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ABSTRACT OF DISSERTATION 

AN OBSERVATIONAL AND THEORETICAL STUDY OF 

SQUALL LINE EVOLUTION 

This study documents a class of squall lines that appears to be 

approximately two-dimensional, has a solid leading edge echo during a 

portion of its life cycle, and has line-normal flow characterized by a 

continuous zone of negative horizontal vorticity that slopes upward from the 

leading edge to the rear of the storm. Structure and evolution are established 

using Doppler radar observations of a number of storms at unprecedented 

temporal resolution. 

It is shown that squall lines of this type evolve through identifiable 

stages of reflectivity structure. This evolution appears to be strongly related to 

changes that occur in the kinematic structure. As a typical system evolves, 

the rearward-sloping zone of horizontal vorticity, which is predominantly 

associated with vertical shear, develops on the scale of the system, 

presumably driven by the horizontal buoyancy gradients across the system. 

The vorticity that is generated allows further generation to take place by 

causing the superposition of a saturated, precipitating anvil cloud aloft over 

potentially cooler air below in the trailing region. The rearward-sloping 

vorticity zone gradually tilts toward the horizontal. The rate at which this 

zone tilts seems to be the primary difference between the systems studied. To 

a first approximation, the inflow streamlines parallel the sloping vorticity 

zone, so as it approaches a horizontal slope, vertical motion becomes smaller. 



Eventually, convective-scale ascent ceases, giving the impression that the gust 

front has surged out ahead of the precipitation. 

To gain understanding of the dynamics of this class of squall lines, this 

study explores the role of horizontal vorticity, and the means through which 

the environment influences the rate of tilting and hence the time scale of 

evolution. The observed generation of vorticity in six systems is discussed 

and compared to earlier theories for squall line longevity. Motivated by these 

observations, a new theory is developed which attempts to explain squall line 

evolution, and the possibility of steadiness, as a function of an environment 

that has both upper and lower shear regions. Predictions based on the theory 

are compared to the new observations, as well as other observed and 

numerically simulated squall lines. 

Erik Nels Rasmussen 
Atmospheric Science Department 
Colorado State University 
Fort Collins, CO 80523 
Spring 1992 
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Chapter 1 

Introduction 

Squall lines can be defined as any non-frontal line or band of 

convective activity, and the convective activity need not be continuous along 

the leading edge (Hane, 1986). This study will examine a subset of this class of 

convection in which the line is solid, quasi-two-dimensional, and the system 

contains stratiform trailing precipitation sometime during its life cycle. 

Further refinements of this definition will be made which mainly involve 

the kinematic structure of the systems. 

Numerous earlier studies have focused on the kinematic and 

reflectivity structure of this type of precipitation system, presenting 

IIsnapshots" which generally document a IImature" phase. Many findings of 

the more recent studies are summarized in Rutledge (1991). Synthesis of the 

observational studies has led to a conceptual model of the structure of a 

mature squall line (Houze et al., 1989) illustrated in Fig. 1. Of particular 

relevance here is the existence of mesoscale quasi-horizontal flow branches in 

the trailing region of the storm. 

As depicted in Fig. 1, a rear inflow branch slopes downward toward th~ 

front of the system, and is located beneath a front-to-rear branch that slopes 

upward toward the rear. The strength of the storm-relative rear inflow has 

been shown to vary from one system to another (Smull and Houze, 1987a). 

Although this variation may be partly the result of the reference frame 

chosen for the analyses, Smull and Houze showed that storms with strong 
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rear inflow also had stronger front-to-rear (FI'R) flow aloft. They also showed 

that relative rear-to-front (RTF) flow was in some cases the result of 

dynamical processes internal to the squall lines, and not the result of 

environmental momentum being conserved as air entered the rear of the 

system. 

Although in previously published cases, the FI'R and RTF branches 

vary in relative strength from one system to another, careful inspection 

shows that there is almost always a sloping band of negative horizontal 

vorticity in these systems which is largely the result of vertical shear between 

the flow branches. In some storms, the vorticity zone does not extend across 

the entire system, but appears only in the trailing region. In the type of squall 

line investigated herein, the vorticity zone extends across the entire system. 

Horizontal vorticity is defined as 
au aw 

17=--
ik ax (1) 

in a right-handed cartesian system with x normal to the squall line in the 

direction of motion, and z vertical. In this study, discussion of the "vorticity 

zone" refers to the region of negative horizontal vorticity which typically 

extends from near the surface at the leading edge to middle or upper levels at 

the rear of the system. In the conceptual model shown in Fig. I, it is found 

between the sloping RTF and FI'R branches. 

Examination of several previously published cases provides examples 

of the nature of the vorticity zone. The 2-3 August 1981 CCOPE (Cooperative 

Convective Precipitation Experiment) squall line (Schmidt and Cotton, 1989) 

contained a relatively weak rear inflow jet (Fig. 2). However, it featured a 

sloping region of large values of negative horizontal vorticity. This region, 

situated just above the relative rear inflow zone, began near the surface at the 
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leading edge, and sloped. upward toward the rear of the storm. Similarly, a 

squall line observed on 23 June 1981 during the COPI' 81 (Convection Profonde 

Tropicale) experiment in tropical West Africa (Rowe, 1988) also featured the 

sloping zone of vorticity (Fig. 3). In this case, it appears to be the result of 

strong shear just below the upper FrR flow. An example of a system with 

comparatively stronger relative rear inflow is the 10-11 June 1985 PRE

STORM (Preliminary Regional Experiment for Stormscale Operational and 

Research Meteorology) squall line (Rutledge et al., 1988), which will be 

examined in further detail in this study. 

In many published squall line cases, evidence can be clearly seen in the 

velocity distribution of the sloping zone of negative vorticity (see, for 

example Chong et al., 1987; Chalon, et al., 1988). In addition, field 

observations made by the author of many squall lines in tropical northern 

Australia indicate that this feature is common to most, if not all, of the squall 

lines that occur there. The existence of negative vorticity in the interior part 

of the squall line is a common feature of this class of squall lines, whereas the 

relative strengths of the individual flow branches is not consistent from 

storm to storm. 

Some published cases do not show evidence of a well-defined 

continuous rearward-sloping zone of negative horizontal vorticity. The 

Oklahoma squallUne of 22 May 1976 has been documented using Doppler 

radar analyses (Smull and Houze, 1985; Smull and Houze, 1987b) and 

sounding network analyses (Ogura and Liou, 1980). Fig. 4 shows the along

line averaged reflectivity and line-normal horizontal velocity relative to the 

leading edge of this storm (from Smull and Houze, 1985). Fig. 5 shows the 

larger-scale view of the same storm based on sounding analyses by Ogura and 

liou (1980). In this particular squall line, a region of negative vorticity was 
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present near the leading edge (x = a in Fig. 5) in the lowest two kilometers, 

and another region sloped upward from about 800 hPa to 400 hPa in the 

trailing region. However, this storm did not appear to have a well-defined, 

continuous rearward-sloping zone of negative vorticity. The Oklahoma squall 

line of 19 May 1977 (Kessinger et al., 1987) is similar to the 22 May 1976 squall 

line and also did not fit the vorticity structure of the conceptual model 

described herein. 

In the cases cited above, relatively little documentation was provided 

on the evolution of the squall lines. One of the few studies that was able to 

address evolution was that of Leary and Houze (1979). Using reflectivity data 

from the GATE (GARP Atlantic Tropical Experiment), they associated the 

following stages with observed reflectivity patterns: 

- formative stage: line of isolated cells; 

- intensifying stage: breaks fill in between cells and reflectivity 

increases; 

- mature stage: mesoscale precipitation features are present; 

- dissipating stage: leading edge convection dissipates 

The squall lines examined in this study generally followed similar 

patterns in reflectivity evolution as those described by Leary and Houze. 

Since there is no clear reason to depart from their terminology, these names 

for the various stages will be used herein. However, the echo character and 

evolution described in this study will differ significantly from those of Leary 

and Houze. 

This study will show evidence that certain characteristics of the squall 

line, seen in both the reflectivity and kinematic structure, determine the stage 

of evolution. It will be shown that squall lines undergo common patterns of 

evolution. In addition, this dissertation will describe the interdependency 
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between the evolution of the reflectivity structure and the evolution of the 

vorticity structure of squall lines. 

Over 250 Doppler vol~e scans have been analyzed in the course of 

this research, documenting numerous squall lines. For many of these cases, 

data were analyzed at time intervals of about ten minutes, providing 

information about squall line structure and evolution in unprecedented 

detail. Ten cases were selected for detailed study based primarily on data 

coverage (spatial and temporal) and the desire to span a large variety of 

ambient CAPE (Convective Available Potential Energy) and environmental 

wind shear conditions. 

Recently, several theories have been advanced to explain the structure 

and motion of squall lines and the potential for steady, long-lived systems. 

Verification of these theories has awaited detailed observational and 

modelling work. The validity of these the9ries is examined herein from the 

perspective of the observations. Motivated by the theoretical approaches of 

the earlier studies, a new theory is advanced to crudely account for variations 

in the environmental vertical shear structure, and to explain evolution 

without making a steadiness assumption. 

Based on the results of numerical simulations, the potential for 

steadiness in a squall line was examined by Rotunno et al. (1988, hereafter 

referred to as RKW). RKW studied storm longevity by examining the degree 

of balance (or imbalance) between vorticity transports associated with the low

level shear in the pre-storm environment, and the generation of vorticity 
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due to the convectively-generated cold pool. The vorticity equation 

appropriate to this two-dimensional, inviscid, Boussinesq problem is 

where 11 is given by (1) and 

d1] dB 
-+V·1]V=-g-
at ax 

B = 1- 8y + q 8 c. 
y 

(2) 

(3) 

Total buoyancy is represented by B, with qc being the total condensate mixing 

ratio, and 9v is the virtual potential temperature. 

Several assumptions were made by RKW to permit the integration of 

this vorticity equation. First, it was assumed that an ideal condition in a long

lived, intense squall line was a vertically-issuing, symmetric updraft above 

the propagating cold pool. Furthermore, it was assumed that vorticity is only 

transported across the forward boundary of the integration volume, and not 

the rear boundary. By assuming a steady flow, RKW demonstrated that a 

balance between the cold-pool generation of vorticity and the transport of the 

low-level ambient vorticity associated with the vertical shear of the 

horizontal wind in the pre-storm environment is required for steady, intense 

systems. RKW focussed on the dynamiCS of the lowest few kilometers, and 

did not address the effects of buoyancy gradients or transport in the regions 

above. 

In simulations of a West Africa squall line case from the COPT 81 

experiment, Lafore and Moncrieff (1989, hereafter referred to as LM) 

recognized that vorticity generation occurs on the scale of the squall line, 

including the trailing stratiform region. In terms of the horizontal extent 

detected by radar, this can be as broad as 100 km or more (refer to Fig. 1). They 

argued that vorticity is generated by horizontal gradients of buoyancy that 
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result from thermodynamic and microphysical processes throughout the 

storm, not just in the vicinity of the leading edge of the cold pool. This 

argument is clearly supported by the observations of vorticity evolution 

presented herein. However, LM did not address the issue of how the system

scale vorticity structure and generation impacts the rate of evolution or 

potential for steadiness. 

In comments following publication of LM, Rotunno et al. (1990) 

indicate that the theory of RI<W only addressed the conditions necessary for 

producing vigorous, uninhibited ascent at the gust front of a squall line. They 

suggested that an intense, long-lived system would be more likely when such 

ascent occurs. In reply, Lafore and Moncrieff (1990) reiterated that although 

the process described by RI<W is a necessary condition for an intense, long

lived system, other factors impact "both the leading edge convection and the 

global dynamics." Further, Lafore and Moncrieff (1990) stressed that the 

upstream environment, in which low-level shear is measured, is itself 

modified by squall lines. 

Seitter and Kuo (1983) also argued that vorticity generation is a storm

scale process, and showed the role of gravity in generating buoyancy gradients' 

through the decoupling of the buoyant updraft air and the negatively buoyant 

precipitation-laden air. Emanuel (1986) used linear theory to expand on this 

concept and demonstrate the likely modes of propagation and orientation of 

squall-line like disturbances. 

It is very convenient to use vorticity arguments to describe storm 

dynamics. Clearly, the buoyancy and momentum distributions lead to the 

generation of pressure perturbations which also could be used to describe the 

evolution of the flow. Many observational studies have focussed on the role 

of these pressure perturbations. For example, Lemone (1983) documented the 
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role of lowered pressure beneath the sloping cloudy region, warmed by 

condensation heating, to explain various observed accelerations. The roles of 

the surface mesoscale pressure perturbations have also been explored (e.g. 

Johnson and Hamilton, 1988). Modelling studies have long indicated the 

importance of perturbation high pressure near the summits of updrafts in 

leading to adverse vertical accelerations as well as summit divergent flow 

(e.g. Schlesinger, 1975). It is important to note that the accelerations that must 

occur to alter the distribution of horizontal vorticity are partially the result of 

these pressure perturbations. Any or all of the following pressure features 

may be associated with increasing negative vorticity in the interior of the 

squall line: high pressure aloft near the leading edge, low pressure along the 

underside of a sloping region of relatively warm air, and high pressure near 

the surface in the area behind the convective line. However, in order to 

understand the evolution of squall lines, horizontal vorticity arguments are 

often simpler and do not require discussion of the actual distribution of 

pressure in the storm. 

Following the vorticity viewpoint and utilizing Doppler radar 

observations, this study will further explore the role of buoyancy gradients· 

and vorticity transport in controlling squall line evolution. Motivated by the 

observational findings, a theory is presented for squall line evolution that 

includes consideration of environmental shear in two layers (a "lower" and 

"upper" layer in contrast to the single layer in RKW) and the storm-generated 

vorticity structure. 
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Chapter 2 

Observational data and methods 

The focus .of this study is the evolution of the two-dimensional, line

normal structure of squall lines. Such a focus is best suited to cases in which 

the variation in flow along the convective line is small compared to that 

across the line. From a dynamical viewpoint, one condition for two

dimensionality is that the regions containing buoyancy anomalies of a given 

sign be much longer than they are wide. These conditions generally exclude 

those periods of squall line life cycles with structures typified by mesoscale 

vortex motion, and squall lines composed of individual storms separated by 

echo-weak regions, while still allowing for some cellul.ar structure to the 

leading edge convection. The possibility of along-line flow is not excluded, 

even if it is strong. 

All of the squall lines analyzed in this research were chosen because of 

their apparently high degree of two-dimensionality in order facilitate 

interpretation of their dynamics from theoretical perspectives. The dynamiCS 

of squall lines that satisfy two-dimensionality can be readily assessed using 

single Doppler radar data, provided that data samples can be obtained normal 

to the leading edge of the system. Of great importance is the availability of 

data with sufficient temporal resolution to document changes in the squall 

line structure. The needed temporal resolution depends somewhat on the 

rate of evolution, but most of the cases selected for this study had volume 

scan data at intervals of ten to fifteen minutes. 
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a. Data and cases studied 

Radar data used in this research were obtained in two experiments: the 

Down-Under Doppler and Electricity Experiment ("DUNDEE", Rutledge et al., 

1992) in tropical northern Australia, and the 1985 PRE-STORM experiment 

(Cunning, 1986) in Kansas and Oklahoma. The radars from these 

experiments used in this study were the MIT (Massachusetts Institute of 

Technology) and NOAA/TOGA (National Oceanic and Atmospheric 

Administration/Tropical Oceans and Global Atmosphere) radars in the 

DUNDEE cases, and the NCAR (National Center for Atmospheric Research) 

CP-4 radar in the PRE-STORM case. All of these radars are 5 an wavelength 

Doppler radars. Further details concerning these radars can be found in the 

references cited immediately above. 

Table 1 summarizes the cases studied. Various data sets had certain 

limitations, such as inadequate temporal resolution, failure to scan at high 

elevation angles, etc. So although all ten cases were useful in determining 

Table 1: List of cases analyzed. 

Number of volume 
scans analYZed 

10-11 June 1985 25 
26 November 1988 21 
26 January 1989 20 
18 November 1989 23 
5 December 1989 19 
24 January 1990 9 
7 February 1990, first storm 14 
7 February 1990, second storm 18 
7 February 1990, third storm 9 
14 February 1990 29 
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the general features of structure and evolution described in this study, only 

seven were suitable for the detailed analyses required to evaluate vorticity 

budget integrals. 

b. Analysis methods 

The first step in the data analysis involved editing the raw radar data to 

remove non-meteorological echoes and unfold the radial velocity data. It was 

assumed that the target velocity vectors were composed of purely horizontal 

flow plus the hydrometeor fallspeed, so that 

vr 
Vh = ---vttana 

cosa 
(4) 

where Vh is the horizontal velocity component, Vr is the radial (measured) 

component, a is the elevation angle, and Vt is an estimated terminal velocity. 

The terminal velocity was estimated using a power law relation with 

different values for coefficientand exponent above and below the melting 

level. The general conclusions reached herein are based largely on velocities 

observed at elevation angles low enough that the cosa and Vt sensitivities 

were unimportant. 

In order to examine the evolution of the 2-D flow on the scale of the 

squall line, reflectivity and horizontal velocity data were averaged in slabs 

that extended across the squall line approximately orthogonal to the leading 

edge. The slabs were usually 20 kIn wide, and the orientation and width was 

held constant for the duration of the storm, even if the squall line orientation 

shifted somewhat as the system propagated. Each radar data point that fell 
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within the slab was assigned to the nearest grid point, with the grid resolution 

being 1000 m in the horizontal, line-normal direction, and 500 m in the 

vertical. 

The purpose of the slab-averaging technique was to filter the features 

in the along-line direction, while retaining all features with broad line

normal extent. Using only single Doppler radar data, it was not possible to 

obtain legitimate 2-D averages over wider sections of the squall line. The 

good degree of temporal continuity in the slab-averaged data suggests that the 

technique is a reasoriably good method for filtering the convective scale 

along-line variations. In order to ensure that the horizontal velocity 

computed in the manner described above was representative of the 

component in the line-normal direction, only data that fell within 12.5· 

azimuth of the slab center-line were used. This requirement implied that at 

ranges very close to the radar, smaller-scale, features were being retained since 

a smaller along-line sample is utilized. Because of this, quantities such as 

vertical velocity are interpreted with great caution when diagnosed near the 

radar, because they may be representative of an individual convective cell 

instead of an average over the slab width. Finally, if more than one-third of 

all possible radar data points that mapped to a single slab data point had data, 

the data were averaged for that point. If too few radar data estimates were 

available, the slab-average value was not obtained for that grid point. 

After computing slab averages, an additional smoothing step was 

performed on the horizontal velocities using a Gaussian filter. This filter 

retained approximately 75% of the amplitude of features with 4 kilometer 

wavelengths, increasing toward 100% at longer wavelengths and filtering 

more strongly at shorter wavelengths. For regions below the radar horizon of 

1.5 km depth or less, horizontal velocity estimates were filled using 
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objectively analyzed estimates of du/ dz, applying the same Gaussian 

weighting function to the nearby estimates of du/ dz above the radar horizon. 

This technique was tested by assuring that the resulting vorticity fields had 

good spatial continuity from data-rich to data-poor regions, and that as the 

storms propagated into regions with different radar horizons, vorticity fields 

near the ground showed good temporal continuity. The primary purpose of 

filling velocities below the radar horizon was to obtain estimates of 

horizontal divergence in that region for use in computing vertical velocity. 

The sub-horizon velocity estimates do not have a significant impact on the 

findings presented herein. 

The vertical velocity was diagnosed using downward integration of the 

anelastic continuity equation, with the boundary condition being w=O at the 

radar echo top. A density profile appropriate for the particular geographical 

region was used. Residual velocity at the bottom of each column was used to 

compute the amount of divergence required over the column depth to satisfy 

a lower boundary condition of w=O. This divergence was then applied, and 

the integration performed again, resulting in satisfying boundary conditions 

of w=O at both the echo top and ground. It was found that this technique 

produced vertical velocity fields that were more uniform in time and space, 

and more "realistic looking", than those produced with simple top-down 

integration. Using centered finite differences, horizontal vorticity (Eq. 1) was 

then computed from horizontal and vertical velocity data. 
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Chapter 3 

Observations 

A large number of slab-average fields have been examined in detail 

(temporal resolution of 10-15 min) for ten squall line cases. These fields 

include reflectivity, horizontal and vertical velocity, horizontal vorticity, 

divergence, and vertical and horizontal shear. In this section, each stage of 

evolution will be described in detail. These descriptions form a conceptual 

model of squall line evolution that is based on thorough analysis of all ten 

squall line cases, and represents a synthesis of those features that appear to be 

common to all of the cases. In addition to the ten cases, numerous other 

storms have been observed by the author that fit the general model presented 

here. Based on the case study analysis, four distinct stages of evolution are 

recognizable. Retaining the nomenclature of Leary and Houze (1979), these 

are called the formative, intensifying, mature, and dissipating stages. Since 

not every storm was observed in all four stages (because of limitations in 

radar coverage), those cases best representing each stage will be used for 

illustration in this section. A special nomenclature will be used to name the 

cases consisting of the date and a suffix (F,M,S) to indicate whether the storm 

was fast-evolving, moderately. evolving, or slow-evolving when subjectively 

compared to the other cases in this study. For example, the case designated 

7feb90M is a squall line that occurred on 7 February 1990, and was moderate in 

speed of evolution compared to the other cases. 

14 



The data will be described in terms of storm-relative flow, with the 

translation speed being that of the leading edge of the squall line during the 

mature stage. This seems to be the most common way to represent squall line 

flow. However, two caveats are necessary. First, squall line motion is not 

generally steady in the systems examined. Rather, the systems tend to 

accelerate during the intensifying stage. Second, propagation speed is not 

uniform for all parts of the convective system. The leading edge propagates 

the most quickly, with features further rearward propagating more slowly, 

and the trailing anvil edge moving the slowest. This variance in propagation 

speed is obviously required if the system is to expand rearward with time. It 

is for these reasons that the squall lines discussed herein will be described 

mainly in terms of vorticity, which is invariant for any choice of translation 

speed. 

All of the slab-average vertical cross. sections sho~ in this dissertation 

are oriented so that the system is propagating from left to right. The leading 

edge convection is placed near the right edge of the figures. The horizontal 

distance is in kIn along the path of propagation (positive x), with the radar 

situated near x=115 kIn. The orientation of the slabs is depicted in the figures . 

showing the horizontal distribution of reflectivity. 

Defining the four stages of evolution is done mainly to facilitate 

discussion. The evolution is really a continuum of changes in the kinematic 

and reflectivity structure, broadly characterized by gradual tih.'1.e flow 

branches and reduction in updraft strength and echo intensity. FucuLd 

discussion and illustration of the four stages can be found in Chapter 5 and 

Fig. 45. 
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a. Formative stage 

In the formative stage, the squall lines consist of cells with gaps 

between, which are generally oriented in a line (Fig. 6). Presumably, the cells 

are initiated along a convergence zone that is linear in structure, although no 

effort was made to identify the mechanisms of initiation for the squall lines 

in this study. In the vertical cross sections (Fig. 7) the slab-averaged 

reflectivity pattern shows small cells compared to later times, with an erect 

orientation. As this stage progresses, the cells gradually fill in the along-line 

direction. 

When the lines consist of scattered to broken cells, the slab-average 

velocity structUre (Fig. 8) is difficult to interpret. In most cases, however, the 

horizontal velocity field is relatively unperturbed in the formative stage 

(compared. to later stages) indicating that the atmosphere, on a scale larger 

than the convective cells, is not yet strongly effected by their heat and 

momentum sources. In both of the cases shown (Sdec89F and lOjun85M), the 

velocity distributions shown have strong similarities to the ambient storm

relative flow, especially away from the convective regions. 

b. Intensifying stage 

The transition from formative to intensifying stages occurs when the 

convective line first becomes solid. Any characterization of an echo pattern 

as solid is admittedly subjective. However, nothing is gained by attempting to 

establish arbitrary rules for reflectivity levels and coverage. Despite the 

subjectivity involved, the changes in character of the leading edge echo are 

quite apparent in the analysis process, with marked changes occurring in a 
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matter of minutes (i.e. from one volume scan to the next). Comparison of 

the horizontal reflectivity distributions of the formative stage (Fig. 6) and the 

intensifying stage (Fig. 9) shows the change in echo character. 

The slab-averaged reflectivity (Fig. 10) shows that the cells have grown 

in horizontal and vertical extent. There is a sligh t rearward tilt to the leading 

edge convective cores (especially 26nov88S, 5dec89F, and 10jun85M; panels b

d), and there is also a small area of trailing echo in some of the cases. This 

trailing echo may be the remnants of earlier convective cells that have 

moved rearward relative to the leading edge. 

By the end of the intensifying stage, the leading edge convective cells 

reach their greatest vertical extent and largest updraft speeds. Examples of the 

evolution of updraft speeds, based on the 2-D calculation of vertical velocity, 

are shown in Fig. 11. For each slab, vertical velocities were averaged in 

regions 2 kIn deep and 5 kIn in line-normal extent. The vertical velocities 

obtained with this averaging method are shown in Fig. 11. Neglecting the 

higher frequency variations, broad peaks in vertical velocity of about 5-6 ms-1 

occur toward the end of the intensifying stage. The peak updraft velocity then 

falls off rapidly during the mature stage. This pattern is repeated among allot 

the cases, and thus it is suggested that the peak vertical velocity is the clearest 

indicator of the transition from intensifying to mature stages. 

The observations above indicate that the intensifying stage should be 

defined as the period beginning when the line becomes solid, and ending at 

the time of maximum vertical .echo extent and updraft intensity in the 

leading edge. This definition of the intensifying stage differs from that of 

Leary and Houze which allows gaps between cells. However, the data 

presented herein suggest that changes in the flow structure occur much more 

rapidly after the line becomes solid. This is almost certainly associated with 
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the presence of a developing buoyancy perturbation that is now much longer 

than it is wide. In particular, divergence near the summit of the leading edge 

induces relative FIR flow to the rear of the summit. During the intensifying 

stage, RTF accelerations occur in the lower and middle levels to the 

immediate rear of the leading edge. The vertical shear induced by both of 

these flow changes combine to drive the horizontal vorticity in the interior 

region to larger negative values. This change in vorticity is consistent with 

horizontal buoyancy gradients associated with greater buoyancy at the front of 

the system than at the rear. Thus, the transition from the formative stage to 

the intensifying stage is also marked by a change in the trend of the average 

vorticity in the interior region toward more rapidly lowering values. 

These changes are illustrated by the four slab averages shown in Fig. 12. 

During the formative stage of 10jun8SM, a vertically-oriented band of 

negative vorticity was present (near x=64 in Fig. 8) due to the horizontal shear 

between the up- and downdrafts. By 2357 UTC (Fig. 12a), the flow resembles a 

deep jump updraft (Thorpe et al., 1982). The vorticity zone tilts rearward with 

height, and is now the consequence of shear between the jump updraft and 

the relatively stagnant flow below. Divergence has increased strongly near· 

the summit of the leading edge, giving rise to a rearward extension of the 

vorticity zone behind the jump updraft (from x=40 to x=60 km, at about 9 km 

elevation). 

Although the structure is more complicated than that of 10jun8SM, 

similar changes can be seen in the slab average for Sdec89F (Fig. 12b). The 

vorticity zone is just beginning to develop at 0750 UTC, with its generation 

being the result of rearward accelerations above about 7 km, and forward 

accelerations below. In 26nov885 (Fig. 12c), the vorticity zone extends from 

the surface at x=32 km to elevations of about 8 km at a distance 25 km from 
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the leading edge. A similar slope can be seen in the vorticity pattern of 

14feb90M (Fig. 12d). 

Another interesting transition found in the majority of the cases is 

seen in the propagation speed of the leading edge convection, shown in Fig. 

13. During the formative and intensifying stages, the speed is relatively small 

and less than the mean flow through the depth of the convection. It is 

perhaps representative of some combination of Usteering flow" and low-level 

momentum. However, at about the time of the transition between the 

intensifying and mature stages, the squall line suddenly accelerates to a speed 

more representative of a density current propagation speed (Charba, 1974). 

The reasons for these changes in propagation speed are not clear, but it is 

possible that the acceleration in the speed of the system may be associated 

with the development of a low-level cold pool that propagates in a similar 

fashion to a density current and forces ascent along its leading edge. 

c. Mature Stage 

The transition from the intensifying to the mature stage is more subtle 

than the transition between the earlier stages. During the intensifying stage, 

convective vigor increases as measured by peak updraft velocities, for 

example. During the mature stage, the vorticity zone and attendant draft 

structure gradually tilt tuward the horizontal, leading to a gradual decrease in the 

updraft strength. Based on updraft speed alone, it could be argued that there 

is not a "mature" stage, since the leading edge updrafts begin dissipating after 

the intensifying stage. However, mesoscale ascent and vorticity generation 

continue, leading to a marked increase in the horizontal extent of the system. 

Thus, although leading edge vigor may wane slowly during the mature stage, 
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the system continues to grow and produce precipitation over larger areas, in 

agreement with the findings of McAnelly and Cotton (1989). 

During the mature stage, inflow is initially lifted near the leading edge 

of the cold pool, but then continues to ascend for some distance behind the 

leading edge. As tilting progresses, the streamlines become more horizontal 

after passing over the gust front. The mature stage ends when these 

streamlines become oriented so horizontally that the leading edge character 

changes from a solid line of convection to patchy, weak, and shallow 

convective cells atop the cold pool or weak stratiform ascent. This is a 

difficult transition to detect, but is dynamically important since the heating 

generated by convective ascent at the leading edge of the system changes from 

a solid, relatively deep and strong heat source to a shallow, weak source 

which may be discontinuous along the line. At the same time, heating forced 

by mesoscale ascent becomes more widespread in the trailing region. 

Negative vorticity continues to be generated through the mature stage. 

This generation is the result of buoyancy gradients between the solid leading 

edge (positive buoyancy anomaly) and a negative buoyancy anomaly toward 

the rear of the system. The increasing FfR relative flow aloft increases the 

transport of hydrometeors from the leading region into the trailing region 

aloft, causing the echo and precipitation area to expand rearward. Increasing 

RTF relative flow beneath this expanding anvil cloud, or often simply the 

expansion of the anvil over relatively stagnant lower-level air, can lead to 

cooling from evaporation and sublimation. Cooling owing to melting also 

occurs as ice hydrometeors fall through the melting level. Observations of 

the location and slope of the vorticity zone in the squall lines in this study 

indicate that the negative buoyancy anomaly is better characterized as a 
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sloping region, presumably following the underside of the anvil cloud in the 

trailing region, rather than a "cold pool" at the ground. 

Thus the mesoscale flow structure is characterized by negative 

vorticity, with relative rearward-directed flow above weaker flow in the same 

direction, or relative forward-directed flow. As the vorticity increases, the 

relative flows increase, and ice is transported to ever greater distances to the 

rear of the leading edge. This in turn causes the continual spreading of the 

negative buoyancy anomaly further toward the rear aloft. As long as these 

buoyancy anomalies persist, the negative vorticity can increase. One effect of 

this feedback process is that the overall system increases in horizontal scale. . 

This is because the generation of vorticity in the storm is manifested as 

increasingly-sheared horizontal flow, which allows the precipitation

generating anvil cloud to move rearward relative to the leading edge source 

region. 

The general structure of all of these squall lines is one of a jump 

updraft (Thorpe et ai. 1982), with the overturning updraft branch occasionally 

observed. The inflowing air turns upward in the jump updraft and then 

turns rearward at higher elevations, with storm-relative streamlines parallel' 

to the vorticity zone (to a first approximation), as shown in Fig. 14. The more 

erect portion of the jump updraft comprises the convective-scale ascent, and 

since the streamlines are approximately parallel to the vorticity zone, the 

slight slope of the trailing portion indicates mesoscale ascent. As time 

progresses during the mature stage, the vorticity zone becomes less sloped, 

tending toward a more horizontal orientation. Thus the ascent becomes 

weaker and spread over a wider band. This agrees with the observation that 

leading edge echoes become broader and weJ.ker with time. The dynamics 

and implications of this tilting process are discussed in detail in Chapter 4. 
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Data from cases 10jun85M, 14feb90M, 26nov88S, and 26jan89S are used 

to illustrate various aspects of the mature stage. The low-level, horizontal 

distribution of reflectivity is shown in Fig. 15. Several marked changes are 

apparent when this stage is compared to the intensifying stage (Fig. 9). First, 

the leading edge convection remains relatively intense in the low levels, but 

the convective cores have widened rearward. Because of the more horizontal 

orientation of the streamlines described above, the leading edge ascent, and 

thus precipitation generation, is now spread over a wider zone. Three storms 

featured transition zones (all but 14feb90M). In all cases, stratiform 

precipitation had become quite widespread in the mature stage. This is a 

consequence of the strong storm-generated shear and the mechanism of 

upscale-growth described above. Clearly, this increase in horizontal scale is 

the major difference between the intensifying and mature stage. 

The slab-average vertical reflectivity structure is shown in Fig. 16. It 

can be seen, especially in the vertical extent of the 20 dBZ contour, that the 

leading edge convection in the mature stage is shallower than in the 

intensifying stage (d. Fig. 10). Also shown is the major increase in horizontal 

line-normal extent of the precipitation region. Although these depictions are 

not designed to highlight the bright band, this feature can be clearly seen in 

the 10jun85M system rearward of x=l25 kIn. 

Strong similarities between systems can be seen in the velocity and 

vorticity depictions of the mature stage (Fig. 17). All of the systems, including 

the four illustrated here, featured jump updrafts. The shear on the underside 

of the jump updraft is associated with the sloping zone of negative vorticity 

already discussed. Rearward of the jump updraft, the vorticity zone is 

associated with a region of shear between the upper FTR flow, and the weaker 

flow below. The strength of the RTF in the four cases illustrated varied from 
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near zero (26nov88S, Fig. 17a) to about 8 ms-I (10jun85M, Fig. 17c). In general, 

positive horizontal vorticity can be found in the upper part of the leading 

edge region, but vorticity of either sign is found in the lower part of the 

trailing region. 

In all of the cases, including the four shown in Fig. 17, the vorticity 

zone and the streamlines slope slightly upward toward the rear in the trailing 

region, with the flow generally parallel to the vorticity zone. This implies 

that weak ascent is occurring in the trailing region during the mature stage. 

In the case of 10jun85M (Fig. 17c), the slope is very slight, but the flow along 

the streamlines is relatively large. Thus significant ascent was occurring 

despite the very shallow slope. The typical vertical velocity in the upper 

portion of the trailing region was 0.15 to 0.5 ms-1, with a typical mesoscale 

downdraft velocity of -0.4 to -0.6 ms-1 centered at about 3 km elevation. 

These values are in good agreement with the EV AD-derived vertical 

velocities found in this storm by Rutledge et al. (1988). 

d. Dissipating stage 

Eventually, deep ascent near the leading edge can no longer be 

maintained. Depending on the reference frame chosen for squall line 

propagation, this event is manifested as the gust front surging ahead of the 

system, or the precipitation-producing inflow being swept rearward over the 

cold pool. This transition can be very rapid, with horizontal reflectivity 

depictions showing a sharp change from fairly continuous large reflectivity 

along the leading edge, to a more "scalloped" pattern with weaker, discrete 

cells. Slab-average analyses show that these weaker cells are also much 

shallower than the earlier convection. In some systems the convection 
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comes to consist of weak, patchy cells atop the propagating cold pool, with 

little or no convection immediately above the surface gust front. In other 

systems, the precipitation pattern at this stage resembles one of stratiform 

ascent near the leading edge. 

The transition to weak, shallow stratiform ascent or patchy shallow 

convection at the leading edge marks the change from mature to dissipating 

stages. The dissipating stage is usually the longest-duration stage. In fact, in 

most of the cases examined in this study, the dissipating stage persisted until 

the squall lines moved out of the observational domains. With the demise of 

the continuous along-line heat source, the buoyancy gradients weaken, and 

negative vorticity generation weakens or ceases in the storm interior. Thus 

the transition from the mature to dissipating stage often occurs near the time 

of the peak magnitudes of horizontal vorticity, but during the dissipating 

stage the negative horizontal vorticity in the interior becomes smaller in 

magnitude. 

The dissipating stage is characterized by the nearly-horizontal 

orientation of the zone of maximum negative vorticity. If RTF exists, the 

vorticity distribution implies that it also is nearly horizontal. In fact, during 

the dissipating stage, a horizontal RTF flow is usually observed that 

penetrates through the stratiform precipitation region, and often through the 

leading edge. Since the flow is approximately parallel to the vorticity surfaces, 

the horizontal orientation indicates a cessation of organized ascent on the 

scale o( the squall line. 

The total precipitation rate over the area of the storm is not 

immediately reduced in the dissipating stage. In fact, the stratiform 

precipitation,may reach its greatest extent during this stage in agreement with 

the observations of McAnelly and Cotton (1989). The term "dissipating", as 

24 



used here, refers to the vigor and organization of the leading edge convection, 

not the entire storm. The mesoscale precipitation area can persist as long as 

upward motion and hydrometeor generation persist on that scale (generally 

requiring finite slope to the mesoscale flow), and for a period afterward that is 

determined by the time taken for hydrometeors to fall from upper levels. 

Horizontal reflectivity patterns in the dissipating stage are illustrated in 

Fig. 18. As described above, the nature of the leading edge convection has 

changed markedly since the mature stage ended. Precipitation is generally 

less intense, and echoes are patchy compared to the solid echoes earlier. 

Examination of the vertical reflectivity distributions for these cases (Fig. 19) 

reveals that the leading edge echoes are much shallower than in earlier 

stages. In 26nov88S and 26jan89S (Figs. 19a,b), the ascent is more stratiform, 

with a very broad, rather weak leading edge region. In 14feb90M and 5dec89F 

Figs. 19c,d), there are patchy shallow cells near the leading edge of the cold 

pool (near x=100 km in Fig. 19c and near x=173 km in Fig. 19d). 

The trailing regions reveal a variety of patterns. In general, trailing 

echoes seem to be most intense where earlier convection was the most 

vigorous, allowing for translation of the hydrometeors deposited in upper 

levels. The more slowly evolving systems seem to have more uniform 

trailing precipitation areas. These systems maintain greater updraft slopes 

over longer periods, implying that for a typical updraft strength, ice is 

deposited over large upper regions. Shorter-lived systems have deep 

convection over relatively short time periods, and thus deposit ice in the 

upper levels over smaller areas, and have less likelihood of in situ 

production of ice due to mesoscale ascent. In terms of precipitation processes 

in the trailing region, it is important to note that the slab-average vertical 

velocity fields in all ten cases show organized small-scale ascent and descent 

25 

• 



with magnitudes on the order of 1 ms-1 and line-normal horizontal 

wavelengths of about 5-15 km. Whether or not these features are real or an 

artifact of noise and the data processing remains to be determined. 

The respective patterns of vorticity and velocity in the dissipating stage 

are shown in Fig. 20. In 26nov88S (Fig. 20a) there is a small, weak updraft at 

the leading edge of the cold pool near x= 170 km. The streamlines and 

vorticity zone then rise only slightly to the rear, supporting the broad weak 

leading edge echo. A similar pattern is shown for 26jan89S (Fig. 20b), with the 

weak leading edge updraft near x=130 km. The slab average shown for 

14feb90M (Fig. 20c) is from very early in the dissipating stage, at which time 

there is still slight slope to the vorticity zone; after this time it quickly 

becomes quasi-horizontal. In the case of 5dec89F (Fig. 20d), the vorticity zone 

is elevated near z=5 km and is nearly horizontal. 

e. The sloping vorticity zone 

A few additional details need to be presented concerning the nature of 

the sloping zone of negative horizontal vorticity. As described previously,· 

the tilt of the zone of negative vorticity is consistently observed to become 

more horizontal with time, and there appears to be a strong link between the 

slope of the vorticity zone and the nature of mesoscale vertical motion in the 

trailing region. To a first approximation, the vorticity is uniform in broad, 

sloped. regions, and the streamlines are parallel to the vorticity surfaces. This 

is especially true away from the ground and the tropopause. Since the 

streamlines slope upward toward the rear of the storm, then everywhere that 

the flow is front-to-rear (FTR) relative to the ground, there is upward motion. 

Likewise, everywhere the flow is rear-to-front (RTF), there is downward 
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motion. This pattern of downward motion in the RTF flow and ascent in the 

FrR flow has been previously documented by Rutledge et al. (1988) for the lO

II June 1985 PRE-STORM squall line. In examining the squall lines discussed 

in the previous section, it is found that this pattern of ascent and descent is 

common to most squall lines that feature rearward-sloping vorticity zones, 

and is, in the simplest sense, a consequence of the tilt of the parallel flow 

branches. 

In this study, emphasis is placed on the vorticity distribution and storm 

evolution, not the presence or absence of FrR or RTF flow. To further 

examine the role of the vorticity zone and the mesoscale vertical motion, it is 

of interest to compare the distributions of vorticity and horizontal 

divergence. As a first approximation, assume that there is a region of the 

storm in which the vorticity surfaces and streamlines are parallel (Le. the 

vorticity is the result of shear only), and the windspeed is constant along each 

streamline. If the streamlines and vorticity surfaces are oriented at some 

angle 9 from the horizontal (in general, 1C /2 < 9 < 1C if 9 is measured from 

the +x axis), then 

1 au 
17= 

sin 8 cos 8 dx. 

and thus horizontal divergence can be expressed as a function of vorticity: 

. ~ = -17 sin 8 cos 8 

The functionsin8cos8 is negative whenever the slope is upward toWCl ... 

rear, and largest when the slope is upward toward the rear at a 45 degree 

angle. Therefore, for sheared parallel flow with constant speed along each 
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streamline, horizontal convergence will occur most strongly where vorticity 

is the most negative. In all of the squall lines examined in the previous 

section, the sloping zone of negative vorticity was approximately collocated 

with a region of horizontal convergence. This implies that the flow in squall 

lines (at least those examined in this research) is fairly well represented by the 

simplifications made above. More importantly, the presence of horizontal 

convergence in the region of negative vorticity implies a tendency for larger 

vertical velocity above the vorticity zone, and smaller or negative vertical 

velocity below. 

Mesoscale vertical motion in the trailing region can thus be viewed 

from two perspectives. In one, it is merely a consequence of the tilted 

structure of the streamlines. In the other, sheared parallel flow is shown to 

have maximum horizontal convergence associated with maximum negative 

vorticity. From either viewpoint, it is dear that the mesoscale ascent in the 

upper part of the trailing region, and the mesoscale descent below, is 

associated with the tilt of the mesoscale flow branches themselves. The 

trailing region is not characterized by convergence between two horizontal 

streams, leading to ascent somewhere in the midst of the region. Rather, it" is 

more adequately characterized by tilted, sheared flow, or FfR and RTF 

streams slipping past one another on tilted streamlines. And once this 

sheared flow, and the associated vorticity structure, become horizontal, 

mesoscale vertical motion largely ceases (although localized pockets of ascent 

may remain). 

The presence of horizontal vorticity plays one other crucial role in the 

dynamics of the trailing region. In order for sublimation and/or evaporation 

to occur beneath the trailing anvil cloud and ascending FTR flow region, 

unsaturated air must be present below. The superposition of the saturated, 
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precipitating layer and the subsaturated, potentially cooler air is a result of the 

shear between the upper and lower flow branches, and thus is crudely a 

function of the magnitude of the negative vorticity in the middle part of the 

trailing region. It is not necessary to have rear inflow relative to the leading 

edge transporting potentially cooler air into the area beneath the anvil cloud. 

FrR flow aloft could achieve the necessary superposition by transporting 

saturated air over stationary potentially cooler air below, for example. Thus 

shear, characterized by the presence of negative vorticity, is all that is required 

(kinematically) to enable the thermodynamic processes at the rear of the 

storm to lead to the further generation of vorticity. The strength of the 

relative rear inflow per se is not relevant in these processes. 

f. Vorticity dynamics near the leading edge 

Observations of the seven squall lines have been examined further in 

order to evaluate the simplifying assumptions presented by RKW, and to find 

replacements if these are not correct. Fig. 19a illustrates the flow pattern that _ 

embodies the assumptions of RKW. A cursory examination of the velocity 

fields shown herein make it clear that squall lines (at least those in the 

sample studied) do not, in general, contain vertically issuing symmetric 

updrafts in the vicinity of the cold pool. Nor do they contain stagnant flow 

with respect to the motion of the gust front in the cold pool region. 

Neither of these observations invalidate the findings of RKW, 

however. In a broad sense, it is only required that the flux terms at the rear 

(left) and top of a chosen volume sum to zero (see Eq. 5 in RKW) in order to 

arrive at the RKW finding that "the import of the positive vorticity 3.ssociat"d 
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with the low-level shear just balances the net buoyant generation of negative 

vorticity by the cold pool in the volume." When these two terms sum to 

zero, Eq. 5 of RI<W simplifies to 

(7) 

The situation described by this equation is illustrated in Fig. 21b. The 

orientation and vorticity transport by the updraft (FU) is arbitrary, but must be 

exactly opposed by the vorticity transport at the left face (FL)' The control 

volume must be chosen in such a way that the updraft issues from its top, 

since it is the impact of vorticity transport and buoyancy generation on the 

updraft structure that RI<W are addressing. 

In light of this more relaxed condition for the RI<W integration, sums 

of left and upper face fluxes were computed for a number of storms and 

times. These sums were computed for volumes of 10 km width and varying 

depth, always chosen such that the right side was ahead of the gust front and 

the updraft branch passed through the top face. This process was repeated for 

all suitable integration volumes. 

In general, these two terms did not sum to zero for any reasonable 

choice of upper and left face positions. In fact, this sum was typically of the 

same order as the transport estimated from environmental differential 

kinetic energy at the right face. Much of the contribution to the sum came 

from the left face, where either rearward flow was transporting negative 

vorticity (positive integral) into the cold pool region, or forward flow was 

transporting positive vorticity (again a positive integral) toward the front of 

the cold pool region. Other volumes were also analyzed to determine if any 

volumes existed with zero net flux at the upper and left faces, even if the 
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upper face contained a mixture of upward and downward motion. No 

volumes were found for which suitable assumptions could be made about the 

term involving integrated buoyancy in Eq. 5 of RKW. 

These total transports are illustrated in Fig. 19 for three times during 

case 26nov88s. For any given point in these figures, the value at that point 

represents the swn of the left-face flux below that point and the top-face flux 

on the surface extending 10 km to the right of that point. Thus, the value is 

the sum of the two relevant fluxes for a rectangle having its upper left comer 

at that point. The gust front position, and position of the sloping vorticity 

zone, are marked. The updraft is a rearward-directed stream immediately 

above this zone. It can be seen that for reasonable control volumes, the total 

flux on the two relevant faces is near the maximum found in the forward 

part of the storm. Values are generally in excess of 100 m2s-2, which is the 

same order as the flux at the right side due to the environment. This is a 

general result based on similar calculations for all seven squall lines. 

A number of other approaches to simplifying the integration of Eq. 5 in 

RKW were investigated. It was not possible to find any simplifying 

assumptions that could be reasonably applied to all storms at all times. 

Therefore, since the simplifications of RKW are not valid for the sample of 

storms investigated, and the data do not suggest any widely-valid 

replacements, a new approach was developed which is described in the 

remainder of this dissertation. 
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Chapter 4 
A theory for the role of the environment in evolution 

a. Theories based on vorticity budgets: the problem of cross-boundary 

transport. 

As documented in the previous section, no apparent simplifications 

are available for solving the integration problem posed in RKW. Although 

one can make reasonable assumptions about the buoyancy distribution, it is 

also necessary to know the magnitude of the flux of vorticity across the 

boundary of the volume of interest. The flux associated with the inflow at 

the forward side can be assumed to be based on environmental values of 

differential kinetic energy, but the transport at the rear and upper sides of a 

rectangular region cannot be neglected, nor can their magnitudes be readily 

approximated. Since any equation for the tendency of circulation about the 

region involves these same quantities, that problem also is not amenable to 

simplifying assumptions about fluxes. 

In this study, the problem is approached differently. An attempt is 

made to deduce the total flux about a specified region based on the flow in 

that region as determined by the vorticity structure. The flow in an 

incompressible, inviscid, Boussinesq fluid at any instant is described by the 

definition of horizontal vorticity (Eq. 1) and the continuity equation: 

au aw 
-+-=0 ax (}z 
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Combining these expressions by differentiating Eq. 8 with respect to z and Eq. 

1 with respect to x leads to the following Poisson equation describing w: 

(9) 

Once this equation is solved for w, u can be computed by integrating the 

continuity equation from a lateral boundary upon which u is assumed to be 

known. Thus, by assuming a vorticity structure, not only can the velocity 

distribution be determined, but also the fluxes of vorticity across various 

boundaries. 

b. A simple three-region squall line 

The observations discussed in Chapter 3 suggest that a squall line is 

approximately described as a sloping zone of negative vorticity. This is 

shown in Fig. 23 as the region labeled "i" (this name was chosen to since the 

sloping region is generally near the interface between two distinct flow 

branches). The slope of this vorticity zone is indicated by the angle a, as 

shown in Fig. 23. As established in Chapter 3, evolution of a squall line is 

characterized by the gradual tilting of this vorticity zone from an upright 

orientation to a quasi-horizontal orientation. 

The environmental wind profiles associated with the storms described 

in Chapter 3, as well as with most squall lines examined in the literature 

through observational, modelling, and theoretical studies, can be 

approximated by a layer of about 3000 m depth with constant shear (from the 

surface to height Zj), located below an upper layer with a different value of 

constant shear. If shear "reverses" in the upper layer (Le. line-normal flow 

becomes increasingly negative with height), the flow near Zj resembles a jet. 
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These ~FOftles will be discussed further in later sections. This 
, .:.. 

commonly observed two-layer structure to the environmental flow requires 
:,:!If-:. 

that two'other regions of vorticity must be included on this simple model: a 

lower environmental shear layer and an upper layer. 

For this discussion, it will be assumed, based on observations, that the 

vorticity in each ,region remains constant. In Fig. 24, the average vorticity in 

the interior region of the six well-observed squall lines is depicted. The cases 

are arranged, from a-f, in order of increasing rate of evolution. As described 

in Chapter 3, it can be seen that vorticity becomes rapidly more negative 

during the formative and intensifying stages, remains approximately constant 

during the mature stage, and then increases gradually during the dissipating;: 

stage. It is during the mature stage that a squall line tilts from its most erect . 

orientation to quasi-horizontal, and it is this stage that is characterized by 

relatively slow changes to the average vorticity. 

In regions a and b, few observations are available to support the 

assumption of constant vorticity. It is reasonable to expect that the forward 

environment will be modified due to the presence of the squall line (e.g., 

Hoxit tt Ill., 1976, and LM). However, it will be assumed herein that the 

environmental shear is steady. Thus, in this model, changes in circulation 

are a~t1!d ~usively by changes in the areas of the regions, not by 
C'"'.,.. . . : ' ... ..:, .... ,~ 

~:i.~~~dty. This model is unquestionably highly simplified ... ~,,~' .' ,,,,;'" .;' 

compal"!lf'l~l~ line and environmental flows, but it will allow for 
" " •.. "<1\ .• ," .:-\i-

some ~1lncIin8iittegarding the role of environmental shear. It does 

include some of the typical squall line flow features, including a low-level 

gust front, a sloping updraft, and a region of rear inflow (examples of the 

Simplified flow are shown in the next section). 
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Circulation in this problem is defined as 

C=J17' ndS 
s (10) 

where 5 describes a vertically oriented surface orthogonal to the squall line 

orientation, and n is the unit normal vector to the surface. Letting 11 

represent the spatially averaged vorticity in each region, 

(11) 

is the circulation about the regions a, b, and i combined, where A represents 

the area of the respective regions. Further, with vorticity constant, the 

circulation tendency is simply 

dC dAa dAb ~ 
-=-17 +-17b+-17" 
dt dt a dt dt' 

(12) 

It is assumed that the width of region i is fixed, so its area is constant 

regardless of the slope. Thus any changes in circulation (as a result of 

buoyancy effects, for example) about the combined region lead to changes in 

the areas of regions a and b. In the atmosphere, the average vorticity in each 

region could adjust to accommodate the circulation tendency, but in this 

simple model it is required that the slope of the storm is the only feature that can 

change. The impact and validity of these assumptions are addressed in later 

sections. 

In the three-region model described above, the area of region a is given 

by 

(13) 
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'.~.:~.';t.:. ~;~ 

The area of region b is given by 
z~ 

A" =...:L . 
2a 

(14) 

The area of region i remains fixed because it is assumed, that its width 

remains approximately constant (based on observations of the storms 

discussed in Chapter 3). Differentiating Eqs. 13 and 14 with respect to time, 

with levels Zj and Zt fixed, and substituting in Eq. 12 yields an expression for 

the tendency of circulation as a function of slope ex: 

de 1 22 2da 
-=~[11 (Z'-Zt)-l1'~']- . m 2a· G J ~J m (15) 

c. Determination of flow and vorticity fluxes 

An alternative expression for the circulation tendency about a circuit 

that is not a material curve,. where 1 is a unit vector along the curve and k is 

the unit vector in the +z direction, can be expressed as 

(16) 

This equation shows that two processes can lead to changes in the circulation: 

transport of vorticity across the boundaries and the generation of circulation 
,,;-.;. '--4 .,.,.' ... ~ ,;~~ .: ... .: ••. : 

owing 'to. buOyancy effects. The difficulties in evaluating the first term on the 
...• ~~:~;.,.... 

right,tbeJilx' of vOJticity across the boundaries of a region, have already been 
~ ~.~ ~ ~::;~.~~.~ t!t·J-" . '.~: > "'; • .'\~ 

documented: : . . .:,-

In this study, a new approach is used in an attempt to approximate 

these terms. The Poisson equation for w (Eq. 9) is solved using a relaxation 

technique. The vorticity distribution is as described in the discussion of the 

three-region model shown in Fig. 23: constant vorticity with different values 
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in regions a and b, and negative vorticity in region i. The sloping vorticity 

zone, region i, is assumed to have a linear increase in vorticity from a 

specified minimum along the center line, hmin, to the surrounding ambient 

value. The width of this zone is kept fixed at 10 km, a value very typical of 

observed storms. Boundary values of w were specified to be zero at left and 

right boundaries, well-removed from the sloping vorticity zone, and at z=O 

and z=15 km. The vorticity flux term at the upper boundary is computed at 

level Zt (6000 m) along the line from the rear of the sloping vorticity zone to 

the right lateral boundary (upper bold line in Fig. 23). The vorticity flux was 

also computed at the sloping rear boundary of the region i using the normal 

velocity component. Vorticity flux at the surface is known to be zero since 

w=O. In a series of experiments the slope a of region i, vorticity in region i, 

and ambient upper and lower shear were varied over the entire range 

observed in the cases described in Chapter 3, plus a large surrounding range of 

values that encompass all squall line cases reported in the literature. 

i) Flow as a function of inflow strength 

The validity of the simple three region model is explored in this 

section by examining the velocity distributions derived from its vorticity 

structure. The vertical velocity distribution in this model is determined 

entirely by the vorticity distribution. Thus changing the magnitude of the 

horizontal flow at a boundary does not alter the distribution of w, but d~s 

change the orientation of the streamlines. 

Figure 25 illustrates this effect using a vorticity zone sloped at 45 

degrees, shear of 4xl0-3s-1 (12 ms-1 over 3000 m depth) in the lower layer, and 
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no shear in the upper layer. In the case of strong inflow (18 ms-1 velocity at 

the lowest level, shown in panel a), the updraft tilts rearward above a gust 

front that has a surface location at x=37 kIn. With inflow of 12 ms-1, the 

updraft issues vertically (as required in RKW), but is highly asymmetric. 

With weaker inflow (6 ms-1 in panel c) the gust front is located near x=40 kIn, 

slightly more forward than in the stronger inflow solutions, and the updraft 

streamlines tilt forward with height. 

The orientation of the updraft would seem to imply that there is a 

minimum inflow strength required for rearward-sloping updraft trajectories, 

prohibiting precipitation from falling into the inflow. However, this 

sensitivity was not tested in this study. Since it is the actual trajectories of the 

inflow rather than the streamlines that are important here, the propagation 

speed would also playa role in determining whether or not precipitation is 

deposited in the inflow. 

Several important features of squall lines are shown in these solutions 

based on the simple three-region model. A surface gust front is present at the 

source region for the updraft. The updraft slopes rearward above the sloped 

vorticity zone. Also, a rear inflow jet is present that descends toward the . 

surface near the leading edge. The slope of the inflow jet may appear extreme 

in these solutions, but the 45 degree slope of region i is quite large for a 

mature squa11line as shown in Chapter 3. With more realistic slopes, the rear 

inflow jet would descend more gradually. 
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ii) Flow as a function of vorticity zone strength 

The effect of varying the minimum vorticity in the sloping region i is 

illustrated in Fig. 26. The most obvious effect is the increase in the strength of 

the perturbed flow with increasing magnitude of negative vorticity. In all 

three solutions, the width of the sloping vorticity zone, inflow strength, and 

ambient shears are the same. Interestingly, in panel c of Fig. 26, the ambient 

vorticity below 3 km is equal to the minimum vorticity in the sloping zone. 

Thus, this solution most nearly represents a "balance" between ambient and 

storm-generated vorticity. However, this set of solutions shows that if an 

"optimal" configuration is one with an intense updraft, it is preferable to 

have much stronger storm generated vorticity than ambient shear, as in 

panel a. On the other hand, if it is optimal to have a vertically issuing 

updraft, another combination of shear and storm-generated vorticity is 

desirable. The "balanced" solution leads to a rather weak, sloped updraft in 

these particular combinations of parameters. 

More subtle effects of varying the vorticity are also illustrated. The 

flow at the lowest level has stagnation points ahead of and behind region i. 

When storm-generated vorticity is small, as in panel c, the stagnation points 

are closer to the centerline of region i. As storm-generated vorticity becomes 

large, the stagnation points move away from the centerline. 
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iii) Flow as a function of slope 

A major finding discussed previously is that the storm evolution is 

described by the gradual tilting of the zone of negative vorticity, from erect to 

quasi-horizontal. Fig. 27 shows the effect of tilting on the relaxation 

solutions. The slope of region i in panel a is 1.0 (45 degrees inclined from 

horizontal). Such a slope is quite extreme, and was usually only observed in 

the formative and intensifying stages of the squall lines. At this slope, the 

flow represents an updraft above a surface "windshift", with a trailing 

downdraft and developing rear inflow. 

In panel b, the slope is 0.5 (about 27 degrees). This also is a rather large 

slope for the mature stage of a squall line, but was observed in at least one 

case (26jan89s). At this slope, rear inflow has expanded and occupies a region 

20-30 km in horizontal extent behind the leading edge. In panel c, the slope is 

0.25 (about 14 degrees). This slope is quite typical of the mature stage of most 

of the squall lines examined. At this slope, descending rear inflow in the 

region below 6 kIn extends at least 60 km behind the leading edge. Thus, the 

upscale growth of the squall line circulation can be approximated by the 

tilting of the vorticity zone toward the horizontal. 

These solutions are similar in many important respects to squall line 

flows in the lowest 6 km. They all feature an updraft that begins near a 

surface windshift region, and slopes upward and rearward. As the vorticity 

zone (region i) tilts toward the horizontal, the updraft streamlines become 

more horizontally inclined, and vertical velocities become weaker, in strong 

agreement with the findings presented in Chapter 3. In addition, the 

solutions show a downdraft region that, at large slopes, resembles convective 
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downdrafts, and as the system tilts toward the horizontal, resembles a 

descending rear inflow jet. Again, these findings show striking similarity to 

the gross features of structure and evolution described in previously. Panel c 

of Fig. 27 also bears considerable resemblance to the conceptual model for a 

"mature" squall line storm (Fig. 1). 

One other, feature merits discussion. In this simple model, the strength 

and orientation of the rear inflow jet is a function of the environmental flow 

and the strength and orientation of the vorticity in region i. If the shear in 

region b is strong enough to cause storm-relative RTF flow in the 

environment, this flow penetrates to near region i. It remains "elevated" 

when the region i vorticity is relatively weak, and it "plunges" when the 

vorticity is relatively strong. 

iv) Total flux determined from relaxation solutions 

Several hundred solutions to Eq. 9 were assembled that span a large 

range of lower and upper ambient shear, strength of the vorticity zone, slope, ' 

etc. The ranges of these variables that were used encompass all of the storms 

observed in Chapter 3, and most (perhaps all) other published squall line 

cases. This was done in order to find an expression for total flux as a function 

of the other parameters. 

Allowing only slope to vary, it is found that in all cases the total flux of 

vorticity across the boundary shown with the heavy bold line in Fig. 23 is a 

nearly linear function of slope up to about a=O.66 (approximately 38 degrees). 

For more erect slopes, flux is approximately constant at the value 

corresponding to a=O.66. This is illustrated in Fig. 28 for zero upper shear, 
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4xlO-3s-1 lower shear, and vorticity zone strength -lxl0-2s-1. This finding 

greatly simplifies the process of determining an approximation for total flux 

based on the other parameters. The dependence on a is linear, so it is only 

necessary to approximate the total flux at (say) a=0.66. 

Another major simplification results from the fact that total flux is not 

a function of inflow strength. For given upper and lower shears, the wind 

speed at any level (z=O, for example) determines the speed at all levels. In 

this model, for a given vorticity distribution, w is determined. Thus the 

transport through the upper part of the domain is a function of vorticity 

distribution alone. Since w is fixed, increasing inflow at the right side of the 

domain correspondingly increases rearward flow at the sloping rear surface 

(mass is conserved in the domain). The vorticity distribution is the same at 

both of these faces, so an increase in vorticity flux at one face causes an equal 

and opposite transport at the other face. 

With the simplifications just discussed, the process of determining 

total vorticity flux (first term on RHS of Eq. 18) becomes one of fitting the flux 

at a slope a=0.66 as a function of upper and lower shears and minimum 

vorticity in region i. Several hundred relaxation solutions to total flux were 

computed. The following expression describes the dependence of total flux 

(Ft) on the other parameters: 

Fr = -16.4 + 1. 78xl0317min + 1. 62x10617~ 

+1.12xl0717min17a - 9. 65x10317b - 1. 57x10717min17b 

-1.13xl0717a17b + 1. 37xl0717~ 

(17) 

Here, the subscript "min" represents the minimum value on the center line 

of region i. Fig. 29 shows that this expression provides an excellent fit to the 

total fluxes computed in the many relaxation solutions. It should be noted 

that this expression is valid for the following ranges of parameters: 
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a ~ 0.66 

-1. 5x10-2 < 11_ < 0 

o < 11b < 1. 5xlO-2 

-5xlO-3 < 11a < 5xlO-3 

For slopes greater than a=0.66 (about 38 degrees), Ft can be approximated 

using the value for a=0.66. 

d. Slope, tilt, and the predictive equation for tilting 

In this dissertation, the term slope (represented by angle a) is used to 

represent the inclination from the horizontal of the sloping vorticity zone. 

The term "tilt" is used as a verb to represent the change of slope, da/ dt. An 

equation for da/ dt can be arrived at by combining Eq. 16 with Eq. 15 to yield 

(18) 

This expression is general, and not dependent on the relaxation solutions and 

curve fitting described above. The technique described in the previous 

section gives an expression for Ft which can be used to evaluate the effects of 

environmental shear in the tilt of the sloping vorticity zone. 

Eq. 18 indicates that one condition for steadiness (da/dt = 0) is for the 

transport of vorticity out of the domain (Ft> to be exactly offset by the 

generation due to buoyancy at the rear side of the domain. Another 

implication of Eq. 18 is that as the slope approaches horizontal, the tilting 

diminishes. And most important, the denominator can be of either sign 

according to sign in the following inequality: 
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2 3: < T1a 
ZI T1a - T1b 

(19) 

The value of the denominator in Eq. 18 is shown in Fig. 30. It can be seen that 

the denominator can take either sign over the range of shears observed in 

squall line environments. In the region where the denominator is near zero, 

Eq. 18 implies that tilting will be rapid, either forward or rearward depending 

on the balance of integrated negative buoyancy and Ft. This region 

corresponds to the physical situation of little net average vorticity in the 

environment, so that very large changes of area are required to accommodate 

any changes in circulation. Some implications of this are explored in later 

sections. 

e. A role of the environment in storm evolution 

In this section, the role played by the environment in determining 

tilting rate is explored. As an introduction, the nature of the solutions for a 

given set of vorticity values in the three regions is shown graphically in Fig. 

31. The nature of the curves can change dramatically as the shears are varied, 

so this example should not be interpreted as illustrating the role of shear and 

buoyancy across the parameter space. This particular set of curves is 

presented to make one major point concerning the possibility of a steady 

slope under the given conditions. The graph shows tilt versus slope for a set 

of four combinations of shears and integrated negative vorticity, DCAPE 

(Downdraft Convective Available Potential Energy). The term "DCAPE" is 

used here because, as shown in Chapter 3, it seems that the region containing 

the most negative buoyancy probably slopes up and rearward along the 

underside of the ;;;loping vorticity zone, and is not confined to a surface-based 
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"cold pool." It should be noted that DCAPE is sensitive to the time of day, 

since it involves the integrated difference between the environmental virtual 

potential temperature ahead of the storm and the virtual potential 

temperature of the negatively buoyant air in the storm. Thus, significantly 

smaller DCAPE is to be expected with a nocturnal boundary layer compared to 

a daytime bound,ary layer. 

For certain values of DCAPE, one curve (open circles) shows that, for 

any slope, the tendency is for the vorticity zone to continue to tilt rearward 

(da/dt < 0). For other combinations (e.g. the curve with filled squares), erect 

zones initially tilt rearward, but then slow and stop tilting as certain slopes are 

reached. The observations presented previously indicate that in the 

formative and intensifying stages, updrafts and negative vorticity zones are 

erect. Thus this theory indicates that for certain combinations of shears, 

storm-generated vorticity strength, and DCAPE, the storm will arrive at an 

equilibrium slope and remain steady at that slope (presumably until 

environmental shears or DCAPE changes). Additionally, it appears that if a 

storm "finds itself' with slope shallower than the equilibrium slope, it will 

become more upright until it reaches the equilibrium. In this section, the 

general findings of this theory will be explored with regard to the possibility 

of an equilibrium slope being reached. With yet other combinations, a 

rearward-sloped storm will tend to become more erect (filled circles). 

Figure 32 show the equilibrium slopes (defined as the slope above 

which region i tilts rearward and below which region i tilts forward) as a 

function of environmental upper and lower shear for three different values 

of DCAPE. All of these graphs are for minimum region i vorticity of 

-8xl0-3s-1, a typical value for the observed storms. Where the curves are 

plotted, it can be said that a steady storm (da/ dt=O) is possible. More 
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specifically, it can be seen that as DCAPE increases (from panel a to c), larger 

lower shears are required for steadiness. For the case of a DCAPE of 

-1500 m2s-2, low-level shear must generally be larger than 1x10-2s-1 (30 ms-1 

in 3 kIn) to "balance" the cold pool and lead to a steady system. Note that in 

these results it is the magnitude of the low-level shear that is important, not 

its transport (i.e., not differential kinetic energy). This is a consequence of the 

fact that in this model, total flux of vorticity (Ft) does not vary with 

environmental flow strength, but only with vorticity. 

It can also be seen in Fig. 32 that as upper shear goes from negative to 

positive, the possibility of a steady, rearward-sloping, quasi-2D squall line 

becomes more remote. Finally, as low-level shear increases for a given upper 

shear and DCAPE, the equilibrium slope becomes shallower. In light of 

RKW, this seems counterintuitive. However, the explanation is 

straightforward: as low-level shear increases, the total flux (Ft) increases. For 

a given large slope (a), the flux is more than sufficient to balance the cold 

pool, leading to a numerator in Eq. 18 that is positive. All of these curves fall 

in the region of Fig. 30 in which the denominator of Eq. 18 is less than zero, so 

rearward tilting is expected for the assumed large slope. Thus as low level· 

shear increases, the tilting tendency is increasingly negative at large slopes. 

Therefore tilting tendency does not go to zero until shallower slopes are 

reached. 

If this theory is correct, it appears that the intuitive concepts proposed 

by RKW must be reconsidered. Storm structure and evolution is a function 

of the degree of balance between DCAPE and total flux. However, total flux is 

a function of the slope of the storm and the shear in both the lower and upper 

levels. The implications of Eq. 18 will be further illustrated in later sections 

where observations and previous modelling results are considered. 
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The data presented in Fig. 32 pose a forecast dilemma: as low-level 

shear increases, a sudden transition is made from conditions in which no 

steady rearward-sloped storm is possible, to those supporting an erect, steady 

storm. Presumably the erect configuration would also imply a relatively 

more intense storm, since updraft magnitudes would be larger and confined 

to a narrower b~d. 

As a final illustration of the predictions of this theory, the average 

DCAPE that can lead to a steady storm (da/ dt=O) is shown in Fig. 33a for a 

variety of shears. The minimum vorticity in region i is again assumed to be 

-8xlO-3s-1. Where curves are not plotted, a steady rearward-sloping squall 

line is not possible. One general finding is that larger DCAPE can be balanced 

by increasing low-level shear, as argued in RKW. Another finding is that 

upper-level shears less than zero (reverse shear) supports allows stronger cold 

pools to be associated with steady storms. In Fig. 33b, the full width of the 

range of cold pools associated with steady storms is shown. The clear 

interpretation is that a very wide range of DCAPE can lead to steady storms if 

the low-level shear is large (these steady storms will have a variety of 

equilibrium slopes). On the other hand, as upper shear increases and/or low-" 

level shear becomes smaller, the storms require a more exact DCAPE for 

steadiness. 

f. Comparison to observed cases 

In this section, the predictions of the theory are compared to the seven 

cases from Chapter 3, in which the mature stage and tilting rate were well 

documented. In order to evaluate the theory, soundings were used that were 

nearest in time and space to the leading edges, yet appeared to be unaffected by 
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the squall lines. The shears below and above 3 km were estimated by 

approximating the line-normal velocity profile with straight lines in those 

layers. A good technique for estimating integrated negative buoyancy has not 

yet been developed. For these tests, DCAPE was evaluated as the integral of 

the difference between the sounding wet bulb temperature profile and the 

environmental t~mperature below 6 km. The tilting rate equation was 

evaluated for this particular value of DCAPE + / - 30%. This range should 

allow the effects of condensate loading, vertical redistribution of cooled air, 

and other effects to be represented. Since soundings were not generally 

available to the immediate rear of the leading edge of these systems, any 

refinement to the estimated DCAPE would be highly speculative. 

Earlier in Fig. 24, the slope a of the six well-observed squall lines was 

depicted as a function of time (solid curves). The cases are arranged from a-f 

according to a crude estimate of rate of tilti:ng during the mature stages. These 

cases are examined in that order: slowest-evolving to most-quickly evolving. 

The environment of the storm denoted 26jan89s (the slowly evolving 

system on 26 January 1989 from DUNDEE) is examined in Fig. 34. As shown 

earlier in Fig. 24a, the vorticity zone in this storm essentially oscillated about 

a very large slope; hence it was quasi-steady. The estimated DCAPE of this 

storm was in the range -569 to -1057 m2s-2. The storm-relative line-normal 

wind component had large shear below the jet (4x10-3s-1), and relatively large 

"reverse" shear above the jet (-1.2xlO-3s-1). It can be seen that the 

environmental flow is front-to-rear at all levels. Although rear-to-front 

relative environmental flow occasionally was observed in DUNDEE, in 

general the flow was front to rear in substantial agreement with the 

observation of Zipser (1977) of tropical squall lines having relative inflow 

(front-to-rear) at all levels. The solutions for the tilting in this environment 

48 



are also shown in Fig. 34c, using an assumed minimum vorticity in the 

sloping zone of -8x1o-3s-1. This value is fairly typical of the systems analyzed; 

the observed range was approximately -6x10-3s-1 to -10x10-3s-1. The curves 

are not especially sensitive to this parameter in most cases. The graph has a 

simple and clear interpretation: an initially erect storm will tilt fairly rapidly 

rearward. As it does, the rate of tilting rapidly goes to zero, so that the storm 

will eventually stop tilting and reach a steady configuration. For the 

sounding-derived DCAPE, equilibrium occurs at slopes greater than 30 

degrees, in strong agreement with the observed equilibrium slope (Fig. 24). 

Two other curves are shown for smaller DCAPE, showing that as DCAPE is 

reduced, equilibrium occurs at shallower slopes. 

Another rather slowly-evolving storm occurred during DUNDEE on 26 

November, 1988 (26nov88s). Fig. 35 depicts the environmental conditions, as 

well as the solutions for rate of tilting for this storm. DCAPE is estimated to 

have been between -670 and -1244 m2s-2, with an upper shear of about 

-1.8xlO-3s-1 and a lower shear of about 3.9x10-3s-1. The solutions for this case 

are unique among the six cases in that it appears that a storm with DCAPE 

near or less than -670 m2s-2 and a slope of more than about 25 degrees will 

become more erect with time. The early history of this squall line is not 

known, since it formed beyond the range of the radar coverage. However, in 

Fig. 24 it can be seen that the storm generally had a slope less than 25 degrees, 

and in fact tilted only very slowly rearward with time. This seems to be in 

substantial agreement with th~ prediction of the theory for the observed 

slopes. 

Another relatively slowly evolving storm occurred during the PRE

STORM on 10-11 June, 1985 (10jun85m). Fig. 24 shows that this storm tilted 

rather slowly rearward until it reached a slope of around 10 degrees, at which 
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time it appeared to be steady. This is a remarkably shallow slope for the 

vorticity zone; the storm's apparent vigor even at these shallow slopes can be 

attributed to the unusually strong storm-relative inflow, a condition which 

implies stronger-than-usual ascent for a given slope. The environmental 

conditions and solution for tilting are shown in Fig. 35. The curves are 

similar to those for 26jan89, in that they show a comparatively slow tilting 

rate, and the likelihood of steadiness. In contrast to 26jan89s, it appears that 

this storm should become steady at a much shallower slope (12-21 degrees), 

which is well supported by the observations (i.e. this storm became steady at a 

much shallower slope than 26jan89s). 

A more quickly evolving storm occurred in DUNDEE on 7 February, 

1990 (7feb90m). The environment (Fig. 37) contained weaker average shear in 

the low levels (about 5x10-3s-1) than the three previous cases, as well as 

weaker reverse shear above the jet (about -lxl0-3s-1). DCAPE was estimated 

to have the second-largest magnitude of the six cases (-889 to -1651 m2s-2). 

The solution for tilting for this case disagrees with the observations (Fig. 24). 

However, note from Fig. 30 that the denominator in Eq. 18 for this case is very 

close to zero. This implies fairly rapid evolution (unless the flux and DCAPE 

are very nearly balanced) but the sign of tilting is somewhat uncertain. This 

is an interesting part of the parameter space. The physical implication based 

on this theory is that evolution is rather unpredictable in this vicinity. 

The last two storms illustrated in Fig. 24 evolved very quickly (other 

storms were observed which e:volved so quickly that the mature stage was too 

short for estimates of tilting rates to be obtained). The environmental 

conditions for the DUNDEE storms on 5 December 1989 (5dec89f) and 18 

November 1989 (18nov89f) are shown in Figures 38 and 39 respectively. It can 

be seen that both cases had relatively weak shear in the lower levels 
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(2.4x1o-3 5-1 and Sx10-3 5-1 respectively) and moderate reverse shear above 

(about -2xlo-3 5-1). DCAPE in the case 5dec89f was estimated as -547 to -1012 

m2s-2, the weakest of the six cases, whereas in 18nov89f it was -982 to -1824 

m2s-2, the largest of the six. The solution curves for both cases correctly show 

that a steady storm is not possible. Rather, in both cases storms at any slope have 

the tendency to tilt further rearward. 

In summation, the theory expressed by Eq. 18 correctly predicts the 

possibility of steadiness, the approximate slope at which steadiness occurs, 

and the correct sense of the rate of tilt (except for 7feb90m). It should be 

pointed out that, despite these strengths, the theory predicts tilting rates that 

are too large by an order of magnitude or more (-0.1 deg s-1 vs. the observed 

rates of -O.Olrleg s-I). Possible reasons for this overprediction are discussed in 

later sections. 

g. Comparison to other observations 

Herein predictions of Eq. 18 are compared to observations based on 

other published studies. Bluestein and Jain (1985) described an echo category 

they termed ''broken line" which most nearly resembles the typical echo 

patterns of quasi-two-dimensional squall lines described herein. Using their 

published average line-normal wind components and standard deviations, 

the average low-level shear for their "broken line" classification is 

approximately between 0.7xl0-3 s-l and 4xl0-3 s-l. The average shear from 3 

to 6 km is approximately between -0.7xl0-3 s-l and 2.7xl0-3 s-l. The 26 May 

1976 squall line in Oklahoma (Ogura and Liou, 1980; Smull and Houze, 1985; 

1987) is one example of a storm that occurred within this range of shears. 

Referring to Fig. 33 it can be seen that these shears should be associated with 
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stonns falling well outside the ranges associated with steady systems except 

perhaps those with unusually small DCAPE. Another classification that 

seems to encompass the quasi-two-dimensional squalilines discussed herein 

is the "strongly classifiable symmetric" class of Houze et al. (1990), identified 

from climatological studies of Oklahoma squall lines. Their values of lower 

shear (1.2xlo-3s-1) and upper shear (1.8xl0-3s-1) fall into the same parameter 

space as those given by Bluestein and Jain for squall lines in the same region. 

Solutions to Eq. 18 spanning the likely range of cold pools strengths are 

shown in Fig. 40. It can be seen that for all values of OCAPE with these two 

given shears, the vorticity zones tilt forward regardless of the slope. 

For all of the available mid-latitude data discussed above (except for the 

10-11 June 1985 PRE-STORM case described above), it appears that the low

level shear is too weak to allow for steady, rearward-sloped storms. The 

possible exception to this finding is for mid-latitude cases occurring at night 

when DCAPE is much smaller due to the relative coolness of the nocturnal 

boundary layer. Under the "typical" middle latitude environmental 

conditions, it appears that steady, rearward-sloped systems are quite possible 

at night, but highly unlikely during the daytime, due to the expected changes 

in OCAPE. 

It is likely that many of the daytime middle latitude systems examined 

as individual cases or part of climatological studies, are not quasi-2D, 

rearward-sloped steady systems. It is interesting that in examining the slab. 

averages of reflectivity for the tropical systems, even at 10 minute temporal 

resolution, individual cells were not seen propagating rearward from the 

leading edge, and horizontal depictions of reflectivity showed very uniform 

structure to the leading edge compared to published middle latitude cases. 

The conceptual model based on middle latitude systems features rearward-
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propagating discrete cells, and the horizontal reflectivity structure is 

comparatively more cellular. 

In general, observations suggest, and this theory predicts, a better 

likelihood of long-lived squall lines with steady updrafts in the tropics than in 

middle latitudes, because of the beneficial presence of reverse shear above the 

low-level line-normal jet. It suggests that many middle latitude squall lines 

that occur during the daytime, although they may be long-lived, are 

somehow dynamically different than those described by the model herein. 

This difference may involve unsteady, forward-sloped updrafts, reorientation 

of vorticity due to earth's rotation or 3D effects into the line-normal plane, 

effects due to large-scale baroclinity, etc. However, it seems that the steady, 

rearward-sloped vorticity zone model probably does not describe many squall 

lines that occur With weak low-level shear and forward shear aloft. Despite 

the apparent common occurrence of squall1ines under these conditions in 

the middle latitudes, there remains an almost complete lack of Doppler data 

sets with sufficient temporal resolution to adequately assess the evolution 

and mode of propagation of these systems. 

Finally, other systems observed in the tropics include the 23 June 1981 

COPT 81 squall line in west Africa (Roux 1988). The approximate low-level 

shear in the environment of this system was 5.2xl0-3s-1, with an upper shear 

of -1.3x1o-3 s-1. Using a range of possible values of DCAPE, the resulting 

predictions of tilt rate as a function of slope are shown in Fig. 41. It appears 

from this theory that for DCAPE of less than -1000 m2s-2, a steady system is 

possible with a rather large slope (about 25 degrees or more). That is quite 

similar to the slope seen in Fig. 6b in Roux (1988). 
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h. The findings of RKW and LM interpreted through this theory 

This theory embodies, albeit crudely, some the system-scale effects 

described by LM as being important to squall line longevity. To the extent 

that quasi-2D squall lines are represented by sloping vorticity zones embedded 

in a two-layer environment, these features are included. As described 

previously, these include a rearward-sloping updraft, a possible overturning 

updraft branch, and descending rear inflow branches of various strengths and 

configurations. Clearly, this is a highly simplified model, but it implicitly 

represents a much broader scale of influences than a simple cold pool/low

level shear balance. 

Based on numerical modelling studies, Thorpe et al. (1982, hereafter 

referred to as TMM), demonstrated that even with low-level shear held 

constant, the shear above had profound influences on the resulting storm 

structure and evolution. Using their shears, and a DCAPE of -800 m2s-2, the 

theory herein predicts results (Fig. 42) similar to those reported by TMM. For 

instance, it appears that for strong forward shear, denoted "P( + 10)" in TMM~ a 

forward-tilting vorticity zone is likely. Presumably, in a 2-D simulation, this 

system would deposit precipitation into its inflow, thereby reducing potential 

buoyancy and storm longevity. TMM report that the P(+10) storm consisted 

of essentially one pulse of convection followed immediately by decay. The 

P( +5) simulation produced a "vigorous second cell" which also decayed 

rapidly. This is an interesting finding in light of the discussion above 

concerning the middle latitude squall line cases, and lends credence to the 

speculation that, where the present theory p~edicts slow forward tilting, squall 
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lines are possible but their leading edge convection will exhibit pulsing 

behavior, or the commonly reported "succession of cells" in the 2-D structure. 

The remaining curves suggest steady, rearward-sloped storms. The 

smallest predicted equilibrium slope is associated with "reverse" shear of 10 

ms-1 aloft, while the most erect is associated with no shear aloft. These 

correspond to the "P(-lO)" and "P(O)" storms in TMM. Their results indicate 

that the longest-lived storm occurred with no shear aloft, and the theory 

herein predicts that this storm should indeed be steady. With the shallower 

equilibrium slope, the theory implies that the "P(-lO)" storm should deposit 

precipitation over the largest rearward-extending region, which it did in the 

simulations of TMM. Computations for other values of DCAPE indicate that, 

for this particular set of shears, the tilting rates and equilibrium slopes are 

highly sensitive to DCAPE. Despite this fact, it is clear that a variety of 

possibilities for steadiness and equilibrium slopes are possible when only 

upper shear is varied, in complete agreement with the findings of TMM. 

RI<W did not consider the role of upper shear. In their study, upper 

shear was held constant at zero, while lower shear was varied in a search for 

an optimal value. Using a velocity profile containing no shear in the upper 

levels, Eq. 18 predicts that the optimal lower shear is approximately where 

RKW predicted it to be. Although DCAPE in the RKW simulations is not 

known, for a strength of -600 m2s-2 the most erect, steady storm should occur 

with a lower shear of about 7xl0-3s-1, exactly as found by RKW (see Fig. 43). 

With a OCAPE of -1200 m2s-2, this "optimal" shear value increases to around 

9xl0-3s-1. Other "optimal" values of DCAPE for wind profiles with no upper 

shear can be found in Fig. 33 along the line where ambient upper shear equals 

zero. 
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The RKW theory involved only cold pool strength and vorticity 

transport from the environment in the lower levels in an attempt to explain 

strong, long-lived squall lines. The RKW approach, and the need to verify 

their conclusions from an observational perspective, motivated this study. In 

light of the agreement between observations, modelling work, and 

observations shown in the present paper, it does appear that lower shear and 

OCAPE need to be considered together with upper shear and system slope 

when drawing conclusions about intensity and longevity. 
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Chapter 5 

Discussion 

Examination of the various cases documented observationally in this 

study reveals common features in the reflectivity and kinematic structure of 

these squall lines which can be associated with the stages of evolution. Of 

primary importance is the observation that although the storms undergo 

common patterns of evolution, the time scale over which the evolution 

occurs varies greatly among systems. Combined durations of the formative, 

intensifying, and mature stages of the stonns varied from about an hour 

(18nov89F, 5dec89F), to over four hours (26jan89S). Measurements of the 

rate of change of slope of the vorticity zone in the jump updraft region shows 

that these systems may span an order of magnitude in evolution rates. 

Another observation of major importance is that the structure of this type of 

squall line is characterized by a sloping zone of horizontal vorticity, with 

streamlines approximately parallel to the vorticity zone. The evolution is 

characterized by the gradual tilting of this vorticity zone toward the 

horizontal. During the intensifying stage the sloping zone of negative 

horizontal vorticity develops, strengthens, and reaches its most upright 

orientation. During the mature stage, its strength remains about constant 

while it tilts toward the horizontal. During the dissipating stage, its 

orientation remains quasi-horizontal, and the vorticity weakens. These 
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generalizations seem to apply across a fairly large range of storm intensities 

and relative flow strengths. 

Observations of features that can be used to classify storm stage are 

summarized in Table 2 and in 'Fig. 45. Because the structure of the flow and 

reflectivity change so much from one stage to another, the "snapshot" 

structure of a squall line depends strongly on the stage of evolution. For this 

reason, the 

Table 2: Characteristics of sQuall line evolutionmy staus. 

STAGE 

Cbaracteristic Founative Intensifyin~ Mature Dissipatin~ 

Horizontal Scattered or Soild line of Solid line of Cellular leading 
reflectivity broken cells in a cells. Trailing cells. Large becoming 
structure line region fonns trailing region. patchy. 

Transition zone Stratiform 
weakens 

Vertical Deepening Reaches Gradually Shallow, 
reflectivity deepest, most becomes relatively weak 
structure intense, and shallower, cells or 

most upright weaker, and stratiform ascent 
more tilted 

Vertical Increasing Increases more Gradually Small 
velocity in quickly to decreases 
leading edge maximum 

values 

Motion Generally less Continued Suddenly faster; Varies 
than the mean relatively slow resembles cold 
flow pool 

propagation 
speed 

Slope Varies Most upright Gradually more Quasi-horizontal 
horizontal mesoscale flow 

branches 
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features depicted in conceptual models of squall line structure (e.g. Fig. 1) 

should be interpreted with caution as such a model may be a synthesis of 

features that occur at different times during the life cycle instead of typifying 

any certain stage. The rate at which evolution occurs in the squall lines 

described here makes any assumptions about steadiness of questionable 

value. Before a system is assumed steady from a dynamical viewpoint, a 

careful analysis of the relative magnitudes of terms in predictive equations 

should be made. In general, a priori assumptions of steadiness may not be 

justified when describing squaUline dynamics. 

The squall line examples presented herein, as well as the additional 

cases analyzed, but not discussed in detail, make it clear that the generation of 

vorticity is a system-scale phenomenon, as proposed by Lafore and Moncrieff 

(1989). This can be seen by examining the slab-averaged horizontal vorticity 

for the cases presented. Negative horizontal vorticity develops across the 

system shortly after the leading edge first becomes solid. The appearance of 

negative vorticity aloft to the rear of the leading edge seems to occur much 

too quickly to be attributed to advection rearward from some leading edge 

generation region alone. It appears that there is not a distinct separation 

between the negative horizontal vorticity in the low-level cold pool near the 

leading edge, and the vorticity that appears at higher elevations rearward of 

the leading edge (except perhaps during the dissipating stage). Instead, a 

nearly continuous zone of negative vorticity strengthens fairly uniformly 

across the system with time. 1?is implies that important buoyancy gradients 

occur across the entire squall line and through most of its depth, not just near 

the leading edge of the low-level cold pool. 

It is apparent from the data presented, that once a squall line becomes 

more-or-Iess solid at its leading edge, the buoyancy distribution leads to the 
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generation of negative vorticity to the rear of the leading edge. The flow 

structure associated with this vorticity is such that ice particles are carried 

rearward, relative to the leading edge, in the upper portion of the trailing 

region. Sublimation, melting, and evapontion below and to the rear of this 

expanding cloud, as well as condensate loading near the leading edge, should 

lead to a negative buoyancy anomaly along the sloping lower boundary of the 

trailing stratiform cloud. Heating due to condensation and freezing should 

maintain a positive buoyancy anomaly in the cloudy region as long as ascent 

persists. These anomalies produce a horizontal buoyancy gradient across the 

system, aiding in vorticity generation in the interior. One consequence of the 

generation of negative vorticity in the storm interior, under certain 

environmental conditions is that the strongest drafts gradually tilt from 

nearly vertical during the formative stage, to nearly horizontal in the 

dissipating stage, and the scale grows from that of convection to mesoscale. 

The demise of the squall line is apparently caused by the tilting process as it 

reorients the major drafts to quaSi-horizontal slopes. 

With respect to the role of upper level jets and ambient baroclinity in 

causing the development of a rear inflow jet, almost all of the cases studied 

developed significant rear inflows of 5-10 ms-1. In some cases, rear inflow 

magnitudes of 10 to 20 ms-1 relative to the motion of the leading edge were 

present. The development of rear inflow did not depend on the presence of 

an upper jet impinging on the storm from the rear, which is the causative 

factor cited by Zhang and Gao (1989) in their modelling study of the 10-11 June 

PRE-STORM case. In several cases with significant rear inflow, there was no 

environmental RTF flow relative to the motion of the surface position of the 

leading edge. From the vorticity viewpoint, rear inflow should be expected to 

result from the storm-generated buoyancy gradients (as shown by Fovell and 
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Ogura, 1988) which lead to the generation of horizontal vorticity across the 

storm. While the "blocking" of middle- and upper-level momentum may 

indeed playa role in the rear inflow dynamics, it is not a sole causative role. 

The observations indicate a strong connection between the occurrence 

of horizontal convergence and negative vorticity. It can be shown that such a 

correspondence is to be expected when the vorticity is due to shear alone 

between uniformly tilted streamlines. Thus the mesoscale ascent often 

observed in the upper part of the interior region, and mesoscale descent 

below, are a function of the magnitude of negative horizontal vorticity as 

well as the slope of the vorticity distribution. As tilting proceeds, the 

mesoscale ascent weakens until the streamlines in the interior region become 

horizontal. However, the velocity data suggest that there are pockets of 

vertical motion occurring in the upper portion of the interior region on a 

scale much more like that of the leading edge convection. 

In one respect, the large magnitudes of negative vorticity generated in 

the storm interior tend to lead to additional generation of vorticity. This is 

because the shearing flow associated with the vorticity brings potentially 

cooler air beneath the saturated, precipitating anvil cloud, or in another 

frame of reference, draws the anvil cloud rearward over the potentially cooler 

air. In this way, the negative buoyancy anomaly at the rear of the system, 

beneath the anvil cloud, can be reinforced through diabatic processes. This in 

turn maintains the horizontal buoyancy gradients that cause additional 

vorticity generation. 

It has been shown that the simplifying assumptions made by RI<W do 

not seem to apply generally when the observations are examined. It is also 

clear from observations, as well as the work of TMM, that squall line 
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structure and evolution seem to be sensitively influenced by upper shear, not 

just by a balance between low-level vorticity transport and DCAPE. 

Motivated by these observations, a new theory has been developed and 

tested which considers the roles of both lower and upper shear, as well as 

OCAPE, the strength of storm-generated vorticity, and storm slope as 

measured by the. slope of the negative vorticity zone. There is much evidence 

that this theory offers improved predictions of storm evolution and the 

possibility of steadiness. The theory also makes it clear that storm slope and 

upper shear play roles as important as DCAPE and low-level shear in 

determining squal1line behavior. 

There are numerous potential problems with this theory that must be 

reiterated. Some of these potential problems are inherent to the dynamical 

approximations made (e.g. two-dimensionality, inviscid fluid, Boussinesq 

approximation applied over a deep layer, etc.). A major issue that has not 

been addressed in this theory is the role of updraft available potential energy 

(CAPE), which is often significant below 6 km. In the context of the three

region model, the only role of CAPE that has been neglected would be to give 

a positive vorticity tendency in the upper region (region a) ahead of the 

storm. This would clearly have an effect on the circulation tendency and 

tilting rate, since it was assumed that vorticity is constant in each of the three 

regions. Another potentially important physical process that has been 

neglected is mixing. Mixing could transport the negative vorticity from 

region i into regions a and b ahead of the storm, thereby giving a non-zero 

tendency to the average vorticity in these regions. It is felt that mixing does 

playa large role in this regard, and that if mixing were somehow included in 

this model, the predicted tilting rates might be much closer to those observed. 

On the other hand, in a system with a very shallow slope, mixing between the 
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cold pool and inflow over the long inflow trajectories could mean that the 

system would no longer survive. 

Also, it seems likely that storms do modify their environments and 

this also would lead to non-zero vorticity tendencies in the environment. In 

fact, from the standpoint of this theory, the only way a steady storm could 

eventually begin, tilting again and dissipate is for changes to occur in the 

environment, either through storm modifications or larger scale or diurnal 

processes. From a prediction point of view, it is hoped that despite the 

changes that occur in the environment, the storm probably stays in one 

general part of the parameter space, and hence the general characteristics of 

structure and evolution remain predictable. Finally, no attempt has been 

made to understand how the strength of the vorticity in the sloping region i 

relate to environmental characteristics. The observations suggest that this 

parameter is generally between 6xlO-3s-1 and lxlO-2s-1, and the solutions to 

the tilting equation do not seem especially sensitive to this parameter over a 

large range of ambient shears and DCAPE. Despite the shortcomings, it seems 

that for observed cases and other modelling results in which enough 

information is available to document structure as well as evolution, this 

simple theory produces meaningful results. 

In general, this theory indicates that, as low-level shear increases, larger 

DCAPE is associated with steady rearward-sloped storms, and that steady 

storms can occur over a larger range of DCAPE. It also shows that steady 

storms are more likely with reverse shear aloft (Le. with a low-level line

normal jet profile) than with forward shear aloft. Thirdly, if the reverse shear 

is too strong and/or lower shear too weak, no steady system is possible 

(storms continue tilting rearward until they collapse). 

63 



Fig. 44 presents one more look at the question of the structure and 

evolution of mid-latitude versus tropical squall lines. This figure is a 

duplicate of Fig. 33 with certain ranges of shears for various storms 

superimposed. The box in the middle left portion of the picture is an 

approximation of the range of shears, using mean line-normal wind profiles 

+/- one standard deviation, derived from Bluestein and Jain (1985) and 

associated with the broken line form of severe squall lines in Oklahoma. The 

Houze et. a1 mean condition for strongly classifiable symmetric systems in 

Oklahoma falls within this same box, as well as the 26 May 1976 Oklahoma 

squall line investigated by several different authors. The range of shears for 

the tropical squall lines, including those from DUNDEE, the 23 June 1981 

COPT 81 squall line (Roux, 1988, marked "Roux"t and the 22 June 1981 COPT 

81 squall line (Chong et al., 1987, marked "Chong") is denoted by the second 

box in the lower center, with individual data points marked. Finally, the lO

II June 1985 PRE-STORM squall line is marked "10jun", and is found quite 

removed from the other middle latitude storms. 

It is likely that DCAPE in middle latitudes is similar in magnitude to 

that in the tropics: although water loading contributions are smaller, the 

contribution due to evaporation is likely larger. If the present theory is 

correct, it suggests that many middle latitude storms occurring during the 

daytime do not feature draft structures described by steady, rearward-sloping 

vorticity zones. However, steady rearward-sloping storms become more 

likely during the night when DCAPE is reduced due to cooling in the 

boundary layer. Perhaps the three-region model does not even apply to the 

daytime storms in the part of the parameter space determined from the 

Bluestein and Jain (1985) data. Or perhaps these systems have forward-tilting 

draft structures that are continuously regenerated through discrete 
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development at the gust front or gravity-wave induced propagation. Also 

possible is that the role of earth's rotation, perhaps in terms of inertial 

stability, or the role of the often-observed vortex features in the stratiform 

region, must be considered. All of these issues will remain unresolved until 

the evolution of a number of middle latitude squall lines can be documented 

with adequate temporal resolution. 

65 



Chapter 6 

Conclusions and suggestions for additional research 

The scope of this study is limited to a description of the evolution of 

quasi-two-dimensional squall lines that feature a continuous, rearward

sloping vorticity zone, and a possible mechanism for environmental control 

of this evolution. It does not address the conditions necessary for the 

initiation of a squall line. Also, storms with a system-scale three

dimensionality, and those consisting of well-separated thunderstorms in a 

line, have not been examined. The main emphasis herein has been on a 

description of events and processes that occur during one cycle of 

intensification and decay. Many of the squall lines analyzed exhibited very 

prolonged dissipating stages, and it appears that squall lines can progress from 

a deep convective mode, to one of much shallower, less-organized, but 

persistent leading edge convection. Also, in several of the systems, deep 

leading-edge convection recurred after a prolonged period of the dissipating 

stage. It is plausible that such regeneration is due to changes in the 

environment, or to weakening or slowing in the propagation of the cold pool 

after it surges ahead of the dissipating leading edge. These issues merit 

further research. 

A simple vorticity budget approach to understanding squall line 

dynamics is employed in this study. Approaches of this type require many 

simplifying assumptions in order to obtain meaningful solutions. Based on 

the predictions of the theory presented herein, it seems that this approach is 
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an improvement over that used by RKW, primarily because the effects of 

upper shear are accounted for, and the allowable storm morphologies much 

more closely correspond to ob~ervations. However, it seems that the limit to 

this type of approach has probably been reached, and further advances must 

come through numerical modelling. 

H the findings of this study are correct, future numerical simulations 

should systematically explore the parameter space described by low-level 

shear, upper shear, and DCAPE. It appears that for this class of storm, two

dimensional simulations may be adequate. However, in light of the 

fundamental role of DCAPE (also see Emanuel, 1989), it will be vitally 

important to correctly model the buoyancy distribution in the part of the 

storm featuring negative buoyancy. 

Some fundamental aspects of squall line dynamics remain to be 

explored observationally. The evolution of middle latitude squall lines has 

not been adequately documented. The present theory suggests that middle 

latitude squall lines with large DCAPE are dynamically different from 

"typical" tropical squall lines; it appears that a quasi-two-dimensional system 

with a continuous vorticity zone should not occur in weakly sheared 

environments with large OCAPE. Rather, it is suspected that in these 

environments squall lines consist of much more cellular, unsteady leading 

edges, and that organized rear inflow probably does not penetrate across the 

entire storm to the leading edge. Though fundamentally unsteady at the 

convective scale, it should still be possible to have a long-lived system that 

appears quasi-steady at larger scales. And from a climatological perspective, it 

seems that at night, since DCAPE decreases with boundary layer cooling, the 

possibility of steady systems like those described in this dissertation becomes 

much greater. 
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This study, because of its focus on two-dimensional dynamics, has 

emphasized events that occur relatively early in the life cycle of a mesoscale 

convective system (Maddox, 1980). A squall line that tilts rearward and 

dissipates is not likely to grow upscale into a longer-lived mesoscale 

convective system (except perhaps if convection repeatedly regenerates at the 

gust front). However, for those environments capable of supporting a steady 

system, growth will occur upscale through the mechanisms described in this 

dissertation, and the possibilities that the system will evolve toward inertial 

stability and geostrophic balance [a definition of an MCC proposed by Cotton 

and Anthes (1989), p. 673] are much enhanced. For this reason, among others, 

further research into the dynamics of squall lines is definitely needed, 

especially in the middle latitudes. Future observational programs must 

obtain Doppler radar data at intervals of about ten minutes or less over the 

longest possible periods in order to be useful. Observational data sets that 

provide infrequent snapshots of storm structure are of comparatively little 

use. Reliable methods to assess the in-storm buoyancy structure also are 

needed, as well as realistic techniques to estimate DC APE from pre-storm 

soundings. 

Finally, this work provides a basis for a re-examination of the derecho 

phenomenon (Johns and Rirt, 1983). A cursory examination of the data 

published thus far indicates that derechos may occur in environments 

supporting steady, rearward-tilted systems. If derechos are in this class, it will 

be interesting to find out what makes them an especially intense variation on 

this basic storm type. 
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Figure 1. Conceptual model of the line-normal s~cture of a squall line 
(adapted from Houze et aI., 1989). 
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Figure 2. A single cross-section of line-normal horizontal velocity from 
the 2-3 August 1981 CCOPE squall line (from Schmidt and Cotton, 1989). 
Stippled regions represent flow left-to-right. Velocity values are storm
relative. 
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Figure 3. Storm relative velocity vectors for the 23 June 1981 COPT-81 
storm (from Roux, 1988). Solid contours are radar reflectivity values in dBZ. 
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Figure 4. Average line-normal velodty in the 22 May 1976 Oklahoma 
squall line (from Smull and Houze, 1987b). Negative values indicate flow 
from right-to-left. 
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Figure 5. As in Figure 4, but based on rawinsonde analysis (from Ogura 
and Uou, 1980). 
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Figure 6. Horizontal reflectivity maps for the formative stage. The radar 
is at the" +" symbol, with the parallel lines denoting the region for vertical 
cross-section slab averages used in later figures. Horizontal axes labeled in 
km from radar. a) 5 December 1989 tropical case, 0710 UTe. b) 10 June 1985 
middle latitude case, 2319 UTe. 
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Figure 7. Slab-averaged (vertical cross-section) reflectivities in the 
formative stage. Shading levels are as in Figure 6. Axes labeled in km, the 
horizontal distance being distance in the direction of propagation (left to 
right), with the radar always at x=114 km. a) 5 December 1989. b) 10 June 1985. 
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shaded lightly, and negative values shaded darkly. Note that the horizontal 
and vertical scales are different than in Figure? a) 10 June 1985. b) 5 
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Figure 9. Horizontal reflectivity maps in the intensifying stage. As in Fig. 
6. a) 14 February 1990. b) 26 November 1988. c) 5 December 1989. d) 10 
June 1985. 
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Figure 10. Slab-averaged reflectivities in the intensifying stage. As in Fig. 7. 
a) 14 February 1990. b) 26 November 1988. c) 5 December 1989. d) 10 June 
1985. 

76 



6 

5 

1 
Formative 

, , 
o 0 20 

6 

5 

1 

a o 20 

.. 

(a) 

Intens. Mature 

40 60 80 

40 

time (min) 

(b) 

60 
time (min) 

80 

18nov88F 

Dissipating 
I 

100 120 

14feb90M 

100 120 
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Figure 13. Graph of the average leading edge propagation speed for the 
formative and intensifying stages (dark) and the mature stage (light) for four 
cases in which both speeds could be measured. 
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Figure 14. Schematic diagram of squall line flow features adapted from 
Thorpe, Miller, and Moncrieff (1982). The vorticity zone referred to in the 
text is shaded. Modifications shown here are the designation of "mesoscale 
updraft" and the evolution shown: the top schematic is representative of an 
intensifying squall line and the bottom schematic represents the structure late 
in the mature stage. 
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Figure 15. Horizontal reflectivity maps in the mature stage. As in Fig, 6. 
a) 14 February 1990. b) 26 November 1988. c) 26 January 1989. d) 10 June 
1985. 
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Figure 18. Horizontal reflectivity maps in the mature stage. As in Fig. 6. 
a) 26 November 1988. b) 26 January 1989. c) 14 February 1990. . d) 5 
December 1989. 
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Figure 21. Integration volume for vorticity equation, adapted from Rotunno 
et al. (1988). Plus and minus signs enclosed in circular arrow symbols denote 
vorticity, streamlines are bold arrows, and the boundary of the cold pool is 
shown with the conventional cold front symbol. The integration region is 
the smaller rectangle, with FU denoting flux at the upper face, and FL 
denoting flux at the left face. a) RKW assumptions; b) Relaxed assumptions 
as described in the text. 
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is a hypothetical integration volume (see text). 
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Figure 23. The three-region model. Region i is a sloping zone of constant 
vorticity with slope a.. It is embedded in region "b" (below) characterized by 
constant vorticity and depth Zjl as well as region "a" (above) which is also 
characterized by constant vorticity and depth ZrZj. The bold outline denotes 
the region over which circulation is determined, as described in the text. 
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Figure 25. The effects of inflow strength on the velocity distribution. Vectors 
spanning one grid unit in either dimension represent 20 ms-1. All plots are 
for lower shear of 4xlo-3s-1, zero upper shear, and Region i slope of 1.0 (a = 
45 "). Surface velocities at the right boundary (inflow strengths) are a) -18 ms· 
I, b) -12 ms-1, and c) -6 ms-I . 
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Figure 26. The effects of the strength of Region i vorticity on the velocity 
distribution. Vectors spanning one grid unit in either dimension represent 
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Figure 27. The effects of the slope of Region i on the velocity distribution. 
Vectors spanning one grid unit in either dimension represent 20 ms-I . All 
plots are for lower shear of 2xIO-3s-1, zero upper shear, and inflow strength of 
12 ms-I . a) a=4S", b) a=27", and c) a=I4". 
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Figure 32. Equilibrium slopes (<I, degrees) as a function of upper and lower 
shear strength, for cold pool strengths of a) -500 m2s-2, b) -1000 m2s-2, and c) -
1500 m2s-2. 
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Figure 33. a) Average magnitudes of cold pool strength (m2s·2) that are 
associated with steady storms, as a function of upper and lower shear. b) As 
in a), but range of magnitudes of cold pools strengths (m2s·2) where steady 
storms are possible. 
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Figure 36. As in Fig. 34, but for 10 June 1985. 
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Figure 37. As in Fig. 34, but for 7 February 1990. 
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Figure 38. As in Fig. 34, but for 18 November 1989. 
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Figure 39. As in Fig. 34, but for 5 December 1989. 
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Figure 40. Graph of tilting rate versus slope for mid-latitude environments. 
The curves are for DCAPE of -100, -500, -1000, and -1500 m2s-2. 
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Figure 41. Graph of tilting rate (degs-1 on ordinate) versus slope for the 
environmental conditions associated with the 23 June 1981 COPT 81 squall 
line. Cold pool strengths are indicated on the graph. 
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Figure 42. Graph of tilting rate versus slope for the five shear conditions 
examined in Thorpe et al. (1982). 
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Figure 43. Graph of tilting rate versus slope for four shear configurations 
including the optimal shear determined by RKW, using the RKW units of 
ms-1per2500 m. 
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parameter spaces superimposed. The sloped lines represent fixed DCAPE in 
units of m2s-2. See text for additional details. 
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A 
Formative stage 

B 
Intensifying stage 

Figure 45. Conceptual model of squall line evolution. Heavy lines represent 
the cloud boundary and thin lines are streamlines of the line-normal flow. 
The sign of the vorticity is indicated with "+" and "_". The square inset 
represents a low-level horizontal depiction of the reflectivity. The arrow 
associated with the label "w" represents relative updraft magnitude in a slab 
average, and with "c" a relative propagation speed. 
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C 
Mature stage .. 

c 

D 
Dissipating stage 

- - - - - -

Figure 45 continued. 
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