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ABSTRACT

FUNCTIONAL PROGRAMMING APPLIED TO COMPUTATIONAL ALGEBRA

Underlying many, if not all, areas of mathematics is category theory, an alternative to set the-

ory as a foundation that formalizes mathematical structures and relations between them. These

relations abstract the idea of a function, an abstraction used throughout mathematics as well as

throughout programming. However, there is a disparity between the definition of a function used

in mathematics from that used in mainstream programming. For mathematicians to utilize the

power of programming to advance their mathematics, there is a demand for a paradigm of pro-

gramming that uses mathematical functions, as well as the mathematical categories that support

them, as the basic building blocks, enabling programs to be built by clever mathematics. This

paradigm is functional programming. We wish to use functional programming to represent our

mathematical structures, especially those used in computational algebra.

ii



ACKNOWLEDGEMENTS

I want to thank God for the opportunity to go to graduate school, and for giving me the strength

to persevere through it. I want to thank my mom, dad, and my brothers, Jerry and Joel, for believing

in me. I am grateful for my mom for giving me emotional support and words of encouragement

throughout my time in graduate school. I thank my dad for giving me tough love and words of

wisdom for my development as a professional and as a person. I love you all very much.

I am very grateful for my friend, Gabriela Maria Hernandez, for being a friend that I could

relate with throughout this journey. You are a friend that I could always open up to about graduate

school. Also, I am really grateful for you helping me get out and enjoy the culture of Fort Collins.

You definitely added spice to my life here. I am grateful for my friend, Adam Afandi. I love your

sense of humor and I am greatly thankful for helping me keep a good perspective and helping me

see the bigger picture throughout my time here. I really enjoyed going out for brunch on Saturdays

with you and your wife, Rebecca. You are a really good friend. I am thankful for my academic

brother, Brady Tyburski. Your enthusiastic attitude really helped to balance my sarcasm. I really

appreciate our differences and how we encouraged one another throughout graduate school. For

Gabby, Adam, and Brady, I remember in orientation how we all had fun spending time with each

other, giving me a sense of belonging, which gave me assurance that Colorado State University

is where I was supposed to go. Everyone needs friends to get through and to enjoy this journey,

especially during a time as difficult and memorable as graduate school.

I am grateful for my abstract algebra professor, Dr. Rachel Pries, during my first year in

graduate school. You helped to see my potential and encouraged me greatly during my first year.

You were also a very patient instructor.

As I am writing this at Linden Street Cafe, I want to thank the people of Linden Street Cafe for

creating a welcoming space for work, good conversation, and caffeine. I have really enjoyed walk-

ing through Old Town to come to one of the greatest coffee shops here in Fort Collins. Thankyou

very much.

iii



Last but not least, I want to thank my advisor, Dr. James Wilson. I really appreciate your sage

advice throughout my time here. Thankyou for believing in me and for seeing what I needed to

succeed in graduate school. Thankyou for leading me into a good career path, and for helping

me to grow as a professional. I have come to really appreciate your “no nonsense" intensity and

enthusiasm for mathematics. You are exactly what I needed in an advisor. I hope to stay in touch.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 What is Functional Programming? . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Advantages of Functional Programming . . . . . . . . . . . . . . . . . . . 4

2.3 The Algebras on Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Generic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Category Theory of Representations . . . . . . . . . . . . . . . . . . . . . . 12

3.1 G-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Restriction Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Induction Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Composition of Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4 Category Theory in Programming . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 TYPE Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Entity Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 CAT Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 5 Implementing Categories in Scala . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Type Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Implementing G-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 6 Functor in FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 TYPE Functors in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 ENTITY Functors in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Advantages of Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Functors in Programming v. Functors in Mathematics . . . . . . . . . . . 46

6.5 Res/Ind in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 7 Monads in FP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Monad Type Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Par Monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Parallel Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.2 Par Joins The Monad Type Class . . . . . . . . . . . . . . . . . . . . . 55

v



Chapter 8 The Orbit-Stabilizer Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 9 Future Work: Frobenius (Co)Monad . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF FIGURES

3.1 G-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



Chapter 1

Introduction

Underlying many, if not all, areas of mathematics is category theory, an alternative to set the-

ory as a foundation that formalizes mathematical structures and relations between them. These

relations abstract the idea of a function, an abstraction used throughout mathematics as well as

throughout programming. However, there is a disparity between the definition of a function used

in mathematics from that used in mainstream programming. For mathematicians to utilize the

power of programming to advance their mathematics, there is a demand for a paradigm of pro-

gramming that uses mathematical functions, as well as the mathematical categories that support

them, as the basic building blocks, enabling programs to be built by clever mathematics. This

paradigm is functional programming. We wish to use functional programming to represent our

mathematical structures, especially those used in computational algebra.

Functional programming is programming with pure functions, objects that only return a unique

output for each input, as used in mathematics. With this restriction, our programs become more

predictable, and we can treat our functions as first class objects that are easy to glue together by

composition and by higher-order functions defined on clever data structures. With our programs

built by pure functions as our basic building blocks, there is an increased support for modularity, the

ability to break a large program into smaller independent, interchangeable parts, making debugging

and editing code more efficient and allowing code to be more concise.

By having our programs more predictable and composable, we are interested in the laws of

our operations defined on types, the construction of data structures that implement these opera-

tions, and the relationship between these structures. That is, we want to understand the algebra

of our structures. Thus, we want to understand the category theory behind our programs, the

abstract algebra of composable entities. We will see how algebraic laws and modularity can pro-

vide flexibility in methods of evaluation for computations, enabling more efficient–in particular,

concurrent–methods to compute while retaining correctness.
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Also, by using the ideas of category theory within functional programming, we want to be able

to translate the objects and problems in computational algebra into the language of category theory

that can be understood by our functional programming language-of-choice, Scala, enabling users

to make use of tools from both worlds. We will see how to implement these structures by the use

of type classes. We will also see the shortcomings of the desired implementations of mathematical

categories with that of the categories interpreted in the language.

In particular, we will look into the category of G-sets as well as the restriction/induction ad-

joint functor pair that could potentially translate the computational group theoretic Schreier-Sims

algorithm into a category-theoretic problem. For future work, we would like to construct a Frobe-

nius monad and/or a Frobenius comonad in Scala that would aid in computing the Schreier-Sims

algorithm in a functional manner.
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Chapter 2

Functional Programming

2.1 What is Functional Programming?

The term “function" in programming is used informally as any set of commands abstracted

into a named synonym which can be used anywhere in code. In particular, it makes few, if any,

axiomatic requirements about inputs or outputs and is, thus, unrelated to the strict ideas of functions

in math. However, functional programming is a programming paradigm that stresses pure

functions, functions that only return a unique output for each input, as used in mathematics. With

that in mind, the question that follows is, what would a nonpure function be in a programming

language? If we were to input a variable, x, to a function, f, how could the output vary? The output

can vary depending on what the state of the program is at the time of application of the function.

The state encompasses all of the factors that are separate from input that can influence the outcome

of your program.

Consider if you are on an elevator and you can either press ↑ to go one floor up or press ↓ to

go one floor down. Thus, we can think of it like a function that accepts ↑ or ↓ as an argument and

returns the floor that it transports you to. However, the floor that it transports you to depends on

the current floor you are on right now. Also, if you are already on the top floor, then ↑ will have

you remain on the top floor, and, if you are on the bottom floor, then ↓ will have you remain on the

bottom floor. Thus, the elevator function is not a pure function, since it depends on external state.

Here is another example of a nonpure function. Consider the code written in Python:

def append7(L):

L.append(7)

return L

This is a function that accepts a list as an argument and returns the list with 7 appended to it. How-

ever, it does not only return a new list. It also changes (mutates) the original list. This additional
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effect is called a side effect of the program. Notice that if I assign L = [1,2,3], then evaluat-

ing append7(L) returns [1,2,3,7]. However, if I evaluate append7(L) again, the program

returns [1,2,3,7,7], because L == [1,2,3,7] at the time of the second evaluation. We

see that append7(L) does not return the same result in all places it could be evaluated, so it is

not regarded as a pure function. It depends on state that can change at the time of evaluation, and

the state changes by changing the original list upon evaluation. Another example of changing state

are reassigning variables. Thus, functions that rely on variables that can be reassigned or reassign

variables are also impure. Overall, pure functions do not depend on state that can change and

do not change state. Thus, the values and references that can be passed to pure functions are, by

definition, immutable, a property that means unchangeable.

2.2 Advantages of Functional Programming

One advantage of pure functions is data sharing, which relies on immutable data structures

rather than mutable data structures. Looking at the example from above, a list in Python is mutable

because there are methods defined on lists that change the data. Other ways of mutating lists in

Python are by reassigning different values to the entries of a list. For example, we can assign

L = [1,2,3,4] and then reassign L[0] = 7, which would mutate L to [7,2,3,4]. Pure

functions only accept immutable objects and return new objects, rather than mutating old ones.

This uses more memory unless cleverly designed, but it has the advantage of giving predictable

outcomes. Also, it allows you to reuse objects for other functions, without needing to explicitly

copy objects, thereby reducing code. According to Chiusano and Bjarnason [1]“We find that in

the large, FP can often achieve greater efficiency than approaches that rely on side effects, due to

much greater sharing of data and computation." An example of a list method in Scala that relies

on data sharing is def drop(n: Int), which returns a new list that has dropped the first

n elements and leaves the original list unchanged. Unless otherwise stated, we will use Scala as

our programming language-of-choice for examples of functional programming. Although it is not

considered a pure functional language, like Haskell, it greatly supports the functional programming
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paradigm as well as supports the object-oriented paradigm. The power of the Scala language is in

the intersection of these paradigms.

Another advantage is the support for modularity, the ability to break a large program into

smaller independent, interchangeable functions. Although any programming language can make

use of modularity, functional programming has better support for it. One reason is that the func-

tions that make up the program do not depend on external state that is carried through the program,

so they can be tested independent from the whole. This is beneficial for debugging by having the

freedom to test individual pieces of code rather than going through the whole program to find bugs.

Another reason for the increased support for modularity is the increased ability to glue functions

together. In functional programming languages, not only are functions composed together, but they

can also be applied to other functions and be returned from functions. In other words, functions

can be treated as data, enabling programmers to use higher-order functions (HOFs). You can

also say that functions are first class objects.

Using functions as first class objects and making use of clever data structures helps to condense

code considerably and allows for versatility. For example, suppose we are given a list of integers,

and we want to return a list of integers such that each value has been increased by one. Let us

compare two ways we could write this. Consider the following code.

def addoneLoop(L: List[Int]): List[Int] = {

val newlist = collection.mutable.ListBuffer[Int]()

for (i <- L) {

newlist += (i + 1)

}

newlist.toList

}

def addoneMap(L: List[Int]): List[Int] = L.map(i => i + 1)

5



In the first example, we explicitly create an empty mutable list, write a forloop to add each

element to the mutable list, and then make it immutable. However, since Scala makes use of

object-oriented and functional programming, we can input the function i => i + 1 into the map

method of a list object and return a new list such that each entry has been applied to the function.

We see that the ability to use functions as arguments of functions and clever data structures

simplify code, minimizing time to write code and making code more readable and correct.

Now, suppose we wanted to create a function that accepts a list of integers as an argument and

return a new list where each entry has been multiplied by two. The following code shows this.

def multiplytwoMap(L: List[Int]): List[Int] =

L.map(i => 2 * i)

We see a similarity between addoneMap and multiplytwoMap. What we can do is abstract out

the commonalities between the two. We can replace both with a more general function that works

for all f:Int=>Int and all L:List[Int].

def fMap(f: Int => Int, L: List[Int]) = L.map(f)

The above function is an abstraction that allows for versatility, by having two arguments, one

being a function. Suppose we want to partially apply the function. We may want an object that can

be applied to a function f:Int=>Int in one area of our program and is applied to various lists

in other parts of the program. What we can do is curry the above function.

def fMap(f: Int => Int)(L: List[Int]) = L.map(f)

Thus, we can apply f:Int->Int to fMap, which returns a function of type

List[Int]->List[Int] that can be applied to lists of integers. We can curry functions

because functions can be returned from functions.

We see that because of modularity, we can find similarities between different segments of code

within the context of a larger program and generalize these pieces by writing a function that can
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be reused to replace these pieces. When functions can be factored out from similarities, the

amount of code gets reduced, so it becomes more readable and enables programmers to imple-

ment changes more efficiently. We used a simple example above, but we can use this idea for more

complex examples. For example, in computational group theory, code that is heavily reused is the

orbit/stabilizer algorithm. It is used in the Schreier-Sims algorithm [2], finding centralizer of sub-

groups [3], finding hypergraph isomorphisms [4], and many more permutation group applications.

Thus, it is good to be able to factor out the orbit/stabilizer code for many different uses and test it

independent of its uses to see if it works for various sizes of groups, analyze and improve upon the

complexity, etc.

With functions as data, we can have variables be call-by-name parameters in functions, rather

than call-by-value, giving the programmer more control to separate the description of compu-

tation from the evaluation of computation. With the use of lazy evaluation, call-by-name pa-

rameters can be evaluated and stored once for later use. This method is called memoization. With

call-by-name parameters, we can implement infinite streams. For example, we can implement

an infinite stream of ones by val ones: Stream[Int] = Stream.Cons(1, ones).

This is not circular because the second parameter to Cons is a call-by-name parameter. With

streams, we can create corecursive functions. Recursive functions consume data whereas core-

cursive functions produce data [1].

Another advantage of using pure functions is the simplification of parallelism. Parallelism

without pure functions requires shared mutable state. Having multiple threads of computation

mutating state simultaneously can create deadlocks, delays, and errors. Suppose we have thread 1,

T1, attempt to change the current state, S, to state S1, and we have thread, 2, T2, attempt to change

the current state to state S2. If T1 changes the state first, then, T2 is trying to work on a state that no

longer exists, since the state has changed to S1, so there is a high chance of error. However, with

pure functions, I can have multiple threads work out their respective function by taking its assigned

input and return its own result without interfering with other threads. As each thread is working

out its result, the main thread is combining the results to return the final result. By being able to
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separate the description of a computation from the evaluation of a computation, the programmer

has control on when to fork a computation to a thread. Also, the programmer has the freedom to

combine computations without evaluating.

2.3 The Algebras on Types

Because pure functions do not have side-effects, then they are considered referentially trans-

parent. A referentially transparent function f has the property of the expression of the evaluation

of f(x) can be replaced with its result anywhere in the program and vice versa, while leaving the

meaning of the program unchanged. Consider the nonpure function in Python, which accepts a

list, removes the first element of the list, and returns that element:

def popHead(L):

return L.pop(0)

Using popHead, we see that

L = [1,2,3,4]

i = popHead(L)

print(i + i)

will print 2, whereas

L = [1,2,3,4]

print(popHead(L) + popHead(L))

will print 3, since there is a side-effect everytime popHead is evaluated.

However, with pure functions, we can always replace the result with the expression. For exam-

ple, consider the pure function in Scala:

def concat(s1: String, s2: String) = s1 ++ s2

Now, consider the following code:
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val s1 = "wah"; val s2 = "hoo"; val s3 = "heehoo"

val s4 = concat(s1, s2)

val s5 = concat(s4, s3)

val s6 = concat(s2, s3)

val s7 = concat(s1, s6)

We see that s5 == s7. In fact, this is true for any s1, s2, s3. However, it is not ideal to

communicate this generalization using the code above. Since concat is referentially transparent,

we can replace the intermediate results with the expressions, so we can say that

concat(concat(s1, s2), s3) == concat(s1, concat(s2, s3)).

Rewriting concat with its definition yields

((s1 ++ s2) ++ s3) == (s1 ++ (s2 ++ s3)).

We see that this is the familiar associative law used in algebra. This example shows that with

referential transparency, we can perform equational reasoning to see what laws should hold for

our functions.

Using the referentially transparency of pure functions, we can take advantage of the algebras

defined on types. An algebra on a type describes the operations defined on the values and the laws

that the operations hold. By knowing the laws of our algebra, we may be able to use techniques

of implementation to optimize our code. For example, suppose we have a list, L = List(x1,

x2, x3, ..., xn), and we want to be able to to take the sum of the elements of the list.

One way to do this is by using the foldLeft method defined on lists. This is the recursion of

summing up integers in a list. Here is the trace of the recursion:

List(x1, ..., xn).foldLeft(0)((a: Int, b: Int) => a + b) ==

List(x2, ..., xn).foldLeft(x1)((a: Int, b: Int) => a + b) ==

List(x3, ..., xn).foldLeft(x1 + x2)((a: Int, b: Int) => a + b) ==

... ==

9



Nil.foldLeft(x1 + x2 + ... + xn)((a:Int, b:Int) => a + b) ==

x1 + x2 + ... + xn

There is also a foldRight method that can be used, which could add up the integers starting

from the right. However, we see that (a:Int, b:Int) => a + b is a pure function, which

uses the binary associative operation, +. Thus, we have a law for our operation:

((a + b) + c) == (a + (b + c))

which results in

(((a + b) + c) + d) == ((a + b) + (c + d))

Thus, rather than adding the integers sequentially, we can run parallel computations, since the

order in which we combine elements does not matter! We can compute (a + b) and (c + d)

simultaneously, and, then, add the pieces together to get the final result.

In mathematics, if a set A has an associative binary operation A×A→ A and a unit for that

operation, then we say that 〈A,×〉 is a monoid. In programming, if a type A has an associative

binary function of type (A, A)-> A and a unit for that function, then we say that A forms a

monoid. In the above example, we see that integers form a monoid under its binary operation,

+, where 0 is the unit. Also, the type String forms a monoid since ++ is an associative binary

function on strings with the empty list, "", as the unit. Because of the associative law on the binary

operator, we can make use of parallelism.

2.4 Generic Types

Looking back at the previous code

def fMap(f: Int => Int)(L: List[Int]) = L.map(f)

we see that we have restriced to working only with integers. However, we can abstract this code

even more by having it work, not just for Int but for all types. We can write

def fMap[A, B](f: A => B)(L: List[A]): List[B] = L.map(f)

10



In this case, A and B are considered type variables. Thus, for any two types A and B, if we have

a function of f:A->B and a list L:List[A], then fMap(f)(L) returns a list of type List[B].

In this implementation, not only does fMap abstract over values, but it also abstracts over types.

Thus, fMap is considered a polymorphic function.

Notice that if A and B are different types, then List[A] and List[B] are different types.

From here, it is worth mentioning that List is not a type. Rather, it is a type constructor.

Type constructors are also called generic types. They can be considered a function on types. For

example, for any type A, List[A] is the returned type from the type constructor List.
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Chapter 3

Category Theory of Representations

3.1 G-Sets

Since functional programming is programming with pure functions, we will understand the

algebra of our programs by delving into category theory, since category theory is considered “the

abstract theory of functions." [5]. With this context, a category consists of

• Objects: A,B,C, ...

• Arrows (or Morphisms): f, g, h, ...

• For each arrow, f ,

– dom(f) is an object, which is the domain of f

– codom(f) is an object, which is the codomain of f

– f : A→ B indicates that A = dom(f) and B = codom(f)

• Given f : A→ B and g : B → C, g ◦ f : A→ is the composite of f and g

• Given object A, 1A : A→ A is the identity arrow of A

• For all f : A→ B, g : B → C, and h : C → D

– h ◦ (g ◦ f) = (h ◦ g) ◦ f (Associativity Law)

– f ◦ 1A = f = 1B ◦ f (Unit Laws)

We will now look at the category of G-sets and later look into how categories can be imple-

mented into Scala.

Definition (G-set). Given an algebraic structure, 〈G, ∗ : G× G → G, 1 : () → G〉, a G-set, ΩG,

is a function ∗ : Ω×G→ Ω such that

12



• For all g, h ∈ G and for all x ∈ Ω, (x ∗ g) ∗ h = x ∗ (gh).

• x ∗ 1 = x.

The definition of a G-set implies that G needs a binary operation on itself as well as an identity

for that binary operation. Also, we see that if g, h, k ∈ G, x ∈ Ω, and ∗ : Ω × G → Ω is a G-set,

then x ∗ g(hk) = (x ∗ g) ∗ (hk) = ((x ∗ g) ∗ h) ∗ k = (x ∗ (gh)) ∗ k = x ∗ (gh)k. Thus, g(hk) and

(gh)k are equivalent as endofunctions on Ω, so we may effectively assume G is associative. Thus,

G needs to be a monoid. Let SetG have the following properties:

• Obj(SetG) := G-sets

• Hom(ΩG,∆G) := {φ : Ω → ∆|(∀x)(∀g)[φ(x)g = φ(xg)]}

Ω×G Ω

∆×G ∆

φ×1G

ΩG

φ

∆G

Figure 3.1: G-Set

• g ◦SetG f := Function Composition

• 1ΩG
:= Function IdentityΩ

Proposition. SetG is a category.

Proof. Given ΩG,∆G,ΓG ∈ Obj(SetG), let φ1 ∈ Hom(ΩG,∆G) and φ2 ∈ Hom(∆G,ΓG), so

φ1 ∈ Ω → ∆ and φ2 ∈ ∆ → Γ.

Thus, φ2φ1 ∈ Ω → Γ, and

(φ2φ1)(x)g = φ2(φ1(x))g = φ2(φ1(x)g) = φ2(φ1(xg)) = (φ2φ1)(xg).

Thus, φ2φ1 ∈ Hom(ΩG,ΓG).
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If φ1 ∈ A → B, φ2 ∈ B → C, and φ3 ∈ C → D, then function composition ensures that

φ3(φ2φ1) = (φ3φ2)φ1 and φ11A = φ1 = 1Bφ1. Thus, SetG is a category.

An example of a G-set is the set of symmetries of a hexagon, where Ω = {v0, v1, v2, v3, v4, v5},

the vertices of the hexagon where vi is adjacent to v(i+1) mod 6 for all i ∈ {0, ..., 5}, so G is the

dihedral group, D6, generated by r = (v0, v1, v2, v3, v4, v5) and s = (v0, v3)(v1, v4)(v2, v5), and the

action is defined by the inclusion map of D6 into SymΩ. Let ∆ = {{v0, v3}, {v1, v4}, {v2, v5}}.

If ∗ := ΩG, then define # : ∆ × G → ∆ by {x, y}#g = {x ∗ g, y ∗ g}. It can be shown that

∆G := # is a G-set. Now, define β : Ω → ∆ by x ∈ β(x) for each x ∈ Ω. This is well-defined

since the sets of ∆ are mutually exclusive. It can be shown that β(x ∗ g) = β(x)#g for all x ∈ Ω

and g ∈ G. Thus, β ∈ Hom(ΩG,∆G). This is because ∆ is a block system of the action ΩG.

3.2 Restriction Functor

In category theory, there exists functors, which are functions on categories, so a functor F :

C → D sends objects of C to objects of D and sends arrows of C to arrows of D with the

following properties for all A,B,C ∈ Obj(C):

1. For all f : A→ B, F (f) : F (A) → F (B).

2. For all f ∈ A→ B and g ∈ B → C, F (g ◦ f) = F (g) ◦ F (f).

3. F (1A) = 1F (A)

Here is an example of a functor mapping an act category to another act category:

Let H ≤ G. Let ResGH be a tuple of mappings defined on the objects and the morphisms of

SetG such that

• ResGH(ΩG) = ΩG ↾Ω×H : Ω×H → Ω

• ResGH(φ) = φ

Proposition. ResGH is a functor, mapping SetG to SetH.
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Proof. Let φ ∈ Hom(ΩG,∆G). Since H ⊆ G, it follows that (∀x)(∀h)[φ(x)h = φ(xh)]. Thus,

ResGH(φ) = φ ∈ Hom(ResGH(ΩG),Res
G
H(∆G)). Also ResGH(1) = 1 and ResGH(φ2φ1) =

φ2φ1 = ResGH(φ2) Res
G
H(φ1), so ResGH is a functor, mapping SetG to SetH.

3.3 Induction Functor

Let

• H ≤ G be a group

• ΩH ∈ SetH

• T be a transversal on H\G

• T (◦) : G→ G defined by g = T (Hg)

• T IndG
H(ΩH) : Ω⋊T H\G×G→ Ω⋊T H\G defined by

(x,Ht)#g = (x ∗ (tg)(T tg)−1, HT tg)

• If φ ∈ Hom(ΩH ,∆H), let

IndG
H(φ) : Ind

G
H(ΩH) → IndG

H(∆H) be defined by IndG
H(φ)(x,Ht) = (φ(x), Ht).

When there is little chance for confusion on what transversal is used, the transversal symbol will

be dropped from notation.

Lemma 1. Let H ≤ K ≤ G. If T is a transversal on H\G, S is a transversal on H\K, and R is

a transversal on K\G, then

• KRT gh = KRgh

• HT Sgh = HTgh

Proposition. IndG
H(ΩH) ∈ SetG.
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Proof. We see that

(x,Ht)1 = (xt(t)−1, Ht) = (xt(t)−1, Ht) = (x,Ht).

Also,

((x,Ht)g1)g2 = (By Function Definition) (3.1)

(xtg1(tg1)
−1, Htg1)g2 = (By Function Definition) (3.2)

((xtg1(tg1)
−1)tg1g2(tg1g2)

−1, Htg1g2) = (By Action Property) (3.3)

(x(tg1(tg1)
−1)(tg1g2(tg1g2)

−1), Htg1g2) = (By Cancellation) (3.4)

(xt(g1g2)(tg1g2)
−1, Htg1g2) = (By Lemma 1) (3.5)

(xt(g1g2)(t(g1g2))
−1, Ht(g1g2)) = (By Function Definition) (3.6)

(x,Ht)(g1g2) (3.7)

Thus, IndG
H(ΩH) ∈ SetG.

Proposition. IndG
H is a functor, mapping SetH to SetG.

Proof. If φ ∈ Hom(ΩH ,∆H), we see that

IndG
H(φ)(x,Ht)g = (3.8)

(φ(x), Ht)g = (3.9)

(φ(x)tg(tg)−1, Htg) = (3.10)

(φ(xtg(tg)−1), Htg) = (3.11)

IndG
H(φ)(xtg(tg)

−1, Htg) = (3.12)

IndG
H(φ)((x,Ht)g) (3.13)

Thus, IndG
H(φ) ∈ Hom(Ind(ΩH), Ind(∆H)).
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Furthermore, we see that IndG
H(1) = 1. Also, if φ ∈ Hom(ΩH ,∆H) and ψ ∈ Hom(∆G,ΓG),

then

IndG
H(ψφ)(x,Ht) = (3.14)

((ψφ)(x), Ht) = (3.15)

(ψ(φ(x)), Ht) = (3.16)

IndG
H(ψ)(φ(x), Ht) = (3.17)

IndG
H(ψ)(Ind

G
H(φ)(x,Ht)) = (3.18)

IndG
H(ψ) Ind

G
H(φ)(x,Ht) (3.19)

Thus, IndG
H(ψφ) = IndG

H(ψ) Ind
G
H(φ), so IndG

H is a functor, mapping SetH to SetG.

We see that the construction of IndG
H(ΩH) depended on a choice of transversal on H\G. We

need to show that the functor is equivalent for all transversals, up to isomorphism. To define the

equivalence of functors, we need to define arrows between functors. [5] For categories C, D, and

functors F,G : C → D, a natural transformation ϑ : F → G is a family of arrows in D:

(ϑC : FC → GC)C∈C such that for all f : C → C ′ in C, one has ϑC′ ◦ F (f) = G(f) ◦ ϑC .

A natural isomorphism would exist between F and G, denoted by F ≅ G if and only if each

component ϑC : FC → GC is an isomorphism.

Suppose T and S are transversals defined on H\G.

Proposition. T IndG
H(ΩH) ≅

S IndG
H(ΩH).

Proof. Let φΩH
∈ T IndG

H(ΩH) →
S IndG

H(ΩH) such that φΩH
(x,Ht) = (xt(St)−1, Ht). Then,
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φΩH
(x,Ht)g = (By Function Definition) (3.20)

(xt(St)−1, Ht)g = (By Action Definition) (3.21)

((xt(St)−1)Stg(SStg)−1, HStg) = (By Action Property) (3.22)

(xt(St)−1Stg(SStg)−1, HStg) = (By Cancellation) (3.23)

(xtg(SStg)−1, HStg) = (By Lemma 1) (3.24)

(xtg(ST tg)−1, HT tg) = (Insert Identity) (3.25)

(xtg(T tg)−1T tg(ST tg)−1, HT tg) = (By Action Property) (3.26)

((xtg(T tg)−1)T tg(ST tg)−1, HT tg) = (By Function Definition) (3.27)

φΩH
(xtg(T tg)−1, Htg) = (By Action Definition) (3.28)

φΩH
((x,Ht)g) (3.29)

Thus, φΩH
∈ Hom(T IndG

H(ΩH),
S IndG

H(ΩH)). Let f ∈ Hom(ΩH ,∆H). Then

S IndG
H(f)φΩH

(x,Ht) = (3.30)

S IndG
H(f)(xt(

St)−1, Ht) = (3.31)

(f(xt(St)−1), Ht) = (3.32)

(f(x)t(St)−1, Ht) = (3.33)

φ∆H
(f(x), Ht) = (3.34)

φ∆H

T IndG
H(f)(x,Ht) (3.35)

Thus, S IndG
H(f)φΩH

= φ∆H

T IndG
H(f) so φ :T IndG

H ⇒S IndG
H is a natural transformation.

Let ψΩH
∈ S IndG

H(ΩH) → T IndG
H(ΩH) such that ψΩH

(x,Hs) = (xs(T s)−1, Hs). Without

loss of generality, ψΩH
∈ Hom(SIndG

H(ΩH),
T IndG

H(ΩH)) and ψ : S IndG
H ⇒ T IndG

H is a natural

transformation. Furthermore, for all ΩH ∈ SetH, we have the following:
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(ψΩH
φΩH

)(x,Ht) = (By Function Definition) (3.36)

ψΩH
(xt(St)−1, Ht) = (By Function Definition) (3.37)

((xt(St)−1)St(T St)−1, HSt) = (By Action Property) (3.38)

(xt(St)−1St(T St)−1, HSt) = (By Cancellation) (3.39)

(xt(T St)−1, HSt) = (By Lemma 1) (3.40)

(xt(T t)−1, Ht) = (T t = t) (3.41)

(xt(t)−1, Ht) = (By Cancellation) (3.42)

(x,Ht) (3.43)

Thus, ψΩH
φΩH

= 1T IndG
H
(ΩH). Without loss of generality, φΩH

ψΩH
= 1S IndG

H
(ΩH) Therefore,

for all ΩH ∈ SetH, T IndG
H(ΩH) and S IndG

H(ΩH) are isomorphic as objects in the category of

SetG, so T IndG
H ≅

S IndG
H .

This shows that T IndG
H ≅

S IndG
H for any two transversals, T and S, on H\G. Thus, the choice

of transversal on H\G is arbitrary. We will go back to using the notation, (◦) = T (Hg) and

IndG
H(ΩH) : Ω⋊G→ G for a fixed transversal, T , on H\G.

3.4 Composition of Functors

Proposition. Let H ≤ K ≤ G be groups. Then,

1. ResGH = ResKH ResGK

2. IndG
H ≅ IndG

K IndK
H

Proof. 1. (ResGH = ResKH ResGK)

We see that ResKH ResGK(ΩG) = ΩG ↾Ω×K↾Ω×H= ΩG ↾Ω×H= ResGH(ΩG). Thus,

ResGH = ResKH ResGK .

2. (IndG
H ≅ IndG

K IndK
H)
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Let ΩH ∈ SetH. Then, IndG
H(ΩH) : Ω ⋊T H\G × G → Ω ⋊T H\G and IndG

K IndK
H(ΩH) :

Ω⋊S H\K ⋊RK\G×G→ Ω⋊S H\K ⋊RK\G for some transversals T on H\G, S on H\K,

and R on K\G.

Let φΩH
: Ω⋊T H\G→ Ω⋊S H\K ⋊R K\G be defined by

φΩH
(x,Ht) = (xt(Rt)−1(St(Rt)−1)−1, Ht(Rt)−1, Kt).

Looking at the first component,

(φΩH
(x,Ht)g)1 = (Function Definition)

(3.44)

t(Rt)−1(St(Rt)−1)−1St(Rt)−1Rtg(RRtg)−1(SSt(Rt)−1Rtg(RRtg)−1)−1 = (By Cancellation)

(3.45)

tg(RRtg)−1(SSt(Rt)−1Rtg(RRtg)−1)−1 = (By Lemma 1) (3.46)

tg(Rtg)−1(St(Rt)−1Rtg(Rtg)−1)−1 = (By Cancellation)

(3.47)

tg(Rtg)−1(Stg(Rtg)−1)−1 = (Insert Identity) (3.48)

tg(T tg)−1T tg(Rtg)−1(Stg(Rtg)−1)−1 = (By Lemma 1) (3.49)

tg(T tg)−1T tg(RT tg)−1(ST tg(RT tg)−1)−1 = (Function Definition)

(3.50)

(φΩH
((x,Ht)g))1 (3.51)

Looking at the second component,
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(φΩH
(x,Ht)g)2 = (3.52)

Ht(Rt)−1Rtg(RRtg)−1 = (3.53)

Ht(Rt)−1Rtg(Rtg)−1 = (3.54)

Htg(Rtg)−1 = (3.55)

HT tg(RT tg)−1 = (3.56)

(φΩH
((x,Ht)g))2 (3.57)

Looking at the third component,

(φΩH
(x,Ht)g)3 = Ktg = Ktg = KT tg = (φ((x,Ht)g))3

Thus, φΩH
(x,Ht)g = φΩH

((x,Ht)g), so φΩH
∈ Hom(IndG

H(ΩH), Ind
G
K IndK

H(ΩH)).

Also, if f ∈ Hom(ΩH ,∆H), then

φ∆H
IndG

H(f)(x,Ht) = (3.58)

φ∆H
(f(x), Ht) = (3.59)

(f(x)t(Rt)−1(St(Rt)−1)−1, Ht(Rt)−1, Kt) = (3.60)

(f(xt(Rt)−1(St(Rt)−1)−1), Ht(Rt)−1, Kt) = (3.61)

IndG
K IndK

H(f)(xt(
Rt)−1(St(Rt)−1)−1, Ht(Rt)−1, Kt) = (3.62)

IndG
K IndK

H(f)φΩH
(x,Ht) (3.63)

Thus, φ∆H
IndG

H(f) = IndG
K IndK

H(f)φΩH
, so φ : IndG

H ⇒ IndG
K IndK

H is a natural transforma-

tion.

Let ψΩH
: Ω⋊S H\K ⋊R K\G→ Ω⋊T H\G be defined by

ψΩH
(x,Hs,Kr) = (xsr(T sr)−1, Hsr).

Then,
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ψΩH
((x,Hs,Kr)g) =

(3.64)

ψΩH
(xsrg(Rrg)−1(Ssrg(Rrg)−1)−1, Hsrg(Rrg)−1, Krg) =

(3.65)

(xsrg(Rrg)−1(Ssrg(Rrg)−1)−1Ssrg(Rrg)−1Rrg(T Ssrg(Rrg)−1Rrg))−1, HSsrg(Rrg)−1Rrg)) =

(3.66)

(xsrg(T Ssrg)−1, HSsrg) =

(3.67)

(xsrg(T srg)−1, Hsrg) =

(3.68)

(xsrg(T T srg)−1, Hsrg) =

(3.69)

(xsr(T sr)−1T srg(T T srg)−1, Hsrg) =

(3.70)

(xsr(T sr)−1, Hsr)g =

(3.71)

ψΩH
(x,Hs,Kr)g

(3.72)

Therefore, ψΩH
∈ Hom(IndG

H(ΩH), Ind
G
K IndK

H(ΩH)).

Also, if f ∈ Hom(ΩH ,∆H), then
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ψ∆H
IndG

K IndK
H(f)(x,Hs,Kr) = (3.73)

ψ∆H
(f(x), Hs,Kr) = (3.74)

(f(x)sr(T sr)−1, Hsr) = (3.75)

(f(xsr(T sr)−1), Hsr) = (3.76)

IndG
H(f)(xsr(

T sr)−1, Hsr) = (3.77)

IndG
H φΩH

(x,Hs,Kr) (3.78)

Therefore, ψ∆H
IndG

K IndK
H(f) = IndG

H φΩH
, so ψ : IndG

K IndK
H ⇒ IndK

H is a natural transforma-

tion.

Also, we see that

(ψΩH
φΩH

)(x,Ht) = (3.79)

ψΩH
(φΩH

(x,Ht)) = (3.80)

ψΩH
(xt(Rt)−1(St(Rt)−1)−1, Ht(Rt)−1, Kt) = (3.81)

(xt(Rt)−1(St(Rt)−1)−1St(Rt)−1Rt(T St(Rt)−1Rt)−1, HSt(Rt)−1Rt) = (3.82)

(xt(T St)−1, HSt) = (3.83)

(xt(T t)−1, Ht) = (3.84)

(xt(t)−1, Ht) = (3.85)

(xt(t)−1, Ht) = (3.86)

(x,Ht) (3.87)

Also, we see that
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(φΩH
ψΩH

)(x,Hs,Kr) = (3.88)

φΩH
(ψΩH

(x,Hs,Kr)) = (3.89)

φΩH
(xsr(T sr)−1, Hsr) = (3.90)

(xsr(T sr)−1T sr(RT sr)−1(ST sr(RT sr)−1)−1, HT sr(RT sr)−1, KT sr) = (3.91)

(xsr(RT sr)−1(ST sr(RT sr)−1)−1, HT sr(RT sr)−1, KT sr) = (3.92)

(xsr(Rsr)−1(Ssr(Rsr)−1)−1, Hsr(Rsr)−1, Ksr) = (3.93)

(xsr(r)−1(ST sr(r)−1)−1, HT sr(r)−1, Kr) = (3.94)

(xs(ST s)−1, HT s,Kr) = (3.95)

(xs(Ss)−1, Hs,Kr) = (3.96)

(xs(s)−1, Hs,Kr) = (3.97)

(x,Hs,Kr) (3.98)

Thus, ψΩH
φΩH

= 1IndG
H
(ΩH) and φΩH

ψΩH
= 1IndG

H
(ΩH), so IndG

H(ΩH) ≅ IndG
K IndK

H(ΩH) for

each ΩH ∈ SetH. Therefore, IndG
H ≅ IndG

K IndK
H .

3.5 Adjoints

Proposition. If H ≤ G, then for all ΩH ∈ SetH and for all ∆G ∈ SetG, there exists a natural

isomorphism φ : Hom(IndG
H(ΩH),∆G) ≅ Hom(ΩH ,Res

G
H(∆G)) : ψ.

Proof. Let ΩH ∈ SetH and ∆G ∈ SetG. Then, define ηΩH
: Ω → Ω⋊H\G by ηΩH

(x) = (x,H).

We see that ηΩH
(xh) = (xh,H) = (x,H)h = ηΩH

(x)h. Thus,

ηΩH
∈ Hom(ΩH ,Res

G
H IndG

H(ΩH)). Also, if f ∈ Hom(ΩH ,Ω
′
H), then

ηΩ′

H
f(x) = (f(x), H) = ResGH IndG

H(f)(x,H) = ResGH IndG
H(f)ηΩH

(x) (3.99)

Thus, ηΩ′

H
f = ResGH IndG

H(f)ηΩH
, so η : 1SetH ⇒ ResGH IndG

H is a natural transformation.
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Define ǫ∆G
: ∆⋊H\G→ ∆ by ǫ∆G

(y,Ht) = yt. We see that

ǫ∆G
((y,Ht)g) = ǫ∆G

(ytg(tg)−1, Htg) = (ytg(tg)−1)(tg) = ytg = ǫ∆G
(y,Ht)g. Thus,

ǫ∆G
∈ Hom(IndG

H ResGH(∆G),∆G). Also, if f ∈ Hom(∆G,∆
′
G), then

fǫ∆G
(y,Ht) = f(yt) = f(y)t = ǫ∆′

G
(f(y), Ht) = ǫ∆′

G
IndG

H ResGH(f)(y,Ht). (3.100)

Thus, fǫ∆G
= ǫ∆′

G
IndG

H ResGH(f), so ǫ : IndG
H ResGH ⇒ 1SetG is a natural transformation.

For a fixed ΩH ∈ SetH and a fixed ∆G ∈ SetG, let

φ : Hom(IndG
H(ΩH),∆G) → Hom(ΩH ,Res

G
H(∆G)) be defined by φ(f) = ResGH(f)ηΩH

, and let

ψ : Hom(ΩH ,Res
G
H(∆G)) → Hom(IndG

H(ΩH),∆G) be defined by ψ(f) = ǫ∆G
IndG

H(f).

We see that

φψ(f)(x) = (3.101)

φ(ǫ∆G
IndG

H(f))(x) = (3.102)

ResGH(ǫ∆G
IndG

H(f))ηΩH
(x) = (3.103)

ResGH(ǫ∆G
IndG

H(f))(x,H) = (3.104)

ǫ∆G
IndG

H(f)(x,H) = (3.105)

ǫ∆G
(f(x), H) = (3.106)

f(x), (3.107)

and
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ψφ(f)(x,Ht) = (3.108)

ψ(ResGH(f)ηΩH
)(x,Ht) = (3.109)

ǫ∆G
IndG

H(Res
G
H(f)ηΩH

)(x,Ht) = (3.110)

ǫ∆G
(ResGH(f)ηΩH

(x), Ht) = (3.111)

ǫ∆G
(ResGH(f)(x,H), Ht) = (3.112)

ǫ∆G
(f(x,H), Ht) = (3.113)

f(x,H)t = (3.114)

f((x,H)t) = (3.115)

f(x,Ht). (3.116)

Thus, φψ = 1
Hom(ΩH ,ResG

H
(∆G)) and ψφ = 1

Hom(IndG
H
(ΩH),∆G), so we have an isomorphism

φ : Hom(IndG
H(ΩH),∆G) ≅ Hom(ΩH ,Res

G
H(∆G)) : ψ. This isomorphism is natural in both

ΩH and ∆G because η and ǫ are natural transformations.

We call (IndG
H ,Res

G
H) an adjoint functor pair, or, in short, an adjoint. This generalizes Frobe-

nius Reciprocity, a well-known theorem used in representation theory. We call the natural trans-

formation η : 1SetH → ResGH IndG
H the unit of the adjoint, and the natural transformation ǫ :

IndG
H ResGH → 1SetG the counit of the adjoint. If two functors (F,G) form an adjoint functor pair,

then we denote the adjointness by F ⊣ G.

3.6 Monads

In category theory, a monad [5] on a category C consists of an endofunctor T : C → C, and

natural transformations η : 1C → T and µ : T 2 → T satisfying

1. µ ◦ µT = µ ◦ Tµ (Associativity Law)

2. µ ◦ ηT = 1 = µ ◦ Tη (Unit Laws)
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Let T = ResGH IndG
H , so T is an endofunctor on SetH, so the unit η is a natural transfor-

mation on SetH from 1SetH to T . Also define the natural transformation µ : T 2 → T by

µΩH
= ResGH(ǫIndG

H
(ΩH)).

Since ψ(1ResG
H
(∆G)) = ǫ∆G

, then 1ResG
H
(∆G) = φ(ǫ∆G

) = ResGH(ǫ∆G
)ηResG

H
(∆G). Suppose

∆G = IndG
H(ΩH). Then, 1ResG

H
(IndG

H
(ΩH)) = ResGH(ǫIndG

H
(ΩH))ηResG

H
(IndG

H
(ΩH)), so

1T (ΩH) = ResGH(ǫIndG
H
(ΩH))ηT (ΩH). This gives the following result:

1T = µ ◦ ηT

Since φ(1IndG
H
(ΩH)) = ηΩH

, then 1IndG
H
(ΩH) = ψ(ηΩH

) = ǫIndG
H
(ΩH) Ind

G
H(ηΩH

). Thus,

1ResG
H
(IndG

H
(ΩH)) = ResGH(Ind

G
H(ηΩH

)) ResGH(ǫIndG
H
(ΩH)), so

1T (ΩH) = T (ηΩH
) ResGH(ǫIndG

H
(ΩH)). This gives the following result:

1T = µ ◦ Tη

Let (((x,Ht), Hs), Hr) ∈ Ω⋊H\G⋊H\G⋊H\G. Then,

(µΩH
µT (ΩH))((((x,Ht), Hs), Hr)) = (3.117)

µΩH
((x,Ht), Hs)r) = (3.118)

µΩH
((x,Ht)(sr)(sr)−1, Hsr) = (3.119)

(x,Ht)(sr)(sr)−1sr = (3.120)

(x,Ht)(sr) = (3.121)

µΩH
(((x,Ht)s,Hr)) = (3.122)

(µΩH
T (µΩH

)(((x,Ht), Hs), Hr) (3.123)

Thus, we have the following:

µ ◦ µT = µ ◦ Tµ
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Therefore, (T, η, µ) forms a monad, where η is the unit of the monad and µ is the join of the

monad.

This is true for any adjoint F ⊣ G: For F : C ↔ D : G such that F ⊣ G with unit

η : 1C → GF and counit ǫ : FG → 1D, then (GF, η,G(ǫF )) forms a monad [5]. For the monad

formed from the IndG
H ⊣ ResGH adjoint, we will call it the Frobenius monad.
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Chapter 4

Category Theory in Programming

How is the abstraction of category theory seen within programming? How is this abstraction

useful for programming? Overall, why should we care about this abstraction? These are questions

that need to be addressed.

4.1 Monoids

An algebraic structure that appears often in programming is a monoid, which we defined above.

Let Mon be the category such that

1. Obj(Mon)) are Monoids

2. Hom(〈M, ∗〉, 〈N,#〉) := {φ :M → N |(∀(a, b))[φ(a ∗ b) = φ(a)#φ(b)]}

3. g ◦Mon f := Function Composition

4. 1〈M,∗〉 := Function IdentityM

Proposition. Mon is a category

Proof. Let f ∈ Hom(〈M, ∗〉, 〈N,#〉) and g ∈ Hom(〈N,#〉, 〈P,&〉). Then, for all a, b ∈M ,

(g ◦ f)(a ∗ b) = g(f(a ∗ b)) = g(f(a)#f(b)) = g(f(a))&g(f(b)) = (g ◦ f)(a)&(g ◦ f)(b)

Thus, g ◦ f ∈ Hom(〈M, ∗〉, 〈P,&〉). Also, morphism composition is associative since function

composition is associative. Thus, Mon is a category.

As we mentioned before, the types Int and String form monoids under the binary associative

operations + and ++, respectively. An example of a monoid homomorphism from String to Int

is the length function:
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def length(s: String): Int = s.length

We see that length(s1 ++ s2) == length(s1) + length(s2), so length is a

monoid homomorphism.

4.2 TYPE Category

In object-oriented programming (including Scala), we define the existence of classes and ob-

jects, where objects are instances of classes. From the class hierarchy, there is a partial ordering

between types that is reflexive, transitive, and antisymmetric. Thus, the class hierarchy forms a

poset (partially-ordered set), and posets are categories. Let us define the category TYPE by the

following:

1. Obj(TYPE) are the types in Scala

2. Hom(A,B) = {A→ B} if and only if A <: B and ∅ otherwise

3. (g : B → C) ◦TY PE (f : A→ B) : A→ C := A→ C

4. 1A := A→ A

This is a category, since A <: B and B <: C implies A <: C by the class hierarchy.

4.3 Entity Category

Let us look at a more general, and more practical, perspective of seeing category theory within

functional programming using Scala. Let us define the category Entity:

1. Obj(Entity):= Values of All of the Types in Scala

2. Hom(a : A, b : B) = {f : A => B}

3. g ◦Entity f := Function Composition

4. 1a:A := Function IdentityA
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Proposition. Entity is a category.

If f ∈ Hom(a : A, b : B) and g ∈ Hom(b : B, c : C), then g ◦ f : A => C, so

g ◦ f ∈ Hom(a : A, c : C).

4.4 CAT Category

We can also implement our own categories into Scala by use of type classes, which we will

discuss later. Here is the type class which we will call CAT:

trait CAT[C, -->] {

def Hom(a: C, b: C): Hom[-->]

def id(a: C): -->

def compose(g: -->, f: -->): -->

}

With this layout, we can implement our own categories and have them fit this description. We also

need to define what a Hom[->] is, which is a hom-set. This type is a set, but not a set in the

programming sense by entering a finite number of values into the set (for example: Set(1,2,3,4)).

What we want is for our hom-sets to have a membership test. Here is our implementation of

Hom[->]:

trait Hom[-->] {

def isArrow(a: -->): Boolean

}

Thus, we can check whether a value of the arrow type is an arrow for the category. Later, we will

see how we can implement categories. After implementing a category, we can do property-based

testing to see if is indeed a category. How would we do this? We could have a two generating
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sets objects : List[C] and arrows : List[−− >]. Then, for a, b ∈ objects, we can compute the

hom-set, Hom(a, b). Then, we can see find what arrows are in that hom-set. With this pattern,

we can find the domains and codomains of our arrows. Then, we can see if composition works by

composing and see if the product is in the correct hom-set. We could also see if the unit laws and

the associativity laws hold for various arrows. By testing on a sufficiently large list of objects and

arrows, we can conclude whether or not a constructed category is indeed a category.
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Chapter 5

Implementing Categories in Scala

5.1 Type Classes

We want to implement categories in Scala, and we do this by working with type classes. [7]A

type class defines some behavior, and a type can join the class by providing that behavior. This

is considered to be ad-hoc polymorphism, which is less rigid than inheritance. Having a built-in

class join a type class is less rigid than trying to inherit from the class. For example, we may want

to define an algebra on integers and say Int is a subtype of Monoid, but Int is clearly defined

to guarantee Peano’s axioms, not to derive its properties from my traits. Thus, since Int already

has the trait of a monoid, we can use it, but no changes are needed to be made to Int. Thus, there

is a need for type classes. For the type class Monoid, we have the following methods:

trait Monoid[A] {

def op(a1: A, a2: A): A

def id: A

}

We can have a class join the type class by implementing implicit values in the companion

object. An implicit value is a default value that the compiler can find within its scope.

An example of a class that can join the class Monoid is the permutation class. We have a

class called Perm to implement a permutation, where one of its methods is multiplying another

permutation, by function composition, to return a new permutation.

class Perm(val act: Int => Int,

val invAct: Int => Int,

val degree: Int) {
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def *(that: Perm): Perm = {

new Perm(that.act compose this.act,

this.invAct compose that.invAct,

this.degree max that.degree)

}

....

}

Also, we have a companion object for Perm where we have factory methods, one of which is

to construct the identity permutation of a given degree, where our default degree is zero:

object Perm {

def id(deg: Int = 0): Perm = new Perm(i => i, i => i, deg)

....

}

Because we have these methods built into the class and companion object for Perm, we

can have Perm join the class Monoid by writing an implicit value in the companion object of

Monoid:

object Monoid {

implicit val permMonoid = new Monoid[Perm] {

def op(a1: Perm, a2: Perm): Perm = a1 * a2

def id: Perm = Perm.id()

}
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....

}

The following code shows other monoids we can define:

object Monoid {

....

implicit val unitMonoid = new Monoid[Unit] {

def op(a1: Unit, a2: Unit): Unit = ()

def id: Unit = ()

}

implicit val stringMonoid = new Monoid[String] {

def op(a1: String, a2: String): String a1 ++ a2

def id: String = ""

}

implicit val intMonoid = new Monoid[Int] {

def op(a1: Int, a2: Int): a1 + a2

def id: Int = 0

}

def functionMonoid[M] = new Monoid[M => M] {

def op(a1: M => M, a2: M => M): M => M = a2 compose a1
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def id: M => M = m => m

}

}

As we mentioned before, another type class we can define is a category:

trait CAT[C, -->] {

def Hom(a: C, b: C): Hom[-->]

def id(a: C): -->

def compose(g: -->, f: -->): -->

}

To have our type class Monoid have it reflect a category, we will add some more methods:

trait Monoid[A] {

....

def gens: List[A]

def Hom[B](that: Monoid[B]): Hom[A => B] = new Hom[A => B] {

def isArrow(f: A => B): Boolean = gens.forall(a1 =>

gens.forall(a2 => f(op(a1, a2)) == that.op(f(a1), f(a2))))

}

}

However, when we try to add an implicit val of a monoid category into the CAT type class, we run

into a problem:

object CAT {
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implicit val monoidCategory = new CAT[Monoid[?],? => ?] {

...

}

}

We see that we run into a problem because Monoid is not a type, but a type constructor, and we

cannot have a val abstract over the type variable of Monoid. However, we can create an implicit

conversion:

object CAT {

implicit def toMonoid[A] = new CAT[Monoid[A], A => A] {

def Hom(A1: Monoid[A], A2: Monoid[A]) = A1.Hom(A2)

def id(A: Monoid[A]): A => A = a => a

def compose(g: A => A, f: A => A): A => A = g compose f

}

}

We need to give it a type A for it to convert to a monoid category, so we created an implicit

conversion, which can abstract over types, unlike implicit values.

5.2 Implementing G-Set

Another name for a G-set is an act. To write this in Scala, we will first write a class such that

our objects from type M can be acted on from the left and from the right by values of possibly two

different types.

class Act[L: Monoid, M, R: Monoid](Lgens: List[L] = Nil,

Mgens: List[M] = Nil, Rgens: List[R] = Nil)

(val Lrep: L => M => M, val Rrep: R => M => M) {
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def Lact(a: L, x: M) = Lrep(a)(x)

def Ract(x: M, a: R) = Rrep(a)(x)

....

}

Notice that the type variables L and R have Monoid after each. In this context,

Monoid is considered a context bound for both type variables L and R. In general, for a poly-

morphic function that has generic type T with a context bound M, then there is a requirement that

there exists an implicit value of type M[T] that needs to be in scope at the place of evaluation of

the polymorphic function at compile time. Thus, could L and R could be of type Perm, since we

have an implicit value for Monoid[Perm]. A natural question that follows is why not just let

your generic types L and R only be type Perm? The answer is for versatility. We would like to

create a versatile API (Application Program Interface) that could potentially be used by a variety

of users. There may be users that want to work with permutations as their monoid. Others may

want to work with a monoid of matrices. Other users may want to use integers or strings as their

monoid, since we saw before that integers and strings form monoids.

We can also create a left act, where algebraic objects act on objects only from the left. We can

also create a right act, where algebraic objects act on objects only from the right. For our G-set

defined above, we will mostly focus on the right act.

class LAct[L: Monoid, M](Lgens: List[L] = Nil,

Mgens: List[M] = Nil)((val rep: L => M => M) extends

Act[L, M, Unit](Lgens, Mgens, Nil)(rep, _ => x => x) {

def apply(a: L, x: M) = rep(a)(x)

....

}
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class RAct[M, R: Monoid](Mgens: List[M] = Nil,

Rgens: List[R] = Nil)(val rep: R => (M => M)) extends

Act[Unit, M, R](Nil, Mgens, Rgens)(_ => (x => x), rep) {

def apply(x: M, a: R) = rep(a)(x)

....

}

As we proved above, the RAct is a category, so we need to implement a Hom method for a

given RAct, a method that creates a set of arrows (or morphisms) with this object and that

object. Thus, we complete the code for RAct:

class RAct[M, R: Monoid](Mgens: List[M] = Nil,

Rgens: List[R] = Nil)(val rep: R => (M => M)) extends

Act[Unit, M, R](Nil, Mgens, Rgens)(_ => (x => x), rep) {

def apply(x: M, a: R) = rep(a)(x)

def Hom(that: RAct[M, R]): Hom[M => M] = new Hom[M => M] {

def isArrow(a: M => M): Boolean = {

Rgens.forall(r => Mgens.forall(m => (a(rep(r)(m)) ==

rep(r)(a(m)))))

}

}

}

As we said earlier, all a user needs to create aG-set is a type R that forms a monoid and a type M

such that R can act on, so we need a representation rep:R -> M -> M that gives the properties

of a G-set. Thus, this function needs to be a monoid homomorphism between the monoid defined
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on R and the function monoid of type M -> M. Once again, we could perform property-based

testing to see if the inputted function is a monoid homomorphism, to see if the laws of the G-

set hold on our generating lists, Mgens and Rgens. Since Monoid has a Hom method, we can

implement this:

class RAct[M, R: Monoid](Mgens: List[M] = Nil,

Rgens: List[R] = Nil)(val rep: R => (M => M)) extends

Act[Unit, M, R](Nil, Mgens, Rgens)(_ => (x => x), rep) {

def apply(x: M, a: R) = rep(a)(x)

def Hom(that: RAct[M, R]): Hom[M => M] = new Hom[M => M] {

def isArrow(a: M => M): Boolean = {

Rgens.forall(r => Mgens.forall(m => (a(rep(r)(m)) ==

rep(r)(a(m)))))

}

}

lazy val RActMonoid = new Monoid[R] {

def op(a1: R, a2: R): R = implicitly[Monoid[R]].op(a1, a2)

def id: R = implicitly[Monoid[R]].id

def gens: List[R] = Rgens

}

def isRAct: Boolean =

RActMonoid.Hom(Monoid.functionMonoid[M]).isArrow(rep)

}
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Similar with Monoid and Category, there is an issue writing an implicit val for an RAct

category::

object CAT {

implicit val RActCategory = new CAT[RAct[?,?], ? => ?] {

....

}

}

We cannot create this because RAct has type variables. However, we can create an implicit con-

version that abstracts over the type variables of RAct:

object CAT {

....

implicit def toRAct[M, R: Monoid] =

new CAT[RAct[M,R], M => M] {

def Hom(a: RAct[M,R], b: RAct[M, R]): Hom[M => M] =

a.Hom(b)

def id(a: RAct[M, R]): M => M = m => m

def compose(g: M => M, f: M => M): M => M = g compose f

}

}

This is the best we can do to show that RAct is a category in Scala.
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Chapter 6

Functor in FP

6.1 TYPE Functors in Scala

There exists endofunctors defined on the category TYPE in Scala. We mentioned before that

List is a type constructor, a function on types. We can also say that it preserves the hierarchy

of the types. For example, since Int is a subclass of AnyVal in Scala, then List[Int] is

a subclass of List[AnyVal]. This is because the type parameter for List is considered co-

variant. In terms of category theory, we can say that there exists an arrow f:Int->AnyVal,

signifying that Int<:AnyVal. Thus, List(f):List[Int]->List[AnyVal], signifying

that List[Int] is a subclass of List[AnyVal]. Thus, the class hierarchy in Scala and other

object-oriented programming languages can be seen as a category.

6.2 ENTITY Functors in Scala

We can form the type class for functors, that has an fMap method that takes functions of type

A->B to functions of type F[A]->F[B], so they satisfy the first property shown above. Here is

the description for the type class Functor:

trait Functor[F[_]] {

def fMap[A, B](f: A => B): F[A] => F[B]

}

We can then have List and Option join the type class Functor by writing implicit values

for each.

object Functor {

implicit val listFunctor = new Functor[List] {

def fMap[A, B](f: A => B): List[A] => List[B] =
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L => L.map(f)

}

implicit val optionFunctor = new Functor[Option] {

def fMap[A, B](f: A => B): Option[A] => Option[B] =

Opt => Opt.map(f)

}

We see that there is a correspondence between map and fMap. The map method is defined for

objects in the terminal category of the functor, and the fMap is a method for the functor itself, so

that for function g:A=>B, type F:Functor, and instance

fa:F[A], Functor[F].fMap(g)(fa) == fa.map(g). With the implementation of

fMap, we can see the law of preserving composition mirrors the identity expressed in category

theory: For all f:A->B and g:B->C,

fMap(g compose f) == fMap(g) compose fMap(f).

In programming, containers are commonly used to encapsulate data, so that we can look and

work on a collection of data values as a whole and to restrict access to them. Although access

units of data in a container is restricted, we still want to perform actions on the inside data without

explicitly taking out the data. We also want to maintain the structure of the container while being

able to act on the data inside. This is where the use of functors comes in.

Let us look back at a previous example:

def addoneLoop(L: List[Int]): List[Int] = {

val newlist = collection.mutable.ListBuffer[Int]()

for (i <- L) {

newlist += (i + 1)

}

newlist.toList

}
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def addoneMap(L: List[Int]): List[Int] = L.map(i => i + 1)

Rather than taking out the data, applying a function to each unit of data, and inserting the

applied data into the container as shown in addoneLoop, we apply a function that is applied to the

enclosed data using the map method of List. We can show that the List type constructor fits the

description of a functor, since it is a generic type or a type constructor, where the map method for

List maps functions, f:A->B to functions on lists–given a list L : List[A] = List(a1, a2, ..., an)

and f : A→ B, the result of L.map(f) isList(f(a1), f(a2), ..., f(an)). Another way of showing

what map does is by defining fMap method by the following code that uses pattern matching:

def fMap[A, B](f: A => B)(L: List[A]): List[B] = L match {

case h::t => f(h)::fMap(f)(t)

case Nil => Nil

}

It can be shown that this implementation of fMap for lists is functorial, so List is indeed

a functor. From the perspective of our category being values of all types in Scala, our List

type constructor is an endofunctor, since it maps values to values and functions to functions.

There are many other functors in Scala–if there was only one instance of functor, then it would

not be worth mentioning. Another example is the Option functor where the case classes are

Some(a):Option[A] | None:Option[None] where the fMap has the following effect:

def fMap[A, B](f: A => B)(x: Option[A]): Option[B] = x match {

case Some(a) => Some(f(a))

case None => None

}

It can be shown that this implementation of fMap is also functorial for options. There are many

other containers in Scala that can be interpreted as functors. As we said before, with these clever

(functor-like) data structures, higher-order methods such as map help to simplify code by applying

functions to the data inside the containers.
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There are also methods that can be interpreted as natural transformations. For example, there

is a natural transformation between the Option functor and the List functor, by means of the

toList function defined on option values,

def toList[A](a: Option[A]): List[A] = a match {

case Some(a) => List(a)

case None => Nil

}

Notice this works for all parameter types A, so we get the parametricity result [6]. This result tells

us that for all f:A->B and a:Option[A], toList(a.map(f)) == toList(a).map(f)

so our operations commute. Thus, toList is indeed a natural transformation from Option to

List. There are also many endofunctors in Scala that have natural transformations which gives

the functionality of combining the contained data. The type of functors most commonly used for

this are monads.

6.3 Advantages of Laws

There are some advantages of knowing the laws behind our functors. One reason is the ability

to create an optimization with the map (or fMap) method. Since the map method preserves compo-

sition, then, there can be an optimization in computation, which is known as map fusion. Suppose,

you have a list of strings, L. Then, for each string, you find the length of the string, returning a

list of integers. Then, with that list, you want to double each integer in your list, returning again a

list of integers. The syntax would be L.map(i => i.toString).map(i => 2*i). How-

ever, you are iterating through the list twice, when you could iterate through it only once, by

L.map((i => 2*i) compose (i => i.toString)). By our functor law, the result of

these is equal, but the latter is more efficient than the former. If we implement laws into our type

class Functor, then we can convert one implementation into the other for a more efficient com-

putation. This conversion can be done using pattern matching. Also, as mentioned before, if we
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have a monoidal category, then we can make use of parallelization (see “Mac Lane’s pentagon" on

page 170 of [5]).

In functional programming, we have data that we want to act on and encapsulate to return

useful results. Using category theory, we work to understand the algebra of our operations to make

our code more predictable to prove we get correct results and to leverage the algebra by using more

efficient data manipulation and evaluation techniques that return equivalent (and correct) results.

6.4 Functors in Programming v. Functors in Mathematics

Understand that functors in programming are not equivalent to functors in mathematics. We

proved before that ResGH : SetG → SetH is a functor. Let us try to write this functor in Scala with

the conventions shown above. We see that type constructors that join the type class of Functor

have methods that include the map method like the List functor.

abstract class List[A] {

def map[B](f: A => B): List[B] = ...

}

The List class is abstract because there are two different case classes to implement a list, as

shown in previous code, where one case class is the empty list, Nil.

Thus, for the ResGtoH functor, we will try to write code similar to that of List. :

abstract class ResGtoH[A] {

def map[B](f: A => B): ResGtoH[B] = ...

}

There is a problem with this signature for the restriction functor. We need it to only accept

instances of type RAct[X, G] where X is a type variable. We do not need to make it abstract,

since the only instances of H-sets from the restriction functor are from initializing the class with a

G-set. Thus, a more accurate description would be something like the following:

46



type G = ...

class ResGtoH[X](a: RAct[X, G]) {

def map[Y](f: RAct[X, G] => RAct[Y,G]): ResGtoH[B]

}

With this implementation, we see another problem. We need ResGtoH[X] to be an H-set

for fixed types H<:G that also joins the type class Monoid. In the ResGtoH example, the class

constructor cannot be used as a functor between any two categories. Rather, using the class con-

structor would have the terminal category be itself, not whatever we want it to be. This is because

Scala uses intentional type theory, whereas mathematics uses extentional type theory. Exten-

tional type theory says that things are equal by computational equality. In mathematics, we can

say that two functions are equal if their outputs are equal for each input, so their equivalence is

determined by their evaluation for all of their arguments. However, the consequence of this in

programming would be that type checking is undecidable because programs may not terminate.

In intensional type theory, type checking is decidable. However, there needs to be defined equiv-

alences between objects to determine if they are equal. For example, in math, we know that an

integer is a rational number, and we know anywhere a rational number can be used in a program,

an integer can be used, not changing the meaning of the computations. However, in Scala, there

needs to be an implicit conversion from one to the other. Similarly, we need an implicit conversion

from ResGtoH[X] to RAct[X,H]:

object ResGtoH {

type H = ...

implicit def toRAct[X](r: ResGtoH[X]): RAct[X, H] =

...

}
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Another problem that arises from this implementation of ResGtoH (for both the implementa-

tion of the class and the companion object) is that this implementation can only work for only one

pair of types H<:G that can form monoids. If we wanted to create a functor on a different G and H

with H ≤ G, then we need to write a whole new implementation. Thus, we should take a different

approach that is more versatile. Consider

class Res[G: Monoid, H: Monoid](val incl: H => G) {

def apply[X](m: RAct[X, G]): RAct[X, H] =

new RAct()(m.rep compose incl)

def fMap[X, Y](f: X => Y): X => Y = f

}

Rather than using the constructor to map a G-set object to create an object that is implicitly an

H-set, we construct the functor using an inclusion map between monoid types that can be applied

to any G-set to explicitly create an H-set, so we do not need to write implicit conversions. Since

the implementation of Res is not a terminal object of the functor, we do not use the map method

but use the fMap which is defined for the functor itself. Above, we defined our arrows for G-sets

to be functions between the sets that are acted on, so, for the restriction functor, the arguments for

fMap are arbitrary functions. Also, we defined the functor’s function on arrows to be the identity

function, which is shown in the code above. However, the arrow type may be different for different

kinds of functors as shown in the type class CAT.

6.5 Res/Ind in Scala

We have gone through how to implement the Res functor. Here is our implementation:

class Res[G: Monoid, H: Monoid](val incl: H => G) {

def apply[X](m: RAct[X, G]): RAct[X, H] =

new RAct(m.rep compose incl)

def fMap[X, Y](f: X => Y): X => Y = f
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}

We see that we construct the class by a function which tells us what kind of restriction functor

it will be. Once the functor is implemented, it works as a function that sends the objects of G-sets

to objects of H-sets (by the apply method) and sends the arrows of G-sets to arrows of H-sets

(by the fMap method).

We will now implement the induction functor:

class Ind[G: Monoid, H: Monoid](val split: G => (H, G)) {

def apply[X](m: RAct[X, H]): RAct[(X, G), G] = {

new RAct((g: G) => (xt: (X, G)) => {

val (x, t) = xt

val (h, s) = split(implicitly[Monoid[G]].op(t, g))

(m(x, h), s)

})

}

def fMap[X, Y](f: X => Y): ((X, G)) => (Y, G) =

(xt: (X, G)) => (f(xt._1), xt._2)

}

For a monoid action, we need to implement how the larger monoid splits into a tuple. In

the Category Theory for Representations section, we assumed that our monoid was a group, so

inverses are defined. With this, we created a split map for a fixed transversal for H\G, by

g → (g(g)−1, g).
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Chapter 7

Monads in FP

7.1 Monad Type Class

There is a type class Monad used extensively in functional programming. A type that joins the

monad–a type that forms a monad–is a type that has an implementation for fMap, unit, and join.

trait Monad[T[_]] {

def fMap[A, B](f: A => B): T[A] => T[B]

def unit[A](a: A): T[A]

def join[A](tta: T[T[A]]): T[A]

}

The laws for our operations should be for any type A,

1. join(join(x)) == join(fMap(join)(x)) for all x:T[T[T[A]]]

2. join(unit(x)) == x and join(fMap(unit)(x)) == x for all x:T[A]

For example, List is an example of a monad, where its join method is usually called flatten.

If I have a list L = List(List(1,2), List(3,4)), then L.flatten would return

List(1, 2, 3, 4). It can be shown that the monad laws for the list implementations of the

primitive operations are satisfied:

object Monad {

implicit val listMonad = new Monad[List] {

def fMap[A, B](f: A => B): List[A] => List[B] = L => L.map(f)
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def unit[A](a: => A): List[A] = List(a)

def join[A](tta: List[List[A]]): List[A] = tta.flatten

}

}

There are many useful derived operations for Monad. A method that is used extensively for

lists is flatMap. Here are some operations derived from fMap, unit, and join:

trait Monad[T[_]] extends Functor[T[_]] {

def unit[A](a: => A): T[A]

def join[A](tta: T[T[A]]): T[A]

def flatMap[A, B](f: A => T[B]): T[A] => T[B] =

ta => join(fMap(f)(ta))

def compose[A, B, C](f: A => T[B], g: B => T[C]): A => T[C] =

a => flatMap(g)(f(a))

}

However, in functional programming, rather than fMap, unit, and join as the primitive opera-

tions, we can use fMap, unit, and flatMap as the primitive operations. We can implement join in

terms of these three by

def join[A](ffa: F[F[A]]): F[A] = flatMap(i => i)(ffa)

so join can be replaced by flatMap as a primitive operation. In Scala, flatMap is what is used under

the hood when you implement for-comprehensions in Scala, which are for-loops that construct a

collection of values for each iteration. For example, the following code would print true.
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val f: Int => List[Int] = i => List(i,i)

val g: Int => Int = i => 2 * i

val L = List(1,2,3)

val x = for (i <- L; j <- f(i)) yield g(j)

val y = L.flatMap(f).map(g)

println(x == y)

In general, if I have a for-comprehension of the form:

for(x <- c1; y <- c2; z <- c3) yield {...}

Then, that is syntactic sugar for the following:

c1.flatMap(x => c2.flatMap(y => c3.map(z => {...})))

7.2 Par Monad

7.2.1 Parallel Folding

We will go through how to write a parallel algorithm that folds an indexed sequence. We fold

a sequence of elements by combining the data in some way. For a parallel implementation, we

will restrict to a type A that forms a monoid, and the way we will combine the data is by the

binary operation defined for our implicit monoid. As we mentioned before, since the operation is

associative, the order of combining elements yields the same answer, allowing us the opportunity

to use a concurrent (parallel) implementation.

To construct parallel computations, we will use the library that is built in Chiusano’s and Bjar-

nason’s book “Functional Programming in Scala" [1]. One of the major themes described in this

book is to “separate the concern of describing a computation from actually running it."

We invent a container type that describes a parallel computation Par[A], where A is the type

variable that represents the type of the result. We want to be able to control when to fork a

computation to a separate thread of computation. Thus, we want a unit of computation that

describes an asynchronous computation done in the current thread and a function that marks a
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computation for concurrent evaluation by def fork[A](a => Par[A]): Par[A]. Since

we want to combine values, we need to have a combine method for parallel computations. Thus,

we have a trait for Par:

object Par {

type Par[A] = ExecutorService => Future[A]

def unit[A](a:A):Par[A] = (es: ExecutorService) =>

UnitFuture(a)

def fork[A](a: => Par[A]): Par[A] = {

es => es.submit(new Callable[A] {

def call = a(es).get

})

}

def map2[A,B,C](a:Par[A], b:Par[B])(f: (A,B) => C): Par[C] =

(es: ExecutorService) => {

val (af, bf) = (a(es), b(es))

Map2Future(af, bf, f)

}

private case class UnitFuture[A](get: A) extends Future[A] {

def isDone = true

def get(timeout: Long, units: TimeUnit) = get

def isCancelled = false

def cancel(evenIfRunning: Boolean): Boolean = false

}
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case class Map2Future[A,B,C](a: Future[A], b:Future[B],

f: (A,B) => C) extends Future[C] {

@volatile var cache:Option[C] = None

def isDone = cache.isDefined

def isCancelled = a.isCancelled || b.isCancelled

def cancel(evenIfRunning: Boolean) =

a.cancel(evenIfRunning) || b.cancel(evenIfRunning)

def get = compute(Long.MaxValue)

def get(timeout: Long, units:TimeUnit):C =

compute(TimeUnit.MILLISECONDS.convert(timeout, units))

private def compute(timeoutMs: Long): C = cache match {

case Some(c) => c

case None => {

val start = System.currentTimeMillis

val ar = a.get(timeoutMs, TimeUnit.MILLISECONDS)

val stop = System.currentTimeMillis

val at = stop-start

val br = b.get(timeoutMs - at, TimeUnit.MILLISECONDS)

val ret = f(ar, br)

cache = Some(ret)

ret

}

}

}

}
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Then, we can fold a sequence by the following function:

def fold[A: Monoid](aa: IndexedSeq[A]): Par[A] = {

if (aa.length <= 1)

Par.unit(aa.headOption getOrElse implicitly[Monoid[A]].id)

else {

val (l, r) = aa.splitAt(aa.length/2)

Par.map2(fold(l), Par.fork(fold(r)))

(implicitly[Monoid[A]].op)

}

}

Then, to run the parallel computation, we apply an executor service to the parallel computation:

def run[A](s: ExecutorService)(a:Par[A]):Future[A] = a(s)

The return type of this function is a future, which is a handle to the computation that allows us to

obtain a value and allows us to cancel the computation if necessary.

7.2.2 Par Joins The Monad Type Class

With the above implementation for the function fork, there is a chance of deadlocking if we

have a fixed thread pool. There is another, more complicated implementation of the Par object

that does not permit this, which we will not get into. With this implementation, we can define a

join method:

def join[A](a: Par[Par[A]]):Par[A] =

es => run(es)(run(es)(a).get())

With this implementation, then Par is a monad.

object Monad {

....
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implicit val parMonad = new Monad[Par] {

def fMap[A,B](f: A => B): Par[A] => Par[B} = pa =>

pa.map2(pa, unit(()))((a,_) => f(a))

def unit[A](a: => A): Par[A] = Par.unit(a)

def join[A](tta: Par[Par[A]]): Par[A] = tta.join

}

}
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Chapter 8

The Orbit-Stabilizer Algorithm

Suppose I have an element α ∈ Ω and a permutation group G ≤ Sym(Ω), that is represented

by a set of generators S, so 〈S〉 = G. Then, under the group action G× Ω → Ω with permutation

representation G →֒ Sym(Ω), we can find the orbit of α, αG. What we can also do is for each

β ∈ xG, we can find a unique transporter g ∈ G such that αg = β, so we can define a transporter

function U : αG → G, giving a function (◦) : G → U(αG). According to the Orbit/Stabilizer

theorem [2], this latter function is a transversal for Gα\G. With this transversal, we can find the

Schreier generators {ts(ts)−1|t ∈ U(αG), s ∈ S}, which generate Gα, according to Schreier’s

lemma [2]. Thus, in finding the orbit, αG, we can also find generators for Gα. Here are two

implementations of the Orbit-Stabilizer algorithm. Here is an implementation in Python:

def orbitStab(a, G):

Omega = [a]

T = [G.identity()]

H = []

for x in Omega:

for g in G.gens:

y = g[x]

if y not in Omega:

Omega.append(y)

else:

h = G.multiply(G.multiply(U[S.index(x)], g), \

G.invert(U[S.index(y)]))

H.append(h)

return (Omega, H)
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Here is an implementation in Scala:

def orbitStab(point: Int, G: PermGroup):(Map[Int, Perm],

Set[Perm]) = {

def find(F: Map[Int, Perm])(i: Int, g: Perm):

Either[Perm, (Int, Perm)] = {

val j = g(i)

F.get(j) match {

case Some(h) => Left(F(i) * g * h.inv)

case None => Right((j, F(i) * g))

}

}

def go(Delta: Map[Int, Perm], X: Set[Int], S: Set[Perm]):

(Map[Int, Perm], Set[Perm]) = {

if (X.isEmpty) { (Delta, S) }

else {

val Y = for {i <- X; g <- G.gens } yield find(Delta)(i, g)

val T = Y.partition(_.isLeft)

val L = T._1.map(_.left.get)

val R = T._2.map(_.right.get)

go(Delta ++ R, R.map(_._1), S ++ L)

}

}

go(Map(point -> G.identity), Set(point), Set[Perm]())

}
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Chapter 9

Future Work: Frobenius (Co)Monad

We showed that if H ≤ G are groups then IndG
H : SetH ↔ SetG : ResG

H
and

IndG
H ⊣ ResGH . Furthermore, we showed that (ResGH IndG

H , η,Res
G
H(ǫIndG

H

)) forms a monad on the

category SetH. However, we may not be interested in the endofunctor action on SetH as much

as the an endofunctor action on SetG, since we may be primarily interested in the structure of the

larger group G. Thus, let us consider J = IndG
H ResGH , so J is an endofunctor on SetG, so the

counit, ǫ is a natural transformation on SetG from J to 1SetG .

With our conventions, we have that ψ = φ−1. Since φ(1IndG
H
(ΩH)) = ηΩH

, then

ψ(ηΩH
) = 1IndG

H
(ΩH). Thus, ǫIndG

H
(ΩH) Ind

G
H(ηΩH

) = 1IndG
H
(ΩH) for all ΩH ∈ SetH. Suppose

ΩH = ResGH(∆G). Then, we have ǫIndG
H
(ResG

H
(∆G)) Ind

G
H(ηResG

H
(∆G)) = 1IndG

H
(ΩH), so

ǫJ(∆G) Ind
G
H(ηResG

H
(∆G)) = 1J(∆G).

Since ψ(1ResG
H
(∆G)) = ǫ∆G

, then φ(ǫ∆G
) = 1ResG

H
(∆G). Thus,

ResGH(ǫ∆G
)ηResG

H
(∆G) = 1ResG

H
(∆G) for all ∆G ∈ SetG. Therefore,

IndG
H(Res

G
H(ǫ∆G

)) IndG
H(ηResG

H
(∆G)) = 1IndG

H
(ResG

H
(∆G)),

so

J(ǫ∆G
)) IndG

H(ηResG
H
(∆G)) = 1J(∆G).

From here, we will define the natural transformation

δ : J → J2 by δJ(∆G) = IndG
H(ηResG

H
(∆G)). We call this transformation the comultiplication of the

adjoint.

Let (y,Ht) ∈ ∆⋊T H\G. Then, δ∆G
(y,Ht) = ((y,H), Ht) ∈ ∆⋊T H\G⋊T H\G. We see

that
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J(δ∆G
)((y,H), Ht) = (9.1)

(δ∆G
(y,H), Ht) = (9.2)

(IndG
H(ηResG

H
(∆G))(y,H), Ht) = (9.3)

((ηResG
H
(∆G)(y), H), Ht) = (9.4)

(((y,H), H), Ht) = (9.5)

(ηJ(ResG
H
(∆G))(y,H), Ht) = (9.6)

IndG
H(ηJ(ResG

H
(∆G)))((y,H), Ht) = (9.7)

δJ(∆G)((y,H), Ht) = (9.8)

(9.9)

Therefore, for the endofunctor J and the natural transformations, ǫ and δ, we have the following

relations:

δJ ◦ δ = J(δ) ◦ δ (associativity law) (9.10)

ǫJ ◦ δ = 1J = J(ǫ) ◦ δ (unit laws) (9.11)

Therefore, (J, ǫ, δ) form a comonad on SetG.

Let us see how this relates to the Orbit-Stabilizer algorithm. For the algorithm, we are given

a permutation group G ≤ Sym(Ω) by the representation of generators 〈S〉 = G . This defines a

G-set for us ΩG : Ω×G → Ω by x ∗ g = xg where we initially know how each element in S acts

on Ω. For a given α ∈ Ω, we want to find Gα ≤ Sym(Ω) or, in other words, let H = Gα and find

the H-set, Ω × H → Ω generated by the Schreier generators {ts(T ts)−1|t ∈ U(αG), s ∈ S} for

any transversal T on Gα\G.

Notice that by restricting our action ΩG by ResGH and then inducing the action by IndG
H , we get

a newG-set, J(ΩG) : Ω⋊T H\G×G→ Ω⋊T H\G by (x,Ht)g = (x(tg)(T tg)−1, HT tg). By the

orbit-stabilizer theorem, T (H\G) = U(αG) for a fixed transversal T and a transporter function U .
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Let π1 : Ω⋊ U(αG) → Ω be the projection to the first coordinate. Then, we see that π1 ◦ J(ΩG) :

Ω ⋊ (U(αG) × S) → Ω gives x ∗ (t, s) = x(ts)(ts)−1, for all s ∈ S and for all t ∈ U(αG),

giving a representation of the Schreier generators embedded in Sym(Ω), therby finding Gα. Thus,

we observe a correspondence between acting on a G-set by the comonad J = IndG
Gα

ResGGα
and

finding generators for Gα.

This observation shows the possibility of implementing the orbit-stabilizer algorithm in a more

functional manner, using a comonadic functor. Similar to monads, we can create a comonad type

class:

trait Comonad[J[_]] {

def fMap[A, B](f: A => B): J[A] => J[B]

def counit[A](ja: J[A]): A

def comultiply[A](ja: J[A]]): J[J[A]]

def extend[A, B](f: J[A] => B): J[A] => J[B] =

ja => fMap(f)(comultiply(ja))

def compose[A, B, C](f: J[A] => B, g: J[B] => C): J[A] => C =

ja => g(extend(f)(ja))

}

Can we take advantage of the laws of Comonad to implement a more efficient orbit-stabilizer

algorithm? This seems like a goal worth pursuing.

The orbit-stabilizer algorithm is used within the Schreier-Sims algorithm:

• Given S ⊆ Sym(Ω)

– Let G = 〈S〉
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– Find B = {β1, β2, ..., βk} ⊂ Ω such 1 = Hk < Hk−1 < · · · < H1 < H0 = G where

Hi = Gβ1,...,βi
for i ∈ {0, ..., k}.

– Find T such that

∗ S ⊆ T ⊆ Sym(Ω)

∗ 〈T ∩Hi〉 = Hi for i ∈ {0, ..., k}

The set B is known as a base for G and T is a strong generator set for (G,B), so (B, T ) is

known as a BSGS for G. Having a BSGS reveals a lot about the structure of the permutation group

G. “This representation helps us to calculate the group order, list the group elements, generate

random elements, test for group membership and store group elements efficiently." [2] We have

an algorithm for the Schreier-Sims algorithm shown in the Appendix. We would like to be able to

implement this algorithm in a more functional manner, perhaps using the Frobenius monad and/or

the Frobenius comonad.

We know that if H ≤ K ≤ G, then ResGH = ResKH ResGK and IndG
H ≅ IndG

K IndK
H as shown

above. Also, we know the following result:

Proposition. Suppose F ⊣ G such that φ : Hom(F (C), D) ≅ Hom(C,G(D)) : ψ with η : 1 ⇒

GF and ǫ : FG ⇒ 1 be the unit and counit, respectively for the adjunction, and γ : F ⇔ H : θ.

Then, H ⊣ G such that φγ∗ : Hom(H(C), D) ≅ Hom(C,G(D)) : θ∗ψ such that G(γ)η is the

unit and ǫθG is the counit.

Proof. We have that φγ∗ is a natural isomorphism, θ∗ψ is a natural isomorphism, (φγ∗)(θ∗ψ) = 1,

and (θ∗ψ)(φγ∗) = 1, so G ⊣ H .

We see that for each a ∈ Hom(H(C), D), we have

(φγ∗)C,D(a) = φ∗
C,D(aγC) = G(aγC)ηC = G(a)G(γC)ηC .

Also, we have for each b ∈ Hom(C,G(D)), we have

(θ∗ψ)C,D(b) = θ∗C,D(ǫDF (b)) = (ǫDF (b))θC = ǫDθG(D)H(b).
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Thus, for the adjunction H ⊣ G, G(γ)η is the unit and ǫθG is the counit.

Thus, for H ≤ K ≤ G, IndG
K IndK

H ⊣ ResKH ResGK where x 7→ (x,H,K) is the unit, and

(x,Hs,Kr) 7→ xsr is the counit. It can be shown, by induction, if 1 = Hk < Hk−1 <

· · · < H1 < H0 = G, then IndH0

H1
IndH1

H2
· · · Ind

Hk−1

Hk
⊣ Res

Hk−1

Hk
Res

Hk−1

Hk−2
· · ·ResH0

H1
by x 7→

(x,Hk, Hk−1, . . . , H1) being the unit and (x,Hktk, Hk−1tk−1, . . . , H1t1) 7→ xtktk−1 · · · t1 being

the counit.

We would like to explore these ideas more to perhaps implement a functional algorithm to solve

this problem, thereby intersecting the world of category theory with the world of computational

algebra.
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Appendix

def schsims(B: Array[Int] = Array(),

S: Set[Perm] = Set()): BSGS = {

def updateGroups(M: Map[Int, PermGroup],

N: Map[Int, Set[(Int, Perm)]],

append: Boolean): Map[Int, PermGroup] = {

def m(k: Int) =

if (append) M.getOrElse(k, new PermGroup(Set())) else {

new PermGroup(Set())

}

M ++ N.keys.map(k => (k, new PermGroup(N(k).map(_._2)) ++

m(k)))

}

def getLevels(B: Array[Int], T: Boolean => Map[Int, PermGroup],

U: Map[Int, Map[Int,Perm]], i: Int): BSGS = {

def stripPlus(L: Array[Int])(g: Perm): (Array[Int],

Set[PI]) = {

val (r, d) = strip(B, U, i + 1)(g)

if (r.isID) { (Array(), Set()) }

else if (d != L.length) { (Array(), Set((r,d))) }

else { (Array(r.movedpt().get), Set((r,d))) }

}

if (i < 0) { (B, T(true), U) }

else {

val (u, h) = T(true)(i).orbitStab(B(i))(U.get(i),

T(false)(i).gens)
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val (l, y) = extend(B, h.gens, Set())(stripPlus)

val j = if (y.isEmpty) i - 1 else y.map(_._2).max

val R = y.flatMap(rd => (i+1 to rd._2).flatMap(d =>

Set((d, rd._1),

(d, rd._1.inv)))).groupBy(_._1).updated(i, Set())

getLevels(l, x => updateGroups(T(x), R, x) ,

U + (i -> u), j)

}

}

val (b, t) = partialBSGS(this, B, S)

getLevels(b, x => t, Map(), b.length - 1)

}
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