
Dissertation

preconditioning polynomial systems using macaulay dual spaces

Submitted by

Steven L. Ihde

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2015

Doctoral Committee:

Advisor: Daniel J. Bates

Chris Peterson
Alexander Hulpke
Peter Young

Copyright by Steven L. Ihde 2015

All Rights Reserved

Abstract

preconditioning polynomial systems using macaulay dual spaces

Polynomial systems arise in many applications across a diverse landscape of subjects.

Solving these systems has been an area of intense research for many years. Methods for

solving these systems numerically fit into the field of numerical algebraic geometry. Many of

these methods rely on an idea called homotopy continuation. This method is very effective for

solving systems of polynomials in many variables. However, in the case of zero-dimensional

systems, we may end up tracking many more solutions than actually exist, leading to excess

computation. This project preconditions these systems in order to reduce computation.

We present the background on homotopy continuation and numerical algebraic geometry as

well as the theory of Macaulay dual spaces. We show how to turn an algebraic geometric

preconditioning problem into one of numerical linear algebra. Algorithms for computing an

H-basis and thereby preconditioning the original system to remove extraneous calculation

are presented. The concept of the Closedness Subspace is introduced and used to replace

a bottleneck computation. A novel algorithm employing this method is introduced and

discussed.

ii

Table of Contents

Abstract . ii

Chapter 1. Introduction . 1

Chapter 2. Background . 3

2.1. Numerical Algebraic Geometry . 3

2.2. H-bases . 7

2.3. Macaulay Dual Spaces . 9

Chapter 3. Preconditioning . 17

3.1. Naive Algorithm . 17

3.2. Advanced Algorithm . 19

3.3. Using Closedness Subspace . 22

Chapter 4. Examples . 25

4.1. A Simple Example . 25

4.2. Eco 8 . 26

4.3. Stewart-Gough Platform . 28

4.4. Reimer Sphere System . 29

Chapter 5. Future Work . 32

5.1. Equation by Equation. 32

5.2. Positive Dimensional Systems . 34

BIBLIOGRAPHY. 35

iii

CHAPTER 1

Introduction

Preconditioning is a word often used in the world of Mathematics. The term implies

some sort of preprocessing done in order to reduce computation time or create more accurate

results. The context here relates to restructuring a system of polynomial equations, without

compromising their solution set, in order to more effectively run homotopy continuation

algorithms. It is the goal of this project to reduce the computation time for finding the

solutions to zero-dimensional polynomial systems by homotopy continuation. We accomplish

this by removing extraneous pieces of the algebraic variety associated with the ideal of the

polynomial system. As will be seen in Chapter 2, we may end up with a large number of

solutions diverging to ∞. If we can efficiently remove these solutions before computation,

we have saved computation time. The method for doing this involves finding a better basis

for the ideal generated by the system of polynomials.

First, we must homogenize the system of equations. This increases the number of vari-

ables by one and moves the system into projective space. The homogenizing variable, used to

make each of the monomials the same degree, plays the role of ∞ while in projective space.

By using an ideal quotient operation, we can remove degrees of the homogenizing variable.

At each step in the computation, we are removing at least one degree of the homogenizing

variable in the system. This corresponds to the Zariski closure of the set subtraction of the

corresponding varieties. In other words, this will allow us to geometrically remove the pieces

of the solution set living at ∞. To do this, we will reduce the problem from one in algebraic

geometry to one of numerical linear algebra.

1

The next step is to represent the homogenized polynomial system as a matrix in order

to take advantage of the properties of the Macaulay dual space. Once in the dual space,

we can manipulate the ideal associated with the polynomial system without changing the

corresponding algebraic variety. We do this through calculation of an H-basis as a better

basis for the ideal of the polynomial system. Then, we will show that this H-basis has

removed the infinite solutions by quotienting out by the homogenizing variable. The result

is an instance of homotopy continuation with few to no infinite paths, allowing for faster and

smoother computations.

This monograph will provide background on the foundations of numerical algebraic ge-

ometry, necessary numerical linear algebra, h-bases and Macaulay dual spaces. We present

the current state of algorithms as well as a survey of different algorithms previously used

for similar computations. This will include previous successful algorithms as well as new

algorithmic changes. The most recent work is a proof of concept that this method can

take advantage of the closedness subspace algorithm in order to remove a bottleneck. The

background will be given in Chapter 2. Explicit algorithms and examples are provided in

Chapters 2 and 3 respectively.

2

CHAPTER 2

Background

2.1. Numerical Algebraic Geometry

Numerical algebraic geometry is the area of research concerned with solving systems of

polynomials using numerical techniques. This is opposed to symbolic methods which were

first introduced in the 1960s. Symbolic methods are very fast for small to medium systems

with exact coefficients. However, these methods run into computational trouble as the

number of variables and the number of equations grows. Unless the system is very highly

structured, the number of necessary computations grows combinatorially. The methods

are unable to effectively take advantage of modern architecture as they are not generally

parallelizable and do not easily allow for inexact coefficients. In order to take advantage

of parallel architecture and allow for inexact coefficients, we need numerical tools. The

main technique involved in the area of numerical algebraic geometry is that of homotopy

continuation. While there are many different approaches within the family of homotopy

continuation methods, the main idea is always the same.

We start with a system of equations, F , with coefficients in an algebraically closed field,

C, in variables x̄, for which we wish to find the solutions. For our purposes we will always use

C and x̄ = x1, . . . , xn. Next, we create a second system, a start system G, with the same or

possibly a greater number of solutions which can be easily solved. Since can solve the start

system, we have a set of initial solutions to a system in the same family as the target system

from which to work. The choosing and solving of the start system will be discussed in more

detail later in this chapter. Once we have a start system, we can then build a homotopy,

H(x̄, t) = (1− t)F(x̄) + tG(x̄) with t ∈ [0, 1]. This function in the variables {x̄, t} creates a

3

continuous morphing from the solutions of the system G to the solutions of the system F . At

time t = 1 we have the solutions to the system G and at time t = 0, we end with the solutions

to the system F . These solutions may be unique or they may have a multiplicity greater

than one. There is also the possibility that we may get higher dimensional components or

have solutions that diverge to ∞.

For the purposes of numerical algebraic geometry, we want the solutions to polynomial

systems. These systems have algebraic structure that allows us to exploit deep theorems.

However, these homotopy methods can be applied to any nonlinear system given the correct

considerations. My research focuses on homotopy continuation using the software Bertini

[2]. There are also software packages that use polyhedral homotopies which are outside the

scope of this paper and will only be briefly mentioned. These include PHCpack [24] and

Hom4PS-2.0 [16].

2.1.1. Predictor/Corrector Methods. Once we have created the homotopyH(x̄, t)

and the solutions to our start system, G, we then have to track the solutions. Starting with

the solutions to our start system G, we want to follow the solutions as we vary t from 0 to

1 in the homotopy. Since the homotopy is a continuous deformation, the solutions create a

“path” which we can approximate and follow. We do this via a series of discrete time steps.

As we track from t = 1 to t = 0 we predict the direction of the solution path using Euler’s

method or a higher order predictor. We then stop time and use Newton’s method to correct

back down to the solution. There are many layers to this calculation and different choices

available for the predictor portion.

Definition 2.1.1. Given a system of polynomial equations F = f1, . . . , fn ∈ C[x1, . . . , xn]

the Jacobian of F , JF is the matrix of partial derivatives where the i, j entry is ∂fi
∂xj

4

Definition 2.1.2. Given a matrix, M , and the singular values σi of M, the Condition

Number of M is the ratio of the largest singular value to the smallest singular value, i.e.

σmax
σmin

, or ∞ if σmin = 0.

A particular concern that comes up in homotopy continuation is the question of how

much precision to use. If, at each time step, the Newton iteration converges very quickly

and the condition number of the Jacobian matrix is within tolerances, then the amount

of precision used can be fairly low. However, if the solution path nears a singularity, the

condition number of the Jacobian increases tremendously and the amount of precision needed

to accurately keep track of the solution increases. This occurs because, as the path nears

the singularity, the smallest singular value gets very small. Since this is the denominator of

the condition number, it causes the condition number to head towards infinity. For this, we

use adaptive multiprecision [4], which adapts the amount of precision. At each step, if the

condition number is above a proscribed tolerance, then Bertini will increase the precision and

recalculate the step. If, during successive steps, the condition number drops, then Bertini

can adapt the precision back down as necessary.

Another consideration is how far to step in time. If we take too large a step, it is possible

that we will miss and jump into the Newton convergence zone of a different solution. In

this situation, we would appear to miss a solution and have a higher multiplicity on another

solution. On the other hand, if we take too small a step, we may end up unnecessarily taking

too many steps for something that is fairly smooth. This would cause a tremendous amount

of extraneous computation. The standard solution to that problem is to use adaptive step

length [3]. This allows a predetermined step size to be used, then adapted to smaller step

sizes as needed. If the Newton iteration does not converge quickly enough and the condition

5

number increases, the step size will be adjusted and the prediction reevaluated. The step

sizes can then lengthen back to the original size as conditions improve.

2.1.2. Start Systems. One concern for homotopy continuation methods is how to cre-

ate a start system. We need a system that has the same number of solutions, or possibly a

greater number of solutions, which is easily solved. There are many different methods for

doing this. The most basic is called a Total Degree homotopy. We know that the system of

polynomials can have at most the Bézout number of zero-dimensional solutions. The Bézout

bound is the product of the degrees of the polynomials and is an upper bound on the num-

ber of isolated solutions. The Total Degree homotopy includes a start system consisting of

equations for the roots of unity in each variable. Since the roots of unity are an easily known

set of solutions, creating and solving this start system is very fast. Unfortunately in many

cases, especially sparse systems, the Bézout bound is not a very tight bound. So, using a

Total Degree homotopy, we are able to create a very easy start system, but this may cause

extra cost in tracking many extraneous paths. It is this particular start system with which

this work is most concerned.

There are many other types of start systems to use. Much research in this area has focused

on new ways to build start systems in order to reduce the number of paths. After total degree,

multi-homogeneous and linear products are the next most difficult start systems to build

and solve, respectively. Beyond that, we have monomial products, polynomial products,

and mixed volume calculations. The mixed volume calculation relates to the polyhedral

homotopy and involves calculating the volumes of newton polytopes. The most difficult

start system is the parameter-coefficient homotopy as this requires the most up front work

to build and solve the start system. Once the parameter homotopy start system is solved,

6

though, it allows for fast computations over a large number of parameters, see [8]. For more

information on the various types of start systems see [21] and [6].

2.2. H-bases

In linear algebra, it is often the case that we would like to change from one basis of

a vector space to another. Similarly in algebraic geometry, we would like to find a nicer

basis for our polynomial ideal I. One such formulation of this is that of Gröbner bases. A

Gröbner basis is a basis for a polynomial ideal with special properties. The standard process

to compute a Gröbner basis requires, first, that we have a monomial ordering. This ensures

that any two distinct monomials can be put in order and we never have a tie. Secondly, it

is necessary that each of the basis elements is “divisible” by all others in the ideal according

to the ordering. This extension of the division algorithm is a necessary condition in order

to form the Gröbner basis. With these things in hand, there is an algorithm for finding a

Gröbner basis due to Buchberger, see [10].

Unfortunately, under certain conditions, Gröbner basis computations will fail. If the

coefficients of the polynomials are not given exactly, these methods break down. Even with

exact coefficients, there are computational problems with Gröbner bases. The first is that

the combinatorial nature of the division algorithm means that these methods require too

much memory once the number of equations and variables gets too high. The only way to

combat this is to work with systems that have large amounts of structure. For very sparse

systems, the lack of symmetry and structure causes issues. All of the possible monomials

are required to be checked, even if they don’t contribute to the system. The second problem

is that, since the computation is highly serial, there is not yet a good way to parallelize

these methods in order to take advantage of multi-core technology. While some parts of the

7

computation can be parallelized, the main bottleneck remains necessarily serial due to the

structure of the algorithm. Both of these problems are created by the division criteria. The

necessity that each of the basis elements be divisible means that as new basis elements are

added, each must be checked in turn against all others.

In 1916, F.S. Macaulay introduced the idea of an H-basis [17]. This is a homogeneous ba-

sis for an ideal based on a degree condition, as we will see in the formal definition. Macaulay

was able to create these bases but his methods were unclear. Due to the computational na-

ture and lack of processing power, the process was not well understood until the late 1990’s.

The advent of advanced computers and computing power has made these computations fea-

sible. H-bases are numerically stable; they are not sensitive to exact coefficients [18]. So,

unlike Gröbner bases, they still work with inexact coefficients. Also, h-bases do not require

a division algorithm and therefore do not have the combinatorial issues that result from such

a condition. The only condition will be a degree condition, marked as (2) in the following

definition.

Definition 2.2.1. Consider a system of polynomials F = {f1, . . . , fs} with fi ∈ C[x1, . . . , xn].

Let G = {g1, . . . , gr} be a finite set of homogeneous polynomials with gi ∈ C[x0, . . . , xn]r{0}.

We say G is an H-Basis for the ideal I = < f1, . . . , fs > if for all p ∈ I, there exists

h1, . . . , hr such that

(1) p =
∑r

i=1 higi and

(2) (deg(hi) + deg(gi)) ≤ deg(p) for i = 1, . . . , r

Under these conditions, we have a homogeneous basis for our polynomial ideal. More

important to this theory, though, will be the method for which we reach such a basis. In

8

the next section, we will see a construct by which we will be able to generate an H-basis for

zero-dimensional polynomial ideals.

2.3. Macaulay Dual Spaces

From linear algebra, we will incorporate the concept of a dual space. This space, which

will be defined shortly, has properties that make it advantageous. It is sometimes the case

that a difficult problem can be made simpler by mapping into its dual space. The concept

of duality has been applied in many different disciplines. We will be looking at the dual

space to a vector space as in the linear algebra definition. In our specific case, we will be

able to make a polynomial problem into one of linear algebra. This reduction will create the

opportunity to implement numerically stable, highly parallelizable algorithms. From [22] we

have,

Definition 2.3.1. The Dual Space V ∗ of a vector space V over a field C is the vector

space of all linear functionals on V , L : V → C

We want to be able to find a dual space for a system F of polynomials living in

C[x1, . . . , xn]. The ideal I(F), however, is not a vector space because it is not linear but

polynomial. By the nature of the definition of an ideal, each element only needs to be

polynomial in the generators. From algebraic geometry, see [9], we have that the set of all

homogeneous polynomials forms a graded module, graded in each degree. Since we work

over C[x1, . . . , xn] each graded piece is a vector space. For homogeneous polynomials, this

implies that the space of all homogeneous monomials of degree d forms a vector space.

In order to build an appropriate dual space, we need a few definitions. We will start with

the differential operators ∂α. For α ∈ Zn≥0 we have |α| = α1 + . . .+αn and α! = α1!α2! · · ·αn!

Now we are able to define our differential operators ∂α.

9

Definition 2.3.2. The differential operator ∂α is given as

∂α = 1
α!
∂|α|

∂xα

It is trivial to show that these operators are linear functionals on the polynomial space.

Now for y ∈ CN and g ∈ C[x1, . . . , xN] the differential functional ∂α[y] is defined as

∂α[y](g) = (∂αg)(y)

This says that if we first evaluate the operator at a point and then apply it to a polynomial,

this is the same as first applying the operator to the polynomial, then evaluating at the

point. If we consider the vector space of all such differential operators, we can build the dual

space.

Definition 2.3.3. Given a polynomial ideal I ⊂ C[x1, . . . , xn] the Macaulay Dual

Space at the point ẑ ∈ Cn is the set of all differential functionals evaluated at ẑ that vanish

on I, namely

Dẑ(I) = {∂ ∈ Dẑ|∂(g) = 0 for all g ∈ I}.

Hauenstein showed in [13] that this definition can be extended to the homogeneous case

for a homogeneous ideal Ih ⊂ C[x0, . . . , xN]. We then get a homogeneous Macaulay dual

space Dy(Ih).

Definition 2.3.4. Given a system of polynomial equations F = {f1, . . . , fn} and a so-

lution ẑ to the system, the Macaulay Matrix, M, is a matrix built in degrees with the

columns defined by the differential operators of each degree in each variable and the rows

defined by the functions raised to the appropriate degree by each monomial and evaluated at

the point ẑ.

10

This definition is best followed by an example. Consider the homogeneous system of

equations:

f1 = x2 + 6xy + 4xz + 9y2 + 12yz + 4z2 − 9w2

f2 = 4x2 + 10xy + 9xz − 6y2 − yz + 2z2 − w2

f3 = 5x2 + 12xy + 9xz − 15x− 9yz − 9y2 + 9wy − 2z2 + 3wz − w2

We can build the degree 2 section of the Macualay matrix at the point ẑ = 0̄.

f1

f2

f3

∂w2 ∂wx ∂wy ∂wz ∂x2 ∂xy ∂xz ∂y2 ∂yz ∂z2

−9 0 0 0 1 6 4 9 12 4

−1 0 0 0 4 10 9 −6 −1 2

−1 −15 9 3 5 12 9 −9 −9 −2

In the standard definition of the Macaulay matrix, all lower degrees would be included. Since

this system is homogeneous of degree 2, the degree 0 and degree 1 sections of the matrix

would be rows and columns of zeros. This means that the null space of the degree two slice

is the same as the whole Macaulay matrix up to degree two. We will use this fact and the

following theorem to build our first algorithm.

Theorem 2.3.5. The null space of the Macaulay matrix forms a basis for the Macaulay

dual space.

Proof: Given definition 2.3.3, we need ∂ ∈ Dy|∂(g) = 0 for all g ∈ I. By definition

2.3.4, this is exactly the null space of the Macaulay matrix.

�

2.3.1. Dual Operations. In order to operate on the dual basis, we need to define some

tools. Stetter and Thallinger in [22] and [23] , respectively, define a differential operator which

we will need for preconditioning.

11

Definition 2.3.6. Given the dual space Dy(F), with F ⊂ C[x1, . . . , xN], y ∈ CN , we

have the Stetter-Thallinger Operator Φj : Dy → Dy for j = 1, . . . , N with Φj(∂α) = 0

if αj = 0, and Φj(∂α) = ∂α−ej otherwise, where ej is the standard basis vector.

This operator has the effect of trimming degrees from the differential operators that form

the basis of our vector space. It will be used in later algorithms to check for the “Closedness

Condition”. For now, we will use this operator in order to perform a quotient ideal in the

dual space.

Definition 2.3.7. Let I and J be ideals in C[x1, . . . , xn]. The Quotient Ideal is

defined I : J = {a ∈ J |aJ ⊂ I}.

Given this definition, it follows that given w ∈ I, we can create the quotient ideal

I :< w >. From classical algebraic geometry, we have that this process can be iterated,

i.e., < I : w >: w = I : w2. Since we have that I ⊆ I : w ⊂ I : w2 ⊆ . . . and there is

an Ascending Chain Condition for Noetherian rings, we get that this must stabilize. This

provides the following definition.

Definition 2.3.8. Let I and J be ideals in C[x1 . . . xn]. Consider the quotient ideal I : J

and the sequence I : J j. There exists ` such that for j = ` + 1 . . .∞, I : J j = I : J `.

We call this ideal the Saturation of I by J and denote it I : J∞. The index ` is called

the Index of Regularity.

This definition extends to the case of I :< w >. These quotient ideals, geometrically,

correspond to the set subtraction of the variety V(w) from the variety V(I). It is a trivial

exercise to show that this definition extends to the case where I and J are homogeneous

ideals.

12

Recently, is has been shown in [7] that we can use this quotient operation in the dual

space to act on the ideal. The Stetter-Thallinger operator acts on the dual space in the form

of this quotient by removing one layer of the homogenizing variable. We use this operator

to “trim” the null space. Since the homogenizing variable plays the role of ∞, we have that

we are geometrically removing pieces of the variety V (I) that live at ∞. If we can take this

calculation to saturation, we will have removed all extraneous pieces living at ∞. In this

way, we will remove all paths that diverge to ∞ in the homotopy continuation calculation.

2.3.2. Multiplicity Structure. While we may be able to find a solution to a polyno-

mial system, finding the multiplicity of such a solution can be more difficult. This information

can be useful in many different scenarios. Understanding the multiplicity structure of the set

of solutions gives access to a number of invariants such as depth, breadth, and a dual basis.

The multiplicity can also be used to get information about the dimension of a component

in the case of positive dimensional solutions. Since a single positive dimensional component

has an infinite number of points that are solutions, we can only sample the component. For

instance, in Bertini, when solving for positive dimensional solutions, a number of points are

found by intersecting higher dimensional components with generic linear spaces. The multi-

plicity can give information about the dimension of the component on which the point sits.

This is known as the Local Dimension Test [1]. This test allows for a user to determine all

of the positive dimensional components of a given system. One effective method for finding

this information uses the Macaulay dual space. In order to use this information, we will need

to have a clear understanding of multiplicity. We will use a definition from Stetter [22] for

the multiplicity.

13

Definition 2.3.9. The Multiplicity of an ideal I ⊂ C[x̄] at an isolated zero, ẑ, is m

if the dimension of the dual space Dẑ(I) is m.

With this definition, we are able to find the multiplicity of a given solution, ẑ to a system

of polynomials F(x̄). From Theorem 2.3.5 we have that this multiplicity is equivalent to the

dimension of the null space of the Macaulay matrix evaluated at the point ẑ. In 2005, Dayton

and Zeng in [11] developed a new algorithm for this process. This numerical computation

made finding the multiplicity a reasonable computation given a system F and a solution

ẑ. The algorithm takes as input the system of polynomials, the set of variables, and the

solution. It outputs the multiplicity, the depth, the breadth, and the dual space. It is this

algorithm that is used for the Local Dimension Test in Bertini.

The algorithm takes the system of equations and builds up the Macaulay matrix starting

in degree 0. From this base case, the Macaulay matrix is built up at each degree and a null

space computation done to create the dual basis. At this point, a closedness condition is

checked and the algorithm continues until the correct stopping criteria is met. In [11], the

authors took advantage of the block structure of matrices used in the calculation to create

a reasonable timing for benchmark systems. With this in mind, and the definition of the

Macaulay matrix from above, it is easy to see that the creation of the Macaulay matrix is a

major hurdle in the calculation. In the next section, a better approach is introduced.

2.3.3. Closedness Subspace. The approach to finding the multiplicity given in section

2.3.2 is inhibited by the sizes of Macaulay matrices. A good example of this is to see the

number of rows and columns that are necessary to build these special matrices. Given a

system of n equations in N variables, the number of rows in the complete Macaulay matrix

of degree α is
(
α−1+n
α−1

)
N . Likewise the number of columns is

(
α+n
α

)
. Since these row and

14

column sizes are choose functions, they grow combinatorially. It is clear to see that as the

degree, number of equations, number of variables grow, the size of the Macaulay matrix

quickly becomes very large. These matrices become overwhelmingly large for reasonable

computation. Even in the case of parallel architecture, this is not a tenable model for large

systems. In 2009, Zeng improved upon the multiplicity idea in [25] with the concept of the

closedness subspace. From [13] we have the following Lemma.

Lemma 2.3.10. Let I =< f1, . . . , fn > be an ideal in C[x1, . . . , xN], y ∈ CN and ∂ ∈ Dy.

Then ∂ ∈ Dy(I) if and only if ∂(fi) = 0 for i = 1 . . . n and Φj(∂) ∈ Dy(I) for j = 1 . . . N .

This so-called closedness condition picks out only particular monomials that contribute

nontrivially to the Macaulay dual space. Zeng capitalized on this condition and proved that

the resulting subspace will yield the equivalent Macaulay dual space. So, instead of build

the Macaulay matrix Mα
ẑ (I) of degree α only the closedness subspace Cαẑ (I) is necessary.

Definition 2.3.11. Let I =< f1, . . . , fn > be an ideal in C[x1, . . . , xN]. Let c denote a

differential operator with c ∈ Dẑ(I) and α ∈ N. Then the Closedness Subspace of I at ẑ

of degree α is Cẑα(I) = {c = Σ|j|≤αcj∂j[ẑ] | Φσ(c) ∈ Dẑ
α−1(I), σ = 1, . . . , n}

Given c1, . . . , cm, a basis for Cαẑ (I), we can build a smaller matrix Wα with

Wα =

c1(f1) c2(f1) · · · cm(f1)

c1(f2) c2(f2) · · · cm(f2)

...
...

. . .
...

c1(fn) c2(fn) · · · cm(fn)

It is clear from the construction of Wα that the size of the matrix has been greatly

reduced. Now, for a system of n equations in N variables at a point ẑ with multiplicity m,

15

we have a matrix of greatest size n x (m + n). Zeng showed this in [25] with an example

by which a 218,790 x 48620 Macaulay matrix is replaced with a 9 x 265 matrix from the

closedness subspace.

With Wα in hand, it is now only necessary to find a basis for the null space of Wα. Zeng

showed that this is isomorphic to the null space of the Macaulay matrix. Thus, through a

much smaller matrix, we are able to both determine multiplicity and gain access to a basis

for the Macaulay dual space.

In 2011, Hao, Sommese, and Zeng, in [12] took this computation one step further. Using

an equation by equation method for the closedness subspace, they were able to again speed up

the computation of the multiplicity structure. By taking further advantage of the structure

of the matrices being used, the authors were able to vastly improve the timings on benchmark

systems as compared with the original closedness subspace software. It is this more advanced

work that we have incorporated into an H-basis algorithm.

Like with the Multiplicity Structure algorithm and the first Closedness Subspace algo-

rithm, this is highly parallelizable. Since the algorithms are all designed to turn a nonlinear

problem into one of linear algebra, the authors are able to take advantage of numerical linear

algebra in order to parallelize. One complication that will come with using the closedness

subspace is that the algorithm is not designed with h-bases in mind. Instead, the Macaulay

dual space is produced as a byproduct in the quest for the multiplicity. This will cause some

initial issues when using this method to create an H-basis. Fixing this link is relegated to

the domain of future work.

16

CHAPTER 3

Preconditioning

Our goal in preconditioning is to remove the paths that lead to∞ in order to smooth out

the tracking for homotopy continuation. We start with a zero-dimensional polynomial system

and homogenize it using a homogenizing variable w. This is accomplished by bringing every

monomial up to the same degree by filling in with the appropriate degree of w. Example:

x2 − 1 → x2 − w2. As mentioned above, homogenizing the system moves the variety into

projective space with the homogenizing variable playing the role of∞. From the homogenized

system, we can build the Macaulay matrix at the point ẑ = 0̄. The point ẑ = 0̄ is not

actually a point in projective space. However, this point encodes the multiplicity for every

zero-dimensional point. The null space of this Macaulay matrix, or the closeness subspace

matrix, will provide a basis for the Macaulay dual space at this point. As we showed in

section 2.3.1, we can quotient out by the homogenizing variable using the Stetter-Thallinger

operator. We will begin with a naive algorithm using the Macaulay matrix that was used as

a proof of concept.

3.1. Naive Algorithm

Algorithm 1 takes in the homogeneous system of equations as the initial basis H0 for

the variety V (F). This basis is built up to the next degree in order to check the dimension

of the Macaulay dual space. This process is continued until the dimension of the degree d

dual space matches that of the degree d− 1 dual space. Once this is achieved, the resulting

matrix is then trimmed using the Stetter-Thallinger operator. This trimming operation is the

equivalent of the quotient operation. After each run through the main loop, a new basis of

homogeneous polynomials is produced. When this basis has stabilized, then we have created

17

Algorithm 1 Naive Algorithm

Input: A system of polynomials, F = {f1, . . . , fs} ⊂ C[x1, . . . , xn]
Output: A preconditioned homogeneous system {h1, . . . , hr} ⊂ C[w, x1, . . . , xn]

satisfying the H-basis conditions

Homogenize system: F → F h

H0 = {F h} this is our initial working set
Degree d = maxj=1..s(degree(fj))
Initialize Macaulay matrix in degree d, Md(H0)
i = 1
while dim(Hi) 6= dim(Hi−1) do

while dim(Null(Mk(Hi))) 6= dim(Null(Mk+1(Hi))) do
Build Macaulay Matrix Md(Hi) in degree d

Find a Basis N̂ for the null space Null(Md(Hi))
d→ d+ 1

end while
Apply Stetter-Thallinger operator N̂ −→ N̂trim

Find Null(N̂T
trim)

i→ i+ 1
Return Polynomials in degree d− 1 −→ Hi

end while
Return Hi

an H-basis and removed infinite paths from the homotopy continuation run. The dimension

of the null space stabilizing corresponds to the saturation of the ideal, i.e., < I : w∞ > when

quotienting by the homogenizing variable w. There are many computational obstacles with

this approach.

There is a lot of wasted computation, first, when we build the Macaulay matrix to the top

degree of all polynomials. This leads to a great computational cost in building the Macaulay

matrix since all monomials must be brought to the highest degree of the system F in every

possible way. It may be that we are forced to introduce a much larger number of polynomials

into our system as we try to build a lower degree polynomial up to a higher degree. In

building the Macaulay matrix, each of these lower degree homogeneous polynomials must

be multiplied by every monomial of appropriate degree in every variable. As the number of

equations and the number of variables grows, this quickly becomes intractable.

18

The second issue is that by trimming down by only one degree using the Stetter-Thallinger

operator, we are recomputing the null space far more often than necessary. If, at each step

of the computation we are able to trim down in as many degrees as possible, then we are

computing the null space of the Macaulay matrix far less often. We would like to use the dual

basis as effectively as possible without having to do the laborious calculation unnecessarily.

What we are really looking for are new polynomial relations between the generators of the

system. If we can search down through all previous degrees at each step, we can add these

generators back to the system. In this way, we are recomputing the null space less frequently

as well as removing possibly more layers at each step.

In general, the size of the Macaulay matrices will always present a bottleneck for the

computation. This is somewhat mitigated by the fact that we are not building the full

Macaualay matrix, but rather only the homogeneous degree d slice. As was discussed in

Chapter 1, we will still get the correct basis for the dual space. Despite this, the sizes

of the Macaulay matrix will, in general, still cause many unnecessary calculations. In our

next version of the algorithm, some of this concern will be eliminated using an equation by

equation method that looks at each degree individually. We will also trim down the matrices

by applying the Stetter-Thallinger operator in every degree necessary in each step. This

allows us to get as much information as possible from the dual basis before recomputing.

3.2. Advanced Algorithm

The next version of the algorithm, labeled Algorithm 2 has removed some of the ineffi-

ciency and redundancy from the first naive algorithm. However, this has made the algorithm

much more complex. The algorithm employs an equation by equation and degree by degree

approach. At each step in the outer loop, we are able to add in any new polynomials as we

19

Algorithm 2 More Advanced Algorithm

Input: Zero-dimensional system of polynomials F = {f1, . . . , fs} ⊂ C[x1, . . . , xn]
Output: Homogeneous system H = {h1, . . . , hr} ⊂ C[w, x1, . . . , xn]

satisfying H-basis conditions

Homogenize System F → F h = {fh1 , . . . , fhs }
Find degrees of {fh1 , . . . , fhs }
d := minimal degree*
P := {fhi | deg(fhi) ≤ d}
Md(P) := Macaulay matrix of degree d for P
Nd(P) := Null space of Md(P)
Record dim(Nd(P))
d→ d+ 1
while dim(Nd(P)) 6= dim(Nd+1(P)) do

while Not DONE do
Compute Nd = Null(Md(P))
for j = 1 . . . d− 1 do

Apply jth Stetter-Thallinger Operator Nd → Ndj

Update dim(Ndj)
if dim(Ndj) lowers then

Get coefficients of new polynomial relations
P → P+ new polynomials

end if
end for
Compute Md(P)
if dimj=1...d−1(Ndj) doesn’t decrease then
d→ d+ 1
DONE

end if
end while
P → P + {fhi |deg(fhi) = d}
Compute Md(P)
Compute Nd

end while
H = Null(Transpose(Nd))
RETURN H

* Minimal means the lowest degree such that degree ≥ 2 with ≥ 2 polynomials

move up in degree. Also, at each step in the inner loop, we are able to add in any polynomial

relations that appear and update our working set.

The breakdown of this algorithm is a little more complicated. Like before, we start with

a zero-dimensional system, F , and homogenize the system using a homogenizing variable, w,

i.e. F → Fh. Previously, we would then start in the highest degree of the system. Instead,

20

we will start in the lowest degree possible. The starting point will be the lowest degree such

that we have at least two polynomials and we have reached at least degree two. This will be

our working set P which will be updated at each step. If the degree d is ceases to produce

new relations and needs to be raised, i.e. d → d + 1, we will then include any polynomials

of degree d + 1 from the original set Fh. In this way, the set is always updated to include

all polynomials of the working degree.

Using the working set P , we will record the dimension of the null space in all available

degrees. This will be used for comparison and is updated each time through the loop. We

then move up one degree and start the algorithm again. Every time we move up a degree,

we check our original set and add to our working set any polynomials of the new degree as

described above.

At each step in the core of the algorithm, we are using the Stetter-Thallinger to trim

down the null space matrix. This null basis, in the form of a matrix, is really the dual

basis for the system. If, after trimming, the rank of this matrix drops, this corresponds to a

new polynomial relation. We take any new polynomial relations, pi, and add them into our

working set P and check to see if they are linearly independent in the monomials. Adding

in the new polynomial relations, we are decreasing the number of possible solutions to the

system. By checking for linear independence in the monomial space, we are ensuring that

efforts are not being duplicated.

At this point, given our updated system, we recompute our null space and continue to

trim. When the rank in each degree stabilizes, we move outside the loop and start again.

If the rank of the degree ` matrix matches the rank of the degree ` + 1 matrix, we say the

computation has stabilized. We can then rebuild our working set of polynomials, P , from

21

the degree ` matrix of coefficients. This will produce a set of homogeneous equations in

degree ` and we have our H-basis.

There is a small caveat that must be taken into account. In order to reach a true H-basis

by the definition, we must still reach the largest degree of the system. It will, in certain

cases, be more conducive to instead truncate the computation and build the current working

set. At this point we can add in all higher degree terms which have not been incorporated,

i.e. any terms of degree higher than the max degree attained. This will still produce a

preconditioned system though it may not have removed all infinite paths from the homotopy

continuation calculation. However, if the degree is large enough and the number of variables

is large enough, it can be better to leave these terms and truncate rather than attempt to

build such a large Macaulay matrix.

3.3. Using Closedness Subspace

For the next algorithm, we will use a naive approach to taking the closedness subspace

into account. Using the Multiplicity algorithm found in [12], we will avoid the Macaulay

matrix altogether and instead compute the dual space using the closedness subspace. The

benefit is the removal of the largest bottleneck in the computation. Without the Macaulay

matrix calculation, the algorithm should run faster. The trade off, however, is that we must

return to a naive approach.

Since the Multiplicity algorithm is not intended for use in the calculation of an H-basis,

it is not optimized for this purpose. The resulting dual space is actually a byproduct of the

computation. As such, it is necessary to change the stopping criterion within the Multiplicity

algorithm to look for the dimension of the null space to stabilize. With that change made, we

have treated the Multiplicity algorithm as a sub-function to be called by the main algorithm.

22

Algorithm 3 Naive Closedness Subspace

Input: Zero-dimensional system of polynomials F = {f1, . . . , fs}
Output: Homogeneous system H = {h1, . . . , hr} ⊂ C[w, x1, . . . , xn]

satisfying H-basis conditions

Homogenize System F → F h = {fh1 , . . . , fhs }
H0 = {F h}, this is our initial set
Set Zero to an n+ 1 vector of zeros
Run Multiplicity using {x1, . . . , xn}, Zero, and H0

α = degree of stabilization in Multiplicity
m = stabilized multiplicity
h = vector of Hilbert numbers
Dα = matrix of dual basis vectors
DT
α = Transpose(Dα)

Apply Stetter-Thallinger operator, DT
α → D̂α

while Not DONE do
Nα = Null(D̂α)

N̂α = Transpose(Nα)
M =Monomials in degree α− 1
P = N̂α ∗M the set of homogeneous polynomials
Run Multiplicity on P
if dim(Dα) stabilizes then

DONE
end if
Dα → D̂α

end while
Return P

As in the naive algorithm, we compute the dual space and concatenate it into a Matrix. We

can then trim the matrix using the Stetter-Thallinger operator and get back to polynomials.

One benefit to using the Multiplicity algorithm is that it provides the Hilbert series for the

computation. This means that unlike in previous versions of the algorithm, we do not have

to check for the dimension of the dual space or the dimension of any of the lower degree

spaces. The degree of stabilization as well as all lower degree dimensions are available. These

are already calculated within Multiplicity and are given for free as part of the output. We

can use these to compare at each step to look for a drop in multiplicity corresponding to

new polynomial relations. Currently we are not able to incorporate these new polynomial

23

relations into the working set using the Multiplicity algorithm. This will be discussed in

more detail in Chapter 5.

We start with our system of equations and homogenize them to get an initial basis. This

starting set, along with a vector of the variables and a zero vector of appropriate size are

used as input to the Multiplicity algorithm. From here, we get a degree of stabilization, α,

and the associated dual space. After transposing and trimming the dual space, we apply a

null space calculation. This gives a matrix of coefficients for the monomials in one degree

lower. We can then take the dot product of this with the monomials in order to return a

system of homogeneous polynomials.

We then feed this new system of polynomials back into Multiplicity and look for drops in

the dimension, specifically drops in the multiplicity m. Once the dimension of the dual space

stabilizes between successive runs of Multiplicity, we will be left with an H-basis. While this

has removed the issue of using the Macaulay matrices and thus sped computation of the dual

space, the algorithm still suffers from other problems associated with the naive approach.

Namely, we are still only trimming by one degree and we are forced to the highest degree of

the system. These issues are discussed in more detail in Chapter 5.

24

CHAPTER 4

Examples

4.1. A Simple Example

We start with a simple system of two equations in two unknowns. Consider the following

system:

f1 = x2 − 9

f2 = xy + 3y − 1

We homogenize the system using the homogenizing variable w.

fh1 = x2 − 9w2

fh2 = xy + 3yw − w2

It is clear from the Bézout count that this system has 4 paths using a total degree

homotopy and, when solved, only one solution. When we run the system through Algorithm

2, we end up with two homogeneous linear equations in the three variables.

h1 = −9.473684210526e− 01w + 3.178947368421e− 01x− 3.789473684210e− 02y

h2 = −5.263157894737e− 02w − 3.789473684210e− 02x + 9.978947368421e− 01y

This produces the unique solution and is easily solved. For the sake of consistency, we

could use homotopy continuation, resulting in only one path tracked. It is not the case

that we will always end up with linear polynomials, this is just an example to illustrate the

algorithm. We have removed the 3 extraneous paths that would normally track to ∞ and

have simplified the system for use in homotopy continuation. This problem is small enough

that we could do this process symbolically with either H-bases or Gröbner bases. We use

numerical methods here only as an illustration. Next, we look at a system that is larger and

more complex.

25

4.2. Eco 8

Our next example system comes from the world of economics from [19]. This is a system

of 8 equations in 8 variables. The system consists of a linear equation, a quadratic equation,

and 6 cubic equations. This presents several interesting aspects. The first is that, using

Gröbner bases in order to find the Hilbert Polynomial for this system requires a minimum

of degree 12. This system stabilizes in degree 4 using an H-basis and can be computed using

only a maximum of degree 6. The other interesting piece is that we can go intrinsic on

the linear equation in order to remove a variable and an equation. This is a concept that

works well with the Bertini package since the software is set up to take full advantage of

sub-functions.

The system is as follows:

f1 = (x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7)x8 − 1

f2 = (x2 + x1x3 + x2x4 + x3x5 + x4x6 + x5x7)x8 − 2

f3 = (x3 + x1x4 + x2x5 + x3x6 + x4x7)x8 − 3

f4 = (x4 + x1x5 + x2x6 + x3x7)x8 − 4

f5 = (x5 + x1x6 + x2x7)x8 − 5

f6 = (x6 + x1x7)x8 − 6

f7 = x7x8 − 7

f8 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1

As stated above, this system stabilizes in degree 4, yet it is generated in degree 2. We are

able to get a generating set of 18 homogeneous equations of degree 2. This leads to 28 = 256

26

paths. This is a large savings over the 1458 paths traced out by a total degree homotopy.

In the affine case, a total degree homotopy yields 1394 paths going to ∞.

One benefit of this algorithm is that we are able to specify the number of iterations for a

given run. This is desirable since we may not need to go fully to saturation. In this example,

we set the number of iterations to be 3. This is the number of times the inner loop stabilized

and we had to move up in the outer loop. After three iterations, the system is in degree

4 and it’s Hilbert function is {8, 27, 53, 72}. This says that there are 72 or fewer solutions.

Since we have reached the maximum degree of the system, we know that we have not left

anything out. Now, this system is generated in degree 2 and consists of 18 homogeneous

polynomials. Though the algorithm has not completed and the quotient has not reached

saturation, we have achieved all of the solutions.

This example illustrates the value of Algorithm 2. After only a few iterations, we were

able to remove almost everything at ∞ and retrieve a (super)set of solutions. Table 4.1

shows what has been removed and the associated timings. The algorithm was coded in

Matlab and created the pre-conditioned system in 19.507s on one processor. When taking

the pre-conditioning time into account, this is not a great savings for the affine case, and is

only moderate in the homogeneous case. The savings will be increased after taking advantage

of parallelism and multi-core technology.

A separate concern is the issue of paths crossing during homotopy continuation. In both

the affine and homogenous cases, there were an average of 11 possible path crossings per total

degree run on the original system. This implies that the paths are not smooth and cause

some problems numerically. After preconditioning, there were no path crossings in either the

affine or the homogeneous case. This may be an interesting extra benefit of preconditioning

using h-bases.

27

Table 4.1. Eco 8: precondition time- 19.507s

Affine
Total Paths Infinite Paths Total Degree Time

Original System 1458 1394 13.17s
Preconditioned System 256 16 7.80s

Homogeneous
Total Paths Infinite Paths Total Degree Time

Original System 1458 7 48.47s
Preconditioned System 256 0 9.65s

4.3. Stewart-Gough Platform

We now take a look at a system of equations coming from kinematics. This particular

system comes from a Stewart-Gough platform and can be found in [24]. This system has 9

equations in 9 variables with inexact coefficients. This means that symbolically computing

the solutions to this system is difficult at best. Also, when run with a total degree homotopy,

this system requires the tracking of 4096 paths. This is not insurmountable, but the system

only has 40 solutions all of which are real. This means that the other 4056 paths are infinite

and will cause computational problems when tracking paths.

After preconditioning, we arrive at a system of degree 2 homogeneous polynomials. Since

there are 9 variables, this says that the homogeneous bézout count for the system is 29 = 512.

So, we only track 512 paths, all of which are nonsingular and none of which track to ∞.

40 of these are solutions and the rest are false solutions known as Bertini junk points.

Moreover, the H-basis for this system stabilizes very quickly, within only a few iterations of

the Algorithm 2. Computationally this is very fast and tracking the 512 paths is much more

efficient than tracking the 4096 from the original system.

The algorithm runs the initialized homogeneous system in 78.50s in Matlab on one pro-

cessor. A portion of that time is just the initial setup to find the degrees of the polynomials

28

and build the initial Macaulay matrix. The end result of the algorithm is a Bertini input

file that we can then run using a total degree homotopy. Using the same processor, Bertini

solved the preconditioned system in 25.33s. This gives us a total computational time of

103.83s. Comparatively, using a total degree homotopy on the original system using Bertini

requires over 30 minutes.

Another idea was to see how the H-basis computation compared to method known as

regeneration. Regeneration is a tool from numerical algebraic geometry that can reduce

computation time and number of paths, see [14]. Running the original system in Bertini

using regeneration on one processor yields varying times. When the regeneration run goes

well, i.e., no major problems in the tracking, this is fast. However, it is possible for the

regeneration run to get hung up on the original system. In testing, this happened about a

third of the time. With the preconditioned system, the regeneration run was consistently

smooth and without issues. For all of the details, see Table 4.2.

Table 4.2. Stewart-Gough Platform System: precondition time- 78.50s

Original System Preconditioned System
Total Degree 30m 14.70s 25.33s

Paths 4096 512
Infinite Paths 4056 0

Regeneration 106.32s 70s
Paths 160 512

Infinite Paths 120 0

4.4. Reimer Sphere System

The next system is used both as a proof of concept of the Closedness Subspace algorithm

as well as as an illustration of its limitations. This is a system of equations, based on spherical

equations presented in [20]. Algorithm 1 was used on this system in [15] to find an H-basis

29

and precondition the system. For this example, we used both Algorithm 2 and the naive

closedness subspace method of Algorithm 3. The system is as follows:

f1 = −1− 2x2 − 2y2 − 2z2

f2 = −1− 2x3 − 2y3 − 2z3

f3 = −1− 2x4 − 2y4 − 2z4

This is a simple system of three equations in three variables. The original system tracks

24 paths using a total degree homotopy. The system only has 12 solutions and the other

12 paths track to ∞. After computing an H-basis, the system tracks 27 paths using a total

degree homotopy. This tracks the 12 solutions along with 15 finite non solutions. While

the system creates more possible solutions, it fully removes any infinite paths. This higher

number of solutions is a symptom of the fact that the system stabilized in degree 3 and has

3 variables. This creates 33 = 27 paths. We were able to use the closedness subspace in

order to avoid the Macaulay matrices and find the preconditioned system. This was novel

and worked as a nice proof of concept but there were slight problems.

When computed using Algorithm 2, the system stabilizes very quickly. However, using

the closedness subspace with Algorithm 3, the system takes much longer. See Table 4.3 for

timings. While this is just one example, it is representative of the phenomena that this naive

algorithm is not as fast or efficient as Algorithm 2.

Table 4.3. Reimer 3 Timings

Algorithm 2 Algorithm 3 (Closedness Subspace)
Preconditioning 5.8s 54.5s

Paths 27 27
Solutions 12 12

Infinite Paths 0 0

30

The discrepancy here can be attributed to several factors. The first is that the closedness

subspace algorithm was never designed to find an H-basis. This will be discussed more

thoroughly in Chapter 4. The second and most important factor is that, since the Multiplicity

algorithm is designed to stand on its own, there is a lot of redundant work being done.

A prime example of this is the conversion from polynomials to matrices and back. In

Algorithm 2, once the polynomials have been converted to matrices, the coefficients live

as matrices until the very end of the algorithm. This was optimized within the algorithm

to be cost effective. Since the transition from symbolic polynomials to numeric matrices

is costly and cannot be parallelized, this is computationally expensive. In Algorithm 3,

the polynomials are converted by Multiplicity, then must be converted back to polynomials

in order to feed back into the engine. This was one of the main problems with the naive

approach that Algorithm 2 attempted to fix. Unfortunately, without completely changing

the Multiplicity algorithm, there is no immediate fix to this bottleneck. This is further

discussed in Chapter 4.

In general, it is known that the closedness subspace can find a Macaulay dual space

much faster than finding the null space of a Macaulay matrix. The algorithm, though, relies

on pieces that are not easily broken apart and changed. And, as shown above, using the

closedness subspace algorithm naively as an engine is not efficient. Thoughts for fixing this

are presented in the next chapter.

31

CHAPTER 5

Future Work

5.1. Equation by Equation

The next step is to write more efficient code for the algorithm. While the Multiplicity

algorithm computes the dual space much faster, the code is not efficient for H-basis calcu-

lations. Instead, the algorithm has been used naively as an engine for producing fast dual

bases. A better step would be to rewrite the algorithm to optimize specifically for the H-basis

calculation.

As we saw in section 2.3.3, employing the closedness subspace allows for the use of much

smaller matrices. Finding a basis for the Macaulay dual space is reduced to finding the null

space of the Wα matrices as opposed to the null space of the Macaulay matrices. Using the

equation by equation method of the closedness subspace from [12], we are able to severely

reduce the amount of computation needed to obtain a basis for the dual space. However,

these computation savings are more than offset by the transition costs of using Multipliticy.

There are a few questions that come along with optimizing this in order to compute an

H-basis. This work will necessarily have to take place inside the Multiplicity algorithm while

still satisfying the conditions of the closedness subspace.

The main challenge is that the closedness subspace software is not designed to look for

the same information as the H-basis software. The calculation finds a basis for the dual

space, but does not return to the original polynomial space. Initially, the best course of

action was to get the closedness subspace to return homogeneous polynomials at each step.

It was necessary to adapt the correct stopping criteria necessary to find an H-basis. This

allowed for the use of the code as an engine but was very inefficient as a means to find an

32

H-basis. We would like to take advantage of the computation savings inherent in Algorithm

2. The Multiplicity code does not allow for the possibility of adding in polynomials of the

top degree during a loop. In this way, we are inhibited from starting in the lowest degree

possible and trimming on subsets of the polynomial ideal. New work needs to be done to

investigate how to implement these methods within the Multiplicity algorithm or whether

that is possible without destroying the algorithm.

This poses several new and interesting questions. The first question is how to adapt the

Stetter-Thallinger operator in order to quotient out by the homogenizing variable effectively.

While we have shown that we can apply the Stetter-Thallinger operator in order to trim

the dual space, we are currently unable to add in new polynomial relations found from

consecutive trimming. We would like to be able to add in the new polynomial relations

found and show that we do not need to recompute the closedness subspace. This would

require that the new polynomial relations that come from trimming satisfy the closedness

condition.

The second question revolves around whether we can iterate as in Algorithm 2 once we

have computed the basis for the Macaulay dual space. This is very closely related to the

previous question. We would like to create an inner loop that trims as much as possible

before starting a new closedness subspace calculation. In this way, it would be possible to

save even more computation time and take advantage of lower degree polynomials. Little

is known as to whether these ideas can actually be implemented into a closedness subspace

algorithm.

33

With these questions answered, there is also the option of taking better advantage of

parallelism and multi-core technology. Since the Closedness Subspace algorithm uses nu-

merical linear algebra, parallelizing will be a very reasonable step. This will create speed

ups, especially in the case of large systems where the size of the Wα matrix grows large.

5.2. Positive Dimensional Systems

Within this monograph, we have been focusing on polynomial systems with zero-dimensional

solution sets. However, it is often the case that these systems have positive dimensional solu-

tion sets. These could be curves, surfaces, or higher dimensional objects. With the algorithms

given, there is no stopping criterion for positive dimensional solutions. The current stop-

ping criterion relies on the fact that the Hilbert polynomial is constant for zero-dimensional

ideals. For positive dimensional ideals, the Hilbert polynomial is a polynomial of the degree

matching the top dimension of the variety.

Recent work has allowed for the possibility of a new stopping criterion that would work

for positive dimensional ideals. This is based on work done by Greg Reid of University of

Western Ontario. Using the same Macaulay matrix approach, there will be a reasonable

stopping criterion in order to find an H-basis. This goal, while interesting mathematically,

is not really necessary as it may be possible to precondition these systems without going to

saturation. In that case, we do not actually need an H-basis, but instead new polynomial

relations from the H-basis computation.

34

BIBLIOGRAPHY

[1] D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese, A numerical local dimensions test for

points on the solution set of a system of polynomial equations, SIAM J. Numer. Anal., 47, 2009, no. 5,

pp. 3608–3623.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini: software for numerical

algebraic geometry, Available at www.nd.edu/∼sommese/bertini.

[3] D.J Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Stepsize control for path tracking,

Contemporary Mathematics 496:21-31, 2009.

[4] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Adaptive multiprecision path tracking,

SIAM J. Numer. Anal., 46, 2008, no. 2, pp. 722–746.

[5] D.J. Bates, C. Peterson, A.J. Sommese, A numerical-symbolic algorithm for computing the multiplicity

of a component of an algebraic set, Journal of Complexity, 22 (4), pp. 475–489, 2006.

[6] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Numerically solving polynomial

systems with bertini, Software, Environments, and Tools 25, SIAM, 2013.

[7] D.J. Bates, J.D. Hauenstein, and S.L. Ihde Preconditioning polynomial systems via h-bases, preprint,

2013.

[8] D.A. Brake Homotopy Continuation Methods, Intrinsic Localized Modes, and Cooperative Robotic

Workspaces, PhD Dissertation, 2012.

[9] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Springer,

New York, 1998.

[10] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, third ed., Undergraduate Texts in

Mathematics, Springer, New York, 2007.

[11] B.H. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial systems, In

Proceedings of ISSAC’05, (2005), pp. 116–123.

[12] W. Hao, A. J. Sommese, and Z. Zeng, An algorithm and software for computing multiplicity structure

at zeros of nonlinear systems, ACM Transactions of Mathematical Software, 2012.

[13] J.D. Hauenstein, Algebraic computations using Macaulay dual spaces, preprint, 2011.

35

[14] J.D.Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for solving systems of

polynomials, Mathematics of Computation, 80, pp. 345-347, 2011.

[15] S.L. Ihde Preconditioning polynomial systems for homotopy continuation Master’s Thesis, Colorado

State University, 2011.

[16] T.L Lee, T.Y. Li, and C.H. Tsai, Hom4ps-2.0, a software package for solving polynomial systems by

the polyhedral homotopy continuation method, Computing, 83, pp. 109-133, 2008.

[17] F.S. Macaulay, The algebraic theory of modular systems, Cambridge University Press, 1916.

[18] H.M. Möller, J. Sauer, H-bases for polynomial interpolation and system solving Advances in Compu-

tational Mathematics, v.12, 2000.

[19] A. Morgan, Solving polynomial systems using continuation for engineering and scientific problems

Prentice Hall, New Jersey, 1987.

[20] M. Reimer Constructive theory of multivariate functions, BI Wissenschaftsverlag, Mannheim, 1990.

[21] A.J. Sommese and C.W. Wampler, The numerical solution to systems of polynomials arising in engi-

neering and science, World Scientific, Singapore, 2005.

[22] H.J. Stetter, Numerical polynomial algebra, SIAM, 2004.

[23] G.H. Thallinger, Analysis of zero clusters in multivariate polynomial systems, Diploma Thesis, Tech.

Univ. Vienna, 1996.

[24] J. Verschelde PHCpack: a general-purpose solver for polynomial systems by homotopy continuation

ACM Transactions of Mathematical Software, 1999.

[25] Z. Zeng, The closedness subspace method for computing the multiplicity structure of a polynomial

system, 2009.

36

