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by equalization with no need to transfer the already computed parts
of the list from the slaves to the master processor.

Both histogram list calculation and equalization algorithms have
been implemented on a TELMAT T-NODE machine with 4, 8, or
16 transputers T800. In the case of 16 transputers, the speedup
obtained over the serial computation ranges from 4.01 (L = 64)
to 14.87 (L = 256). As expected, the speedup is best for 256
levels/component because the computational load is much larger than
the communication load between processors. The same observations
hold for parallel equalization using the color histogram list, where
a speedup of 10.15 has been obtained for L = 256 and a farm of
16 transputers.
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A Fast Learning Algorithm for Gabor Transformation

Ayman Ibrahim and Mahmood R. Azimi-Sadjadi

Abstract— An adaptive learning approach for the computation of
the coefficients of the generalized nonorthogonal 2-D Gabor transform
representation is introduced in this correspondence. The algorithm uses
a recursive least squares (RLS) type algorithm. The aim is to achieve
minimum mean squared error for the reconstructed image from the set of
the Gabor coefficients. The proposed RLS learning offers better accuracy
and faster convergence behavior when compared with the least mean
squares (LMS)-based algorithms. Applications of this scheme in image
data reduction are also demonstrated.

I. INTRODUCTION

The Gabor transform [1]-[11] is viewed as the optimum case of the
short time Fourier transform (STFT) in which the window function
is chosen to have a Gaussian shape. This choice of the window
function in the 2-D Gabor elementary functions guarantees the lower
bound of the joint uncertainty, i.e., the 2-D Heisenberg inequality,
in the two conjoint spatial-frequency domains. The Gabor analysis is
based on projecting a given signal/image onto a family of shifted
and modulated Gaussian window functions, which are called the
“Gabor elementary functions” or the “Gabor basis functions,” and the
corresponding projection coefficients are called the “Gabor transform
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coefficients.” The use of such a transform is motivated by the fact that
Gabor elementary functions have optimal localization property [2],
[3] in the joint time (or spatial) and frequency domains. This leads to
optimal extraction of the textural information from the images, which
is an important feature for pattern recognition, segmentation, and
image analysis applications. Beside the optimal localization property.
other benefits of the Gabor transform include compatibility with
mammalian visual systems [2], [3] and energy packing capability,
which leads to lower entropy in the transform domain [4]. The
deficiency of the Gabor transform, however, is that the elementary
functions are not orthogonal. As a result, there is no straightforward
method available for extracting these transform coefficients. If they
were orthogonal, the extraction of these coefficients could have been
done easily by the simple inner product formula [4].

Many approaches have been proposed to find a method for extract-
ing the Gabor transform coefficients [4]-[10]. Bastiaan [5] derived
an analytic solution for the 1-D case based on the expansion onto
another set of discrete functions that are biorthogonal to the Gaussian
elementary functions. This method was extended to the 2-D case
by Porat and Zeevi [7]. Daugman [4] proposed a three-layer neural
network for extracting the Gabor coefficients. The learning of the
neurons is accomplished using a least mean squares (LMS) type
algorithm [11]. Teuner and Hosticka [8] presented an algorithm that
computes the Gabor transform coefficients using the complex LMS
algorithm. Recently, Wang et al. [9] proposed a method to calculate
the Gabor transform coefficients based on the biorthogonal functions.
They used the FFT algorithm for the computation of the Gabor
transform coefficients. Yeo [10] proposed a method to calculate the
coefficients by multiplying a constant complex matrix and the inverse
of a sparse real matrix.

Generally, these methods are based on either finding an analytical
solution [5]-[7], [9], [10] or solving a set of normal equations
using the LMS algorithm [4], [8]. The analytical solution requires
a significant number of computations, and further, the solution may
never exist. On the other hand, the main shortcoming of the LMS-
based approaches is that the choice of the step size results in
a tradeoff between accuracy and speed of convergence [11]. The
primary objective of this correspondence is to find a solution to these
problems by introducing an adaptive learning for the Gabor transform
computation. The proposed algorithm uses the recursive least squares
(RLS) learning algorithm instead of the LMS, which converges to an
optimal solution in only few iterations. After convergence is achieved,
Gabor transform coefficients can be extracted at the weights of the
adaptive system. This RLS-based learning algorithm offers better
accuracy and faster convergence when compared with the LMS-
based algorithm. In addition, it does not have the accuracy-speed
trade-off problems of the LMS method and provides better numerical
stability compared with the analytical solutions. Simulation results
are presented that demonstrate the applications of this method for
image dimensionality reduction areas.

II. TwO-DIMENSIONAL GABOR
TRANSFORMATION USING RLS LEARNING RULE

The goal of the 2-D Gabor transform is to represent a digital image
f(z,y), where x and y represent spatial coordinates, either exactly
or in some optimal sense (e.g., minimizing the mean squared error
between the reconstructed image and the original image) by projecting
it onto a set of 2-D Gabor elementary functions. For a finite extent
image f(z,y),z=0,1...,X—1; y=0,1,...,Y — 1 partitioned
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into &' x L nonoverlapping lattices of size M x /N where it is assumed
that X = KM and Y = LN, the approximated or reconstructed
image f(z,y) can be written as

K—-1L-1M-1N-1

2.2 2 D amureGimnra(:y).

m=0n=0 r=0 s=0

(z,y) = ®
In this representation, there are X' M x LN coefficients @mnrs’s that
have a symmetry property, i.e., the real part has an even symmetry,
and the imaginary part has an odd symmetry. Thus, only half of
the coefficients will be sufficient for the image representation. Each
Gabor elementary function Gmnrs’s in (1) constitutes a sine and
cosine wave modulated by a Gaussian window, i.e.

|) @

Cranre(@,y) = w(hi () = mM, ha(y) — n )
hi(r)h ha(s)h
- exp (2#]’ [ 1(T])\/‘,1(m> 2<$)\/ 20
where hy(z) 1= z — M=1 and hy(2) := 2 — AT_I are introduced to
center the Gaussian window at the center of the lattices; parameters
M and N define the spatial distance between the centers of the
elementary functions, which are usually called the Gabor logons [1],
and w(z,y) is the Gaussian window function of the form

(V20) % (v/28)% - expl—n(a®a® + 8%P)].  (3)

The parameters « and § in w(z,y) define the scaling of the Gaussian
in the spatial domain along x and y coordinates, respectively. The
values of these parameters are typically chosen to be the same, in
which case, we get

w(z,y) =

w(z,y) = (V20) - exp[-ma® (2 +4°)]. @

From (4) and (2), it can clearly be seen that the Gabor elemen-
tary functions are parameterized for an invariant Gaussian window,
which is positioned in fully overlapping Cartesian lattice location
{Zm,ym} = {mM,nN}, where (m,n) is the index for the lattice.
The complex exponential that modulates these overlapping Gaussian
are parameterized for the Cartesian lattice of 2-D spatial frequencies:
{ur,vs} = {r/M,s/N} for integer increments of (r,s) spanning
their range inside each lattice [—~(M — 1)/2,(M — 1)/2],[-(N
1)/2,(N — 1)/2], respectively.

Note that for fixed values of M and NV, the choice of the Gaussian
scale o determines the amount of effective overlap of the Gabor
elementary functions across the neighboring lattice locations. It also
determines the required support size (number of pixels) of each
Gabor elementary function so that the truncation of the Gaussian tail
produces negligible error. Therefore, if the truncation of the Gaussian
is done outside each lattice the value of « should be chosen so that
most of the energy of the Gaussian window lies inside the lattice.
It must also be pointed out that since the image is partitioned into
lattices and the Gabor elementary functions for each lattice are all
centered, only translations that are equal to multiples of the lattice
dimensions will result in a simple shifting relation of the transform
coefficients.

To optimally represent a given pixel in the image by projecting it
onto a chosen set of Gabor elementary functions, the mean squared
error (MSE)

= Z[f z,9) = f(z, p))". )

is minimized with respect to all the coefficients. This gives the

following normal equation [4]:
Z Z ]E(l’- y)G:nnrs(x’ y)
z oy

Do F@y)Granrs(ey) =
x oy
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which can be solved by LMS or RLS-type methods [11], taking into
account the expression (1) for f (z,9).
To formulate the problem in the context of the RLS learning
algorithm, let us rewrite (1) as
K—1L—1

Z Z fmn(x’y)

m=0 n=0

fla,y) = (72)

where fmn (z,y) is the Gabor transform representation of lattice m, n
ie.
M—-1N-1

Z Z Gmnrs mnrs(x y)

r=0 s=0

frnn(2,y) (70)

Now, assuming that the Gaussian windows are truncated outside each
lattice, then the above equation becomes

Fonn(2,y)

M—-1N-—-1

= Z Z amnrsGmnrs(xvy)

r=0 s=0

forz € [mM,mM+ M —1], y €

=0 otherwise.

[nN,nN + N — 1]

®
In this case, the optimal values of the Gabor transform coefficients
amnrs S for each lattice can be obtained independently by minimizing
the “local” MSE

1 R
Epn = N xz;[fmn(%y) — fmn(z, y)]2 ©®

within each lattice m, n. This gives the following “local” complex
normal equation

> Frn(@y)Grnnrs(@,9) = Y frun (@,9)Grnrs (2,9). (10)
.y Y

An adaptive structure as shown in Fig. 1 can be constructed to
solve this normal equation and extract the Gabor coefficients in each
lattice at its weights. The input data set to this adaptive system

consists of the Gabor elementary functions at each pixel within the
lattice, i.e.

Umn(-'l", y)
= [G:nnoo(I» y)G:nnOI(‘rv y) G

where superscript ‘H’ denotes complex conjugate transpose. The
desired output is the corresponding pixel value of the original image,
i.e., fmn (2, y). If the associated weight vector of the adaptive system
is defined by

rni—1,n—1 (2, )7 (11a)

wH, = [Wmnoo Wmnot Wenn,M—1,N—1] (11b)
then the output of the adaptive system for each pixel is
M—1N-1
fmn(ws y) = Z Z wmnrsGmnrs(x7y)
r=0 s=0
=WH, Upn(2,9). (12)

The error signal defined by emn(2,¥y) := fmn(z,y) — Foun (2,7 is
used to drive the adaptation process.

Owing to the fact that the computations of the Gabor coefficients in
each lattice are performed independently, we drop the lattice indices
m,n for the sake of simplicity in notation. Moreover, in the RLS
equations given below, the iteration index k € [1, M N] is obtained
by mapping the 2-D spatial indices (x, y) inside each lattice in row-
wise fashion, i.e., k = Nz+y+1;z € [0, M —1];y € [0, N—1]. The
RLS algorithm [11], [12] starts with some chosen initial conditions
and then uses the information contained in the new data samples to
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Fig. 1. Adaptive filter structure.

update the weights. The algorithm starts by initializing P(0) =671,
where § is a very small positive constant (§ = 10™*), and W(0) = 0.

Then, iterate
AT Pk - D)U(k)

K(k) = T3=oa(m Pk~ )T (k) (132)
e(k) = d(k) — W (k — 1)U (k) (13b)
W(k) = W(k —1) + K(k)e* (k) (13¢)
P(k)=A"'Pk—1) - AT K(&U™ (B)P(k—1) (13d)
where '
U(k) input data vector at iteration &k
d(k)  desired output (i.e., Fran (@, 9))
W (k) estimate of the weight vector at iteration k

A forgetting factor 0 < A <1 (in our case, A = 1, ie,
infinite memory)

Kalman gain vector

inverse of data covariance matrix.

K(k)

P(k)

Upon the completion of the training, the weights converge to the
2-D Gabor coefficients @mnrs’S, and thus, fmn(m, y) will approach
fmn (2, y). The training is performed by consecutive presentation of
the training data set to the adaptive system and updating the weights
according to the RLS equations. An epoch is completed when all
the training data k € [1, M N] are presented to the adaptive system.
This process is repeated for a number of epochs until the weights
converge to within an acceptable solution. The training for all the
other lattices can be done in parallel, even though within each lattice,
the coefficient are computed sequentially.

MOI. SIMULATION RESULTS FOR IMAGE DATA REDUCTION

In this section, application of the proposed method was studied in
an image data reduction example. The RLS algorithm of Section II
was used to extract the Gabor transform coefficients of the “Lena”
image in Fig. 2. This image is of size 128 x 128 with 256 gray
levels. The entropy associated with this image was measured from the
histogram to be 7.6. The image was partitioned into nonoverlapping
lattices of size M x N, and the RLS learning was applied to extract
the Gabor transform coefficients within each lattice. Simulations were
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Fig. 2. Original ‘Lena’ image 128 x 128.

done for several lattice sizes in order to study the effects on the
convergence rate as well as on the entropy. Moreover, the effects
of changing the scale of the Gaussian window a on the speed of
convergence, on the existence of solution, and on the entropy were
also studied.

For a lattice size of 16 X 16 and the Gaussian parameter o = .065,
2-D Gabor transform coefficients were extracted using both the LMS
and RLS algorithms. It was found that about 78% of the coefficients
were concentrated in a small range [0, 3]. The histogram of the
magnitude of the 2-D Gabor transform coefficients is shown in Fig. 3.
As can be seen, this histogram is quite compact. The entropy of these
coefficients was found to be 2.6. The Gabor transform coefficients
were linearly quantized to 8 b and plotted in Fig. 4 as an image
of (r, s), i.e., the frequency variables, centered at that spatial lattice
position, with 256 gray levels. It was interesting to note that the RLS
algorithm converged in only two epochs. The reconstructed image
based on the entire extracted transform coefficients is shown in Fig. 5.
The signal-to-noise ratio (SNR) for this image was found to be 35.7
dB. The same simulations were repeated using the LMS learning
with a learning factor or step size of p = 0.35. The network took
165 epochs to converge to approximately the same MSE value as in
the RLS method. The reconstructed image is shown in Fig. 6. The
SNR for this image was measured to be 25.9 dB. Increasing the
learning factor to g = 0.4 resulted in convergence after 150 epochs,
i.e., faster convergence, but the results were less accurate comparing
to the previous case.

For fixed lattice size, the effect of changing ¢, i.e., the Gaussian
scale on the performance of the RLS and the LMS algorithms was
studied next. For the LMS algorithm, decreasing o to 0.05 with the
same learning factor ¢ = 0.35 and lattice size 16 X 16 made the
network converge in 120 epochs in contrast to 165 epochs when o
was 0.065. This is due to the fact that as « decreases, the elementary
functions becomie nearly orthogonal as they get closer to the FT basis
functions. As a result, the network takes fewer number of epochs to
converge. For the RLS learning, however, the network converged in
only two epochs, irrespective of the choice of the value of o, ie.,
the performance of this algorithm is not sensitive to the choice of
the parameter o because RLS utilizes information contained in the
input data. The entropy of the extrated coefficients was found to be
2.56.

The effect of varying o on the compactness of the coefficients was
also studied. As a decreases, the coefficients become more compact,
and the ability of the transform to capture the textural information
from the images decreases as the spatial resolution deteriorates.
Increasing «, however, improves the spatial resolution and, hence, the
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Fig. 6. Reconstructed image using LMS for 16 x 16 lattice (SNR = 25.9
0 50 100 150 200 250 00 dB).

Fig. 3. Histogram of Gabor transform coefficients for 16 x 16 lattice.
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Fig. 7. Reconstructed image using RLS for 11 x 11 lattice.

coefficients in 120 epochs, as opposed to the RLS method, which still
converged in only two epochs. The histogram of the magnitude of the
2-D Gabor transform coefficients was not as compact as in the 16 x 16
lattice size case. This is due to the fact that decreasing the lattice size
will allow more efficient analysis of the image in the spatial domain
as it captures more information. From the resultant histogram of the
magnitude of the Gabor transform coefficients obtained for this case,
the entropy was found to be 2.7. Decreasing the lattice size to 11 x 11
reduced the computational time compared with the 16 x 16 case. The
reconstructed image based on these coefficients is shown in Fig. 7.
Owing to the fact that the energy is contained in few coefficients,
the image reconstruction can be done based on only the high energy
coefficients. Fig. 8 shows the reconstructed image based on only 40%
or actually 20% of the coefficients because of the symmetry property.
The reconstructed image (SNR = 9.6 dB) still has an acceptable
visual appearance.

Fig. 5. Reconstructed image using RLS for 16 x 16 lattice. (SNR = 35.7

dB).
IV. CoNcLusioN

ability of the transform to capture the textural information becomes This correspondence introduces an RLS-based learning scheme for

better. extraction of 2-D Gabor transform coefficients. In this approach, the

The effect of changing the lattice size was studied next. For image is divided into nonoverlapping lattices in which the 2-D Gabor
the lattice cell dimension of 11 x 11, the original “Lena” image transform coefficients are extracted. This method does not suffer from
subsampled to 154 x 154 pixels was used. To assure that same speed-accuracy tradeoff as with the LMS-type algorithms. Simulation
amount of energy is contained in the truncated Gaussian window, results for image data reduction showed that the RLS-based algorithm
the Gaussian scale of o = 0.095 was used. The results showed that converges to the Gabor transform coefficients in only two epochs,
the LMS-based algorithm (same u = 0.35) converged to the Gabor  irrespective of the choices of parameters such as the lattice size and/or
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Fig. 8. Reconstructed image based on 40% of the Gabor coefficients (SNR
= 9.6 dB).

the Gaussian scale. On the contrary, the performance of the LMS-
based scheme was shown to be very sensitive to the choices of these
parameters.
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Separation of Image Parts Using
2-D Parallel Form Recursive Filters

Radhika Sivaramakrishna

Abstract—This correspondence deals with a new technique to separate
objects or image parts in a composite jmage. A parallel form extension of a
2-D Steiglitz—-McBride method is applied to the discrete cosine transform
(DCT) of the image containing the objects that are to be separated. The
obtained parallel form is the sum of several filters or systems, where the
impulse response of each filter corresponds to the DCT of one object in
the original image. Preliminary results on an image with two objects show
that the algorithm works well, even in the case where one object occludes
another as well as in the case of moderate noise.

1. INTRODUCTION

Parallel form realizations have been reported in the literature for
1-D signals [1], [2] and have the following advantages:-

1) Various components of the signal can be effectively separated
from one another.

Coefficient sensitivities of the parallel and cascade forms are
much lower than that for the direct form.

It is simpler to monitor stabilities for the parallel and cascade
forms than for the direct form because they are of lower order.
The number of parameters to be estimated is identical to or
less than that in the direct form, and thus, the computational
requirements are approximately of the same order.

5) The techniques could be well adapted for a parallel machine.

In [3], Murthy and Prasad, have used a parallel form model to
delineate P, QRS, and T wave components of the electrocardiogram
signal by expressing the model for the discrete cosine transform
(DCT) of the entire signal as a sum of models for the DCT
of each individual component. The model is derived using the
Steiglitz-McBride method {4]. They have shown that the DCT of
a biphasic function in 1-D can be characterized by two poles and
two zeros. A signal can be expressed as the sum of several biphasic
functions with the DCT of each being expressed with a model of order
(2,2). They have also shown that the location of peaks in the time
signal is exactly related to the angle of the poles in the z domain. The
same results can be carried over to 2-D. Hence, a similar technique
can be adopted to separate 2-D biphasic functions. That is the focus of
this paper, which proposes an extension to their method to separate
objects in 2-D.

Murthy and Prasad claim that modeling the DCT of the signal,
rather than the signal itself, reduces the model order considerably
and quote that as a reason to use the DCT. However, we believe
that, in 2-D at least, this reasoning does not seem to be appropriate
and instead propound the following argument to model the DCT: In
2-D, it is not always possible to characterize objects in an image with
2D rational models, but the DCT of an object or image part could
be characterized either by a 2-D rational model or a sum of such
models. This is because of the property of energy compaction of the
DCT. The 2-D DCT of any arbitrary image has significant terms only
in the first few rows or columns with the number of significant rows

2)
3)

4)
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