96 Hour 6.88
b 

 7.97
a 

 8.57
a 

 8.62 

SEM 0.1643  0.1614  0.1764  0.1010 

P Value 0.0002  0.0233  <0.0001  0.2618 

        

 Lactic Acid Bacteria 

 Loins  Backribs 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

Display Hour        

0 Hour 5.83
b 

 7.43
b 

 7.07
c 

 8.18
b 

48 Hour 6.22
ab 

 7.55
b 

 7.68
b 

 8.46
a 

96 Hour 6.63
a 

 7.98
a 

 8.59
a 

 8.52
a 

SEM .1921  0.1450  0.0997  0.0763 

P Value 0.0212  0.0243  <0.0001  0.0078 

        

 Pseudomonas 

 Loins  Backribs 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

Display Hour        

0 Hour 4.27
b 

 5.32
b 

 5.97
c 

 6.52
b 

48 Hour 4.56
ab 

 5.69
b 

 6.58
b 

 7.05
a 

96 Hour 5.25
a 

 6.26
a 

 7.15
a 

 7.30
a 

SEM 0.2573  0.1947  0.1772  0.1652 

P Value 0.0251  0.0049  0.0001  0.0056 

        

 Yeast and Molds 

 Loins  Backribs 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

 14 Days of Dark 

Storage 

 21 Days of Dark 

Storage 

Display Hour        

0 Hour 2.65
b 

 3.46
c 

 3.09
b 

 3.82
b 

48 Hour 2.87
b 

 4.01
b 

 3.73
a 

 4.05
b 

96 Hour 4.67
a 

 5.41
a 

 3.55
a 

 4.67
a 

SEM 0.1505  0.1682  0.1474  0.1556 

P Value <0.0001  <0.0001  0.0117  0.0010 
a-c

 Superscripts differ between display hour within bacteria type, within suprimal,  

within storage time at an alpha level of 0.05.  
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Table 10. Effect of sulfuric acid sodium sulfate treatment by storage day on log CFU/g on natural microflora of Psychrotrophic, 

Pseudomonas, yeasts and mold, and lactic acid bacteria on pork loin and backrib subprimals kept in dark anaerobic storage for 28  

days (n = 6/treatment/storage day/subprimal). 

a-g
 Superscripts differ between display hour within bacteria type, within suprimal, within storage day at an alpha level of 0.05.  

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 Loins Across 28 Days in Anaerobic Storage   Backribs Across 28 Days in Anaerobic Storage 

  Treatment      Treatment   

Spoilage Bacteria 

Storage 

Day 

CON
1 

 

1.5 pH 

SA
2 

1.0 pH  

SA
2
 SEM P Value 

 Spoilage 

Bacteria 

Storage 

Day 

CON
1 

 

1.5 pH  

SA
2
 

1.0 pH  

SA
2
 SEM P Value 

Psychrotrophic Day 0 3.11 2.91 2.60 0.2646 0.9970  Psychrotrophic Day 0 3.10 2.85 2.55 0.2573 0.3792 

 Day 7 3.95 3.49 3.37     Day 7 5.51 5.26 4.61   

 Day 14 7.20 6.98 6.55     Day 14 6.00 6.02 4.81   

 Day 21        Day 21      

 Day 28 7.87 7.68 7.39     Day 28 8.46 8.93 8.23   

Lactic Acid 

Bacteria 

       Lactic Acid 

Bacteria 

      

 Day 0 3.84 3.47 3.14 0.2862 0.9989   Day 0 5.25 4.97 4.41 0.1653 0.1924 

 Day 7 3.82 3.47 3.14     Day 7 5.26 4.96 4.42   

 Day 14 6.07 5.99 5.43     Day 14 7.51 7.19 6.51   

 Day 21 7.64 7.59 7.05     Day 21 8.28 8.25 8.02   

 Day 28 7.84 7.72 7.42     Day 28 8.36 8.65 8.19   

Pseudomonas        Pseudomonas       

 Day 0 3.06 2.86 2.26 0.3212 0.2346   Day 0 2.72 2.86 2.45 0.2422 0.1263 

 Day 7 3.09 2.64 2.82     Day 7 4.46 4.11 3.25   

 Day 14 4.50 5.01 3.29     Day 14 6.53 5.94 5.39   

 Day 21 5.58 5.67 4.70     Day 21 6.94 6.22 6.41   

 Day 28 6.85 6.19 5.76     Day 28 7.31 7.68 6.93   

Yeast and Molds        Yeast and Molds       

 Day 0 2.02 2.14 1.68 0.2869 0.1397   Day 0 2.23
ef 

2.08
efg 

1.56
g 

0.2387 0.0284 

 Day 7 2.16 1.73 1.95     Day 7 2.60
de 

2.25
ef 

1.84
gf 

  

 Day 14 3.05 3.02 1.87     Day 14 3.85
abc 

3.58
cd 

1.82
gf 

  

 Day 21 3.83 3.92 2.64     Day 21 4.29
a 

4.04
ab 

3.12
cd 

  

 Day 28 4.49 4.07 4.18     Day 28 4.48
a 

4.23
ab 

4.08
ab 
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Table 11. Effect of sulfuric acid sodium sulfate treatment by display hour on sour, acid/chemical, putrid, and randic/oxidized  

off-odor intensities on pork loin subprimals placed into simulated retail display following 14 and 21 days of dark anaerobic storage  

(n = 2/treatment/display hour/storage time). 

 a-c
 Superscripts within storage time and off odor type, across display hour and treatment differ at an alpha level of 0.05.  

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 

 14 Days of Dark Anaerobic Storage   21 Days of Dark Anaerobic Storage 

  Treatment      Treatment   

 

Off-Odor 

Display 

Hour 

CON
1 

1.5 pH 

SA
2 

1.0pH 

SA
2
 

 

SEM 

 

P Value 

  

Off-Odor 

Display 

Hour 

CON
1 

1.5 pH 

SA
2
 

1.0pH 

SA
2
 

 

SEM 

 

P Value 

Sour 0 Hour 9.52 8.90 7.84 3.33 0.1866  Sour 0 Hour 13.84
c 

29.46
b 

23.65
bc 

6.53 0.0004 

 48 Hour 13.52 4.68 9.81 2.84    48 Hour 29.58
b 

20.35
bc 

12.96
c 

6.26  

 96 Hour 5.49 5.82 10.32 3.18    96 Hour 60.32
a 

52.68
a 

20.90
bc 

6.90  

Acid/Chemical 0 Hour 10.79 8.66 5.10 3.48 0.6244  Acid/Chemical 0 Hour 9.15 8.21 16.21 4.19 0.3170 

 48 Hour 9.73 9.36 9.57 2.89    48 Hour 7.77 4.05 4.32 4.02  

 96 Hour 4.88 9.44 8.12 3.29    96 Hour 11.86 4.21 17.36 4.43  

Putrid 0 Hour 13.71
a 

1.21
b 

3.84
b 

2.05 0.0007  Putrid 0 Hour 8.30 13.74 12.05 5.69 0.5315 

 48 Hour 1.70
b 

2.61
b 

1.49
b 

1.74    48 Hour 9.35 11.68 16.74 5.50  

 96 Hour 4.39
b 

1.61
b 

4.05
b 

1.96    96 Hour 7.86 17.29 25.51 5.96  

Oxidized/Rancid 0 Hour 3.15
b 

4.59
b 

4.28
b 

3.66 0.0353  Oxidized/Rancid 0 Hour 16.87
bc 

23.05
abc 

13.99
c 

5.86 0.0204 

 48 Hour 2.29
b 

2.17
b 

3.04
b 

3.14    48 Hour 23.89
abc 

10.94
c 

11.05
c 

5.58  

 96 Hour 9.06
b 

20.00
a 

25.17
a 

3.50    96 Hour 14.61
c 

32.46
a 

31.96
ab 

6.23  
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Table 12. Effect of sulfuric acid sodium sulfate treatment by display hour on sour, acid/chemical, putrid, and rancid/oxidized off-odor 

intensities on pork backrib subprimals placed into simulated retail display following 14 and 21 days of dark anaerobic storage (n = 

2/treatment/display hour/storage time). 

 a-e
 Superscripts within storage time and off odor type, across display hour and treatment differ at an alpha level of 0.05.  

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 

 

 

 

 14 Days of Dark Anaerobic Storage   21 Days of Dark Anaerobic Storage 

  Treatment      Treatment   

 

Off-Odor 

Display 

Hour 

CON
1 

1.5 pH 

SA
2 

1.0pH 

SA
2
 

 

SEM 

 

P Value 

  

Off-Odor 

Display 

Hour 

CON
1 

1.5 pH 

SA
2
 

1.0pH 

SA
2
 

 

SEM 

 

P Value 

Sour 0 Hour 4.71 0.96 6.84 4.26 0.1026  Sour 0 Hour 27.10
bc 

20.66
c 

15.97
c 

6.84 0.0368 

 48 Hour 16.07 13.78 6.28 3.56    48 Hour 24.67
bc 

24.95
bc 

38.50
ab 

6.55  

 96 Hour 12.64 18.14 17.69 4.04    96 Hour 48.18
a 

26.39
bc 

28.47
bc 

7.24  

Acid/Chemical 0 Hour 13.66 8.66 12.91 5.95 0.5113  Acid/Chemical 0 Hour 9.48 6.54 13.29 3.84 0.8278 

 48 Hour 15.80 14.97 10.01 5.55    48 Hour 3.11 4.28 6.11 3.66  

 96 Hour 13.78 15.11 14.78 5.82    96 Hour 6.42 0.56 8.42 4.06  

Putrid 0 Hour 1.36 1.77 0.14 4.40 0.0573  Putrid 0 Hour 42.32
b 

5.45
e 

11.51
e 

7.16 <0.0001 

 48 Hour 10.69 16.11 4.57 3.69    48 Hour 29.98
bcd 

18.98
cde 

14.14
de 

6.78  

 96 Hour 22.55 11.82 6.10 4.18    96 Hour 48.26
b 

86.12
a 

34.83
bc 

7.63  

Oxidized/Rancid 0 Hour 1.56 1.56 4.62 4.80 0.5336  Oxidized/Rancid 0 Hour 30.21 18.96 13.90 7.30 0.4191 

 48 Hour 14.90 15.36 8.07 4.14    48 Hour 32.71 16.09 14.87 6.99  

 96 Hour 21.15 18.04 15.43 4.60    96 Hour 36.43 40.07 37.71 7.71  
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Table 13. Main effect of sulfuric acid sodium sulfate treatment on off-odor  

intensities on loins and backribs placed into simulated retail display  

following both 14 and 21 days of dark anaerobic storage (n = 6/treatment). 
 Loins After 14 Days of Dark Storage 

 Sour  Acid/ Chemical     

CON
1 

9.51  8.47    
 

1.5 pH SA
2 

6.47  9.15    
 

1.0 pH SA
2
 9.32  7.59    

 

SEM 2.2352  2.1024     

P Value 0.2610  0.8037     

        

 Loins After 21 Days of Dark Storage 

  Acid/ Chemical  Putrid   

CON
1
 

 
9.59

ab 
 8.50

b
   

1.5 pH SA
2
 

 
5.49

b 
 14.24

ab
   

1.0 pH SA
2
 

 
12.63

a 
 18.20

a
   

SEM  3.0543  4.50   

P Value  0.0467  0.0230   

        

 Ribs After 14 Days of Dark Storage 

 Sour  Acid/ Chemical  Putrid  Oxidized/Rancid 

CON
1
 11.14  14.41  10.63

a 
 12.54 

1.5 pH SA
2
 10.96  12.91  9.90

a 
 11.65 

1.0 pH SA
2
 10.27  12.56  3.60

b 
 9.37 

SEM 2.6692  5.1364  2.7687  3.34 

P Value 0.9482  0.7296  0.0316  0.5278 

        

 Ribs After 21 Days of Dark Storage 

           Acid/ Chemical   Oxidized/Rancid 

CON
1
  6.34  

 
33.11 

1.5 pH SA
2
  3.79  

 
25.04 

1.0 pH SA
2
  9.27  

 
22.16 

SEM  2.7273   5.3387 

P Value  0.1284   0.0760 
a,b

 Superscripts within off-odor type, storage time and subprimal  

type differ at an alpha level of 0.05 
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 14. Effect of sulfuric acid sodium sulfate treatment and display hour on the percent surface discoloration of pork loin and 

backrib subprimal samples placed into simulated retail display following either 14 or 21 days of dark anaerobic storage (n = 

6/treatment/display hour).  

 
Loins 

 14 Days of Dark Anaerobic Storage    

 0 Hour 12 Hours 24 Hours 36 Hours 48 Hours 60 Hours 72 Hours 84 Hours 96 Hours SEM P Value 

Treatment            

CON
1 

2.61
fg 

0.24
g 

2.56
fg 

0.03
g 

3.35
fg 

4.90
fg 

1.99
fg 

6.38
efg 

6.92
efg 

4.3204 <0.0001 

1.5 pH SA
2 

4.86
fg 

6.58
efg 

15.01
de 

26.22
bc 

28.64
bc 

33.73
ab 

31.53
abc 

34.77
ab 

35.36
ab 

  

1.0 pH SA
2
 4.19

fg 
11.51

ef 
22.18

cd 
33.38

ab 
34.12

ab 
42.84

a 
40.24

a 
40.33

a 
40.89

a 
  

            

 21 Days of Dark Anaerobic Storage    

 0 Hour 12 Hours 24 Hours 36 Hours 48 Hours 60 Hours 72 Hours 84 Hours 96 Hours SEM P Value 

Treatment            

CON
1 

5.20 1.36 3.98 1.88 6.36 10.24 10.69 12.13 14.16 5.3175 0.7484 

1.5 pH SA
2
 25.65 30.44 35.90 36.24 38.14 43.44 47.69 44.10 54.58   

1.0 pH SA
2
 35.31 40.49 37.54 41.91 48.08 42.94 49.38 43.53 48.58   

            

Backribs 

 14 Days of Dark Anaerobic Storage   

 0 Hour 12 Hours 24 Hours 36 Hours 48 Hours 60 Hours 72 Hours 84 Hours 96 Hours SEM P Value 

Treatment            

CON
1 

0.55 1.12 1.30 0.36 0.72 1.49 2.87 6.90 10.88 1.5566 0.8635 

1.5 pH SA
2
 2.67 1.78 2.15 1.51 1.71 4.22 4.57 8.13 7.95   

1.0 pH SA
2
 2.42 1.54 1.68 1.82 3.35 5.51 6.31 7.07 11.30   

            

 21 Days of Dark Anaerobic Storage   

 0 Hour 12 Hours 24 Hours 36 Hours 48 Hours 60 Hours 72 Hours 84 Hours 96 Hours SEM P Value 

Treatment            

CON
1 

6.67 4.18 8.42 9.35 18.74 23.42 26.96 25.21 31.27 3.7229 0.3338 

1.5 pH SA
2
 5.25 6.82 11.67 8.65 17.22 15.62 33.02 18.07 28.44   

1.0 pH SA
2
 2.89 9.41 15.97 12.74 18.72 19.27 22.49 22.64 23.27   

a-g
 Superscripts within storage time, within subprimal type differ at an alpha level of 0.05.  

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 15. Main effect of sulfuric acid sodium sulfate treatment on the percent  

surface discoloration of pork loin and backribs placed into simulated retail  

display following either 14 or 21 days of dark anaerobic storage  

(n = 18/treatment/storage time). 
 Loins After 21 Days 

of Dark Storage 

Backribs After 14 

Days of Dark Storage 

Backribs After 21 

Days of Dark Storage 

CON
1 

7.33
b 

2.91
b 

17.14 

1.5 pH SA
2 

39.57
a 

3.85
ab 

16.08 

1.0 pH SA
2
 43.08

a 
4.56

a 
16.38 

SEM 3.3963 0.9054 1.8802 

P Value <0.0001 0.0209 0.7906 
a,b

 Superscripts within storage time and subprimal differ at an alpha  

level of 0.05. 
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 16 Main effect of display hour on percent surface discoloration on pork loin and backrib subprimal samples placed into 

simulated retail display following either 14 or 21 days of dark anaerobic storage (n=18/storage period).  
 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

Loins After 21 Days 

of Dark Storage 
22.06

f 
24.10

ef 
25.81

cdef 
26.67

def 
30.86

bcde 
32.21

abcd 
33.25

abc 
35.92

ab 
39.10

a 
4.0206 <0.0001 

Ribs After 14 Days 

of Dark Storage 
1.88

de 
1.48

e 
1.71

de 
1.23

e 
1.93

de 
3.74

cd 
4.58

c 
7.37

b 
10.04

a 
1.1332 <0.0001 

Ribs After 21 Days 

of Dark Storage 
4.94

d 
6.80

cd 
12.02

cd 
10.25

c 
18.22

b 
19.43

b 
27.49

ab 
21.97

a 
27.66

a 
2.2391 <0.0001 

a-f
 Superscripts within row differ at an alpha level of 0.05.  
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Table17 Effect of sulfuric acid sodium sulfate treatment by display hour on CIE L*, a* and b* values of pork loin subprimal lean 

samples placed into simulated retail display following 14 and 21 days of dark anaerobic storage (n = 6/treatment/display hour). 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 14 days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1 

39.18 40.30 47.16 44.27 41.39 44.97 41.67 41.33 42.47 1.7522 0.9917 

1.5 pH SA
2 

45.69 45.46 54.90 46.08 45.56 47.71 46.93 45.68 47.91   

1.0 pH SA
2
 46.40 45.09 53.13 48.03 44.85 48.49 46.70 44.62 47.06   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 10.37 4.99 5.16 5.77 5.06 4.57 4.49 5.87 4.63 1.2347 0.7824 

1.5 pH SA
2
 4.20 4.78 4.22 4.24 3.70 3.68 4.04 4.19 3.36   

1.0 pH SA
2
 4.72 4.77 4.30 5.34 4.45 4.67 4.19 5.40 4.10   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 4.10 4.92 5.17 5.45 5.07 4.75 4.46 5.89 4.65 0.6584 0.9716 

1.5 pH SA
2
 5.00 5.60 5.99 5.07 5.24 5.32 5.91 6.29 5.03   

1.0 pH SA
2
 5.94 5.78 6.20 6.70 6.18 7.63 6.29 7.59 6.22   

 21 Days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 41.89 42.24 41.60 41.99 42.38 42.92 43.79 45.06 42.61 0.9392 0.8843 

1.5 pH SA
2
 44.90 46.55 46.29 45.93 45.89 46.12 47.12 47.48 45.93   

1.0 pH SA
2
 48.73 46.52 47.12 47.70 46.77 47.73 47.58 47.87 47.20   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 5.02 4.09 4.31 3.88 3.97 3.73 4.03 3.40 3.59 0.4917 0.9999 

1.5 pH SA
2
 5.12 4.45 4.51 4.05 4.24 3.82 3.68 3.20 2.91   

1.0 pH SA
2
 5.54 4.61 4.93 4.05 4.76 4.17 3.94 3.89 3.53   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 4.82 4.36 4.36 3.57 4.45 4.19 4.48 4.27 4.15 0.7674 0.9999 

1.5 pH SA
2
 6.29 6.47 6.95 6.46 6.57 6.30 6.10 6.10 5.32   

1.0 pH SA
2
 7.42 6.85 7.25 6.43 7.27 7.00 6.44 6.80 6.94   
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Table 18 Effect of sulfuric acid sodium sulfate treatment by display hour on CIE L*, a* and b* values of pork loin subprimal fat 

samples placed into simulated retail display following 14 and 21 days of dark anaerobic storage (n = 6/treatment/display hour). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 14 days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 71.88 71.24 84.55 77.93 72.98 76.87 73.34 74.61 75.20 1.8576 0.9916 

1.5 pH SA
2
 68.25 71.27 81.55 73.28 70.25 74.22 70.02 71.17 74.33   

1.0 pH SA
2
 68.87 69.56 78.10 73.30 68.03 70.90 69.86 70.30 70.35   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 5.57 6.22 5.81 6.41 5.39 5.88 5.05 6.17 5.09 1.8951 0.5524 

1.5 pH SA
2
 4.96 4.67 5.08 5.71 5.27 5.08 3.77 4.59 3.75   

1.0 pH SA
2
 6.87 17.06 8.24 8.73 7.65 8.07 6.48 7.40 7.15   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 8.08 8.90 9.25 9.14 8.25 8.77 7.98 9.41 8.23 1.0981 0.9999 

1.5 pH SA
2
 8.30 8.10 9.44 9.69 8.93 9.13 7.80 8.92 8.48   

1.0 pH SA
2
 12.26 13.66 14.29 14.17 12.70 13.28 12.29 12.66 12.76   

 21 Days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 71.43 70.06 72.22 71.74 71.77 72.07 73.08 73.23 71.94 1.4327 0.9793 

1.5 pH SA
2
 69.77 70.42 69.09 70.99 72.88 69.82 71.61 71.90 71.72   

1.0 pH SA
2
 68.54 69.84 70.07 68.57 68.61 69.22 69.14 70.15 69.99   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 3.77 3.57 2.80 3.74 2.41 3.20 2.38 3.18 3.03 0.7096 0.9561 

1.5 pH SA
2
 4.62 4.86 3.70 3.85 3.88 3.49 4.35 3.33 2.98   

1.0 pH SA
2
 7.18 6.15 6.90 6.36 6.43 5.95 5.15 5.56 5.54   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 5.75 5.60 4.82 5.76 4.64 5.55 4.64 5.97 5.87 0.9496 0.9906 

1.5 pH SA
2
 8.10 8.72 7.47 7.39 8.47 7.61 7.79 7.63 7.14   

1.0 pH SA
2
 12.36 11.22 11.88 11.59 12.07 11.68 10.26 11.00 11.19   
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Table 19 Effect of sulfuric acid sodium sulfate treatment by display hour on CIE L*, a* and b* values of pork backrib  

subprimal lean samples placed into simulated retail display following 14 and 21 days of dark anaerobic storage (n = 

6/treatment/display hour). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 14 days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 35.46 32.53 44.35 36.96 34.75 37.28 39.34 37.46 36.18 2.4293 0.9485 

1.5 pH SA
2
 35.64 31.03 40.09 34.41 31.87 35.82 35.74 30.29 34.77   

1.0 pH SA
2
 36.75 39.10 42.81 38.39 37.03 41.84 39.79 34.23 39.55   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 11.40 11.97 13.33 13.16 11.56 11.70 10.42 13.09 10.20 2.3882 0.9303 

1.5 pH SA
2
 10.26 11.25 10.75 11.43 10.35 9.46 9.54 11.58 9.00   

1.0 pH SA
2
 9.41 10.11 19.92 11.00 9.76 11.16 11.58 12.46 10.47   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 8.09 8.41 11.11 9.72 8.16 8.81 8.21 10.98 7.66 2.2659 0.8875 

1.5 pH SA
2
 7.32 8.07 8.16 8.19 6.86 7.24 7.67 8.98 6.83   

1.0 pH SA
2
 7.48 8.48 19.17 9.05 9.76 10.23 10.29 11.41 9.41   

 21 Days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 38.18 37.38 39.71 37.32 40.57 36.87 42.73 37.34 38.32 2.3860 0.9997 

1.5 pH SA
2
 40.04 39.32 40.97 40.00 39.33 37.52 42.22 41.19 41.98   

1.0 pH SA
2
 39.28 39.17 39.42 40.31 40.66 38.53 41.85 41.49 41.13   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 10.98 10.11 9.69 9.56 8.66 8.14 7.80 7.96 7.02 1.3061 0.9999 

1.5 pH SA
2
 10.53 9.60 9.58 9.11 8.91 8.86 8.32 8.22 7.43   

1.0 pH SA
2
 9.82 8.73 9.04 7.93 9.17 8.26 7.06 7.35 6.44   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 8.46 16.48 7.92 7.84 7.33 6.59 7.39 6.97 6.62 1.7321 0.4372 

1.5 pH SA
2
 8.33 8.03 8.05 8.03 7.25 6.60 7.29 6.45 6.19   

1.0 pH SA
2
 8.19 7.60 7.81 7.50 8.60 7.93 7.09 7.61 7.23   
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Table 20 Effect of sulfuric acid sodium sulfate treatment by display hour on CIE L*, a* and b* values of pork backrib  

subprimal fat samples placed into simulated retail display following 14 and 21 days of dark anaerobic storage  

(n = 6/treatment/display hour). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 14 days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 71.02 69.11 85.50 74.17 70.09 74.00 70.64 71.45 71.06 2.6373 0.4131 

1.5 pH SA
2
 60.13 69.17 77.93 74.08 68.97 72.06 70.94 71.09 70.26   

1.0 pH SA
2
 68.90 71.69 74.06 73.35 69.74 72.45 68.74 70.54 71.57   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 11.84 11.06 10.31 11.82 10.09 10.53 9.98 9.91 9.38 1.0419 0.9345 

1.5 pH SA
2
 8.40 8.08 8.97 8.86 8.47 8.21 8.18 8.66 9.02   

1.0 pH SA
2
 9.42 10.46 10.53 11.01 10.62 11.32 11.31 11.65 11.09   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 13.00 12.35 12.92 13.25 11.83 12.51 11.77 12.23 11.97 0.9535 0.9966 

1.5 pH SA
2
 11.22 10.92 11.86 11.46 10.87 11.01 10.69 11.76 11.81   

1.0 pH SA
2
 13.86 14.33 14.62 14.77 14.50 16.07 14.50 15.37 14.72   

 21 Days of Dark Anaerobic Storage 

 L* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 67.64 68.85 69.17 70.43 69.38 59.31 70.60 70.78 68.66 3.2702 0.9835 

1.5 pH SA
2
 68.46 69.10 67.49 70.12 68.85 61.27 67.76 72.34 70.05   

1.0 pH SA
2
 68.30 67.64 69.10 68.17 67.05 68.76 68.83 69.94 68.99   

 a* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 11.79 9.28 9.28 9.10 8.66 7.97 7.86 7.27 5.88 2.2315 0.5695 

1.5 pH SA
2
 8.38 9.39 7.73 19.02 7.22 7.71 6.92 7.31 7.46   

1.0 pH SA
2
 8.70 10.06 7.97 9.34 8.01 8.20 7.73 8.12 8.15   

 b* Values 

 0 Hour 12 Hour 24 Hour 36 Hour 48 Hour 60 Hour 72 Hour 84 Hour 96 Hour SEM P Value 

CON
1
 13.25 11.18 11.43 11.33 11.33 10.84 11.16 10.52 9.31 0.9366 0.9468 

1.5 pH SA
2
 10.49 11.40 9.84 10.82 9.69 10.42 9.67 9.82 10.30   

1.0 pH SA
2
 13.15 14.37 12.59 13.66 12.37 12.88 12.18 13.06 12.92   
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Table 21 Main effect of sulfuric acid sodium sulfate treatment on CIE L*, a* and b*  

values of pork loin and backrib subprimal samples placed into simulated retail display  

following 14 days of dark anaerobic storage (n = 18/treatment/tissue/subprimal).  
 Loin Lean Color  Backrib Lean Color 

 L* a* b*  L* a* b* 

CON
1 

42.52
a 

5.66
a 

4.94
b 

 37.14
a 

11.87 9.02
ab 

1.5 pH SA
2 

47.32
b 

4.04
b 

5.50
b 

 34.41
b 

10.40 7.70
b 

1.0 pH SA
2 

47.15
b 

4.66a
b 

6.50
a 

 38.83
a 

11.76 10.59
a 

SEM 0.5841 0.4116 0.2195  0.8098 0.7961 0.7553 

P Value <0.0001 0.0225 <0.0001  0.0007 0.3509 0.0283 

        

 Loin Fat Color  Backrib Fat Color 

CON
1 

75.40
a 

5.73
b 

8.67
b 

 73.00 10.55
a 

12.42
b 

1.5 pH SA
2
 72.70

b 
4.76

b 
8.75

b 
 70.51 8.54

b 
11.29

c 

1.0 pH SA
2
 71.03

b 
8.63

a 
13.12

a 
 71.23 10.82

a 
14.75

a 

SEM 0.6192 0.6317 0.3660  0.8791 0.3473 0.3178 

P Value <0.0001 <0.0001 <0.0001  0.1228 <0.0001 <0.0001 
a,b

 Superscripts within tissue, within subprimal, differ at an alpha level of 0.05.  
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 22 Main effect of sulfuric acid sodium sulfate treatment on CIE L*, a* and  

b* values of pork loin and backrib subprimal samples placed into simulated retail  

display following 21 days of dark anaerobic storage (n = 18/treatment/tissue/subprimal). 
 Loin Lean Color  Backrib Lean Color 

 L* a* b*  L* a* b* 

CON
1
 42.72

a 
4.00 4.29

b 
 38.71 8.88 8.39 

1.5 pH SA
2
 46.25

b 
4.00 6.29

a 
 40.29 8.95 7.36 

1.0 pH SA
2
 47.47

c 
4.38 6.93

a 
 40.20 8.20 7.73 

SEM 0.3131 0.1639 0.2558  0.7953 0.4354 0.5774 

P Value <0.0001 0.1744 <0.0001  0.2930 0.4040 0.4429 

        

 Loin Fat Color  Backrib Fat Color 

CON
1
 71.95

a 
3.12

c 
5.40

c 
 68.31 8.56 11.15

b 

1.5 pH SA
2
 70.91

a 
3.90

b 
7.81

b 
 68.38 9.02 10.27

b 

1.0 pH SA
2
 69.35

b 
6.13

a 
11.47

a 
 68.53 8.47 13.02

a 

SEM 0.4776 0.2365 0.3165  1.1255 0.7680 0.3224 

P Value 0.0009 <0.0001 <0.0001  0.9903 0.8668 <0.0001 
a-c

 Superscripts within tissue, within subprimal, differ at an alpha level of 0.05.  
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 
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Table 23 Main effect of sulfuric acid sodium sulfate across display hour on pH  

of pork loin and backrib subprimal samples either placed into simulated retail 

 display following 14 or 21 days of dark anaerobic storage or over 28 days of  

dark anaerobic storage (for subprimals placed into display following 14 and 21  

days of dark storage, n = 18/treatment, and for subprimals stored for 28 days, 

 n = 30/treatment).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a,b

 Superscripts within storage time, within subprimal, differ at an  

alpha level of 0.05.  
1
CON = Untreated control treatment 

2
SA = Sulfuric acid sodium sulfate 

 

 

 Loins 

 14 Days of  

Dark Storage 

 21 Days of  

Dark Storage 

 28 Days of 

Anaerobic Storage 

CON
1
 5.78

a 
 5.77

a 
 5.63

a 

1.5 pH SA
2
 5.77

a 
 5.62

b 
 5.67

a 

1.0 pH SA
2
 5.57

b 
 5.57

b 
 5.46

b 

SEM 0.05228  0.04612  0.0433 

P Value 0.0071  0.0072  0.0015 

      

 Backribs 

 14 Days of  

Dark Storage 

 21 Days of  

Dark Storage 

 28 Days of 

Anaerobic Storage 

CON
1
 6.36

a 
 6.28

a 
 6.20 

1.5 pH SA
2
 6.27

ab 
 6.05

b 
 6.10 

1.0 pH SA
2
 6.12

b 
 6.05

b 
 6.07 

SEM 0.62160  0.05894  0.04625 

P Value 0.0317  0.0090  0.1121 
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Table 24. Effect of sulfuric acid sodium sulfate at a concentration of 1.0 pH and 1.3 pH on LS means of log CFU/cm
2
 on the natural 

microflora and inoculated populations on non-pathogenic Escherichia coli on pork carcasses (n = 30/treatment).  
Enterobacteriaceae 

 Inoculated  Uninoculated 

  

Before
2 

 

After
3 

After Rapid 

Chill
4 

After 15 

Hours
5 

 

SEM 

 

P Value 

  

Before
2
 

 

After
3
 

After Rapid 

Chill
4
 

After 15 

Hours
5
 

 

SEM 

 

P Value 

1.3 pH SA
1 

6.74
a 

5.85
b 

4.31
c 

4.43
c 

0.3284 <0.0001  1.20
a 

0.59
b 

-0.04
c 

0.06
c 

0.1312 <0.0001 

1.0 pH SA
1
 6.08

a 
4.77

b 
3.31

c 
3.28

c 
0.1106 <0.0001  1.21

a 
0.05

b 
-0.33

b 
-0.12

b 
0.1132 <0.0001 

              

Aerobic Plate Count 

 Inoculated  Uninoculated 

  

Before
2
 

 

After
3
 

After Rapid 

Chill
4
 

After 15 

Hours
5
 

 

SEM 

 

P Value 

  

Before
2
 

 

After
3
 

After Rapid 

Chill
4
 

After 15 

Hours
5
 

 

SEM 

 

P Value 

1.3 pH SA
1
 7.02

a 
6.17

b 
4.59

c 
4.62

c 
0.2128 <0.0001  3.24

a 
2.38

b 
0.90

c 
2.19

b 
0.4440 <0.0001 

1.0 pH SA
1
 6.19

a 
4.98

b 
3.56

c 
3.47

c 
0.1470 <0.0001  3.34

a 
1.52

b 
0.52

c 
1.50

b 
0.2257 <0.0001 

a-c 
Superscripts within inoculated or uninoculated, within Enterobacteriaceae or Aerobic plate count, differ within row at an 

alpha level of 0.05. 
1
 SA = Sulfuric acid sodium sulfate  

2 
Before = Carcass zones sampled before sulfuric acid sodium sulfate treatment 

3
 After = Carcass zones sampled after sulfuric acid sodium sulfate treatment 

4
 After Rapid chill = Carcass zones sampled after sulfuric acid sodium sulfate treatment and after rapid chill  

5
 After 15 Hours = Carcass zones sampled 15 hours after sulfuric acid sodium sulfate treatment and rapid chill  
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Figure 1. Inoculation and surrogate validation portion (Experiment 1) sample design and breakdown.   
1
Sulfuric Acid Sodium Sulfate  

2
Surrogate bacteria includes a 5-strain mixture of non-pathogenic Escherichia coli.  
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Butt Shoulder

Pieces
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.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. In-plant validation of sulfuric acid sodium sulfate on pork carcasses 
(Experiment 3) sample zoneing map. 
*UBT = Uninoculated Before Treatment, IBT = Inoculated Before Treatment,  
UAT = Uninoculated After Treatment, IAT = Inocualted After Treatment, UASC  
= Uninoculated After Rapid chill Cycle, IASC = Inoculated After Rapid chill  
Cycle, UA15H = Uninoculated After 15 Hour, and IA15H = Inoculated After 15 Hour 
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