

Dynamic Mapping in a Heterogeneous Environment
with Tasks Having Priorities and Multiple Deadlines

Jong-Kook Kim1, Sameer Shivle2, Howard Jay Siegel2,3, Anthony A. Maciejewski2,
Tracy D. Braun4, Myron Schneider2,5, Sonja Tideman3, Ramakrishna Chitta3,

Raheleh B. Dilmaghani2, Rohit Joshi2, Aditya Kaul2, Ashish Sharma2,
Siddhartha Sripada2, Praveen Vangari2, and Siva Sankar Yellampalli6

1Purdue University
Electrical and Computer Engineering School

West Lafayette, IN 47907-1285, USA
jongkook@purdue.edu

Colorado State University
2Electrical and Computer Engineering Dept.

3Computer Science Dept.
Fort Collins, CO 80523-1373, USA

{hj, aam}@colostate.edu
{ssameer, raheleh, rohit, ashish, siddhu,

praveen}@engr.colostate.edu
{ramacmr, tideman}@cs.colostate.edu

aditya21@lycos.com

4University of Maryland

University College, Asia Division
Kadena Education Center

18 MSS/DPE, Unit 5134, Box 40
APO AP 96368-5134
tdbraun@ad.umuc.edu

5Agilent Technologies

Loveland, CO 80537, USA
myron_schneider@agilent.com

6Lousiana State University

Electrical and Computer Engineering School
Baton Rouge, LA 70802, USA

syella1@lsu.edu

Abstract
In a distributed heterogeneous computing system,

the resources have different capabilities and tasks have
different requirements. To maximize the performance of
the system, it is essential to assign resources to tasks
(match) and order the execution of tasks on each
resource (schedule) in a manner that exploits the
heterogeneity of the resources and tasks. The mapping
(defined as matching and scheduling) of tasks onto
machines with varied computational capabilities has
been shown, in general, to be an NP-complete problem.
Therefore, heuristic techniques to find a near-optimal
solution to this mapping problem are required. Dynamic
mapping is performed when the arrival of tasks is not
known a priori. In the heterogeneous environment
considered in this study, tasks arrive randomly, tasks are
independent (i.e., no communication among tasks), and
tasks have priorities and multiple deadlines. This

This research was supported in part by the Colorado
State University George T. Abell Endowment.

research proposes, evaluates, and compares eight
dynamic heuristics. The performance of the best
heuristics is 83% of an upper bound.

1. Introduction and Problem Statement

Heterogeneous computing (HC) is the coordinated
use of various resources with different capabilities to
satisfy the requirements of varying task mixtures. The
heterogeneity of the resources and tasks in an HC system
is exploited to maximize the performance or the cost-
effectiveness of the system (e.g., [5, 9, 13, 18]). A
typical HC system consists of heterogeneous sets of
resources and tasks. To exploit the different capabilities
of a suite of heterogeneous resources, typically a
resource management system (RMS) allocates the
resources to the tasks and the tasks are ordered for
execution on the resources. In this research, heuristics
are proposed that can be used in such an RMS.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Mountain Scholar (Digital Collections of Colorado and Wyoming)

https://core.ac.uk/display/354395363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An important research problem is how to assign
resources to tasks (match) and order the execution of
tasks on the resources (schedule) to maximize some
performance criterion of an HC system. This procedure
of matching and scheduling is called mapping. There are
two different types of mapping: static and dynamic.
Static mapping is performed when the applications are
mapped in an off-line planning phase [6], e.g., planning
the schedule for a set of production jobs. Dynamic
mapping is performed when the applications are mapped
in an on-line fashion [17], e.g., when tasks arrive at
unknown intervals and are mapped as they arrive (the
workload is not known a priori). In both cases, the
mapping problem has been shown, in general, to be NP-
complete (e.g., [8, 10, 15]). Thus, the development of
heuristic techniques to find near-optimal solutions for
the mapping problem is an active area of research (e.g.,
[1, 3, 4, 5, 6, 9, 11, 17, 19, 25]).

In this research, the dynamic mapping of tasks onto
machines is studied. Simulation is used for the
evaluation and comparison of the dynamic heuristics
developed in this research. As described in [17],
dynamic mapping heuristics can be grouped into two
categories, immediate mode and batch mode. Each time
a mapping is performed (mapping event), immediate
mode heuristics only consider the new task for mapping,
whereas batch mode considers a subset of tasks for
mapping, thus having more information about the task
mixture before mapping the tasks. As expected, the
study in [17] showed that the immediate mode heuristics
had shorter running times than those of the batch mode
heuristics, but the batch mode heuristics gave higher
performance. The heuristics proposed in this research are
batch mode schemes.

At any mapping event, the very next task in each
machine’s job queue waiting for the currently executing
task to finish is not considered in any of the heuristics.
The reason is that while a mapping event occurs the
current task can finish; therefore, to help ensure that the
machine will not be idle for the duration of the mapping
event, the very next task is not considered for mapping.
It is not desirable for a machine to be idle for the
duration of the mapping event. While it is still possible
that a machine may become idle, it is highly unlikely for
the assumptions in this research (the average execution
time of a task is 180 seconds while the average
execution time of a mapping event is less than 0.5
seconds).

A dynamic mapping approach is designed to
compute the new mapping faster than the anticipated
average arrival rate of the tasks to avoid being
interrupted by an arriving task. Therefore, the heuristics
that are developed have a limit on the maximum time
each computation of a new mapping can take. When a
task arrives while a mapping event is in progress, the
current mapping event is not disturbed. As soon as the

current mapping event is completed, the next mapping
event starts that include any tasks that had arrived during
the previous mapping event.

The HC environment considered is oversubscribed,
such that not all tasks can complete during the
evaluation period. To model such an environment, the
arrival rates of tasks are determined so that in the
evaluation period, there are enough tasks to simulate an
oversubscribed system. An environment with bursty task
arrivals during the evaluation period was simulated.

 Eight dynamic mapping schemes are studied in this
paper: Max-Max, Max-Min, Min-Min, Queueing Table,
Relative Cost, Slack Sufferage, Switching Algorithm,
and Percent Best. The Max-Max and Max-Min
approaches are considered greedy heuristics, the
Queueing Table uses a lookup table to map tasks,
Relative Cost and Slack Sufferage are based on the
sufferage concept used in [17], and Switching Algorithm
and Percent Best are an extension of the Switching
Algorithm and k percent best methods, respectively,
given in [17].

In the simulation experiments, the estimated time to
complete (ETC) values are used by the mapping
heuristics, where the ETC(i, j) is the estimated execution
time of task i on machine j, where i is the task number
and j is the machine number. These estimated values
may differ from actual times, e.g., actual times may
depend on input data. Therefore, for the simulation
studies, the actual time to complete (ATC) values are
calculated using the ETC values as the mean. The ATC
values are used for the evaluation of the heuristics. The
details of the simulation environment are presented in
Section 4.

The tasks considered here are assumed to be
independent, i.e., no communication or dependency
between tasks. Each task has a priority level, i.e., high,
medium, and low. In addition, each task has multiple
deadlines, i.e., a 100% deadline, a 50% deadline, and a
25% deadline. The worth of a submitted task will
degrade according to a degradation scheme if the task
misses a certain deadline.

The performance metric for evaluating the
mappings generated by the heuristics has three
components. The first component of the evaluation
function is the weighted priority of each task, pj where,

pj

2 for high priority tasks

for medium priority tasks

1 for low priority tasks

x

x= .

For this research, x = 2 or 4. The weighted priority of a
task is the maximum worth it can contribute to the
performance function that specifies the value of a
mapping.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

The second component of the evaluation function
incorporates the deadlines. Let wi be a deadline factor
for task i, where

1.00 if finished at or before its primary deadline

0 50 if finished at or before its 50 deadline

0.25 if finished at or before its 25 deadline

0.05 if finished after its 25 deadline

0 if is never executed

i

i

i i

i

i

t

. t %

w t %

t %

t

=

The wi indicates the degradation scheme of the worth of
a task according to when the task finishes.

For the third component, let B denote the beginning
of the evaluation interval and let E denote the end of the
evaluation interval. The simulated actual execution time
for task i on machine j is ATC(i, j). The start time of task
i on machine j is st(i, j) and the finish time of task i on
machine j is ft(i, j). Then

()

()
()

(,) / ATC(,) if (,) and (,)

1.00 if (,) and (,)

(,) /ATC(,) if (,) and (,)

/ATC(,) if (,) and (,)

0 if (,) or (,)

i

ct i j B i j st i j B B ft i j E

st i j B ft i j E

b E st i j i j B st i j E ft i j E

E B i j st i j B ft i j E

ft i j B st i j E

− < < ≤
≥ ≤

= − ≤ < >

− ≤ ≥
≤ ≥

gives the boundary weighting for each task i, where j is
determined by the mapping done by the heuristic for
each task.

Let T be the total number of tasks that are mapped
(i.e., the total number of tasks in the ETC matrix). Then
the value function, V, used to evaluate each mapping is
defined as

−

=
=

1

0

T

i

V pi × wi × bi.

The next section provides discussions of the

literature related to this work. In Section 3, the heuristics
studied in this research are presented. Section 4
describes the simulation environment and results, and
the last section gives a brief summary of this research.

2. Related Work

In the literature, the mapping of tasks onto machines
is also often referred to as scheduling. Researchers have
worked on the dynamic mapping problem for distributed
computer systems.

Many of the heuristics in the literature (e.g., [15,
16]) use the minimum completion time of a task to
decide where the task should be mapped. The heuristics
presented in [15] are concerned with mapping

independent tasks onto heterogeneous machines such
that the completion time of the last finishing task is
minimized. The difference is that our research has a task
model with priorities and multiple deadlines and that an
overloaded environment is simulated. Our research
considers a different performance metric that is the
collective value of tasks completed during an interval of
time. The minimum completion time is used in the
decision process of some of the heuristics presented in
our research.

The Min-Min heuristic in [15], which is also one of
the heuristics implemented in SmartNet [12], has proven
to be a good heuristic for dynamic and static mapping
problems in earlier studies (e.g., [1, 6, 17]). The Max-
Min approach in [15], which is a variation of the Min-
Min heuristic, also performed well in certain HC
environments. These two heuristics are expanded for the
environment in this research.

The two heuristics, k-percent best and the Sufferage
heuristic, that were the idea behind some of the
approaches presented in this research, performed
comparably to the Min-Min and the Max-Min schemes
in the studies in [17]. In our preliminary experimentation
using the variations of the k-percent best and the
Sufferage heuristics, these heuristics performed as well
as or better than the Min-Min and Max-Min type
heuristics. Therefore, these two were chosen for this
research. The environment in [17] is similar in that the
tasks are independent and randomly arriving. The
difference is that our study considers tasks with priorities
and multiple deadlines, and the value of the tasks
completed is used as the performance metric.

The environment in [20] is similar to the
environment considered in our research in that [20] has
randomly arriving tasks with a hard deadline. The idea in
[20] to move a task if its deadline may not be satisfied is
used in one of the heuristics in our research. However,
the environment in our research includes task with
priorities and multiple deadlines, and heterogeneous
machines, all of which complicate the scheduling
problem. Furthermore, our performance metric is
different.

The DeSiDeRaTa project (e.g., [7, 14, 21, 22, 23,
24]) focuses on dynamically reallocating resources for
applications, but the system model is very different. The
system model in DeSiDeRaTa includes sets of
heterogeneous machines, sensors, applications, and
actuators. The application model in the DeSiDeRaTa
project is different from the task model here in that the
applications in the DeSiDeRaTa project are continuously
running ones where data inputs to an application are
processed and output to another application or an
actuator. In contrast, the tasks in this research are
independent, are randomly arriving, have priorities, and
have multiple deadlines.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

The work in [26] focuses on the dynamic mapping
of independent tasks onto machines in an environment
that is similar to the one in this study (i.e., randomly
arriving tasks, heterogeneous machines, and
heterogeneous tasks). Some of the algorithms in [26],
such as Min-Min and Max-Min, are also used in our
research. The idea of “fine-tuning” in [26] is used in our
research as “rescheduling” after all tasks are mapped.
The difference is that the tasks in our study are assigned
a weighted priority, each task has multiple deadlines,
and the performance metric is the value of tasks
completed in an interval of time instead of completion
rate, defined as the number of tasks completed in an
interval of time.

3. Heuristics

3.1. Max-Max

The Max-Max heuristic is based on the Min-Min
(greedy) concept in [15]. The fitness value for the task
on a given machine is the worth of the task divided by
the estimated execution time of the task, where the worth
of the task is the priority weighting of the task multiplied
by the deadline factor of the task. The fitness value in
this heuristic calculates the worth per unit time and it is
used in the selection of a task to be mapped.

The Max-Max heuristic can be summarized by the
following six-step procedure. The procedure starts when
a new task arrives and generates a mapping event. The
mappable tasks are tasks that are waiting to be executed
in the machine queue (except the very next task) and the
new task. When the mapping event begins, it is assumed
that none of the mappable tasks are mapped, i.e., they
are not in any machine queue.

(1) A task list is generated that includes all the

mappable tasks.
(2) For each task in the task list, find the machine that

gives the task its maximum fitness value (the first
“Max”), ignoring other tasks in the mappable task
list.

(3) Among all the task/machine pairs found from above,
find the pair that gives the maximum fitness value
(the second “Max”).

(4) Remove the above task from the mappable task list
and map the task to its paired machine.

(5) Update the machine availability status.
(6) Repeat steps (2) to (5) until all tasks are mapped.

The availability status of all machines is updated in
step (5) to be used in calculating the deadline factor. The
deadline factor for a given task/machine pair is
determined using the machine availability time of the
machine plus the estimated execution time of the task.

The worth for all tasks on all machines is recalculated
every time a task is mapped.

3.2. Max-Min and Min-Min

The Max-Min heuristic is also based on the greedy
concept in [15]. The completion time for task i on
machine j is the time machine j is available to execute
task i, the machine availability time (mat(j)), plus ETC(i,
j). This heuristic finds the machine with the minimum
completion time machine for each task. Then, from these
task/machine pairs the heuristic selects the pair that has
the maximum completion time. This method maps tasks
that take more time first because these tasks typically
have a higher probability of not completing before their
deadline if not mapped as soon as possible.

The Max-Min heuristic can be summarized by the
following eight-step procedure. The procedure starts
when a new task arrives and generates a mapping event.
When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in
any machine queue.

(1) A task list is generated that includes all the

mappable tasks.
(2) For each task in the mappable task list, find the

minimum completion time machine (the “Min”),
ignoring other tasks in the mappable task list.

(3) Among all the task/machine pairs found from above,
select the pair that gives the maximum completion
time (the “Max”).

(4) The task identified above is removed from the
mappable task list and assigned to its paired
machine.

(5) Update the machine availability status.
(6) Repeat steps (2) to (5) until all the tasks are mapped.
(7) For each machine, if there are tasks in the machine

queue, reschedule the tasks in the machine queue
according to their worth.

(8) Stop when all machine queues are rescheduled.

The availability status of all machines is updated in step
(5) to calculate the minimum completion time over all
machines for each task in step (2).

The rescheduling of tasks in step (7) can be
summarized by the following procedure.

(a) Initialize the machine availability time to the

completion time of the very next task that is waiting
to be executed (i.e., assume that none of the
mappable tasks are mapped).

(b) Group the tasks using the priority levels of the tasks.
(c) For the tasks in the high priority level group,

keeping their relative ordering from the machine
queue, one by one, in order, insert the tasks that can

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

finish by their primary deadline into the machine
queue. Once scheduled, a task is removed from the
group and the machine availability status is updated.

(d) Repeat step (c) for 50% deadline and 25% deadline.
(e) Repeat steps (c) to (d) for the medium priority tasks

and then repeat for the low priority tasks.
(f) High priority tasks that cannot finish by the 25%

deadline are added to end of the machine queue.
Medium priority tasks that cannot finish by the 25%
deadline are added next and then the low priority
tasks are added to the machine queue.

The Min-Min heuristic, which is a variation of the

Max-Min heuristic, was implemented. The difference is
in step (3), where instead of selecting the pair that gives
the maximum completion time, the pair that gives the
minimum completion time is selected. This means that
tasks with shorter execution times will be selected. This
variation is attempted to greedily complete as many
tasks as possible.

3.3. Percent Best

The Percent Best heuristic is a variation of the k
percent best heuristic found in [17]. This heuristic tries
to map the tasks onto the minimum execution time
machine while considering the completion times on the
machines. The idea behind the heuristic is to pick the top
m machines with the best execution time for a task, so
that the task can be mapped onto one of its best
execution time machines. However, limiting the number
of machines to which a task can be mapped, may cause
the system to become unbalanced, therefore the
completion times are also considered in selecting the
machine to map the task.

The Percent Best heuristic can be summarized by
the nine-step procedure below. The procedure starts
when a new task arrives and generates a mapping event.
When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in
any machine queue.

(1) A task list is generated that includes all the

mappable tasks.
(2) Tasks are grouped according to their priority levels.
(3) For each task in the high priority level group, find

the top m = 3 machines that give the best execution
time for that task (the total number of machines
used in the simulation studies in this research is
eight).

(4) For each task, find the minimum completion time
machine from the machines found in step (3) and
the machines that are idle.

(5) Map the tasks with no contention (i.e., when there
are no other tasks with the same minimum

completion time machine) and remove them from
the priority level group.

(6) For tasks with contention (tasks having the same
minimum completion time machine), map the task
with the earliest primary deadline and remove it
from the priority level group.

(7) Update the machine availability status.
(8) Repeat steps (3) to (7) until all tasks in the group are

mapped.
(9) Repeat steps (3) to (8) for tasks in the medium and

low priority level groups, using m = 4 and m = 8,
respectively.

3.4. Queueing Table

The Queueing Table heuristic uses a lookup table
constructed using the priority, the relative speed of
execution, and the nearness of deadline (see Table 1) in
the mapping process. The relative speed of execution
(RSE) is the ratio of the average execution time of a task
across all machines to the overall average task execution
time for all tasks across all machines in the HC system.
The Queueing Table heuristic uses the above definition
and a heuristic constant (RSE cutoff) to classify tasks
into one of two categories: “slow” and “fast.” If a task’s
RSE > RSE cutoff, then it is considered to be slow and if
a task’s RSE ≤ RSE cutoff, then it is considered to be
fast.

queuing
order

priority
level

relative
speed of
execution

nearness
of

deadline
1 high slow sooner
2 high fast sooner
3 high slow later
4 high fast later
5 med fast sooner
6 low fast sooner
7 med fast later
8 low fast later
9 med slow sooner

10 med slow later
11 low slow sooner
12 low slow later

Table 1: The lookup table constructed using the
priority, relative speed of execution, and the
nearness of deadline for the Queueing Table
heuristic.

Let δ be the primary deadline of a given task i
minus the current time. Then the nearness of deadline
(NOD) of a given task i is

(δ − 2 × (average ETC(i, j) over all j))/δ.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

This ratio measures the urgency of a given task i; the
smaller the NOD the more urgent. When the current time
passes the primary deadline of a task, the task’s NOD is
set to infinity. The arbitrary multiplier of “2” in the
above definition is to provide some padding to help take
into account that the task may be mapped onto a
machine where the simulated actual execution time will
be worse than the average. The heuristic uses the above
definition of NOD and a heuristic constant (NOD cutoff)
to classify task urgency into two categories. If a task’s
NOD ≤ NOD cutoff this indicates that the task needs to
be started “sooner” and if a task’s NOD > NOD cutoff,
then the task can be started “later.”

The Queueing Table heuristic can be summarized
by the following ten-step procedure. The procedure
starts when a new task arrives and generates a mapping
event. In contrast to other heuristics, this method does
not generate a task list that includes all the mappable
tasks and initially maps only the new task to a machine.

(1) For all mappable tasks, the NOD is calculated.
(2) For the new task, calculate the RSE.
(3) For each of the machines, compare the new task

with the tasks on that machine’s queue, starting
from the front of the queue. If there are no tasks
with the same queueing order as the new task, then
the new task’s position is in front of the first task
with the higher numbered queueing order. If there
are tasks with the same queueing order as the new
task, then the new task’s position is in front of the
first task that has a higher NOD value than that of
the new task.

(4) Using the position on each machine queue found
from above, the completion time on all machines is
calculated and the new task is mapped to its
minimum completion time machine.

(5) For each machine, check if there are any tasks that
will miss their primary deadline.

(6) Among the tasks that miss their primary deadline,
find the first task that misses its deadline.

(7) For the task found in step (6), find machines where
(a) the priority of the task is equal to or greater than
the highest priority of any task on that machine and
(b) moving the task to the front of that machine
queue does not cause any task to miss its primary
deadline (tasks already missing their primary
deadline are not checked).

(8) Among the machines identified above, find the
machine that gives the minimum completion time
for the task and move the task to the head of the
machine queue. (If no machines are found in step
(7), the task is not moved.)

(9) Update the machine availability status.
(10) Repeat steps (5) to (9) until all machines are

checked (the order in which the machines are

checked is from machine 1 to machine M, where M
is the total number of machines).

As indicated in step (5), the search of tasks missing

their primary deadline is done on all machines. This is
because at the next mapping event, there may be tasks in
machine queues other than the one the new task is
mapped to that miss their primary deadline. At any
mapping event, even if there are multiple tasks in a
machine queue that need to be moved, only one task
from the machine is allowed to be moved (the maximum
number of tasks that can be moved at any mapping event
is equal to the total number of machines).

3.5. Relative Cost

The Relative Cost heuristic uses the worth and the
sufferage idea in [17] to map tasks. For each mappable
task considered, the relative cost (RC) is calculated by
computing the minimum completion time of that task
over all machines divided by the average completion
time of that task on all machines. When the RC is high,
the minimum completion time is similar to the average
and most of the completion times on all machines are
similar. When the RC is low, the minimum completion
time is very different from the average. Assume tasks a
and b prefer the same machine (best machine) for
mapping. Task a is considered to suffer more than Task
b, when there is a larger difference between the
completion times of the best and the second best
machines. The RC is an approximation of this difference.
If the RC for a task is high then there is a low probability
that the task will suffer more than a task that has a low
RC.

The Relative Cost heuristic can be summarized by
the following seven-step procedure. The procedure starts
when a new task arrives and generates a mapping event.
When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in
any machine queue.

(1) A task list is generated that includes all the

mappable tasks.
(2) For each task in the mappable task list, calculate the

RC.
(3) For all the tasks in the mappable task list, their

worths are calculated (as described below) and the
tasks are sorted according to their worths (highest
first).

(4) The task having the highest worth is chosen. Ties
among the highest worth tasks are broken by
selecting the lowest RC value task.

(5) Map the chosen task on its minimum completion
time machine and remove it from the mappable task
list.

(6) Update the machine availability status.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

(7) Repeat steps (2) to (6) until all tasks are mapped.

In step (3), the deadline factor for each task is
calculated using the minimum completion time of that
task over all machines, the current time, and the deadline
for the tasks, ignoring other tasks in the mappable task
list. Using the deadline factor found for each task, the
worth is recalculated every time a task is mapped.

The availability status of all machines is updated in
step (6) to calculate the completion time of all tasks on
all machines and the deadline factor. Among the same
worth tasks, the task with the smallest relative cost is
considered to suffer most if it is not mapped first.

3.6. Slack Sufferage

The Slack Sufferage heuristic uses the sufferage
concept in [17]. The Slack Sufferage heuristic can be
summarized by the following nine-step procedure. The
procedure starts when a new task arrives and generates a
mapping event. When the mapping event begins, it is
assumed that none of the mappable tasks are mapped,
i.e., they are not in any machine queue. In this heuristic,
the percentage slack for task i on machine j using a
given deadline d is defined as

PS(i, j, d) = 1 − (ETC(i, j)/ (d − mat(j))).

(1) A task list is generated that includes all the

mappable tasks.
(2) For each task in the mappable task list, for each

machine calculate the PS(i, j, d), where d is task i’s
primary deadline. PS(i, j, d) = −1 for a machine if
the task misses its deadline on that machine.
For a given task i, if PS(i, j, d) < 0 for all machines
 recalculate the PS(i, j, d) for each machine

using d = 50% deadline.
if PS(i, j, d) < 0 for all machines

recalculate the PS(i, j, d) for each machine
using d = 25% deadline
if PS(i, j, d) < 0 for all machines
 recalculate the PS(i, j, d) for each

machine using d = end of the
evaluation period

(3) For each task, determine the maximum percentage
slack machine.

(4) Sort tasks by their worth (worth is calculated using
the deadline factor associated with d).

(5) If there is more than one task with the current
highest worth, check for contention (i.e., whether
tasks have the same maximum percentage slack
machine).

(6) If there is no contention, select the highest worth
task.
If there is contention among the highest worth tasks,
select the most critical task (the task with the largest

difference of percentage slack between the best
percentage slack and the second best percentage
slack machines).

(7) Map the selected task and remove it from the task
list.

(8) Update the machine availability status.
(9) Repeat steps (2) to (8) until all tasks are mapped.

The availability status of all machines is updated in step
(8) to determine the deadline factor and the PS(i, j, d).

3.7. Switching Algorithm

The Switching Algorithm heuristic is an extended
version of the switching algorithm in [17]. The
Switching Algorithm heuristic can be summarized by the
following three-step procedure. The procedure starts
when a new task arrives and generates a mapping event.
The load balance ratio for the system in the heuristic is
the ratio of the earliest machine availability time over all
the machines in the suite to the latest machine
availability time. A high threshold and a low threshold
are determined arbitrarily for this ratio (high threshold >
low threshold). Initially, new tasks are mapped onto their
minimum completion time machine and they are always
inserted at the end of the chosen machine queue.

(1) Calculate the load balance ratio for the system.
(2) If the load balance ratio > high threshold, switch

method to use the minimum execution time machine
to map the new task.
If the load balance ratio < low threshold, switch
method to use the minimum completion time
machine to map the new task.
If low threshold ≤ load balance ratio ≤ high
threshold, use method from previous mapping event
to map the new task.

(3) All the tasks in the machine queue where the new
task is mapped are reordered using their priority. If
tasks have the same priority then order the tasks
with earlier primary deadline first.

If the load balance ratio becomes higher than a high

threshold, this means that the system has become
balanced in load. Then the algorithm switches to use the
minimum execution time machine for mapping tasks. If
the load balance ratio becomes lower than a low
threshold, this means that the system has become
unbalanced in load. Then the heuristic switches back to
use the minimum completion time machine.

After the new task is assigned to a machine and
inserted at the very end of that machine queue, the tasks
on that machine are reordered using step (3). The
reordering allows the new task to move closer to the
front of the queue if it has a higher priority weighting
than some of the other tasks in the queue. After the tasks

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

are reordered using the priority levels, the tasks within
the same priority level are ordered again using their
primary deadline. The more urgent tasks are moved
closer to the front of the queue, e.g., a task with the
earliest primary deadline is ordered first.

3.8. Tight upper bound (TUB)

The procedure for the tight upper bound (TUB) starts
by sorting all tasks in descending order based on
(priority of task i)/(minimum ATC(i, j) over all j).
(Recall that an oversubscribed system is assumed.) Ties
are broken arbitrarily. Using the ordering, each task is
considered. The full priority weighting of each task is
summed until the added minimum ATC values of the
tasks exceed the total evaluation time of all machines
(i.e., (evaluation period) × (number of machines)).

4. Simulation Setup and Results

An HC system with eight machines and an average
of 1250 tasks was simulated for a period of 250 minutes.
A trial is defined as one such simulation of the HC
system. For each of the scenarios that will be discussed
later in this section, 50 trials are run. The period from 0
to 10 minutes is the system start-up period. The period
between 10 to 250 minutes is considered the evaluation
period (i.e., the period where the heuristics’ performance
is measured). Within the simulation period (i.e., the
system start up period and the evaluation period), the
arrival times of the tasks are randomly generated using a
Poisson distribution. To better simulate an overloaded
system, the mean task inter-arrival time is faster (3.5
seconds) during the system start-up period than during
the evaluation period (14 seconds). In addition, random
bursty arrival rate periods are introduced during the
evaluation period, where the arrival rate is increased.
These periods do not overlap with each other and have a
mean task inter-arrival time of 7 seconds. The duration
of a bursty period is 10 minutes.

The estimated execution times of all tasks taking
heterogeneity into consideration are generated using the
gamma distribution method described in [2]. Two
different cases of ETC heterogeneities are used in this
research, the high task and high machine heterogeneity
(high heterogeneity) case and the low task and low
machine heterogeneity (low heterogeneity) case. For
both heterogeneity cases, a task mean and coefficient of
variation (COV) are used. (The COV is defined as the
standard deviation divided by the mean.) The high
heterogeneity cases use a mean task execution time of
three minutes and a COV of 0.9 (task heterogeneity) to
calculate the values for all of the elements in a task
vector (where the number of elements equal the total
number of tasks). Then using the i-th element of the

vector as the mean and a COV of 0.9 (machine
heterogeneity), the ETC values for task i on all the
machines are calculated. The low heterogeneity cases
use a mean task execution time of three minutes and a
COV of 0.3 for task heterogeneity and 0.3 for machine
heterogeneity.

The ATC values are generated for the purpose of
determining how well the heuristics perform when the
actual task execution times on the machines vary from
the estimated times in the ETC matrix. The ATC values
are not known to the heuristics. For a given ETC matrix,
ATC(i, j) is computed using ETC(i, j) as the mean and a
COV of 0.1.

There are two types of priority weightings that are
assigned to high, medium, and low priority level tasks,
namely, sixteen, four, and one for the high priority
weighting and four, two, and one for the low priority
weighting. Of all the tasks that arrive, approximately one
third will be of each priority level.

The deadline of each task is calculated using the
following process. A deadline for each task is the arrival
time of the task, plus the median execution time of the
task (across all machines), plus a multiplier times the
median execution time of all tasks (i.e., 2.4 minutes in
this study). Two types of deadlines, i.e., loose and tight,
are used in the simulation. The multiplier is changed to
make the deadlines (i.e., the 100%, 50%, and 25%
deadline) for the two types of deadlines. For the loose
deadline, the multiplier is four, eight, and twelve for the
primary (100%), 50%, and 25% deadline, respectively.
For the tight deadline, the multiplier is one, two, and
four for the primary (100%), 50%, and 25% deadline,
respectively.

The simulation results are shown in Figures 1 and 2
for the two different types of deadlines. Each figure
consists of four scenarios (all combinations of high/low
heterogeneity and high/low priority weighting). The
loose upper bound (LUB) shown is the simple bound
that is the sum of the priority weightings of all tasks. All
heuristics are run for 50 ETC and ATC matrices for each
scenario (a total of 200 trials). The averages over 50
trials and the 95% confidence intervals are shown (most
of the intervals are very close to the mean). The running
time per mapping event of each heuristic is averaged
over 200 trials, mapping 1250 tasks per trial on average.
The average execution times of a mapping event for the
heuristics are shown in Table 2.

In Figure 1, simulation results using loose deadlines
are shown. For the high heterogeneity cases, the Max-
Max heuristic did the best (86% and 83% of the TUB for
high and low priority weighting, respectively), while the
Slack Sufferage heuristic was the best in the low
heterogeneity cases (84% and 81% of the TUB for high
and low priority weighting, respectively). The relative
performance among the rest of the heuristics was similar
in all the scenarios, with Max-Min performing the worst.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

high heterogeneity and high priority weighting

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a)

low heterogeneity and high priority weighting

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 (c)

high heterogeneity and low priority weighting

0

500

1000

1500

2000

2500

3000

3500

M
ax

-M
ax

 (
w

or
th

/ti
m

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

500

1000

1500

2000

2500

3000

3500

 (b)

low heterogeneity and high priority weighting

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(d)

Figure 1: The simulation results using loose deadlines for (a) high heterogeneity with the high priority
weighting of sixteen, four, and one for high, medium, and low priority levels, (b) high heterogeneity with
the low priority weighting of four, two, and one for high, medium, and low priority levels, (c) low
heterogeneity with the high priority weighting of sixteen, four, and one for high, medium, and low
priority levels, and (d) low heterogeneity with the low priority weighting of four, two, and one for high,
medium, and low priority levels.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

high heterogeneity and high priority weighting

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

-M
ax

 (
w

or
th

/ti
m

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a)

low heterogeneity and high priority weighting

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(c)

high heterogeneity and low priority weighting

0

500

1000

1500

2000

2500

3000

3500

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

500

1000

1500

2000

2500

3000

3500

(b)

low heterogeneity and low priority weighting

0

500

1000

1500

2000

2500

3000

3500

M
ax

-M
ax

 (
w

or
th

/t
im

e)

M
ax

-M
in

 (
re

sc
he

du
lin

g)

M
in

-M
in

 (
re

sc
he

du
lin

g)

P
er

ce
nt

 B
es

t

Q
ue

ue
in

g
T

ab
le

R
el

at
iv

e
C

os
t

S
la

ck
 S

uf
fe

ra
ge

S
w

itc
hi

ng
 A

lg
or

ith
m

T
U

B

LU
B

ev
al

u
at

io
n

 v
al

u
e

0

500

1000

1500

2000

2500

3000

3500

(d)

Figure 2: The simulation results using tight deadlines for (a) high heterogeneity with the high priority
weighting of sixteen, four, and one for high, medium, and low priority levels, (b) high heterogeneity with
the low priority weighting of four, two, and one for high, medium, and low priority levels, (c) low
heterogeneity with the high priority weighting of sixteen, four, and one for high, medium, and low
priority levels, and (d) low heterogeneity with the low priority weighting of four, two, and one for high,
medium, and low priority levels.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

In the high priority cases, there is less performance
difference among all heuristics (excluding the Max-Min
heuristic) than in the low priority cases. This is because
all heuristics map the high priority tasks that can meet
their primary deadline first and if the weighting of the
high priority task is dominant, then there is less difference
in performance.

heuristic
average execution time

of a mapping event
(in seconds)

Max-Max 0.11
Max-Min 0.45
Min-Min 0.35

Percent Best 0.44
Queueing Table 0.0004

Relative Cost 0.36
Slack Sufferage 0.18

Switching Algorithm 0.0002

Table 2: The average execution times of a
mapping event for the eight heuristics.

In Figure 2, as can be expected, the performance of
all heuristics degraded as tasks are more likely to miss
their deadlines because of the tight deadlines. The relative
performance among the heuristics remained the same (i.e.,
Max-Max and Slack Sufferage performed well) except for
the Queueing Table method. The Queueing Table
heuristic was the best in the low heterogeneity cases and
the performance of the Queueing Table heuristic
degraded the least from Figure 1 to Figure 2 for each of
the scenarios. The Queueing Table method is one of the
heuristics that explicitly uses urgency (i.e., nearness of
deadline (NOD)) to order the execution of tasks in a
machine queue and this accounts for the limited
degradation. Percent Best and Switching Algorithm also
use urgency to order the execution of tasks in a machine
queue (ties are broken using the method of earlier primary
deadline first, see Subsections 3.3 and 3.7), but they do
not determine whether a task can finish before its primary
deadline or not. In their mapping process, assuming tasks
have the same priority weighting, tasks that cannot finish
by their 25% deadline may be scheduled to execute in
front of a task that can meet its primary deadline. This has
a higher probability of occurring in the scenarios that use
the tight deadline than in those that use the loose deadline,
because tasks with the tight deadline have a higher
probability of violating their deadlines. However, in the
Queueing Table heuristic this will not happen because, if
a task misses its primary deadline, then the NOD is set to
infinity.

It is interesting to note that the relative performance
of the Max-Max and Slack Sufferage heuristics changes
according to the heterogeneity. In the high heterogeneity

cases for both figures, Max-Max performs better than
Slack Sufferage. However, in the low heterogeneity cases
for both figures, Slack Sufferage performs better than
Max-Max.

The following is an example of a high heterogeneity
case where Max-Max will do better than Slack Sufferage.
Assume that there are two tasks (t1 and t2) with the same
priority and two machines (m1 and m2), where the
machine availability times are 5 and 155 seconds
respectively, and that the estimated execution times and
deadlines are as shown in Table 3. Assume that when the
primary deadline is not met, the 50% deadline will be met.

machines tasks

m1 m2
primary
deadline

t1 38 20 160
t2 3 10 10

Table 3: An example of tasks with high
heterogeneity estimated execution times in
seconds.

Using the information from the previous paragraph,

the two tasks will miss their primary deadline on m2. This
means that the deadline factor will be 0.5 for both tasks
on m2 and the worth (priority weighting multiplied by
deadline factor) will be half of that on m1. Therefore, after
calculating the fitness value, the Max-Max heuristic will
determine the two task/machine pairs t1/m1 and t2/m1 in the
first phase and pick the t2/m1 pair first to map and then
pick the t1/m2 pair to map. The Slack Sufferage heuristic
will first calculate the percentage slack for all
task/machine pairs as shown in Table 4. Because the best
machine is the same for both tasks, the task that is more
critical is picked first. In this case, t1 is picked and
mapped to m1. Another calculation of the percentage
slack value for t2 after t1 is mapped indicates that t2 will
miss its primary deadline on both m1 and m2. The task t2
in the mapping from the Slack Sufferage heuristic will
violate its primary deadline, while the Max-Max heuristic
completes both tasks before their primary deadline.

machines tasks

m1 m2
primary
deadline

t1 0.75 −1 160
t2 0.4 −1 10

Table 4: The calculation of the percentage slack
values using Table 3.

The following is a low heterogeneity case where

Slack Sufferage will do better than Max-Max. The ETC
values of tasks have a higher probability of being similar
in low versus high heterogeneity cases. The fitness value
of a task on all machines calculated for the Max-Max

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

heuristic may be similar. In the first phase of the Max-
Max heuristic, the scheme determines the task/machine
pair that has the maximum fitness value. Assume that the
worth is the same on all machines (i.e., the deadline factor
is the same for all machines). This means that when
selecting the task/machine pair in the first phase of Max-
Max only the ETC values will determine the pair. The
calculation of the percentage slack value in the Slack
Sufferage heuristic includes the machine availability time.
Therefore, the best machine chosen by Slack Sufferage
for a task can be different from that of the Max-Max
heuristic. In this example, selecting the machine that
gives a higher percentage slack for the task to map onto
may give the task a higher probability of not violating its
deadline rather than picking the most worth per unit time
machine.

As an example of a low heterogeneity case where
Slack Sufferage does better than Max-Max, assume that
there are two tasks (t1 and t2) with the same priority and
two machines (m1 and m2), where the machine availability
times are 4 and 8 seconds respectively, and that estimated
execution times and deadlines are as shown in Table 5.
Assume that when the primary deadline is not met, the
50% deadline will be met.

machines tasks

m1 m2
primary
deadline

t1 9 4.4 16
t2 5 4 13

Table 5: An example of tasks with low
heterogeneity estimated execution times in
seconds.

The Max-Max heuristic will determine the two

task/machine pairs t1/m2 and t2/m2 in the first phase (the
worth of both tasks on both machines are the same) and
pick the t2/m2 pair first to map. After mapping t2 and the
machine availability time is updated, if t1 is mapped on
m1, it does not violate its primary deadline and if t1 is
mapped on m2, it misses its primary deadline. However,
the fitness value (calculated using the deadline factor of
0.5 for m2) is higher for t1 on m2. Therefore, t1 is mapped
on m2. Slack Sufferage will first calculate the percentage
slack for all task/machine pairs as shown in Table 6. In
this case, t1 is mapped onto m2 and t2 is mapped onto m1.
Slack Sufferage finishes both tasks by their primary
deadline and completes the later task by time 12.4. Max-
Max completes the later task by time 16.4 and t1 misses
its primary deadline.

The Max-Min heuristic is the worst in all four
scenarios and with both types of deadlines. This is
because Max-Min tries to map the maximum in the
second phase of the heuristic (see Subsection 3.2). When
trying to map the difficult tasks (tasks with longer
completion times) earlier, the tasks with short execution

times are waiting for the longer running tasks to finish. In
the time one difficult task finishes, multiple short tasks
could have completed. Assuming the tasks have the same
priority weightings and same deadline factors, completing
multiple short tasks in an interval of time would indicate
higher performance than completing one large task
according to the performance metric in this research. The
Min-Min heuristic, which is a variation of the Max-Min
heuristic, maps the shorter task first and performs better
than Max-Min.

machines tasks

m1 m2
primary
deadline

t1 0.25 0.45 16
t2 0.44 0.2 13

Table 6: The calculation of the percentage slack
values using Table 5.

5. Summary

Eight heuristics were designed, developed, and
simulated using the HC environment presented.
Dynamically arriving tasks with priorities and multiple
deadlines were mapped using the heuristics proposed in
this research.

When loose deadlines were used, the Max-Max
heuristic did the best in the high heterogeneity case and
the Slack Sufferage heuristic was the best in the low
heterogeneity case. When tight deadlines were used, the
performance of all heuristics is degraded. In the high
heterogeneity cases, Max-Max and Slack Sufferage are
still the heuristics of choice, however in the low
heterogeneity cases, Queueing Table (that uses urgency in
its mapping process) performed the best. However, if the
time to produce a solution is a crucial constraint, the
Queueing Table (when using tight deadline) and the
Switching Algorithm (when using loose deadline) are
recommended.

Acknowledgements: The authors thank Shoukat Ali for
his valuable comments.

References

[1] S. Ali, J.-K. Kim, H. J. Siegel, A. A. Maciejewski, Y. Yu,
S. B. Gundala, S. Gertphol, and V. Prasanna, “Greedy
heuristics for resource allocation in dynamic distributed
real-time heterogeneous computing systems,” 2002
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2002),
June 2002, pp. 519-530.

[2] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S.
Ali, “Representing task and machine heterogeneities for
heterogeneous computing systems,” Tamkang Journal of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Science and Engineering, Special 50th Anniversary Issue,
Vol. 3, No. 3, Nov. 2000, pp. 195-207 (invited).

[3] H. Barada, S. M. Sait, and N. Baig, “Task matching and
scheduling in heterogeneous systems using simulated
evolution,” 10th IEEE Heterogeneous Computing
Workshop (HCW 2001), in the CD-ROM “Proceedings of
the 15th International Parallel and Distributed Processing
Symposium (IPDPS 2001),” paper HCW 15, Apr. 2001.

[4] I. Banicescu and V. Velusamy, “Performance of scheduling
scientific applications with adaptive weighted factoring,”
10th IEEE Heterogeneous Computing Workshop (HCW
2001), in the CD-ROM “Proceedings of the 15th
International Parallel and Distributed Processing
Symposium (IPDPS 2001),” paper HCW 06, Apr. 2001.

[5] T. D. Braun, H. J. Siegel, and A. A. Maciejewski,
“Heterogeneous computing: Goals, methods, and open
problems,” 2001 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA 2001), June 2001, pp. 1–12 (invited keynote
paper).

[6] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund,
D. Hensgen, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and Bin Yao, “A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, Vol. 61,
No. 6, June 2001, pp. 810-837.

[7] C. D. Cavanaugh, L. R. Welch, B. A. Shirazi, E. Huh, and
S. Anwar, “Quality of service negotiation for distributed,
dynamic real-time systems,” Parallel and Distributed
Processing, J. Rolim et al. eds., Lecture Notes in Computer
Science, Vol. 1800, pp. 757–765, Springer-Verlag, New
York, NY, 2000.

[8] E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling
Theory, John Wiley & Sons, New York, NY, 1976.

[9] M. M. Eshaghian, ed., Heterogeneous Computing.
Norwood, MA, Artech House, 1996.

[10] D. Fernandez-Baca, “Allocating modules to processors in a
distributed system,” IEEE Transaction on Software
Engineering, Vol. SE-15, No. 11, Nov. 1989, pp. 1427–
1436.

[11] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a
New Computing Infrastructure, San Fransisco, CA,
Morgan Kaufmann, 1999.

[12] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.
Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J.
D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel,
“Scheduling resources in multiuser, heterogeneous,
computing environments with SmartNet,” 7th IEEE
Heterogeneous Computing Workshop (HCW 1998), Mar.
1998, pp. 184–199.

[13] R. F. Freund and H. J. Siegel, “Heterogeneous processing,”
IEEE Computer, Vol. 26, No. 6, June 1993, pp. 13–17.

[14] E. Huh, L. R. Welch, B. A. Shirazi, B. Tjaden, and C. D.
Cavanaugh, “Accommodating QoS prediction in an
adaptive resource management framework,” Parallel and
Distributed Processing, J. Rolim et al. eds., Lecture Notes
in Computer Science, Vol. 1800, pp. 792-799, Springer-
Verlag, New York, NY, 2000.

[15] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical processors,”

Journal of the ACM, Vol. 24, No. 2, Apr. 1977, pp. 280-
289.

[16] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task
mapping algorithms for a distributed heterogeneous
computing environment,” 4th IEEE Heterogeneous
Computing Workshop (HCW ’95), 1995, pp. 30-34.

[17] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of
Parallel and Distributed Computing, Vol. 59, No. 2, Nov.
1999, pp. 107-121.

[18] M. Maheswaran, T. D. Braun, and H. J. Siegel,
“Heterogeneous distributed computing,” Encyclopedia of
Electrical and Electronics Engineering, Vol. 8, J. G.
Webster, ed., pp. 679-690, John Wiley, New York, NY,
1999.

[19] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern
Heuristics, New York, NY, Springer-Verlag, 2000.

[20] K. Ramamritham, J. A. Stankovic, and W. Zhao,
“Distributed scheduling of tasks with deadlines and
resource requirements,” IEEE Transactions on Computers,
Vol. 38, No. 8, Aug. 1989, pp. 1110-1123.

[21] L. R. Welch, B. Ravindran, B. A. Shirazi, and C.
Bruggeman, “Specification and modeling of dynamic,
distributed real-time systems,” 19th IEEE Real-Time
Systems Symposium (RTSS ’98), Dec. 1998, pp. 72-81.

[22] L. R. Welch, B. A. Shirazi, B. Ravindran, and C.
Bruggeman, “DeSiDeRaTa: QoS management technology
for dynamic, scalable, dependable, real-time systems,”
Distributed Computer Control Systems 1998, F. De Paoli
and I. M. MacLeod, eds., pp. 7-12, Kidlington, UK
(Proceedings volume from the 15th International
Federation of Automatic Control (IFAC) Workshop, Sep.
1998), Elsevier Science, 1999.

[23] L. R. Welch and B. A. Shirazi, “A dynamic real-time
benchmark for assessment of QoS and resource
management technology,” 5th IEEE Real-Time Technology
and Applications Symposium (RTAS ’99), June 1999, pp.
36-45.

[24] L. R. Welch, P. V. Werme, B. Ravindran, L. A. Fontenot,
M. W.Masters, D. W. Mills, and B. A. Shirazi, “Adaptive
QoS and resource management using a-posteriori workload
characterizations,” 5th IEEE Real-Time Technology and
Applications Symposium (RTAS ’99), June 1999, pp. 266-
275.

[25] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min:
A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000), May
2000, pp. 375-385.

[26] V. Yarmolenko, J. Duato, D. K. Panda, and P. Sadayappan,
“Characterization and enhancement of dynamic mapping
heuristics for heterogeneous systems,” International
Workshop on Parallel Processing, Aug. 2000, pp. 437-444.

Biographies

Jong-Kook Kim is pursuing a Ph.D. degree from the
School of Electrical and Computer Engineering at Purdue
University, where he has been a Research Assistant since

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

August 1998. Jong-Kook received his M.S. degree in
electrical engineering from Purdue University in May
2000. His Master’s thesis was “A Multi-Dimensional
Performance Measure for Distributed Computing and
Communication Systems.” He received his B.S. degree in
electronic engineering from Korea University, Seoul,
Korea in 1998. His research interests include
heterogeneous distributed computing, parallel computing,
computer architecture, performance measures, resource
management, evolutionary heuristics, and grid
computing. He is a student member of the IEEE, IEEE
Computer Society, and ACM.

Sameer Shivle is a graduate student of Colorado State
University pursuing his M.S. degree in Electrical and
Computer Engineering. He received a B.E. degree in
electrical engineering from the Government College of
Engineering, Pune, India. His fields of interest are
heterogeneous computing, computer architecture and
digital system design.

H. J. Siegel holds the endowed chair position of Abell
Distinguished Professor of Electrical and Computer
Engineering at Colorado State University (CSU), where
he is also a Professor of Computer Science. He is the
Director of the CSU Information Science and Technology
Center (ISTeC). ISTeC a university-wide organization for
promoting, facilitating, and enhancing CSU’s research,
education, and outreach activities pertaining to the design
and innovative application of computer, communication,
and information systems. Prof. Siegel is a Fellow of the
IEEE and a Fellow of the ACM. From 1976 to 2001, he
was a professor in the School of Electrical and Computer
Engineering at Purdue University. He received a B.S.
degree in electrical engineering and a B.S. degree in
management from the Massachusetts Institute of
Technology (MIT), and the M.A., M.S.E., and Ph.D.
degrees from the Department of Electrical Engineering
and Computer Science at Princeton University. He has
co-authored over 300 technical papers. His research
interests include heterogeneous parallel and distributed
computing, communication networks, parallel algorithms,
parallel machine interconnection networks, and
reconfigurable parallel computer systems. He was a
Coeditor-in-Chief of the Journal of Parallel and
Distributed Computing, and has been on the Editorial
Boards of both the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on
Computers. He was Program Chair/Co-Chair of three
major international conferences, General Chair/Co-Chair
of four international conferences, and Chair/Co-Chair of
five workshops. He is currently on the Steering
Committees of five continuing conferences/workshops.
He is a member of the Eta Kappa Nu electrical
engineering honor society, the Sigma Xi science honor

society, and the Upsilon Pi Epsilon computing sciences
honor society.

Anthony A. Maciejewski received the B.S.E.E, M.S.,
and Ph.D. degrees in Electrical Engineering in 1982,
1984, and 1987, respectively, all from The Ohio State
University under the support of an NSF graduate
fellowship. From 1985 to 1986 he was an American
Electronics Association Japan Research Fellow at the
Hitachi Central Research Laboratory in Tokyo, Japan
where he performed work on the development of parallel
processing algorithms for computer graphic imaging.
From 1988 to 2001, he was a Professor of Electrical and
Computer Engineering at Purdue University. In 2001, he
joined Colorado State University as a Professor of
Electrical and Computer Engineering. Prof.
Maciejewski’s primary research interests relate to the
analysis, simulation, and control of robotic systems and
he has co-authored over 100 published technical articles
in these areas. He is an Associate Editor for the IEEE
Transactions on Robotics and Automation, a Regional
Editor for the journal Intelligent Automation and Soft
Computing, and was co-guest editor for a special issue on
“Kinematically Redundant Robots” for the Journal of
Intelligent and Robotic Systems. He serves on the IEEE
Administrative Committee for the Robotics and
Automation Society and was the Program Co-Chair
(1997) and Chair (2002) for the International Conference
on Robotics and Automation, as well as serving as the
Chair and on the Program Committee for numerous other
conferences.

Tracy D. Braun received his Ph.D. in Electrical and
Computer Engineering from the School of Electrical and
Computer Engineering at Purdue University in 2001. In
1997, he received his M.S.E.E. from the School of
Electrical and Computer Engineering at Purdue
University. He received a B.S. in Electrical and Computer
Engineering with Honors and High Distinction from the
University of Iowa in 1995. He is a member of the IEEE,
IEEE Computer Society, and Eta Kappa Nu honorary
society. He has worked in industry at Norand Data
Systems, Silicon Graphics/Cray Research, Noemix, and
GridIQ. Dr. Braun has published more than 20 technical
papers, has presented his work at several international
conferences, and has been a reviewer for numerous
conferences and journals. His research interests include
scheduling, distributed computing, information assurance,
and computer security. He is currently an adjunct faculty
member teaching for the University of Maryland
University College - Asia Division.

Myron Schneider currently works as a hardware design
engineer for Agilent Technologies Manufacturing Test
Business Unit in Loveland, Colorado. He received a B.S.
in Electrical Engineering from the University of Illinois at

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Urbana-Champaign in August 1996 and a Masters of
Electrical Engineering from Colorado State University in
December 2002. His technical interests and work
experience include FPGA/CPLD design, hardware
description languages, high-speed digital system design,
re-configurable computing, computer architecture,
heterogeneous computing, adaptive algorithms, and
automated manufacturing test systems.

Sonja Tideman received the B.S. in Computer Science
from the University of New Mexico. She is currently
pursuing a M.S. degree in Computer Science at Colorado
State University. She is employed by Sandia National
Laboratory in Albuquerque, NM. Her research interests
include computer security, networking, and operating
systems.

Ramakrishna Chitta is a Computer Science major
pursuing his M.S. at Colorado State University, where he
is currently a Graduate Teaching Assistant. He received
his B.Tech degree in Computer Science and Engineering
from Jawaharlal Nehru Technological University,
Hyderabad, India in 2001. His fields of specialization are
compilers and computer architecture. He is a member of
ACM.

Raheleh B. Dilmaghani received her B.S. in Electrical
Engineering from University of Tehran, Iran in 1996
(graduated Supra Cum Laude). Since graduation, she has
acted as a technical lead for the Moshanir Engineering
Consulting Firm. She is currently a Master’s degree
candidate with the Electrical and Computer Engineering
Department at Colorado State University. Her current
interests and areas of research are in computer
networking, security, and heterogeneous computing
environments.

Rohit S. Joshi is pursuing a M.S. degree in Electrical and
Computer Engineering at Colorado State University. He
received his B.S. in Electrical Engineering from
University of Pune, India in May 2000. His research
interests include VLSI system design, microprocessor
based systems, and power systems.

Aditya Kaul is currently pursuing his Ph.D. in Industrial
Engineering and Operations Research at the Harold Inge
Marcus Department of Industrial and Manufacturing
Engineering at The Pennsylvania State University. He
received his Master’s degree in Electrical Engineering
from Colorado State University in August 2002 and B.S.
in Electrical Engineering from Regional Engineering
College, Surat, India in August 2000.

Ashish Sharma is pursuing an M.S.E.E. degree in the
Department of Electrical and Computer Engineering at
Colorado State University. He received a B.E. degree in
Electronics and Power Engineering from Nagpur
University, India in 2000. His research interests include
heterogeneous computing, fault tolerant computing, and
VLSI design.

Siddhartha Sripada is a graduate student in the
Department of Electrical and Computer Engineering at
Colorado State University. He received a B.Tech degree
in Electrical and Electronics Engineering from Nagarjuna
University, India. His research interests include computer
architecture, digital design, and heterogeneous
computing. He has done projects in the fields of digital
system design, heterogeneous computing, and fault
tolerant computing. He is a student member of IEEE and
an active member of the Nagarjuna University alumni.

Praveen Vangari is a graduate student of Colorado State
University pursuing an M.S. degree in Electrical and
Computer Engineering. He received his B.E. degree in the
Vasavi College of Engineering (affiliated to the Osmania
University, Hyderabad) in the field of Electronics and
Communication Engineering. His research interests
include computer architecture, system level hardware
design, and VLSI.

Siva S. Yellampalli received his B.Tech in Electrical and
Electronics Engineering from Jawaharlal Nehru
Technological University in 2001. He is currently
pursuing an M.S. degree in VLSI design at Louisiana
State University. His research interests include IDDQ
testing in nanometer technology, mixed signal design, and
computer architecture.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

