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ABSTRACT 

 

DIFFERENTIAL DESENSITIZATION OF PRE- AND POSTSYNAPTIC MU OPIOID 

RECEPTORS REGULATING PROOPIOMELANOCORTIN NEURONS OF THE ARCUATE 

NUCLEUS 

 

 The mu opioid receptor (MOR) is the primary target of powerful opiate analgesics such 

as morphine and codeine. Repeated use of opiates, as may occur in patients with chronic pain, 

leads to the development of tolerance to the drugs’ analgesic effects and may result in the 

development of dependence. This reduces the effectiveness of opiate-based treatments over 

extended periods of time, and can result in withdrawal when such a treatment is terminated. 

Many years of study have been dedicated to understanding the processes that lead to the 

development of tolerance, as an understanding of the mechanisms underlying tolerance could 

lead the development of novel therapeutic strategies that prolong the efficacy of opioid-based 

pain treatments. One particular area of focus has been on acute desensitization of the MOR.  

Studies of acute desensitization, defined as the loss of receptor function that occurs in 

the seconds to minutes following activation with an agonist, largely focus on the attenuation of 

desensitization of desensitization-susceptible MORs found on the somato-dendritic region of 

neurons in various parts of the nervous system. In these studies, we will focus on characterizing 

desensitization-resistant MORs located on the axon terminal region of GABAergic neurons that 

form synapses with hypothalamic proopiomelanocortin (POMC) neurons. Activation of 

presynaptic MORs, as well as other Gαi/o-coupled GPCRs located on presynaptic terminals, 

results in an inhibition of GABA release, which causes a subsequent inhibition of the amplitude 

or frequency of inhibitory postsynaptic currents (IPSCs). Our findings demonstrate that apparent 

resistance to desensitization by presynaptic MORs, measured as a sustained inhibition of IPSC 

amplitude or frequency, cannot be explained by a large receptor reserve, nor can 
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desensitization become detectable after chronic treatment with the opiate morphine. It was also 

found that resistance to desensitization is a common, but not universal, property of Gαi/o-

coupled G-protein coupled receptors located on presynaptic terminals. Comparison of 

desensitization-resistant MORs with desensitization-susceptible GABAB receptors revealed that 

both populations of receptors have similar receptor-effector coupling, and that resistance or 

susceptibility to desensitization is unaffected by experimental conditions that isolate either Ca2+-

independent spontaneous release or Ca2+-dependent synchronous release. These findings 

provide evidence that resistance or susceptibility to desensitization is not dependent on 

particular receptor-effector coupling, and is likely receptor delimited. 

The previous findings suggest that resistance to desensitization by the MOR may be 

conferred by altered physical properties of presynaptic receptors relative to their postsynaptic 

counterparts. A likely way that these physical differences could manifest would be through 

differential mobility of pre- and postsynaptic receptors. To provide proof of principle that such 

measurements can be made, single-particle tracking of MORs containing an N-terminal FLAG 

tag was performed the AtT20 cell line. MOR diffusion was measured before and after activation 

with a maximal, desensitizing concentration of the full MOR agonist DAMGO. In the absence of 

DAMGO, FLAG-MORs could be found in either a mobile or immobile state. After ten minutes in 

the presence of DAMGO the fraction of immobile FLAG-MORs was increased, but both mobile 

and immobile receptors were still present. Because ten minutes in a maximal concentration of 

DAMGO is sufficient to cause MOR desensitization to reach a maximum and for the 

internalization of most desensitized receptors to occur, the findings demonstrate that steady-

state signaling of the MOR may be maintained by both mobile and immobile receptors. These 

findings provide a basis for future studies comparing the mobility of pre- and postsynaptic MORs 

in neurons, as well as determining the role of mobile and immobile MORs in signaling pathways 

recruited by the receptor. 
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Chapter 1: Introduction 

 

 G-protein coupled receptors (GPCRs) comprise a large family of receptors that play a 

critical role in a diverse range of physiological functions. These functions include, but are not 

limited to, modulation of the cardiovascular system, digestive system, immune system, and 

nervous system (Heng et al., 2013). GPCRs mediate cellular responses to a wide variety of 

endogenous stimuli, such as neurotransmitters and hormones, as well as exogenous stimuli, 

such as odorants and light. This diverse set of functions has led to GPCRs becoming a popular 

target for pharmaceutical interventions. Perhaps popular is an understatement since, 

collectively, GPCRs are targeted by approximately 40% of pharmaceuticals on the market 

(Overington et al., 2006; Santos et al., 2017).  

 One sub-family of GPCR that has been of particular interest as a drug target is the opioid 

receptor family. Activation of opioid receptors, and the mu opioid receptor (MOR) in particular, 

results in robust analgesia. This has led to opioid agonists being widely prescribed to treat both 

acute and chronic pain. However, repeated administration of opioid agonists results in the 

development of tolerance to their analgesic effects, resulting in a diminishing effectiveness of 

these drugs during continued usage. In addition to analgesia, use of MOR agonists is known to 

result in a sense of euphoria in many individuals. The analgesic and euphoric effects of these 

drugs produce a high potential for abuse, which can result in repeated bouts of opioid use and 

subsequent development of tolerance. Tolerance to the analgesic and euphoric effects of 

opioids results in increasing dosages, and eventually overdose. This is a rising problem in the 

United States, and coincides with an increase in prescriptions of opioid based medications 

(Chakravarthy et al., 2012).  

 This combination of therapeutic utility and abuse liability have led to MOR agonists being 

heavily studied at the clinical, behavioral, anatomic, and cellular levels. Decades of work have 

pointed to the development of tolerance as being a process that occurs at the cellular level, due 
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to signaling cascades that are activated during prolonged continuous or repeated MOR 

activation (Williams et al., 2013). It is also thought that desensitization of the MOR is an early 

step in the development of tolerance to opioid agonists (Williams et al., 2001; Dang and 

Christie, 2012; Williams et al., 2013). More recent work has shown that the response of these 

receptors to prolonged agonist treatment may vary not only on the cellular level, but within 

subcellular compartments (Fyfe et al., 2010). The studies presented here will address potential 

mechanisms underlying compartment selective resistance to desensitization by the MOR.  

1.1 Discovery of G-protein Coupled Receptors  

 For over a century physiologists and pharmacologists have understood that certain 

chemical compounds, which we now know are selective agonists of cellular receptors, exerted 

their effects through mechanisms that occur on the cellular level (Langley, 1905). However, the 

existence of receptors that were specifically targeted by these compounds was doubted, and 

many viewed the concept of receptors simply as a heuristic tool (Dale, 1943; Ahlquist, 1973). 

This began to change when in the late 1960s groups were able to apply the concepts used in 

insulin-detecting radioimmunoassays (Yalow and Berson, 1960) to peptide hormones and their 

putative cellular receptors (Roth, 1973). Radioligand binding was first used to demonstrate 

selective binding of adrenocorticotropic hormone (ACTH) to its receptor (Lefkowitz et al., 1970). 

This study was the first of many that would demonstrate that the concept of receptors was more 

than just a useful heuristic model, and marked the beginning of the modern field of receptor 

physiology and pharmacology (Lefkowitz, 2013). 

 Radioligand binding studies were subsequently used to identify a host of receptors 

(Roth, 1973; Lefkowitz, 2013), including the putative opiate receptors (Pert and Snyder, 1973). 

In the decade following the identification of receptors via radioligand binding, work began to 

purify and clone these receptors. Early purification techniques required high concentration of 

protein to be successful, and thus only receptors with fortuitously high concentrations found in 

nature, such as rhodopsin (Irreverre et al., 1969) or the nicotinic acetylcholine receptor (Olsen et 
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al., 1972), were purified. Purification and reconstitution of a low density hormone receptor was 

first achieved with the β-adrenergic receptor (Caron et al., 1979; Cerione et al., 1983; Cerione et 

al., 1984). The receptor was subsequently cloned, revealing that it possessed the seven 

transmembrane regions and an unexpected homology to the previously characterized light-

sensitive protein rhodopsin (Dixon et al., 1986). The seven transmembrane structure of these 

proteins would soon be known as a defining feature of G-protein coupled receptors (Dohlman et 

al., 1987).  

1.2 Opioid Receptor Structure and Function 

 Like the adrenergic receptors, the opioid receptors had a variety of known agonists and 

antagonists with varying properties that were heavily studied due to their clinical significance 

(Portoghese, 1966; Dole, 1970; Creese and Snyder, 1975). Also like the adrenergic receptors, 

the opioid receptors are Class A (rhodopsin-like) GPCRs. The homology between the 

adrenergic and opioid receptors allowed early work on the structure and function of adrenergic 

receptors to lay the groundwork for similar studies on the opioid receptors. After the cloning of 

the opioid receptors (Evans et al., 1992; Kieffer et al., 1992; Meng et al., 1993; Thompson et al., 

1993), the extracellular loops and core of the opioid receptors were determined to be critical for 

ligand binding, and conferring ligand selectivity. This was done via a combination of site-directed 

mutagenesis (Surratt et al., 1994; Bot et al., 1998; Xu et al., 1999; Chavkin et al., 2001) and 

through the construction of chimeric opioid receptors (Meng et al., 1995; Onogi et al., 1995; Xue 

et al., 1995; Chavkin et al., 2001). This mirrored the approach used to study the α and β 

adrenergic receptors (Lefkowitz, 2013). Mutagenesis studies also identified the intracellular 

loops of the opioid receptors as being critical for G-protein interactions, and the C-terminus, 

along with the intracellular loops, as being important sites of phosphorylation (Chavkin et al., 

2001). Mutations in these sites also demonstrated that phosphorylation of a given site is 

dependent on the particular agonist used to activate the receptor, and that different sites can  
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modulate receptor desensitization and internalization in an agonist dependent manner (Law et 

al., 2000a; Chavkin et al., 2001; Williams et al., 2013).  

 Although early pharmacological experiments hinted that a plethora of opioid receptor 

subtypes may exist (Goldstein and James, 1984), three opioid receptors (µ [MOR] (Thompson 

et al., 1993), δ [DOR] (Evans et al., 1992; Kieffer et al., 1992), and κ [KOR] (Meng et al., 1993)) 

have been identified and cloned. A fourth opioid-like receptor, the nociceptin receptor (NOP), 

that is closely related to the opioid receptors evolutionarily but demonstrates very low affinity to 

opioid receptor agonists and antagonists, has also been identified (Fukuda et al., 1994). The 

amino acid sequences of these proteins show a high degree of homology, with even the most 

divergent of the sequences still bearing 67% homology (Knapp et al., 1995). This homology in 

the sequences of the opioid receptor family results in a large degree of overlap in their ability to 

bind agonists and antagonists, with the exception of the NOP. For example, the endogenous 

opioid peptide β-endorphin is a potent agonist of the MOR, and also of the MOR’s closest 

relative the DOR. The MOR can also be activated by the endogenous peptide dynoprhin A, 

which is the primary endogenous ligand of the more distantly related KOR (Williams et al., 

2001). In fact, opioid receptors are defined in part by their ability to bind the nonselective opioid 

receptor antagonist naloxone, providing evidence that the close sequence homology of the 

opioid receptors results in close structural homology between the receptors (Knapp et al., 1995). 

Solving the crystal structures of the opioid receptors in recent years has confirmed that strong 

structural homology exists within this family of receptors (Granier et al., 2012; Manglik et al., 

2012; Thompson et al., 2012; Wu et al., 2012).  

 Opioid receptors exert their cellular functions, at least in part, through activation of the 

canonical Gαi/o G-protein pathway (Fig. 1.1) (Burns et al., 1983; Kurose et al., 1983; Connor and 

Christie, 1999). In short, the receptor recruits Gαi/o-GDP, along with an associated βγ subunit, 

after binding an agonist. GDP is then exchanged for GTP, which allows the Gα and Gβγ 

subunits exert their effects on the cell. For the Gαi/o pathway these effects could include 
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inhibition of adenylyl cyclase (Collier and Roy, 1974), inhibition of Ca2+ channels (Gross and 

Macdonald, 1987), activation of K+ channels (North et al., 1987), or direct inhibition of vesicular 

release (Capogna et al., 1993). In general, the overall effect of activation of Gαi/o-coupled 

receptors in neurons is to inhibit the transmission of information through a neuron, whether that 

occurs through hyperpolarization and inhibition of firing at the somato-dendritic region of a 

neuron or through the inhibition of neurotransmitter release at an axon terminal. However, this 

generalization may be simplistic in certain cases. For example, the inhibition of glutamate  

 

Figure 1.2 Mu opioid receptor signaling. A) Binding of an agonist to the MOR causes a 
conformational change (B) that allows the receptor to recruit G-proteins. C) The activated G-protein 
subunits then acutely modulate neuronal excitability by activating K+ channels and inhibiting voltage-
dependent Ca2+ channels and adenylyl cyclase. Activation of the receptor also results in (D) 
phosphorylation by receptor kinases and (E) subsequent β-arrestin binding. F) β-arrestin binding allows 
the receptor to be internalized, but is also important in (G) the recruitment of G-protein-independent 
signaling pathways by the MOR. The recruitment of the these signaling pathways by the β-arrestin 
bound receptor are likely important in long-term changes in cellular regulation induced by the MOR via 
transcriptional regulation. 
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release from presynaptic terminals can alter the firing patterns of downstream neurons without 

causing an overall inhibition of their activity (Gerachshenko et al., 2009).  

 Opioid receptors also affect cellular function in more prolonged ways than the relatively 

acute effects produced by activation of the Gαi/o-coupled pathway (Fig. 1.1). Activation of opioid 

receptors can result in phosphorylation of the receptor by multiple kinases which, as mentioned 

above, are differentially recruited by different agonists of the receptor (Williams et al., 2013). For 

example, G-protein-coupled receptor kinases (GRKs) are known to phosphorylate the 

intracellular loops and C-terminals of opioid receptors after receptor activation with a full agonist 

such as [Met5]-Enkephalin (ME). This in turn recruits β-arrestin (βarr) binding, which promotes 

internalization, as well as recruitment of extracellular signal-regulated kinases (ERKs). ERKs 

can then  act on various downstream targets including regulators of G-protein singaling (RGS 

proteins) and transcription factors (Williams et al., 2013). Thus, activation of opioid receptors 

can have long lasting effects on cellular function outside of inhibiting neuronal firing or 

neurotransmitter release.  

1.3 Tolerance, Dependence, and Addiction to Opioids 

Tolerance to opioids refers to the reduced response to opioid agonists exhibited after 

prolonged (hours, days, or weeks) exposure to opioid agonists. Tolerance manifests as a 

reduced sensitivity to submaximal concentrations of opioid agonists, and sometimes as a 

reduction in the maximal response to opioids (Dang and Christie, 2012; Williams et al., 2013). 

The decreased sensitivity to opioid agonists after the onset of tolerance means that larger doses 

of agonist are required to achieve the desired effect of the drug, whether that effect is analgesic, 

which is the intended effect of prescribed opioids, or euphoric, anxiolytic or anti-depressive. 

Prolonged use of opioids results not only in tolerance to opioids, but also in the development of 

dependence. Dependence is the result of a combination of cellular and circuit level adaptations  
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brought about by continuous activation of the opioid receptors (Williams et al., 2001; Dang and 

Christie, 2012; Williams et al., 2013), as well as circuit level adaptations that result from the 

euphoric, anxiolytic, and anti-depressive effects of the drugs (Evans and Cahill, 2016). 

 A notable property of opioid tolerance is that different effects of opioid drugs develop 

tolerance over different time courses. Of particular concern are opioid-induced respiratory 

depression and constipation, which develop tolerance more slowly than the analgesic effects of 

the drugs (Ling et al., 1989). The differential development of tolerance between the desired 

effects of opioids and their negative side effects can therefore lead to overdose during 

continuous use (White and Irvine, 1999). However, cessation of opioid use results in withdrawal, 

which causes a host of adverse effects such as sweating, diarrhea, shaking, hyperalgesia, and 

dysphoria (Benyamin et al., 2008; Evans and Cahill, 2016). This creates a dilemma for users of 

opioids where cessation of use will result in significant physical and psychological distress, but 

continued use may result in overdose. This complicated relationship between the desirable and 

undesirable effects of opioids, and the changes in brain circuitry that these effects induce, leads 

to the cycles of use seen in many addicts (Evans and Cahill, 2016). 

Opioid receptors exert their effects on many different regions of the nervous system, 

hence the wide range of side effects produced by opioid treatment (Laschka et al., 1974). Circuit 

level adaptations in these various regions certainly play a role in the development and 

behavioral manifestations of opioid tolerance, dependence, and addiction (Christie, 2008; Evans 

and Cahill, 2016). However, all of these broad behavioral effects begin with activation of the 

opioid receptors, and in particular the MOR. Thus, the circuit level adaptations that result from 

continued opioid use are thought to result from cellular adaptations, which in turn originate from 

signaling events induced by MOR activation. An early step in the development of these cellular 

adaptations is desensitization of the MOR itself (Williams et al., 2001; Dang and Christie, 2012; 

Williams et al., 2013). 
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1.4 Overview of MOR desensitization 

Prolonged or repeated activation of the MOR with a sufficiently high concentration of 

agonist results in desensitization of the receptor (Law et al., 1983; Connor et al., 2004; Williams 

et al., 2013). Acute desensitization refers to the uncoupling of a receptor from its effectors that 

occurs in the initial minutes of a continuous application of a sufficiently high concentration of 

agonist (Fig. 1.2) (Harris and Williams, 1991; Connor et al., 2004; Williams et al., 2013). 

Desensitization of MORs can also be measured as an attenuated response to submaximal 

concentrations of agonist (i.e. a right-shifted dose response) that generally reverses on a 

timescale of tens of minutes (Fig. 1.2) (Alvarez et al., 2002; Borgland et al., 2003; Connor et al., 

2004). This loss of sensitivity to agonists is distinct from the loss of sensitivity observed during 

tolerance, as it occurs in the presence of tolerance, and reverses much more quickly than 

tolerance (Levitt and Williams, 2012; Williams et al., 2013). It also serves as a useful measure of 

desensitization in systems where acute desensitization is not readily observable due to 

complicating factors such as receptor reserve (Connor et al., 2004). 

Desensitization of the MOR has also been reported to be homologous, meaning that 

desensitization of the MOR does not result in desensitization of other GPCRs found in the same 

cell (Fig. 1.2a) (Harris and Williams, 1991; Fiorillo and Williams, 1996; Bailey et al., 2004; Dang 

and Williams, 2005; Williams et al., 2013). In systems where heterologous desensitization 

occurs, recruitment of kinases and other downstream effectors are able to attenuate the activity 

of other receptors located on the same cell as the receptor being activated (Fig. 1.2b) (Kelly et 

al., 2008). Interestingly, the homologous regulation of MORs has also been reported after 

chronic treatment with opioids (Law et al., 1983; Kennedy and Henderson, 1991), perhaps 

hinting at a link between the cellular processes underlying desensitization and tolerance 

(Christie, 2008). 

MOR desensitization occurs on a timescale that is generally slower than phosphorylation 

of the receptor (Doll et al., 2011), similar to βarr binding (McPherson et al., 2010; Molinari et al., 
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2010), and faster than internalization (Borgland et al., 2003; Arttamangkul et al., 2006; 

Arttamangkul et al., 2008). These findings are consistent with an early hypothesis that MOR 

desensitization occurrs when phosphorylated receptor is decoupled from its effectors by β-

arrestin binding and is subsequently internalized, processed in endosomes, and returned to the 

plasma membrane (Law and Loh, 1999). This hypothesis was consistent with the general model 

of GPCR desensitization developed studying the β-adrenergic receptor (Krupnick and Benovic, 

1998; Luttrell and Lefkowitz, 2002). 

Early experiments performed in heterologous expression systems supported the 

hypothesis that desensitization of the MOR was due to phosphorylation and subsequent βarr 

binding. Expression of both GRK2 and βarr2 was required to observe desensitization of MORs 

expressed in Xenopus oocytes by the full MOR agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin 

(DAMGO) (Kovoor et al., 1997). Similarly, expression of a dominate negative GRK2 mutant in 

HEK293 cells resulted in attenuation of DAMGO-induced acute desensitization (Johnson et al., 

2006), and expression of a phosphorylation-deficient MOR, or knockout of βarr1/2, in mouse 

embryonic fibroblast (MEF) cells eliminated DAMGO-induced desensitization (Chu et al., 2008). 

However, other studies, including those performed in neurons instead of heterologous 

expression systems, demonstrated a more complicated relationship between MOR 

phosphorylation, βarr binding, and desensitization (Law and Loh, 1999; Dang and Christie, 

2012; Williams et al., 2013). For example, several studies performed in locus coeruleus (LC) 

neurons described the role of GRK2 in MOR desensitization as either being very important 

(Bailey et al., 2009b; Lowe et al., 2015), playing a complementary role to ERK1/2 (Dang et al., 

2009), or unnecessary (Arttamangkul et al., 2012). Also, ME- and DAMGO-induced acute 

desensitization is observed in βarr2 knockout mice (Walwyn et al., 2007; Arttamangkul et al., 

2008; Dang et al., 2009), suggesting that βarr binding to the receptor may not be required to 

terminate signaling. A more recent study produced more evidence that βarr recruitment is not 

required for ME-induced desensitization of the MOR, while also finding that phosphorylation is  
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Fig. 1.2 Acute, homologous and heterologous desensitization of GPCRs. This figures shows mock 
voltage-clamp data where activation of two different GPCRs activates an outward current (upward deflections 
in the plots). A) A half-maximal concentration of an agonist (EC50) for receptor A and receptor B was applied 
before a maximal concentration of the agonist for receptor B. The maximal concentration of the agonist for 
receptor B results in an acute reduction in the current mediated by receptor B (acute desensitization). In this 
example, the current decays to half of its original amplitude before reaching a steady state. Receptor B, but 
not receptor A, exhibits a reduced response to the previous half-maximal concentration of its agonist when 
reapplied after a maximal, desensitizing concentration of agonist B. Because the response of receptor A to 
its agonist was not affected by desensitization of receptor B we can say that desensitization of receptor B is 
homologous. B) In the second mock experiment, the desensitization of receptor B with a maximal 
concentration of agonist B results in a reduced response by both receptors A and B to a submaximal 
concentration of agonist, making desensitization of receptor B in this example heterologous.  
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critically important for desensitization to occur (Yousuf et al., 2015). In contrast with early 

hypotheses on MOR desensitization, these studies provide compelling evidence that MOR 

desensitization does not result from phosphorylation and subsequent βarr binding. While 

phosphorylation of the receptor appears to be critical, the exact kinases and phosphorylation 

patterns required to induce desensitization remain somewhat ambiguous. While GRK and βarr  

clearly play some role in MOR desensitization, it is likely that their recruitment and importance  

varies between cell types, and that other factors besides GRKs and βarr are recruited by the 

activated MOR and contribute to desensitization (Williams et al., 2013). 

1.5 Agonist-dependent Desensitization and Recruitment of Effectors 

The biochemical pathway by which MORs desensitize is also likely to depend on the 

agonist used to activate the receptor. The same study that demonstrated the GRK2-

dependence of DAMGO-induced desensitization of the MOR in HEK293 cells also 

demonstrated that morphine-induced desensitization relied on PKC-mediated phosphorylation 

(Johnson et al., 2006). In MEF cells, morphine-induced desensitization was not eliminated by 

expression of phosphorylation deficient mutant MORs, nor by knockout of βarr1 and βarr2 (Chu 

et al., 2008). A similar result was achieved in AtT20 cells, when a phosphorylation deficient 

mutant MOR that did not exhibit ME-induced desensitization robustly desensitized in the 

presence of morphine (Yousuf et al., 2015). PKC activators have been reported to enhance 

morphine- and ME-induced, but not DAMGO-induced, desensitization of MORs in LC neurons 

(Bailey et al., 2004; Bailey et al., 2009a; Bailey et al., 2009b). A more recent study has 

recapitulated the enhancement of ME- and morphine-induced desensitization by the phorbol 

ester PKC activators phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate 

(PDBu), but found evidence consistent with phosphorylation independent effects of these drugs 

being responsible for their effects on desensitization (Arttamangkul et al., 2015).  

Whatever the underlying mechanism of phorbol ester enhanced desensitization of the 

MOR, whether PKC-mediated or otherwise, it is clear that the effect is dependent on the 
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agonists used as DAMGO-induced desensitization is unaffected by these compounds. The 

ability of different agonists for a given receptor to preferentially recruit different downstream 

effectors is referred to as ‘biased agonism’ or ‘functional selectivity’ (Urban et al., 2007). This 

preferential recruitment of different downstream effectors by different agonist was recognized 

two decades ago, and has been a consistent topic of inquiry since then (Kelly et al., 2008; Kelly, 

2013). The differential recruitment of downstream effectors by different agonists is likely due to 

inducing different conformational changes in the receptor upon binding (Urban et al., 2007). In 

fact, multiple agonist-dependent conformation states have been demonstrated for the β2-

adrenergic receptor (Kahsai et al., 2011). 

1.6 Using Opioid Structure and Function to Create Novel Opioid Agonists 

The realization that agonists induce biased recruitment of downstream effectors by the 

MOR has allowed researchers to screen for novel agonists with favorable pharmacological 

profiles, and will provide insight for rational, structure-based approaches to drug design (Raehal 

et al., 2011; Thompson et al., 2015a; Bruchas and Roth, 2016). These efforts have largely 

focused in particular on finding agonists that only weakly recruit βarr2 while still strongly 

coupling to G-proteins due to the relationship between βarr2 and the negative side effects 

associated with opioid analgesics (Raehal et al., 2005). Recent work has been performed 

profiling the ability of a plethora of opioid agonists to recruit G-proteins and βarr (McPherson et 

al., 2010; Molinari et al., 2010; Kelly, 2013; Williams et al., 2013; Thompson et al., 2015b). The 

agonists studied possessed a wide range of pharmacological profiles, and biased agonism was 

even observed amongst the endogenous peptide agonists of the MOR (Thompson et al., 

2015b). Together these finding support the idea that slight alterations in receptor conformation 

induced by different agonists of the MOR likely result in differential recruitment of downstream 

effectors.  

With the recent publications of the crystal structures of the DOR, MOR, NOP, and KOR 

(Granier et al., 2012; Manglik et al., 2012; Thompson et al., 2012; Wu et al., 2012), studies 



13 
 

focusing on the specific conformational changes opioid agonists produce are now possible 

(Huang et al., 2015; Sounier et al., 2015). This information has led to the discovery of novel 

ligands for both the KOR and NOP using structure-based virtual screening (Negri et al., 2013; 

Daga et al., 2014), as well as a promising biased agonist of the MOR that produce analgesia 

with decreased respiratory depression and constipation when compared to morphine (Manglik 

et al., 2016). 

This work has provided hope of improved, rationally designed opioid therapeutics going 

forward. However, it is worth noting that the work described above has focused on opioid 

receptors located on the soma and dendrites of neurons (or heterologous expression systems 

that are roughly analogous to the somatic region of neurons). Opioid receptors located on the 

axon terminals also provide important contributions to opioid-mediated analgesia and reward, 

but their coupling and desensitization has not been a focus of the opioid field up to this point.  

1.7 Importance of Presynaptic MORs 

 Mu opioid receptors located on the axon terminal region of neurons are, like their 

postsynaptic counterparts, Gαi/o-coupled, and activation of these receptors results in the 

inhibition of neurotransmitter release. Presynaptic MORs are known to be localized to axon 

terminals in variety of regions in the brain and spinal cord important in analgesic and rewarding 

effects of opioids. For example, MORs located on the axon terminals of GABAergic interneurons 

of the ventral tegmental area (VTA) play an important role in the rewarding effects of opioids by 

inhibiting GABA release onto VTA dopamine neurons, thus increasing dopamine neuron activity 

and subsequently increasing dopamine release (Johnson and North, 1992). Presynaptic MORs 

also inhibit glutamatergic inputs onto neurons in the marginal zone of the dorsal horn, a region 

important in pain and temperature sensation, thus contributing to the antinociceptive properties 

of opioids (Hori et al., 1992). Although the analgesic and rewarding effects of opioid receptors 

feature prominently in their study, presynaptic MORs are also found in brain regions important in 

food intake (Emmerson and Miller, 1999; Hentges et al., 2009; Pennock and Hentges, 2011; 
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Dicken et al., 2012), arousal (Blanchet and Luscher, 2002; Li and van den Pol, 2008), anxiety 

(Blaesse et al., 2015), and learning and memory (Cohen et al., 1992).  

 Studies performed in vivo demonstrate that knockout, knockdown, or pharmacological 

blockade of G-protein inwardly rectifying K+ channels (GIRKs), which are thought to be one of 

the primary means of MOR-mediated inhibition of the somato-dendritic region of neurons, does 

not completely prevent analgesia (Mitrovic et al., 2003; Marker et al., 2004; Nakamura et al., 

2014). In fact, in one of these studies morphine-induced analgesia was unchanged at lower 

doses (Marker et al., 2004), and in another morphine-induced analgesia was unaffected by 

GIRK inhibition (although analgesia produced by oxycodone was robustly inhibited) (Nakamura 

et al., 2014). Although alternative explanations may exist, these studies hint at the importance of 

presynaptic MORs in the ascending pain pathway.  

 In addition to their known importance in pain pathways, the persistent activation of 

presynaptic MORs during chronic use of opioids is likely to play a role in withdrawal when opioid 

use ceases (Williams et al., 2001). Multiple studies have demonstrated increased release 

probability of both GABA (Bonci and Williams, 1997; Chieng and Williams, 1998; Ingram et al., 

1998) and glutamate (Bie et al., 2005) from MOR containing terminals during withdrawal. This 

compensatory increase in release probability is due to upregulation of the adenylyl 

cyclase/cAMP system (Bonci and Williams, 1997; Chieng and Williams, 1998; Ingram et al., 

1998; Bie and Pan, 2005; Bie et al., 2005), and LTP induced by this increase in release after 

withdrawal may be responsible for withdrawal-induced hyperalgesia (Drdla et al., 2009). 

Interestingly, presynaptic MORs often exhibit an enhanced ability to inhibit release after chronic 

treatment with opioids (Chieng and Williams, 1998; Ingram et al., 1998; Hack et al., 2003). This 

is in contrast to the enhanced desensitization (Dang and Williams, 2004, 2005) and sometimes 

smaller maximal effect (Christie et al., 1987; Bagley et al., 2005) exhibited by postsynaptic 

MORs after a similar treatment.  
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The presynaptic actions of MOR agonists have been long recognized (Cairnie et al., 

1961; Henderson et al., 1972b; Henderson et al., 1972a), even before the actual discovery of 

the opioid receptors. Despite this, the study of presynaptic MORs has lagged behind that of 

postsynaptic MORs. When compared to their postsynaptic counterparts, presynaptic MORs are 

relatively difficult to study due to their localization within the cell. With a few notable exceptions, 

such as the Calyx of Held (Borst and Soria van Hoeve, 2012) and the giant terminals of bipolar 

neurons in the goldfish retina (Matthews, 1999), presynaptic terminals cannot be accessed with 

a patch-clamp electrode. Because of this, the effect of presynaptic receptors on the membrane 

properties of presynaptic terminals cannot be measured directly. Nevertheless, advances in 

electrophysiological, pharmacological, imaging, and genetic tools have allowed significant 

advances in the understanding of the mechanisms underlying the actions of presynaptic MORs, 

and GPCRs in general. 

1.8 Mechanisms of Presynaptic Inhibition by MORs 

 Presynaptic MORs can inhibit release through multiple mechanisms that can vary with 

between cell types and the type of release studied. Perhaps the most broadly recognized 

mechanism by which presynaptic GPCRs inhibit neurotransmitter release is via the inhibition of 

voltage-dependent Ca2+ channels (VDCCs) that produce the Ca2+ influx needed for synchronous 

release to occur. However, presynaptic GPCRs are also known to inhibit release through the 

activation of presynaptic K+ channels, and through direct interactions with the vesicular release 

machinery (Miller, 1998). Presynaptic MORs can inhibit release through all of three of the 

above-mentioned mechanisms (Fig. 1.3), but the downstream effectors of presynaptic MORs 

vary by synapse.  

 Inhibition of glutamate release by the MOR via the inhibition of Ca2+ influx has been 

reported in synapses in the dorsal horn of the spinal cord (Hori et al., 1992), while inhibition of 

glutamate release in the central nucleus of the amygdala (CeA) occurs via phospholipase-A2  

(PLA2) mediated activation of 4-aminopyridine (4-AP) sensitive K+ channels (Zhu and Pan, 
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2005). A similar mechanism of inhibition to that found in the CeA is responsible for MOR-

mediated inhibition of GABA release in the periaqueductal grey (PAG) (Vaughan et al., 1997) 

and VTA (Bergevin et al., 2002). Multiple studies have shown that inhibition of GABA release in 

the hippocampus by presynaptic MORs occurs via direct actions at the release machinery 

(Capogna et al., 1993; Rekling, 1993; Lupica, 1995; Capogna et al., 1996).  

 All of the above-mentioned studies were performed by measuring spontaneous or 

evoked postsynaptic currents or potentials in the presence of various pharmacological blockers 

Fig. 1.3 Coupling of presynaptic MORs. Presynaptic MORs have been shown to inhibit 
neurotransmitter release from presynaptic terminals through multiple mechanisms. A) MORs can inhibit 
the Ca2+ influx needed for neurotransmitter release via the inhibition of voltage-dependent Ca2+ 
channels. B) They are also known to inhibit release directly through direct action at the release 
machinery. C) Presynaptic MORs can also increase phospholipase A2 activity, which subsequently 
activates 4-AP sensitive K+ channels. Differential inhibition of evoked and spontaneous release has 
been demonstrated for other Gαi/o-coupled GPCRs, and could potentially also occur with MORs.  
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of potential MOR effectors. For example, Vaughan et al. demonstrated that MOR-mediated 

inhibition of GABA release in the PAG was dependent on the PLA2 pathway by determining that 

ME-induced reductions in evoked inhibitory postsynaptic currents (eIPSCs) were absent in the 

presence of multiple blockers of the PLA2 pathway (Vaughan et al., 1997). Copogna et al. 

demonstrated that MOR-mediated inhibition of IPSCs was maintained in the presence of Ca2+ 

ionophores and blockers of Ca2+ and K+ channels (Capogna et al., 1996). They provide 

compelling, yet indirect, evidence for the mechanism of presynaptic inhibition of release by 

MORs.  

The output measured in these studies (activation of ligand-gated ion channels on the 

postsynaptic membrane) is at least two steps removed from the activation of the effector used to 

inhibit release (e.g. G-proteins activated by the receptor acting on the vesicular release 

machinery). Although little work has been done on the MOR attempting to bypass this 

shortcoming, work performed on other presynaptic Gαi/o-coupled GPCRs provide insight into 

precise mechanisms mediating inhibition of neurotransmitter release. Studies involving other 

Gαi/o-coupled GPCRs have taken advantage of advancements in imaging and genetic tools to 

determine how GPCRs in axon terminals are organized with respect to their downstream 

effectors, and what interactions between the effectors, G-proteins and receptors results in 

inhibition of release. 

The ability of the Gβγ subunit to modulate VDCCs has been understood for decades (De 

Waard et al., 2005), but a recent study used fluorescence resonance energy transfer (FRET) 

microscopy to describe the spatial relationship between GABAB receptors (GABABRs), Gαoβγ, 

and the presynaptic VDCC Cav2.2. Using FRET pairing between fluorescently labeled proteins, 

this group was able to determine that presynaptic GABABRs located in hippocampal axon 

terminals are found in small (<10 nm), preformed complexes with G-proteins and VDCCs. 

These complexes must be present for inhibition of the Cav2.2 to occur, and undergo 

rearrangement after activating the GABABR (Laviv et al., 2011).  
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A string of studies over the past fifteen years has been performed to determine how 

GPCR-mediated inhibition of the vesicular release machinery occurs. These studies were 

largely performed in the lamprey spinal cord, where 5-HT receptor (5HTR)-mediated inhibition of 

excitatory transmission occurs through a mechanism downstream of Ca2+ influx (Takahashi et 

al., 2001). Due to the large size of the axons in the lamprey spinal cord, measurements of Ca2+ 

influx into terminal regions and direct manipulation of the presynaptic environment were 

possible. This allowed for the confirmation that 5HTR-mediated inhibition was in fact occurring 

at the release machinery (Blackmer et al., 2001). This effect was later attributed to interactions 

of the βγ subunit with the release machinery (Photowala et al., 2006), specifically the C-

terminus of SNAP-25 (Gerachshenko et al., 2005). The binding of βγ to SNAP-25 was later 

found to exert its effects by interfering with interactions between SNAP-25 and Ca2+ sensor 

synaptotagmin (Yoon et al., 2007; Wells et al., 2012), and that relatively small alterations in the 

structure of the SNARE complex interfered with 5HT-induced inhibition of release (Hamid et al., 

2014). 

Although care must be taken to not over interpret these results with regards to MOR-

mediated inhibition of release, studies such the ones mentioned above provide interesting 

insights into how MOR-mediated inhibition is occurring. In particular, the fact that MORs in a 

given synapse tend to inhibit release through a particular mechanism, but usually not multiple 

mechanisms, would suggest that the receptors might be spatially confined in a way that 

prevents their interaction with other effectors. The findings of Laviv et al. may support this 

hypothesis.  

In some cases, GPCRs may inhibit spontaneous or evoked release, but not both 

(Glitsch, 2006; Pennock and Hentges, 2011; Hamid et al., 2014). In addition to the evidence that 

GPCRs located on presynaptic terminals may be spatially confined, there is evidence in 

GABAergic (Mathew et al., 2008; Chung et al., 2010), glutamatergic (Sara et al., 2005; Atasoy et 

al., 2008; Sara et al., 2011), and Drosophila neuromuscular junction (Koenig and Ikeda, 1999; 
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Melom et al., 2013) terminals that vesicles released during spontaneous and evoked release 

are drawn from separate pools of vesicles. Together with findings on the specificity of GPCR-

effector coupling in synaptic terminals, the ability of some receptors to act exclusively on 

confined pools of vesicles that are spatially segregated provides compelling evidence that the 

sub compartmental organization of presynaptic GPCRs is critical to their function. 

1.9 Desensitization of Presynaptic MORs 

 Much like the coupling of presynaptic MORs, the desensitization of presynaptic MORs 

has been relatively lightly studied due to the complications that studying receptors located on 

presynaptic terminals presents. Because terminals generally cannot be accessed with a patch 

pipette, direct electrophysiological studies of MORs located on terminals are not possible. This 

also prevents pharmacological manipulations of the presynaptic terminal via the pipette solution. 

However, the unique physiological properties of these receptors will make them compelling 

targets for future studies. In particular, presynaptic MORs have been shown to resist acute 

desensitization (Blanchet and Luscher, 2002; Fyfe et al., 2010; Pennock and Hentges, 2011; 

Lowe and Bailey, 2015). 

 Resistance to acute desensitization has been reported for presynaptic MORs located in 

the LC (Blanchet and Luscher, 2002), PAG (Fyfe et al., 2010), arcuate nucleus (Pennock and 

Hentges, 2011), and VTA (Lowe and Bailey, 2015). Resistance to desensitization appears to be 

a general, and possibly ubiquitous, property of MORs located on presynaptic terminals. 

However, it is possible that resistance to desensitization varies between synapses, and may be 

the result of particular receptor-effector coupling (Blanchet and Luscher, 2002). This will not 

become clear until the coupling of presynaptic MORs and desensitization of presynaptic MORs 

in a larger number of brain regions has been characterized. 

 The mechanisms underlying resistance to desensitization by presynaptic MORs are still 

a mystery, and has remained scarcely studied to this point. It is not known whether resistance to 

desensitization is agonist dependent. If it is agonist dependent, the relationship between agonist 
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efficacy and desensitization is altered versus postsynaptic receptors as full agonists such as 

DAMGO and ME do not induce desensitization (Blanchet and Luscher, 2002; Fyfe et al., 2010; 

Pennock and Hentges, 2011; Lowe and Bailey, 2015). A relationship between receptor-effector 

coupling and resistance to desensitization has been suggested (Blanchet and Luscher, 2002), 

but has not been addressed in a comparative manner. A negative correlation between receptor 

density and the rate of desensitization has been observed (Law et al., 2000b), and high receptor 

reserve can mask desensitization using certain assays (Connor et al., 2004). The receptor 

reserve of MORs on presynaptic terminals has not been measured, thus high receptor density 

still remains a possible explanation for the observed resistance to desensitization by presynaptic 

MORs. All of these possibilities will need to be addressed. 

 Interestingly, resistance to acute desensitization by presynaptic MORs does not appear 

to be a characteristic unique of that receptor. Presynaptic GABABRs in hippocampal cultures 

(Wetherington and Lambert, 2002a), the VTA (Cruz et al., 2004), and in the PAG (Liu et al., 

2013), as well as A1 adenosine receptors in hippocampal cultures (Wetherington and Lambert, 

2002b), have been shown to be resistant to acute desensitization. These findings suggest that 

resistance to desensitization may be a generalizable property of Gαi/o-coupled GPCRs located 

within axon terminals. However, acute desensitization of presynaptic GABABRs has been 

reported (Tosetti et al., 2004), as well as resistance to desensitization by postsynaptic GABABRs 

(Cruz et al., 2004; Liu et al., 2013). To provide insight into what confers resistance to 

desensitization, comparative studies will need to be undertaken to determine what differences 

exist between desensitization-resistant and –susceptible presynaptic GPCRs. The overall goal 

of the studies presented here will be to use a pharmacological and comparative approach to 

determine what properties of presynaptic MORs underlie their resistance to desensitization. 

1.10 Aims of the Present Studies 

 In the following three chapters, studies will be described that were performed in an 

attempt to understand the mechanisms underlying resistance to acute desensitization by 
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presynaptic MORs. It is currently unknown how downstream signaling of presynaptic MORs 

differs from that of postsynaptic MORs. Despite the lack of a causal link between receptor 

desensitization and systemic tolerance in response to opioids, there is still a great deal of 

evidence that these processes involve common signaling pathways. If presynaptic MORs do not 

undergo desensitization, then perhaps they also do not recruit the downstream signaling 

molecules needed to induce long term cellular adaptations in response to chronic opioids. If this 

is the case, then presynaptic MORs may be an enticing target for future drug development due 

to their presence in critical points of the pain pathways. However, before such studies can be 

pursued we must first determine whether there is reason to believe that presynaptic MORs are 

uniquely regulated. In the following chapters, the overarching hypothesis that resistance to 

desensitization by presynaptic MORs is a receptor-delimited property that is the result of unique 

physiological properties of presynaptic MORs was tested. This was addressed in three ways: 

 

1) Presynaptic MORs were subjected to pharmacological manipulations known to unmask 

or amplify the desensitization of postsynaptic MORs. The failure of these manipulations 

to unmask desensitization of presynaptic MORs would imply that pre- and postsynaptic 

MORs are likely differentially regulated. 

2) The role of receptor-effector coupling in resistance to desensitization was addressed 

through a comparative study between presynaptic MORs and another presynaptic Gαi/o-

coupled GPCR found in the same population of axon terminals that is known to exhibit 

acute desensitization. If resistance to desensitization occurs independent of particular 

receptor-effector coupling it would provide additional evidence that resistance to 

desensitization is receptor-delimited, and also that resistance to desensitization is likely 

a common, if not ubiquitous, property of presynaptic MORs. 

3) The mobility of MORs within the plasma membrane was measured in a cell line 

expressing an epitope-tagged MOR. These experiments determined how the mobility of 
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MORs relates to their activation, and in particular described the mobility of the receptors 

that maintain steady state signaling after desensitization has reached a plateau (see Fig. 

1.2 for example of steady state signaling). These experiments provide a measure of 

agonist-induced changes at the receptor that does not rely on the output of an effector, 

as well as single molecule resolution that is lacking in electrophysiological and 

biochemical studies of MORs. The techniques developed in this chapter can later be 

applied to studies of presynaptic MORs in neurons, and will complement further studies 

on the downstream signaling of presynaptic MORs. 

 

Together, the studies presented support the hypothesis that resistance to desensitization is 

a receptor-delimited property, and that presynaptic MORs likely act through signaling 

mechanisms that are distinct from their postsynaptic counterparts. These findings will lay the 

groundwork for future studies examining the downstream signaling of presynaptic MORs, and 

determining how that signaling differs from that of postsynaptic MORs (e.g. recruitment of β-

arrestin, GRKs, and ERKs). If exclusive recruitment of presynaptic MORs fails to recruit these 

signaling pathways, which are critical in the development of tolerance, then perhaps targeting of 

presynaptic MORs may provide an efficacious means of producing analgesia without many of 

the side effects that result from continuous activation of postsynaptic MORs during chronic 

treatment. 
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Chapter 2: Resistance to Desensitization by Presynaptic MORs Is Not Due to High 

Receptor Reserve or Slow Time Course of Desensitization 

 
 

2.1 Overview 

 The overarching hypothesis of the studies presented in the following chapters is that 

resistance to desensitization by presynaptic MORs is a receptor-delimited property that is the 

product of unique physiological properties of presynaptic MORs. However, it is also possible 

that presynaptic MORs desensitize in a manner similar to postsynaptic MORs, but this 

desensitization is masked by high receptor density or desensitization that is relatively slow or 

small in magnitude. In the experiments described in this chapter, we subjected MORs located 

on axon terminals presynaptic to proopiomelanocortin (POMC) neurons located in the arcuate 

nucleus to pharmacological manipulations known to unmask or enhance desensitization of 

postsynaptic MORs. If these manipulations unmask desensitization of presynaptic receptors it 

would suggest that presynaptic MORs are regulated in a manner similar to postsynaptic MORs. 

If resistance to desensitization is maintained it would provide evidence for unique regulation of 

presynaptic MORs. 

 Resistance to acute desensitization has been reported for several other Gαi/o-coupled 

GPCRs located on presynaptic terminals, but most of the studies on this topic only focus on one 

type of receptor in the synapse being studied. In this chapter, we also examined multiple other 

Gαi/o-coupled GPCRs presynaptic to POMC neurons to determine if they were also resistant to 

acute desensitization. Characterizing the desensitization of other Gαi/o-coupled GPCRs located 

on these terminals will help determine whether resistance or susceptibility to desensitization is a 

receptor-delimited property, and will open the door for comparative studies examining the role of 

receptor-effector coupling in desensitization. 

 Overall, the findings presented in this chapter support the hypothesis that the regulation 

of presynaptic MORs is distinct from that of postsynaptic MORs. We also find that while 
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resistance to desensitization is a common property of Gαi/o-coupled GPCRs presynaptic to 

POMC neurons, it is not ubiquitous. This will allow for comparative studies between 

desensitization-resistant and –susceptible receptors, which are described in chapter 3. 

The following chapter has been reproduced with the permission of The Journal of 

Neuroscience1, and was originally published on July 25, 2012 in Volume 32, Issue 30 of The 

Journal of Neuroscience under the title “Multiple Inhibitory G-Protein-Coupled Receptors Resist 

Acute Desensitization in the Presynaptic But Not Postsynaptic Compartments of Neurons.” I 

designed and executed the experiments described in this manuscript, except for the 

experiments measuring light-evoked transmitter release from POMC neurons (Fig. 2.3) which 

were carried out by Matthew S. Dicken. Shane T. Hentges provided guidance for the design of 

experiments in this chapter, and aided me in the drafting of the manuscript. 

This chapter is accompanied by an additional manuscript located in Appendix II that was 

originally published on August 22, 2014 in Volume 592, Issue 19 of The Journal of Physiology 

under the title “Direct inhibition of hypothalamic proopiomelanocortin neurons by dynorphin A is 

mediated by the µ-opioid receptor.” I designed and executed the experiments described in this 

manuscript. Shane T. Hentges provided guidance for experimental design and aided me in the 

drafting of this manuscript. 

2.2 Summary 

Acute desensitization is a common property of Gi/o-coupled receptors. Recent data, 

however, suggest that, unlike μ-opioid receptors (MORs) located somatodendritically in neurons 

or expressed in heterologous systems, MORs in the presynaptic compartment of neurons are 

resistant to acute desensitization. It is not yet clear whether this differential desensitization is a 

shared property of many Gi/o-coupled receptors nor whether receptors located presynaptically 

and postsynaptically in a single cell type display differential desensitization. Here, whole-cell 

                                                
1 See Appendix I for persmissions 
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recordings were made from proopiomelanocortin (POMC) neurons in mouse brain slices. 

Agonists for μ-opioid, nociceptin, and GABAB receptors induced postsynaptic currents that 

desensitized within minutes, whereas inhibition of presynaptic transmitter release mediated by 

these receptors was maintained throughout agonist exposure. Expression of channelrhodopsin2 

in POMC neurons allowed for light-evoked transmitter release from POMC neuron terminals, 

which was detected by recording postsynaptic currents in downstream neurons. Light-evoked 

currents were inhibited throughout the application of all agonists tested. Thus, the same 

receptors that desensitize when expressed in the postsynaptic compartment of POMC neurons 

resist desensitization when located in the presynaptic compartment. Pharmacologic knockdown 

of MORs revealed that depletion of receptor reserve does not account for presynaptic 

resistance to desensitization. In ∼25% of recordings with GABAB agonist application, 

presynaptic GABAB receptors desensitized, suggesting that resistance to desensitization is not 

due to an intrinsic property of the terminals themselves. Together, the results indicate that a 

variety of presynaptic receptors can continue to function after their postsynaptic counterparts 

desensitize and suggest that a compartment-specific modification may confer resistance to 

desensitization. 

2.3 Introduction 

Among inhibitory G-protein-coupled receptors (GPCRs), μ-opioid receptor (MORs) have 

been the subject of particularly intense study due to the role that these receptors play in 

analgesia and drug abuse. Consistent with the regulation of many GPCRs, continued activation 

of MORs can cause a reduction in cellular responses as agonist binding leads to desensitization 

of the receptor (Reiter and Lefkowitz, 2006). This desensitization of the receptor is thought to be 

an important early step in the development of tolerance to repeated or continued exposure to 

MOR agonists (Martini and Whistler, 2007; Christie, 2008). Therefore, much work has focused 

on determining the mechanisms underlying MOR receptor desensitization since limiting this 
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desensitization could help preserve analgesic actions of MOR agonists during prolonged 

treatment. 

To date, there is not a clear consensus on the mechanism of MOR desensitization. Like 

other GPCRs, agonist binding to MORs causes a conformational change in the receptor, 

activation of intracellular signaling cascades, and receptor phosphorylation with eventual β-

arrestin binding and internalization, although internalization is not required for acute 

desensitization (Arttamangkul et al., 2006). In neurons, acute desensitization has often been 

studied by examining the ability of MOR agonists to activate postsynaptic receptors coupled to 

G-protein-coupled inwardly rectifying potassium (GIRK) channels. In many cell types, MOR 

agonists induce GIRK-mediated outward currents that decline within minutes of agonist 

exposure, representing desensitization of the receptor (Williams et al., 2001). MORs located on 

the presynaptic terminals of neurons can inhibit transmitter release through actions at voltage-

gated potassium and calcium channels (Williams et al., 2001). Interestingly, recent studies in 

neurons maintained in intact brain slices indicate that presynaptic MORs can continue to inhibit 

transmitter release during an agonist exposure that causes desensitization of postsynaptic 

MORs (Blanchet and Luscher, 2002; Fyfe et al., 2010; Pennock and Hentges, 2011). The 

resistance to desensitization of presynaptic MORs has not been thoroughly studied. 

The present study examines the nature of the presynaptic resistance to desensitization 

in a defined population of neurons in the arcuate nucleus of the hypothalamus. The 

proopiomelanocortin (POMC) neurons in this region are regulated both presynaptically and 

postsynaptically by MORs as well as Gi/o-coupled κ-opioid, nociceptin, and GABAB receptors, 

allowing for a comparative study of several receptor types. Previous work indicates that the 

postsynaptic MORs on POMC neurons desensitize during acute exposure to the MOR agonist 

[D-Ala2,N-MePhe4,Gly-ol5]-enkephalin (DAMGO), whereas the MORs on terminals presynaptic 

to these neurons do not (Pennock and Hentges, 2011). The present results show that similar to 

MORs, κ, nociceptin, and GABAB receptors all display distinct resistance to desensitization in 
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the presynaptic but not postsynaptic compartment, suggesting that a common mechanism 

confers differential desensitization of many GPCRs. Current data also illustrate that presynaptic 

receptors can resist desensitization to various agonists and that resistance is independent of 

receptor reserve. The ability of presynaptic receptors to continue to signal once postsynaptic 

receptors have desensitized implies a functional switch from direct postsynaptic actions to 

presynaptic actions occurs during agonist exposure. 

2.4 Methods and Materials 

Animals 

Transgenic mice expressing discosoma red (DsRed) (Hentges et al., 2009) or Cre 

recombinase (Xu et al., 2005) driven by the POMC promoter were backcrossed onto the 

C57BL/6 background for >11 generations. Mice were housed at controlled temperatures (22–

24°C) with a constant 12 h light/dark cycle. Standard rodent chow and tap water were 

provided ad libitum. Brain slices were prepared from both male and female mice (unless 

otherwise indicated) between 6 and 14 weeks of age. Standard PCR genotyping was performed 

to identify transgenic mice. All animal procedures were approved by the Colorado State 

University Institutional Animal Care and Use Committee and met the United States Public 

Health Services guidelines. 

Brain Slice Preparations 

Mice were deeply anesthetized with isoflurane, and brains were rapidly removed and 

placed into ice-cold artificial CSF (aCSF) solution containing the following (in mM): 126 NaCl, 

2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 21.4 NaHCO3, and 11 glucose. All aCSF solutions 

were saturated with a 95% O2/5% CO2 mixture. Sagittal slices (240 μm) were prepared using a 

VT 1200S vibratome (Leica). Brain slices containing the arcuate nucleus were then transferred 

into warm (37°C) aCSF containing MK -801 (15 μM; Sigma-Aldrich). Slices were allowed to rest 

for ≥45 min before transfer to the recording chamber. 

 

http://www.jneurosci.org/cgi/redirect-inline?ad=Leica
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Viral Gene Transfer 

To express channelrhodopsin-2 (ChR2) selectively in POMC neurons, a viral vector 

containing a floxed sequence for ChR2 with an mCherry tag [AAV2/9.EF1.dflox.hChR2(H134R)-

mCherry. WPRE.hGH; obtained from the Penn Vector Core (University of Pennsylvania School 

of Medicine, Philadelphia, PA); 200 nl] was injected unilaterally into the arcuate nucleus of the 

hypothalamus of POMC-Cre transgenic mice (8 weeks of age). Brain slices were prepared 14–

28 d after injection, which was a sufficient length of time to yield high levels of ChR2 expression. 

Electrophysiology 

Brain slices placed in the recording chamber were continuously perfused with warm 

(37°C; ∼1.5 ml/min) aCSF saturated with 95% O2/5% CO2. Recording pipettes had tip 

resistances between 1.5 and 2.5 MΩ when filled with an internal solution containing the 

following (in mM): 57.5 K-methyl sulfate, 57.5 KCl, 20 NaCl, 1.5 MgCl2, 5 HEPES (K+ salt), 0.1 

EGTA, 2 ATP, 0.5 GTP, 10 phosphocreatine, pH 7.3. POMC neurons were identified in the slice 

by the presence of DsRed or ChR2-mCherry. After obtaining a seal of >1 GΩ, negative pressure 

was applied to rupture the cell and enter whole-cell mode. Cells were held at −60 mV, and no 

series resistance compensation was applied. To electrically evoke transmitter release, a bipolar 

stimulating electrode was placed in the middorsal arcuate nucleus and pairs (100 ms delay 

between pulses) of 0.5 ms stimuli (10–800 μA as needed to reliably evoke IPSCs at ∼50% 

maximum amplitude) were applied every 20 s. Miniature IPSCs were collected at 10 kHz and 

digitally filtered at 1 kHz. Events were collected for 15 s/sweep with a 15 s delay between each 

sweep and detected using Axograph X software based on rise time kinetics. Events with a rise 

time of <100 μs were rejected. All mIPSC recordings were made in the presence of tetrodotoxin 

(300 nM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (10 μM) and KCl and K-methylsulfate in 

the internal solution were replaced with CsCl and Cs-methanesulfonate. 

Light-evoked transmitter release from POMC-ChR2-expressing neurons was 

accomplished by applying a brief (25 ms) blue light pulse to the slice every 20 s. Recordings 



40 
 

were made in unidentified arcuate neurons within 100 μm of mCherry-expressing cells. The 

intensity of the light used to evoke transmitter release was between 5 and 11 mW/mm2, and was 

adjusted for each recording to achieve a consistent evoked PSC. All recordings were made 

using an Axoclamp 700B or 200B (Molecular Devices) amplifier. AxographX software 

(Axograph) was used for data collection. Recordings in which the series resistance exceeded 20 

MΩ or changed significantly during the course of the experiment were not accepted for analysis. 

The AMPA receptor antagonist DNQX (10 μM) was constantly perfused onto the slice during the 

course of the experiment to ensure that all evoked PSCs recorded and analyzed were inhibitory 

(eIPSCs). 

Chronic Morphine Treatment 

To treat mice chronically with morphine, POMC-DsRed transgenic mice (8- to 10-week-old 

males) were anesthetized and miniosmotic pumps (Alzet; DURECT Corporation) containing 

morphine were placed subcutaneously. Morphine-treated mice received 50 mg · kg−1 · d−1 of 

morphine for 5–7 d before being killed. Brain slices prepared from morphine-treated mice were 

prepared and collected in either morphine-free aCSF or aCSF containing morphine (1 μM). 

Slices collected into morphine-free aCSF were left for 2 h before being transferred to the 

recording chamber to allow morphine to wash from the slice. Slices collected into aCSF 

containing morphine were given at least 45 min to rest before being transferred to the recording 

chamber where they were constantly perfused with aCSF containing morphine. To precipitate 

withdrawal, the perfusion solution was changed from aCFS with morphine (1 μM) to aCSF 

containing naloxone (1 μM). 

Drugs 

Stock solutions of DNQX (Sigma-Aldrich), (+)-MK-801 (Sigma-Aldrich), (+)-(5α,7α,8β)-N-methyl-

N[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) (Biomol International), 

and (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic 

acid (CGP 55845) (Tocris Bioscience) were prepared in DMSO as stock solutions (at 10,000× 

http://www.jneurosci.org/cgi/redirect-inline?ad=Alzet
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final concentration). [Met5]-enkephalin (Sigma-Aldrich), baclofen (Sigma-Aldrich), nociceptin 

(Sigma-Aldrich), the cyclized peptide D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) 

(Tocris Bioscience), nor-binaltorphimine (nor-BNI) (Sigma-Aldrich), morphine (Sigma-Aldrich), 

tetrodotoxin (TTX) (Tocris Bioscience), and β-chlornaltrexamine (β-CNA) (Sigma-Aldrich) were 

prepared as stock solutions in distilled water. All drugs were diluted in aCSF to achieve the 

working concentrations. β-CNA was divided into aliquots, and then stored at −80°C. For each 

experiment performed using β-CNA, an individual aliquot was thawed, diluted, and perfused 

onto the slice within 5 min to ensure no degradation of the compound before use. Dose–

response curves were made for opioid and GABAB receptor agonists to determine the maximal 

and EC50 concentrations as used in the present studies. 

Estimating Presynaptic MOR Receptor Reserve 

Dose–response curves representing the inhibition of eIPSC amplitude by MORs presynaptic to 

POMC neurons before and after treatment with an irreversible antagonist (β-CNA) were fitted 

using GraphPad Prism software. Values for the predicted concentration of ME necessary to 

reduce eIPSC amplitude by given values between 20 and 41% were obtained from these 

curves. Concentrations that were predicted to achieve an equivalent inhibition of eIPSC 

amplitude before ([ME]control) and after ([ME]β-CNA) β-CNA exposure were plotted against one 

another as a double reciprocal plot. The plot was fitted according to Furchgott's method 

(Furchgott, 1966) using the following equation: 

1

[��]������� =  
1− ���� +

1� 1

[��]β−CNA     (��. 1) 

where q is equal to the fraction of MORs still functional after β-CNA treatment and KA is the 

dissociation constant of ME at MORs presynaptic to POMC neurons. Estimated values 

for q and KA were obtained using GraphPad Prism. 
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Statistics 

Comparisons between two groups were made using Student's t tests or paired t tests 

when a repeated measure was used. Datasets containing more than two groups were analyzed 

using repeated-measures ANOVA with Tukey's multiple-comparison post hoc tests or two-way 

ANOVA as indicated. Single-phase decay curves were fitted to postsynaptic desensitization 

data, and values for time constants and plateaus were obtained using GraphPad Prism 

software. Postsynaptic currents induced by a GPCR agonist were only included in analyses if 

the amplitude was >10 pA. All data are shown as the mean ± SEM, and differences between 

groups were considered significant if p < 0.05. 

2.5 Results 

Presynaptic, but not postsynaptic, MORs resist acute desensitization 

To examine the desensitization of presynaptic and postsynaptic MORs during exposure 

to ME, whole-cell voltage-clamp recordings were made from fluorescently labeled POMC 

neurons. Presynaptic and postsynaptic effects of ME were measured simultaneously. The MOR 

selective opioid agonist ME (30 μM) induced a postsynaptic outward current (42 ± 14 pA; n = 

6; Fig. 2.1A) that desensitized significantly within minutes of continued exposure (p < 0.001, 

one-way repeated-measures ANOVA; τ = 116 s; plateau, 46% of baseline; Fig. 2.1B). ME also 

caused a robust inhibition of the amplitude of eIPSCs (to 24 ± 3.5% of baseline; n = 14; p < 

0.0001; Fig. 2.1C,D). Inhibition of eIPSC amplitude was maintained throughout the superfusion 

of ME (30 μM; p = 0.27, one-way repeated-measures ANOVA; minutes 2 through 10; Fig. 

2.1C,D). Together, these results indicate that postsynaptic, but not presynaptic, MORs 

regulating POMC neurons acutely desensitize when exposed to a maximal concentration of ME 

similar to previous results with the agonist DAMGO (Pennock and Hentges, 2011). 

Presynaptic resistance to desensitization is a property of multiple Gi/o-coupled receptors 

To determine whether differential presynaptic and postsynaptic desensitization may be a 

general property of Gi/o-coupled receptors, or rather a specific property of MORs, the ability of 

http://www.jneurosci.org/content/32/30/10192.full#F1
http://www.jneurosci.org/content/32/30/10192.full#F1
http://www.jneurosci.org/content/32/30/10192.full#F1
http://www.jneurosci.org/content/32/30/10192.full#F1
http://www.jneurosci.org/content/32/30/10192.full#F1
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GABAB, nociceptin, and κ-opioid receptors (KORs) to undergo or resist desensitization was 

examined. Superfusion of a maximal concentration of nociceptin (500 nM) induced a 

postsynaptic outward current (38 ± 4.8 pA peak) that declined within minutes to a plateau of 

40% of baseline (p < 0.0001, one-way repeated-measures ANOVA; τ = 210 s; n = 6; Fig. 2.2A). 

A maximal concentration of nociceptin (500 nM) also caused an inhibition of eIPSC amplitude 

Figure 2.1 Postsynaptic, but not presynaptic, MORs desensitize acutely. A) Representative trace 
of an outward current induced by ME (30 μm), and the reduction in the amplitude of the current that 
occurs with prolonged ME exposure. Fast upward and downward deflections that occur at 20 s intervals 
represent stimulus artifacts that result from measuring presynaptic (eIPSC amplitude) and postsynaptic 
effects of MORs in a single recording. B) Compiled data from six recordings in which the amplitude of 
the outward current was measured at every minute for 4 min after the peak while under constant 
exposure to ME (30 μm). The curve fitted to the plot represents a single-phase exponential decay. The 
asterisks (*) represent points found to be significantly different from minute 0 using Tukey's multiple-
comparison test. C) A representative plot of eIPSC amplitudes representing the effect of prolonged 
exposure to ME (30 μm) on eIPSC amplitude. Each point represents the average of three consecutive 
sweeps. Sample traces shown above the plot represent the average of three consecutive sweeps taken 
every third minute starting at the onset of agonist exposure. D) Compiled data representing the inhibition 
of eIPSC amplitude over the course of a 10 min exposure to ME (30 μm; n = 14). Error bars indicate 
SEM. 

http://www.jneurosci.org/content/32/30/10192.full#F2
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(to 30 ± 7.7% of baseline; n = 7; Fig. 2.2B), but the inhibition of eIPSCs did not decline during 

the 10 min exposure to agonist (p = 0.47, one-way repeated-measures ANOVA; minutes 2 

Figure 2.2 Multiple Gi/o-coupled receptors presynaptic to POMC neurons resist acute 
desensitization. A) Compiled data representing the amplitude of the postsynaptic current induced by 
nociceptin at every minute, beginning at the peak, for 5 min during constant exposure to the agonist 
(n = 6). The inset shows a sample trace of a postsynaptic current induced by nociceptin. A similar plot 
and inset is shown in (C) for recordings made in the presence of baclofen (n = 6). The asterisks 
represent points found to be significantly different from minute 0 using Tukey's multiple-comparison 
test. B) A representative plot showing the effect of prolonged exposure to a maximal concentration of 
nociceptin (500 nm) on eIPSC amplitude. Each point represents the average of three consecutive 
sweeps. Similar plots are shown for recordings made in the presence of baclofen (D) and U69593 (E). F) 
Compiled data showing the inhibition of eIPSC amplitudes by U69593 (dashed line; n = 5), baclofen 
(gray line; n = 19), and nociceptin (black line; n = 7) during continued exposure to each agonist. Error 
bars indicate SEM. 

http://www.jneurosci.org/content/32/30/10192.full#F2
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through 10; Fig. 2.2B,F). Similarly, the GABABR agonist baclofen (30 μM, maximal 

concentration) induced an outward current (36 ± 6.0 pA; n= 6; Fig. 2.2C) that declined during 

exposure (plateau, 53% of baseline; p < 0.0001, one-way repeated-measure ANOVA; τ = 84 

s; Fig. 2.2C). Baclofen also caused an inhibition of eIPSC amplitude (to 36 ± 3.4% of 

baseline; n = 19; Fig. 2.2D) that was maintained throughout the exposure (p = 0.053, one-way 

repeated-measures ANOVA; minutes 2 through 10; Fig. 2.2D,F). 

Activation of the KOR inhibits neurotransmitter release onto POMC neurons but has no 

apparent postsynaptic effects (Pennock and Hentges, 2011)2. Superfusion of a maximal 

concentration of the KOR agonist U69593 (500 nM) resulted in inhibition of the amplitude of 

eIPSCs (to 66 ± 9.3% of baseline; n = 5; p < 0.0001; Fig. 2.2E,F). Similar to the MOR, GABABR, 

and nociceptin receptors, the KOR-mediated inhibition of eIPSC amplitude showed no 

desensitization during >10 min exposure to U69593 (p = 0.071, one-way repeated-measures 

ANOVA; minutes 3 through 13; n = 5; Fig. 2.2F). Nor-BNI (100 nM) was added upon the 

termination of U69593 superfusion to enhance wash/reversal (Fig. 2.2E). Together, these data 

show that resistance to acute desensitization may be a common characteristic of Gi/o-coupled 

receptors located on presynaptic terminals.  

Differential desensitization of presynaptic and postsynaptic Gi/o-coupled receptors in POMC 

neurons 

It is plausible that the cell type on which a receptor is located, not the subcellular 

compartment in which it is found, determines whether or not that receptor will be resistant to 

desensitization. To determine whether receptors located in presynaptic and postsynaptic 

compartments of a single cell type show differential acute desensitization, experiments were 

performed in which desensitization of presynaptic receptors within POMC neurons was studied 

                                                
2 An additional manuscript on this topic titled “Direct inhibition of hypothalamic 
proopiomelanocortin neurons by dynorphin A is mediated by the µ-opioid receptor” has since 
been published in The Journal of Physiology, and is located in Appendix II 

http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F2
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using an optogenetic approach. A viral vector containing a floxed ChR2 sequence was injected 

into the arcuate nucleus of mice expressing Cre recombinase under the control of the POMC 

promoter. In slices prepared from these mice, brief pulses of blue light depolarized the POMC 

neurons resulting in the release of neurotransmitter onto unidentified neighboring neurons from 

which recordings were made. Superfusion of ME (30 μM) resulted in a robust inhibition of light-

evoked IPSC amplitude (to 36 ± 10% of baseline; n = 6; p < 0.0001; 2.3A), which was reversed 

by the MOR antagonist CTAP (500 nM). Inhibition of the light-evoked IPSCs was maintained 

during the exposure to ME (p = 0.14, one-way repeated-measures ANOVA; minutes 3 through 

10; n = 6; 2.3B), indicating that, unlike postsynaptic MORs in POMC neurons, MORs directly 

regulating transmitter release from POMC neurons do not undergo acute desensitization.  

Baclofen (30 μM) also inhibited presynaptic release from POMC terminals as indicated 

by the reduction in light-evoked IPSC amplitude (to 27 ± 7.3% of baseline; n = 6; p < 

0.0001; Fig. 2.3C). This inhibition was maintained during continued agonist exposure (p = 

0.051, one-way repeated-measures ANOVA; minutes 2 through 10; n = 6; Fig. 2.3D). Thus, 

both μ-opioid and GABAB receptors undergo desensitization in the postsynaptic (Figs. 2.1, 2.2), 

but not presynaptic compartments (Fig. 2.3A–D). 

Although KOR activation does not induce a GIRK-mediated current in POMC neurons 

(Pennock and Hentges, 2011), the KOR agonist U69593 (500 nM) significantly inhibited the 

amplitude of light-evoked IPSCs (to 45 ± 14% of baseline; n = 4;p < 0.0001; Fig. 2.3E). The 

inhibition of transmitter release was maintained during 14 min of continuous U69593 perfusion 

(p = 0.94, one-way repeated-measures ANOVA; minutes 4 through 14; n = 4; Fig. 2.3F). The 

inhibition of light-evoked IPSC amplitude was completely reversed by the KOR-selective 

antagonist nor-NBI (100 nM; Fig. 2.3E). Together, the data from the light-evoked release studies 

demonstrate that the ability of some receptors to resist desensitization is likely dependent on the 

location of the receptor within the neuron. 

 

http://www.jneurosci.org/content/32/30/10192.full#F3
http://www.jneurosci.org/content/32/30/10192.full#F3
http://www.jneurosci.org/content/32/30/10192.full#F3
http://www.jneurosci.org/content/32/30/10192.full#F1
http://www.jneurosci.org/content/32/30/10192.full#F2
http://www.jneurosci.org/content/32/30/10192.full#F3
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Decreasing receptor number does not induce presynaptic desensitization 

To determine whether receptor reserve may account for the lack of desensitization 

observed for MORs, the irreversible MOR antagonist β-CNA was used to reduce receptor 

Figure 2.3 Gi/o-coupled receptors on the axon terminals of POMC neurons resist 
desensitization. A) A plot of light-evoked IPSCs recorded from a neuron within the arcuate nucleus 
innervated by a POMC neuron(s) expressing ChR2. Each point represents the average of three 
consecutive sweeps. Sample traces of light-evoked currents from minutes 0, 5, and 10 of ME 
superfusion are shown in the inset. Each trace is the average of three consecutive sweeps. Similar plots 
for recordings made in the presence of baclofen and U69593 are shown in (C) and (E). Compiled data 
from recordings representing the average inhibition of light-evoked IPSC amplitude by ME (n = 6), 
baclofen (n = 6), and U69593 (n = 4) are shown in (B), (D), and (F), respectively. Error bars indicate 
SEM. 
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reserve. β-CNA (50 nM) was superfused over the slice for 2 min following the washout of a brief 

application of ME (30 μM; Fig. 2.4A,B). The pulse of ME before β-CNA application was used to 

determine the maximal inhibition possible for ME before receptor reserve was reduced. After the 

superfusion of β-CNA and a washout period (>10 min), ME (30 μM) was again applied. β-CNA 

reduced the inhibition of eIPSC amplitude caused by ME to 60 ± 11% of its original value (83 ± 

3.4% inhibition of eIPSC amplitude before β-CNA vs 49 ± 8.0% inhibition of eIPSC amplitude 

after β-CNA; n = 3; p = 0.039, paired t test; Fig. 2.4A,B). Although β-CNA treatment reduced the 

inhibition of eIPSC amplitude by ME, there was still no decrease in ME-mediated inhibition 

(desensitization) over the course of the drug application (p = 0.065; n = 3; one-way repeated-

measures ANOVA; minutes 2 through 11; Fig. 2.4C). 

To estimate the size of the MOR receptor reserve presynaptic to POMC neurons, dose–

response curves were constructed before and after β-CNA treatment and analyzed using 

Furchgott's method (Furchgott, 1966) (Fig. 2.4D,E). ME (30 μM) caused a much larger inhibition 

of eIPSC amplitude in control conditions compared with the inhibition after a 2 min exposure to 

β-CNA (79 ± 2.1% inhibition of eIPSC amplitude before β-CNA vs 42 ± 2.4% inhibition of eIPSC 

amplitude after β-CNA; p < 0.0001; n = 36, 12; Fig. 2.4D). Additionally, there was an 

approximately threefold shift in the EC50 for ME after β-CNA (444 nM before β-CNA vs 1.336 

μM after β-CNA). To estimate the fraction of the total number of presynaptic receptors inhibited 

by β-CNA, a double reciprocal plot of the agonist concentration needed to achieve a given 

inhibition of eIPSC amplitude before and after β-CNA treatment was constructed according to 

Furchgott's method (Eq. 1). This analysis revealed that the 44% decrease in the maximal 

inhibition of eIPSC amplitude by ME corresponded to a 59–68% reduction in the total number of 

presynaptic MORs (95% confidence interval for q [0.3189, 0.4137]; Fig. 2.4E) and provided an 

estimated KA value near that of the EC50 (95% confidence interval [0.693 μM, 1.315 μM]; Fig. 

2.4E) under control conditions. These data suggest that presynaptic resistance to 

desensitization is not due to receptor reserve since removing enough receptors to potently blunt 
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the maximal response did not cause presynaptic receptors to display desensitization. 

Furthermore, the finding that removing ∼50% of the surface receptors reduces the functional 

response by ∼50% indicates that terminals regulating POMC neurons do not have a significant 

receptor reserve even under baseline conditions. 

Morphine does not cause desensitization of MORs in the presynaptic compartment 

MORs activated by morphine may desensitize through a mechanism distinct from those 

activated by ME or DAMGO in some systems (Johnson et al., 2006; Kelly et al., 2008). Thus, it 

Fig 2.4 Decreasing the number of functional receptors presynaptic to POMC neurons does not 
induce acute desensitization. A) Sample traces indicating the inhibition of eIPSC amplitude in 
response to ME (30 μm) before (top traces) and after receptor knockdown with β-CNA (bottom traces). 
The sample traces in (A) represent the average of three consecutive sweeps taken under the conditions 
indicated. B) A plot of eIPSC amplitudes showing the effect of β-CNA on the inhibition of eIPSC 
amplitude by ME. Each point represents the average of three consecutive sweeps. C) Compiled data 
representing the effect of prolonged exposure to ME (30 μm) on eIPSC amplitude after treatment with 
β-CNA (solid line) (n = 3). D) Dose–response curves for ME-induced inhibition of eIPSC amplitude 
before (squares) and after (circles) treatment with β-CNA (50 nm; 2 min). The sample size for each point 
of the curve is shown in parentheses. E) A reciprocal plot of agonist concentrations that produced an 
equivalent inhibition of eIPSC amplitude before (vertical axis) and after (horizontal axis) β-CNA 
treatment was obtained using Furchgott's method (Eq. 1). Estimates of the fraction of receptors 
remaining after β-CNA treatment and the dissociation constant (in micromolar concentration) of ME at 
MORs presynaptic to POMC neurons are represented by q and KA, respectively. The dashed lines 
represent the 95% confidence limits of the regression line. Error bars indicate SEM. 

http://jneurosci.org/content/32/30/10192.full#disp-formula-1
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is possible that the environment of the presynaptic terminal may confer resistance to 

desensitization to a ME-activated MOR but not a morphine-activated receptor. To determine 

whether resistance to desensitization by presynaptic MORs may be agonist specific, eIPSC 

amplitude was measured during a 15 min superfusion of morphine (20 μM). Morphine caused a 

reduction in the amplitude of eIPSCs (to 52 ± 12% of baseline; n = 4; p < 0.0001) that was 

maintained throughout exposure to morphine (p = 0.91; n = 4; one-way repeated-measures 

ANOVA; minutes 3 through 13; Fig. 2.5A,B), indicating that presynaptic receptors do not 

undergo acute desensitization whether bound by full or partial agonists that likely confer 

different conformational states of the receptor.  

Figure 2.5 Presynaptic MORs resist desensitization when activated with morphine. A) Plot of 
eIPSC amplitudes during acute morphine exposure (20 μm). CTAP (500 nm) was added upon the 
cessation of morphine superfusion to speed wash time. Each point represents three consecutive 
sweeps. B) Compiled data representing the inhibition of eIPSC amplitude over 11 min of morphine (20 
μm) superfusion (n = 4). Error bars indicate SEM. 

http://www.jneurosci.org/content/32/30/10192.full#F5
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Chronic morphine treatment (CMT) can reduce the efficacy of MOR agonists at 

presynaptic terminals (North and Vitek, 1980; Fyfe et al., 2010) and enhance the extent and rate 

of acute desensitization of postsynaptic MORs (Dang and Williams, 2005; Ingram et al., 2008). 

To determine whether CMT can modify presynaptic MOR signaling to enhance acute 

desensitization of these receptors in terminals presynaptic to POMC neurons, mice were treated 

with morphine (50 mg · kg−1 · d−1) or saline for 5–7 d using subcutaneous miniosmotic pumps 

before slice preparation. When slices were collected into morphine (1 μM) and maintained in 

morphine, application of naloxone (1 μM) caused a greater increase in the eIPSC amplitude (1.8 

± 0.13-fold increase in control; 4.4 ± 1.0-fold increase in CMT; n = 4–6; p = 0.01; Fig. 2.6A,C) 

and decrease in the paired-pulse ratio in cells from CMT mice compared with saline-treated 

mice (0.68 ± 0.04 in control; 0.51 ± 0.05 in CMT; n = 4–6; p = 0.01; Fig. 2.6A,B), indicating that 

morphine was effectively reaching the synapses and inhibiting transmitter release. Application of 

ME (30 μM) to slices from CMT mice that were collected and maintained in morphine-free aCSF 

resulted in a robust decrease in eIPSC amplitude (to 32 ± 3.2% of baseline; n = 20; p < 

0.0001; Fig. 2.6D,E) that was maintained over the course of an 11 min exposure (p = 0.32; n = 

5; one-way repeated-measures ANOVA; minutes 2 through 11) similar to that observed for 

tissue from untreated mice. Thus, presynaptic MORs resist desensitization after both acute and 

chronic exposure to morphine. 

A fraction of presynaptic GABABRs acutely desensitize 

It is plausible that a property of the presynaptic environment could somehow prevent 

receptor desensitization. However, in 7 of 26 recordings made from POMC neurons in which 

baclofen (30 μM) was applied while recording eIPSC amplitude, the inhibition of eIPSC 

amplitude declined during baclofen application (p < 0.0001, one-way repeated-measures 

ANOVA; minutes 2 through 10; n = 7; Fig. 2.7A,B). Inhibition peaked by the second minute of 

agonist exposure, on average, and desensitized by ∼50% by minute 10 (25 ± 6.9% of baseline 

at minute 2 vs 60 ± 7.4% of baseline at minute 10). In some recordings in which 

http://www.jneurosci.org/content/32/30/10192.full#F6
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GABAB receptor desensitization was observed, it was possible to subsequently perfuse a 

maximal concentration of ME for >10 min. In these recordings, only the GABAB-mediated 

inhibition of eIPSC amplitude desensitized, whereas ME-mediated inhibition was maintained 

(data not shown). Additionally, GABAB-mediated inhibition of miniature IPSC (mIPSC) frequency 

Figure 2.6 Chronic morphine treatment does not enhance desensitization of presynaptic 
MORs. A) Sample traces from recordings made in control and CMT (50 mg · kg−1 · d−1) mice that were 
prepared and maintained in 1 μm morphine until application of 1 μm naloxone (NLX) to induce 
precipitated withdrawal. IPSCs were evoked using paired stimuli 100 ms apart. B) NLX precipitated 
withdrawal decreased the paired-pulse ratio (P2/P1) to a greater extent in CMT mice than in controls. C) 
NLX also caused a larger increase in the amplitude of the IPSC evoked by the first of the paired stimuli 
(P1) in recordings made in slices prepared from CMT animals than in those prepared from controls. D) 
Plot of eIPSCs from a recording in which a slice prepared from an animal that had received CMT was 
exposed to ME (30 μm) for a prolonged period. Each point represents the average of three consecutive 
sweeps. E) Compiled data representing the effect of prolonged ME exposure on recordings made from 
slices prepared from mice that had received CMT (n = 5). Error bars indicate SEM. 
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was examined to determine whether ∼25% of all inputs onto POMC neurons contain 

GABAB receptors that are able to undergo desensitization, or whether only ∼25% of POMC 

neurons receive inputs with GABAB receptors that are able to undergo desensitization. Similar 

Figure 2.7 A fraction of GABABRs presynaptic to POMC neurons do desensitize. A) A plot of 
eIPSC amplitudes from a recording in which the baclofen-induced inhibition of eIPSC amplitude declined 
robustly during application. Each point represents the average of three consecutive sweeps. The eIPSC 
traces shown above the plot are the average of three consecutive sweeps. Sample traces were taken 
at minutes 0 (baseline) and 4 (maximal inhibition) of baclofen superfusion and then every third minute 
thereafter. B) Compiled data showing the inhibition of eIPSC amplitude by baclofen at each minute 
during continuous exposure (n = 7). C) A plot of mIPSC frequency from a recording in which baclofen-
induced inhibition of mIPSC frequency declined during baclofen application. Representative traces 
taken at various time points during a recording are shown above the plot. D) Compiled data showing 
the inhibition of mIPSC frequency by baclofen at each minute during continuous exposure (n = 3). The 
asterisks denote points that were found to be significantly different from the maximal inhibition caused 
by baclofen (minute 2) using Tukey's multiple-comparison test. Error bars indicate SEM. 
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to what was observed when using eIPSCs to measure GABAB-mediated inhibition of 

neurotransmitter release, desensitization of GABAB-mediated inhibition of mIPSC frequency 

was only observed in 25% of recordings made (3 of 12 recordings; Fig. 2.7C,D). This suggests 

that 25% of POMC neurons receive input from terminals on which GABAB receptors are able to 

undergo desensitization. If resistance or susceptibility of GPCRs to desensitization is due to a 

property of the terminals on which they are found, desensitization should have been observed in 

a similar fraction of recordings using agonists for the other receptors examined. Together, it 

appears that resistance to desensitization is likely conferred by a property of the receptor itself 

and not an intrinsic property of the terminals on which the receptors are found. 

2.6 Discussion 

The present data demonstrate that multiple Gi/o-coupled receptors located presynaptic to 

POMC neurons as well as on POMC terminals resist acute desensitization in response to 

agonist exposure, while the same receptors located on the somatodendritic region of POMC 

neurons robustly desensitize under identical conditions. MORs display resistance to 

desensitization in the presence of various agonists and after receptor number is drastically 

reduced. The current data together with previous reports of differential presynaptic and 

postsynaptic desensitization indicate that resistance to desensitization is a common and robust 

property of presynaptic Gi/o-coupled receptors. Comparative studies between presynaptic and 

postsynaptic receptor regulation could provide important insight into mechanisms underlying 

desensitization and could help explain complex physiologic responses to prolonged agonist 

exposure. 

Differential presynaptic and postsynaptic desensitization of multiple Gi/o-coupled receptors 

The ability of presynaptic, but not postsynaptic MORs to resist desensitization on POMC 

neurons is similar to the differential regulation of MORs previously reported in the 

periaqueductal gray (PAG) (Fyfe et al., 2010) and the locus ceruleus (Blanchet and Luscher, 

2002). Thus, sustained presynaptic MOR signaling is not unique to terminals within the arcuate 

http://www.jneurosci.org/content/32/30/10192.full#F7
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nucleus. Differential desensitization of presynaptic and postsynaptic receptors also does not 

appear to be a phenomenon specific to the MOR since similar presynaptic resistance and 

postsynaptic susceptibility to desensitization was also found to occur for nociceptin and 

GABAB receptors regulating POMC neurons. κ-Opioid receptors, which were only found on 

presynaptic terminals, were also resistant to acute desensitization. Although KOR-induced 

postsynaptic currents were not observed in the present study, they likely possess the property 

of differential desensitization between presynaptic and postsynaptic receptors since KORs 

expressed in heterologous systems do display acute desensitization (Henry et al., 1995). 

GABABRs and adenosine A1 receptors (A1Rs) located in the presynaptic but not postsynaptic 

compartment of cultured hippocampal neurons also resist acute agonist-induced desensitization 

(Wetherington and Lambert, 2002a, b), and a similar phenomenon has been described for 

GABABRs regulating dopaminergic neurons in the VTA (Cruz et al., 2004). Thus, the ability to 

maintain signaling may be a general property of a variety of presynaptic receptors located 

throughout the brain. 

Presynaptic resistance to desensitization is independent of receptor reserve 

The apparent lack of acute desensitization observed for presynaptic MORs could simply 

reflect that there is a high receptor reserve presynaptically such that there is always a sufficient 

pool of non-desensitized receptors to mediate maximal inhibition of transmitter release. This 

does not appear to be the case, however, since reducing MOR receptor reserve with β-CNA did 

not unmask any acute presynaptic MOR desensitization, although inhibition of transmitter 

release was significantly reduced. These results are consistent with a previous study examining 

presynaptic MORs in the PAG that also resist desensitization after knockdown with β-CNA (Fyfe 

et al., 2010). The analysis of dose–response curves constructed under control conditions and 

after β-CNA exposure revealed that not only does resistance to desensitization by presynaptic 

MORs occur independent of receptor reserve, but that minimal MOR reserve is present on 

terminals presynaptic to POMC neurons to begin with. 
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CMT also can reduce receptor reserve (Christie et al., 1987) and enhance both the 

extent (Ingram et al., 2008) and rate (Dang and Williams, 2005) of MOR desensitization 

following a subsequent acute application of agonist. However, in the present study, CMT did not 

induce desensitization of presynaptic MORs nor reduce the presynaptic inhibition induced by μ 

receptor agonists as has been observed in other studies (North and Vitek, 1980; Fyfe et al., 

2010). The presynaptic inhibition in the present study may be linked to the observation that 

terminals presynaptic to POMC neurons do not have a substantial receptor reserve even under 

basal conditions. Interestingly, GABABRs and A1Rs located on the presynaptic terminals of 

hippocampal neurons also resist desensitization in a manner that is independent of receptor 

reserve (Wetherington and Lambert, 2002a, b). These similarities across multiple cell types and 

multiple systems imply that not only is resistance to desensitization a common property of 

presynaptic Gi/o-coupled receptors but that this resistance may occur through similar 

mechanisms. Furthermore, the fact that even prolonged exposure to agonist is not sufficient to 

reduce the presynaptic inhibition to a subsequent application of μ receptor agonist suggests that 

MORs in the presynaptic compartment resist desensitization by a specific mechanism rather 

than simply undergoing a postsynaptic-like desensitization in a slower manner. 

Contribution of presynaptic environment in the resistance to acute receptor desensitization 

MORs and GABABRs undergo acute desensitization in the postsynaptic but not 

presynaptic compartment of POMC neurons as determined in the ChR2 experiments. This is 

consistent with previous studies showing that when hippocampal neurons form synapses onto 

themselves in culture, GABAB and adenosine A1 receptors in the somatodendritic compartment 

undergo acute receptor-specific (not effector-dependent) desensitization, but those receptors 

located in the presynaptic terminal do not desensitize (Wetherington and Lambert, 2002a, b). 

Together, the data suggest that the cellular compartment in which a receptor resides may confer 

the tendency to undergo desensitization. However, the finding that presynaptic GABABRs 

displayed acute desensitization in 10 of the 38 experiments (including both mIPSC and eIPSC 
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experiments) in the present study indicates that compartmentalization alone may not be 

sufficient to confer resistance to desensitization. Furthermore, GABABRs in CA3 neurons of the 

neonatal rat hippocampus located on the postsynaptic membrane or in presynaptic 

glutamatergic terminals do not desensitize with acute agonist exposure, although GABABRs 

receptors located on GABAergic terminals desensitize readily (Tosetti et al., 2004). Resistance 

to desensitization also occurs in postsynaptic GABABRs located on GABAergic, but not 

dopaminergic, neurons of the VTA (Cruz et al., 2004). These discrepancies between the 

patterns of presynaptic and postsynaptic desensitization of GABABRs and the other receptors 

examined suggests that, although there is a strong correlation between compartmentalization 

and desensitization, compartmentalization alone is not sufficient to explain differential 

desensitization between presynaptic and postsynaptic Gi/o-coupled receptors. 

Such discrepancies between the GABABR and the other receptors examined may be the 

result of variable expression of the GABAbR1a/b splice variants. Although these splice variants 

are preferentially targeted to either terminal regions (R1a) or somatodendritic regions (R1b) of 

neurons, studies using R1a and R1b knock-outs suggest that either variant can be expressed at 

GABAergic terminals and postsynaptic membranes (Vigot et al., 2006). Variable expression 

patterns of the GABABR1 splice variants may explain the discrepancies between the patterns of 

presynaptic and postsynaptic desensitization of the GABABR and other receptors that have 

been examined. Determining whether and why a certain GABABR heterodimer composition is 

resistant to desensitization may provide insight into the mechanism by which other receptors 

resist acute desensitization. 

Implications of differential presynaptic and postsynaptic receptor desensitization 

The physiologic consequences of differential presynaptic and postsynaptic 

desensitization for specific receptors remain to be determined, but the data suggest that acute 

and chronic agonist exposure can differently affect cellular activity as postsynaptic responses 

may desensitize while presynaptic actions are maintained. In POMC neurons, for example, the 
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initial action of MOR agonists is direct postsynaptic inhibition, whereas the prolonged effect of 

MOR activation would likely be disinhibition since the majority of inputs to POMC neurons are 

GABAergic (Pinto et al., 2004; Hentges et al., 2009). Similar differential desensitization of 

GABABRs located on GABAergic terminals and postsynaptic GABABRs in the neonatal 

hippocampus has been suggested to underlie the induction of epileptiform discharges in this 

region (Vardya et al., 2010). The lack of presynaptic MOR desensitization may explain the 

observation that synaptic transmission increases upon withdrawal of MOR agonist in multiple 

brain regions (Bonci and Williams, 1997; Hack et al., 2003; Bie and Pan, 2005), consistent with 

a continued action at presynaptic MORs until removal of drug. This increase in synaptic 

transmission after the cessation of chronic opioid exposure has been implicated in withdrawal 

symptoms such as hyperalgesia (Bie and Pan, 2005; Bie et al., 2005; Heinl et al., 2011). Thus, 

the differential presynaptic and postsynaptic desensitization of certain GPCRs may have 

significant functional consequences. 

Conclusions 

Whereas the postsynaptic actions of MORs and other Gi/o-coupled receptors decline 

within minutes of agonist exposure, these same receptors on the presynaptic terminals of 

POMC neurons and presynaptic to POMC neurons continue to inhibit transmitter release. Thus, 

during continued agonist exposure, postsynaptic responses will likely decline while presynaptic 

actions will be maintained. The mechanisms limiting presynaptic receptor desensitization remain 

to be determined, but the data here suggest that compartment-specific modification of the 

receptor may underlie the resistance. 
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Chapter 3: Desensitization-Resistant MORs and GABABRs and Desensitization-

Susceptible GABABRs Inhibit GABA Release Onto POMC Neurons Through Similar 

Mechanisms 

 
 
3.1 Overview 

 In the previous chapter, evidence was presented that presynaptic MORs are 

regulated in a manner that is distinct from their postsynaptic counterparts. We also found that 

desensitization-resistant and –susceptible Gαi/o-coupled GPCRs exist on axon terminals 

presynaptic to POMC neurons. This finding demonstrated that while resistance to 

desensitization is a common property of these receptors, it is not ubiquitous. This finding also 

opened the door for comparative studies examining the coupling of desensitization-resistant and 

–susceptible receptors, which will be described in this chapter. 

We hypothesize that resistance to desensitization is due to receptor level differences in 

MORs, and other GPCRs, located in axon terminals versus receptors located on the soma and 

dendrites of neurons. However, it is possible that resistance to desensitization is conferred by a 

particular receptor-effector coupling. If this were the case then we would expect desensitization-

resistant and desensitization-susceptible GPCRs located on axon terminals to be differentially 

coupled. In this chapter, the receptor-effector coupling of MORs on axon terminals presynaptic 

to POMC neurons is compared to that of GABABRs that are also located on the same 

population terminals. While MORs located presynaptic to POMC neurons have been shown to 

be completely resistant to desensitization, inhibition induced by GABABRs exhibits acute 

desensitization in approximately one quarter of experiments. If resistance to desensitization is 

conferred by receptor-effector coupling then we would expect differential coupling between 

desensitization-resistant MORs and GABABRs versus the population of GABABRs that are 

susceptible to desensitization. If all of these receptors couple to the same set of effectors it will 

provide more evidence that resistance to desensitization is due to receptor-level properties. 
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The findings presented in this chapter support the hypothesis that resistance to 

desensitization is due to receptor-level properties as both desensitization-resistant and 

desensitization-susceptible receptors located on axon terminals presynaptic to POMC neurons 

were found to be similarly coupled. In addition to this finding, we found that presynaptic MORs 

and GABABRs inhibit spontaneous and evoked release, and that inhibition of each type of 

release occurs through a different mechanism. Desensitization of GABABR-mediated inhibition 

occurred when measuring either type of release, and resistance to desensitization by the MOR 

was maintained when measuring either type of release, providing more evidence that 

desensitization, or lack thereof, occurs at the level of the receptor. 

The following chapter was published May 1, 2016 in Journal of Neurophysiology Volume 

115 no. 5 under the title “Desensitization-resistant and –sensitive GPCR-mediated Inhibition of 

GABA Release Occurs by Ca2+-dependent and –independent Mechanisms at a Hypothalamic 

Synapse”, and has been reproduced with the permission of the American Physiological 

Society.3 I designed and carried out the experiments described in this manuscript with guidance 

from Shane T. Hentges. I also drafted the manuscript with the aid of Shane T. Hentges.  

3.2 Summary 

Whereas the activation of Gαi/o-coupled receptors commonly results in postsynaptic 

responses that show acute desensitization, the presynaptic inhibition of transmitter release 

caused by many Gαi/o-coupled receptors is maintained during agonist exposure. However, an 

exception has been noted where GABAB receptor (GABABR)-mediated inhibition of inhibitory 

postsynaptic currents (IPSCs) recorded in mouse proopiomelanocortin (POMC) neurons exhibit 

acute desensitization in ∼25% of experiments. To determine whether differential effector 

coupling confers sensitivity to desensitization, voltage-clamp recordings were made from POMC 

neurons to compare the mechanism by which μ-opioid receptors (MORs) and GABABRs inhibit 

                                                
3 See Appendix III for permissions 
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transmitter release. Neither MOR- nor GABABR-mediated inhibition of release relied on the 

activation of presynaptic K+ channels. Both receptors maintained the ability to inhibit release in 

the absence of external Ca2+ or in the presence of ionomycin-induced Ca2+ influx, indicating that 

inhibition of release can occur through a Ca2+-independent mechanism. Replacing Ca2+ with 

Sr2+ to disrupt G-protein-mediated inhibition of release occurring directly at the release 

machinery did not alter MOR- or GABAB-mediated inhibition of IPSCs, suggesting that 

reductions in evoked release can occur through the inhibition of Ca2+ channels. Additionally, 

both receptors inhibited evoked IPSCs in the presence of selective blockers of N- or P/Q-type 

Ca2+ channels. Altogether, the results show that MORs and GABABRs can inhibit transmitter 

release through the inhibition of calcium influx and by direct actions at the release machinery. 

Furthermore, since both the desensitizing and nondesensitizing presynaptic receptors are 

similarly coupled, differential effector coupling is unlikely responsible for differential 

desensitization of the inhibition of release. 

3.3 Introduction 

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus have 

been the focus of many recent studies due to their important role in the regulation of energy 

balance (Mercer et al., 2013). Studies examining the regulation of POMC neuron activity have 

revealed that the release of GABA onto POMC neurons is inhibited by multiple Gαi/o-coupled 

receptors, including the μ-opioid receptor (MOR) and GABAB receptor (GABABR) (Pennock et al., 

2012). Electrophysiological recordings demonstrate that at the majority of POMC neurons, a 

sustained (≥10 min) application of a maximal concentration of an agonist for the MOR or the 

GABABR induces robust of inhibition of GABA release onto POMC neurons that does not 

diminish over the course of the application (Pennock et al., 2012). This sustained inhibition of 

transmitter release may indicate that presynaptic MORs and GABABRs are relatively resistant to 

acute desensitization. This is in contrast to postsynaptic MORs and GABABRs located on 

POMC neurons, both of which exhibit robust desensitization during a similar application of an 
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agonist (Pennock et al., 2012). Resistance to acute desensitization of inhibitory G-protein-

coupled receptors (GPCRs) mediating presynaptic inhibition is a common property of these 

receptors that has been described at a variety of other synapses (Blanchet and Luscher, 2002; 

Wetherington and Lambert, 2002a, b; Cruz et al., 2004; Fyfe et al., 2010), however, 

desensitization of GABABR-mediated inhibition of neurotransmitter release has been reported 

(Tosetti et al., 2004; Pennock et al., 2012). At present, it is not clear what determines whether 

the inhibition of release by presynaptic Gαi/o-coupled receptors is resistant or susceptible to 

acute desensitization. 

A previous study by our group suggests that resistance or susceptibility to 

desensitization by presynaptic Gαi/o-coupled GPCRs may occur in a receptor-autonomous 

fashion (Pennock et al., 2012). However, another possible explanation for differential 

desensitization of MOR- and GABABR-mediated inhibition of GABA release is that some 

GABABRs couple to downstream effectors that desensitize rather than desensitization occurring 

at the receptors themselves. Both the MOR and GABABR are known to inhibit release through 

multiple distinct pathways, including activation of voltage-dependent K+ channels (Vaughan et 

al., 1997; Zhu and Pan, 2005), inhibition of Ca2+ influx through voltage-dependent Ca2+ channels 

(Hori et al., 1992; Dittman and Regehr, 1996; Takahashi et al., 1998), and inhibition of release 

downstream of Ca2+ entry through actions directly at the vesicular release machinery (Capogna 

et al., 1993, 1996; Dittman and Regehr, 1996). 

In the present study, MOR- and GABABR-mediated inhibition of inhibitory postsynaptic 

currents (IPSCs) in POMC neurons was measured in recording conditions that disrupt 1) 

activation of voltage-dependent K+ channels, 2) Ca2+ influx through voltage-dependent 

Ca2+ channels, and 3) GPCR-mediated inhibition of GABA release occurring at the release 

machinery. The data demonstrate that neither the MOR- nor GABABR-mediated inhibition of 

release requires the activation of voltage-dependent K+ channels. Additionally, both receptors 

appear to inhibit GABA release through inhibiting Ca2+ entry into presynaptic terminals as well 
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as by inhibiting the release machinery downstream of Ca2+ influx. Desensitization of GABABR-

mediated inhibition of GABA release was detected under conditions that disrupted Ca2+ influx 

and conditions that disrupt GPCR-mediated inhibition of the release machinery, indicating that 

differential effector coupling is unlikely to confer susceptibility or resistance to GPCR-mediated 

inhibition of release. 

3.4 Materials and Methods 

Animals 

Mice expressing enhanced green fluorescent protein (eGFP) (Cowley et al., 2001) 

or Discosomared (DsRed) (Hentges et al., 2009) driven by the POMC promoter were 

backcrossed for >11 generations on the C57BL/6 background. Animals were housed at a 

controlled temperature (22–24°C) on a constant 12:12 -h light-dark cycle. Standard rodent chow 

and tap water were provided ad libitum. Transgenic mice were identified using standard PCR 

genotyping. Brain slices were prepared from male and female mice between 6 and 12 wk of 

age. All animal procedures were approved by the Colorado State University Institutional Animal 

Care and Use Committee and met the United States Public Health Service guidelines. 

Brain-slice preparation 

POMC-eGFP or POMC-DsRed mice were deeply anesthetized using isoflurane followed 

by rapid removal of the brain and transfer of the tissue into ice-cold artificial cerebral spinal fluid 

(aCSF) containing (in mM): 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 21.4 

NaHCO3, and 11 glucose. aCSF solutions were saturated with a 95% O2-5% CO2 mixture. 

Sagittal brain slices (240 mm) were prepared using a VT1200 S vibratome (Leica). Brain slices 

were transferred into warm (37°C) aCSF containing MK -801 (15 μM). Brain slices were allowed 

at least 45 min of rest before being transferred to the recording chamber. 

Electrophysiology 

After placement in the recording chamber, brain slices were continuously superfused 

with warm (37°C), 95% O 2-5% CO2-saturated aCSF. When indicated, CaCl2 in the external 
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solution was replaced with either 2.4 mM SrCl2 or 2.4 mM MgCl2 (total [MgCl2] = 3.6 mM). 

Recording pipettes were filled with an internal solution containing (in mM): 57.5 CsCl, 57.5 

CsSO3CH3, 20 NaCl, 1.5 MgCl2, 5 HEPES (K+ salt), 0.1 EGTA, 2 Mg-ATP, 0.5 Na-GTP, and 10 

phosphocreatine, pH 7.3. Recording pipettes had a tip resistance between 1.5 and 2.5 MΩ 

when filled with internal solution. POMC neurons in the arcuate nucleus were identified by the 

presence of either eGFP or DsRed fluorescence in brain slices taken from POMC-eGFP or 

POMC-DsRed mice, respectively. A ≥1-GΩ seal was obtained on neurons before negative 

pressure was applied to rupture the cell membrane. Cells were held at a potential of −60 mV, 

and no series resistance compensation was applied. 

Inhibitory postsynaptic potentials were isolated by recording in the presence of 6,7-

dinitroquinoxaline-2,3-dione (DNQX; 10 μM). Miniature IPSCs (mIPSCs) were collected during 

15-s sweeps taken every 15 s. Events were detected using rise time kinetics. Events with a rise 

time of <100 μs were rejected. mIPSCs were recorded in the presence of tetrodotoxin (TTX; 300 

nM). To elicit evoked IPSCs (eIPSCs), current was delivered through a bipolar stimulating 

electrode placed in the middorsal arcuate nucleus. When using a CaCl2-based external 

recording solution, paired 0.5-ms stimuli (100 ms between pulses) were delivered every 20 s. 

When using a SrCl2-based external recording solution, a single 0.5-ms stimulus was applied 

every 20 s. Asynchronous events evoked by Sr2+ were collected in the 10 s following the single 

stimulus using detection parameters identical to those used to detect mIPSCs. Trains of stimuli 

were evoked by applying 30 0.5-ms stimuli, each spaced 100 ms apart. Injected currents were 

10–100 μA in amplitude. 

All recordings were made using an Axoclamp MultiClamp 700B or Axopatch 200B 

amplifier. AxoGraph X software (AxoGraph) was used to collect data. Recordings were collected 

at 10 kHz and digitally filtered at 1 kHz. Recordings were discarded if the series resistance 

exceeded 20 MΩ or changed significantly during the course of the recording. 
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Baclofen- or [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO)-induced 

inhibition of IPSC frequency or amplitude was considered to have desensitized if two conditions 

were met: 1) the inhibition of IPSC frequency or amplitude was reduced by ≥15% over the 

course of 7 min of drug application; and 2) the inhibition was reversed and IPSC frequency or 

amplitude did not exceed that measured before drug application. Baclofen- or DAMGO-induced 

inhibition was considered resistant to desensitization if the inhibition was reversed but did not 

exhibit at least a 15% reduction over the course of the drug application. 

Drugs 

Stock solutions of DAMGO (Sigma-Aldrich), R(+)-baclofen hydrochloride (baclofen; 

Sigma-Aldrich), D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; Tocris Bioscience), ω-

conotoxin GVIA (Alomone Labs), ω-agatoxin IVA (Alomone Labs), and tetrodotoxin citrate (TTX; 

Tocris Bioscience) were prepared in distilled water (at least 1,000× final concentration). Stock 

solution of ionomycin (Sigma-Aldrich), (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-

hydroxypropyl](phenylmethyl)phosphinic acid hydrochloride (CGP 55845; Sigma-Aldrich), 6,7-

dinitroquinoxaline-2,3(1H,4H)-dione (DNQX; Sigma-Aldrich), and (+)-MK-801 hydrogen maleate 

(MK-801; Sigma-Aldrich) were prepared in DMSO (at least 10,000× final concentration). 

Tetraethylammonium chloride (TEA; Sigma-Aldrich), 4-aminopyridine (4-AP; Sigma-Aldrich), 

and barium chloride (Ba+; Sigma-Aldrich) were added directly to aCSF at the final concentration 

used. 

Statistics 

Data were compared using the paired Student's t-test, repeated-measures ANOVA 

followed by Tukey multiple-comparison test, one-way ANOVA, or a two-way ANOVA followed by 

the Bonferroni multiple-comparison test as indicated. Time constants and plateaus of the decay 

of eIPSC amplitudes evoked by a train of stimuli were obtained by fitting compiled and 

normalized data to a single-phase decaying exponential. All data were analyzed using 
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GraphPad Prism. Data are shown as means ± SE, and differences between groups were 

considered significant if p < 0.05. 

3.5 Results 

Activation of K+ channels is not required for MOR- or GABABR-mediated inhibition of GABA 

release onto POMC neurons 

The MOR can inhibit release of neurotransmitter from presynaptic terminals via the 

activation of voltage-dependent K+ channels (Vaughan et al., 1997; Zhu and Pan, 2005). If 

MOR- or GABABR-mediated inhibition of GABA release onto POMC neurons requires the 

activation of voltage-dependent K+ channels, then the presence of the voltage-dependent 

K+ channel inhibitor TEA or 4-AP should occlude inhibition by that receptor. However, in the 

presence of TEA (10 mM), DAMGO still inhibited mIPSC frequency [0.13 ± 0.03 of control; n = 

5; p < 0.001, t = 29.80, degrees of freedom (df) = 4, paired t-test; Fig. 3.1B; nonnormalized, 8.1 

± 1.2 to 1.2 ± 0.4 Hz; p < 0.001, t = 9.04, df = 4, paired t-test] and eIPSC amplitude (0.33 ± 0.11 

of control; n = 6; p = 0.004, t = 6.26, df = 3, paired t-test; Fig. 3.1B; nonnormalized, 503 ± 106 to 

144 ± 33 pA; p = 0.03, t = 2.95, df = 3, paired t-test). Similarly, baclofen inhibited both mIPSC 

frequency (0.34 ± 0.07 of control; n = 6; p < 0.001, t = 9.68, df = 5, paired t-test; Fig. 3.1B; 

nonnormalized, 6.4 ± 2.0 to 2.3 ± 0.8 Hz; p = 0.01, t = 3.09, df = 5, paired t-test) and eIPSC 

amplitude (0.33 ± 0.12 of control; n = 6; p < 0.001, t = 6.26, df = 5, paired t-test; Fig. 

3.1, A and B; nonnormalized, 763 ± 87 to 239 ± 92 pA; p = 0.005, t = 4.10, df = 5, paired t-test) 

in the presence of TEA. 

Application of 4-AP (100 μM) increased the frequency of IPSCs (2.2 ± 0.4-fold 

increase; n = 28; p = 0.002, t = 3.20, df = 27, paired t-test; Fig. 3.1A) in a manner reversible by 

TTX (2.4 ± 0.6 in 4-AP to 0.85 ± 0.06 in TTX relative to baseline; n = 18; p = 0.002, F = 7.43, df 

= 50, repeated-measures ANOVA; IPSC frequency in TTX was not significantly different from 

control using Tukey multiple-comparison test). In the absence of TTX, the frequency of IPSCs 

measured in the presence of 4-AP was decreased by both DAMGO (0.28 ± 0.06 of control; n = 

http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
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5; p < 0.001, t = 12.75, df = 4, paired t-test; Fig. 3.1, A and B; nonnormalized, 13.8 ± 6.5 to 3.0 ± 

0.9 Hz; p = 0.07, t = 1.89, df = 4, paired t-test) and baclofen (0.21 ± 0.09 of control; n = 6; p < 

0.001, t = 8.98, df = 5, paired t-test;Fig. 3.1B; nonnormalized, 16.6 ± 6.8 to 6.0 ± 4.8 Hz; p = 

0.003, t = 4.67, df = 5, paired t-test). The frequency of mIPSCs measured in the presence of 4-

AP and TTX was also inhibited by both DAMGO (0.16 ± 0.03 of control; n = 8; p < 0.001, t = 

28.96, df = 7, paired t-test; Fig. 3.1B; nonnormalized, 14.9 ± 2.9 to 2.6 ± 0.7 Hz; p < 0.001, t = 

5.38, df = 7, paired t-test) and baclofen (0.23 ± 0.03 of control; n = 17; p < 0.001, t = 23.74, df = 

16, paired t-test; Fig. 3.1B; nonnormalized, 8.1 ± 1.6 to 2.2 ± 0.6 Hz; p = 0.003, t = 5.58, df = 16, 

paired t-test). 

It has also been suggested that G-protein-coupled inwardly rectifying K+ channels 

(GIRKs) may mediate inhibition of release by presynaptic inhibitory GPCRs (Ladera et al., 2008; 

Michaeli and Yaka, 2010). To determine whether GIRK activation plays a role in either MOR- or 

GABABR-mediated inhibition of GABA release onto POMC neurons, DAMGO- and baclofen-

Figure 3.1 MOR- and GABABR-mediated inhibition of release does not require the activation of 
K+ channels. A) Sample traces demonstrating either DAMGO- or baclofen-induced inhibition of eIPSC 
amplitude or spontaneous IPSC (sIPSC) frequency in the presence of the K+-channel blockers TEA (10 
mM), 4-AP (100 μM), or Ba+ (100 μM). B) Compiled and normalized data demonstrating the magnitude 
of DAMGO- and baclofen-induced inhibition of mIPSC frequency and eIPSC amplitude in the presence 
of TEA, 4-AP, and Ba+. The shown values for DAMGO- and baclofen-induced inhibition of mIPSC 
frequency and eIPSC amplitude in the absence of K+-channel blockers (marked with an asterisk) were 
previously published in Pennock and Hentges (2011; DAMGO) and Pennock et al. (2012; baclofen). 
Numbers displayed within the bars of the graph represent the sample size for that experiment. 

http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
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induced inhibition of mIPSC frequency and eIPSC amplitude was measured in the presence of 

the GIRK blocker Ba+ (100 μM). In the presence of Ba+, DAMGO inhibited mIPSC frequency 

(0.09 ± 0.02 of control; n = 6; p < 0.001, t = 36.67, df = 5, paired t-test; Fig. 3.1B; 

nonnormalized, 7.9 ± 3.1 to 0.6 ± 0.3 Hz; p = 0.025, t = 2.55, df = 5, paired t-test) and eIPSC 

amplitude (0.35 ± 0.10 of control; n = 6; p < 0.001, t = 6.30, df = 5, paired t-test; Fig. 

3.1, A and B; nonnormalized, 544 ± 100 to 198 ± 71 pA; p = 0.005, t = 4.03, df = 5, paired t-

test). Similarly, baclofen-induced inhibition of mIPSC frequency still occurred in the presence of 

Ba+ (0.21 ± 0.07 of control; n = 6; p < 0.001, t = 11.94, df = 5, paired t-test; Fig. 3.1B; 

nonnormalized, 7.1 ± 3.3 to 2.2 ± 1.4 Hz; p = 0.014, t = 3.09, df = 5, paired t-test), as did 

inhibition of eIPSC amplitude (0.29 ± 0.08 of control; n = 6; p < 0.001, t = 8.79, df = 5, paired t-

test; Fig. 3.1B; nonnormalized, 513 ± 85 to 174 ± 64 pA; p < 0.001, t = 7.51, df = 5, paired t-

test). 

DAMGO- and baclofen-induced inhibition of mIPSC frequency and eIPSC amplitude 

measured from POMC neurons in the absence of K+-channel blockers has been previously 

characterized (Pennock and Hentges, 2011; Pennock et al., 2012) (Fig. 3.1B). These previously 

published results were compared to DAMGO- and baclofen-induced inhibition of mIPSC 

frequency and eIPSC amplitude in the presence of TEA, 4-AP, and Ba+ to determine whether 

the presence of K+-channel blockers attenuates MOR- or GABABR-mediated inhibition of GABA 

release (Fig. 3.1B). The presence of K+-channel blockers did not significantly affect the 

magnitude of DAMGO-induced inhibition of mIPSC frequency (p = 0.06, F = 2.84, df = 23, 1-way 

ANOVA) or eIPSC amplitude (p = 0.90, F = 0.19, df = 70, 1-way ANOVA) or baclofen-induced 

inhibition of mIPSC frequency (p = 0.15, F = 1.91, df = 40, 1-way ANOVA) or eIPSC amplitude 

(p = 0.74, F = 0.42, df = 43, 1-way ANOVA). Together, these results suggest that DAMGO- and 

baclofen-induced inhibition of GABA release onto POMC neurons does not rely on the activation 

of presynaptic voltage-dependent K+ channels or GIRKs. 

http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
http://jn.physiology.org/content/115/5/2376#F1
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http://jn.physiology.org/content/115/5/2376#F1
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http://jn.physiology.org/content/115/5/2376#F1
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Inhibition of Ca2+ influx is not required for MOR- or GABABR-mediated inhibition of GABA 

release 

To determine whether MORs or GABABRs inhibit GABA release onto POMC neurons by 

decreasing Ca2+ influx into presynaptic terminals, recordings were made in Ca2+-free external 

solution. Switching from a Ca2+-containing to a Ca2+-free external recording solution eliminated 

eIPSCs measured from POMC neurons (406 ± 80 to 2 ± 2 pA; n = 3; p = 0.02, t = 4.88, df = 2, 

paired t-test; data not shown), indicating that Ca2+ was successfully removed from the 

extracellular space, and thus Ca2+ influx was eliminated. Unlike eIPSC amplitude, mIPSC 

frequency was maintained in the absence of external Ca2+ (8.77 ± 2.0 Hz in standard aCSF vs. 

8.9 ± 2.0 Hz in Ca2+-free aCSF; n = 20; p = 0.65, t = 0.46, df = 19, paired t-test; Fig. 

3.2, A and E,top traces, and B and F). In the absence of external Ca2+, robust inhibition of 

mIPSC frequency was induced by both DAMGO (6.0 ± 1.5 to 0.9 ± 0.2 Hz; n = 10; p = 0.004, t = 

3.80, df = 9, paired t-test; Fig. 3.2, A–C) and baclofen (11.7 ± 3.0 to 4.6 ± 1.7 Hz; n = 13; p < 

0.001, t = 5.22, df = 12, paired t-test; Fig. 3.2, E–G). Consistent with previous results (Pennock 

et al. 2012), DAMGO-induced inhibition of mIPSC frequency was resistant to acute 

desensitization (p = 0.23, F = 1.24, df = 153; n = 7; repeated-measures ANOVA; Fig. 3.2D). 

Also consistent with previous results, baclofen-induced inhibition of mIPSC frequency could be 

either resistant (p = 0.05, F = 1.59, df = 181; n = 7 of 10 recordings; repeated-measures 

ANOVA; Fig. 3.2D) or susceptible (p < 0.001, F = 2.61, df = 77; n = 3 of 10 recordings; 

repeated-measures ANOVA; Fig. 3.2H) to acute desensitization. The amount of desensitization 

that occurred in each recording is represented as a scatterplot in Fig. 3.2I. Altogether, the above 

results indicate that MOR and GABABR can inhibit transmitter release by a mechanism other 

than preventing Ca2+ influx into GABAergic terminals. 
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Figure 3.2 MOR- and GABABR-mediated inhibition of mIPSC frequency in the absence of external 
Ca2+. A) Sample traces demonstrating DAMGO-induced reduction in mIPSC frequency measured from 
POMC neurons when recording in a Ca2+-free external recording solution and reversal on application of 
the MOR-selective antagonist CTAP (500 nM). B) A plot of the recording from which the traces 
in (A) were taken. C) compiled data from the experiments represented in (A) and (B). D) Compiled data 
from recordings in which DAMGO (■)- or baclofen (●)-induced inhibition of mIPSC frequency exhibited 
resistance to acute desensitization. The inhibition was reversed by the addition of antagonist. E) Sample 
traces demonstrating baclofen-induced reduction in mIPSC frequency measured from POMC neurons 
when recording in a Ca2+-free recording solution and reversal with the application of the GABABR 
antagonist CGP 55845. Acute desensitization of the baclofen-induced inhibition is shown in the trace 
taken from the 7th minute of the baclofen application. (continued on next page) 
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Unregulated Ca2+ influx into GABAergic terminals presynaptic to POMC neurons does not 

occlude MOR- or GABABR-mediated inhibition of GABA release 

To explore further the possibility that inhibition of Ca2+ influx into GABAergic terminals is 

not necessary for MOR- and GABABR-induced inhibition of release, agonist actions were 

examined under the condition of unregulated Ca2+ influx. To achieve unregulated Ca2+ influx into 

terminals presynaptic to POMC neurons, slices were exposed to the Ca2+ ionophore ionomycin. 

A brief (2–5 min) application of ionomycin (1 μM) resulted in a robust increase in IPSC 

frequency measured from POMC neurons in the presence of TTX (11.59 ± 1.6 to 23.58 ± 2.0 

Hz; n = 26; p < 0.001, t = 7.99, df = 25, paired t-test; average 2.8 ± 0.4-fold increase; Fig. 

3.3, A and B). After reaching a peak, the ionomycin-induced increase in mIPSC frequency is not 

maintained over time (Fig. 3.3A). To lessen both the continued increase in mIPSC frequency 

that occurs in the high concentration of ionomycin and the decline in mIPSC frequency that 

occurs when application is stopped, a reduced concentration of ionomycin (100 nM) was 

continuously superfused over the slice after the initial brief, high-concentration ionomycin 

application (Fig. 3.4, A and E). Ionomycin had no effect in Ca2+-free external recording solution 

(11.32 ± 4.5 to 10.0 ± 3.8 Hz; n = 6; p = 0.12, t = 1.85, df = 5, paired t-test; Fig. 3.3, C and D), 

confirming the Ca2+-dependent nature of the ionomycin-induced increase in IPSC frequency. 

Under this condition of unregulated Ca2+ influx, a maximal concentration of DAMGO (10 

μM) still inhibited IPSC frequency (21.6 ± 2.6 to 8.6 ± 1.7 Hz; n = 13; p < 0.001, t = 7.15, df = 12, 

paired t-test; Fig. 3.4, A–C). A concentration of DAMGO that produced half-maximal inhibition 

under control conditions (100 nM) produced similar inhibition of IPSC frequency in the presence 

of ionomycin (56 ± 11% of the inhibition produced by 10 μM DAMGO; Fig. 3.4D), implying that 

(Figure 3.2 continued) F) A plot of the recording from which the traces in (E) were taken. G) compiled 
data from the experiments represented in (E) and (F). H) Compiled data from recordings in which 
baclofen-induced inhibition of mIPSC frequency exhibited acute desensitization. I: scatterplot 
demonstrating the inhibition of mIPSC frequency by DAMGO (●) or baclofen (⧫ for nondesensitizing 
recordings; ■ for desensitizing recordings) after 5 min of continuous drug application divided by the 
inhibition after 1 min. Points marked with an asterisk were found to be significantly different from peak 
inhibition using Tukey multiple-comparison test. 
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receptor function was not compromised during these experiments. A maximal concentration of 

baclofen (30 μM) also induced robust inhibition of IPSC frequency in the presence of ionomycin 

(24.0 ± 2.3 to 13.7 ± 1.8 Hz; n = 13; p < 0.001, t = 7.74, df = 12, paired t-test; Fig. 3.4, E–G). 

Baclofen (2 μM), which is near the EC50 for baclofen under control conditions, produced an 

approximately half-maximal inhibition of IPSC frequency in the presence of ionomycin-induced 

Ca2+ influx (51 ± 18% of the inhibition produced by 30 μM baclofen; Fig. 3.4H), demonstrating 

that GABABR function is also not compromised by this experimental paradigm. The observation 

that MOR- and GABABR-induced inhibition of release is maintained when Ca2+ influx cannot be 

prevented further indicates that these receptors can prevent transmitter release via a 

mechanism other than reduced Ca2+ influx. 

Fig. 3.3 Ionomycin induces a Ca2+-dependent increase in IPSC frequency measured from POMC 
neurons. A) Plot of IPSC frequency measured from POMC neurons demonstrating an ionomycin-
induced increase in IPSC frequency. B) Compiled data for ionomycin-induced increases in IPSC 
frequency measured from POMC neurons. C) Plot of IPSC frequency demonstrating a lack of an 
ionomycin-induced increase in IPSC frequency when recording in a Ca2+-free external recording 
solution. D) Compiled data demonstrating the effect of ionomycin on IPSC frequency when recording in 
a Ca2+-free external recording solution. All recordings were made in the presence of TTX (300 nM). 
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Sr2+-evoked GABA release onto POMC neurons is inhibited by the MOR and GABABR 

Whereas the previous two experiments indicate that the MOR and GABABR do not 

require inhibition of Ca2+ influx to reduce transmitter release, the experimental paradigms used 

do not provide information about evoked, synchronous release. To determine whether inhibition 

of synchronous, Ca2+-dependent release is dependent on the inhibition of Ca2+ influx, Ca2+ in the 

external recording solution was replaced with Sr2+. Like Ca2+, Sr2+ influx into presynaptic 

terminals via voltage-dependent Ca2+ channels results in the release of neurotransmitter from 

Fig. 3.4 MOR- and GABABR-mediated inhibition of IPSC frequency is maintained in the presence 
of ionomycin-induced Ca2+influx. A) A plot of a recording demonstrating a stable ionomycin-induced 
increase in IPSC frequency measured from POMC neurons that was inhibited by a submaximal (100 
nM) and maximal (10 μM) concentration of DAMGO. B) Sample traces taken from the recording plotted 
in A. C) Compiled data for DAMGO-induced inhibition of IPSC frequency in the presence of 
ionomycin. D) A submaximal concentration of DAMGO (100 nM) that is near the EC50 of DAMGO still 
produces an approximately half-maximal inhibition in the presence of ionomycin. E) A plot of a recording 
demonstrating baclofen-induced inhibition of the ionomycin-induced increase in IPSC frequency. F: 
sample traces from the recording plotted in (E). G) Compiled data for baclofen-induced inhibition of 
IPSC frequency in the presence of ionomycin. H) A concentration of baclofen (2 μM) that is 
approximately half-maximal under normal recording conditions is also approximately half-maximal in the 
presence of ionomycin. All recordings were made in the presence of TTX (300 nM). 
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vesicles into the synapse (Miledi, 1966; Dodge et al., 1969; Goda and Stevens, 1994; Ohno-

Shosaku et al., 1994). However, unlike Ca2+, Sr2+ does not cause synaptotagmin to compete 

with Gβγ at the SNARE complex (Shin et al., 2003; Bhalla et al., 2005). Therefore, replacing 

Ca2+ with Sr2+ provides a means to determine whether GPCR-mediated inhibition of evoked 

release is due to reduced influx through Ca2+ channels since competitive interactions at the 

synaptotagmin/SNARE complex are occluded when release is evoked with Sr2+ (Hamid et al., 

2014). 

Switching from a Ca2+-based to Sr2+-based external recording solution while evoking 

GABA release from terminals presynaptic to POMC neurons decreased the amplitude of 

eIPSCs measured from POMC neurons (1.48 ± 0.27 to 0.37 ± 0.07 nA; n = 7; p = 0.002, 

paired t-test; Fig. 3.5, A and B) but caused an increase in the number of IPSCs measured in the 

10 s following stimulation that was reversed when the stimulation ceased (Ca2+ external, 9.7 ± 

4.1 Hz; Sr2+ external, 14.7 ± 6.4 Hz; Sr2+ external with no stimulus, 10.8 ± 4.8 Hz; n = 7; p = 

0.05, F = 3.75, df = 20, repeated-measures ANOVA; Fig. 3.5, A–D). Sr2+ did not increase 

mIPSC frequency, as was indicated by recordings made in the presence of TTX (8.8 ± 1.3 to 8.4 

± 1.2 Hz; n = 11; p = 0.38, t = 0.93, df = 10, paired t-test; Fig. 3.5, E and F). These results 

confirm that the observed increase in transmitter release in the 10 s after simulation in the 

presence of Sr2+ is due to action potential propagation and subsequent Sr2+ influx. These 

findings are consistent with previous studies demonstrating decreased eIPSC amplitude and 

increased delayed release in the presence of Sr2+ (Morishita and Alger, 1997; Behrends and ten 

Bruggencate, 1998; Rumpel and Behrends, 1999). 

In the presence of a Sr2+-based external recording solution, DAMGO inhibited the 

amplitude of eIPSCs measured from POMC neurons (213 ± 46 to 49 ± 13 pA; n = 13; p = 

0.002, t = 4.07, df = 12, paired t-test; Fig. 3.6, A and D) and decreased the frequency of delayed 

IPSCs measured in the 10 s after an electrical stimulus (10.7 ± 2.1 to 1.6 ± 0.5 Hz; n = 13; p <  
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Figure 3.5 Substituting Sr2+ for Ca2+ in the external recording solution results in a decrease in 
eIPSC amplitude and an action-potential-dependent increase in delayed IPSCs. A) Sample traces 
demonstrating decreased eIPSC amplitude and increased IPSC frequency in the presence of Sr2+. B) 
Compiled data showing a decrease in eIPSC amplitude in Sr2+-based external recording solution. C) 
Sample plot of a recording demonstrating that switching from a Ca2+-based to a Sr2+-based external 
recording solution while evoking neurotransmitter release (single stimulus every 20 s) results in an 
increase in delayed IPSCs occurring after the stimulus that dissipates after the stimulus is no longer 
applied (Sr2+ext. no stim.). D) Compiled data for the experiment represented in (C). E) Sample plot of a 
recording made in the absence of electrical stimulation and in the presence of TTX (300 nM). Replacing 
Ca2+ with Sr2+ had no effect on IPSC frequency under these conditions. F) Sample traces and compiled 
data demonstrating a lack of Sr2+-induced increase in IPSC frequency in the absence of electrical 
stimulation and in the presence of TTX. 
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0.001, t = 5.49, df = 12, paired t-test; Fig. 3.6, A–C). The DAMGO-induced inhibition of both the 

frequency of delayed IPSCs and the immediate evoked IPSCs was maintained during prolonged  

application (delayed IPSCs: n = 6; p = 0.44, F = 1.02, df = 119, repeated-measures ANOVA; 

eIPSCs: n = 6, p = 0.75, F = 0.76, df = 119, repeated-measures ANOVA; Fig. 3.6, E and F). 

Baclofen also inhibited eIPSC amplitude (198 ± 30 to 42 ± 9 pA; n = 31; p < 0.001, t = 6.88, df = 

30, paired t-test; Fig. 3.6, G and J) and delayed IPSC frequency (19.7 ± 2.5 to 7.5 ± 1.8 Hz; n = 

31; p < 0.001, t = 11.22, df = 30, paired t-test; Fig. 3.6, G–I) measured from POMC neurons 

while using a Sr2+-based external solution. Consistent with previous results, the baclofen-

induced inhibition of delayed IPSCs exhibited acute desensitization in a fraction of recordings 

(n = 5 of 25 recordings; P < 0.001, F = 9.79, df = 109, repeated-measures ANOVA; Fig. 

3.6, K and L). However, baclofen-induced inhibition of eIPSCs in the same recordings did not 

exhibit statistically significant desensitization (n = 5; P = 0.11, F = 1.47, df = 109, repeated- 

measures ANOVA; Fig. 3.6, M and N), but this may be due to the high amount of variability in 

the amplitude of Sr2+-evoked IPSCs. Recordings of baclofen-induced inhibition of delayed 

events that did not exhibit clear desensitization also showed a statistically significant change in 

inhibition over the course of a prolonged baclofen exposure (delayed IPSCs: n = 20; p < 

0.001, F = 2.35, df = 459, repeated-measures ANOVA; Fig. 3.6, E and L). This may be the 

result of including recordings that were near, but did not meet, the criteria to be included in the 

group of recordings that were considered to have desensitized. Baclofen-induced inhibition of  

synchronous release from these same recordings exhibited no desensitization (eIPSCs: n = 

20; p = 0.36, F = 1.09, df = 459, repeated-measures ANOVA; Fig. 3.6, F and N). Altogether, the 

recordings made in the presence of Sr2+ suggest that both MOR and GABABRs can reduce 

transmitter release by inhibiting Ca2+ channels since Sr2+ likely occludes direct actions at 

vesicular release machinery. 
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Figure 3.6 Sr2+-evoked IPSCs are inhibited by both MOR and GABABR agonists. A) Sample traces 
demonstrating decreased eIPSC amplitude and increased frequency of delayed IPSCs while evoking 
neurotransmitter release in the presence of Sr2+-based external recording solution as well as 
subsequent inhibition of both immediate and delayed Sr2+-evoked IPSCs by DAMGO. The MOR 
antagonist CTAP was used to reverse the DAMGO-induced inhibition. B) Plot of IPSC frequency over 
time taken from the same recording as the sample traces in (A). C,D) Compiled data for the experiments 
represented in (A) and (B). E,F) Compiled data demonstrating resistance to desensitization of DAMGO 
(●)- and baclofen (■)-induced (continued on next page) 
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The MOR and GABABR inhibit N- and P/Q-type voltage-dependent Ca2+-channel-dependent 

evoked GABA release onto POMC neurons 

Inhibition of Sr2+-evoked GABA release onto POMC neurons by the MOR and GABABR 

implies that both receptors can inhibit release via the inhibition of Ca2+ influx, likely through the 

inhibition of presynaptic voltage-dependent Ca2+ channels (VDCCs). However, the receptors 

may differentially couple to different types of VDCCs within presynaptic terminals. To determine 

whether the MOR or GABABR preferentially couple to different types of VDCCs, the inhibition of 

GABA release by each receptor was measured in the presence of a blocker of N- or P/Q-type 

VDCCs. If the MOR or GABABR selectively couples to either N- or P/Q-type VDCCs, then we  

expect inhibition of GABA release by that receptor to be reduced in the presence of a blocker of 

the VDCC it couples to. 

To ensure that Ca2+ influx through N- and P/Q-type VDCCs is sufficient to account for 

evoked GABA release onto POMC neurons, eIPSCs were evoked using a train of 30 stimuli 

(each separated by 100 ms) in the absence of VDCC blockers, after application of the N-type 

VDCC blocker ω-conotoxin GVIA (5 μM), and after the application of the P/Q-type VDCC 

blocker ω-agatoxin IVA (100 nM) subsequent to ω-conotoxin GVIA application. IPSCs evoked 

using a train of stimuli had a peak current of 1,061 ± 171 pA after the first stimulus. Amplitudes 

of subsequent IPSCs in the train decreased (τ = 72 ms; 1-phase exponential decay) until 

(Figure 3.6 continued) inhibition of delayed IPSCs and eIPSCs recorded in the presence of Sr2+. G) 
Sample traces demonstrating the decrease in eIPSC amplitude and IPSC frequency observed when 
substituting Sr2+ for Ca2+ in the external recording solution as well as inhibition of Sr2+-evoked events by 
baclofen and subsequent desensitization of the baclofen-induced inhibition. CGP 55845 was used to 
reverse the baclofen-induced inhibition. H) Plot of IPSC frequency from the recording shown as sample 
traces in (G). I,J) Compiled data for the experiments represented in (G) and (H). (K) Compiled data for 
recordings in which baclofen-induced inhibition of the frequency of delayed IPSCs exhibited acute 
desensitization. (L) Scatterplot demonstrating the inhibition of IPSC frequency by DAMGO (●) or 
baclofen (⧫ for nondesensitizing recordings; ■ for desensitizing recordings) after 5 min of continuous 
drug application divided by the inhibition after 1 min. (M) Normalized eIPSC amplitudes from the same 
recordings used to produce the graph in (K). (N) Scatterplot demonstrating the inhibition of eIPSC 
amplitude by DAMGO (●) or baclofen (⧫ for nondesensitizing recordings; ■ for desensitizing recordings) 
after 5 min of continuous drug application divided by the inhibition after 1 min. Recordings were placed 
in the same group (nondesensitizing or desensitizing) that they were placed into in (L). Points marked 
with an asterisk were found to be significantly different from peak inhibition using Tukey multiple-
comparison test. 
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reaching a steady-state amplitude that was ∼47% (503 ± 24 pA) of the first IPSC in the train 

(n = 5; Fig. 3.7, A and B). Application of the N-type VDCC blocker ω-conotoxin GVIA (5 μM) 

reduced the amplitude of all IPSCs evoked by the stimulus train [amplitude of 1st eIPSC = 605 ± 

44 pA; plateau = 322 ± 19 pA; τ = 118 ms; 1-phase exponential decay; n = 5; p = 0.27, F = 1.38, 

df numerator (dfn) = 1, df denominator (dfd) = 8, 2-way repeated-measures ANOVA; Fig. 

3.7, A and B]. Subsequent application of the P/Q-type VDCC blocker ω-agatoxin IVA (100 nM) 

further reduced the amplitude of IPSCs evoked by the stimulus train (amplitude of 1st eIPSC = 

51 ± 13 pA; n = 5; p = 0.02, F = 8.34, dfn = 1, dfd = 8, 2-way repeated-measures ANOVA; Fig. 

3.7, A and B). After blocking both N- and P/Q-type VDCCs, the amplitude of eIPSCs during the 

stimulus train no longer exhibited exponential decay (Fig. 3.7B) and had an average amplitude 

of 49 ± 3 pA (n = 150, average of all 30 eIPSC amplitudes during the stimulus train from 5 cells). 

To ensure that the relatively small currents being measured after applying both blockers were 

not simply due to measurement of a stimulus artifact, DAMGO or baclofen was applied to the 

slice after ω-conotoxin GVIA and ω-agatoxin IVA. The residual currents measured after 

applying both blockers were further inhibited by both DAMGO (16 ± 1 pA; n = 60; 2 cells; Fig. 

3.7A) and baclofen (9 ± 1 pA; n = 60; 2 cells; data not shown), demonstrating that these 

remaining currents are unlikely to be due to a measurement of a stimulus artifact. It is unclear 

whether this residual current after applying both blockers is due to incomplete blockade of N- 

and P/Q-type channels or from Ca2+ influx through a third type of VDCC. Because of the high 

frequency of spontaneous events measured from POMC neurons, it is also likely that some of 

the residual current measured is due to spontaneous events occurring near in time to stimuli 

applied during the trains. 

Application of ω-agatoxin IVA (100 nM) alone significantly reduced the amplitude of 

IPSCs evoked during a 30-stimulus train (amplitude of 1st IPSC: 688 ± 90 to 372 ± 47 pA; 

plateau: 297 ± 10 to 165 ± 5 pA, 1-phase exponential decay; n = 14; p = 0.009, F = 8.01, dfn = 

1, dfd = 26, 2-way repeated-measures ANOVA; Fig. 3.8, A–C). IPSCs evoked by the train were 
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further inhibited by subsequent application of either the MOR agonist DAMGO (n = 6; p = 

0.03, F = 6.89, dfn = 1, dfd = 10, 2-way repeated-measures ANOVA; Fig. 3.8B) or the GABABR 

agonist baclofen (n = 8; p < 0.001, F = 27.83, dfn = 1, dfd = 14, 2-way repeated-measures 

ANOVA; Fig. 3.8, A and C), indicating that neither the MOR nor GABABR inhibits evoked GABA 

release onto POMC neurons by selective inhibition of P/Q-type VDCCs. Similarly, application of 

ω-conotoxin GVIA (5 μM) reduced the amplitude of IPSCs evoked during the stimulus train  

Figure 3.7 Evoked GABA release onto POMC neurons is mediated by presynaptic N- and P/Q-
type voltage-dependent Ca2+channels. (A) Sample traces and plot demonstrating the inhibition of 
IPSCs evoked using a train of stimuli (100 ms between stimuli) by application of the N-type voltage-
dependent Ca2+-channel (VDCC) blocker ω-conotoxin GVIA (5 μM) followed by application of the P/Q-
type VDCC blocker ω-agatoxin IVA (100 nM). The sample traces show the 1st 12 eIPSCs evoked by a 
30-stimulus train and are the average of 6 sweeps each recorded 20 s apart. The sample plot 
demonstrates the amplitude of the eIPSC evoked by the 1st stimulus of the train for each sweep taken 
during the recording. (B) Compiled data representing the average amplitude of eIPSCs evoked using a 
train of 30 stimuli before and after the application of the VDCC blockers ω-conotoxin GVIA and ω-
agatoxin IVA. 
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Figure 3.8 The MOR and GABABR mediate inhibition of N- and P/Q-type VDCC-dependent GABA 
release onto POMC neurons. (A) Sample traces showing the 1st 9 eIPSCs evoked by a 30-stimulus 
train (100 ms between stimuli) before and after application of the P/Q-type voltage-dependent Ca2+-
channel (VDCC) blocker ω-agatoxin IVA (100 nM) as well as inhibition of the remaining current by the 
GABABR agonist baclofen (30 μM). Sample traces are the average (continued on next page) 
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 (amplitude of 1st IPSC: 743 ± 84 to 425 ± 71 pA; plateau: 325 ± 10 to 207 ± 8 pA, 1 -phase 

exponential decay; n = 19; p = 0.04, F = 4.66, dfn = 1, dfd = 36, 2-way repeated-measures 

ANOVA; Fig. 3.8, D–F). Again, IPSCs evoked by the train of stimuli after blocker application 

were further inhibited by subsequent application of either DAMGO (n = 6; p = 0.02, F = 7.68, dfn 

= 1, dfd = 10, 2-way repeated-measures ANOVA; Fig. 3.8, D and E) or baclofen (n = 8; p = 

0.04, F = 5.41, dfn = 1, dfd = 14, 2-way repeated-measures ANOVA; Fig. 3.8F), indicating that 

neither the MOR nor GABABR inhibits GABA release onto POMC neurons by selectively 

inhibiting N-type VDCCs. Together, the finding that DAMGO and baclofen induce robust  

inhibition of GABA release when either N- or P/Q-type VDCCs are blocked indicates that neither 

receptor couples selectively to one type of VDCC in presynaptic terminals. 

3.6 Discussion 

The present study was designed to determine the coupling of MORs and GABABRs in 

terminals presynaptic to POMC neurons to address whether differential coupling may underlie 

sensitivity or resistance to desensitization of the inhibition of transmitter release. Both MOR and  

GABABR agonists inhibited GABA release onto POMC neurons in the absence of external 

Ca2+ as well as in the presence of ionomycin-induced Ca2+ influx into terminals, suggesting a 

Ca2+-independent mechanism of MOR- and GABABR-mediated inhibition of release. MOR- and 

GABABR-mediated inhibition of GABA release was also maintained when Ca2+ in the external 

recording solution was replaced with Sr2+, which is consistent with a Ca2+-dependent  

mechanism of inhibition. Both receptors inhibited GABA release evoked by trains of stimuli in a 

manner that is consistent with inhibition of release via inhibition of voltage-dependent 

Ca2+ channels. Together, these data demonstrate that MOR- and GABABR-mediated inhibition 

(Figure 3.8 continued) of 6 sweeps each recorded 20 s apart. B,C) Compiled data demonstrating the 
inhibition of trains of 30 eIPSCs by the P/Q-type VDCC blocker ω-agatoxin IVA and subsequent 
application of DAMGO or baclofen, respectively. (D) Sample traces showing the 1st 9 eIPSCs evoked 
by a 30-stimulus train (100 ms between stimuli) before and after application of the N-type VDCC blocker 
ω-conotoxin GVIA (5 μM) as well as inhibition of the remaining current by the MOR agonist DAMGO (10 
μM). E,F) Compiled data demonstrating inhibition of trains of 30 eIPSCs by the N-type VDCC blocker 
ω-conotoxin GVIA and subsequent application of DAMGO or baclofen, respectively. 
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of GABA release onto POMC neurons likely occurs through both Ca2+-independent and -

dependent mechanisms. 

GPCR-mediated activation of voltage-dependent K+ channels (VDKCs) (Vaughan et al., 

1997; Zhu and Pan, 2005) and activation of G-protein-coupled inwardly rectifying K+ channels 

(GIRKs) on presynaptic terminals have been described as a mechanism by which inhibition of 

release can occur (Ladera et al., 2008; Michaeli and Yaka, 2010). However, neither the VDKC 

blockers 4-AP or TEA nor the GIRK blocker Ba+ had any effect on MOR- or GABABR-mediated 

inhibition of GABA release from terminals presynaptic to POMC neurons (Fig. 3.1). Thus it is 

unlikely that MORs or GABABRs rely on the activation of K+ channels to inhibit release from 

these terminals. 

Both MORs and GABABRs inhibit evoked and spontaneous GABA release from 

terminals presynaptic to POMC neurons (Pennock et al., 2012), despite the fact that 

spontaneous GABA release from these terminals occurs in a Ca2+-independent fashion, 

whereas evoked release does require Ca2+. This alone may have hinted at the dual 

mechanisms of inhibition of release by MORs and GABABRs. For example, both GABABRs and 

adenosine A1 receptors inhibit glutamate release evoked from granule cells to Purkinje cells in 

the rat cerebellum through modulation of voltage-dependent Ca2+ channels. However, only 

GABABRs inhibit mIPSCs. This suggests that GABABRs in that particular synapse also inhibit 

release through a second mechanism that occurs downstream of Ca2+ entry (Dittman and 

Regehr, 1996). Similar to GABABRs that modulate glutamate release in the granule cell to 

Purkinje cell synapse in the cerebellum, MORs and GABABRs presynaptic to POMC neurons 

may utilize two distinct pathways to inhibit evoked and miniature GABA release onto POMC 

neurons. 

Previous studies have demonstrated that the majority of spontaneous IPSCs measured 

from POMC neurons are unaffected by application of TTX (Pinto et al., 2004; Hentges et al., 

2005; Pennock and Hentges, 2011). Furthermore, in the present study, it is shown that mIPSCs 
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are largely unaffected when Ca2+ is removed from the external recording solution (Fig. 3.2). 

Together, these findings suggest that spontaneous GABA release onto POMC neurons occurs 

in a manner that is largely independent of Ca2+ influx. Therefore, inhibition of this Ca2+-

independent release induced by DAMGO and baclofen (Fig. 3.2) cannot be due to inhibition of 

Ca2+ influx and may occur through a mechanism that is not dependent on modulation of 

presynaptic Ca2+. 

Unregulated Ca2+ influx induced at terminals presynaptic to POMC neurons by the Ca2+ 

ionophore ionomycin also failed to occlude either MOR- or GABABR-mediated inhibition of 

GABA release onto POMC neurons (Fig. 3.4). This finding suggests that not only is inhibition of 

Ca2+ influx not required to inhibit GABA release, but also that regulation of internal 

Ca2+ concentrations is unlikely to be important in inhibiting nonevoked release from these 

terminals. It is worth noting that the magnitude of the inhibition of IPSC frequency by DAMGO or 

baclofen in the presence of ionomycin is decreased compared to experiments made under 

normal recording conditions [∼50% of baseline in the present study vs. 70–80% of baseline 

(Pennock and Hentges, 2011; Pennock et al., 2012)]. Previous experiments have shown that 

there is a small receptor reserve for MORs presynaptic to POMC neurons (Pennock et al., 

2012). If GABABRs on the same terminals have a similarly small receptor reserve, one 

explanation for the reduced magnitude of inhibition is simply that the terminals contain an 

insufficient amount of receptors to inhibit the increased release induced by ionomycin. However, 

the extent of receptor reserve for GABABRs on terminals presynaptic to POMC neurons is 

unknown. 

Another potential explanation for the reduced magnitude of MOR- and GABABR-

mediated inhibition of GABA release is that only vesicles that would normally be involved in 

Ca2+-independent release are being inhibited. There is strong evidence that evoked and  

spontaneous release arise from distinct pools of vesicles in central mammalian GABA (Mathew 

and Hablitz, 2008; Chung et al., 2010) and glutamate (Sara et al., 2005; Atasoy et al., 2008; 
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Sara et al., 2011) terminals as well as in the cholinergic terminals of 

the Drosophila neuromuscular junction (Koenig and Ikeda, 1999; Melom et al., 2013). If this is 

the case in GABAergic terminals presynaptic to POMC neurons, the MOR and GABABR may 

use a Ca2+-dependent mechanism to inhibit Ca2+-dependent release while inhibiting Ca2+-

independent release through a Ca2+-independent mechanism. Ionomycin-induced Ca2+ influx 

would then only occlude inhibition of release occurring at sites that are normally involved in 

evoked GABA release, whereas Ca2+-independent inhibition of sites involved in spontaneous 

release would still occur. Distinct release sites for spontaneous and evoked GABA release onto 

POMC neurons may also explain why δ-opioid receptors presynaptic to POMC neurons inhibit 

spontaneous, but not evoked, release (Pennock and Hentges, 2011). This has also been 

suggested as an explanation as to how group II metabotropic glutamate receptors selectively 

inhibit spontaneous GABA release at the interneuron-Purkinje cell synapse in the rat cerebellum 

(Glitsch, 2006). However, this explanation is only relevant in GABAergic terminals presynaptic 

to POMC neurons if MOR- and GABABR-mediated inhibition of evoked release occurs in a Ca2+-

dependent manner as was shown in the present study. 

To determine whether MOR- and GABABR-mediated inhibition of evoked release occurs 

through a Ca2+-dependent mechanism, inhibition induced by both receptors was measured after 

Ca2+ was replaced with Sr2+ in the external recording solution. Voltage-dependent Ca2+ channels 

have a high conductance for Sr2+ (Xu-Friedman and Regehr, 1999; Babai et al., 2014), and 

Sr2+ influx results in neurotransmitter release by binding and activating Ca2+ sensors on the 

vesicular release machinery (Babai et al., 2014). Sr2+-evoked release has also been shown to 

occlude Ca2+-independent inhibition of evoked glutamate release by serotonin 5-HT1B receptors 

(5-HT1BRs) in CA1-subiculum synapses in the rat hippocampus (Hamid et al., 2014). 5-HT1BRs 

inhibit release via a competitive interaction between Gβγ and Ca2+-synaptotagmin at the SNARE 

complex (Blackmer et al., 2001; Blackmer et al., 2005; Gerachshenko et al., 2005; Yoon et al., 

2007; Wells et al., 2012; Hamid et al., 2014). However, this competitive interaction may be 
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absent between Gβγ and Sr2+-synaptotagmin (Hamid et al., 2014). If MOR- or GABABR-

mediated inhibition of evoked GABA release onto POMC neurons occurs only through direct 

actions on release machinery, then there should be no effect of agonists on release that is 

evoked with Sr2+ in lieu of Ca2+. However, the present results show that both MOR- and 

GABABR-mediated inhibition of evoked GABA release was maintained when release was 

evoked using Sr2+ (Fig. 3.6), indicating that direct actions on the release machinery are not 

necessary. 

Sr2+-evoked GABA release onto POMC neurons was characterized by a decrease in the 

amplitude of the eIPSC measured immediately after electrical stimulation as well as an increase 

in delayed, asynchronous IPSCs following stimulation (Fig. 3.5). This is consistent with previous 

studies that characterized Sr2+-evoked release in glutamatergic (Goda and Stevens, 1994; 

AbdulGhani et al., 1996; Xu-Friedman and Regehr, 1999) and GABAergic (Morishita and Alger, 

1997; Behrends and ten Bruggencate, 1998; Rumpel and Behrends, 1999) synapses. Both the 

initial synchronous eIPSC as well as delayed IPSCs occurring in the 10 s after an electrical 

stimulus were robustly inhibited by DAMGO and baclofen. Because of the high basal frequency 

of spontaneous IPSCs measured from POMC neurons before the Sr2+-evoked increase in IPSC 

frequency, it is not possible to discern which IPSCs are actually the result of increased Sr2+ in 

the presynaptic terminal. However, the magnitude of DAMGO- and baclofen-induced inhibition 

was often great enough that it could not be accounted for simply by assuming that all inhibition 

was occurring at the sites responsible for basal spontaneous release. These data suggest that 

both the MOR and GABABR are preventing the influx of Sr2+ into presynaptic terminals, which 

most likely occurs through inhibition of voltage-dependent Ca2+ channels. A second possible 

explanation is that inhibition of Sr2+-evoked release is occurring through a Ca2+-independent 

mechanism that is distinct from the one previously reported for 5-HT1BRs and that is not 

occluded by Sr2+-synaptotagmin. 

http://jn.physiology.org/content/115/5/2376#F6
http://jn.physiology.org/content/115/5/2376#F5
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When release was evoked using Sr2+, desensitization of baclofen-induced inhibition of 

asynchronous GABA release occurring in the 10 s following stimulation was robust in 5/25 

recordings (Fig. 3.6, K and L). However, baclofen-induced inhibition of synchronous GABA 

release in these same recordings did not demonstrate clear desensitization in all cases (Fig. 

3.6, M and N). Although baclofen-induced inhibition of GABA release is sufficient to account for 

both spontaneous IPSCs and Sr2+-evoked asynchronous IPSCs, we cannot determine whether 

desensitization of that inhibition is occurring in synapses that are being stimulated electrically. 

The origins of inputs that are electrically stimulated in this study are unknown and likely have 

varying degrees of overlap with the inputs responsible for the spontaneous events measured 

from POMC neurons. This might explain why a given recording may exhibit desensitization of 

the inhibition of IPSC frequency but not exhibit desensitization of the inhibition of eIPSC 

amplitude. This could also occur in the reverse direction where inhibition of Sr2+-evoked IPSC 

amplitude desensitizes but desensitization of the inhibition of IPSC frequency is not detected. 

Although experiments using Sr2+ to evoke GABA release suggest that both the MOR and 

GABABR inhibit Ca2+ influx into terminals, it is possible that the receptors couple to different 

types of voltage-dependent Ca2+ channels found within presynaptic terminals. N- and P/Q-type, 

along with R-type, VDCCs are often responsible for providing the Ca2+ influx needed for 

synchronous neurotransmitter release (Meir et al., 1999), and all can be modulated by G 

proteins (Dolphin, 2003). Applying selective blockers for N- and P/Q-type VDCCs inhibited the 

amplitude of IPSCs evoked by a train of 30 stimuli by slightly more than 95% (Fig. 3.7), 

indicating that the vast majority of Ca2+ influx needed to evoke GABA release onto POMC 

neurons occurs through these types of presynaptic VDCCs. Both DAMGO and baclofen robustly 

inhibited eIPSC amplitude when either N-type or P/Q-type VDCCs were blocked 

pharmacologically (Fig. 3.8). This indicates that although both receptors are likely inhibiting 

Ca2+ influx into presynaptic terminals, neither the MOR nor GABABR is selectively inhibiting one 

type of VDCC or the other. 

http://jn.physiology.org/content/115/5/2376#F6
http://jn.physiology.org/content/115/5/2376#F6
http://jn.physiology.org/content/115/5/2376#F6
http://jn.physiology.org/content/115/5/2376#F7
http://jn.physiology.org/content/115/5/2376#F8
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Inhibition of release by inhibitory GPCRs located on presynaptic terminals has frequently 

been reported to exhibit resistance to acute desensitization (Blanchet and Luscher, 2002; 

Wetherington and Lambert, 2002a, b; Cruz et al., 2004; Fyfe et al., 2010; Pennock et al., 2012). 

The GABABR has proven to be an exception to this in some brain regions (Tosetti et al., 2004; 

Pennock et al., 2012). A possible explanation for the desensitization of GABABR-mediated 

inhibition of release is that the receptor is differentially coupled from receptors that resist 

desensitization. If this is the case, it may be that inactivation of the downstream effector, and not 

desensitization of the GABABR itself, is responsible for the observed loss in GABABR-mediated 

inhibition during a sustained exposure to agonist. However, both MOR- and GABABR-mediated 

inhibition was sustained under all conditions tested in the present study, and desensitization of 

GABABR-mediated inhibition was observed when measuring both Ca2+-dependent and -

independent release. Together, these findings provide further evidence that resistance or 

susceptibility to desensitization of inhibition of release by presynaptic inhibitory GPCRs occurs 

upstream of effectors either at the receptors themselves or possibly the G proteins they couple 

to. 

MORs and GABABRs located presynaptic to POMC neurons were able to inhibit GABA 

release in the absence of external Ca2+ as well as in the presence of unregulated Ca2+ influx, 

suggesting a Ca2+-independent mechanism of inhibition. However, activation of both receptors 

also resulted in inhibition of GABA release evoked with Sr2+, which is known to disrupt a 

mechanism of Ca2+-independent inhibition of release (Hamid et al., 2014). This suggests that 

both receptors use Ca2+-independent and -dependent mechanisms to inhibit GABA release onto 

POMC neurons. Strong coupling to two separate effector systems may explain how both 

receptors inhibit both Ca2+-independent spontaneous release as well as Ca2+-dependent evoked 

release. However, differential effector coupling cannot explain differential desensitization of the 

inhibition of release by presynaptic MORs and GABABRs since both receptors appear to be 

coupled to similar downstream effectors. 
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Chapter 4: Single Particle Tracking of the Mu Opioid Receptor in AtT20 Cells 

 

4.1 Overview 

 The previous two chapters established that desensitization-resistant MORs are 

regulated in a manner that diverges from that of postsynaptic MORs, and that resistance to 

desensitization cannot be accounted for by particular receptor-effector coupling. While these 

experiments provide useful information on the physiology of presynaptic MORs, they ultimately 

served to rule out possible explanations for resistance to desensitization. It is likely that 

resistance to desensitization by presynaptic MORs is conferred by some basic physical property 

of the receptors that differs from postsynaptic receptors. Whether this is due to differential 

covalent modification of pre- and postsynaptic MORs, or due to the presence of protein-protein 

interaction between the receptor and some other molecule, is unknown. However, whatever the 

mechanism underlying resistance to desensitization might be, it seems clear that standard 

electrophysiological and pharmacological techniques alone are insufficient to determine its 

nature. 

 If differential covalent modification or protein-protein interactions are responsible for 

stabilizing presynaptic MORs in a way that prevents desensitization it is reasonable to expect 

that the mobility of presynaptic MORs in the plasma membrane would be altered relative to 

postsynaptic receptors. Measuring the mobility of pre- and postsynaptic MORs could determine 

whether acute physical differences exist between these two populations of receptors. However, 

there is not currently an established technique used to make such measurements for the MOR. 

In this chapter, a cell line (AtT20 cells) expressing MORs that are modified to allow attachment 

of a fluorophore are used to establish the validity of single-particle tracking (SPT) as a measure 

of agonist-induced changes in MOR mobility. This particular cell line was chosen due to its 

frequent use in studies of MOR pharmacology and physiology, and because MORs expressed 
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in AtT20 cells have receptor-effector coupling that is similar to MORs located on the somato-

dendritic region of neurons. 

MOR mobility was measured under basal conditions (no MOR agonist present) or after 

ten minutes of exposure to the MOR agonist DAMGO.  We found that under basal conditions 

MORs were split into a mobile and an immobile population, and that DAMGO exposure results 

in a higher fraction of receptors on the plasma membrane being found in the immobile state. 

These findings demonstrate that SPT is a viable method for measuring agonist-induced 

changes in the diffusion of MORs within the plasma membrane. The establishment of this 

technique will allow for future studies focusing on differential mobility of MORs in located in 

different neuronal compartments, which will in turn provide insight into the physical differences 

that may exist between these receptors. These experiments have also paved the way for future 

studies to determine the physical basis of the mobile and immobile population of MORs. It is 

possible that differential mobility of MORs on the plasma membrane is related to differential 

recruitment of downstream signaling cascades. 

The work presented in the following chapter is currently being prepared for publication 

as a manuscript. I designed and carried out the experiments described in this chapter, and 

received critical assistance from Diego Krapf in the analysis and interpretation of the data. I 

drafted the chapter in its current form with input from Diego Krapf and Shane T. Hentges.  

4.2 Summary 

Mu opioid receptor (MOR) function, and that of other G-protein coupled receptors, is 

commonly studied via the activation of a particular downstream effector of the receptor, e.g. 

activation of an ion channel conductance or inhibition of cAMP production. Measuring agonist-

induced changes in MOR mobility using single-particle tracking can provide an alternative 

measure for agonist-induced changes of the MOR that possesses high temporal and spatial 

resolution, and does not rely on measuring outputs provided by effectors as a proxy for receptor 

activation. In the present study, single-particle tracking of quantum dot labeled FLAG-tagged 
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MORs was carried out in AtT20 cells. Under basal conditions, FLAG-MORs were found to exist 

in mobile and immobile states. After the cells were treated with the MOR agonist DAMGO both 

mobile and immobile receptor populations were still present, albeit with a significantly high 

fraction of immobile trajectories. These data demonstrate that activation of FLAG-MORs with 

DAMGO results in robust changes in mobility of the receptor. While the physical basis of the 

mobile and immobile population of receptors is still unknown, we speculate that the mobile and 

immobile populations of FLAG-MORs recruit distinct downstream signaling pathways. The 

characterization of agonist-induced changes in FLAG-MOR mobility carried out in the present 

study provides a framework for future studies of MOR signaling using single-molecule imaging 

techniques. 

4.3 Introduction 

The mu opioid receptor (MOR) is responsible for the analgesic effects of exogenously 

administered opioids (e.g. morphine, codeine, fentanyl), as well as the actions of several 

endogenous opioids (Williams et al., 2001). Activation of the MOR results in the inhibition of 

adenylyl cyclase, inhibition of voltage-dependent Ca2+-channels (VDCCs), activation of G-

protein coupled inwardly rectifying K+ channels (GIRKs), and the activation of several 

downstream signaling cascades that alter cellular function through transcriptional regulation 

(Williams et al., 2001; Williams et al., 2013). Most functional studies of the MOR have focused 

on the output produced by the inhibition or activation of these effectors.  

 Measuring the outputs provided by downstream effectors of the MOR (e.g. VDCCs, 

GIRKs, adenylyl cyclase) has provided a useful proxy for MOR activity. For example, 

electrophysiological studies measuring MOR-mediated activation or inhibition of ion channels 

provide a real-time, ensemble measure of MOR activation and desensitization in a given cell 

(Dang and Christie, 2012). Electrophysiological experiments can also determine the functional 

consequences of MOR activation on the cellular or circuit level via measurements of actions 

potential firing.  
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Biochemical and fluorescence imaging studies have provided evidence that 

compartmentalization of the receptor in the plasma membrane is likely critical to the functional 

output of the receptor. MORs exist in cholesterol rich domains on the plasma membrane, and 

colocalize with putative markers of signaling microdomains (Zhao et al., 2006; Levitt et al., 

2009). Depletion of cholesterol also results in attenuation of both acute (Gaibelet et al., 2008; 

Levitt et al., 2009) and prolonged MOR signaling (Zhao et al., 2006; Levitt et al., 2009). 

Additionally, activation of the MOR is also known to result in a redistribution of the receptors 

within the plasma membrane, and this redistribution of receptors is likely critical to their function 

(Gaibelet et al., 2008; Zheng et al., 2008; Halls et al., 2016).  

Studies of the MOR mobility in live cells using fluorescence recovery after 

photobleaching (FRAP) have shown that MORs exist in mobile and immobile MORs exist on the 

plasma membrane of SH-SY5Y cells (Sauliere et al., 2006), and that activation of the receptors 

alter their mobility (Sauliere-Nzeh et al., 2010). Specifically, application of the full MOR agonist 

DAMGO resulted in approximately half of the receptors becoming confined in relatively small 

domains and half becoming freely diffusible, while application of the partial agonist morphine 

resulted in a uniform reduction in MOR mobility (Sauliere-Nzeh et al., 2010). These studies 

provide compelling evidence that the compartmentalization and redistribution of receptors 

observed in biochemical studies of the MOR correspond to alterations in mobility of the receptor 

that are detectable using a real-time, ensemble measure of MOR diffusion. 

Single-particle tracking of MORs expressed in normal rat kidney (NRK) cells has also 

been performed, albeit with conflicting results. One study reported that most receptors undergo 

rapid diffusion within microdomains that themselves diffuse, while a smaller fraction of receptors 

under slow, directed diffusion (Daumas et al., 2003). A second study reported rapid “hop” 

diffusion of the receptor between double nested compartments on the NRK cell membrane 

(Suzuki et al., 2005). However, neither study explored agonist-induced changes in diffusion of 

the receptor using this measure. 
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Using single-particle tracking to study agonist-induced changes in MOR mobility will be a 

useful complement to previous studies in several ways. Single-particle tracking will allow for the 

detection of subpopulations of MORs based on their mobility, thus unmasking heterogeneity 

within the total population of MORs that is difficult to detect with ensemble measurements. It can 

also potentially provide a bridge between real-time electrophysiological experiments and 

biochemistry, which provides a static picture of a receptor’s interactions at a given time point. 

Extensive work has been performed characterizing the protein-protein and lipid-protein 

interactions that are critical to MOR activation and function (Lopez and Salome, 2009), but the 

real-time dynamics of these interactions is still not clear. Probing agonist-induced changes in 

MOR mobility with single-particle tracking, and determining what subpopulations of MORs exist 

based on this measure, will open the door for studies examining the dynamics of these 

interactions. 

In the present study, we performed single-particle tracking of modified MORs at 

physiological temperature (37°C) both under basal conditions and in the presence of DAMGO, a 

full agonist of the MOR. We employed an MOR construct that possesses an N-terminal FLAG 

epitope (FLAG-MOR) conjugated to a quantum dot via an anti-FLAG antibody. Experiments 

were performed in AtT20 cells that stably express FLAG-MOR (Borgland et al., 2003).  

 Analysis of trajectories of Qdot 565-conjugated FLAG-MORs reveals that activation of 

FLAG-MORs with DAMGO results in a reduction in the mobility of the receptor. Further 

quantitative diffusion analysis shows that receptors can be found in a mobile or immobile state 

under basal conditions, with most trajectories exhibiting relatively high mobility. Activation of the 

receptor with 10 µM DAMGO results in changes in the diffusion of the receptor. In particular, 

DAMGO treatment causes a reduction in the number of mobile trajectories and an increase in 

the number of immobile trajectories. These changes in the diffusive state of the receptor are 

also observed as an overall reduction in the ensemble-averaged effective diffusion coefficient. 

Together these findings explain the reduction in the average MSD of trajectories measured in 
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the presence of DAMGO. These findings show that activation of the FLAG-MOR does not 

results in a uniform decrease in the mobility of the receptors, but instead causes an increased 

fraction of FLAG-MORs to be found in an immobile state.  

4.4 Materials and Methods 

Cell Culture 

 AtT20 cells stably expressing the FLAG-MOR (provided by Dr. MacDonald Chrisite, 

University of Sydney) were maintained at 37°C/5% CO 2 in Dulbecco’s Modified Eagle Medium 

(DMEM; Gibco by Life Technologies) supplemented with 5% fetal bovine serum (ATCC), 

Glutamax (1:100, final concentration of 2mM L-alanyl-L-glutamine), and penicillin/streptomycin 

(Gibco by Life Technologies). Once cells reached confluence they exposed to 0.25% trypsin-

EDTA (Gibco by Life Technologies) and re-plated at lower density. Cells were maintained for no 

more than 12 passages beyond their original plating.  

Imaging 

 To prepare for imaging, AtT20 cells were be diluted and plated on MatTec dishes 

containing the same DMEM solution as described above. On the fourth day after plating these 

cells were labeled and imaged. Labeling was performed immediately before imaging. For 

labeling, cells were rinsed multiple times with a saline solution containing (in mM): 35 KCl, 120 

NaCl, 1 CaCl2, 25 HEPES, 10mM glucose, and pH 7.4 (adjusted using NaOH). After thoroughly 

washing to remove DMEM, the plates were filled with saline containing 1% (w/v) bovine serum 

albumin (BSA; Sigma) and incubated for 10 minutes at 37°C. The cells were then incubated for 

5 minutes at 37°C in the presence of a biotinylated anti -FLAG antibody (1:1000 dilution; final 

concentration 1 µg/mL; BioM2 Anti-FLAG; Sigma). After multiple rinses with saline (still 

containing 1% BSA) to remove unbound antibody, the cells were then incubated for 8 minutes at 

37°C in the presence of streptavidin coated quantum dots (1:10000, final concentration of 100 

pM; Streptavidin Qdot 565; Life Technologies; lot # 1750483). The cells were rinsed multiple 
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time with saline lacking BSA to remove unbound SA Qdot 565, as well as BSA, from the culture 

dish.  

 Imaging was carried on a spinning disk microscope equipped with a temperature 

controlled. The full MOR agonist DAMGO (10 µM; Sigma) was added to half of the culture 

dishes before placing them in the chamber. All culture dishes were kept in the chamber at 37°C 

for 10 minutes before images were acquired. This was done to allow desensitization of the 

FLAG-MOR to reach a steady state before imaging in DAMGO treated dishes, and to ensure 

that non-treated dishes were imaged at the same time after labeling as treated dishes. Qdot 565 

was excited using a 488 nm laser, and acquired at 565 nm. Videos were acquired at a rate of 20 

frames/s and were 5000 frames in length.  

Image Processing and Analysis 

 Images were background subtracted using a rolling-ball algorithm in ImageJ software. A 

Gaussian kernel filter was then applied to the images using a standard deviation of 0.8 pixels. 

After processing, fluorescent particles were detected using the u-track algorithm (Jaqaman et 

al., 2008) in MATLAB. Each 5000-frame video was broken into five separate 1000-frame 

segments for analysis. Trajectories less than 25 frames in length were excluded from further 

analysis. Trajectories were then converted to text files and analyzed using custom codes in 

LabView. 

Statistical Analysis 

Data sets were compared using an unpaired Student’s or Welch’s t-test as indicated, and p 

values of less than 0.05 were considered significant. GraphPad Prism (version 7.01) was used 

to perform statistical tests as well as to obtain descriptive statistics. Compiled data are shown as 

the mean ± SEM, or as histograms. 
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4.5 Results 

Activation of FLAG-MORs with DAMGO reduces the average MSD of the receptors 

Qdot 565-labeled FLAG-MORs located on the basal surface of AtT20 cells were imaged 

using spinning disk confocal microscopy in either the absence or presence of the full MOR 

agonist DAMGO (n=7 videos for each condition). Signaling of MORs expressed in these cells 

has been extensively characterized, and it is known that MORs expressed in AtT20 couple to 

endogenously expressed GIRKs (Celver et al., 2004; Yousuf et al., 2015), P/Q-type VDCCs 

(Borgland et al., 2003), adenylyl cyclase (Thompson et al., 2016), and G-protein coupled 

receptor kinases (Celver et al., 2004; Dang and Christie, 2012). Thus, the use of AtT20 cells 

stably expressing FLAG-MORs provides an experimental system with relatively consistent 

expression of the receptor, known receptor-effector coupling pathways, and is a cell type 

extensively used in function studies of the MOR. 

 After locating a field of view with a sufficient number of labeled FLAG-MORs (most cells 

in a given dish did not have labeled FLAG-MOR), videos of 5000 frames were obtained at a 

frame rate of 20 frames/s (50 ms exposure). A differential interference contrast (DIC) image of 

AtT20 cells and a fluorescent image of FLAG-MORs labeled with quantum dots are shown in 

Fig. 4.1 A and B, respectively. Similar images are shown for DAMGO treated cells in Fig. 4.1 

D,E. The labeling shown in these images is typical for the experiments carried out during this 

study. Trajectories of labeled FLAG-MOR obtained in the absence or presence of 10 µM 

DAMGO were obtained using the u-track algorithm (Jaqaman et al., 2008). Trajectories 

obtained from the cells shown in the previous panels are shown in Fig. 4.1 C and F.  

The most common method for obtaining information from trajectories obtained via single-

particle tracking is based on the mean square displacement (MSD). For an individual trajectory 

the MSD is obtained by averaging over the time series, 

�2(����)����������� =
1� − ����� ���� + ����� − �(�)�2���−����0 , 
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where  �2(����)����������� is the time-averaged MSD, �(�) is the two-dimensional position of the particle at 

time �, ���� is the lag time (the time between successive points when calculating the MSD), and � is the duration of the trajectory. For normal diffusion processes (i.e. Brownian motion), the 

MSD scales linearly in lag time, �2(����)����������� = 4�����. This relationship allows for the obtainment of 

the diffusion coefficient (D) from the MSD. However, measurements obtained in live cells often 

exhibit anomalous diffusion, which manifests as a deviation from this simple law (Barkai et al., 

2012; Hofling and Franosch, 2013; Metzler et al., 2014; Krapf, 2015). This results in non-linear 

scaling of the MSD, �2(����)����������� = ������ , 

Figure 4.1 Single-particle tracking of FLAG-MORs in AtT20 cells. A) A DIC of AtT20 cells and (B) 
a fluorescent image of SA Qdot 565 conjugated FLAG-MORs in the same cells. C) Trajectories of SA 
Qdot 565-conjugated FLAG-MORs imaged in the absence of DAMGO from the cells shown in (A) and 
(B). All of the trajectories obtained from a single 1000 frame video segment are shown. The inset shows 
a zoomed image of trajectories from the area indicated by the dashed box. Both mobile and immobile 
trajectories can be seen in the inset. D) A DIC image of AtT20 cells that were treated with DAMGO for 
ten minutes prior to imaging and (E) a fluorescent image of SA Qdot 565-conjugated FLAG-MORs in 
the same cells. Imaging was performed in the presence of DAMGO. G) Trajectories of SA Qdot 565 
conjugated FLAG-MORs imaged from cells shown in (D) and (E). All of the trajectories obtained from a 
single 1000 frame video segment are shown. The inset shows a zoomed image of trajectories from the 
area indicated by the dashed box. 
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where � is the anomalous exponent and � is the generalized diffusion coefficient, which has 

units of cm2/sα. Processes with 0 < � < 1 are considered subdiffusive, and those with � > 1 are 

considered superdiffusive. 

Fig. 4.2 A and B show the MSD, in logarithmic scale, of 64 randomly-chosen trajectories 

obtained from cells under basal conditions or cells treated with DAMGO, respectively. The 

logarithm of the MSD can be expressed as, log(���) = log(�) + �log (����), and thus the 

anomalous exponent � can be obtained from the slope of the MSD plot and the generalized 

diffusion coefficient � can be obtained by the y-intercept (i.e., extrapolate to tlag=1s). The dotted 

lines in Figure 4.2 A, B represent a linear MSD (i.e., α=1). The MSD of most trajectories 

possess a slope that is less than that of these lines, which is indicative of subdiffusion (α<1).  

 The large spread of anomalous exponent � and generalized diffusion coefficient � 

values suggest a marked heterogeneity in the diffusion behaviors of FLAG-MORs. Fig. 4.2C 

shows a histogram for values of the anomalous exponent � obtained from FLAG-MORs under 

basal conditions. Two populations are clear visible, one with a relatively narrow distribution 

centered at α=0.06 and the other with a broader distribution centered at α=0.7.  After ten 

minutes in the presence of DAMGO these two populations are still present, but treatment with 

DAMGO results in a higher proportion of receptors being located in the low α population (Fig. 

4.2D). To quantify this shift, the fraction of trajectories with α<0.2 and α>0.4 were calculated. 

The average fraction of receptors with α<0.2 increased from 0.23±0.01 under basal conditions 

to 0.33±0.3 after ten minutes in the presence of DAMGO (n=7 experiments per condition; 

p=0.007; Welch’s t-test; Fig. 4.2E). Likewise, the fraction of receptors with α>0.4 decreased 

from 0.61±0.01 under basal conditions to 0.47±0.03 after DAMGO (p=0.003; Welch’s t-test; Fig. 

4.2E).  

 In order to compare our data to ensemble measurements, such as FRAP, an ensemble 

average of the time-averaged MSD of FLAG-MORs was generated for trajectories obtained in  
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Figure 4.2 Activation of the FLAG-MOR with DAMGO results in a higher fraction of immobile 
receptors (A,B) 64 randomly selected MSD plots from trajectories at least 200 frames in length are 
shown from experiments in which cells did not receive DAMGO treatment (black; A) and from 
experiments from where cells were treated with DAMGO (red; B). The dashed lines in both plots 
represent the slope of MSD plots where α=1. These plots are shown to demonstrate the qualitative 
similarity between MSD plots of trajectories from both sets of experiments. (C) A histogram plotting the 
distribution of α values for trajectories obtained in the absence of DAMGO. The plot exhibits a clear 
bimodal distribution with peaks near α=0.0 and α=0.7. (Continued on next page) 
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the presence or absence of DAMGO (Fig. 4.3). The ensemble-averaged time-averaged MSD,  ��� = ������ , exhibits anomalous diffusion behavior in both the absence and presence of 10 µM 

DAMGO. The average MSD of FLAG-MORs was reduced in the presence of DAMGO, and 

linear regression for tlag ≤ 500ms indicates that the average diffusion coefficient of FLAG-MORs 

is also reduced from K=0.11 µm2/s0.71 under basal conditions to K=0.08 µm2/s0.65 in the 

presence of DAMGO. The anomalous exponent � of the averaged MSD also decreases from 

α=0.71 under basal conditions to α=0.65 in the presence of DAMGO. Thus, the effects of ten 

minutes in the presence of DAMGO on FLAG-MOR mobility also manifest as a reduction in 

mobility with ensemble measurements of MOR diffusion.  

(Figure 4.2 continued) (D) The histogram of α values from trajectories obtained in the presence of 
DAMGO exhibit the same bimodal distribution, but an increase in the size of the peak at α=0.08 and a 
decrease in the size of the peak at α=0.7. (E) The average fraction of FLAG-MOR trajectories where 
α<0.2 and α>0.4 is shown as a bar graph for experiments where cells were not treated with DAMGO 
(grey) or were treated with DAMGO (red). The are shown as the mean ± SEM. P-values were 
acquired using Welch’s t-test. 

Figure 4.3 Ten minutes in the presence of DAMGO causes a reduction in the average MSD of 
FLAG-MORs. A log-log plot of the average mean square displacement (MSD) of all trajectories 
obtained in from cells that were not treated with DAMGO (black line) or that were obtained from cells 
that were treated with DAMGO for ten minutes before imaging, as well as imaged in the presence of 
DAMGO (red line). The dashed lines represent the slope of the MSD of particles that undergo normal 
diffusion (α=1). The first ten data points from each data set (up to tlag=500 ms) were fit using linear 
regression in the log scale. The linear fit of these data is shown as the dotted line overlaying each plot. 
This fit was then used to calculate values for α and K, which are shown on the graph as KBaseline and 
αBaseline for experiments performed in the absence of DAMGO, and KDAMGO and αDAMGO for experiments 
performed in the presence of DAMGO.  
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DAMGO induces minimal changes in the diffusion of receptors within the mobile and immobile 

population of receptors 

 To determine if DAMGO results in changes in the diffusion of receptors located within 

the mobile (α>0.4) or immobile (α<0.2) population of receptors we compared the generalized 

diffusion coefficients (K) of FLAG-MORs from both populations under basal conditions or after 

ten minutes in the presence of 10 µM DAMGO. DAMGO induced a reduction in the average 

value for K consistent with the values calculated in Fig. 4.2 (0.114± 0.001 µm2/sα
 to 0.087±0.001 

µm2/sα; n=18456 with no agonist, n=16320 with DAMGO; p<0.0001; Welch’s t-test), as well as a 

shift to a smaller median value (0.0613 µm2/sα to 0.0382 µm2/sα). Histograms showing the 

distribution of the values for K for the entire population of FLAG-MORs in the absence or 

presence of DAMGO demonstrate a clear increase in the proportion of FLAG-MOR trajectories 

with low values for K, as well as a decrease in proportion of trajectories with higher K values 

(Fig. 4.4A). Plotting each trajectory’s K as a function of α demonstrates a strong correlation 

between these two values (No agonist: r=0.93; p<0.0001; DAMGO: r=0.91; p<0.0001; 

Spearman’s correlation; Fig. 4.4B). Performing linear regression on the log transformed values 

of K as a function of α demonstrates that the relationship between K and α is nearly identical in 

the absence or presence of DAMGO (No agonist: slope=1.438±0.004; DAMGO: 

slope=1.458±0.005; Fig. 4.4B). These findings are consistent with the DAMGO-induced 

increase in the proportion of immobile FLAG-MORs shown in Figure 4.2.  

 Ten minutes in the presence of DAMGO did cause a small decrease in the average 

value of K for trajectories where α>0.4 (0.172±0.002 µm2/sα to 0.153±0.002 µm2/sα; n=11233 

with no agonist, n=8238 with DAMGO; p<0.0001; unpaired Student’s t-test), as well as the 

median value for K (0.120 µm2/sα to 0.101 µm2/sα). The histogram of K values from trajectories 

where α>0.4 shows a clear decrease in the number of trajectories with relatively high values for 

K (K>0.05 µm2/sα; Fig. 4.4C). Consistent with this, we found that experiments performed in the 

presence of DAMGO had a significantly smaller fraction of trajectories with K>0.05 µm2/sα   
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Figure 4.4. DAMGO treatment results in an increased fraction of trajectories with low generalized 
diffusion coefficients (A) A histogram showing the distribution of generalized diffusion coefficients (K) 
in experiments in which cells were not treated with DAMGO (black) and experiments where cells did 
receive DAMGO treatment (red). (B) A scatter plot with the K value of each trajectory plotted against 
the α value for that same trajectory. Analysis of the plots demonstrated a strong correlation between 
values for α and K  that was unchanged by DAMGO (Spearman’s correlation), and linear regression  of 
log(K) as a function of α demonstrated the slope of this relationship was also unchanged by DAMGO. 
(C) A histogram showing the distribution of K values from trajectories where α>0.4. Experiments that 
did (red) or did not (black) receive DAMGO treatment are shown. This histogram demonstrates that the 
number of trajectories with relatively high values of K (K>0.05 µm2/sα) are decreased after treatment 
with DAMGO. (D) This was quantified by calculating the average fraction of trajectories where K>0.05 
µm2/sα for experiments that did (red) or did not (grey) receive DAMGO treatment (p-value acquired using 
Welch’s t-test). (E) A histogram similar to the one shown in C showing the distribution of K values from 
trajectories where α<0.02. An increase in the number of trajectories with relatively low values for K 
(K<0.01 µm2/sα) can be seen in trajectories from experiments that received DAMGO treatment. This 
effect is quantified in D. (F) A histogram of steady-state MSD values (MSD at tlag=1.25 s) from 
trajectories where α<0.02. The number of values included in this plot is decreased versus E because 
not all trajectories were long enough to obtain this value. Treatment of cells with DAMGO did not cause 
any change in the distribution of these values. 
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(0.57±0.02 with no agonist to 0.39±0.03 with DAMGO; n=7 experiments for each condition; 

p<0.001; unpaired Student’s t-test; Fig. 4.4D).  

For trajectories with α<0.2, DAMGO also caused a slight decrease in the average value 

of K (0.0143±0.0001 µm2/sα to 0.0135±0.0001 µm2/sα; n=4292 with no agonist, n=5077 with 

DAMGO; p<0.0001; unpaired t-test), as well as the median value of K (0.0123 µm2/sα to 0.0116 

µm2/sα). In contrast to the distribution of K values for trajectories with α>0.4, the histogram for K 

values from trajectories with α<0.2 shows an increase in the number relatively low K values 

(K<0.01 µm2/sα; Fig. 4.4E). Consistent with this, the fraction of trajectories where K<0.01 µm2/sα 

increased significantly in the presence of DAMGO (0.09±0.01 with no agonist to 0.14±0.01 with 

DAMGO; n=7 experiments for each condition; p=0.004; unpaired Student’s t-test; Fig. 4.4D). 

Finally, the steady state MSD of trajectories with α<0.2 was unaltered by DAMGO, 

demonstrating the radius that the immobile population of receptors is confined within is 

unchanged by activation of the receptor (Fig. 4.4F). Together, these data demonstrate that while 

DAMGO causes a robust shift of FLAG-MORs from a more mobile to a less mobile state, 

receptors found within the mobile and immobile populations have similar properties whether in 

the absence or presence of DAMGO. 

4.6 Discussion 

 The present study was undertaken to characterize changes in FLAG-MOR diffusion 

induced by the full MOR agonist DAMGO using single particle tracking. We found that ten 

minutes in the presence of DAMGO resulted in an apparent overall reduction in the mobility of 

FLAG-MORs, as indicated by a reduced average MSD of FLAG-MORs in the presence of 

DAMGO. Analysis of the anomalous diffusion exponents (α) for trajectories obtained in the 

absence and presence of DAMGO demonstrated an increased immobile, and decreased 

mobile, fraction of receptors after ten minutes in the presence of a maximal concentration of 

DAMGO. DAMGO caused an increase in the number of immobile trajectories (α<0.2) with low 

generalized diffusion coefficient values (K<0.01 µm2/sα), but their steady-state MSD values 
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remained unchanged. Ten minutes in the presence of DAMGO also decreased the number of 

mobile trajectories (α>0.4) with relatively high values for K (K>0.05 µm2/sα). While DAMGO 

increased the fraction of trajectories with low values for α and K, it did not alter the positive 

correlation between a trajectory’s α and K values. Together, these findings demonstrate that 

FLAG-MORs can be in a mobile or immobile state under basal conditions, and that activation of 

the receptor with DAMGO results in an increase in the proportion of immobile receptors. This 

study demonstrates the viability of single-particle tracking as a direct measure of agonist-

induced changes of the MOR that possesses the resolution to detect subpopulation of MORs 

based on their mobility. 

 FLAG-MORs expressed in AtT20 cells exhibited a clear bimodal distribution based on 

their anomalous diffusion exponent (α) under basal conditions, with a population of receptors 

centered around an α value of 0.08 and another centered around an α value of 0.7. This can be 

interpreted as a mobile (population with higher α values) and immobile (population with low α 

values) population of receptors present on the plasma membrane of these cells. Mobile and 

immobile populations of MORs have also been reported in previous live-cell imaging studies 

using SPT (Suzuki et al., 2005) and FRAP (Sauliere et al., 2006).  The physical basis of these 

two population of receptors is not currently understood, but it may be that a receptor’s mobility is 

indicative of the downstream signaling pathways it is acting through. 

 Ten minutes in the presence of a maximal concentration (10 µM) of the full MOR agonist 

DAMGO resulted in an increased fraction of immobile, and decreased fraction of mobile, FLAG-

MOR trajectories. Ten minutes is sufficient time for desensitization of the MOR to reach a 

steady-state and for internalization have reached near maximum in AtT20 cells, HEK 293 cells, 

and neurons (Alvarez et al., 2002; Borgland et al., 2003; Arttamangkul et al., 2006). However 

even after acute desensitization has reached a maximum, MOR signaling persists (Borgland et 

al., 2003). Therefore, the FLAG-MORs remaining on the surface of the AtT20 cells after ten 
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minutes in the presence of DAMGO in these experiments are likely maintaining the steady-state 

signaling that remains after acute desensitization has reached a maximum.  

 A similar DAMGO-induced increase in the immobile population of MORs was observed 

in SH-SY5Y cells using FRAP (Sauliere-Nzeh et al., 2010). In that study, this increase in 

immobile receptors was attributed to trapping of the receptors in clathrin-coated pits because 

the increase was prevented by incubating the cells with 500 mM sucrose. If this interpretation is 

correct, it may suggest that the mobile population of receptors is responsible for maintaining 

signaling after desensitization has occurred. However, a more recent study of FLAG-MORs 

expressed in HEK 293 cells showed no increase in colocalization of the receptor with clathrin 

after ten minutes in the presence of DAMGO (Halls et al., 2016). This study also demonstrated 

that specific agonists induce differential redistribution of the receptor within the membrane, and 

that this differential redistribution plays a role in the particular downstream signaling molecules 

they recruit (Halls et al., 2016). Therefore, it may be that both the mobile and immobile 

populations of FLAG-MORs play distinct roles in signaling by the receptor.  

 Biochemical studies have suggested that the location of the MOR either inside or outside 

of putative lipid raft domains may influence its signaling. One study demonstrated colocalization 

of MORs with adenylyl cyclase caveolin-1, which is a marker of putative lipid rafts (Zhao et al., 

2006). A second study by the same group found that translocation into and out of these putative 

domains was agonist dependent, and that receptors located within the putative rafts were 

responsible for G-protein dependent signaling while receptors located outside of the putative 

rafts were responsible for β-arrestin dependent signaling (Zheng et al., 2008). It is possible that 

mobile and immobile receptors could correspond to receptors outside or inside of these putative 

raft domains, respectively. However, it is worth noting that two other studies did not find MORs 

localized in the Triton X-100 insoluble membrane fractions thought to contain lipid rafts either 

before or after treatment with and agonist (Sauliere-Nzeh et al., 2010; Halls et al., 2016), so the 

relationship between MOR signaling and lipid rafts remains controversial. 
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 Precoupling of GPCRs to G-protein, and potentially forming precoupled GPCR-G-

protein-effector complexes, may be an important factor in receptor mobility. Evidence for GPCR-

G-protein precoupling has been presented for multiple receptor types (Tian et al., 1994; Gales 

et al., 2005; Nobles et al., 2005). In addition to precoupling, interactions between GPCRs and 

G-protein increase after activation of the receptor with an agonist (Gales et al., 2005). There is 

also evidence that G-protein-coupled inwardly rectifying K+ channels (GIRKs) precouple to G-

proteins (Riven et al., 2006), as well as evidence that P/Q-type voltage-dependent Ca2+ 

channels can exist in a preformed complex with G-proteins and GABAB receptors on 

presynaptic terminals (Laviv et al., 2011). Precoupled receptor-G-protein-effector complexes 

could provide an interesting explanation for the immobile population of inactive FLAG-MORs, 

and can potentially be addressed in future studies examining the colocalization of immobile 

receptors with ion channels and other effectors known to couple to the MOR. 

 The use of biased agonists may also shed light on signaling that is mediated by the 

mobile and immobile population of receptors. Biased agonism, also referred to as functional 

selectivity, refers to the ability of agonist to preferentially recruit certain pathways that a receptor 

couples to. This results in agonists with different efficacies for different types of signaling, e.g. 

G-protein-mediated or β-arrestin-mediated signaling in the case of the MOR (Kelly, 2013). The 

MOR has a large number of endogenous and exogenous agonists whose signaling biases and 

efficacies for G-protein- and β-arrestin-mediated signaling have been extensively characterized 

(McPherson et al., 2010; Thompson et al., 2015, 2016). This will allow for the design of 

experiments that determine if heavily G-protein or β-arrestin biased MOR agonists differentially 

modulate the receptors mobility. 

Conclusions 

 The present study demonstrated that agonist-induced changes in FLAG-MOR diffusion 

can be readily detected using single-particle tracking. Under basal conditions the population of 

FLAG-MORs is split between receptors in a mobile or immobile state. Ten minutes in the 
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presence of the MOR agonist DAMGO results in an increased fraction of receptors being found 

in the immobile state. It is possible that the two distinct mobility states of FLAG-MOR in the 

presence of DAMGO represent the recruitment of distinct signaling pathways by the receptor. 

However, future studies examining the colocalization of mobile and immobile receptors with 

known downstream effectors of the MOR, as well as studies using heavily G-protein or β-

arrestin biased agonists to activate the receptor, will be needed to parse out the specific role of 

mobile and immobile MORs. This study also provides a basis for future studies that wish to use 

direct, agonist-induced changes of MOR mobility to complement common techniques such as 

electrophysiology and biochemistry. 
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Chapter 5: Conclusions 

 

Significant effort has gone into understanding the desensitization of postsynaptic MORs 

during prolonged or repeated activation of the receptors, while little attention has been paid to 

the naturally occurring desensitization-resistant population of MORs located on axon terminals. 

Desensitization of postsynaptic MORs has proven to be a complicated process that cannot be 

eliminated by the knockdown of any one signaling cascade (Williams et al., 2013). Thus, the 

presence of desensitization-resistant presynaptic receptors provides a compelling target for 

studies examining the mechanisms underlying desensitization.  

Understanding the differences in regulation of pre- and postsynaptic MORs can provide 

important insights into the signaling pathways required for MOR desensitization to occur, and 

can provide a better understanding of how the opioid receptor system functions as a whole. The 

studies presented in the previous chapters have provided compelling evidence that presynaptic 

MORs indeed undergo regulation that is unique from that of postsynaptic receptors and provide 

strategies for further studying these differences. A better understanding of the function and 

regulation of presynaptic MORs, and other GPCRs located on axon terminals, can potentially 

provide insight for future therapeutic strategies and drug development, as well as a more 

sophisticated understanding of how these receptors modulate the flow of information through 

chemical synapses. 

5.1 Regulation of Presynaptic MORs is Distinct from That of Postsynaptic MORs 

 One explanation for the apparent resistance to desensitization by presynaptic MORs 

was that they are not resistant to desensitization at all, but that we are not detecting 

desensitization under normal recording conditions. Postsynaptic MORs, or MORs expressed in 

cell lines, also appear resistant to acute desensitization under the certain conditions, but 

desensitization of these receptors can be readily unmasked with the correct manipulations. One 

mechanism which could cause apparent resistance to acute desensitization would be if 
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terminals presynaptic to POMC neurons (as well as the PAG (Fyfe et al., 2010), LC (Blanchet 

and Luscher, 2002), and VTA (Lowe and Bailey, 2015)), have a high MOR reserve. If more 

receptors are present than are needed to maximally activate the effector being measured, then 

losing even a large number of functional receptors due to desensitization may not result in an 

acute decrease in signal (Connor et al., 2004). In this particular scenario, that would mean that 

even if significant desensitization of presynaptic MORs occurs, there would be no decrease in 

the inhibition of neurotransmitter release when a maximal concentration of an agonist is 

continuously applied. However, we found that removing enough functional receptor to reduce 

the maximal inhibition of GABA release by presynaptic MORs did not unmask acute 

desensitization of the receptor (Fig. 2.4). This finding demonstrates that the apparent resistance 

to desensitization by presynaptic MORs is not merely due to a large enough density of receptors 

on presynaptic terminals to maintain maximal inhibition of GABA release despite attrition from 

desensitization. This finding is consistent with similar work performed in the PAG (Fyfe et al., 

2010) and VTA (Lowe and Bailey, 2015), which provides evidence that the phenomenon we are 

studying here is a general property of presynaptic MORs. 

 Additionally, not only did we find that receptor reserve was not responsible for the ability 

of presynaptic MORs to maintain signaling in the presence of a maximal concentration of 

agonist, it was also discovered that terminals presynaptic to POMC neurons do not even 

possess a reserve of MORs. Removal of approximately 63% of functional receptors from these 

terminals, as calculated by Furchgott’s method (Furchgott and Bursztyn, 1967), only resulted in 

an approximately 50% decrease in the maximal inhibition of GABA release by presynaptic 

MORs. The measured acute desensitization of postsynaptic MORs often results from up to a 

90% loss of functional receptors on the plasma membrane (Connor et al., 2004). This finding 

would suggest that MORs located on axon terminals may remain stable at the plasma 

membrane during prolonged signaling, unlike postsynaptic MORs that are internalized after 
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desensitization (Williams et al., 2013). However, future studies examining the trafficking of 

presynaptic MORs will be necessary to determine whether this is the case. 

 Another potential explanation for the apparent resistance to desensitization by 

presynaptic MORs is that desensitization occurs in a manner similar to that of postsynaptic 

MORs, but at a rate or magnitude that makes it difficult to measure using electrophysiology. If 

this were the case, one would expect manipulations known to increase the rate and extent of 

postsynaptic MORs to have a similar effect on presynaptic receptors. In an attempt to potentiate 

desensitization of presynaptic MORs we treated mice chronically with the opiate morphine (50 

mg/kg per day for 5-7 days), which has been shown to enhance desensitization of postsynaptic 

MORs (Christie et al., 1987; Dang and Williams, 2004; Bagley et al., 2005; Dang and Williams, 

2005). However, even after chronic morphine treatment MORs on terminals presynaptic to 

POMC neurons did not exhibit acute desensitization (Fig. 2.6). This is consistent with a study 

performed in the PAG (Fyfe et al., 2010), which again demonstrates that the phenomenon being 

studied here is not merely a peculiarity of the synapses we have chosen to perform our studies 

in.  

5.2 Resistance to Desensitization Persists When MORs Are Activated With Morphine 

 Activation of GPCRs can lead to the recruitment of multiple downstream signaling 

pathways, and use of different agonists for a given GPCR often results in preferential 

recruitment of one of these pathways. This phenomenon is known as biased agonism or 

functional selectivity (Urban et al., 2007). Differential activation of G-protein-dependent versus 

β-arrestin-dependent signaling pathways is often used to describe the bias of opioid agonists 

(Kelly, 2013), but there is also evidence that agonist bias can alter the pathways through which 

the MOR desensitizes (Kelly et al., 2008). In particular, there are several studies that suggest 

the MOR desensitizes through a GRK- or PKC-dependent mechanism when activated by 

DAMGO or morphine, respectively (Bailey et al., 2004; Johnson et al., 2006; Bailey et al., 2009). 

We thought it was possible that axon terminals lack the biochemical machinery mediating 
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desensitization of the ME or DAMGO activated receptor, while containing the necessary 

machinery to desensitize the morphine activated receptor. 

 To test this hypothesis, inhibition of GABA release onto POMC neurons was measured 

in the presence of morphine. Like ME- (Fig. 2.1) and DAMGO- induced inhibition (Pennock and 

Hentges, 2011), morphine-induced inhibition of GABA release did not exhibit acute 

desensitization (Fig. 2.5). This finding suggests that presynaptic MORs are resistant to 

desensitization in general, and that the observed resistance to desensitization was most likely 

not due to our choice of agonist. More specifically, there does not appear to be any bias towards 

PKC-mediated desensitization in terminals presynaptic to POMC neurons. 

 A more recent study has reported that morphine-induced inhibition of GABA release in 

the VTA is desensitized under conditions where PKC activity is increased pharmacologically 

(Lowe and Bailey, 2015). In this study, morphine-induced, but not DAMGO-induced, inhibition of 

GABA release from terminals in the VTA was attenuated by the preincubation of slices with the 

phorbol ester PMA. This was interpreted as acute desensitization occurring during the relatively 

long (>5 minutes) wash-in of morphine, thus the “maximal” inhibition observed was in fact the 

steady-state signaling of the receptor after desensitization had reached completion. Although 

this finding was reported as selective desensitization of the morphine activated MOR, it is 

important to note that acute desensitization of the receptor (i.e. a decrease in maximum 

response over the course of several minutes of continuous exposure to morphine; Fig. 1.2) was 

not reported. Attenuation of presynaptic MOR signaling via phosphorylation by PKC is an 

intriguing finding because it demonstrates that the same biochemical pathways that are 

considered important for desensitization of postsynaptic MORs are present in axon terminals, 

but that these pathways are not recruited by presynaptic MORs under normal conditions.  

 However, Phorbol esters such as PMA are also known to enhance neurotransmitter 

release from axon terminals through PKC-dependent and PKC-independent mechanisms 

(Brose and Rosenmund, 2002; Silinsky and Searl, 2003). Therefore, a potential alternative 
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explanation for the decrease in morphine-induced inhibition of GABA release is that off-target 

effects of PMA are attenuating MOR-mediated inhibition of release in a manner independent of 

MOR phosphorylation. In fact, there is evidence that effects of phorbol esters on postsynaptic 

morphine-induced MOR signaling may also be PKC-independent (Arttamangkul et al., 2015). 

While PMA clearly and selectively attenuates morphine-induced inhibition of GABA release, 

more studies are needed to determine definitively the role of PKC in this effect and to more 

generally determine the role of kinase-mediated signaling in the function of presynaptic MORs. 

5.3 Resistance to Acute Desensitization is a Common Property of Gαi/o-coupled GPCRs 

Located on Axon Terminals 

 Resistance to desensitization by presynaptic, but not postsynaptic, MORs has been 

observed in the LC (Blanchet and Luscher, 2002), PAG (Fyfe et al., 2010), VTA (Lowe and 

Bailey, 2015), and the arcuate nucleus (Pennock and Hentges, 2011). This demonstrates that 

resistance to desensitization is likely a common property of presynaptic MORs. Resistance to 

desensitization by presynaptic MORs has also been found to occur independent of receptor 

reserve (Fyfe et al., 2010; Lowe and Bailey, 2015) and cannot be induced by CMT (Fyfe et al., 

2010) in all brain regions examined. This may indicate that resistance to desensitization in these 

different brain regions is conferred by a shared mechanism. Interestingly, it is possible that this 

common mechanism is shared by not only presynaptic MORs located in different brain regions, 

but also other Gαi/o-coupled receptors located on axon terminals. 

 Prior to our studies, resistance to desensitization similar to that exhibited by presynaptic 

MORs was observed for GABABRs in the VTA and cultured hippocampal neurons 

(Wetherington and Lambert, 2002b; Cruz et al., 2004), as well as for A1 adenosine receptors in 

cultured hippocampal neurons (Wetherington and Lambert, 2002a). These findings, along with 

those from studies of presynaptic MORs, demonstrate that resistance to desensitization is a 

common property of multiple Gαio-coupled GPCRs when they are located on axon terminals in 
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different brain regions. We wanted to determine if resistance to desensitization was a common 

property of multiple Gαi/o-coupled GPCRs located on the same population of terminals. 

 Like the MOR, nociceptin receptors, kappa opioid receptors (KOR), and GABABRs inhibit 

GABA release onto POMC neurons. Also like the MOR, all three of these receptors exhibit 

resistance to acute desensitization when they are located on terminals presynaptic to POMC 

neurons (Fig. 2.2). In addition to this, MORs, KORs, and GABABRs located on POMC terminals 

also resist acute desensitization (Fig. 2.3). This demonstrates that multiple Gαi/o-coupled 

receptors located on the same population of terminals exhibit resistance to acute 

desensitization, and it is demonstrated in two separate populations of terminals. Additionally, the 

compartment specific nature of desensitization is also common to multiple Gαi/o-coupled 

receptors, as postsynaptic MORs, nociception receptors, and GABABRs located on the somato-

dendritic region of POMC neurons all robustly desensitize (Fig. 2.1, 2.2).  

 It is now known that MORs located on GABAergic terminals in the VTA resist 

desensitization (Lowe and Bailey, 2015), which had already been demonstrated for GABABRs 

on the same terminals (Cruz et al., 2004). Additionally, GABABRs located on GABAergic and 

glutamatergic terminals in the PAG were shown to resist desensitization (Liu et al., 2013), which 

is consistent with MORs in the PAG (Fyfe et al., 2010). Our findings, along with those of other 

groups, consistently point to the commonality of resistance to desensitization among 

presynaptic Gαi/o-coupled GPCRs. It has also been demonstrated that resistance to 

desensitization by presynaptic GABABRs and A1 adenosine receptors in cultured hippocampal 

neurons is not conferred by a high receptor reserve (Wetherington and Lambert, 2002b, a). This 

is consistent with multiple studies, including our own (Fig. 2.4), examining resistance to 

desensitization by the MOR (Fyfe et al., 2010; Lowe and Bailey, 2015), and may point to a 

shared mechanism conferring resistance to desensitization across different types of Gαi/o-

coupled receptors. 
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 It is important to note that while differential desensitization of pre- and postsynaptic Gαi/o-

coupled GPCRs is common, it is not ubiquitous. In particular, resistance or susceptibility to 

desensitization by GABABRs varies by brain region. Postsynaptic GABABRs, like presynaptic 

GABABRs, resist desensitization in both the VTA (Cruz et al., 2004) and the PAG (Liu et al., 

2013). MORs in these same brain regions exhibit differential desensitization of pre- and 

postsynaptic receptors (Fyfe et al., 2010; Lowe and Bailey, 2015). Additionally, differential 

desensitization of pre- and postsynaptic GABABRs exists in the hippocampus of neonatal rats, 

but with presynaptic receptors susceptible to desensitization and postsynaptic receptors 

resistant to desensitization (Tosetti et al., 2004).  In GABAergic terminals presynaptic to POMC 

neurons there are also desensitization-resistant and –susceptible GABABRs (Fig. 2.7).  

The mechanism underlying the GABABR’s unusual patterns of desensitization is unclear. 

The GABABR is a heterodimer, and one subunit of the receptor (GABABR1) has two known splice 

variants (Kaupmann et al., 1997; Kaupmann et al., 1998). Depending on the splice variant 

expressed, the receptor is preferentially targeted to axon terminals or the somato-dendritic 

region of neurons (Vigot et al., 2006). Knockout of GABABR1a dramatically reduces, but does not 

eliminate, the ability of the receptor to inhibit glutamate release in in CA3 to CA1 synapses in 

the mouse hippocampus, and knockout of GABABR1b reduced, but did not eliminate, the ability of 

the receptor to activate GIRKs on CA1 pyramidal cells. Additionally, knockout of either variant 

did not affect the maximal inhibition of GABA release by the GABABR (Vigot et al., 2006). While 

it seems that R1a and R1b variant of the receptor exhibit preferential localization, they can both 

be expressed on axon terminals or on the somato-dendritic region of neurons. Differential 

desensitization of the GABABR variants may explain unusual patterns of desensitization the 

GABABR exhibits in some brain regions. 
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5.4 Specific Receptor-Effector Coupling Does Not Underlie Resistance or Susceptibility 

to Desensitization 

While the mechanism underlying differential desensitization of presynaptic GABABRs is 

unknown, the presence of these receptors on GABAergic terminals presynaptic to POMC 

neurons is useful experimentally. It has been hypothesized that resistance or susceptibility to 

desensitization by MOR-mediated responses is dependent on the effectors the receptor is 

coupled to in that system (Blanchet and Luscher, 2002). GABAergic terminals presynaptic to 

POMC neurons express desensitization-resistant MORs and GABABRs, as well as 

desensitization-susceptible GABABRs (Fig. 2.1, 2.2, 2.7). This allowed for comparative studies 

between the receptor-effector coupling of desensitization-resistant and –susceptible populations 

of receptors. 

Multiple pharmacological manipulations were used to determine what mechanisms 

underlie MOR- and GABABR-mediated inhibition of GABA release onto POMC neurons 

(Chapter 3). Presynaptic MORs commonly inhibit release from terminals via the activation 

voltage-dependent K+ channels (VDKCs) via the phospholipase A2 (PLA2) pathway (Vaughan et 

al., 1997; Zhu and Pan, 2005). Both MORs and GABABRs can also inhibit release via the 

inhibition of voltage-dependent Ca2+ channels (VDCCs) (Hori et al., 1992) and through actions 

directly at the vesicular release machinery (Capogna et al., 1993; Rekling, 1993; Lupica, 1995; 

Capogna et al., 1996). If desensitization of presynaptic receptors is somehow dependent on the 

downstream effectors recruited by a given receptor, then it seemed likely that desensitization-

resistant MORs and GABABRs would couple to different effectors than desensitization-

susceptible GABABRs.  

Neither MORs nor GABABRs located on GABAergic terminals presynaptic to POMC 

neurons were found to couple to VDKCs or GIRKs, as blockers of those channels had no effect 

on the ability of either receptor to inhibit release (Fig. 3.1). This result, although negative, is 

interesting due to the fact that desensitization-resistant MORs in the PAG (Fyfe et al., 2010) and 
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VTA (Lowe and Bailey, 2015) are known to couple to VDKCs (Vaughan et al., 1997; Bergevin et 

al., 2002). This provides evidence that coupling to this particular pathway is not necessary for 

MORs to resist desensitization. 

MORs and GABABRs presynaptic to POMC neurons are both able to inhibit release 

under conditions that prevented Ca2+ influx or resulted in unregulated Ca2+ influx, both of which 

preclude Ca2+-dependent inhibition of neurotransmitter release (Fig. 3.2, 3.5). This suggests a 

Ca2+-independent mechanism of inhibition, likely one occurring directly at the release 

machinery. Additionally, desensitization of GABABRs, but never MORs, was still observed when 

experiments were performed under these recording conditions. However, the same 

manipulations that were used to isolate potential Ca2+-independent mechanisms of inhibition 

also prevents synchronous, Ca2+-dependent release of neurotransmitter. Thus, these 

experiments only allowed us to draw conclusions about the inhibition of Ca2+-independent 

spontaneous release.  

Unless receptors are being studied in a system that allows direct patching of presynaptic 

terminals (Matthews, 1999; Borst and Soria van Hoeve, 2012) or Ca2+-imaging of axon terminal 

fields (Wachowiak et al., 2005; Hamid et al., 2014), it can be difficult to study the mechanisms 

underlying the inhibition of Ca2+-dependent release. This is because inhibition of this type of 

release often occurs via the inhibition of VDCCs near the site of release, and the same 

manipulations that inhibit VDCC activity (e.g. removing external Ca2+, unregulated Ca2+ influx, 

blocking VDCCs pharmacologically) also result in the inhibition of neurotransmitter release. This 

presents a problem when inhibition of neurotransmitter release is being used to measure 

receptor activity, as is the case with Gαi/o-coupled GPCRs located on axon terminals. This is not 

an issue if terminals can be accessed directly with a micropipette, and thus Ca2+ currents can be 

measured directly, or if inhibition of Ca2+ influx is measured using Ca2+ imaging techniques. 

However, the anatomy of the arcuate nucleus does not allow for either of these methods. The 
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axon terminals are too small for direct electrophysiological measurements, and afferents 

forming synapses with POMC neurons do not terminate in a field conducive to Ca2+ imaging. 

A recent study has presented a method that can be used to determine if inhibition of 

Ca2+-dependent, synchronous release is occurring via inhibition of VDCCs or occurring directly 

at the release machinery (Hamid et al., 2014). The Gβγ G-protein subunit inhibits the vesicular 

release machinery by competitively inhibiting interactions between Ca2+ bound synaptotagmin 

and SNAP-25 (Yoon et al., 2007; Wells et al., 2012). When Ca2+ is replaced by Sr2+, which can 

also move through VDCCs with a high conductance (Xu-Friedman and Regehr, 1999; Babai et 

al., 2014), the Gβγ subunit no longer competes with synaptotagmin due to conformational 

differences between Ca2+ and Sr2+ bound synaptotagmin (Hamid et al., 2014). Thus if inhibition 

of release by a GPCR is occurring via inhibition of VDCCs, then replacing Ca2+ with Sr2+ in the 

external recording solution will not affect inhibition of evoked release. However, if inhibition of 

release is occurring directly at the release machinery then the ability of that GPCR to inhibit 

release will be occluded due to the influx of Sr2+ after each stimulus (Hamid et al., 2014). 

Both MOR- and GABABR-mediated inhibition of GABA release onto POMC neurons was 

maintained when release was evoked with Sr2+. This indicates that MOR- and GABABR-

mediated inhibition of Ca2+-dependent, evoked GABA release occurs through a Ca2+-dependent 

mechanism. Additionally, desensitization of GABABR-mediated, but never MOR-mediated, 

inhibition of release was present in experiments that used Sr2+ instead of Ca2+ to evoke GABA 

release, demonstrating that differential desensitization between MORs and GABABRs is present 

when observing Ca2+-dependent or Ca2+-independent inhibition of release. 

Although the finding that the differential desensitization of MORs and GABABRs was 

maintained in the presence of Sr2+, there was still the possibility that the inhibition of Ca2+ influx 

by desensitization-resistant and –susceptible receptors was occurring through different 

mechanisms. The rapid Ca2+ influx needed to induce action potential evoked neurotransmitter 

release often occurs through either N-type or P/Q-type VDCCs (Meir et al., 1999). We found 
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that N- and P/Q-type VDCCs contribute equally to, and almost completely account for, evoked 

GABA release onto POMC neurons (Fig. 3.7). Therefore, the possibility that desensitization of 

GABABR-mediated inhibition of evoked release only occurs when the receptor is coupled to a 

particular type of VDCC still existed. However, both MOR- and GABABR-mediated inhibition of 

release were maintained under conditions that isolated N-type or P/Q-type VDCC-mediated 

release (Fig. 3.8), indicating that neither receptor demonstrates preferential coupling to one type 

of VDCC.  

These findings show that MOR- and GABABR-mediated inhibition of GABA release can 

occur through both Ca2+-dependent and Ca2+-independent mechanisms, and that resistance or 

susceptibility to desensitization is not determined by a receptor’s coupling. In addition to 

demonstrating that desensitization-resistant and –susceptible receptors couple to the same 

effectors when located in the same population of axon terminals, comparing our findings to 

those of others also demonstrates differential coupling of desensitization-resistant MORs exists 

between presynaptic MORs in the arcuate nucleus and those in the PAG (Vaughan et al., 1997) 

or VTA (Bergevin et al., 2002). Together, the common receptor-effector coupling of 

desensitization-resistant and –susceptible MORs and GABABRs, as well the differential coupling 

of desensitization-resistant MORs between brain regions, indicates that receptor coupling does 

not determine whether a receptor desensitizes. The lack of effector-delimited desensitization 

provides additional evidence that resistance or susceptibility to desensitization by presynaptic 

GPCRs is a receptor-delimited property that may be explained by some physical characteristic 

or presynaptic GPCRs that is absent from their postsynaptic counterparts. However, the nature 

of these differences, whether they be differential phosphorylation, covalent modification, or 

protein-protein interactions, remains to be determined by future studies.  

5.5 Mobility as a Measure of MOR Activation 

 Electrophysiological and pharmacological manipulations of presynaptic MORs were 

sufficient to determine that they are uniquely regulated relative to postsynaptic receptors, and 
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eliminated several possibilities for mechanisms underlying resistance to desensitization. 

However, elucidating the actual mechanism behind resistance to desensitization by presynaptic 

MORs, and desensitization of MORs in general, will require techniques outside of brain slice 

electrophysiology and pharmacology. A limitation of whole-cell electrophysiological experiments 

is that the output the experimenter measures represents a sum of the activation or inhibition of a 

given effector by the entire population of MORs in that cell (or set of axon terminals when 

measuring activation of presynaptic receptors). If subpopulations of receptors with differential 

signaling exist (e.g. desensitized/non-desensitized, G-protein-mediated or β-arrestin-mediated 

signaling) they would not be detected using electrophysiology. 

Electrophysiological measures also have to use the output provided by the activation or 

inhibition of a given effector as a proxy for receptor activity. The activation of the effector can be 

multiple steps removed from activation of the receptor. For example, measuring the activation of 

presynaptic receptors generally relies on measuring the reduction or increase in postsynaptic 

currents through ligand-gated ion channels. In the case of MORs presynaptic to POMC, an 

agonist binds the receptor, which results in the activation of G-protein, the active G-protein then 

inhibits Ca2+ influx via inhibition of VDCCs, reduced Ca2+ influx reduces exocytosis and GABA 

release, and finally the reduced GABA release results less open GABAA receptors and a 

reduction in the amplitude of the measured IPSC. Because there are multiple steps between 

activation of the receptor and current passing through the postsynaptic GABAA receptor 

regulation of any one of these steps can alter the output of an experiment, and such potential 

regulation must be taken into account when making conclusions about activity of a presynaptic 

receptor. 

Single particle tracking (SPT) of MORs can provide a useful complement to these 

techniques as it can provide a real-time measure of agonist induced changes in receptor 

mobility, and possesses single molecule resolution. SPT can also reflect agonist-induced 

changes of the receptor directly, eliminating the need to rely on proteins sometimes several 
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steps removed from receptor activation for a functional output. There is evidence that exposure 

of MORs to an agonist results in robust changes in receptor mobility, and that subpopulations of 

MORs based on mobility are likely to exist (Sauliere et al., 2006; Sauliere-Nzeh et al., 2010). 

However, these experiments were performed using a technique that lacks single molecule 

resolution, and were performed below physiological temperature (20°C). We wanted to 

determine whether agonist induced changes in mobility were detectable at the level of individual 

receptors, and when performing experiments at 37°C.  

Single particle tracking was performed in AtT20 cells stably expressing MORs modified 

with a FLAG epitope on their N-termini (FLAG-MORs). The AtT20 cell line is a commonly used 

heterologous expression system in the field of opioid pharmacology, and thus the actions of the 

MOR have been well characterized in AtT20 cells. MORs expressed in AtT20 cells are known to 

couple to native GIRKs (Celver et al., 2004; Yousuf et al., 2015), adenylyl cyclase (Thompson et 

al., 2016), P/Q-type VDCCs (Borgland et al., 2003), G-protein coupled receptor kinases (Dang 

and Christie, 2012; Thompson et al., 2016) and other non-G-protein-mediated pathways 

(Thompson et al., 2016). The coupling of the receptors in this system is similar, albeit not 

identical, to the coupling of MORs in the somato-dendritic region of neurons. Therefore, we think 

that AtT20 cells are likely the best choice of heterologous expression system to establish SPT of 

MORs before attempting experiments in neurons. 

Under basal conditions FLAG-MORs exist in two distinct subpopulations based on their 

mobility. One population was characterized by its relatively high mobility, while the other was 

highly immobile and confined. Ten minutes of exposure to the MOR agonist DAMGO resulted in 

a shift in the size of these two populations, with a higher fraction of receptors now found in the 

immobile state (Fig. 4.3). Cells were treated with DAMGO for ten minutes before imaging 

because this is sufficient time for desensitization of the receptor to reach completion, and for 

most desensitized receptors to become internalized (Borgland et al., 2003). Therefore, the 

receptors remaining on the membrane are likely the receptors responsible for maintaining 
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steady-state signaling by the receptor after acute desensitization has reached completion (Fig. 

1.2). 

An early hypothesis regarding the effect of activation on the mobility of the MOR was 

that activating the receptor would drastically decrease mobility due interactions with 

downstream effectors (e.g. GIRKs, adenylyl cyclase, VDCCs). It was therefore expected that ten 

minutes of DAMGO exposure would leave a homogenous population of receptors on the plasma 

membrane, and these remaining receptors would represent actively signaling receptors. While 

DAMGO did result in a larger fraction of immobile receptors, approximately half of the receptors 

on the plasma membrane were still found in the mobile population. The physical basis of the 

mobile and immobile population of FLAG-MORs is currently unclear. It may be that both 

subpopulations are maintaining steady-state signaling of the receptor, but that each 

subpopulation is acting through different downstream effectors. 

Biochemical studies of the MOR provide evidence that receptors responsible for G-

protein-dependent signaling are located in Triton X-100 insoluble fractions of plasma 

membrane, while receptors located outside of these fractions are responsible for β-arrestin-

dependent signaling (Zheng et al., 2008). A recent study examining the redistribution of FLAG-

MORs after activation of the receptor with morphine or DAMGO shows that each agonist causes 

differential redistribution of the receptor with the plasma membrane, and that this redistribution 

is related to the signaling bias of each agonist (Halls et al., 2016). Although limited in number, 

these studies provide evidence that localization of the MOR within the plasma membrane is 

likely to play a role in the particular signaling cascades it recruits. Determining whether 

recruitment of different signaling cascades, for example G-protein- or β-arrestin-dependent 

signaling, corresponds to a particular mobility state of the MOR will advance SPT as true 

functional measure of MOR activity. 

GPCRs can exist in preformed complexes with G-proteins (Tian et al., 1994; Gales et al., 

2005; Nobles et al., 2005), as well as in a complex between the receptor, G-protein, and an ion 
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channel (Laviv et al., 2011). GPCRs also exhibit increased interactions with G-proteins after 

activating the receptor with an agonist (Gales et al., 2005). It may be that these interactions are 

facilitated by confinement of the receptor within microdomains on the plasma membrane (Baker 

et al., 2007), and thus MORs interacting with G-protein-dependent signaling cascades may 

represent the immobile population observed in our experiments. If this is the case, then the 

mobile population might be responsible for signaling through G-protein-independent 

mechanisms. 

It has also been hypothesized that immobile MORs observed after extended exposure 

(≥10 minutes) to DAMGO represent receptors trapped within clathrin-coated pits (Sauliere-Nzeh 

et al., 2010). However, more recent data would suggest that interactions between the MOR and 

clathrin are not increased over a ten minute DAMGO treatment (Halls et al., 2016), which is 

identical to the treatment used in our study. Interactions between FLAG-MORs and clathrin-

coated pits could be quantified, as indicated by a recent study performed with single-molecule 

resolution using the VDKC KV2.1 (Weigel et al., 2013), and such a study would determine how 

much of the immobile population of FLAG-MORs can be accounted for by immobilization inside 

of clathrin-coated pits. Colocalization the MOR and markers of putative signaling microdomains 

have also been reported (Zhao et al., 2006). If the trapping of MORs in clathrin-coated pits does 

not account for the immobile population of MORs, measuring interactions between the MOR 

and such markers would be an interesting next step. Measurements of interactions between the 

MOR and known downstream effectors such as GIRKS, VDCCs, and β-arrestin might also be 

possible. 

The use of FLAG-MORs expressed in AtT20 cells has allowed us to demonstrate the 

viability of using SPT to study agonist-dependent changes in MOR mobility. This paves the way 

for similar studies in neurons where the mobility of differentially desensitizing MORs located in 

different neuronal compartments can be compared to one another. This technique will be 

immediately useful as a complement to more common electrophysiological and biochemical 
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techniques, and will provide a useful experimental paradigm for determining how MOR mobility 

relates to the recruitment of particular signaling cascades. 

5.6 Closing Remarks 

 Altogether, these studies provide clear evidence that regulation of desensitization-

resistant MORs located on axon terminals occurs in a manner that diverges significantly from 

their postsynaptic counterparts. Resistance to desensitization occurs independent of receptor-

effector coupling, and cannot be explained by a high receptor density on presynaptic terminals. 

It is unclear what physical differences between pre- and postsynaptic MORs confer resistance 

to desensitization, but we hypothesize that these differences may result in differential mobility 

between these two populations of MORs. Single-particle tracking of MORs proved to be a 

robust measure of basal MOR mobility, as well as of agonist-induced changes in MOR mobility, 

and can now be used to determine if MOR mobility varies between neuronal compartments. In 

addition to gaining a greater understanding of the function of presynaptic MORs in physiological 

systems, understanding the mechanisms underlying resistance to desensitization by 

presynaptic MORs could provide important insights for future drug and therapeutic design.  
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Appendix II: Direct inhibition of hypothalamic proopiomelanocortin neurons by 

dynorphin A is mediated by the μ-opioid receptor 4

Reagan L. Pennock and Shane T. Hentges, Department of Biomedical Science, Colorado State 

University, Fort Collins, CO 

Summary 

It has recently been shown that dynorphin A (Dyn A), an endogenous agonist of the 

kappa opioid receptor (KOR), directly inhibits proopiomelanocortin (POMC) neurons in the 

hypothalamus through activation of G-protein coupled inwardly rectifying K+ channels (GIRKs). 

This effect has been proposed to be mediated by the putative kappa-2 opioid receptor (KOR-2), 

and has been suggested as a possible mechanism for the orexigenic actions of KOR agonists. 

Using whole-cell voltage clamp recordings in brain slice preparations, the present study 

demonstrates that Dyn A (1 or 5 µM) induces an outward current in POMC neurons that is 

reversed by the highly selective mu opioid receptor (MOR) antagonist CTAP and absent in mice 

lacking MORs. Additionally, the KOR-2 selective agonist GR89696 binds MORs on POMC 

neurons but fails to induce an outward current. Similar to Dyn A, the KOR selective antagonist 

nor-BNI lacked specificity when used at sufficiently high concentrations. Maximal concentrations 

of the MOR-selective agonist DAMGO induced outward currents in POMC neurons that were 

completely reversed by a relatively high concentration of nor-BNI.  Experiments using a half-

maximal concentration of DAMGO demonstrate that nor-BNI must be used at concentrations 

<100 nM to avoid non-specific actions of the antagonist at MORs located on POMC neurons. 

These data suggest that direct inhibition of POMC neurons by Dyn A is mediated through the 

                                                
4 The manuscript reproduced in this appendix was originally published on October 1, 2014 in Volume 592, 
Issue 19 of The Journal of Physiology under the title “Direct inhibition of hypothalamic proopio-
melanocortin neurons by dynorphin A is mediated by the µ-opioid receptor.” The Journal of Physiology 
allows the original author to reproduce manuscripts in dissertations without permissions. 
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MOR, not the KOR-2, which is consistent with previous studies demonstrating that Dyn A can 

act at the mu opioid receptor (MOR) when present in high concentrations. 

Introduction 

Kappa opioid receptor (KOR) agonists, including the endogenous peptide dynorphin A 

(Dyn A), potently stimulate food intake (Morley and Levine, 1983). It was recently demonstrated 

that Dyn A is capable of direct inhibition of anorexigenic proopiomelanocortin (POMC) neurons 

of the arcuate nucleus of the hypothalamus via activation of G-protein coupled inwardly 

rectifying K+ channels (GIRKs; (Zhang and van den Pol, 2013). This led to the hypothesis that 

Dyn A-induced inhibition of POMC neurons may be an important component in the stimulation 

of food intake by KOR agonists (Zhang and van den Pol, 2013). It was also proposed that Dyn 

A-induced inhibition of POMC neurons was mediated by the putative kappa-2 subtype of the 

kappa opioid receptor (KOR-2), the presence of which had been overlooked in previous studies 

characterizing opioid regulation of POMC neurons (Pennock and Hentges, 2011) due to the 

unique pharmacological properties of the KOR-2.  

 Pharmacological and receptor binding studies led to the hypothesis that two KOR 

subtypes are expressed in brain tissue (reviewed in (Wollemann et al., 1993). 

Electrophysiological studies have also observed pharmacological differences between pre- and 

postsynaptic KORs; the synthetic KOR-selective agonist U69593 acts as a full agonist at 

presynaptic KORs but as a partial agonist at postsynaptic KORs in the VTA (Ford et al., 2007). 

However, the gene that codes for the KOR-2 has yet to be identified, and there is evidence that 

putative KOR-2 binding that occurs in the brain is actually non-selective binding to other opioid 

receptors (Simonin et al., 2001).  

 If two pharmacologically distinct KOR subtypes exist on the somato-dendritic region of 

POMC neurons and POMC terminals, the postsynaptic population of receptors may be 

selectively targeted. Varying distribution of KOR subtypes could also allow for differential 

regulation of pre- and postsynaptic receptors, particularly as Dyn A concentrations change in 
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response to physiological conditions. This would make the KOR-2 an intriguing target for those 

wishing to develop therapies that increase food intake through the inhibition of POMC neurons, 

as other Gαi/o-coupled receptors that directly inhibit POMC neurons through GIRK activation 

also disinhibit POMC neurons through the inhibition of GABA release.   

 Dyn A is a selective agonist of the KOR, activating the receptor at nanomolar 

concentrations (Goldstein and James, 1984; Zhang et al., 1998). However, Dyn A has also been 

shown to bind and act as an agonist at the mu opioid receptor (MOR), albeit with an EC50 value 

50-100 times greater than that observed at the KOR (Goldstein and James, 1984; James and 

Goldstein, 1984; Chavkin et al., 1985; Goldstein and Naidu, 1989; Mulder et al., 1989; 

Emmerson et al., 1994; Raynor et al., 1994). Dyn A-induced inhibition of POMC neurons occurs 

with an EC50 in the micromolar range (Zhang and van den Pol, 2013), well above the 

concentration range that is selective for the KOR (Mulder et al., 1989; Grudt and Williams, 

1993). Thus, it is possible that Dyn A-induced inhibition of POMC neurons is not mediated 

through either KOR subtype, but is instead due to activation of the MOR.  

 The present studies use pharmacological and receptor knockout approaches to show 

that Dyn A-induced inhibition of POMC neurons occurs at high concentrations as a 

consequence of MOR activation.  Thus, endogenous KOR ligands most likely exert their effects 

via KORs located on presynaptic inputs to POMC neurons and POMC neuron terminals.  

Materials and Methods 

Ethical approval 

All animal use procedures were approved by the Colorado State University Institutional Animal 

Care and Use Committee and met United States Public Health guidelines and the policies and 

regulations for animal experimentation described by The Journal of Physiology. 

Animals 

Mice expressing discosoma red (dsRed) or enhanced green fluorescent protein (eGFP) driven 

by the POMC promoter (Cowley et al., 1999; Hentges et al., 2009) were backcrossed onto a 
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C57BL/6 background for >12 generations. Mice expressing a mutant mu opioid receptor allele 

(MOR-; (Matthes et al., 1996) were obtained from The Jackson Laboratory (B6.129S2-

Oprm1tm1Kff/J) and were backcrossed onto the C57BL/6 background for >12 generations prior to 

purchase. MOR- expressing mice were crossed with POMC-eGFP animals to produce mu 

opioid receptor knockout mice (MOR-/-) expressing eGFP in POMC neurons (POMC-

eGFP/MOR-/-). All mice received tap water and standard rodent chow ad libitum. Animals were 

housed at a controlled temperature (22-24ºC) with a 12hr light/dark cycle. Transgenic mice were 

identified using standard PCR genotyping.  

Brain slice preparation 

58 mice were used over the course of this study. Brain slices were prepared from 6-12-

week-old male and female POMC-dsRed, POMC-eGFP and POMC-eGFP/MOR-/- mice. Before 

being sacrificed, mice were deeply anesthetized using isoflurane. Mice were quickly decapitated 

and brains were rapidly removed and placed in ice-cold artificial cerebrospinal fluid (ACSF) 

containing (in mM): 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.4 CaCl2, 1.2 NaH2PO4, 21 NaHCO3 and 11 

glucose. ACSF solutions were adjusted to pH 7.5 and saturated with 95% O2/5% CO2 mixture. 

Sagittal brain slices were prepared at a thickness of 240 µM using a VT 1200S vibratome 

(Leica). Slices containing the arcuate nucleus of the hypothalamus were transferred into warm 

ACSF (37ºC) containing 15 µM MK-801 immediately after collection. At least 45 min passed 

between collection and transfer of slices to the recording chamber.  

Electrophysiological recording 

After being transferred to the recording chamber, slices were continuously perfused (~2 

mL/min) with warm (37ºC) ACSF saturated with 95% O2/5% CO2. Recordings were made using 

pipettes with a resistance of 1.5-2.5 mΩ after being filled with an internal solution containing (in 

mM): 57.5 K-methyl sulfate, 57.5 KCl, 20 NaCl, 1.5 MgCl2, 5 HEPES (K+ salt), 0.1 EGTA, 2 Mg-

ATP, 0.5 Na-GTP, 10 phosphocreatine, pH 7.3. mIPSCs were recorded with an internal solution 
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that replaced K-methyl sulfate and KCl with Cs-methane sulfonate and CsCl, respectively. 

POMC neurons were identified by the presence of dsRed or eGFP fluorescence. After obtaining 

a seal with >1 GΩ resistance, negative pressure was used to rupture the cellular membrane and 

enter whole-cell mode. Recordings were made at a holding potential of -60 mV with no series 

resistance compensation. Postsynaptic currents were obtained in 1s sweeps taken every 11s 

using Axograph X software. Each sweep contained a 50 ms -10 mV voltage step to monitor 

access and input resistance over the course of the recording. IV curves were constructed using 

nine -10 mV voltage steps starting at a holding potential of -50 mV. Each step was 100 ms in 

length with 200 ms between steps. This protocol was repeated 200 ms after the end of the first 

set of voltage steps. The 2 data sweeps for each holding potential were then averaged. The 

currents induced by the voltage step protocol were not removed from any current traces (Fig. 

1A,C,E,F; Fig. 2A-F; Fig. 3A-C).  DAMGO, Dynorphin A- and baclofen-induced postsynaptic 

currents were recorded in the presence of 6,7-dinitroquinoxaline-2,3-dione (DNQX; 10 µM), 

bicuculline methiodide (BMI; 10 µM) and tetrodotoxin (TTX; 300 nM). Miniature IPSCs were 

collected at 10 kHz and digitally filtered at 1 kHz. Events were collected during 15 s sweeps that 

were repeated every 15 s and detected using Axograph X software based on rise time kinetics. 

Events with a rise time <100 µs were rejected. mIPSCs were recorded in the presence of DNQX 

(10 uM) and TTX (300 nM). 

Drugs 

[D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin acetate (DAMGO; Sigma), Dynorphin A (1-13) 

(Dyn A; Phoenix Pharmaceuticals), R(+)-Baclofen hydrochloride (Sigma), (-)-Bicuculline 

methiodide (BMI; Tocris), GR 89696 fumurate (Tocris), and Tetrodotoxin citrate (TTX; Tocris) 

were prepared in distilled water (at least 1000:1 of the final concentration). 6,7-

dinitroquinoxaline-2,3-dione (DNQX; Sigma) and (+)-MK-801 (Sigma) were prepared in DMSO 
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(at least 10,000:1 of the final concentration). Drugs were diluted in ACSF to achieve final 

concentrations. 

Statistics 

Data were analyzed using a one-sample or paired Student’s t-test. Data sets containing 

multiple repeated measures were analyzed using a repeated-measures ANOVA and Tukey’s 

multiple comparison post hoc test. Induced outward currents <5 pA, were not included in 

analyses as clear reversal was difficult to assess. Using this criteria, the number of cells 

excluded for each drug and concentration used was as follows: 10 µM DAMGO (2 of 17 cells), 

500 nM DAMGO (4 of 11 cells), 5 µM Dyn A (2 of 21 cells), 1 µM Dyn A (10 of 18), 30 µM 

baclofen (1 of 14 cells). All data points are represented as the mean ± SEM. Differences were 

considered significant if p<0.05. 

Results 

Dynorphin A (Dyn A)-induced outward currents are reversed by CTAP 

 As reported previously (Zhang and van den Pol, 2013), Dyn A (1 µM or 5 µM) was found 

to induce a clear outward current in POMC neurons (11.4 ± 1.5 pA and 26.2 ± 3.8 pA, 

respectively; 8 out of 18 cells responded to 1 µM, 19 out of 21 cells responded to 5 µM, only 

responding cells are included in statistics; p<0.001, one sample t-test; Figure 1A,B,E). To 

determine if this outward current is mediated by activation of the putative KOR-2 (Zhang and 

van den Pol, 2013), or rather by actions at the MOR (Chavkin et al., 1985), the MOR-selective 

antagonist CTAP was applied immediately after a peak Dyn A current was observed. CTAP (1 

µM) caused in a rapid reversal of the outward current induced by Dyn A (5 µM) in all cells 

examined (DynA=17.9 ± 3.1 pA, DynA/CTAP= -0.42 ± 1.4 pA; n=8 cells from 4 mice; p<0.001, 

paired t-test; Fig 1C,D). To further examine the possibility that the outward current induced by 

Dyn A was due exclusively to activation of the MOR, the experiment was repeated with a lower 

concentration of both Dyn A (1 µM) and CTAP (100 nM). The outward current induced by Dyn A 
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was reversed by CTAP in all recordings (Dyn A=11.7 ± 1.9 pA, DynA/CTAP= 0.6 ± 1.2 pA; n=5 

cells from 4 mice; p=0.007, paired t-test; Fig 1E,F). Finally, the putative KOR-2 agonist GR 

Figure 1. Dynorphin A-induced outward currents measured from POMC neurons are 
reversed by the mu opioid receptor selective antagonist CTAP. A) A sample trace of an 
outward current induced by Dyn A (5 µM). B) Compiled data for the magnitude of the outward 
current induced by Dyn A (1 or 5 µM). C) A sample trace demonstrating the reversal of an outward 
current induced by Dyn A (5 µM) by the MOR-selective antagonist CTAP (1 µM). D) Compiled data 
showing the amplitude and the Dyn A-induced current before and after addition of CTAP (1 µM). 
E) A sample trace demonstrating the reversal of an outward current induced by Dyn A (1 µM) by 
CTAP (100 nM). F) Compiled data showing the amplitude of the outward current induced by Dyn 
A before and after the addition of CTAP (1 µM). G) A sample trace from a recording showing that 
the putative KOR-2 agonist GR 89696 induces no outward current in POMC neurons. H) A 
subtracted IV plot showing no difference between the IV relationship of POMC neurons before and 
after GR 89696 application. P-values are represented by stars; ** = p<0.01, *** = p<0.001. 
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89696 (10 µM) was applied to determine whether any KOR-2-mediated outward currents could 

be detected in POMC neurons. No outward current was detected at a holding potential of -60 

mV (-0.7 ± 1.1 pA; n=10 cells from 5 mice; p=0.53, one sample t-test; Fig 1G,H), and subtracted 

IV relationship showed no detectable currents at any of the holding potentials examined (-130 to 

-50 mV; n=10 cells from 5 mice; p=0.18, repeated measures ANOVA; Fig 1H). Together, these 

data suggest that Dyn A-induced outward currents on POMC neurons result from activation of 

the MOR, not the KOR-2.  

The putative KOR-2 selective agonist GR89696 binds the mu opioid receptor 

 It has been previously reported that putative KOR-2 binding in the brain can be 

accounted for by non-selective binding of KOR-2 agonists to other opioid receptors (Simonin et 

al., 2001). Although GR89696 did not induce changes in the electrical properties of POMC 

neurons in the present study (Fig 1G,H), GR89696 does appear to bind to MORs on POMC 

neurons. Outward currents induced by DAMGO (10 µM) were reversed by GR89696 (10 µM) in 

all cells examined (DAMGO=24.2 ± 4.6 pA, DAMGO/GR89696=-1.2 ± 0.5 pA; n=5 cells from 3 

mice; p=0.003, paired t-test; Fig 2A,D). Similarly, pre-application of 10 µM GR89696 occluded 

DAMGO-induced outward currents in POMC neurons (-0.06 ± 0.9 pA at -60 mV, n=9 cells from 

5 mice; p=0.94, one sample t-test; Fig 2B,E), but not outward currents induced by the GABAB 

receptor agonist baclofen (32.8 ± 12.2 pA at -60 mV, n=4 cells from 2 mice; p=0.07, one sample 

t-test; Fig 2C,E). These data are consistent with previously reported findings (Simonin et al., 

2001) that putative KOR-2 ligands can bind non-selectively to other opioid receptors. 

Dynorphin A-induced outward currents are absent in mu opioid receptor knockout mice 

 To verify that Dyn A-induced outward currents are mediated by the MOR, current/voltage 

relationships for both the MOR-selective agonist DAMGO and Dyn A were constructed in 

POMC-eGFP mice and POMC-eGFP mice that were crossed with mice containing a mutant µ-

opioid receptor allele that results in a loss of MOR function (POMC-eGFP/MOR-/-). If Dyn A-
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induced inhibition of POMC neurons can be mediated by something other than the MOR, the 

absence of functional MORs should have no consequence on Dyn A actions. Consistent with 

the above studies, both DAMGO (10 µM) and Dyn A (5 µM) induced inwardly-rectifying currents 

Figure 2. GR89696 binds to mu opioid receptor. A) A sample trace demonstrating that the outward 
current induced by DAMGO (10 µM) is reversed by GR89696 (10 µM). B) A sample trace demonstrating 
the occlusion of a DAMGO-induced outward current by pre-application of GR89696. C) A sample trace 
demonstrating that GR89696 pre-application does not occlude the outward current induced by baclofen 
(30 µM). D) Compiled data showing the amplitude of the outward current induced by DAMGO (10 µM) 
before and after application of GR89696 (10 µM). E) Subtracted IV plots showing the currents induced 
by both DAMGO and baclofen in the presence of GR89696 at voltages ranging from -50 to -130 mV in 
-10 mV steps. P-values are represented by stars; **= p<0.01. 
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with reversal potentials near the K+ equilibrium potential in POMC neurons expressing the MOR 

(-98.4 ± 1.2 mV for DAMGO, n=5 cells from 4 mice; -96.5 ± 4.2 mV for Dyn A, n=9 cells from 5 

mice; p<0.0001, repeated measures ANOVA; Fig 3A,C,G). As expected, DAMGO did not 

induce a current in POMC neurons lacking MORs at when held at -60 mV (-1.4 ± 1.2 pA; 

p=0.29, one sample t-test) or at any other holding potential tested (-50 to -130 mV, p=0.74, 

repeated measures ANOVA, n=4 cells from 2 mice; Fig. 3D,H). Similarly, Dyn A did not produce 

a detectable current at any of the holding potentials examined (0.5 ± 0.7 pA at -60 mV, p=0.48 

by one sample t-test; p=0.99 using repeated measures ANOVA on data from -50 to -130 mV 

holding potentials; n=6 cells from 3 mice; Fig 3B,H). To ensure that Gαi/o-coupled GPCRs were 

still generally functional in POMC-eGFP/MOR-/- animals, the effect of the GABAB receptor 

agonist baclofen on whole cell currents were recorded in POMC neurons with and without 

MORs. In both populations, baclofen induced an inwardly-rectifying current with a reversal 

potential near the equilibrium potential of K+ (MOR+/+=-92 ± 7.4 mV, n=3 cells from 2 mice; 

MOR-/-=-91.6 ± 1.6 mV, 5 cells from 4 mice; Fig 3E,F,G,H).  

To ensure that the κ-opioid system was unaffected by knockout of the MOR, the 

inhibition of presynaptic GABA release by Dyn A was examined in MOR-/- and MOR+/+ mice. In 

MOR-/- mice, Dyn A (100 nM) induced robust inhibition of mIPSC frequency measured from 

POMC neurons (baseline=7.5 ± 1.9 Hz, Dyn A=3.4 ± 0.7 Hz) and this was reversed by nor-BNI 

(50 nM, to 8.8 ± 1.7; p=0.003; repeated measures ANOVA; n=5 cells from 4 mice; Fig 4A,B). 

While DAMGO (10 µM) strongly inhibits mIPSC frequency in MOR+/+ mice (~80% 

reduction;(Pennock and Hentges, 2011), DAMGO-induced inhibition of mIPSC frequency was 

essentially absent in MOR-/- mice (~3.8% reduction as opposed to the ~80% reduction observed 

in wild type mice, 7.9 ± 1.6 Hz baseline vs. 7.6 ± 1.5 Hz in 10 µM DAMGO; n=8 cells from 4 

mice; p=0.02, paired t-test; Fig 4C,D). The lack of Dyn A-induced postsynaptic currents in the 



150 
 

MOR knockout provides strong evidence that Dyn A inhibits POMC neurons via actions at the 

MOR.  

Nor-BNI is non-selective for the KOR at sufficiently high concentrations 

 Dyn A-induced currents measured from POMC neurons have been attributed to actions 

at the KOR-2 in part because the current is blocked by the KOR-selective antagonist nor-BNI 

(Zhang and van den Pol, 2013). However, nor-BNI can also act as an antagonist of the MOR 

when used at sufficiently high concentrations (Emmerson et al., 1994; Raynor et al., 1994). To 

Figure 3. Dynorphin A-induced outward currents are absent in POMC neurons lacking the mu 
opioid receptor. A,B) Sample traces demonstrating the effects of Dyn A in wild type and MOR knockout 
mice. Dyn A induces an outward current in MOR+/+ but not MOR-/- mice. Similar traces are shown for 
DAMGO (C,D). Sample traces demonstrating a baclofen induced outward current in both MOR+/+ and 
MOR-/- mice. G,H) Subtracted IV relationships demonstrating the currents induced by Dyn A, DAMGO 
and baclofen at holding potentials ranging from -50 to -130 mV in -10 mV steps in MOR+/+ and MOR-/- 
mice. 
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determine if the concentration of nor-BNI used in previous experiments was sufficient to act on 

the MOR, nor-BNI (1 µM) was used to reverse outward currents induced by a maximal 

concentration of DAMGO (10 µM). Similar to previous studies, nor-BNI (1 µM) was sufficient to 

reverse the outward current induced by Dyn A (5 µM Dyn A=36.4 ± 10.4 pA, with nor-BNI=1.9 ± 

1.7 pA; p=0.01, paired t-test; n=5 cells from 3 mice; Fig 5A,D). However, nor-BNI (1 µM) was 

also sufficient to reverse the outward current induced by a relatively high concentration of 

DAMGO (10 µM) in all cells examined (DAMGO=31.7 ± 9.0 pA, nor-BNI=-0.7 ± 1.3 pA; p=0.009, 

paired t-test; n=5 cells from 3 mice; Fig 5B,E). To determine the concentration of nor-BNI 

Figure 4. Presynaptic kappa opioid receptors are still present and functional in the mu opioid 
receptor knockout mouse. A) Sample traces demonstrating the inhibition of mIPSCs measured from 
POMC neurons by Dyn A (100 nM), as well as the reversal of Dyn A-induced inhibition of mIPSCs by 
the KOR selective antagonist nor-BNI (50 nM), in MOR knockout mice. B) Compiled data for the 
inhibition of mIPSCs by Dyn A and the reversal of Dyn A-induced inhibition by nor-BNI. Using Tukey’s 
post hoc test, mIPSC frequency was found to be significantly different than the baseline mIPSC 
frequency (a) and the mIPSC frequency in the presence of nor-BNI (50 nM, b). The baseline mIPSC 
frequency and mIPSC frequency in the presence of nor-BNI (50 nM) were not significantly different. C) 
Sample traces demonstrating a lack of DAMGO-induced inhibition of mIPSCs measured from POMC 
neurons in MOR knockout mice. D) Compiled data for the effects of DAMGO on mIPSC frequency in 
MOR knockout mice.  
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needed to avoid antagonism of the MOR, outward currents were induced with an ~EC50 

concentration of DAMGO (500 nM; (Pennock and Hentges, 2011), then cells were exposed to 

increasing concentrations of nor-BNI. DAMGO (500 nM) induced an outward current that was 

partially reversed by a low concentration of nor-BNI (DAMGO=12.8 ± 2.7 pA, 100 nM nor-BNI 

=6.5 ± 1.5 pA; p=0.003 DAMGO vs. baseline, one sample t-test; n=7 cells from 5 mice; Fig 

5C,F) and almost completely reversed by a higher concentration of nor-BNI (500 nM nor-

BNI=2.1 ± 0.9 pA; p<0.001, repeated measures ANOVA; n=7 cells from 5 mice; Fig 5C,F). 

Thus, it appears that nor-BNI must be used at concentrations <100 nM to avoid actions at 

MORs on POMC neurons. 

Figure 5. MORs on POMC neurons are antagonized by nor-BNI at sufficiently high 
concentrations.  A) A sample trace demonstrating the reversal of an outward current induced by Dyn 
A (5 µM) by nor-BNI (1 µM). B) The same concentration of nor-BNI (1 µM) is also sufficient to reverse 
the outward current induced by higher concentration of DAMGO (10 µM). D,E) Compiled data showing 
the reversal of outward currents induced by Dyn A and DAMGO by nor-BNI (1 µM). C) Dose-dependent 
inhibition of an outward current induced by a near EC50 concentration of DAMGO (500 nM) by 100 nM 
and 500 nM nor-BNI. F) Compiled data demonstrating the reversal of the outward current induced by 
DAMGO (500 nM) by 100 nM and 500 nM nor-BNI. The amplitude of the outward current induced by 
DAMGO (500 nM) in the presence of nor-BNI (500 nM) is significantly different than that of DAMGO 
(500 nM) alone using Tukey’s post hoc test (a). P-values are represented by stars; * = p<0.05, ** = 
p<0.01.  
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Discussion 

The present data demonstrate that Dyn A can activate an inwardly-rectifying K+ current 

on the somato-dendritic region of POMC neurons and that this is mediated by the MOR, and not 

the putative KOR-2 receptor. Dyn A must be present in micromolar concentrations to induce 

currents in POMC neurons, which is sufficient to activate the MOR. Further, the presence of 

functional MORs is required for Dyn A to induce currents in POMC neurons. These results are 

consistent with previous studies demonstrating a lack of KOR expression on the somato-

dendritic region of POMC neurons (Pennock and Hentges, 2011; Dicken et al., 2012). 

Selectivity of Dynorphin A and nor-BNI for KORs on POMC neurons 

 As shown in a previous study (Zhang and van den Pol, 2013), Dyn A induced a robust 

outward current in POMC neurons when applied at micromolar concentrations that was 

reversed with nor-BNI. However, the present study demonstrates that the concentrations of Dyn 

A needed to induce outward currents in POMC neurons are sufficient to produce non-specific 

effects at the MOR. This was demonstrated by the complete reversal of Dyn A-induced outward 

currents by the MOR-selective antagonist CTAP, and by the complete reversal of DAMGO-

induced currents by nor-BNI at the concentration (1 µM) used in the previous study to reverse 

the putative kappa-2 effect (Zhang and van den Pol, 2013). The mismatched binding to 

receptors by classical MOR or KOR ligands is consistent with previous studies demonstrating 

that the selectivity of Dyn A and nor-BNI diminishes when used at relatively high concentrations 

(Goldstein and James, 1984; James and Goldstein, 1984; Chavkin et al., 1985; Goldstein and 

Naidu, 1989; Mulder et al., 1989; Emmerson et al., 1994; Raynor et al., 1994). In contrast to the 

high concentrations of Dyn A needed to cause a postsynaptic outward current in POMC 

neurons, Dyn A caused robust inhibition of GABA release onto POMC neurons when present in 

a much lower concentration (100 nM) and this effect was reversed by a concentration of nor-BNI 

(50 nM) that is selective for the KOR. These concentrations are consistent with previous studies 
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using Dyn A and nor-BNI to selectively target KORs (Grudt and Williams, 1993; Simmons and 

Chavkin, 1996; Margolis et al., 2003; Ford et al., 2007).  

Dyn A-induced outward currents are absent in MOR-/- mice 

 If Dyn A-induced currents were mediated by the KOR-2, the current should still be 

present in mice lacking the MOR. Although presynaptic KORs were still functional in MOR-/- 

animals, no Dyn A-induced postsynaptic currents were detected in POMC neurons lacking the 

MOR. There was also no outward current detected using the putative KOR-2 agonist GR89696 

in wild type mice. However, it was determined that GR89696 binds, but does not activate, 

MORs on POMC neurons. These findings agree with previous work demonstrating that all 

putative KOR-2 binding can be accounted for by non-selective binding at other opioid receptors 

(Simonin et al., 2001).  

 Whereas the present work did not find a GR89696-mediated current in POMC neurons, 

a previous study found this putative KOR-2 agonist to hyperpolarize POMC neurons (Zhang & 

van den Pol, 2013). The reasons for this difference between the two studies are not completely 

clear. One possibility is that GR89696 acts on upstream cells to alter the activity of POMC 

neurons, although Zhang and van den Pol did not find GR89696 to change spontaneous IPSCs 

or EPSCs in POMC neurons.  We cannot rule out a potential age-dependence to the GR89696 

effect. The mean age of mice used in the present study was likely older than that in the previous 

study since the range used here was 6-12-weeks compared to 2-7.3-weeks in Zhang and van 

den Pol.  An additional difference between the current and previous study is the use of voltage-

clamp versus current-clamp. However, since the GR89696-induced hyperpolarization of POMC 

neurons observed by Zhang & van den Pol was reported to occur through activation of a GIRK 

conductance, it is unlikely that a corresponding outward current would not be detectable in 

experiments performed in voltage-clamp.  Additional assays to detect the presence and function 

of KOR-2 on POMC neurons and further studies with GR89696 may help fully discern the 

reasons for the apparent discrepancy between these two studies.  
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Possible roles for endogenous Dyn A in the regulation of POMC neurons 

 Although the present study suggests that no form of KOR is present on the somato-

dendritic region of POMC neurons, endogenous Dyn A may still play a role in the regulation of 

POMC neurons in vivo through presynaptic actions. KORs are present on the presynaptic 

terminals of POMC neurons and potently inhibit neurotransmitter release (Dicken et al., 2012).  

Inhibition of transmitter release directly at the level of POMC terminals would be expected to 

increase food intake since POMC-neuron-derived transmitters are largely anorexigenic 

(reviewed in (Cone, 2005; Mercer et al., 2013). It is also possible that Dyn A directly 

hyperpolarizes the somato-dendritic region of POMC neurons, albeit through the MOR. As 

shown in the present study, Dyn A activates somato-dendritic MORs on POMC neurons when 

used at a sufficient concentration. However, it is unknown whether Dyn A concentrations in vivo 

reach concentrations sufficient to induce activation of the MOR. The selectivity profile of Dyn A 

may also change depending on how the peptide is processed. For example, Dyn A (1-8) shows 

higher selectivity for the MOR than KOR (Goldstein and Naidu, 1989). If Dyn A- expressing 

neurons forming synapses with POMC neurons release a shorter fragment of Dyn A such as 

Dyn A (1-8) this may produce activation of the MOR. 

Conclusions 

Although Dynorphin A is capable of inducing direct inhibition of the somato-dendritic 

region of POMC neurons, the present study found such inhibition is mediated by activation of 

the MOR. There is significant evidence that the KOR system is an important endogenous 

regulator of energy balance, and KOR agonists have known orexigenic actions. The present 

results suggest that if KOR agonists act at POMC neurons increase food intake and body 

weight, they do so either via inhibition of presynaptic release or by activating MORs to reduce 

the activity of POMC neurons.   
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4-AP  4-aminopyridine 

5-HT  5-hydroxytryptamine (serotonin) 

5-HTR  Serotonin receptor 

A1R  Adenosone A1 receptor 

aCSF  Artificial cerebrospinal fluid 

ACTH  Adrenocorticotrophic hormone 

ATP  Adenosine triphosphate 

βarr  Beta-arrestin   

β-CNA  Beta-chlornaltrexamine    

cAMP  Cyclic adenosine monophosphate 

CeA  Central nucleus of the amygdala  

CGP 55845 (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl] 

(phenylmethyl)phosphinic acid  

ChR2  Channelrhodopsin-2 

CMT  Chronic morphine treatment 

CTAP  D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 

DAMGO [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin 

DIC  Differential interference contrast 

DMSO  Dimethyl sulfoxide 

DNQX  6,7-dinitroquinoxaline-2,3-dione 

DOR  Delta opioid receptor 

DsRed  Discosoma red 

EC50  Half-maximal effective concentration 

eGFP  Enhanced green fluorescent protein 
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eIPSC  Evoked inhibitory postsynaptic currents 

ERK  Extracellular signal-regulated kinases 

FRAP  Fluorescence recovery after photbleaching 

FRET  Fluorescence resonance energy transfer 

GABA  Gamma-aminobutyric acid 

GABABR GABAB receptor 

GDP  Guanosine diphosphate 

GIRK  G-protein inwardly rectifying K+ channels 

GPCR  G-protein coupled receptor 

GRK  G-protein-coupled receptor kinase 

GTP  Guanosine triphosphate 

HEK  Human embryonic kidney 

IPSC  Inhibitory postsynaptic currents 

KOR  Kappa opioid receptor 

LC  Locus coeruleus 

LTP  Long term potentiation 

ME  [Met5]-Enkephalin 

MEF  Mouse embryonic fibroblast 

mIPSC  Miniature inhibitory postsynaptic currents 

MOR  Mu opioid receptor 

MSD  Mean square displacement 

NLX  naloxone 

NOP  Nociceptin receptor 

nor-BNI Nor-binaltorphimine  
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PAG  Periaqueductal grey 

PCR  Polymerase chain reaction 

PDBu  Phorbol 12,13-dibutyrate  

PKC  Protein kinase C 

PLA2  phospholipase-A2 

PMA  Phorbol 12-myristate 13-acetate  

POMC  Proopiomelanocortin 

Qdot  quantum dot 

RGS  Regulators of G-protein signaling 

SEM  Standard error of the mean 

SNAP-25 Synaptosome associated protein 25 

SNARE Soluble NSF attachment protein receptor 

SPT  Single-particle tracking 

TEA  Tetraethylammonium 

TTX  Tetrodotoxin 

U69593 (+)-(5α,7α,8β)-N-methyl-N[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-

benzeneacetamide 

VDCC  Voltage-dependent Ca2+ channels 

VDKC  Voltage-dependent K+ channels 

VTA  Ventral tegmental area 
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