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Abstract     
In a distributed heterogeneous computing system, 

the resources have different capabilities and tasks have 
different requirements. To maximize the performance of 
the system, it is essential to assign resources to tasks 
(match) and order the execution of tasks on each 
resource (schedule) in a manner that exploits the 
heterogeneity of the resources and tasks. The mapping 
(defined as matching and scheduling) of tasks onto 
machines with varied computational capabilities has 
been shown, in general, to be an NP-complete problem. 
Therefore, heuristic techniques to find a near-optimal 
solution to this mapping problem are required. Dynamic 
mapping is performed when the arrival of tasks is not 
known a priori. In the heterogeneous environment 
considered in this study, tasks arrive randomly, tasks are 
independent (i.e., no communication among tasks), and 
tasks have priorities and multiple deadlines. This 
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research proposes, evaluates, and compares eight 
dynamic heuristics. The performance of the best 
heuristics is 83% of an upper bound.  
 
 
1. Introduction and Problem Statement 
 

Heterogeneous computing (HC) is the coordinated 
use of various resources with different capabilities to 
satisfy the requirements of varying task mixtures. The 
heterogeneity of the resources and tasks in an HC system 
is exploited to maximize the performance or the cost-
effectiveness of the system (e.g., [5, 9, 13, 18]). A 
typical HC system consists of heterogeneous sets of 
resources and tasks. To exploit the different capabilities 
of a suite of heterogeneous resources, typically a 
resource management system (RMS) allocates the 
resources to the tasks and the tasks are ordered for 
execution on the resources. In this research, heuristics 
are proposed that can be used in such an RMS. 
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An important research problem is how to assign 
resources to tasks (match) and order the execution of 
tasks on the resources (schedule) to maximize some 
performance criterion of an HC system. This procedure 
of matching and scheduling is called mapping. There are 
two different types of mapping: static and dynamic. 
Static mapping is performed when the applications are 
mapped in an off-line planning phase [6], e.g., planning 
the schedule for a set of production jobs. Dynamic 
mapping is performed when the applications are mapped 
in an on-line fashion [17], e.g., when tasks arrive at 
unknown intervals and are mapped as they arrive (the 
workload is not known a priori). In both cases, the 
mapping problem has been shown, in general, to be NP-
complete (e.g., [8, 10, 15]). Thus, the development of 
heuristic techniques to find near-optimal solutions for 
the mapping problem is an active area of research (e.g., 
[1, 3, 4, 5, 6, 9, 11, 17, 19, 25]). 

In this research, the dynamic mapping of tasks onto 
machines is studied. Simulation is used for the 
evaluation and comparison of the dynamic heuristics 
developed in this research. As described in [17], 
dynamic mapping heuristics can be grouped into two 
categories, immediate mode and batch mode. Each time 
a mapping is performed (mapping event), immediate 
mode heuristics only consider the new task for mapping, 
whereas batch mode considers a subset of tasks for 
mapping, thus having more information about the task 
mixture before mapping the tasks. As expected, the 
study in [17] showed that the immediate mode heuristics 
had shorter running times than those of the batch mode 
heuristics, but the batch mode heuristics gave higher 
performance. The heuristics proposed in this research are 
batch mode schemes. 

At any mapping event, the very next task in each 
machine’s job queue waiting for the currently executing 
task to finish is not considered in any of the heuristics. 
The reason is that while a mapping event occurs the 
current task can finish; therefore, to help ensure that the 
machine will not be idle for the duration of the mapping 
event, the very next task is not considered for mapping. 
It is not desirable for a machine to be idle for the 
duration of the mapping event. While it is still possible 
that a machine may become idle, it is highly unlikely for 
the assumptions in this research (the average execution 
time of a task is 180 seconds while the average 
execution time of a mapping event is less than 0.5 
seconds). 

A dynamic mapping approach is designed to 
compute the new mapping faster than the anticipated 
average arrival rate of the tasks to avoid being 
interrupted by an arriving task. Therefore, the heuristics 
that are developed have a limit on the maximum time 
each computation of a new mapping can take. When a 
task arrives while a mapping event is in progress, the 
current mapping event is not disturbed. As soon as the 

current mapping event is completed, the next mapping 
event starts that include any tasks that had arrived during 
the previous mapping event.  

The HC environment considered is oversubscribed, 
such that not all tasks can complete during the 
evaluation period. To model such an environment, the 
arrival rates of tasks are determined so that in the 
evaluation period, there are enough tasks to simulate an 
oversubscribed system. An environment with bursty task 
arrivals during the evaluation period was simulated. 

 Eight dynamic mapping schemes are studied in this 
paper: Max-Max, Max-Min, Min-Min, Queueing Table, 
Relative Cost, Slack Sufferage, Switching Algorithm, 
and Percent Best. The Max-Max and Max-Min 
approaches are considered greedy heuristics, the 
Queueing Table uses a lookup table to map tasks, 
Relative Cost and Slack Sufferage are based on the 
sufferage concept used in [17], and Switching Algorithm 
and Percent Best are an extension of the Switching 
Algorithm and k percent best methods, respectively, 
given in [17].  

In the simulation experiments, the estimated time to 
complete (ETC) values are used by the mapping 
heuristics, where the ETC(i, j) is the estimated execution 
time of task i on machine j, where i is the task number 
and j is the machine number. These estimated values 
may differ from actual times, e.g., actual times may 
depend on input data. Therefore, for the simulation 
studies, the actual time to complete (ATC) values are 
calculated using the ETC values as the mean. The ATC 
values are used for the evaluation of the heuristics. The 
details of the simulation environment are presented in 
Section 4. 

The tasks considered here are assumed to be 
independent, i.e., no communication or dependency 
between tasks. Each task has a priority level, i.e., high, 
medium, and low. In addition, each task has multiple 
deadlines, i.e., a 100% deadline, a 50% deadline, and a 
25% deadline. The worth of a submitted task will 
degrade according to a degradation scheme if the task 
misses a certain deadline.  

The performance metric for evaluating the 
mappings generated by the heuristics has three 
components. The first component of the evaluation 
function is the weighted priority of each task, pj where,  

 

pj 

2 for high priority tasks

for medium priority tasks

1 for low priority tasks

x

x= .  

 
For this research, x = 2 or 4. The weighted priority of a 
task is the maximum worth it can contribute to the 
performance function that specifies the value of a 
mapping. 
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The second component of the evaluation function 
incorporates the deadlines. Let wi be a deadline factor 
for task i, where  

 
1.00 if finished at or before its primary deadline

0 50 if finished at or before its 50 deadline

0.25 if finished at or before its 25 deadline

0.05 if finished after its 25 deadline

0 if is never executed

i

i

i i

i

i

t

. t %

w t %

t %

t

=

 
The wi indicates the degradation scheme of the worth of 
a task according to when the task finishes. 

For the third component, let B denote the beginning 
of the evaluation interval and let E denote the end of the 
evaluation interval. The simulated actual execution time 
for task i on machine j is ATC(i, j). The start time of task 
i on machine j is st(i, j) and the finish time of task i on 
machine j is ft(i, j). Then 

 

( )

( )
( )

( , ) / ATC( , ) if ( , ) and ( , )

1.00 if ( , ) and ( , )

( , ) /ATC( , ) if ( , ) and ( , )

/ATC( , ) if ( , ) and ( , )

0 if ( , ) or ( , )  

i

ct i j B i j st i j B B ft i j E

st i j B ft i j E

b E st i j i j B st i j E ft i j E

E B i j st i j B ft i j E

ft i j B st i j E

− < < ≤
≥ ≤

= − ≤ < >

− ≤ ≥
≤ ≥

 
gives the boundary weighting for each task i, where j is 
determined by the mapping done by the heuristic for 
each task.  

Let T be the total number of tasks that are mapped 
(i.e., the total number of tasks in the ETC matrix). Then 
the value function, V, used to evaluate each mapping is 
defined as  

−

=
=

1

0

T

i

V pi × wi × bi. 

 
The next section provides discussions of the 

literature related to this work. In Section 3, the heuristics 
studied in this research are presented. Section 4 
describes the simulation environment and results, and 
the last section gives a brief summary of this research. 

 
2. Related Work 
 

In the literature, the mapping of tasks onto machines 
is also often referred to as scheduling. Researchers have 
worked on the dynamic mapping problem for distributed 
computer systems. 

Many of the heuristics in the literature (e.g., [15, 
16]) use the minimum completion time of a task to 
decide where the task should be mapped. The heuristics 
presented in [15] are concerned with mapping 

independent tasks onto heterogeneous machines such 
that the completion time of the last finishing task is 
minimized. The difference is that our research has a task 
model with priorities and multiple deadlines and that an 
overloaded environment is simulated. Our research 
considers a different performance metric that is the 
collective value of tasks completed during an interval of 
time. The minimum completion time is used in the 
decision process of some of the heuristics presented in 
our research. 

The Min-Min heuristic in [15], which is also one of 
the heuristics implemented in SmartNet [12], has proven 
to be a good heuristic for dynamic and static mapping 
problems in earlier studies (e.g., [1, 6, 17]). The Max-
Min approach in [15], which is a variation of the Min-
Min heuristic, also performed well in certain HC 
environments. These two heuristics are expanded for the 
environment in this research. 

The two heuristics, k-percent best and the Sufferage 
heuristic, that were the idea behind some of the 
approaches presented in this research, performed 
comparably to the Min-Min and the Max-Min schemes 
in the studies in [17]. In our preliminary experimentation 
using the variations of the k-percent best and the 
Sufferage heuristics, these heuristics performed as well 
as or better than the Min-Min and Max-Min type 
heuristics. Therefore, these two were chosen for this 
research. The environment in [17] is similar in that the 
tasks are independent and randomly arriving. The 
difference is that our study considers tasks with priorities 
and multiple deadlines, and the value of the tasks 
completed is used as the performance metric.  

The environment in [20] is similar to the 
environment considered in our research in that [20] has 
randomly arriving tasks with a hard deadline. The idea in 
[20] to move a task if its deadline may not be satisfied is 
used in one of the heuristics in our research. However, 
the environment in our research includes task with 
priorities and multiple deadlines, and heterogeneous 
machines, all of which complicate the scheduling 
problem. Furthermore, our performance metric is 
different.  

The DeSiDeRaTa project (e.g., [7, 14, 21, 22, 23, 
24]) focuses on dynamically reallocating resources for 
applications, but the system model is very different. The 
system model in DeSiDeRaTa includes sets of 
heterogeneous machines, sensors, applications, and 
actuators. The application model in the DeSiDeRaTa 
project is different from the task model here in that the 
applications in the DeSiDeRaTa project are continuously 
running ones where data inputs to an application are 
processed and output to another application or an 
actuator. In contrast, the tasks in this research are 
independent, are randomly arriving, have priorities, and 
have multiple deadlines.  
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The work in [26] focuses on the dynamic mapping 
of independent tasks onto machines in an environment 
that is similar to the one in this study (i.e., randomly 
arriving tasks, heterogeneous machines, and 
heterogeneous tasks). Some of the algorithms in [26], 
such as Min-Min and Max-Min, are also used in our 
research. The idea of “fine-tuning” in [26] is used in our 
research as “rescheduling” after all tasks are mapped. 
The difference is that the tasks in our study are assigned 
a weighted priority, each task has multiple deadlines, 
and the performance metric is the value of tasks 
completed in an interval of time instead of completion 
rate, defined as the number of tasks completed in an 
interval of time.  

 
3. Heuristics 
 
3.1.  Max-Max  
 

The Max-Max heuristic is based on the Min-Min 
(greedy) concept in [15]. The fitness value for the task 
on a given machine is the worth of the task divided by 
the estimated execution time of the task, where the worth 
of the task is the priority weighting of the task multiplied 
by the deadline factor of the task. The fitness value in 
this heuristic calculates the worth per unit time and it is 
used in the selection of a task to be mapped.  

The Max-Max heuristic can be summarized by the 
following six-step procedure. The procedure starts when 
a new task arrives and generates a mapping event. The 
mappable tasks are tasks that are waiting to be executed 
in the machine queue (except the very next task) and the 
new task. When the mapping event begins, it is assumed 
that none of the mappable tasks are mapped, i.e., they 
are not in any machine queue. 

 
(1) A task list is generated that includes all the 

mappable tasks. 
(2) For each task in the task list, find the machine that 

gives the task its maximum fitness value (the first 
“Max”), ignoring other tasks in the mappable task 
list. 

(3) Among all the task/machine pairs found from above, 
find the pair that gives the maximum fitness value 
(the second “Max”). 

(4) Remove the above task from the mappable task list 
and map the task to its paired machine. 

(5) Update the machine availability status. 
(6) Repeat steps (2) to (5) until all tasks are mapped. 
 

The availability status of all machines is updated in 
step (5) to be used in calculating the deadline factor. The 
deadline factor for a given task/machine pair is 
determined using the machine availability time of the 
machine plus the estimated execution time of the task. 

The worth for all tasks on all machines is recalculated 
every time a task is mapped. 
 
3.2.  Max-Min and Min-Min  
 

The Max-Min heuristic is also based on the greedy 
concept in [15]. The completion time for task i on 
machine j is the time machine j is available to execute 
task i, the machine availability time (mat(j)), plus ETC(i, 
j). This heuristic finds the machine with the minimum 
completion time machine for each task. Then, from these 
task/machine pairs the heuristic selects the pair that has 
the maximum completion time. This method maps tasks 
that take more time first because these tasks typically 
have a higher probability of not completing before their 
deadline if not mapped as soon as possible.  

The Max-Min heuristic can be summarized by the 
following eight-step procedure. The procedure starts 
when a new task arrives and generates a mapping event. 
When the mapping event begins, it is assumed that none 
of the mappable tasks are mapped, i.e., they are not in 
any machine queue. 

 
(1) A task list is generated that includes all the 

mappable tasks.  
(2) For each task in the mappable task list, find the 

minimum completion time machine (the “Min”), 
ignoring other tasks in the mappable task list.  

(3) Among all the task/machine pairs found from above, 
select the pair that gives the maximum completion 
time (the “Max”). 

(4) The task identified above is removed from the 
mappable task list and assigned to its paired 
machine.  

(5) Update the machine availability status. 
(6) Repeat steps (2) to (5) until all the tasks are mapped. 
(7) For each machine, if there are tasks in the machine 

queue, reschedule the tasks in the machine queue 
according to their worth. 

(8) Stop when all machine queues are rescheduled. 
 

The availability status of all machines is updated in step 
(5) to calculate the minimum completion time over all 
machines for each task in step (2).  

The rescheduling of tasks in step (7) can be 
summarized by the following procedure. 

 
(a) Initialize the machine availability time to the 

completion time of the very next task that is waiting 
to be executed (i.e., assume that none of the 
mappable tasks are mapped). 

(b) Group the tasks using the priority levels of the tasks. 
(c) For the tasks in the high priority level group, 

keeping their relative ordering from the machine 
queue, one by one, in order, insert the tasks that can 
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finish by their primary deadline into the machine 
queue. Once scheduled, a task is removed from the 
group and the machine availability status is updated. 

(d) Repeat step (c) for 50% deadline and 25% deadline. 
(e) Repeat steps (c) to (d) for the medium priority tasks 

and then repeat for the low priority tasks.  
(f) High priority tasks that cannot finish by the 25% 

deadline are added to end of the machine queue. 
Medium priority tasks that cannot finish by the 25% 
deadline are added next and then the low priority 
tasks are added to the machine queue. 

 
The Min-Min heuristic, which is a variation of the 

Max-Min heuristic, was implemented. The difference is 
in step (3), where instead of selecting the pair that gives 
the maximum completion time, the pair that gives the 
minimum completion time is selected. This means that 
tasks with shorter execution times will be selected. This 
variation is attempted to greedily complete as many 
tasks as possible. 
 
3.3.  Percent Best  
 

The Percent Best heuristic is a variation of the k 
percent best heuristic found in [17]. This heuristic tries 
to map the tasks onto the minimum execution time 
machine while considering the completion times on the 
machines. The idea behind the heuristic is to pick the top 
m machines with the best execution time for a task, so 
that the task can be mapped onto one of its best 
execution time machines. However, limiting the number 
of machines to which a task can be mapped, may cause 
the system to become unbalanced, therefore the 
completion times are also considered in selecting the 
machine to map the task. 

The Percent Best heuristic can be summarized by 
the nine-step procedure below. The procedure starts 
when a new task arrives and generates a mapping event. 
When the mapping event begins, it is assumed that none 
of the mappable tasks are mapped, i.e., they are not in 
any machine queue. 

 
(1) A task list is generated that includes all the 

mappable tasks. 
(2) Tasks are grouped according to their priority levels. 
(3) For each task in the high priority level group, find 

the top m = 3 machines that give the best execution 
time for that task (the total number of machines 
used in the simulation studies in this research is 
eight). 

(4) For each task, find the minimum completion time 
machine from the machines found in step (3) and 
the machines that are idle. 

(5) Map the tasks with no contention (i.e., when there 
are no other tasks with the same minimum 

completion time machine) and remove them from 
the priority level group. 

(6) For tasks with contention (tasks having the same 
minimum completion time machine), map the task 
with the earliest primary deadline and remove it 
from the priority level group. 

(7) Update the machine availability status. 
(8) Repeat steps (3) to (7) until all tasks in the group are 

mapped. 
(9) Repeat steps (3) to (8) for tasks in the medium and 

low priority level groups, using m = 4 and m = 8, 
respectively. 

 
3.4.  Queueing Table  
 

The Queueing Table heuristic uses a lookup table 
constructed using the priority, the relative speed of 
execution, and the nearness of deadline (see Table 1) in 
the mapping process. The relative speed of execution 
(RSE) is the ratio of the average execution time of a task 
across all machines to the overall average task execution 
time for all tasks across all machines in the HC system. 
The Queueing Table heuristic uses the above definition 
and a heuristic constant (RSE cutoff) to classify tasks 
into one of two categories:  “slow” and “fast.” If a task’s 
RSE > RSE cutoff, then it is considered to be slow and if 
a task’s RSE ≤ RSE cutoff, then it is considered to be 
fast. 
 

queuing 
order 

priority 
level 

relative 
speed of 
execution  

nearness 
of 

deadline  
1 high slow sooner 
2 high fast sooner 
3 high slow later 
4 high fast later 
5 med fast sooner 
6 low fast sooner 
7 med fast later 
8 low fast later 
9 med slow sooner 

10 med slow later 
11 low slow sooner 
12 low slow later 

 
Table 1: The lookup table constructed using the 
priority, relative speed of execution, and the 
nearness of deadline for the Queueing Table 
heuristic. 
 

Let δ be the primary deadline of a given task i 
minus the current time. Then the nearness of deadline 
(NOD) of a given task i is  

 
(δ − 2 × (average ETC(i, j) over all j))/δ. 
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This ratio measures the urgency of a given task i; the 
smaller the NOD the more urgent. When the current time 
passes the primary deadline of a task, the task’s NOD is 
set to infinity. The arbitrary multiplier of “2” in the 
above definition is to provide some padding to help take 
into account that the task may be mapped onto a 
machine where the simulated actual execution time will 
be worse than the average. The heuristic uses the above 
definition of NOD and a heuristic constant (NOD cutoff) 
to classify task urgency into two categories.  If a task’s 
NOD ≤ NOD cutoff this indicates that the task needs to 
be started “sooner” and if a task’s NOD > NOD cutoff, 
then the task can be started “later.” 

The Queueing Table heuristic can be summarized 
by the following ten-step procedure. The procedure 
starts when a new task arrives and generates a mapping 
event. In contrast to other heuristics, this method does 
not generate a task list that includes all the mappable 
tasks and initially maps only the new task to a machine. 
 
(1) For all mappable tasks, the NOD is calculated. 
(2) For the new task, calculate the RSE.  
(3) For each of the machines, compare the new task 

with the tasks on that machine’s queue, starting 
from the front of the queue. If there are no tasks 
with the same queueing order as the new task, then 
the new task’s position is in front of the first task 
with the higher numbered queueing order. If there 
are tasks with the same queueing order as the new 
task, then the new task’s position is in front of the 
first task that has a higher NOD value than that of 
the new task.  

(4) Using the position on each machine queue found 
from above, the completion time on all machines is 
calculated and the new task is mapped to its 
minimum completion time machine. 

(5) For each machine, check if there are any tasks that 
will miss their primary deadline. 

(6) Among the tasks that miss their primary deadline, 
find the first task that misses its deadline. 

(7) For the task found in step (6), find machines where 
(a) the priority of the task is equal to or greater than 
the highest priority of any task on that machine and 
(b) moving the task to the front of that machine 
queue does not cause any task to miss its primary 
deadline (tasks already missing their primary 
deadline are not checked). 

(8) Among the machines identified above, find the 
machine that gives the minimum completion time 
for the task and move the task to the head of the 
machine queue. (If no machines are found in step 
(7), the task is not moved.) 

(9) Update the machine availability status. 
(10) Repeat steps (5) to (9) until all machines are 

checked (the order in which the machines are 

checked is from machine 1 to machine M, where M 
is the total number of machines). 

 
As indicated in step (5), the search of tasks missing 

their primary deadline is done on all machines. This is 
because at the next mapping event, there may be tasks in 
machine queues other than the one the new task is 
mapped to that miss their primary deadline. At any 
mapping event, even if there are multiple tasks in a 
machine queue that need to be moved, only one task 
from the machine is allowed to be moved (the maximum 
number of tasks that can be moved at any mapping event 
is equal to the total number of machines).  
 
3.5.  Relative Cost 
 

The Relative Cost heuristic uses the worth and the 
sufferage idea in [17] to map tasks. For each mappable 
task considered, the relative cost (RC) is calculated by 
computing the minimum completion time of that task 
over all machines divided by the average completion 
time of that task on all machines. When the RC is high, 
the minimum completion time is similar to the average 
and most of the completion times on all machines are 
similar. When the RC is low, the minimum completion 
time is very different from the average. Assume tasks a 
and b prefer the same machine (best machine) for 
mapping. Task a is considered to suffer more than Task 
b, when there is a larger difference between the 
completion times of the best and the second best 
machines. The RC is an approximation of this difference. 
If the RC for a task is high then there is a low probability 
that the task will suffer more than a task that has a low 
RC.  

The Relative Cost heuristic can be summarized by 
the following seven-step procedure. The procedure starts 
when a new task arrives and generates a mapping event. 
When the mapping event begins, it is assumed that none 
of the mappable tasks are mapped, i.e., they are not in 
any machine queue. 

 
(1) A task list is generated that includes all the 

mappable tasks. 
(2) For each task in the mappable task list, calculate the 

RC.  
(3) For all the tasks in the mappable task list, their 

worths are calculated (as described below) and the 
tasks are sorted according to their worths (highest 
first).  

(4) The task having the highest worth is chosen. Ties 
among the highest worth tasks are broken by 
selecting the lowest RC value task. 

(5) Map the chosen task on its minimum completion 
time machine and remove it from the mappable task 
list.  

(6) Update the machine availability status. 
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(7) Repeat steps (2) to (6) until all tasks are mapped. 
 

In step (3), the deadline factor for each task is 
calculated using the minimum completion time of that 
task over all machines, the current time, and the deadline 
for the tasks, ignoring other tasks in the mappable task 
list. Using the deadline factor found for each task, the 
worth is recalculated every time a task is mapped.   

The availability status of all machines is updated in 
step (6) to calculate the completion time of all tasks on 
all machines and the deadline factor. Among the same 
worth tasks, the task with the smallest relative cost is 
considered to suffer most if it is not mapped first.  
 
3.6.  Slack Sufferage 
 

The Slack Sufferage heuristic uses the sufferage 
concept in [17]. The Slack Sufferage heuristic can be 
summarized by the following nine-step procedure. The 
procedure starts when a new task arrives and generates a 
mapping event. When the mapping event begins, it is 
assumed that none of the mappable tasks are mapped, 
i.e., they are not in any machine queue. In this heuristic, 
the percentage slack for task i on machine j using a 
given deadline d is defined as 
 

PS(i, j, d) = 1 − (ETC(i,  j)/ (d − mat(j))). 
 
(1) A task list is generated that includes all the 

mappable tasks. 
(2) For each task in the mappable task list, for each 

machine calculate the PS(i, j, d), where d is task i’s 
primary deadline. PS(i, j, d) = −1 for a machine if 
the task misses its deadline on that machine.  
For a given task i, if PS(i, j, d) < 0 for all machines 
 recalculate the PS(i, j, d) for each machine 

using d = 50% deadline. 
if PS(i, j, d) < 0 for all machines 

recalculate the PS(i, j, d) for each machine 
using d = 25% deadline 
if PS(i, j, d) < 0 for all machines 
 recalculate the PS(i, j, d) for each 

machine using d = end of the 
evaluation period 

(3) For each task, determine the maximum percentage 
slack machine. 

(4) Sort tasks by their worth (worth is calculated using 
the deadline factor associated with d). 

(5) If there is more than one task with the current 
highest worth, check for contention (i.e., whether 
tasks have the same maximum percentage slack 
machine). 

(6) If there is no contention, select the highest worth 
task. 
If there is contention among the highest worth tasks, 
select the most critical task (the task with the largest 

difference of percentage slack between the best 
percentage slack and the second best percentage 
slack machines). 

(7) Map the selected task and remove it from the task 
list.  

(8) Update the machine availability status. 
(9) Repeat steps (2) to (8) until all tasks are mapped. 

 
The availability status of all machines is updated in step 
(8) to determine the deadline factor and the PS(i, j, d).  
 
3.7.  Switching Algorithm 
 

The Switching Algorithm heuristic is an extended 
version of the switching algorithm in [17]. The 
Switching Algorithm heuristic can be summarized by the 
following three-step procedure. The procedure starts 
when a new task arrives and generates a mapping event. 
The load balance ratio for the system in the heuristic is 
the ratio of the earliest machine availability time over all 
the machines in the suite to the latest machine 
availability time. A high threshold and a low threshold 
are determined arbitrarily for this ratio (high threshold > 
low threshold). Initially, new tasks are mapped onto their 
minimum completion time machine and they are always 
inserted at the end of the chosen machine queue. 

 
(1) Calculate the load balance ratio for the system. 
(2) If the load balance ratio > high threshold, switch 

method to use the minimum execution time machine 
to map the new task.  
If the load balance ratio < low threshold, switch 
method to use the minimum completion time 
machine to map the new task.  
If low threshold ≤ load balance ratio ≤ high 
threshold, use method from previous mapping event 
to map the new task. 

(3) All the tasks in the machine queue where the new 
task is mapped are reordered using their priority. If 
tasks have the same priority then order the tasks 
with earlier primary deadline first. 

 
If the load balance ratio becomes higher than a high 

threshold, this means that the system has become 
balanced in load. Then the algorithm switches to use the 
minimum execution time machine for mapping tasks. If 
the load balance ratio becomes lower than a low 
threshold, this means that the system has become 
unbalanced in load. Then the heuristic switches back to 
use the minimum completion time machine.  

After the new task is assigned to a machine and 
inserted at the very end of that machine queue, the tasks 
on that machine are reordered using step (3). The 
reordering allows the new task to move closer to the 
front of the queue if it has a higher priority weighting 
than some of the other tasks in the queue. After the tasks 
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are reordered using the priority levels, the tasks within 
the same priority level are ordered again using their 
primary deadline. The more urgent tasks are moved 
closer to the front of the queue, e.g., a task with the 
earliest primary deadline is ordered first. 

 
3.8.  Tight upper bound (TUB) 
 

The procedure for the tight upper bound (TUB) starts 
by sorting all tasks in descending order based on 
(priority of task i)/(minimum ATC(i, j) over all j). 
(Recall that an oversubscribed system is assumed.) Ties 
are broken arbitrarily. Using the ordering, each task is 
considered. The full priority weighting of each task is 
summed until the added minimum ATC values of the 
tasks exceed the total evaluation time of all machines 
(i.e., (evaluation period) × (number of machines)). 

 
4. Simulation Setup and Results 
 

An HC system with eight machines and an average 
of 1250 tasks was simulated for a period of 250 minutes. 
A trial is defined as one such simulation of the HC 
system. For each of the scenarios that will be discussed 
later in this section, 50 trials are run. The period from 0 
to 10 minutes is the system start-up period. The period 
between 10 to 250 minutes is considered the evaluation 
period (i.e., the period where the heuristics’ performance 
is measured). Within the simulation period (i.e., the 
system start up period and the evaluation period), the 
arrival times of the tasks are randomly generated using a 
Poisson distribution. To better simulate an overloaded 
system, the mean task inter-arrival time is faster (3.5 
seconds) during the system start-up period than during 
the evaluation period (14 seconds). In addition, random 
bursty arrival rate periods are introduced during the 
evaluation period, where the arrival rate is increased. 
These periods do not overlap with each other and have a 
mean task inter-arrival time of 7 seconds. The duration 
of a bursty period is 10 minutes.  

The estimated execution times of all tasks taking 
heterogeneity into consideration are generated using the 
gamma distribution method described in [2]. Two 
different cases of ETC heterogeneities are used in this 
research, the high task and high machine heterogeneity 
(high heterogeneity) case and the low task and low 
machine heterogeneity (low heterogeneity) case. For 
both heterogeneity cases, a task mean and coefficient of 
variation (COV) are used. (The COV is defined as the 
standard deviation divided by the mean.) The high 
heterogeneity cases use a mean task execution time of 
three minutes and a COV of 0.9 (task heterogeneity) to 
calculate the values for all of the elements in a task 
vector (where the number of elements equal the total 
number of tasks). Then using the i-th element of the 

vector as the mean and a COV of 0.9 (machine 
heterogeneity), the ETC values for task i on all the 
machines are calculated. The low heterogeneity cases 
use a mean task execution time of three minutes and a 
COV of 0.3 for task heterogeneity and 0.3 for machine 
heterogeneity.  

The ATC values are generated for the purpose of 
determining how well the heuristics perform when the 
actual task execution times on the machines vary from 
the estimated times in the ETC matrix. The ATC values 
are not known to the heuristics. For a given ETC matrix, 
ATC(i, j) is computed using ETC(i, j) as the mean and a 
COV of 0.1. 

There are two types of priority weightings that are 
assigned to high, medium, and low priority level tasks, 
namely, sixteen, four, and one for the high priority 
weighting and four, two, and one for the low priority 
weighting. Of all the tasks that arrive, approximately one 
third will be of each priority level. 

The deadline of each task is calculated using the 
following process. A deadline for each task is the arrival 
time of the task, plus the median execution time of the 
task (across all machines), plus a multiplier times the 
median execution time of all tasks (i.e., 2.4 minutes in 
this study). Two types of deadlines, i.e., loose and tight, 
are used in the simulation. The multiplier is changed to 
make the deadlines (i.e., the 100%, 50%, and 25% 
deadline) for the two types of deadlines. For the loose 
deadline, the multiplier is four, eight, and twelve for the 
primary (100%), 50%, and 25% deadline, respectively. 
For the tight deadline, the multiplier is one, two, and 
four for the primary (100%), 50%, and 25% deadline, 
respectively. 

The simulation results are shown in Figures 1 and 2 
for the two different types of deadlines. Each figure 
consists of four scenarios (all combinations of high/low 
heterogeneity and high/low priority weighting). The 
loose upper bound (LUB) shown is the simple bound 
that is the sum of the priority weightings of all tasks. All 
heuristics are run for 50 ETC and ATC matrices for each 
scenario (a total of 200 trials). The averages over 50 
trials and the 95% confidence intervals are shown (most 
of the intervals are very close to the mean). The running 
time per mapping event of each heuristic is averaged 
over 200 trials, mapping 1250 tasks per trial on average. 
The average execution times of a mapping event for the 
heuristics are shown in Table 2.   

In Figure 1, simulation results using loose deadlines 
are shown. For the high heterogeneity cases, the Max-
Max heuristic did the best (86% and 83% of the TUB for 
high and low priority weighting, respectively), while the 
Slack Sufferage heuristic was the best in the low 
heterogeneity cases (84% and 81% of the TUB for high 
and low priority weighting, respectively). The relative 
performance among the rest of the heuristics was similar 
in all the scenarios, with Max-Min performing the worst. 
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Figure 1: The simulation results using loose deadlines for (a) high heterogeneity with the high priority 
weighting of sixteen, four, and one for high, medium, and low priority levels, (b) high heterogeneity with 
the low priority weighting of four, two, and one for high, medium, and low priority levels, (c) low 
heterogeneity with the high priority weighting of sixteen, four, and one for high, medium, and low 
priority levels, and (d) low heterogeneity with the low priority weighting of four, two, and one for high, 
medium, and low priority levels. 
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Figure 2: The simulation results using tight deadlines for (a) high heterogeneity with the high priority 
weighting of sixteen, four, and one for high, medium, and low priority levels, (b) high heterogeneity with 
the low priority weighting of four, two, and one for high, medium, and low priority levels, (c) low 
heterogeneity with the high priority weighting of sixteen, four, and one for high, medium, and low 
priority levels, and (d) low heterogeneity with the low priority weighting of four, two, and one for high, 
medium, and low priority levels. 
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In the high priority cases, there is less performance 
difference among all heuristics (excluding the Max-Min 
heuristic) than in the low priority cases. This is because 
all heuristics map the high priority tasks that can meet 
their primary deadline first and if the weighting of the 
high priority task is dominant, then there is less difference 
in performance. 

 
 

heuristic 
average execution time 

of a mapping event  
(in seconds) 

Max-Max 0.11 
Max-Min 0.45 
Min-Min 0.35 

Percent Best 0.44 
Queueing Table 0.0004 

Relative Cost 0.36 
Slack Sufferage 0.18 

Switching Algorithm 0.0002 
 
Table 2: The average execution times of a 
mapping event for the eight heuristics. 
 

In Figure 2, as can be expected, the performance of 
all heuristics degraded as tasks are more likely to miss 
their deadlines because of the tight deadlines. The relative 
performance among the heuristics remained the same (i.e., 
Max-Max and Slack Sufferage performed well) except for 
the Queueing Table method. The Queueing Table 
heuristic was the best in the low heterogeneity cases and 
the performance of the Queueing Table heuristic 
degraded the least from Figure 1 to Figure 2 for each of 
the scenarios. The Queueing Table method is one of the 
heuristics that explicitly uses urgency (i.e., nearness of 
deadline (NOD)) to order the execution of tasks in a 
machine queue and this accounts for the limited 
degradation. Percent Best and Switching Algorithm also 
use urgency to order the execution of tasks in a machine 
queue (ties are broken using the method of earlier primary 
deadline first, see Subsections 3.3 and 3.7), but they do 
not determine whether a task can finish before its primary 
deadline or not. In their mapping process, assuming tasks 
have the same priority weighting, tasks that cannot finish 
by their 25% deadline may be scheduled to execute in 
front of a task that can meet its primary deadline. This has 
a higher probability of occurring in the scenarios that use 
the tight deadline than in those that use the loose deadline, 
because tasks with the tight deadline have a higher 
probability of violating their deadlines. However, in the 
Queueing Table heuristic this will not happen because, if 
a task misses its primary deadline, then the NOD is set to 
infinity. 

It is interesting to note that the relative performance 
of the Max-Max and Slack Sufferage heuristics changes 
according to the heterogeneity. In the high heterogeneity 

cases for both figures, Max-Max performs better than 
Slack Sufferage. However, in the low heterogeneity cases 
for both figures, Slack Sufferage performs better than 
Max-Max. 

The following is an example of a high heterogeneity 
case where Max-Max will do better than Slack Sufferage. 
Assume that there are two tasks (t1 and t2) with the same 
priority and two machines (m1 and m2), where the 
machine availability times are 5 and 155 seconds 
respectively, and that the estimated execution times and 
deadlines are as shown in Table 3. Assume that when the 
primary deadline is not met, the 50% deadline will be met. 

 
machines tasks 

m1 m2 
primary 
deadline 

t1 38 20 160 
t2 3 10 10 

 
Table 3: An example of tasks with high 
heterogeneity estimated execution times in 
seconds. 

 
Using the information from the previous paragraph, 

the two tasks will miss their primary deadline on m2. This 
means that the deadline factor will be 0.5 for both tasks 
on m2 and the worth (priority weighting multiplied by 
deadline factor) will be half of that on m1. Therefore, after 
calculating the fitness value, the Max-Max heuristic will 
determine the two task/machine pairs t1/m1 and t2/m1 in the 
first phase and pick the t2/m1 pair first to map and then 
pick the t1/m2 pair to map. The Slack Sufferage heuristic 
will first calculate the percentage slack for all 
task/machine pairs as shown in Table 4. Because the best 
machine is the same for both tasks, the task that is more 
critical is picked first. In this case, t1 is picked and 
mapped to m1. Another calculation of the percentage 
slack value for t2 after t1 is mapped indicates that t2 will 
miss its primary deadline on both m1 and m2. The task t2 
in the mapping from the Slack Sufferage heuristic will 
violate its primary deadline, while the Max-Max heuristic 
completes both tasks before their primary deadline. 

 
machines tasks 

m1 m2 
primary 
deadline 

t1 0.75 −1 160 
t2 0.4 −1 10 

 
Table 4: The calculation of the percentage slack 
values using Table 3. 

 
The following is a low heterogeneity case where 

Slack Sufferage will do better than Max-Max. The ETC 
values of tasks have a higher probability of being similar 
in low versus high heterogeneity cases. The fitness value 
of a task on all machines calculated for the Max-Max 
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heuristic may be similar. In the first phase of the Max-
Max heuristic, the scheme determines the task/machine 
pair that has the maximum fitness value. Assume that the 
worth is the same on all machines (i.e., the deadline factor 
is the same for all machines). This means that when 
selecting the task/machine pair in the first phase of Max-
Max only the ETC values will determine the pair. The 
calculation of the percentage slack value in the Slack 
Sufferage heuristic includes the machine availability time. 
Therefore, the best machine chosen by Slack Sufferage 
for a task can be different from that of the Max-Max 
heuristic. In this example, selecting the machine that 
gives a higher percentage slack for the task to map onto 
may give the task a higher probability of not violating its 
deadline rather than picking the most worth per unit time 
machine.  

As an example of a low heterogeneity case where 
Slack Sufferage does better than Max-Max, assume that 
there are two tasks (t1 and t2) with the same priority and 
two machines (m1 and m2), where the machine availability 
times are 4 and 8 seconds respectively, and that estimated 
execution times and deadlines are as shown in Table 5. 
Assume that when the primary deadline is not met, the 
50% deadline will be met. 

 
machines tasks 

m1 m2 
primary 
deadline 

t1 9 4.4 16 
t2 5 4 13 

 
Table 5: An example of tasks with low 
heterogeneity estimated execution times in 
seconds. 

 
The Max-Max heuristic will determine the two 

task/machine pairs t1/m2 and t2/m2 in the first phase (the 
worth of both tasks on both machines are the same) and 
pick the t2/m2 pair first to map. After mapping t2 and the 
machine availability time is updated, if t1 is mapped on 
m1, it does not violate its primary deadline and if t1 is 
mapped on m2, it misses its primary deadline. However, 
the fitness value (calculated using the deadline factor of 
0.5 for m2) is higher for t1 on m2. Therefore, t1 is mapped 
on m2. Slack Sufferage will first calculate the percentage 
slack for all task/machine pairs as shown in Table 6. In 
this case, t1 is mapped onto m2 and t2 is mapped onto m1. 
Slack Sufferage finishes both tasks by their primary 
deadline and completes the later task by time 12.4. Max-
Max completes the later task by time 16.4 and t1 misses 
its primary deadline.  

The Max-Min heuristic is the worst in all four 
scenarios and with both types of deadlines. This is 
because Max-Min tries to map the maximum in the 
second phase of the heuristic (see Subsection 3.2). When 
trying to map the difficult tasks (tasks with longer 
completion times) earlier, the tasks with short execution 

times are waiting for the longer running tasks to finish. In 
the time one difficult task finishes, multiple short tasks 
could have completed. Assuming the tasks have the same 
priority weightings and same deadline factors, completing 
multiple short tasks in an interval of time would indicate 
higher performance than completing one large task 
according to the performance metric in this research. The 
Min-Min heuristic, which is a variation of the Max-Min 
heuristic, maps the shorter task first and performs better 
than Max-Min. 

 
machines tasks 

m1 m2 
primary 
deadline 

t1 0.25 0.45 16 
t2 0.44 0.2 13 

 
Table 6: The calculation of the percentage slack 
values using Table 5. 
 
 
5. Summary 
 

Eight heuristics were designed, developed, and 
simulated using the HC environment presented. 
Dynamically arriving tasks with priorities and multiple 
deadlines were mapped using the heuristics proposed in 
this research.  

When loose deadlines were used, the Max-Max 
heuristic did the best in the high heterogeneity case and 
the Slack Sufferage heuristic was the best in the low 
heterogeneity case. When tight deadlines were used, the 
performance of all heuristics is degraded. In the high 
heterogeneity cases, Max-Max and Slack Sufferage are 
still the heuristics of choice, however in the low 
heterogeneity cases, Queueing Table (that uses urgency in 
its mapping process) performed the best. However, if the 
time to produce a solution is a crucial constraint, the 
Queueing Table (when using tight deadline) and the 
Switching Algorithm (when using loose deadline) are 
recommended.  
 
Acknowledgements: The authors thank Shoukat Ali for 
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